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1 Introduction

Scheduling is concerned with the management of resources that have to be allocated to activi-
ties over time subject to a number of constraints. A (feasible) schedule is an allocation of the
resources to the activities that satisfies all constraints. The objective of scheduling is finding a
schedule that is optimal with respect to a certain objective function. The resources that have to
be allocated and the constraints that have to be satisfied can be of various types. Hence many
real-life problems can be viewed as scheduling problems.

Crew scheduling. An airline company must allocate personnel (pilots and flight attendants) to
flights, such that the number of pilots and flight attendants is sufficient on each flight, each
employee has a (flight-dependent) period of time off between two flights and each employee
returns home regularly. An objective of crew scheduling could be minimising the number of
employees and equally dividing the working hours among the personnel.

Classroom scheduling. A school has to allocate teachers and classrooms to courses, such that
no teacher is in two classrooms at the same time, no course gets assigned two teachers or two
classrooms, no teacher works more than seven hours on one day and no student has more
than seven courses on one day. The objective of classroom scheduling could be minimising
the total amount of time that the teachers and the students have to be at school.

Vehicle routing. A transport company must allocate trucks to goods that have to be transported,
such that the volume of the goods on one truck does not exceed its capacity, all trucks return
at their depot at the end of each day, no truck driver works more than eight hours on one day
and all goods are loaded and unloaded during office hours. The objective of vehicle routing
could be minimising the number of trucks.

In general, a scheduling problem assumes the existence of aggrationgthe activities) and
a set ofmachinegthe resources). The machines have to be assigned to the operations over time
subject to a number of constraints.

Machine scheduling. A machine must be allocated to each operation, such that no machine
is assigned to two operations at the same time and exactly one machine is assigned to each
operation.

All scheduling problems are generalisations of the machine scheduling problem. For example,
in crew scheduling, the personnel corresponds to the machines and the flights to the operations.

This thesis is concerned with multiprocessor scheduling, the problem of executing a computer
program on a parallel computer.

Multiprocessor scheduling. The processors of a parallel computer have to be allocated to the
tasks of a computer program, such that no processor executes two tasks at the same time and
every task is executed exactly once.

Usually, a multiprocessor schedule has to satisfy some additional constraints.
Multiprocessor scheduling is a generalisation of machine scheduling: the processors corre-
spond to the machines and the tasks to the operations.
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1.1 Communication in parallel computers

This thesis is concerned with multiprocessor scheduling with communication. This is an essen-
tial aspect of the problem of executing a computer program on a parallel computer. A computer
program can be seen as a collection of instructions. These include assignments, arithmetic in-
structions, conditional statements, loop statements and subroutine calls. We will assume that the
instructions are combined into clusters. These clusters of instructions will be tzsglexd

A parallel computer can be viewed as a collectiorpafcessorand memoriesand acom-
munication mechanisnin this thesis, we will not consider the other components of a parallel
computer. The processors are used to execute the tasks of a computer program. The memo-
ries are used to store data. The communication mechanism is used to transfer data between the
components (processors and memories) of the parallel computer.

There are two types of parallel computer that differ in the way memory is useddis a
tributed memory computeeach processor has a local memory. The processors of a distributed
memory computer are connected by a communication network, but are not a part of this network.
In shared memory computetdere is a global memory that is used by all processors.

The communication mechanisms of these computers are different. In both models, a data
transfer can be viewed as a sequenceashmunication operationdn a shared memory com-
puter, data is transferred from a source processor to a destination processor by writing and read-
ing in shared memory. A data transfer consistswfite operationfollowed by aread operation
The source processor writes the data in a memory location, after which it can be read by the des-
tination processor. The write operation does not interfere with the availability of the destination
processor. Similarly, the source processor is not involved in the execution of the read operation.
Because simultaneous access of a memory location by two processors is not allowed, the dura-
tion of the write and read operations depends on the number of processors that want to access the
same memory location simultaneously.

In a distributed memory computer, data is transferred by sending messages from one proces-
sor to another through the communication network. In such computers, a data transfer consists
of three communication operations:sand operationa transport operatiorand areceive op-
eration The send operation is executed by the source processor; the send operation submits a
message to the communication network. The transport operation is used to transport a message
over the connections in the communication network from the source processor to the destination
processor. No processor is involved in the execution of the transport operation. After a mes-
sage has been transported, the destination processor can obtain the data from the message by
executing a receive operation. The duration of the send and receive operations depends on the
size of a message. The duration of a transport operation varies with the size of the message, the
distance between the source and the destination processor, the capacity of the connections in the
communication network and the number of messages that reside in the communication network.

1.2 Multiprocessor scheduling

During the execution of a computer program on a given input, each task has to be executed by
one processor and the duration of its execution depends on the input. Some of the tasks have
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to be executed in a specified order, because the result of a task may be needed to execute other
tasks. Such tasks will be calledta dependenOther tasks can be executed in an arbitrary order

or simultaneously on different processors of a parallel computer. If two data-dependent tasks
are executed on different processors, then the result of the first task must be transported to the
processor that executes the other task using the communication mechanism.

Multiprocessor scheduling can be viewed as a generalisation of the machine scheduling prob-
lem. The machines are the processors and the components of the communication mechanism of
the parallel computer. The operations are the tasks and the communication operations. Proces-
sors and components of the communication mechanism have to be allocated to each task and
each communication operation for some period of time. Each task and every send and receive
operation has to be assigned a processor on which it is executed. The write and read operations
have to be allocated a processor and a memory location that must be accessed. A sequence of
connections in the communication network has to be assigned to every transport operation: these
connections form the path over which the corresponding message is sent through the communi-
cation network.

An assignment of processors and components of the communication mechanism to the tasks
and the communication operations has to satisfy many constraints. Usually,

1. no processor can execute two tasks or communication operations at the same time;

2. data-dependent tasks cannot be executed at the same time;

3. if two data-dependent tasks are executed on different processors, then a data transfer must
be executed between these tasks;

4. if communication is modelled by writing and reading messages in shared memory, then

(a) no shared memory location can be accessed by two processors at the same time; and

(b) atask cannot be executed until all data for this task is read by the processor on which
it is executed; and

5. if communication between the processors is modelled by sending messages through a com-
munication network, then

(a) the number of messages sent over a connection of the network at the same time may
not exceed the capacity of the connection; and

(b) atask cannot be executed until all messages required for this task are received by the
processor on which it is executed.

Apart from the large number of constraints that need to be satisfied, there are also many objective
functions that could be minimised or maximised. The most common of these is the minimisation
of themakespanthe duration of the execution of the computer program.

1.3 Models of parallel computation

Because of the large number of different constraints in multiprocessors scheduling and the great
variety of parallel computer architectures, it is difficult to design efficient algorithms that con-
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struct good multiprocessor schedules. This is the reason to introduce an abstract model of a
parallel computer, anodel of parallel computationin such a model, one can concentrate on
those aspects in multiprocessor scheduling that have a large impact on the objective function (for
instance, the makespan). A good model of parallel computation helps to understand the essence
of the problem of multiprocessor scheduling with communication.

If the duration of the tasks is large compared to the duration of the communication operations,
then the impact of communication on most objective functions is small. For such problems, we
can use a model of parallel computation in which all communication constraints are removed.
In this model, the duration of the communication operations is assumed to be negligible. A
schedule for a computer program in this model is an allocation of processors over time, such that
no processor executes two tasks at the same time and data-dependent tasks are executed in the
right order. This is the most common scheduling model. Lawler et al. [60] give an overview of the
work on scheduling without communication requirements subject to many additional constraints
and several objective functions.

In a real parallel computer, sending a message through the communication network or access-
ing a shared memory location is a very costly operation compared to a simple arithmetic opera-
tion. So the communication-free model of parallel computation does not capture the complexity
of parallel computation. Many other models have been presented that incorporate communica-
tion in some way. An overview of such models is presented in the remainder of this section.
The communication constraints of the models based on shared memory parallel computers are
described in Section 1.3.1 and those of the models based on distributed memory computers in
Section 1.3.2. Guinand [40] and Juurlink [51] have presented more elaborate overviews of mod-
els of parallel computation.

1.3.1 Shared memory models

Most shared memory models are generalisations of the Parallel Random Access Machine intro-
duced by Fortune and Wyllie [28]. The PRAM is the most common model of parallel compu-
tation. A PRAM consists of an infinite collection of identical processors that each have an un-
limited amount of local memory. The processors execute a computer program in a synchronous
manner: all processors start a task or a communication operation at the same time. The proces-
sors communicate by writing and reading in shared memory. Two processors can read the same
memory location simultaneously, but a memory location cannot be written by one processor and
written or read by another processor at the same time. This model of parallel computation is
also called the Concurrent Read Exclusive Write PRAM. Snir [82] introduced two variants of
the PRAM model: the Exclusive Read Exclusive Write PRAM in which no simultaneous access
of the same memory location is allowed, and the Concurrent Read Concurrent Write PRAM in
which a memory location can be read or written by several processors at the same time.

The PRAM model does not capture the complexity of communication in the execution of
computer programs: a communication operation has the same duration as the execution of a com-
putation instruction whereas in a real parallel computer, a communication operation is far more
time consuming. There are several PRAM-based models of parallel computation that include
other aspects of real parallel computers. Asynchronous variants of the PRAM were presented by
Cole and Zajicek [15, 16] and by Gibbons [34]. In an asynchronous PRAM, the processors need
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not start the execution of an instruction or a communication operation simultaneously. Hence
processors executing a simple arithmetic instruction do not have to wait for processors that are
reading or writing in shared memory.

Most PRAM-based models of parallel computation include a more realistic representation of
shared memory access than the PRAM itself. The Delay PRAM introduced by Martel and Raghu-
natham [65] and the Local-Memory PRAM of Aggarwal et al. [3] extend the PRAM model by
including a latency for shared memory access. In these models, the duration of a communication
operation is fixed and larger than the duration of an arithmetic operation. The Queue Read Queue
Write PRAM presented by Gibbons et al. [35, 36] includes memory contention: it is allowed to
access the same shared memory location simultaneously, but the duration of a memory access
depends on the number of processors that want to read or write the same memory location. In the
Block Parallel PRAM of Aggarwal et al. [2], accessing a consecutive block of shared memory
locations is less time consuming than separately accessing these memory locations: the duration
of a write or read operation equals the sum of a fixed latency and a function linear in the number
of consecutive memory locations that must be accessed.

1.3.2 Distributed memory models

In the execution of a computer program on a distributed memory computer, each task is executed
by one processor and messages are sent through the communication network. For each pair of
data-dependent tasks scheduled on different processors, one needs to assign a path through the
communication network that will be used to send messages. This is known as routing. In this
thesis, the problem of routing will be ignored.

The simplest model of parallel computation based on a distributed memory parallel computer
is a model in which the communication network is a complete graph (there is a direct connection
between every pair of processors) and each connection in the communication network has an
unbounded capacity. In this model, transporting a message from one processor to another takes
a fixed amount of time. The communication is represented by the duration of the transport
operations only; the duration of the send and receive operations is assumed to be zero. For
multiprocessor scheduling, this is the most common model of parallel computation that does not
neglect the communication costs. It was introduced by Rayward-Smith [79]. An overview of
scheduling problems in this model is given by €ffignne and Picouleau [13].

This basic model has been generalised in several ways. Papadimitriou and Yannakakis [75]
assume that the fixed duration of the transport operations depends on the topology of the commu-
nication network. Finta and Liu [25, 26] and Picouleau [78] add an overall capacity constraint:
the number of messages that can be sent through the communication network at the same time
is bounded. Kalpakis and Yesha [52, 53], Cosnard and Ferreira [19] and Bampis et al. [6] con-
sider models of parallel computation in which the communication network is not a complete
graph: the duration of transport operations in such networks depends on the distance between
the communicating processors.

Most models of parallel computation include only one or two aspects of real parallel com-
puters, but some include more aspects. These models are all architecture independent and char-
acterise the execution of computer programs on a real parallel computer by a small number of
parameters. The Bulk Synchronous Parallel model was introduced by Valiant [85]. The BSP

7



model is a synchronous model of parallel computation in which the synchronisation costs are not
neglected. These costs are modelled by a communication latency. In addition, the number of
messages that can be sent at the same time is bounded by the throughput of the communication
network, and the duration of send or receive operations is not negligible.

The Postal model was introduced by Bar-Noy and Kipnis [7]. It includes communication
overheads and communication latencies: the send and receive operations have unit length and
the transport operations have a fixed duration that depends on the network topology.

The LogP model was introduced by Culler et al. [21]. The LogP model is named after its
parameters: the latenty the overhead, the gapg and the number of processd?s The LogP
model is more general than the Postal model. Like in the Postal model, the transport operations
in the LogP model have a fixed duration that depends on the topology of the communication net-
work. Sending and receiving a message of unit size takes a fixed amount of time. The bandwidth
of a parallel computer is modelled as well: there is a minimum delay between two consecutive
send and receive operations executed on the same processor.

1.4 An overview of the thesis

This thesis consists of four parts: an introductory part, two main parts and a concluding part. The
introductory part consists of Chapters 1 and 2. In these chapters, the terminology and notation
used in the main parts are presented. The two main parts (Parts | and Il) are concerned with
scheduling in two different models of parallel computation and subject to two different objective
functions. These parts are self-contained and can therefore be read separately. The concluding
part consists of Chapter 12.

Part | consists of Chapters 3, 4, 5, 6 and 7. In these chapters, we study the problem of
constructing minimum-tardiness schedules in the Unit Communication Times model, the model
of parallel computation in which communication is represented by a latency of unit length. The
computer programs that are to be scheduled in this model consist of tasks that have been assigned
a deadline. The UCT model is introduced in Chapter 3. In the remaining chapters of Part I, we
present several algorithms that construct minimum-tardiness schedules (schedules in which the
maximum amount of time by which a deadline is exceeded is as small as possible) for special
classes of data dependencies.

Part Il is concerned with the problem of constructing minimum-length schedules in the LogP
model. This part consists of Chapters 8, 9, 10, and 11. Chapter 8 is used to introduce the LogP
model. In the remaining chapters of Part Il, the complexity of constructing minimum-length
schedules in the LogP model is studied. It is proved that this problem is NP-hard even for a
restricted class of data dependencies. Moreover, in Part Il, we present the first approximation
algorithms with a constant approximation ratio for scheduling two special classes of data depen-
dencies in the LogP model.



2 Preliminaries

In this chapter, the general notation in multiprocessor scheduling and some preliminary results
are presented. In Section 2.1, we present the terminology for precedence graphs that will be used
throughout this thesis. Section 2.2 presents the general scheduling instances. The general notion
of a schedule is given in Section 2.3. In Section 2.4, the notion of approximation algorithms for
scheduling is presented. Special classes of precedence graphs and the properties of these classes
of precedence graphs are presented in Section 2.5.

2.1 Precedence graphs

In the execution of a computer program on a parallel machine, each task of the program is
executed by exactly one of the processors. The tasks can often not be executed in an arbitrary
order: the result of a task may be needed by other tasks. If the result afjtéaskeeded to
execute task, then the execution af; must be completed before the executiomptan start.
If the execution ofi, does not require the result of, thenu; andu, can be executed in arbitrary
order or at the same time on different processors.

The tasks of a computer program and their data dependencies will be represented by a prece-
dence graph.

Definition 2.1.1. A directed graphis a tupleG = (V,E), whereV is a set ohodesandE CV xV
is a set ofarcsbetween the nodes. An arc is a pair of two nodeg:ahe pair(us, uz) denotes the
arc fromuy to up. A directed graptG = (V,E) is called aprecedence grapbr directed acyclic
graphif there is no sequence of ar@ig;, uy), (U2, Us), ..., (Uk,Uz) in E for anyk > 1.

Let G = (V,E) be a precedence graph. A node frentorresponds to a task from the com-
puter program. An arc from one node to another represents a data dependency between the
corresponding tasks: if there is an arc from nagéo nodeus,, then the result of the task corre-
sponding tau; is needed to execute the task that corresponds.t&ince there is a one-to-one
correspondence between the tasks of a computer program and the nodes in a precedence graph,
we will use the term task for the nodes in a precedence graph.

Let G be a precedence graph. The¥éG) denotes the set of tasks GfandE(G) the set of
arcs ofG. Throughout this thesis, we will assume tRd6G) containsn tasks andE(G) contains
earcs. Apathin G is a sequence & > 2 tasksuy, Uy, ..., Ux of G, such thais contains an arc
fromu; tou;q foralli € {1,...,k—1}. From the definition of precedence graphs, there are no
paths inG from a task to itself. Théengthof a path is the number of tasks on the path. The
heightof G is the length of a longest path (&

Let u; anduy be two tasks ofG. uj is called apredecessoof us if there is a path inG
from u; to up. In that caseus is called asuccessobnf ui, which is denoted by; <g . The
sets of predecessors and successors of auaskG are denoted byreds(u) and Suce(u),
respectively. Tasks without successors will be cafiedksand tasks without predecessors will
be calledsources u; is called achild of uy if (ug,up) is an arc ofG. If uy is a child ofuy, then
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uz is called aparentof up. This is denoted by; <go Uz. The setPreds o(u) andSuce o(u)
contain the parents and children wfrespectively. The number of children of a tasks the
outdegreeof u; its indegreeequals the number of parents wf It is not difficult to prove that
Yuev(e) |Predso(U)| = Yuev(e) [Suce.o(u)| = [E(G)|.

Two tasksu; andu, of G are calledncomparablédf neitheru; < up, noru, <g u;. Other-
wise, they are calledomparable Thewidth of G is the maximum number of pairwise incom-
parable tasks o&6. Consequently, if5 is a precedence graph of widih then every subset of
V(G) with at leastw+ 1 elements contains at least two comparable taskshanin G is a
set of pairwise comparable tasks®f Note that the tasks on a path@form a chain and that
the size of a maximum-size chain @equals its height. A set of pairwise incomparable tasks
is called aranti-chainin G. So the width ofG equals the size of a maximume-size anti-chaiin

A topological orderof a precedence graph is a list containing all tasks dB, such that
each task has a smaller index in the list than its successors. There is a topological order of all
precedence graphs. A topological ordeGofan be constructed i@(n+ e) time [18].

The transitive closureof G is a precedence grap8™, such thatvV(G*) = V(G) and
E(G") = {(u1,u2) | 1 <g U2}. Hence the transitive closure & contains an arc from every
task of G to each of its successors. Thansitive reductiorof G is a precedence graph—,
such tha¥ (G~) =V(G) and for all taskai;, up andug of G, u; <g Uz if and only if uy <g- Uy
and if u; <g U2 anduy <g Uz, then(ug,uz) is not an arc ofG~—. Throughout this thesisg™
equals the number of arcs of the transitive reductioiGaind e the number of arcs in the
transitive closure 06. A transitive closure or a transitive reduction®fcan be constructed in
O(min{n?>3’6 n4+e+ne"}) time [17, 37]. Transitive closures and transitive reductions of prece-
dence graphs will be used to obtain more efficient implementations of algorithms.

Let U be a set of tasks of a precedence gr&hThe subgraph of G induced by i the
precedence graglJ, E(G)N (U xU)). This precedence graph is denoted3jy|. A precedence
graphH is called asubgraphof G, if there is a subsédl of V(G), such thatG[U] equalsH. A
prefix of a precedence graph is a subset) of V(G), such that for all tasks; andu, of G, if
u € U andu; <g up, thenu; € U.

2.2 General scheduling instances

During the execution of a computer program, the duration of the execution of a task depends
on the input of the computer program. A functipris used to specify the execution length of
every task of the computer program for a given input: for eachuasfkG, p(u) is the duration
of the execution ofi. Hence a computer program (for a given input) will be represented by a
tuple (G, W), whereG is a precedence graph apd V(G) — Z™ is a function that assigns an
execution lengtlor task lengthto every task ofs. We will assume that is also used to denote
the total execution time of a precedence graph or a set of tasks. U5 i& set of tasks o,
thenp(U) = 3 ey K(W). In addition,u(G) = u(V(G)) = Fuev(c) H(U).

A general scheduling instancerepresented by a tup(&, 1, m), such thatG, i) corresponds
to a computer program amd € {2,3,..., 0} equals the number of processors that is available
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for the execution of this computer program.nif= o, then the number of available processors

is unrestricted. Since we assume that every task is executed by exactly one processor, instances
(G, H, ) correspond to instancé&, m,n). We will not consider instance§, i, 1), because the
scheduling problems that will be studied in this thesis are easily solvable on one processor.

2.3 Communication-free schedules

A schedule for a computer program corresponds to the execution of the computer program on a
parallel machine for a given input. A schedule assigns a starting time and a processor to all tasks.

Definition 2.3.1. A scheduldor a scheduling instand&, |, m) is a pair of functionga, 1), such
thato : V(G) — IN andm: V(G) — {1,...,m}.

Consider a schedul@, 1) for an instanc€G, ., m). o is anassignment of starting timesd
Ttanassignment of processors(u) represents thstarting timeof u andri(u) the processor on
whichu is executed. A task is said to bescheduledat timea(u) on processori(u). Each task
has exactly one starting time. So duplication of tasks is not allowsthrts at times(u) and is
completed at time(u) 4 p(u), its completion timePreemption is not allowed: the execution of
u cannot be interrupted and resumed at a later tinig said to be executed at tirhen processor
m(u) for all timest, such thao(u) <t < o(u)+ p(u) — 1. A processor is calleidlle at timet if
no task is executed at timeon that processor.

A feasible schedule is a schedule in which no processor executes two tasks at the same time
and the comparable tasks are executed in the right order.

Definition 2.3.2. A scheduld g, ) for (G, m) is called &easible communication-free schedule
or feasible schedulfor (G, p, m) if for all tasksu; # up of G,

1. if m(ur) = (u2), theno(ug) + p(u) < a(up) or o(ug) + p(uz) < o(ug); and
2. if ug <g U2, theno(ug) + p(up) < o(ug).

The first constraint states that no processor can execute two tasks at the same time. The
second ensures that a task is scheduled after its predecessors.

Example 2.3.3. Consider the instandgs, 1, 2) shown in Figure 2.1. Every task & is labelled

with its name and its execution length. A sched{der) for (G, ,2) is shown in Figure 2.2:
o(a1) =0, 0(az) =0, 0(by) =1, o(bp) =2, 6(c1) =3, 6(c) =3 anda(d;) = 6. Moreover,

m(ag) = 1(by) = 1(c1) = (d1) = 1 andr(ay) = 1(by) = T(C2) = 2. Itis not difficult to see that
this is a feasible communication-free schedule(fery, 2).

Let (g, 1) be a feasible (communication-free) schedule @, m). Thelengthor makespan
of (o, is the maximum completion time of a task & the makespan ofo, ) equals
max,ev(c)(0(u) +u(u)). (o,m) is called aminimum-length scheduller (G,,m) if there is
no feasible schedule f@6, yu, m) with a smaller length tha(o, ).
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Figure 2.2. A feasible communication-free schedule {@, 1, 2)

Feasible schedules in the UCT model and in the LogP model are defined in Chapters 3 and 8,
respectively. Feasible schedules for these models of parallel computation can be viewed as fea-
sible communication-free schedules. However, due to the communication requirements of the
UCT model and the LogP model, a feasible communication-free schedule need not correspond
to a feasible schedule in the UCT model or the LogP model.

2.4 Approximation algorithms

The goal of a scheduling problem is the construction of schedules that are optimal with respect to
a certainobjective functionFor multiprocessor scheduling, the minimisation of the makespan is
the most common objective. Lawler et al. [60] give an elaborate overview of scheduling problems
and different objective functions.

Assume we want to minimise objective functidnfor a class of scheduling instanc€s
For each instanckin C, let f*(1) = min{f(o, ) | (g, ) is a feasible schedule fo}. Let Algo-
rithm A be an algorithm that constructs feasible schedules for all instarnicetassC. Let A(l)
be the schedule fdrconstructed by Algorithm A. Let € IR, such thap > 1. Then Algorithm A
is called ap-approximation algorithnif for all instanced in C, f(A(l)) <pf*(l). Algorithm A
is called arapproximation algorithm with asymptotic approximation ragpidf there is a positive
integerN, such that for all instancdsin C, if f*(1) > N, thenf(A(l)) < pf*(l). These notions
of approximation algorithms correspond to those of Garey and Johnson [33]. If there is a non-
negative constart € IR, such thatfa(l) < pf*(l)+ c for all instances in C, then Algorithm A
is ap + c-approximation algorithm and an approximation algorithm with asymptotic patio
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2.5 Special precedence graphs

In this section, some properties of several special classes of precedence graphs are presented.
Later in this thesis, algorithms will be presented that construct schedules (in the UCT model or
in the LogP model) for precedence graphs from these classes.

2.5.1 Tree-like task systems

Tree-like task systenmodel divide-and-conquer computer programs, such as the evaluation of
arithmetic expressions [10] and polynomial expressions [74]. We will consider two types of tree-
like task systems: trees in which all tasks have at most one parent and trees in which all tasks
have at most one child.

Definition 2.5.1. Inforestsare precedence graphs in which every task has at most one child. An
intreeis an inforest that has exactly one sink. dutforestis an inforest in which the arcs have

been reversed: an outforest is a precedence graph in which all tasks have at most one parent. An
outtreeis an outforest with exactly one source.

It is easy to see that an inforest is a collection of intrees and an outforest a collection of
outtrees. The sinks of an inforest and the sources of an outforest will be catled The
sources of an inforest and the sinks of an outforest will be cddleft Tree-like task systems
are sparse precedence graphs: a forest (an inforest or an outforedtyadtls contains exactly
n—karcs.

An inforest (or intree) will be called d-ary inforest(or d-ary intreg if all tasks have inde-
gree at mostl. Similarly, an outforest (or outtree) is calledieary outfores{or d-ary outtreg if
all tasks have outdegree at madst

Since in an inforest every task has at most one child, all successors of a task are comparable.

Observation 2.5.2. Let G be an inforest. Letjuu, and w be three tasks of G. Ifju<g u; and
U1 <G U3, then y < Uz Or uz <g Up.

Similarly, all predecessors of a task in an outforest are comparable.

Observation 2.5.3. Let G be an outforest. Letjuup and i be three tasks of G. Ifou<g U
and i <g Up, then ¥ <g us or uz <g Up.

Let H be a subgraph of an infore& It is not difficult to see thaH is also an inforestH
will be called asubforesiof G. If H is an intree, theid will be called asubtreeof G. Similarly,
a subgraph of an outforest is an outforest and will also be called a subforest or a subtree.

In this thesis, we will also consider special tree-like task systems. For instance, we will
consider precedence graphs that are both inforests and outforests. In such precedence graphs,
every task has at most one child and at most one parent. These precedence graphs will be called
chain-like task systems

Moreover, in Chapter 9, send graphs are considerederd graphs a precedence graph
consisting of a source and its children. These children are the sinks of the precedence graph.
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Receive graphare considered in Chapter 10. A receive graph is a send graph in which the arcs
have been reversed: a receive graph consists of a sink and its parents. Send and receive graphs
are special instances of outtrees and intrees, respectively: a send graph is an outtree of height
two and a receive graph is a intree of height two.

2.5.2 Interval orders

Unlike tree-like task systems, the classmtierval ordersor interval-ordered taskss a class of
precedence graphs that are not necessarily sparse.

Definition 2.5.4. A precedence grap8 is called arinterval orderif for every taskv of G, there
is a (non-empty) closed intervilv) C R, such that for all taske; andv, of G,

vi<gVe ifandonlyif x<yforallxel(vi)andyel(v).

Interval orders have a very nice property: the sets of successors of the tasks of an interval
order form a total order. More preciselyuf andu, are two tasks of an interval ord€, then

Sucg(u) C Suce(uy) or Sucg(u2) C Suces(up).
This property can be generalised.

Proposition 2.5.5. Let G be an interval order. Let U be a non-empty subset (@)Y Then U
contains a task u, such that

Sucg(u) = | Suce(v).

veU
Proof. By straightforward induction on the number of task$Jof O

The transitive closure of an interval ord@ércan be constructed more efficiently than the
transitive closure of an arbitrary precedence graph. First construct a topologicaligrderu,
of G. This takesO(n+ e) time [18]. Usinguy,...,un, the set of successors of each task can be
computed inductively. Assum@uce;(Ui+1),...,Suce(u) have been computed. Let, ..., v
be the children ofy;. SinceG is an interval order, we may assume ti&atcg(v1) C --- C
Suce (k). ThenSuce (Ui) = Suces(vk) U{vi,. .., w}. For every task in Suce(u;), add an arc
from u; to v. Then the resulting precedence graph is the transitive closuge lbfs constructed
in O(n+e™) time.

Lemma 2.5.6. Let G be an interval order. Then the transitive closure of G can be constructed
in O(n+¢e™) time.
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3 The Unit Communication Times model

Part | is concerned with scheduling in the Unit Communication Times model of parallel compu-
tation. The UCT model is presented in this chapter. In Section 3.1, the communication require-
ments of the UCT model are presented. The scheduling model for tasks is extended to tasks with
non-uniform deadlines. The notation concerning non-uniform deadlines are introduced in Sec-
tion 3.2. The general problem instances and feasible schedules for such instances are presented
in Sections 3.3 and 3.4. Section 3.5 introduces the objective functions related to scheduling with
non-uniform deadlines. In Section 3.6, previous results on scheduling in the UCT model are
presented. An outline of the first part of this thesis is presented in Section 3.7.

3.1 Communication requirements

In Section 2.3, feasible communication-free schedules were introduced. For the construction
of feasible communication-free schedules, only two kinds of constraints have to be taken into
account: the precedence constraints and the constraints due to the limited number of processors.
Hence a task can be scheduled on any processor immediately after the completion of the last of
its parents. The time required to transport the result of a task to another processor is neglected.

However, it turns out that communication has a great effect on the performance of parallel
computers. This is the reason why there are many models of parallel computation that include
a notion of communication. Some of these were mentioned in Section 1.3. Since the effect
of communication is ignored in communication-free scheduling, it does not capture the true
complexity of parallel programming.

The UCT model is a model of a distributed-memory computer that takes communication
delays into account. In the UCT model, we will assume that the communication network is a
complete graph: each processor is directly connected to all other processors. The capacities of
these connections are assumed to be unbounded. From this assumption, an unbounded number
of messages can be sent over any connection in the communication network at the same time.
Hence the time required to send one message from one processor to another is independent of the
pair of processors: the interprocessor communication delays are all equal. In the UCT model,
the communication delays are assumed to be of unit length.

The unit-length communication delays add the following constraint to the scheduling prob-
lem. Consider a tasitand a childv of u. If uandv are scheduled on different processors, then
cannot start immediately after because the result afmust be sent to another processor. There
must be a delay of at least one time unit between the completion timamd the starting time
of v. If uandv are scheduled on the same processor, then the resulbeéd not be sent to
another processor amtan be scheduled immediately after

3.2 Non-uniform deadlines

Apart from communication delays, non-uniform deadlines for tasks are introduced. The most
common objective function for scheduling is the minimisation of the makespan. In scheduling
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problems with this objective, all tasks have the same priority. However, in many applications,
different tasks have different priorities. Tasks with different deadlines are not equally important:
tasks with a small deadline must be executed early and hence have a high priority, whereas tasks
with large deadlines are less important.

A task should be completed before its deadline. If a takishes after its deadline, then it
is calledtardy and thetardinessof u is defined to be the amount of time by which the completion
time of u exceeds its deadline. (f finishes before its deadline, then it is calledtime and
its tardiness equals zero. The objective of the scheduling problems considered in Part | is the
minimisation of the maximum tardiness among all tasks.

The problem of constructing minimum-tardiness schedules is closely related to that of min-
imising the makespan: the makespan of a schedule coincides with a deadline that is met by all
tasks, and if all tasks are assigned deadline zero, then the maximum tardiness of a task in a
schedule equals the makespan of this schedule.

3.3 Problem instances

As shown in Chapter 2, a general scheduling instance is represented by é3ypie), where

G is a precedence graph,s a function that assigns an execution length to every taskanid

m is the number of processors. This scheduling problem is generalised in two ways: there are

unit-length communication delays and every task has a deadline. Since the communication re-

guirements are the same for all arcs, these are not explicitly included in the scheduling instances.
Unlike the communication delays, the deadlines are included in the instances. The new

scheduling instances will be represented by tuples., m,D), whereG is a precedence graph,

u:V(G) — Z* assigns an execution length to every taskpf € {2,3,..., 0} is the number

of processors, and : V(G) — Z assigns a deadline to every task®fNote that a deadline may

be non-positive and that a non-positive deadline cannot be met. If all tasks have execution length

one, then the scheduling instan@ p, m, D) will be represented by the tup{&, m,D).

3.4 Feasible schedules

Like for communication-free schedules, a schedule in the UCT model is represented by a pair of
functions. Ascheduldor (G,p,m,D) is a pair of functiongo, 1), such that : V(G) — IN and
m:V(G) — {1,...,m}.

Definition 3.4.1. A schedule(o, ) for (G, ,m,D) is called afeasible schedulor (G,u,m,D)
if for all tasksuy # up of G,
1. if m(up) = 1(uz), thena(uy) + p(ur) < o(uz) or o(uz) + pu(uz) < a(u);
2. if ug <G Uz, thena(ug) + p(ug) < o(up); and
3. if up <@ Uz andi(ug) # T(Up), theno(ug) + p(ug) +1 < o(uy).
The first two constraints equal those for feasible communication-free schedules; the third

one states that there must be a delay of at least one time unit between data-dependent tasks on
different processors. Note that the feasibility of a schedule does not depend on the deadlines.
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Figure 3.1. An instance(G, 1, 2,D)

o 1 2 3 4 5 6 7 8

ap by C1 dy

ap b (73

Figure 3.2. A feasible schedule foiG, 1, 2,D)

Example 3.4.2. Consider the instanc@s, b, 2,D) shown in Figure 3.1. Each task &fis la-
belled with its name, execution length and deadline. Noteg(that, 2, D) corresponds to the gen-
eral scheduling instand&, p, 2) shown in Figure 2.1. A feasible schedte 1) for (G, ., 2,D)

is shown in Figure 3.2a; anday start at time 0 on separate processtxsis a successor G,
so it can be scheduled immediately afégron the first processor. Sinde is a successor af;
anday, andb; is not scheduled on the same processomashere is a delay of one time unit
between the completion time af and the starting time df,. ¢; andc, are both successors of
b,. Only one of these tasks can be executed immediately [aften the second processor. The
other can be scheduled after a delay of one time unit on the first processor. Sirdiladynot
be executed immediately after andc,, because; andc; are both parents af;. It is easy to
see that the schedule f@B, |, 2) shown in Figure 2.2 is not a feasible schedule(féry, 2,D).

In the remaining chapters of Part I, we will use a different definition of feasible schedules.
Using this definition, itis simpler to construct schedules and reason about them. In this definition,
a schedule is only represented by the starting times of the tasks. A corresponding assignment of
processors can be constructed using these starting times.

Definition 3.4.3. A functionS:V(G) — IN is called afeasible assignment of starting timfes
(G,u,m, D) if for all tasksu; anduy of G and all non-negative integets

1. HueV(G) | S(u) <t < S(u)+Hu)}f <m
2. if up < Up, thenS(up) > S(up) + p(u1);

19



3. at most one child afi; starts at timeS(u; ) + p(uz); and

4. at most one parent of finishes at timeS(uy ).

Note that every feasible schedule implies a feasible assignment of starting times. Conversely,

given a feasible assignment of starting tingfer (G,, m,D), we can construct an assignment
of processorgt, such that(S ) is a feasible schedule fqG,,m D). Such an assignment
of processors is constructed by AlgorithrRECESSOR ASSIGNMENT COMPUTATIOShown in

Figure 3.3. For all timesstarting with time 0, it assigns a processor to all tasks with starting time

t. The following notations are used. At any tirhedle(p) denotes the maximum completion
time of a task that has been assigned to procgssmd taskss . andui,,, denote the first and
last task with starting timg respectively.

Algorithm PROCESSOR ASSIGNMENT COMPUTATION

Input. A feasible assignment of starting tim8$or (G,, m,D), such thav/ (G) = {uy,...,un}
andS(up) < --- < Sup).

Output. An assignment of processamssuch tha{S m) is a feasible schedule f¢6G, u, m,D).

1. for p:=1to max{mn}

2. doidle(p):=0

3. imax:=0

4. repeat

5. imin := imax+1

6. imax := max{i > imin | S(Ui) = SUi,;,) }
7. t:=Sui,,)

8. U=0

9. for i := imin tO imax

10. do if u; has a parent, such thaS(v) + p(v) =t
11. then T(y;) := 11(v)

12. idle(Ti(w)) :=t+ p(u)
13. else U :=UuU{u}

14. forue U

15. do determinep, such thatdle(p) <t
16. ™u):=p

17. idle(p) :=t+ p(u)

Figure 3.3. Algorithm PROCESSOR ASSIGNMENT COMPUTATION

Now we will prove that Algorithm ROCESSOR ASSIGNMENT COMPUTATIOROrrectly con-
structs feasible schedules given a feasible assignment of starting times.

Lemma 3.4.4. Let S be a feasible assignment of starting times(@y, m,D). Let 1t be the

assignment of processors B, U, m,D) constructed by AlgorithfPROCESSOR ASSIGNMENT
COMPUTATION. Then(S 1) is a feasible schedule f¢G, u,m,D).
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Proof. BecauseSis a feasible assignment of starting times (6, m, D), there are at mosh
tasksu of G, such thatS(u) <t < S(u) + p(u) for all timest. So for any tasku of G, when
the tasks ofG with starting timeS(u) are considered by AlgorithmA®CESSOR ASSIGNMENT
COMPUTATION, there are sufficiently many processqussuch thatdle(p) < S(u). So every
tasku has been assigned a process@). Letu; anduy be two tasks o65. SinceSis a feasible
assignment of starting times 06, |, m, D), if uy <g Uz, thenS(uz) > S(uy) + p(up). If Uz is
a child ofu; andm(uy) # T(uz), thenS(uq) + p(u1) # S(uz). Otherwiseu, would have been
assigned to the same processouasAssumert(u;) = T(Up). Assumeu; has been assigned a
processor beforay. Whenu; is assigned to a processatle(t(uy)) > S(u1) + H(up). Because
Uy is assigned to processmfuy) = Ti(uy), S(up) > idle(t(ug)) > S(ug) + K(up). So(Sm) is a
feasible schedule fqiG, u, m,D). |

The time complexity of Algorithm ROCESSOR ASSIGNMENT COMPUTATIONanN be deter-
mined as follows. LeS be a feasible assignment of starting times. Constructing a list of tasks
ordered by non-decreasing starting times taB@dogn) time. Indicesmin andimax can be com-
puted by one traversal of the list of tasks ordered by non-decreasing starting timesipince
andimax do not decrease, updating these indices té€Keg time in total. For each tagk it has
to be determined whether a parent finishes at &uwg. This takeO(|Preds o(u)|) time. If there
is a such a parent, thenis assigned to the same processor as this parent. Otherwise, it is added
to U and assigned to an arbitrary idle processor. A task is added and removed fabmost
once. IfU is represented by a queue, then the operatiorld teke O(n) time in total. If the
processors are stored in a balanced search tree ordered by non-decidia$jpigvalue, then
each operation on this tree tak®glogn) time. Sottis constructed in a total dd(nlogn+ e)
time.

Lemma 3.4.5. For all feasible assignments of starting times S for an instai@&e, m, D), Al-
gorithm PROCESSOR ASSIGNMENT COMPUTATIONONStructs an assignment of processars
for (G,u,m,D), such thatS ) is a feasible schedule fdf, 1, m,D), in O(nlogn+ e) time.

Because a feasible assignment of starting timeg®p, m,D) can be extended to a feasi-
ble schedule fofG,, m,D), the term feasible schedule will be used for feasible assignments of
starting times as well.

Let Sbe a feasible schedule for an instari@m, D). All tasks of G have unit length. For
all integerst, define§ = {u€ V(G) | S(u) =t}. Then every task itg starts at time and is
completed at time+ 1. S will be called thet™ time slotof S. Scan be completely represented
by a list of time slotsS= (S, ...,S-1), wherel is the length ofS. A time slot§ is calledidle
if it contains less thamtasks.

We conclude this section with a definition that is related to that of feasible schedules.

Definition 3.4.6. Let U be a prefix of a precedence gra@h Let S be a feasible schedule for
(GlU],u,m,D). Letu be atask irJ or a source o5V (G) \ U]. Thenu is calledreadyat time

t (with respect taS) if the all predecessors af are completed at or before tinte u is called
availableat timet (with respect t) if
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1. uis ready at time (with respect t®);
2. at most one parent offinishes at time; and

3. if a parentv of u finishes at time, then no childv # u of v starts at time.

Let She a feasible schedule for an instari@& pu, m,D). It is not difficult to see that any
tasku is available at timeS(u). Note that a task can be available at timeven if m tasks are
being executed at that time. Hence any unscheduled task is available one unit of time after the
completion time of the last of its predecessors.

3.5 Tardiness

The objective of the scheduling problems studied in the first part of the thesis is the minimisation
of the maximum tardiness of a task. L®be a feasible schedule for an instari@&p, m,D).

Let u be a task of. Thetardinessof u equals ma{0, S(u) + p(u) — D(u)}; its latenessequals

S(u) + p(u) — D(u). Thetardinessof Sis the maximum tardiness of a task®f Shas tardiness
max{0, max,cy () (S(U) + K(u) — D(u))}. If the tardiness of equals zero, then it is called an
in-time scheduléor (G, u,m,D). Thelatenesf Sis the maximum lateness among the tasks of
G, it equals mayey () (S(u) + p(u) — D(u)).

Sis called aminimum-tardiness scheduler (G, u, m,D) if there is no feasible schedule for
(G,u,m,D) whose tardiness is smaller than thatofSimilarly, Sis called aminimum-lateness
schedulefor (G, , m, D) if there is no feasible schedule f@®, 1, m, D) whose lateness is smaller
than that ofS. Because the tardiness of a schedule cannot be negative and an in-time schedule
has tardiness zero, any in-time schedule (8rp, m,D) is a minimum-tardiness schedule for
(G,u,m,D). Since the lateness of a schedule can be negative, an in-time sched@gfon, D)
need not be a minimum-lateness scheduld @&, m, D).

Clearly, minimising the tardiness and minimising the lateness are closely related problems.
Makespan minimisation is also closely related to minimisation of the tardiness: if all deadlines
equal zero, then the tardiness of a schedule equals its length. So any algorithm that constructs
minimum-tardiness schedules can be used to construct minimum-length schedules.

The tardiness of a schedule can be zero. So fgrallR, such thap > 1, ap-approximation
algorithm for tardiness minimisation must construct in-time schedules if such schedules ex-
ist. If all deadlines are non-positive, then the tardiness of any schedule is positive, because a
non-positive deadline cannot be met. For such instancespproximation need not construct
minimum-tardiness schedules.

However, scheduling with non-positive deadlines is a bit unnatural, because a non-positive
deadline cannot be met. There is a model that is equivalent to scheduling with non-positive
deadlines: scheduling wittelivery time$58, 66]. In this model, every taskhas a non-negative
delivery timeg(u). This is the amount of time that expires after the completion timeuwttil it is
delivered. The objective in scheduling with delivery times is the minimisation of the maximum
delivery-completion timéthe sum of the completion time and the delivery time of a task). If
we have an instangés, i, m, D) with non-positive deadlines, then we can chogae = —D(u)
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for all tasksu of G. Then minimising the maximum tardiness corresponds to minimising the
maximum delivery-completion time.

3.6 Previous results

Scheduling precedence graphs subject to unit-length communication delays is a well-studied
problem. Minimisation of the makespan is the most common objective of the algorithms for
scheduling with unit-length communication delays. Rayward-Smith [79] was one of the first to
study the problem of scheduling precedence-constrained tasks subject to unit-length communi-
cation delays. He proved that constructing minimum-length schedules for arbitrary precedence
graphs with unit-length tasks is an NP-hard optimisation problem. Lenstra et al. [61] proved the
same for scheduling inforests with unit-length tasks. Constructing minimum-length schedules
for arbitrary precedence graphs with unit-length tasks on an unrestricted number of processors is
an NP-hard optimisation problem as well [47, 77, 80].

For special classes of precedence graphs, it is possible to construct minimum-length sched-
ules in polynomial time. Minimum-length schedules for precedence graphs with unit-length
tasks on two processors can be constructed in polynomial time if the precedence constraints
form an inforest or an outforest [42, 50, 61, 77, 86] or a series-parallel graph [27]. Varvarigou et
al. [86] presented a dynamic-programming algorithm that constructs minimum-length schedules
for outforests with unit-length tasks emprocessors i®(n°™-2) time; this algorithm constructs
minimum-length schedules in polynomial time if the number of processors is a constant. For
interval-ordered tasks of unit length, a minimum-length schedulm @nocessors can be con-
structed in polynomial time for any number of processuoifg, 77]. Minimum-length schedules
for precedence graphs with arbitrary task lengths on an unrestricted number of processors can be
constructed in polynomial time if the precedence constraints form an inforest or an outforest [12],
a series-parallel graph [68, 69] or a bipartite precedence graph [77].

In addition, there are many algorithms that approximate the makespan of a minimum-length
schedule. Rayward-Smith proved that a list scheduling i&a%?aapproximation algorithm for
scheduling arbitrary precedence graphs with unit-length task® pnocessors. Lawler [59]
presented an algorithm that constructs schedules for outforests with unit-length tasks@n
cessors; Guinand et al. [41] proved that the schedules constructed by Lawler’s algorithm are at
most%(m— 1) time units longer than the length of a minimum-length schedule processors.
Moreover, Munier and Knig [73] use linear programming in théltapproximation algorithm
for scheduling arbitrary precedence graphs with unit-length tasks on an unrestricted number
of processors. Munier and Hanen [72] generalised this algorithmgt(}%}—n—approximation
algorithm for scheduling arbitrary precedence graphs with unit-length tasks pmocessors.
Schaffter [81] showed how these algorithms can be generalisecﬁtapproximation algorithm
and a%-approximation algorithm for scheduling arbitrary precedence graphs with arbitrary task
lengths on an unrestricted and a restricted number of processors, respectively.

Two of the few results concerning scheduling problems whose objective is not the minimi-
sation of the makespan were presented lijhhihg et al. [70]; they study scheduling problems
whose objective is the minimisation of the weighted sum of completion times. They presented
two approximation algorithms: %9 - 3im-appr0ximation algorithm for scheduling arbitrary
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precedence graphs with unit-length tasksnoprocessors and aB4232-approximation algo-
rithm for scheduling arbitrary precedence graphs with tasks of arbitrary lengthpoocessors.

In addition, there is a 3-approximation algorithm for scheduling series-parallel graphs with unit-
length tasks and a.80899-approximation algorithm for scheduling series-parallel graphs with
arbitrary task lengths [81].

3.7 Outline of the first part

Apart from this chapter, Part | consists of Chapters 4, 5, 6 and 7. These chapters are concerned
with the construction of minimum-tardiness schedules in the UCT model. In Chapter 4, an al-
gorithm for this problem is presented that consists of two parts. The first part computes smaller
deadlines, that are met in all in-time schedules. These deadlines will be called consistent. The
second part of the algorithm is a list scheduling algorithm that uses the consistent deadlines to
construct a feasible schedule. It will be proved that this algorithm is an approximation algorithm
with asymptotic approximation ratio méx 3 — n%} for scheduling arbitrary precedence graphs
with non-positive deadlines om processors and an approximation algorithm with asymptotic
approximation ratio 2- % for scheduling outforests with non-positive deadlinesnoproces-

sors. In addition, the algorithm constructs minimum-tardiness schedules for outforests on two
processors and on an unrestricted number of processors. Moreover, it is shown that the algorithm
is a 2-approximation algorithm for scheduling arbitrary precedence graphs with non-positive
deadlines on an unrestricted number of processors.

The least urgent parent property is introduced in Chapter 5. It will be proved that for arbitrary
precedence graphs with the least urgent parent property, minimum-tardiness schedules on an
unrestricted number of processors can be constructed using a list scheduling approach. The
same is proved for scheduling inforestsramprocessors. If an instance does not have the least
urgent parent property, then its deadlines can be increased, such that the resulting instance has the
least urgent parent property. The construction of instances with the least urgent parent property
is used to construct schedules for arbitrary inforests. Using this construction, we obtain a 2-
approximation algorithm for scheduling inforests with non-positive deadlines pocessors.

In Chapter 6, a stronger notion of consistency is introduced by considering pairs of tasks
instead of individual tasks. A list scheduling algorithm uses the pairwise consistent deadlines to
construct minimum-tardiness schedules for interval ordem@nocessors and for precedence
graphs of width two on two processors. The result on scheduling interval-ordered tasks has been
published in the proceedings of ISAAC’96 [89] and a final version will be published in Parallel
Computing [93].

In Chapter 7, a dynamic-programming approach is used to construct minimum-tardiness
schedules for arbitrary precedence graphs. For precedence graphs of bounded width with unit-
length tasks, it constructs minimum-tardiness schedulesocessors in polynomial time. The
same is proved for scheduling precedence graphs of bounded width with arbitrary task lengths
on an unrestricted number of processors. Moreover, constructing minimum-tardiness schedules
for precedence graphs of width three with arbitrary task length on two processors is shown to be
an NP-hard optimisation problem.
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4 Individual deadlines

The first part of this thesis is concerned with scheduling with non-uniform deadlines subject to
unit-length communication delays. Most scheduling problems with precedence constraints and
non-uniform deadlines neglect the communication costs. Garey and Johnson [31] were the first
that studied a scheduling problem with precedence constraints and non-uniform deadlines. They
presented an algorithm that constructs minimum-tardiness schedules for arbitrary precedence
graphs with unit-length tasks on two processors. Hanen and Munier [44] showed that this algo-
rithm has an asymptotic approximation ratio of % for scheduling arbitrary precedence graphs

with unit-length tasks and non-positive deadlinesmgorocessors. In addition, Brucker etal. [11]
proved that for inforests with unit-length tasks, minimum-tardiness schedulespoacessors

can be constructed in polynomial time. Hall and Shmoys [43] showed that list scheduling is a 2-
approximation algorithm for scheduling arbitrary precedence graphs with arbitrary task lengths
with non-positive deadlines an processors.

In this chapter, | will present an efficient algorithm that constructs schedules for precedence
graphs with non-uniform deadlines subject to unit-length communication delays. The algorithm
has the same overall structure as the one presented by Garey and Johnson [31]. The algorithm
consists of two parts. The first part computes smaller deadlines that are met in all in-time sched-
ules. The deadlines that are met in all in-time schedules will be called consistent. We want these
deadlines to be as small as possible. Consistent deadlines will be defined in Section 4.1. The
computation of the consistent deadline of a taslepends on the subgraph containing the suc-
cessors ofi: if u has sufficiently many successors that have to be completed at or beford time
then the deadline af is decreased. The algorithm computing consistent deadlines is presented
in Section 4.2.

The second part of the algorithm is a list scheduling algorithm that is presented in Section 4.3.
This algorithm uses a list ordered by non-decreasing consistent deadlines to assign a starting time
to every task. In Section 4.4, the tardiness of the schedules constructed by the list scheduling
algorithm will be computed. It will be proved that the algorithm constructs minimum-tardiness
schedules for outforests with unit-length tasks on two processors and for outforests with arbitrary
task lengths on an unrestricted number of processors. In addition, it will be proved that this
algorithm has an asymptotic approximation ratio of % for scheduling outforests with unit-
length tasks and non-positive deadlinesmmprocessors. Its asymptotic approximation ratio
for scheduling arbitrary precedence graphs with unit-length tasks and non-positive deadlines on
m processors equals mgx 3 — %}. Moreover, this algorithm is shown to be a 2-approximation
algorithm for scheduling arbitrary precedence graphs with arbitrary task lengths and non-positive
deadlines on an unrestricted number of processors.

4.1 Consistent deadlines

In this chapter, an algorithm is presented for scheduling precedence graphs with non-uniform
deadlines subject to unit-length communication delays. The algorithm consists of two parts: the
first part determines a priority of the tasks and the second part uses these priorities to assign
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a starting time to every task. In order to get schedules with a small tardiness, the priority of
the tasks should depend on the deadlines. The priority will be defined using deadlines that
are met in all in-time schedules. In order to get schedules with a small tardiness, we want
these deadlines to be as small as possible. Hence the best possible deadline ofia thek

latest completion time afi in an in-time schedule. However, it is impossible to compute these
completion times efficiently. Hence we will approximate these completion times by computing
smaller deadlines for each task using the deadlines of its successors. These smaller deadlines
will be called consistent. It will be proved that the consistent deadlines are met in all in-time
schedules.

To define consistent deadlines, we need to look at the structure of in-time schedules. Let
Sbe an in-time schedule fqG,m,D). Letu be a task ofG. Assumeu hask > 1 successors
Vvi,...,Vk, such thaD(v;) < d for all i < k. uis scheduled at tim&u) and finishes at time
S(u) + 1. Because of the communication delays, at most one sucogssfar can be scheduled
at timeS(u) + 1. Hence the last of the othkr 1 successors af cannot be completed before
time S(u) +2+ [k;ml] Since the successorswére all executed before tinte u must finish at
or before timed — 1— [¥-1].

Now we will consider the more general instar{& |, m,D). Let Sbe an in-time schedule
for (G,u,m,D). Letv be a task ofc. v finishes at or before timB(v). SoS(v) < D(v) — u(v).

v can be viewed as a chain pfv) subtasks of unit length. Defing (v,d) as the number of
unit-length subtasks afthat are completed at or before tirdéf v finishes at timeD(v).

0 if d <D(V) — (V)
Ho(vd) = qu(v)—D(v)+d if D(V)—p(v) <d < D(V)
H(v) if d>D(v)

Note that for instance$G,m D), pp(v,d) € {0,1} for all tasksv of G: if D(v) < d, then
Hp(v,d) =1 and ifD(v) > d, thenpp(v,d) = 0.

Letu be atask of. Letk = ¥ cgyce (u) Mo (v, d) be the total number of unit-length subtasks
of the sutk:cassors ofthat are completed at or before tideThenu must finish at or before time
d—1-[&1].

DefineNp(u,d) as the total number of unit-length subtasks of the successarshait are
completed at or before timgein any in-time schedule faiG, u, m,D). More precisely,

No(ud) = 5  Hp(vd).

veSuce (u)

Note that for instance§5,m, D), Np(u,d) equals the number of successorsigfith deadline at
mostd.

Example 4.1.1. Consider the instancgs, 2, D) shown in Figure 4.1. The following is easy to
see. ND(di,g) =1, ND(C1,8) =3, ND(C1,9) =4, ND(bi,6) =1, ND(bi78) =4, ND(bi,g) =5,
Nb(a1,5) = Np(as,5) = 2, Np(a1,6) = Np(a3,6) = 3, Np(ay,8) = Np(as,8) = 6, Np(a1,9) =
Np(a3,9) =7,Nb(az,5) = 3,Np(az,6) = 4, Np(a2,8) = 7 andNp (a,9) = 8.
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Figure 4.1. An instance(G,2,D)

The following observation allows the definition of consistent instances.

Observation 4.1.2. Let S be an in-time schedule foG,y,m,D). Let u be a task of G. If
Np(u,d) > 1, then $u) +p(u) <d—1— [ (Np(u,d) — 1)].

Observation 4.1.2 is used to define consistent deadlines. We will assun{%ﬂha@to and
[£] =1forall integersk > 1.

Definition 4.1.3. An instance(G, i, m, D) is calledconsistentf for all tasksu of G and all inte-
gersd,

if Np(u,d) > 1,then D(u) < d—1—[L(Np(ud)—1)].

(G,u,m, D) is calledDg-consistentf it is consistent and(u) < Do(u) for all tasksu of G. A
Do-consistent instanc@s, i, m, D) is calledstrongly Dy-consistentf for all tasksu of G,

D(u) = Do(u) or for somed € Z, Np(u,d) > 1 andD(u) =d —1— [ (Np(u,d) — 1)].

Example 4.1.4. Consider the instanc@s,2,D) shown in Figure 4.1. Assumip(u) = 9 for
all tasksu of G. It is not difficult to see thatG,2,D) is Dp-consistent. It is also strong®o-
consistent, becaus®(e;) = 9= Do(ey), D(di) =8=9—1—[3(Np(ci,9) —1)], D(c1) =6 =
8—1-[2(Np(c1,8)—1)|, D(bj) =5=6—1—[3(Np(b,6)—1)] andD(a) =3=5-1—
{%(ND(ai75) - 1)-|

The following observations state some properties of consistent instances. The first states that
any consistent instance is strongly consistent with respect to its own deadlines.

Observation 4.1.5. Let (G,,m,D) be a consistent instance. Thé@,p, m D) is strongly D-
consistent.
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The second observation states that the deadlines of a strBpegtpnsistent instance are
maximum among th®,-consistent instances. This shows that for each inst&Bge m, Do),
there is exactly one stronglyp-consistent instances, u,m, D).

Observation 4.1.6. Let(G,u,m,D) and (G, ,m,D’) be Dy-consistent instances. (6,1, m,D)
is strongly Qy-consistent, then ) > D’(u) for all tasks u of G.

The third observation states that if all original deadlines are increased by the same amount,
then the tardiness of a minimum-tardiness schedule decreases by the same amount, unless the
tardiness would become negative.

Observation 4.1.7. Let ¢* be the tardiness of a minimum-tardiness scheduld ®g, m, D).
If there is an integer ¢, such that(D)) = Dg(u) + ¢ for all tasks u of G, then the tardiness of a
minimum-tardiness schedule f@, y, m, D) equalsmax{0, ¢* —c}.

The following lemma proves that if all original deadlines are increased by the same amount,
then so are the strongly consistent deadlines. This result will be used to compute upper bounds
on the tardiness of schedules.

Lemma 4.1.8. Let(G,u,m,D) be the strongly -consistent instance and Ig5, i, m,D’) be the
strongly Oj)-consistent instance. If there is an integer c, such tHgulPp= Do(u) + c for all tasks
u of G, then D{u) = D(u) + c for all tasks u of G.

Proof. Assume there is an integer such thaDg(u) = Do(u) + ¢ for all tasksu of G. We will
prove by induction thab’(u) = D(u) + c for all tasksu of G. Letu be a task of5. Assume by
induction thatD’(v) = D(v) + ¢ for all successors of u. We will prove by contradiction that
D’(u) = D(u) 4 ¢. Supposé®’(u) # D(u) +c.

Case 1. D(u) = Dg(u).
ThenD’(u) < Dg(u) = Do(u) + . BecauséG, i, m,D’) is stronglyDg-consistent, there is an
integerd, such thaNp (u,d) > 1 andD’(u) =d —1— [ (Np/(u,d) — 1)]. Becausép (u,d —
¢) = Np/(u,d) > 1 and(G,,m,D) is consistentP(u) < d —c—1— [(Np/(u,d) —1)] =
D’(u) — ¢ < Dp(u). Contradiction. S®'(u) = D(u) +c.

Case 2. D(u) # Do(u).

Since (G,u,m,D) is strongly Dp-consistent, there is an integdr such thatNp(u,d) >
1 andD(u) =d—1— [1(Np(u,d)—1)]. BecauseNy(u,d+c) = Np(u,d) > 1 and
(G,u,m,D’) is consistentD’(u) < d+c—1— [(Np(u,d) —1)| = D(u) +c. SinceD’(u) #
D(u) + ¢, we know thatD’(u) < D(u) +c. HenceD'(u) # Dg(u). Since (G,u,m,D’)
is strongly Dy-consistent, there is an integdf, such thatNy (u,d’) > 1 and D’(u) =
d' —1— [X(Np(u,d’)—1)]. SinceNp(u,d’ —c) = Np(u,d’) > 1 and(G,p,m,D) is con-
sistent,D(u) < d' —c—1— [1(Np/(u,d’)—1)] = D'(u) —c < D(u). Contradiction. So
D’(u) =D(u) +c.

In either caseD’(u) = D(u) +c. By induction,D’(u) = D(u) + c for all tasksu of G. O
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The following lemma shows that strongly consistent deadlines are met in all in-time sched-
ules.

Lemma 4.1.9. Let(G,u,m, D) be the strongly p-consistent instance. Let S be a feasible sched-
ule for (G,u,m,Dg). Then S is an in-time schedule f@, u, m, Do) if and only if S is an in-time
schedule fo(G,, m,D).

Proof. BecauseD(u) < Do(u) for all tasksu of G, every in-time schedule fiG,,m,D) is an
in-time schedule fofG,u,m,Dg). AssumeSis an in-time schedule fofG, u,m,Dg). Define
Ds(u) = S(u) + p(u) for all tasksu of G. We will prove by contradiction thaG, 4, m,Ds) is
consistent. Suppog&, ., m,Ds) is not consistent. Then there is a taskf G and an integer
d, such thatNpg(u,d) > 1 andDs(u) > d — 1 — [£(Npg(u,d) —1)]. Every successor of u
meets its deadlinBs(v). SONpg(u,d) unit-length subtasks of successorsidinish at or before
time d. Henceu must be completed at or before tirde- 1 — [ £ (Npg(u,d) — 1)]. SoDs(u) <
d—1- [%(Nps(u,d) —1)]. Contradiction. SqG,u, m,Ds) is consistent. Becausgis an in-
time schedule fo(G,u,m,Dy), (G,u,m,Ds) is alsoDg-consistent. From Observation 4.1.6,
D(u) > Dg(u) for all tasksu of G. Since every deadlinBs(u) is met,Sis an in-time schedule
for (G,u,m,D). |

The next two results will be used to construct strori@fyconsistent instances.

Lemma 4.1.10. Let(G,u,m,D) be the strongly lp-consistent instance. Let u and v be two tasks
of G. If v is the only child of u, then (@) = min{Dg(u),D(v) — u(v)}.

Proof. Assumev is the only child ofu. Letd = D(v) — u(v) + 1. ThenNp(u,d) > pp(v,d) = 1.
SoD(u) <d—1=D(v) — u(v). We will assume thab(u) # Do(u). Then there is an integer
d’, such thatNp (u,d’) > 1 andD(u) = d’' — 1— [L(Np(u,d’) — 1)]. If Np(u,d’) < pu(v), then
D(uz) > D(V) —1— [&(p(v) —1)] > D(V) — i(v). So we may assume thb(u,d’) > pu(v).
Sincev is the only child ofu and(G, 1, m, D) is consistentd’ > D(v). Because is a predecessor

of all other successors of Np(v,d’) = Np(u,d’) — p(v) > 1. So

Du) = d'—1-[i(Np(u,d)—1)]
— d—1-[E(No(wd)+p(v) - 1)]
> d—1-[L(No(wd)—1)] —pw)
> D(v) — ).
SoD(u) = D(v) — u(v). As a resultD(u) = min{Dg(u),D(v) — p(v)}. O

Lemma 4.1.11. Let (G, ,D) be the strongly lg-consistent instance. Let u be a task of G.
If u has k> 2 children w,...,v, such that Ovy) — p(vy) < --- < D(w) — (), then Du) =
min{Do(u), D(v1) —u(v1), D(v2) — u(v2) — 1}.

Proof. Assumeuhask > 2 childrenvy,...,v, such thaD(vy) —p(vy) <--- < D(w) — M(vk). Let
d=D(vi) —(v1) + 1. ThenNp(u,d) > up(v1,d) = 1. Since(G, , 0, D) is consistentP(u) <
d—1=D(v1) —(v1). AssumeD(u) # Dp(u) andD(u) # D(v1) — i(v1). Then there is an integer
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d’, such thalNp (u,d’) > 1 andD(u) = d’ — 1 — [ (Np(u,d’) —1)] < D(v1) —(v1) — 1. Since
[97=0and[X]=1forallk>1,d" =D(v1) — u(v1) + 1 andNp (u,d’) > 2. Sopp (up,d’) > 1.
HenceD(v2) — i(v2) = D(v1) — U(v1). ThereforeD(u) =d' —2=D(vy) —p(v1) —1=D(v2) —
H(v2) — 1. O

4.2 Computing consistent deadlines

In this section, two algorithms will be presented that construct strddglgonsistent instances.
The algorithm presented in Section 4.2.1 computes strddglyonsistent deadlines for instances
(G,u,m,Dg). For instancegG, y, «,Dg), strongly Do-consistent deadlines can be computed
more efficiently using the algorithm presented in Section 4.2.2.

4.2.1 Arestricted number of processors

Consider the stronglidg-consistent instanc€G, u, m,D). For each taski of G, if Np(u,d) >

1, thenD(u) <d-1- (%(Ng(u,d) —1)]. So in order to compute the stronghy-consistent
deadline ofu, the stronglyDg-consistent deadlines of its successors must have been computed
before. This is how Algorithm BADLINE MODIFICATION shown in Figure 4.2 works: in each
step of the algorithm, it computes the stronly-consistent deadline of a task, such that the
stronglyDg-consistent deadlines of all successors of this task have been computed before.

Algorithm DEADLINE MODIFICATION
Input. An instance(G, 1, m, Dy).
Output. The stronglyDg-consistent instancs, |, m, D).
Dmin := minueV(G) Do(u)
Dmax 1= MaX,ev () Do(U)
for all tasksu of G
do D(u) := Do(u)
U:=V(G)
while U # &
do letu be a sink ofG[U]
for d := Dmjn t0 Dmax
doif Np(u,d) > 1
10. then D(u) := min{D(u),d —1— [£(Np(u,d) — 1)}
11. Dmin := min{Dmin,D(u)}
12. U:=U\{u}

Figure 4.2. Algorithm DEADLINE MODIFICATION

CoNoO LD E

Example 4.2.1. Let G be the precedence graph shown in Figure 4.1. Assbgia) = 9 for
all tasksu of G. Algorithm DEADLINE MODIFICATION computes deadlined(u) as follows.
First it considerse;. Sincee; has no successo®(e;) = Dg(e;) = 9. Thend;, d, andds are
considered. These tasks have one successor with deadline®(dSads set to 9-1— [g} =
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8. c1 has three successors with deadline 8 and four successors with deadline at most 9. So
D(cy) =min{8—1—[4],9—1-[3]} = 6. Then the deadlines b, b, andbs are computed.

These tasks have one successor with deadline 6, four successors with deadline at most 8 and five
successors with deadline at most 9. HeBgg)) is set to mif6—1—[J],8—1—[3],9—

1- [‘i‘]} = 5. Finally, Algorithm DEADLINE MODIFICATION considersa;, ap andag. First
consideray. It has three successors with deadline 5, four successors with deadline at most 6,
seven successors with deadline at most 8 and eight successors with deadline at most 9. So
D(a) = min{5—-1-[2],6—-1—[3],8—1-[5],9-1-[4]} =3. & andag have two
successors with deadline 5, three successors with deadline at most 6, six successors with deadline
at most 8 and seven successors with deadline at most 9. So the deaddpesdd; computed

by Algorithm DEADLINE MODIFICATION equal mi{5—1—[3],6—1—[%],8—1—[3],9—

1—[5]} = 3. The constructed instan¢g, 2, D) is stronglyDo-consistent.

Now we will prove that Algorithm [EADLINE MODIFICATION correctly constructs strongly
Do-consistent instances.

Lemma 4.2.2. Let (G,u,m, D) be the instance constructed by AlgoritihEADLINE MODIFI -
CATION for an instanceG, ,m,Dg). Then(G, |, m,D) is strongly Dy-consistent.

Proof. Algorithm DEADLINE MODIFICATION starts by settin@(u) = Do(u) for all tasksu of G.

In each step, it computes a deadline for a task.ofetus, ..., u, be the order in which the tasks
are considered. For dlK n, let G; the subgraph o6 induced by{uy,...,u;}. For alli <nand
all tasksu of G, let Dj(u) be the deadline afi after thei" step. ClearlyD;(u;j) = --- = Dn(u;)
forall j <i. LetDminj andDmax; be the values dDmin andDmax after step.

It will be proved by induction that the instancéS;, i, m,D;) are stronglyDy-consistent. It
is not difficult to see tha{Gi,,m, D) is strongly Do-consistent. Assume by induction that
(Gi,i,m,D;) is stronglyDg-consistent. Consid€iGi;1, ,m,Diy1). For all j <i, Diz1(u;j) =
Di(uj). So(G;,,m,Dj,1) is stronglyDg-consistent. Now considex 1. Clearly,Dj1(Uiy1) <
Do(Ui+1). AssumeNp,,, (Uiy1,d) > 1 for some integed. ThenDpjnj < d < Dmaxi. Hence
Dis1(Uiz1) <d—1—[(Np,, (Us1,d)—1)]. S0(Gi 1, 1,m Djy1) is Do-consistent. It is easy
to see that iDj1(Ui+1) # Do(ui+1), then there is an integek; such thalNp,, (ui+1,d) > 1 and
Dis1(Uiz1) =d—1—[2(Np,, (Ui+1,d) —1)]. So(Gis1,,m,Dis1) is stronglyDo-consistent.
By induction, (Gn, i, m,Dp) is stronglyDo-consistent. Sinc& = G, andD(u) = Dy(u) for all
tasksu of G, (G,u, m,D) is stronglyDg-consistent. |

The time complexity of Algorithm BADLINE MODIFICATION can be determined as follows.
Consider an instandgs, |, m,Dg). Algorithm DEADLINE MODIFICATION starts by computing
Dmin andDpax and settindd (u) = Do(u) for all tasksu of G. This take€O(n) time. In each step,
the algorithm computes a deadline of a task. This can be done using a reversed topological order
of G. Such an order can be constructedifn+ e) time [18]. In order to bound the time com-
plexity, we have to fill in a few details of Algorithm EADLINE MODIFICATION. We distinguish
two cases: whether or n@is known to be a transitive closure. If it is unknown whetfeis a
transitive closure, then Algorithm#ErDLINE MODIFICATION should first compute the transitive
closure ofG. Coppersmith and Winograd [17] proved that the transitive closure of a precedence
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graph can be computed @(n?>37%) time. Goratikova and Koubek [37] showed that it can be
computed inO(n+ e+ ne™) time. In the remainder of the analysis of the time complexity of
Algorithm DEADLINE MODIFICATION, we assume thds is a transitive closure.

For the computation of the strongDp-consistent deadline of a taskwe need to compute
Np(u,d) for all d. These values can be computed by traversing the chilru in G+ and
determiningup (v,d). This takesO(|Sucg(u)|) time for eachd.

We can prove that Algorithm BADLINE MODIFICATION needs to consider onfy(n) values
of d for each tasku. These are the valueB(v) and D(v) — p(v) + 1 for some task of G.
Assumed # D(v) andd # D(v) — p(v) + 1 for all tasksy of G. AssumeNp (u,d) > 1. Then after
Algorithm DEADLINE MODIFICATION has considered, D(u) <d—1—[£(Np(u,d) —1)]. Let
k be the number of successarsf u, such thaD(v) — p(v) + 1 < d < D(v). We consider three
cases.

Case 1. k=0.
Letd = max{D(w) | we V(G) AD(w) < d}. ThenNp(u,d’) = Np(u,d). Afterd is con-
sidered by Algorithm [BADLINE MODIFICATION, D(u) < d'—1— [(Np(u,d’)—1)] <
d—1—[2(Np(u,d)—1)]. In that cased need not be considered by AlgorithmEBDLINE
MODIFICATION.

Case 2. 1<k<m-1.

Letd = max{D(w) — i(w) + 1| w € Suce(u) AD(w) —p(w) + 1 < d}. Letv be a succes-
sor ofu, such thaD(v) — pu(v) + 1 < d < D(v). ThenD(v) —p(v) +1<d < d < D(v).
Soup(v,d’) = u(v) —D(v) +d = p(v) —D(v) +d — (d —d') = up(v,d) — (d — d’). Hence
Np(u,d’) > Np(u,d) — k(d —d’) > Np(u,d) — m(d — d'). Moreover, p(v,d’) > 1. So
Np(u,d’) > 1. After d’ was taken into accoun(u) < d' —1— [L(Np(u,d') —1)] <
d —1—[1(Np(u,d)—1-m(d'—d))| =d—1—[2(Np(u,d)—1)]. Sod need not be con-
sidered by Algorithm [BEADLINE MODIFICATION.

Case 3. k>m.
Let d = min{D(w) | w € Sucg(u) AD(w) > d}. Letv be a successor af, such that
D(v) —(v) + 1< d < D(v). ThenD(v) > d’' > D(v) — i(v) + 1. Sopp(v,d’) = p(v) —D(v) +
d' =p(v) =D(v)+d+(d' —d) = pp(v,d) + (d' —d). HenceNp(u,d’) > Np(u,d) +k(d" —
d) > Np(u,d) + m(d’ — d). After d’ has been considered by AlgorithnERDLINE MODI-
FICATION, D(u) <d'—1—[£(Np(u,d') —1)] <d'—1—[2(Np(u,d) — 1+ m(d' —d))| =
d—1—[1(Np(u,d)—1)]. Sod need not be considered by AlgorithmEBDLINE MODIFI -
CATION.

So the computation of the strondDp-consistent deadline oftakesO(n|Suceg(u)|) time. Since
the outdegree ai in G* equals Sucg(u)|, this takeO(n? + net) time in total. Hence we have
proved the following result.

Lemma 4.2.3. For all instancegG, 4, m,Dg), AlgorithmDEADLINE MODIFICATION constructs
the strongly @-consistent instancgG, i, m, D) in O(n? + ne’) time.
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A stronglyDg-consistent instandgs, m, D) can be computed more efficiently. The transitive
closureG* of G can be constructed i@(min{n>3"® n+e+ne"}) time. The valuedNp(u,d)
can be computed by determining the number of successnswith deadlined for all d. These
numbers are stored in an array and a prefix sum operation is applied on this array. Then we
find Np (u, d) for all d in O(|Suce;(u)| 4+ (Dmax— Dmin)) time. Since there is a feasible schedule
for (G, m,D) of length at mosh, we may assume th&8max— Dmin iS at mostn. Consequently,
the stronglyDo-consistent deadline af can be computed i®(n) time. Hence the strongly
Do-consistent instanc@s, m, D) can be computed i®(n? + min{n>37% n+ e+ ne"}) time.

Lemma 4.2.4. For all instances(G,m,Do), Algorithm DEADLINE MODIFICATION constructs
the strongly R-consistent instanc@s, m, D) in O(min{n?376 n? 4-ne"}) time.

4.2.2 An unrestricted number of processors

Constructing stronglypo-consistent instance$s, |, «, D) is less complicated than computing
strongly Do-consistent instance@, ,m,D). Let (G,p,,D) be the stronglyDyp-consistent
instance. Letu be a task ofG. Lemma 4.1.10 shows that if has only one childv, then
D(u) = min{Dg(u),D(v) — u(v)}. Moreover, Lemma 4.1.11 states thatiihask > 2 children
V1,...,Vk, such thatD(vi) — p(vi) < D(v2) — u(v2) andD(v2) — u(vz) < D(vi) — () for all

i > 3, thenD(u) = min{Dg(u),D(v1) — p(v1),D(V2) — p(v2) — 1}.

This can be used to construct strondy-consistent instances, y,«,D). Consider an
instance(G, Y, o, Dp). Letuy,...,u, be a topological order db. Assume that the strong®o-
consistent deadlines of the tasks;, . .., u, have been computed. Consider tasKf u; is a sink
of G, then letD(u;) = Do(u;). If uj has exactly one child, then letD(u;) = min{Do(u;),D(v) —
M(v)}. Otherwise, let, ..., v, be the children o;, such thaD(vi) — i(v1) < D(v2) —u(v2) and
D(v2) —u(v2) < D(vi) — W(v;) foralli > 3. Then leD(u;) = min{Do(u;),D(v1) — p(v1),D(v2) —
H(v2) —1}. Clearly, the resulting instand¢é, p, «, D) is stronglyDg-consistent.

Computing a topological order of a precedence graghkesO(n+ e) time [18]. For each
tasku of G, O(|Sucep(u)|) time is required to find two childrem; andv; of u, such that
D(v1) —H(v1) < D(V2) —(v2) andD(v2) —p(v2) < D(vi) —p(v;) for alli > 3. SoO(|Suce o(u)|)
time is used to compute the deadlinewf Consequently, the strongp-consistent instance
(G,H,,D) can be computed i®(n+ €) time. Hence we have proved the following result.

Lemma 4.2.5. For all instances(G, 4, »,Dp), the strongly @B-consistent instancéG, |, c, D)
can be constructed in @+ €) time.

4.3 List scheduling

The second step in the construction of feasible schedules uses a list scheduling approach. List
scheduling is a common approach to multiprocessor scheduling that was introduced by Gra-
ham [38, 39] for scheduling without communication delays. His list scheduling algorithm has
been generalised to many other scheduling problems. Rayward-Smith [79] was the first to use
a list scheduling approach for scheduling precedence-constrained tasks subject to unit-length
communication delays.
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Basically, list scheduling works as follows. A list containing all tasks defines the priority
among the tasks: the first tasks are more important than the last and should be scheduled at an
earlier time. At each time, a list scheduling algorithm determines all tasks that are available at
that time and schedules the available tasks with the smallest index in the priority list.

A schedule constructed by a list scheduling algorithm is determined by the priority list. This
makes list scheduling a useful tool for constructing schedules: many scheduling algorithms con-
sist of an algorithm that constructs a priority list and a list scheduling algorithm that uses this
list to construct a schedule [4, 31, 32, 73, 76]. The same approach is used here: the list schedul-
ing algorithm presented in this section uses a list of tasks ordered by non-decreasing strongly
Do-consistent deadlines to construct a schedule for an inst@gem, D).

Algorithm LIST SCHEDULINGIs shown in Figure 4.3. Using any list containing all tasks of
G, it constructs feasible schedules for instang@gy, m,D). The following notation is used.is
the current time andtll equals the number of tasks that are being executed attime

Algorithm LIST SCHEDULING
Input. An instanceG, u,m,D) and a listL containing all tasks o&.
Output. A feasible schedul&for (G,u,m,D).
t:=0
N:=0
while there are unscheduled tasks
do while there are unscheduled tasks available at tiawed N < m
do let u be the unscheduled available task with the smallest index in
Su) =t
N:=N+1
if N = mor no unscheduled task is available at timmr at timet + 1
then t := min{S(u) + p(u) | S(u) + u(u) >t +1}
elset:=t+1
N:=[{veV(G)| (V) <t < S(V) +uW)}|

Figure 4.3. Algorithm LIST SCHEDULING

RROoo~NoGOR~WDNE

= o

0 1 2 3 4 5 6 7 8 9 10
a;|a | by | b C1|di|d €

ag bs d3

Figure 4.4. The schedule fofG, 2, D) constructed by Algorithm IST SCHEDULING

Example 4.3.1. Let (G,2,D) be the instance shown in Figure 4.1. Using priority lis&
(a1,as3,ap,b1,bp, b3, c1,d1,d2,ds3, €1), Algorithm LIST SCHEDULING constructs a schedule for
(G,2,D) as follows. a; andag are sources of with the smallest index i.. Soa; andas are
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scheduled at time Gay is the only task that is available at time 1. So it is scheduled at time 1.
by, b, andbs are available at time 2. Since these tasks are all successagsanfib; has the
smallestindex i, only by is scheduled at time 2, andbs are scheduled at time 8; becomes
available at time 5. So it is scheduled at time 5. Only one successgroain be scheduled at
time 6. Becausd; is the child ofc; with the smallest index ik, d; is the only task scheduled

at time 6.d, andds are scheduled at time 2, is scheduled at time 9, because that is the first
time it becomes available. So Algorithmdr SCHEDULING constructs the schedule shown in
Figure 4.4.

Now we will prove that Algorithm LLST SCHEDULING correctly constructs feasible sched-
ules.

Lemma 4.3.2. Let S be the schedule for an instar{@ p, m, D) constructed by AlgorithrhisT
SCHEDULINGuUSsiIng a list containing all tasks of G. Then S is a feasible schedul&iqr, m,D).

Proof. For alli < n, letu; be thei task of G to be assigned a starting time by Algorithnsic
SCHEDULING. ThenS(up) < --- < §up). For alli < n, let G; be the subgraph db induced by
{ug,...,un} andS the restriction ofSto {ug,...,un}. It will be proved by induction tha® is a
feasible schedule fqiG;, i, m, D) for all i < n. Clearly,S! is a feasible schedule f66,u, m, D).
Assume by induction tha is a feasible schedule f¢6;, ,m, D). S*1(u) = S(u) for all tasks

of Gi. Hence to determine the feasibility 8f* for (Gi, 1, m D), we only need to consider
U1. Sinceui, is scheduled at tim&*1(ui, 1), at mostm tasks are being executed at time
S*(uiy1). SinceS*(up) < --- < S*(ui;1), at mostm tasks are being executed at each time
t > S*1(ui,1). Moreover,u, 1 is available at timeS*1(u;,1). So all predecessors of, ; are
completed at or before tinﬁ*l(um), at most one parent of, ; finishes at time3‘+1(ui+1) and

if a parent ofu;, 1 finishes at timéS‘*l(ui+1), then no other child of this parent is scheduled at
time St1(u;,1). SoS*!is a feasible schedule f¢6; 1, ., m, D). By induction,S" is a feasible
schedule fofGp, ,m, D). Becausés = G, andS(u) = S'(u) for all tasksu of G, Sis a feasible
schedule fofG,,m,D). |

Before we determine the time complexity of Algorithnsit SCHEDULING, it is shown how
Algorithm LIST SCHEDULING can be implemented. Consider an instaf@eu, m D). For all
tasksu of G, let par(u) be the number of parents ofthat are not completed at or before time
t. Let Av be the set of ready tasks that are available at tisved Avl the set of ready tasks that
become available at tintet- 1. The sefActivecontains all tasks that are being executed at time
At time 0, the setg\v, Avl andActiveare emptyN equals zero angar(u) equals the indegree
of u for all tasksu of G.

Algorithm LIST SCHEDULING considers times until all tasks have been assigned a starting
time. At each time, if at mostm— 1 tasks are being executed at titpehen the unscheduled
available task with the smallest indexlinis chosen. Let be this task.u is scheduled at time
t, removed fromAv and added t&\ctive Moreover,N is increased by one. If a parenbf u
finishes at timd, then the children of in Avare no longer available at tintle These are moved
from Avto Avl.

This is repeated untiin tasks are executed at tinher there are no unscheduled tasks left
that are available at time Thent is increased. IN = m, then the new timé s the next time at
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which a processor is idle. If there are no tasks that are available at tmmet + 1, then the
new timet is the next time that a task finishes. Otherwtsge 1 is the new time. The tasks A/l
are available at the new timieso these are moved froAvl to Av. Then we determine all tasks
in Activethat finish at the new time These are removed froActive For each of these tasks
N is decreased by one ampdr(v) is decreased by one for all childrerof u. If par(v) becomes
zero, then it is added tav or Avl. If exactly one parent of finishes at time, thenv is added to
Av. Otherwise, it is added tavl.

The time complexity of Algorithm LST SCHEDULING can be determined as follows. Ob-
viously, a task is added tAv at most twice. Moreover, a task is addedActive exactly once.
AssumeAv is represented by a balanced search tree (for instance, a red-black tree [18]) ordered
by non-decreasing index in and Active by a balanced search tree ordered by non-decreasing
completion time. Then adding and removing a taskiror ActivetakesO(logn) time. More-
over, the minimum element iAv or Activecan be found irD(logn) time. Since a task is added
and removed at most three times, these operationgdakegn) time in total. Because all tasks
in Avl are moved tdAv simultaneouslyAvl can be represented by a queue. Then adding and
removing tasks i\l takesO(n) time in total.

If a tasku finishes at time, then par(v) is decreased for all childrewm of u. This takes
O(|Suce p(u)|) time, soO(n+e) time in total. If par(v) becomes zero, thanis added toAv or
AVl depending on the number of parentsrahat finish at time. This number can be found in
O(|Preds o(v)]) time. Hence this required®(n+e) time in total.

If a tasku is scheduled at time and a parent of u finishes at timd, then the available
children ofv are moved fromAv to Avl. Since there is at most one such panerthis takes
O(|Preds o(u)| + |Suce o(v)|) time apart from the time needed to move the tasks ffanto
Avl. So this take®(n+ e) time in total.

It is easy to see that assigning a starting time to all tasks t@kestime. Moreover, at
each time considered by Algorithm IST SCHEDULING, either a task starts or a task finishes.
Therefore Algorithm LST SCHEDULING considers at mostrdifferent times. Hence we have
proved the following result.

Lemma 4.3.3. For all instances(G,,m,D) and all lists L containing all tasks of G, Algo-
rithm LIST SCHEDULING constructs a feasible schedule f@g, ,,m,D) in O(nlogn+€) time
using priority list L.

Stadtherr [84] proved that using Union-Find operations [30], a list schedule for precedence
graphs with unit-length tasks can be constructed in linear time. This method cannot easily be
generalised for precedence graphs with tasks of arbitrary length.

Lemma 4.3.4. For all instanceg/G,m,D) and all lists L containing all tasks of G, the schedule
for (G,m,D) constructed by Algorithni.IST SCHEDULING using priority list L can be con-
structed in Gn+e) time.

The following observations state two important properties of schedules constructed by Al-
gorithm LIST SCHEDULING. The first states that the schedules constructed by Algoritrsm L
SCHEDULING are independent of the deadlines.
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Observation 4.3.5. Let L be a list containing all tasks of a precedence graph G. Let S and S
be the schedules fd(G, 1, m D) and (G, 1, m,D’) constructed by AlgorithrhIST SCHEDULING
using priority list L. Then &) = S(u) for all tasks u of G.

The second observation states that if a tagkavailable at a timeand is scheduled at a later
time, then no processor is idle at timand all tasks with starting timehave a higher priority
thanu.

Observation 4.3.6. Let L be a list containing all tasks of a precedence graph G. Let S be the
schedule fofG, u,m,D) constructed by AlgorithrhIST SCHEDULINGUSINng L. Let y and v be

two tasks of G. If 811) < S(uz) and w is available at time 81;), then y has a smaller index in

L than w and there are m tasks v of G, such th&t)S< S(uz) < S(V) + pu(v).

4.4 Constructing feasible schedules

For stronglyDp-consistent instancé&, p, m, D), we will consider the schedules @B, i, m, Dg)
constructed by Algorithm LST SCHEDULINGuUsIng a priority listL that is ordered by the latest
possible starting time in an in-time schedule &, 1, m,D). Such a list will be called #atest
starting time listor Ist-list of (G,, m,D). More preciselyL = (ug,...,Uy) is called an Ist-list of
(G,u,m,D) if

D(u) —H(u1) < D(up) —u(tp) < ... < D(un)—M(un).

It is not difficult to see that an Ist-list of the strondDp-consistent instancgs, w,m, D) can be
constructed irD(nlogn) time. For instance§G, m,D), an Ist-list is ordered by non-decreasing
deadlines. For such instances, we may assume that the maximum deadline differsrat-rhost
from the minimum deadline. Using bucket sort [18], an Ist-lis@&fm, D) can be constructed in
O(n) time.

0 1 2 3 4 5 6 7 8 9 10
ap|ag|bs|by|cy|d]db e

ap b d3

Figure 4.5. An in-time schedule fo(G, 2, Do)

Example 4.4.1. Let (G,2,D) be the instance shown in Figure 4.1. IBrf(u) = 9 for all tasks
uof G. Then(G,2,D) is stronglyDo-consistent and. = (ay, as,az,b1,b2,bs,c1,d1,d2, d3, €1)

is an Ist-list of(G,2,D). Using this list, Algorithm LST SCHEDULING constructs the schedule
shown in Figure 4.4. This is not an in-time schedule [G;2,Dq): e; violates its deadline.

An in-time schedule fofG,2,Dyp) is shown in Figure 4.5. This schedule can be constructed by
Algorithm LIST SCHEDULINGUSsINg Ist-list(a;,ap, a3, by, by, b3, c1,d1,d2, ds3, €) of (G,2,D).
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Example 4.4.1 shows that AlgorithmidT SCHEDULING does not necessarily construct
minimum-tardiness schedules for an instai@m, Do) using an Ist-list of the strongl{po-
consistent instancéG, m,D). In this section, upper bounds on the tardiness of the schedules
constructed by Algorithm IST SCHEDULING are derived. Sections 4.4.1 and 4.4.2 consider
schedules for arbitrary precedence graphs on a restricted and an unrestricted number of proces-
sors, respectively. Sections 4.4.3 and 4.4.4 are concerned with schedules for outforests on a
restricted and an unrestricted number of processors, respectively.

4.4.1 Arbitrary graphs on a restricted number of processors

In this section, upper bounds on the tardiness of schedules for inst@eady) constructed

by Algorithm LIST SCHEDULINGare derived. Hanen and Munier [44] considered precedence
graphs that have two sources that are predecessors of all other tasks to compute an upper bound
on the tardiness for instancéS, m,Dg) for which there is an in-time schedule. The following
lemma was proved by Hanen and Munier [44]. We include a more detailed proof.

Lemma 4.4.2. Let G be a precedence graph with two sources that are predecessors of all other
tasks of G. LetG,m D) be the strongly [p-consistent instance. Let S be a schedule for
(G,m,Dg) constructed by AlgorithrhiST SCHEDULINGUSIng an Ist-list of G, m, D). If there is

an in-time schedule fofG, m, D), then for all tasks u of G, if r& 2, then $u) +1 < 2D(u) — 1

and if m> 3, then $u) +1< (3— 2)D(u) — (2— 32).

m m

Proof. Assume there is an in-time schedule {&,m,Dg). From Lemma 4.1.9, there is an in-
time schedule fo(G,m,D). Letp, =2 andpm=3— % for all m> 3. It will be proved by
contradiction thas(u) + 1 < pmD(u) + (pm— 1) for all tasksu of G. Suppose there is a task
of G, such thaS(u) + 1 > pmD(u) — (pm—1). Since there is an in-time schedule {&, m,D),
D(v) > 1 for all tasksv of G. HencepmD(Vv) + (pm—1) > 1 for all tasksv of G. Because both
sources ofG are scheduled at time @,cannot be a source @&. Assume there is no task,
such thaS(u') < S(u) andS(U') +1 > pmD(U') — (pm—1). Lett = Su). Let S be the last time
slot beforeS, such tha§,_; US/ contains at most two tasks with deadline at nid@t) andS,
contains at most one task with deadline at nid@t). There is such a timg, becaus& U S
only contains the two sources GfandS; does not contain any tasks.

Let H be the subgraph o& induced by{v e |J}'_,S | D(v) < D(u)}. Since(G,m,D) is
consistent, every predecessor of a taskidias a smaller deadline than We will prove that
there is a task scheduled at tim& — 1 that is a predecessor of all tasks-bf We will consider
two possibilities.

Case 1. S/ contains a task with a smaller deadline than

Case 1.1. S/_; contains a parentof w.
From the choice of’, v is the only task ir§/_; with a smaller deadline tham Letx be
a source oH[V(H)\ {w}]. At most one task with a deadline smaller than thax &
scheduled at tim&. From Observation 4.3.6& cannot be available at tinté Since no
two parents ok are scheduled at tim — 1, x must be a child of/ or a child ofw. In
either casex is a successor of Sov is a predecessor of all taskslaf
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Case 1.2. §/_; does not contain a parent wof
Letxbe a source dfi [V (H)\ {w}]. From the choice df, wis the only task with deadline
at mostD(u) scheduled at tim€. From Observation 4.3.&cannot be available at time
t’. From the choice of, at most one parent ofis scheduled at timg — 1. Because no
parent ofw is scheduled at time — 1 andx is not available at tim€, x must be a child of
w. Hencew is a predecessor of all taskstafV(H) \ {w}|. Because of communication
delays, at most one successonafan be executed at time+ 1. Sot’ =t — 1, otherwise,
t’ would have been chosen differently. Sigenv) < D(u) —1,S(w)+1=t'+1=(t+
1)—1>pmD(u) = (pm—1) = 1 = pm(D(W) + 1) — pm = PmD(W) = pmD(W) — (Pm—1).
Contradiction.

Case 2. S/ does not contain a task with a smaller deadline tlhan
Let x be a source oH. From Observation 4.3.& cannot be available at tinté SinceS:
does not contain a parent ®f two parents ok must be executed at tintt— 1. SoS/_;
contains at least two tasks that are predecessors of all tabkslaft v be one of these tasks.

In either casey is scheduled at timg — 1 and is a predecessor of all tasks-hf Now we will
inductively construct a set of cluster€g contains the tasks dl that are executed at tinte
AssumeC; has been defined before. ltebe the smallest starting time of a task@®f Lett/ be
the largest timé”, such that” < tj,t” >t — 1 and at mosin— 1 tasks ofH are executed at time
t”. ThenC; is defined as follows.

1. Iftf =t'—1, or no task oH is scheduled at timg — 1, then leCi_; be the set of tasks of
H executed at timg. ThenCi, 1 is said to be a cluster of Type 1.

2. OtherwiseCi. 1 contains all tasks dfl that are scheduled at tinteort/ — 1. ThenCiy1 is
said to be a cluster of Type 2.

AssumeCy is the last cluster that can be defined this way. Th&nan element o€. Leta; be
the number of clusters of Type 1 and the number of clusters of Type 2. Note that clugigr
has no type. The clusters contain all task$lathat are contained in a time slot that contains at
mostm— 1 tasks ofH. Between two consecutive clusters, only taskslafre scheduled.
Consider two consecutive clusté&@sandCi. 1. It will be proved by contradiction that every
task inC; has a predecessor@, 1. Letx be a task irC;. Suppose does not have a predecessor
in Ci11. ThenGCi 1 # Cx, becaus€; containsy andv is a predecessor of all taskstdf At timet/,
at mostm— 1 tasks with deadline at moBt(x) are scheduled. No predecessok @ scheduled
at timet/. From Observation 4.3.&,is not available at tim¢g. So at least two predecessors of
x must be scheduled at tinte— 1. Since(G,m,D) is consistent, these must be taskdHof In
that caseC;, 1 is of Type 2 and these predecessors afe elements df;, ;. Contradiction. So
every task irC; has a predecessor @y, ;. Sincev is a predecessor of all tasksdf there is a
path fromv to u, that contains a task in every cluster. Becawsean element o€y, this path
contains at least, + 0, + 1 tasks. SincéG,m,D) is consistentD(u) — D(v) > a1 + 0.
From the choice of, every clusteC; of Type 2 contains at least three tasks and each cluster
G of Type 1 contains at least two tasks, unlessk. Now consider the same cases as before.
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Case 1. S/ contains a task with a smaller deadline than
vis a parent ofv that is scheduled at tinté— 1. If the last cluster is of Type 1, then it only
containsv. Hence

Np(v,D(u)) —1 m(t —t') — (ag — 1)(m—2) —ay(2m—3)
m(t—t') —ai(m—2) —az(2m—3) + (m—2)

m(t —t’) — (a1 +az)(2m—3) + (m—2).

vVl v

Otherwise, the last cluster is of Type 2 and
Np(v,D(u)) —1 m(t —t") —a;(m—2) — (o —1)(2m—3) — (m—1)
m(t—t') —as(m—2) —az(2m—3) — (m—1) + (2m—23)

m(t —t") — (a1 +02)(2m—3) + (m—2).

AV AV

Case 2. S/ does not contain a task with a smaller deadline tlhan
Attimet’ — 1, two tasks with a smaller deadline thamare scheduled. One of these tasks is
v. Since no task ofl is scheduled at timg, the last cluster can only be of Type 2. Because
no task ofH is scheduled at timeg,

No(v,D(u))—1 > m(t—t')—ai(m—2)—(az—1)(2m—3)—
= mt—t)—oa1(m—2)—az(2m—3) —m+ (2m-—3)
> mt—t)—(a;+0az)(2m—3)+ (m—3).
In either caseNp (v,D(u)) —1 > m(t —t") — (a1 + 02)(2m—3) + (m— 3). BecauséG,m,D) is
consistentP(v) < D(u) —1— [%(ND(V,D(U)) —1)]. So
D(u)—D(v) > 1+ [&(Np(v,D(u))—1)]
> 1+m(@—t)(m&ﬂﬂﬁm—$+%m—$)
> t—t’—(a1+a2)(2—%)+(2—%)
> (SW)+1) = (Sv) +1) = (D(u) = D(V)) (2~ ) + (1~ 3)-

SinceS(u) +1 > pmD(u) — (pm— 1), we obtainS(v) +1 > pmD(u) — (pm—1) — (3— 2 )(D(u) —
D(V)) +(1—32). If m> 3, then

SV+1 > (3-2)DU)—(2-2)-(3-2)(D(u)-D(v)+(1-2)
> (3-2)b(W) - (2-32
Contradiction. Ifm= 2, then
Sv)+1 > 2D(u)—1-(3D(u)-3D(v) -}
= DW+3pMW -3
> 3(D(V)+1)+3D(v) -3
= 2D(v)-1



Contradiction. O

By adding two dummy sources, any precedence graph can be transformed into a precedence
graph with two sources that are predecessors of all other tasks. Using this construction, we can
prove an upper bound on the tardiness of schedules for all insté@oesDy).

Lemma 4.4.3. Let (G,m,D) be the strongly lg-consistent instance. Let S be a schedule for
(G,m,Dg) constructed by AlgorithraiST SCHEDULINGuUSINg an Ist-list of G,m,D). If there is
an in-time schedule fofG, m, D), then for all tasks u of G, if r& 2, then $u) +1 < 2D(u) + 1
and if m> 3, then $u) +1 < (3— 2)D(u) + (2— 3).
Proof. Assume there is an in-time schedule f@&,m,Dg). AssumeS s constructed by Al-
gorithm LIST SCHEDULING using Ist-listL = (uy,...,un) of (G,m,D). Construct an instance
(G',m,D’) as follows.G' is constructed fronG by adding two tasks; andr, and arcs fronr;
andr to all sources of5. For all tasksu of G, let Dy(u) = Do(u) +2 andD’(u) = D(u) + 2.
In addition, letDg(r1) = Dg(r2) = D'(r1) = D'(r2) = 1. From Observation 4.1.5G’,m,D’)
is strongly D’-consistent. Because there is an in-time scheduld@m,Dy), there is also
an in-time schedule fofG’,m,D;). Let S be the schedule fo(G’,m, D) constructed by
Algorithm LIST SCHEDULING using the Ist-listL’ = (ry,rp,us,...,uUy) of (G,m,D’). From
Lemma 4.4.2, ifm= 2, then for all taskuu of G, S(u) < 2D'(u) — 1 and if m > 3, then
S(u) < (3—2)D'(u) — (2 2) for all tasksu of G'. It is easy to see tha(u) = S(u) + 2

(

for all tasksU of G. So if m = 2, then for all taskss of G, S(u) +1= (S(u)+1)—2<
2D'(u) —3=2(D(u)+2) —3=2D(u) +1. And|fm>3thenS(u)+1f( (U+1)-2<
(8- 2)D/(u)— (4~ 2)=(3- 2)(D(U)+2) — (4 3) = (3~ $)D(u) + (2— 3) for all tasksu
of G. O

Using Lemma 4.1.8, we can bound the tardiness of the schedules for arbitrary instances
(G,m, Do) constructed using AlgorithmsERDLINE MODIFICATION and LIST SCHEDULING,

Theorem 4.4.4. There is an algorithm with an @nin{n? + ne~,n?>376}) time complexity that
constructs feasible schedules S for instan&sn, Do), such that

1. if m= 2, then the tardiness of S is at m@t + max,cy () Do(u) + 1, and
2. if m> 3, then the tardiness of S is at m@8t— 2)¢* + (2— 2) max,ev (c) Do(U) + (2 2,

where/* is the tardiness of a minimum-tardiness scheduld@&m, D).

Proof. Consider an instancéG,m,Dg). Definep, =2 andpm =3 -— % for all m> 3. Let
(G,m,D) be the stronglyDo-consistent instance. L& be the schedule fofG,m,Dy) con-
structed by Algorithm LST SCHEDULING using Ist-listL of (G,m D). Let ¢* be the tardi-
ness of a minimum-tardiness schedule (Gt m,Dg). We will prove that the tardiness &is
at mostpml* + (Pm — 1) Max,ey () Do(u) + (Pm— 1). DefineDg(u) = Do(u) + ¢* for all tasks
u of G. From Observation 4.1.7, there is an in-time schedule(@m,Dp). Let (G,m,D’)
be the stronglyDy-consistent instance. From Lemma 4.108(u) = D(u) + ¢* for all tasks
u of G. SolL is an Ist-list of (G,m,D’). From Lemma 4.4.35(u) + 1 < pmD’(u) + (pm —
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1) < pm(Do(u) + £€*) + (pm — 1) for all tasksu of G. So the tardiness dof as schedule for
(G,m, Do) is at mostpm?* + (pm — 1) Max,ey(g) Do(u) + (pm—1). If m= 2, thenS has tar-
diness at most 2 + max,cy ) Do(u) +1. Otherwise,m > 3 and S has tardiness at most
(3— 2)" + (2— 2)max,ey(c) Do(u) + (2— 2). From Lemmas 4.2.4 and 4.38can be con-
structed inO(min{n? 4+ ne~,n?376}) time. O

Theorem 4.4.4 shows that there is a polynomial-time approximation algorithm for schedul-
ing arbitrary precedence graphs with non-positive deadlines pnocessors. The asymptotic
approximation ratio of this algorithm equals 2if= 2 and 3— % if m> 3.

Corollary 4.4.5. There is an algorithm with an @in{n? + ne",n?>376}) time complexity that
constructs feasible schedules S for instarn&&sn, Do) with non-positive deadlines, such that

1. if m= 2, then the tardiness of S is at m@gt + 1, and

2. if m> 3, then the tardiness of S is at m@8t— 2)¢* + (2— 2),

wherel* is the tardiness of a minimum-tardiness scheduld®&m, D).

Proof. Obvious from Theorem 4.4.4. O

4.4.2 Arbitrary graphs on an unrestricted number of processors

Bounding the tardiness of schedules constructed by Algorithem ECHEDULINGfor instances
(G,H,,Dp) is less complicated. The following lemma proves an upper bound for instances
(G, Y, 0, Dg) for which there is an in-time schedule.

Lemma 4.4.6. Let (G, ,D) be the strongly p-consistent instance. Let S be a schedule for
(G,H,,Dp) constructed by AlgorithnLIST SCHEDULING using an Ist-list of(G, y,,D). If
there is an in-time schedule f0G, Y, », Do), then for all tasks u of G, (@) + u(u) < 2D(u) — 1.

Proof. Assume there is an in-time schedule {@,, o, Dg). From Lemma 4.1.9, there is an
in-time schedule fofG, 1, «, D). It will be proved by contradiction th&(u) + p(u) < 2D(u) — 1

for all tasksu of G. Suppose there is a taslof G, such thaS(u) + p(u) > 2D(u) — 1. We may
assume that there is no tasksuch thaS(w) < S(u) andS(w) + p(w) > 2D(w) — 1. Since there

is an in-time schedule fqiG, 1,0, D) and all sources ob are scheduled at time zenecannot
be a source o6. Letv be a parent ofi with maximum completion time among the parents of
u. Since(G, Y, ,D) is consistentD(v) < D(u) — p(u). Sincev is a parent ofi with the largest
completion timeu is available at times(v) + p(v) + 1. Henceu starts at timeS(v) + p(v) or at
time S(v) + p(v) + 1. ThereforeS(v) + p(v) > (S(u) + p(u)) — (U(u) +1) > 2D(u) — 1 —2u(u) >
2D(v) — 1. Contradiction. d

Lemma 4.4.6 is used to bound the tardiness of the schedule constructed for all instances
(Gv M, oo, DO)

Theorem 4.4.7. There is an algorithm with an @logn+ €) time complexity that constructs
feasible schedules for instanc@3, |, 0, Do) with tardiness at mos2¢* + maxcy () Do(u) — 1,
where/* is the tardiness of a minimum-tardiness schedule &, o, Do).
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Proof. Consider an instanc€G, i, ,Dg). Let (G,p,,D) be the stronglyDg-consistent in-
stance. LetS be the schedule fofG, o, Dg) constructed by Algorithm IST SCHEDULING
using Ist-listL of (G,p,,D). Let ¢* be the tardiness of a minimum-tardiness schedule for
(G, W, 20, D). We will prove that the tardiness &fis at most 2* + max,cy gy Do(u) — 1. Define
Dg(u) = Do(u) + ¢* for all tasksu of G. From Observation 4.1.7, there is an in-time schedule
for (G,,,Dp). Let (G,p,»,D’) be the stronghyDy-consistent instance. From Lemma 4.1.8,
D’(u) = D(u) + ¢* for all tasksu of G. SoL is an Ist-list of(G, ,e,D’). From Lemma 4.4.6,
S(u) + p(u) < 2D'(u) — 1 < 2(Dg(u) +£*) — 1 for all tasksu of G. So the tardiness @as sched-
ule for (G,m, Do) is at most 2* +max,cy ) Do(u) — 1. From Lemmas 4.2.5 and 4.3S¢an be
constructed iO(nlogn+ e) time. O

Theorem 4.4.7 shows that there is a polynomial-time 2-approximation algorithm for schedul-
ing arbitrary precedence graphs with non-positive deadlines on an unrestricted number of pro-
cessors.

Corollary 4.4.8. There is an algorithm with an @logn+ €) time complexity that constructs
feasible schedules for instanc@s, |1, 0, Dg) with non-positive deadlines with tardiness at most
20* — 1, wheref* is the tardiness of a minimum-tardiness scheduld @, o, D).

Proof. Obvious from Theorem 4.4.7. O

4.4.3 Outforests on a restricted number of processors

In this section, we consider schedules constructed by Algoritlem sCHEDULINGfor instances
(G,m,D), such thaGG is an outforest. The bounds on the tardiness for these schedules are better
than those for arbitrary precedence graphs proved in Section 4.4.1.

It will be proved that minimum-tardiness schedules for instari&&, Do), such thaiG is
an outforest, can be constructed in polynomial time. In order to prove this, we need to bound
the number of idle time slots in any schedule for the stromyjyconsistent instancgs, m,D)
constructed by Algorithm IST SCHEDULINGuUsIng an Ist-list of G, m, D).

Lemma 4.4.9. Let G be an outforest. L€G, m,D) be a consistent instance. Let S be a schedule
for (G,m,D) constructed by AlgorithrhIST SCHEDULING using an Ist-list of G,m,D). Then
the number of idle time slots in S is at mosx,cy gy D(U) — Minyey () D(u) +1.

Proof. We inductively define a list of tasks, . .., ux as follows. Letu; be a task with maximum
completion time. Ify; is not a source 06, then letu; 1 be the parent afi. Assumeuy is the last
task obtained this way. Than is a source of5. Definet; = S(u;) for alli € {1,...,k}. Define
[(t) as the number of idle slots i8 from timet onward. It will be proved by induction that
I(ti) < max,ey(e)D(u) —D(ui)+1foralli € {1,...,k}. Clearly,l(t;) <1< max,eyg)D(u) —
D(up) +1. Leti > 1. Assume by induction thattj) < max,y ) D(u) —D(u) + 1. Consider
timetj;1. We consider two cases.

Case 1. I(tiy1) —1(t) < 1.
Since(G,m,D) is consistentD(Ui11) < D(uj) — 1. Sol (ti+1) <1(t)+1 < max,ey ) D(u) —
D(Ui) +2< m%eV(G) D(U) — D(Ui+1) + 1.
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Case 2. | (tiy1) —I(t) > 2.
SinceG is an outforesty; is available at timej 1 + 2. From Observation 4.3.6, the time
slots§; ;+2,...,§-1 cannot be idle. So the time sldgs,, andS§; ;1 must be idle. From
Observation 4.3.6); is not available at timg, ; 4+ 1. Hence another child af_ ; is executed
at timeti;1 + 1. Letv be this child. Since is scheduled instead of, D(v) < D(u;). Hence
Nb(Ui+1,D(ui)) > 2. Since(G,m,D) is consistentD(ui11) < D(uj) — 2. Consequently,
I(tir1) =1(ti) +2 < max,ey (g) D(U) — D(U) + 3 < maxey (g) D(U) — D(Ui41) + 1.

In either casel,(ti+1) < max,ey () D(u) — D(ui+1) + 1. By induction,| (t) < max,ey(g)D(u) —
D(ux) + 1. Sinceuy is a source ofG, uk is available at times ,0..,S(ux) —1. From Obser-
vation 4.3.6, no processor is idle before tiB@i). Hencel (0) = I(t) < max,ey () D(u) —
D(uk) + 1 < max,ey(g) D(U) — minyey () D(u) + 1. O

Lemma 4.4.9 is used to compute an upper bound on the tardiness of the schedules constructed
by Algorithm LisT scHEDULINGfor instancegG, m, Dg), such thaG is an outtree.

Lemma 4.4.10. Let G be an outtree. L&G,m D) be the strongly lg-consistent instance. Let
S be a schedule fdiG,m, Do) constructed by AlgorithrhIST SCHEDULINGusing an Ist-list L
of (G,m,D). If there is an in-time schedule f¢G, m, Do), then for all tasks u of G, (@) +1 <
(2- 2D - (1-2).
Proof. Assume there is an in-time schedule {@, m,Dy). From Lemma 4.1.9, there is an in-
time schedule fofG,m,D). It will be proved by contradiction the(u) + 1 < (2— 2)D(u) —
(1— 2) for all tasksu of G. Suppose there is a tagksuch thaS(u) + 1> (2— 2)D(u) — (1— 2).
Because there is an in-time schedule(@rm, D), D(v) > 1 for all tasksv of G. Since the root of
G is scheduled at time @ ,cannot be the root db. AssumeS(u) =t and there is no task such
thatS(v) <t andS(v)+1> (2— 2)D(v) — (1— 2). Lett’ be the last time before tintesuch that
at most one task with deadline at m&Xu) is scheduled at timg. Such a time exists, because
at time 0, only the root o6 is executed. Becausgis an outtree an@G, m,D) is consistent, a
taskv with deadline at modb(u) is scheduled at timg. LetH be the subgraph @ induced by
{weUt-E, S| DW) < D(u)}u{u}.

Case 1. vis a predecessor of all taskslaf
Because of communication delays, at most one successaaofbe scheduled immediately
afterv. Hencet’ =t — 1 andu is a child ofv. Since(G,m,D) is consistentD(v) < D(u) — 1
andS(v) +1=t=(Su)+1)—1>(2—2)D(u)— (2—2)—(1—-2) = (2— 2)D(v) — (1—
2)_ Contradiction.

Case 2. Not every task oH is a successor of
Let x be a source oH that is not a successor @f From Observation 4.3.6& cannot be
available at time’. Because is not a predecessor &f a parentv of x must be scheduled at
timet’ — 1 and another child of is executed at timg. Since this child is scheduled instead
of x, it must have a deadline at md3tx). Because is the only task with deadline at most
D(u) scheduled at timg€ — 1, wis the parent ofr as well. So all tasks dfl are successors of

44



w. Letk be the number of time slots among time sits...,S_; that contain at mosh— 1
tasks fromH. ThenNp (w,D(u)) > m(t —t’) + 1—k(m—2). Since(G,m,D) is consistent,

DW) < D(u)—1—(t—t")+k(1— %).

Let S be the schedule fqiG|V (H) U {w}]|,m,D) constructed by Algorithm LST SCHEDUL-
ING using the sublist ol containing all tasks iV(H) U {w}. From Lemma 4.4.9, the
number of idle slots inS is at mostD(u) — D(w) + 1. It is not difficult to see that
S(x) = S(x) + S(w) = S(x) +t' — 1 for all tasksx in V(H) U{w}. So the number of time
slotsinS,,...,S_1 that contain at mosh— 1 tasks oH is at mostD(u) — D(w) — 1. Hence

D(u)-DW) > (t—t)+1—k(1-2)
> (t+1)—t'—(D(u)—Dw)—1)(1-3)
> (S(U)+1) - (SW)+1) — (D(u) —D(W))(1—&).
As a result,
SW)+1 > Su)+1-(2—2)(D(u)—D(w))
> (2-&)D(u)—(1-Z)—(2— &)(D(u) - D(w))
= (2-Z)D(w)—(1-2)

Contradiction.

An outforest can be transformed into an outtree by adding two tasks. This construction is
used to compute upper bounds of the tardiness of the schedules constructed by Algosithm L
SCHEDULINGfor instancegG, m, Dg), such thats is an outforest.

Lemma 4.4.11. Let G be an outforest. LG, m,D) be the strongly p-consistent instance. Let
S be a schedule fdiG,m,Dg) constructed by AlgorithrhIST SCHEDULING uUsing an Ist-list of
(G,m,D). If there is an in-time schedule f¢, m, Do), then for all tasks u of G, (@) + 1 <
(2—Z)D(W) + (1~ Z).

m m

Proof. Assume there is an in-time schedule {&,m,Dg). AssumeSis constructed by Algo-
rithm LIST SCHEDULINGusIng Ist-listL = (u,...,un) of (G,m,D). If G has only one source,
thenG is an outtree. In that case, from Lemma 4.4.3@) + 1 < (2— 2)D(u) — (1— 2) for

all tasksu of G. So we may assume th& has at least two sources. Construct an instance
(G',m,D’) as follows. G’ is constructed fronG by adding two tasks ands and arcs fronr

to s, from sto u; (this is a source o6) and fromr to all other sources o. ThenG' is an
outtree. For all tasks of G, let D'(u) = D(u) +2. In addition, letDy(r) = D’(r) = 1 and
Dy(s) =D'(s) =2. Then(G',m,D’) is stronglyD’-consistent. Because there is an in-time sched-
ule for (G,m,Dg), there is also an in-time schedule f@',m,Dg). Let S be the schedule for
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(G',m,Dy) constructed by Algorithm IST SCHEDULING using Ist-listL’ = (r,s,uy,...,un) of

(G',m,D’). From Lemma 4.4.1G8 (u) < (2— 2)D’(u) — (1— 2) for all tasksu of G'. It is easy

to see tha8 (u) = S(u) + 2 for all tasksu of G. So for all tasksi of G, S(u)+1=(S(u)+1)—2<

(2-2)D'(W)—~(1-3)—2=(2-2)(D(u)+2)~ (3~ 2) = (2- 2)D(U) + (1~ 2). O
Lemma 4.4.11 can be used to bound the tardiness of the constructed schedules for all in-

stance$G, m, Do), such thaG is an outforest.

Theorem 4.4.12. There is an algorithm with an @?) time complexity that constructs feasible
schedules for instancé&, m, Do), such that G is an outforest, with tardiness at m@st 2 )¢* +

(1— 2)max,ey(c) Do(u) — (1— 2), wheret* is the tardiness of a minimum-tardiness schedule
for (G, m,Do).

Proof. Consider an instandg, m, Dy), such thatG is an outforest. LetG, m, D) be the strongly
Do-consistent instance. L& be the schedule fofG, m,Dgy) constructed by Algorithm IST
SCHEDULING using Ist-listL of (G,m,D). Let ¢* be the tardiness of a minimum-tardiness
schedule for(G,m,Dg). We will prove that the tardiness & is at most(2 — 2)¢* + (1 —

2) maxey(g) Do(U) + (1 — 3). Define Dy(u) = Do(u) + ¢* for all tasksu of G. From Ob-
servation 4.1.7, there is an in-time schedule (G m,Dg). Let (G,m,D’) be the strongly
Dy-consistent instance. From Lemma 4.10(u) = D(u) + ¢* for all tasksu of G. So

L is an Ist-list of (G,m,D’). From Lemma 4.4.115(u) +1 < (2— 2)D'(u) + (1— 2) <
(2— 2)(Do(u)+¢*)+(1— 2) for all tasksu of G. So the tardiness &as schedule fofG, m, Do)

m
is at most(2— 2)¢* + (1— 2) maxey ) Do(u) + (1— 2). From Lemmas 4.2.4 and 4.32can
be constructed i@(n?) time. O

Theorem 4.4.12 shows that a minimum-tardiness schedule for an outforest on two processors
can be constructed in polynomial time.

Theorem 4.4.13. There is an algorithm with an @?) time complexity that constructs minimum-
tardiness schedules for instandgs, 2, Dg), such that G is an outforest.

Proof. Obvious from Theorem 4.4.12. O

Moreover, for all scheduling instancéB, m, Do) with non-positive deadlines, such thais
an outforest, there is a polynomial-time approximation algorithm with an asymptotic approxima-
tion ratio of 2— 2.

Corollary 4.4.14. There is an algorithm with an @?) time complexity that constructs feasible
schedules for instancé&, m Dg) with non-positive deadlines, such that G is an outforest, with
tardiness at mos2— 2)¢* + (1— 2), wheret* is the tardiness of a minimum-tardiness schedule
for (G, m,Do).

Proof. Obvious from Theorem 4.4.12. O
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4.4.4 Outforests on an unrestricted number of processors

In this section, we will derive an upper bound on the tardiness of the constructed schedules
for instanceg G, i, «, D), such thaiG is an outforest, that is smaller than the upper bound for
arbitrary instance6G, Y, », D) proved in Section 4.4.2: it will be proved that for all outforeSts
minimum-tardiness schedules for instan@sy, «, Dg) can be constructed in polynomial time.

The basis of the proof is the following lemma.

Lemma 4.4.15. Let G be an outforest. L&G, 1, 0, D) be the strongly B-consistent instance.
Let S be a schedule fd6, 1,0, Dg) constructed by AlgorithrhIST SCHEDULINGUSIng an Ist-
list of (G, 0, D). If there is an in-time schedule f¢6, |, 0, Dg), then S is an in-time schedule
for (G, Y, o, Do).

Proof. Assume there is an in-time schedule {@,, «,Dg). From Lemma 4.1.9, there is an
in-time schedule fofG, |1, 0, D). It will be proved by contradiction th&is an in-time schedule
for (G, , 0, Dg). Suppos&is not an in-time schedule f@6, 1, 0, Dp). From Lemma 4.1.95is

not an in-time schedule f@G, |, «, D). Assume task does not finish at or before tiniu) and
there is no task that starts befar@and violates its deadline. Since there is an in-time schedule
for (G, W, ,D) and the sources @ are scheduled at time zemocannot be a source &. Letv

be the parent ofi. Clearly,u is available at time&(v) 4 p(v) + 1. Sou starts at timeS(v) + p(v)

or at timeS(v) + p(v) + 1.

Case 1. u starts at times(v) + p(v).
Letd = D(u) — p(u) + 1. ThenNp(v,d) > pp(u,d) = 1. Becaus€G, y,«,D) is consistent,
D(v) <d—1=D(u)— p(u). Sinceu violates its deadlineS(v) + p(v) = Su) > D(u) —
H(u) +1 > D(v) + 1. Contradiction.

Case 2. u starts at timeS(v) + p(v) + 1.
From Observation 4.3.6) cannot be available at tim®&v) 4+ p(v). So another childv of
v starts at timeS(v) + p(v). Since Algorithm LST SCHEDULING scheduledv instead ofu,
D(w) —u(w) < D(u) — p(u). Letd = D(u) — p(u) +1. ThenNp(v,d) > pp (u, d) +pp (w, d) >
2. BecausgG, |, »,D) is consistentD(v) < d —2 = D(u) — u(u) — 1. Becauseau is not
completed at or before timB(u), S(u) > D(u) —p(u) +1. SoS(v) + p(v) = Su) —1 >
D(u) — p(u) > D(v) + 1. Contradiction.

O

Using this result, we can prove that minimum-tardiness schedules for outforests on an unre-
stricted number of processors can be constructed in polynomial time.

Theorem 4.4.16. There is an algorithm with an @logn) time complexity that constructs
minimume-tardiness schedules for instan@@sy, «, Dg), such that G is an outforest.

Proof. Consider an instanc@s, 4, «, Dg), such thatG is an outforest. Le{G,,«,D) be the
strongly Do-consistent instance. L&be the schedule fofG, y, 0, Dg) constructed by Algo-
rithm LIST SCHEDULING using Ist-listL of (G,p,c,D). We will prove thatSis a minimum-
tardiness schedule fdiG, 1,0, Dg). Let ¢* be the tardiness of a minimum-tardiness schedule
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for (G,p,,Dgp). Define Dy(u) = Do(u) + ¢* for all tasksu of G. From Observation 4.1.7,
there is an in-time schedule f@G,, 0, Dp). Let (G,p,,D’) be the stronglyDy-consistent
instance. From Lemma 4.1.8)’(u) = D(u) + ¢* for all tasksu of G. SolL is an Ist-
list of (G,,,D’). From Lemma 4.4.15S is an in-time schedule fofG, y,«,Dg). Hence
S(u) + p(u) < Dg(u) < Do(u) + ¢* for all tasksu of G. So the tardiness d as schedule for
(G,H,,Dp) is at mostZ*. SoSis a minimum-tardiness schedule f@, 1, 0, Dg). From Lem-
mas 4.2.5 and 4.3.% can be constructed i@(nlogn) time. O

4.5 Concluding remarks

In this chapter, an algorithm was presented for scheduling precedence-constrained tasks with
non-uniform deadlines subject to unit-length communication delays. It is the first polynomial-
time algorithm that constructs minimum-tardiness schedules (for outforests) subject to non-zero
communication delays.

Most results presented in this chapter can be generalised in two ways. First, if we consider
scheduling with release dates (a task cannot start before its release date) and deadlines, then
minimum-tardiness schedules for outforests on two processors [88] and on an unrestricted num-
ber of processors can be constructed in polynomial time.

Second, if we considef0, 1}-communication delays instead of unit-length communication
delays, then an algorithm similar to the one presented in this chapter constructs minimum-
tardiness schedules for outforests on two processors or on an unrestricted number of processors.
With {0,1}-communication delays, every arc has communication delay zero or one. If a task
up is a parent ofu; and the arc frormu; to up has communication delay zero, thasn can be
scheduled immediately after on any processor. If the delay of this arc equals oneland
scheduled immediately afteg, then it must be executed on the same processey.as
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5 The least urgent parent property

In Chapter 4, an algorithm was presented for scheduling precedence graphs with non-uniform
deadlines subject to unit-length communication delays. This algorithm has the same overall
structure as the one presented by Garey and Johnson [31] for scheduling without communication
delays. In the first step, consistent deadlines are computed. In the second, the tasks are scheduled
by a list scheduling algorithm.

The exact deadline modification for a tagskdepends on the subgraph of its successors:
if u has sufficiently many successors that have to be completed at or beford,timen the
deadline ofu is decreased. For the case of scheduling on two processors without communica-
tion delays [31], this turns out to be sufficient: the algorithm of Garey and Johnson constructs
minimum-tardiness schedules for arbitrary precedence graphs on two processors.

For scheduling subject to unit-length communication delays, we are only able to construct
minimum-tardiness schedules for outforests on two processors or an unrestricted number of pro-
cessors. In Chapter 4, AlgorithmEADLINE MODIFICATION was presented. This algorithm uses
the knowledge that for every task at most one child ofi can be scheduled immediately after
u. However, it does not use the knowledge that at most one predecessoanfbe scheduled
immediately before.

In this chapter, we will consider instances that satisfy a special constraint, called the least
urgent parent property. For instances with the least urgent parent property, evetyteadk
is not a source has a parent that is the best candidate to be scheduled immediately.before
We can construct minimum-tardiness schedules for arbitrary precedence graphs with the least
urgent parent property on an unrestricted number of processors and for inforests with the least
urgent parent property am processors. By transforming arbitrary instances into instances with
the least urgent parent property and constructing schedules for these instances, we obtain a 2-
approximation algorithm for scheduling inforests with non-positive deadlin@s processors.

5.1 The least urgent parent property

The least urgent parent property entails that every task that is not a source has a parent that is
the best candidate to be executed immediately before this task. This least urgent parent has a
deadline that exceeds the deadlines of all other parents.

Definition 5.1.1. An instance(G,, m,D) has thdeast urgent parent property for all tasksu
of G, if uis not a source, them has a parent whose deadline exceeds the deadlines of the other
parents ofl. This parent is called thieast urgent parenof u.

In a schedule with the least urgent parent property, the completion time of the least urgent
parent of a task exceeds the completion times of the other parents.

Definition 5.1.2. Let (G,u,m,D) be an instance with the least urgent parent property.Sltegt
a feasible schedule f@G,u,m,D). Sis a schedule fofG,,m,D) with theleast urgent parent
propertyif for all tasksu of G, if uis not a source 06, then the least urgent parentwfinishes
after the other parents af
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The least urgent parent property is closely related to the favoured child property that was
introduced by Lawler [59]. A schedu&for an instanc€G, m, D) has the favoured child property
if for each tasku of G, a child ofu is scheduled before all other childrenwfThis child is the
favoured child ofu.
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Figure 5.1. An instanceg(G, 2, D) with the least urgent parent property
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Figure 5.2. A schedule for(G, 2, D) with the least urgent parent property

Example 5.1.3. Figure 5.1 shows an instan(®, 2, D) with the least urgent parent properéy.

is the least urgent parent bf, b, andbg, b is the least urgent parent of andc,, bs is the least
urgent parent o€z andc; is the least urgent parent df. Figure 5.2 shows a feasible schedule
for (G, 2,D) with the least urgent parent property.

5.2 Using the least urgent parent property

In this section, it will be proved that for all consistent instan@@gu, «, D) with the least urgent
parent property, Algorithm IST SCHEDULING, that was presented in Chapter 4, constructs in-
time schedules if such schedules exist. In fact, this is proved for all insté@cps», D), such
that each task of G has at most one parent with deadlbg&u) — p(u). Obviously, all consistent
instances with the least urgent parent property satisfy this constraint.

Lemma 5.2.1. Let (G, ,D) be the strongly lp-consistent instance. Let S be a schedule for
(G,H,0,Dp) constructed by AlgorithniLIST SCHEDULING using an Ist-list of(G, 4, o, D). If
every task u of G has at most one parent with deadlitte) B u(u) and there is an in-time
schedule fofG, , 0, Dp), then S is an in-time schedule @, p, «, Dy).
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Proof. Assume there is an in-time schedule &, «, Dg) and every task of G has at most one
parent with deadlin®(u) — p(u). It will be proved by contradiction tha&is an in-time schedule
for (G,,0,Dp). SupposeSis not an in-time schedule fdiG, y,«,Dg). From Lemma 4.1.9,
Sis not an in-time schedule fdiG, 1, »,D). Letu be a task with an earliest starting time that
violates its deadline. The®(u) + p(u) > D(u) and there is no task such thas(v) < S(u) and
S(v) +u(v) > D(v). Because there is an in-time schedule(f8r, 0, D) and the sources @ are
scheduled at time @ cannot be a source &. Letv; be a parent ofi with the largest completion
time among the parents of Sinceu is available at timé&(vy) 4+ p(v1) + 1, u is scheduled at time
S(v1) +H(v1) or at timeS(vy) + p(vy) + 1.

Case 1. S(u) = S(vq) + H(vy).
Since(G, u, 0, D) is consistentD(v;1) < D(u) — p(u). HenceS(v1) + pu(vi) = S(u) > D(u) —
p(u) > D(vy). Contradiction.

Case 2. S(u) = S(vq) + W(v1) + 1.

Case 2.1. vq is the only parent ofi that finishes at tim&(vy) + p(vy).
From Observation 4.3.6 is not available at tim&(v;) + u(v1). So another childv of
vy starts at timeS(vq) + p(v1). Since Algorithm LsT SCHEDULINGScheduledv instead
of u, D(w) — u(w) < D(u) — u(u). From Lemma 4.1.11D(v;) < D(u) — u(u) — 1. So
S(v1) + H(v1) = S(u) —1 > D(u) — p(u) —1 > D(vy). Contradiction.

Case 2.2. At least two parents df finish at timeS(vy) + p(v1).
Let vz be another parent afthat finishes at tim&(v1) + p(vy). AssumeD(vq) < D(vz).
Because at most one parentwhas deadlind®(u) — p(u), D(v1) < D(u) — p(u) — 1.
HenceS(v1) 4+ p(v1) = S(u) —1 > D(u) — p(u) — 1> D(vq). Contradiction.

O

This shows that for instances with the least urgent parent property, minimum-tardiness sched-
ules can be constructed in polynomial time.

Theorem 5.2.2. There is an algorithm with an @logn+ €) time complexity that constructs
minimume-tardiness schedules for instan¢€sy, «, Dg), such that the strongly @consistent
instance(G, 4, «0, D) has the least urgent parent property.

Proof. Consider an instancéG,,«,Dg). Let (G,u,,D) be the stronglyDo-consistent in-
stance. AssumgG, |, «, D) has the least urgent parent property. Then everyuasfkG has at
most one parent with deadliu) — p(u). Let Sbe the schedule fdiG, y, «, Dg) constructed by
Algorithm LIST SCHEDULINGuUSsIng Ist-listL of (G, , «, D). We will prove thatSis a minimum-
tardiness schedule f@6, 1, o, Dg). Let £* be the tardiness of a minimum-tardiness schedule for
(G,,0,Dp). DefineDg(u) = Do(u) + ¢* for all tasksu of G. From Observation 4.1.7, there
is an in-time schedule fqiG, p, o0, D). Let (G, 0, D’) be the stronghDg-consistent instance.
From Lemma 4.1.8D'(u) = D(u) + ¢* for all tasksu of G. SoL is an Ist-list of(G, i, «,D’) and
every tasku of G has at most one parent with deadlib&u) — p(u). From Lemma 5.2.1Sis

an in-time schedule faiG, y, «, Dg)). HenceS(u) + p(u) < Dg(u) = Do(u) + ¢* for all tasksu of
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G. So the tardiness @as schedule fofG, |, 0, Dg) is at most’*. SoSis a minimum-tardiness
schedule fofG, 1, «,Dp). From Lemmas 4.2.5 and 4.338¢can be constructed i®(nlogn+e)
time. 0

5.3 List scheduling with the least urgent parent property

In this section, we present an algorithm that constructs schedules with the least urgent parent
property on a restricted number of processors for precedence graphs with unit-length tasks. We
will use an algorithm that is similar to AlgorithmI&T SCHEDULING. Algorithm LEAST UR-
GENT PARENT LIST SCHEDULINGIS presented in Figure 5.3. The starting time of the least
urgent parent of a task is determined after all other parenisare completed. Unfortunately,
for instanceg G, W, m, D) with the least urgent parent property, the least urgent parent of a task
u of G could start before and finish after another pareni of a schedule fof(G, u,m,D) with
the least urgent parent property. Since AlgorithreLSCHEDULINGdoes not schedule a task at
an earlier time than a task that was already scheduled, Algorittis L URGENT PARENT LIST
SCHEDULING will only be used for instancegs, m, D) with the least urgent parent property.

We use the same notation as for Algorithnsi SCHEDULING. t is the current timeN is the
number of tasks scheduled at titnévioreover, an available taskwill be calledlup-availableat
timet if it is available at timg and ifuis the least urgent parent of a tagkhen all other parents
of v finish at or before time.

Algorithm LEAST URGENT PARENT LIST SCHEDULING

Input. An instance G, m, D) with the least urgent parent property and allisbntaining all tasks
of G.

Output. A feasible schedul&for (G,m,D) with the least urgent parent property.

1. t:=0

2. N:=0

3. while there are unscheduled tasks

4. do while there are unscheduled tasks lup-available at tisaed N < m

5. do let u be the unscheduled lup-available task with the smallest index in
6. Su) =t

7. N:=N+1

8. ti=t+1

9. N:=0

Figure 5.3. Algorithm LEAST URGENT PARENT LIST SCHEDULING

Example 5.3.1. Consider the instancéG,2,D) shown in Figure 5.1.(G,2,D) has the least
urgent parent property. Using priority list= (a1, b2,b1,bs, c3,C2,¢1,d1), Algorithm LEAST
URGENT PARENT LIST SCHEDULINGconstructs a schedule f¢6,2,D) as follows. At time 0,

a; is scheduled, becausg is not the least urgent parent of a task with at least two unscheduled
parents.b, andbs become lup-available at time b; does not, because it is the least urgent
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parent ofc; andcy, andb; is another unscheduled parentogfandc,. At time 1, b, is sched-
uled, because it has a smaller index.ithanbs. After b, has been schedulely; is the only
unscheduled parent of andc,. Henceb; becomes lup-available at time 2. Tasksandbs are
scheduled at time 2. Them andcz become lup-available at time 3. Sincgis the least urgent
parent ofdy, it is not lup-available at time 3. Botty andcz are scheduled at time 3. Thereafter,
c1 is scheduled at time 4 ardj at time 5. Hence we obtain the schedule shown in Figure 5.2.
This schedule has the least urgent parent property.

Now we will prove that Algorithm [EAST URGENT PARENT LIST SCHEDULINGCoOrrectly
constructs feasible schedules with the least urgent parent property.

Lemma 5.3.2. Let(G,m,D) be an instance with the least urgent parent property. Let S be the
schedule fo{G,m,D) constructed by Algorithrh EAST URGENT PARENT LIST SCHEDULING
using a list containing all tasks of G. Then S is a feasible schedul@zon, D) with the least
urgent parent property.

Proof. Foralli <n, letu; be thei® task ofG to be assigned a starting time by AlgorithraAsT
URGENT PARENT LIST SCHEDULING ThenS(u;) < --- < S(uy). For alli < n, letG; be the sub-
graph ofG induced by{uy,...,u;} andS the restriction ofSto {us,...,u;}. Then the instances
(Gi,m,D) all have the least urgent parent property. It will be proved by inductior&tiat fea-
sible schedule fofG;, m,D) with the least urgent parent property for gt {1,...,n}. Clearly,

St is a feasible schedule f¢6G;1, m, D) with the least urgent parent property. Assume by induc-
tion thatS is a feasible schedule f@6G;, m,D) with the least urgent parent property. Because
S*1(u) = S(u) for all tasksu of G;, we only need to consider, ; to determine the feasibility of
S+1for (Git+1,m,D). Sinceui1 is scheduled at tims*l(um), at mostm tasks are scheduled
at timeS'”(uiH). Moreover,u;1 is available at time§+1(ui+1), because it is lup-available
at time S'+1(ui+1). So all predecessors of,; are completed at or before tinﬁ*l(ui+1), at
most one parent afi, 1 finishes at timeS*%(ui, 1), and if a parenw of u;, 1 finishes at time
S*(ui11), then no other child of is scheduled at tim8*(u;1). SoS*is a feasible schedule
for (Gi+1,m,D). In addition, ifui1 is the least urgent parent of a tagkhen it is scheduled after
all other parents of, sinceu;; is lup-available at timS*l(uiH). SoS+1is afeasible schedule
for (Gj;1,m,D) with the least urgent parent property. By inducti6hjs a feasible schedule for
(Gn, m, D) with the least urgent parent property. BecaGge= G andS'(u) = Su) for all tasks
uof G, Sis a feasible schedule f¢6, m, D) with the least urgent parent property. |

Algorithm LEAST URGENT PARENT LIST SCHEDULINGcan be implemented as follows.
Consider an instanc@, m,D) with the least urgent parent property. For all tasksf G, let
par(u) be the number of parents ofthat are not completed at or before timand lup(u)
the number of childrew of u, such thatu is the least urgent parent efand the number of
unscheduled parents wiis at least two. Then an available tasks lup-available iflup(u) = 0.

A tasku will be calledlup-readyif par(u) = 0 andlup(u) = 0. Avis the set of lup-ready tasks
that are lup-available at timte andAvl the set of lup-ready tasks that become lup-available at
timet 4+ 1. At time O, the setéw andAvl are emptyN equals zero, and for all tasksof G,
par(u) equals the indegree ofandlup(u) the number of children of u with indegree at least
two, such that is the least urgent parent of
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Algorithm LEAST URGENT PARENT LIST SCHEDULIN&onNsiders timesuntil all tasks have
been assigned a starting time. At each ttntbe unscheduled lup-available task with the smallest
index inL is chosen. Assuma is this task. u is scheduled at timeé and removed fromAv.
Moreover N is increased by one. If a parenof u finishes at timg, then the children of in Av
are no longer lup-available at timebecausel is scheduled at time So the children of are
moved fromAvto Avl.

This is repeated untihtasks are scheduled at tirher there are no unscheduled lup-available
tasks. Thern is increased by one. Because the task&vh becomes available at the new time
t, the tasks ofAvl are moved tv. Then all tasks that finish at the new timare considered.
For each of these tasks par(v) is decreased by one for all childremf u. If par(v) andlup(v)
both equal zero, thewis lup-ready at timé. Thenv is added tdAv or Avl. If exactly one parent
of vfinishes at time, thenv is lup-available at timéand it is added téwv. Otherwise, it is added
to Avl, because it becomes lup-available at timel. In addition, ifpar(v) becomes one, then
lup(w) can be decreased for the least urgent pasesftv. If par(w) andlup(w) both equal zero,
thenwis lup-ready at time. If at most one parent af is scheduled at time— 1, thenw is added
to Av. Otherwise, it is added tAvl, because it becomes lup-available at timel.

The time complexity of Algorithm LST SCHEDULING can be determined as follows. Obvi-
ously, a task is added twv at most twice. Assum@v is represented by a balanced search tree
ordered by non-decreasing indexlin Then adding and removing a taskAw takesO(logn)
time. In addition, the smallest element &% can be found irO(logn) time. Because a task
is added and removed at most twice, these operationgdakiegn) time in total. Avl can be
represented by a queue. Because all tasis/inare moved tdAv simultaneously, adding and
removing tasks i\l takesO(n) time in total.

If a tasku finishes at time, then par(v) is decreased for all childrew of u. This takes
O(|Suce p(u)|) time, soO(n+ e) time in total. If par(v) becomes zero andp(v) equals zero,
thenv is added toAv or Avl depending on the number of parents/dhat finish at time. This
number can be found i®(|Preds o(u)|) time. Hence this require®(n+ e) time in total. If
par(v) becomes one, thelup(w) is decreased by one for the least urgent pavenf v. If
lup(w) andpar(w) both equal zero, them is added tcAvor Avl. Because every task has exactly
one least urgent parent, this requif@® + e) time in total.

If a tasku is scheduled at timeand a parent of u finishes at time, then the lup-available
children ofv are moved fromAv to Avl. Since there is at most one such parenthis takes
O(|Preds,o(u)| + |Suce o(v)|) time apart from the time needed to move the tasks ffonto
Avl. So this take®©(n+ e) time in total.

It is easy to see that assigning a starting time to every tagktakesO(n) time. Moreover,
it is not difficult to see that the length of the schedule constructed by AlgorithAsil URGENT
PARENT LIST SCHEDULINGIs at mosi. Hence we have proved the following result.

Lemma 5.3.3. For all instances(G, m,D) with the least urgent parent property and all lists L
containing all tasks of G, AlgorithhEAST URGENT PARENT LIST SCHEDULIN&ONStructs a
feasible schedule fqiG, m, D) with the least urgent parent property in(@ogn+ e) time using
priority list L.
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Because any consistent instar{& m,D), such thatG is an outforest, has the least urgent
parent property, AlgorithmsisT SCHEDULINGand LEAST URGENT PARENT LIST SCHEDUL
ING construct the same schedule for instan@&sn, D), such thats is an outforest.

Observation 5.3.4. Let G be an outforest. Let L be a list containing all tasks of G. Let S be the
schedule fofG, m,D) constructed by AlgorithrhisT SCHEDULINGUSsing L and Sthe schedule

for (G,m,D) constructed by Algorithnh EAST URGENT PARENT LIST SCHEDULINGUSINg L.
Then $u) = S(u) for all tasks u of G.

The following observation states an important property of schedules constructed by Algo-
rithm LEAST URGENT PARENT LIST SCHEDULING It is similar to Observation 4.3.6 that states
a property of schedules constructed by Algorithis 1. SCHEDULING it states that if a tasl is
lup-available at timé andu is scheduled at a later time, then no processor is idle atttiamel
all tasks scheduled at tintehave a higher priority thaa.

Observation 5.3.5. Let(G,m,D) be an instance with the least urgent parent property. Let S be
the schedule fofG,m,D) constructed by Algorithrh EAST URGENT PARENT LIST SCHEDUE

ING using list L containing all tasks of G. Lei and W be two tasks of G. If®;) < S(u) and

Uy is lup-available at time &1), then y has a smaller index in L thamand there are m tasks

v of G, such that &) = S(uy).

5.4 Inforests

In this section, | will present an approximation algorithm for scheduling inforests. It will be
proved in Section 5.4.1 that AlgorithmEIAST URGENT PARENT LIST SCHEDULINGan be used

to construct minimum-tardiness schedules for inforests with the least urgent parent property. In
Section 5.4.2, this result is used to present a 2-approximation algorithm for scheduling arbitrary
inforests. This algorithm transforms an arbitrary instance into an instance with the least urgent
parent property and uses AlgorithnEAST URGENT PARENT LIST SCHEDULINGO construct a
schedule whose tardiness is at most twice the tardiness of a minimum-tardiness schedule.

5.4.1 Constructing minimum-tardiness schedules

In this section, we will consider the schedules for instances with the least urgent parent property
constructed by Algorithm EAST URGENT PARENT LIST SCHEDULING This algorithm does not
construct minimum-tardiness schedules for all instances with the least urgent parent property.

Example 5.4.1. Consider the instandgs, 2,D) shown in Figure 5.4. This instance has the least
urgent parent property. In any in-time schedule(8r2,D), a; anday are scheduled at time 0.
In fact, there is only one in-time schedule f@,2,D) and it is shown in Figure 5.5. So there is
no in-time schedule fofG, 2, D) with the least urgent parent property.

Example 5.4.1 shows that AlgorithmEIAST URGENT PARENT LIST SCHEDULINGIoes not
construct minimum-tardiness schedules for arbitrary precedence graphs with the least urgent
parent property. However, we will show that it does construct such schedules for inforests with
the least urgent parent property.
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Figure 5.4. An instanceg(G, 2,D) with the least urgent parent property
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Figure 5.5. The only in-time schedule fqiG, 2,D)

Lemma 5.4.2. Let G be an inforest. LefG,m,D) be the strongly lp-consistent instance. If
(G,m,D) has the least urgent parent property and there is an in-time schedul&fam, D), then
any schedule fofG, m, Do) constructed by AlgorithhEAST URGENT PARENT LIST SCHEDUE
ING using an Ist-list of G,m,D) is an in-time schedule fqiG, m, Dy).

Proof. Assume there is an in-time schedule {@,m,Dp) and (G,m,D) has the least urgent
parent property. From Lemma 4.1.9, there is an in-time schedulédan,D). Let She a
schedule foG, m, Dg) constructed by Algorithm EAST URGENT PARENT LIST SCHEDULING
using an Ist-list of G,m, D). It will be proved by contradiction th&is an in-time schedule for
(G,m,Dgp). SupposeSis not an in-time schedule fqiG, m,Dy). From Lemma 4.1.9Sis not
an in-time schedule fofG,m,D). LetS be the earliest time slot that contains a taslsuch
thatD(u) <t. Since there is an in-time schedule {&@, m,D), there are at mosnt tasks with
deadline at most. Let S/_4 be the last time slot befor§ that contains at mosh— 1 tasks
with deadline at modt LetH be the subgraph d® induced by !~} S U {u}. ThenH contains

i=t

m(t —t’) + 1 tasks with deadline at mostDefineQ = {ve S/ | D(v) <t}.

Casel. t=t'.
From Observation 5.3.%5,cannot be lup-available at tinte— 1.

Case 1.1. uis available at tim¢/ — 1.
Thenu is the least urgent parent of a tagksuch that at least two parentswére not
scheduled before tinté— 1. Sinceu is scheduled at timg another pareny of v must be
scheduled at tim€ — 1. Sinceu is the least urgent parent efD(w) < D(u) —1<t—1.
Sow violates its deadline. Contradiction.

Case 1.2. uis not available at tim& — 1.
Q cannot contain a parent af because it would violate its deadline. Because every task
of G has outdegree at most one, two parentsmiust be scheduled at tinve- 2. SinceS
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has the least urgent parent property, the least urgent paramho$t be executed at time
t’— 1. ThenQ contains a parent af. Contradiction.

Case 2. t #t'.
For each task in Q, at most one child of can be scheduled at tile Sincem tasks with
deadline at most are scheduled at tinté, some tasks ofl have no predecessor @ Let
\p be the set containing the tasks3nthat have a parent iQ. DefineV; as the set of tasks
in S/ \ W that are the least urgent parent of some tagkat has another parent @ Let
V =VpUV;. Since every task has at most one chjM, < |Q] < m—1. SoS:\V is not
empty. Letv be a task ir§, \ V. From Observation 5.3.5,is not lup-available at timg — 1.

Case 2.1. vis available at tim¢' — 1.
Thenv is the least urgent parent of a tasksuch that at least two parentswfare not
scheduled before timté— 1. Because is scheduled at timig, another pare/ of w must
be scheduled at timté— 1. Sincev is the least urgent parentwof D(w) < D(v) —1<t.
Sow is a task ofQ andv must be an element &f. Contradiction.

Case 2.2. vis not available at tim& — 1.
No parent ofv is scheduled at tim€ — 1 and no task has more than one child, so two
parents off must be executed at timie— 2. SinceShas the least urgent parent property,
the least urgent parent sfmust be scheduled at tinle— 1. Sov must be an element of
V. Contradiction.

O

Using Lemma 5.4.2, the next theorem proves that minimum-tardiness schedules for inforests
with the least urgent parent property can be constructed in polynomial time.

Theorem 5.4.3. There is an algorithm with an @logn) time complexity that constructs
minimume-tardiness schedules for instan@@gsm, Do), such that G is an inforest and the strongly
Do-consistent instancés, m, D) has the least urgent parent property.

Proof. Consider an instang&s, m,Dg), such thaG is an inforest. LefG, m,D) be the strongly
Do-consistent instance. Assuni®,m,D) has the least urgent parent property. Bdte the
schedule fofG, m,Dg) constructed by Algorithm EAST URGENT PARENT LIST SCHEDULING
using Ist-listL of (G,m,D). We will prove thatSis a minimum-tardiness schedule {6, m,Dy).
Let ¢* be the tardiness of a minimum-tardiness scheduléGom, Do). DefineDg(u) = Do(u) +
¢* for all tasksu of G. From Observation 4.1.7, there is an in-time schedulé¢®m, Dg). Let
(G,m,D’) be the stronglyDy-consistent instance. From Lemma 4.1D8(u) = D(u) + ¢* for all
tasksu of G. SolL is an Ist-list of(G,m,D’) and (G, m,D’) has the least urgent parent property.
From Lemma 5.4.2%5is an in-time schedule f@G, m, D). HenceS(u) 41 < Dg(u) = Do(u) 4 £*
for all tasksu of G. So the tardiness db as schedule fo(G,m,Dy) is at most{*. Hence
Sis a minimum-tardiness schedule f@, m,Dy). From Lemmas 4.1.10 and 5.3.8,can be
constructed irD(nlogn) time. O
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Let G be a chain-like task system. Because a chain-like task system is an outforest, every
stronglyDo-consistent instandgs, m, D) has the least urgent parent property. Since every chain-
like task system is an inforest, a minimum-tardiness schedule for a chain-like task system can be
constructed in polynomial time.

Theorem 5.4.4. There is an algorithm with an @logn) time complexity that constructs
minimume-tardiness schedules for instan@@sm, Dy), such that G is a chain-like task system.

Proof. Obvious from Theorem 5.4.3. |

5.4.2 Using the least urgent parent property for approximation

Algorithm LEAST URGENT PARENT LIST SCHEDULINGcan be used to schedules for all in-
stancegG, m, Do) if the stronglyDg-consistent instandgs, m, D) is transformed into an instance
(G, m,D’) with the least urgent parent property. This is the basis of the approximation algorithm
for scheduling inforests presented in this section. This algorithm works as follows. First the
stronglyDo-consistent instandgs, m, D) is transformed into a consistent instaii@m, D’) with
the least urgent parent property. Second AlgorithemET URGENT PARENT LIST SCHEDULING
constructs a schedule f¢&,m,D’).

The following lemma shows how to construct an instance with the least urgent parent property
from a consistent instan¢&, m, D), such thats is an inforest.

Lemma 5.4.5. Let G be an inforest. LgiG, m,D) be a consistent instance. If(D) > 1 for all
tasks u of G, then there is a consistent instafam, D’) with the least urgent parent property,
such that for all tasks u of G, @) < D’(u) < 2D(u).

Proof. AssumeD(u) > 1 for all tasksu of G. Letu be a task of that is not a source db. Let
v be a parent ofi with maximum deadline among the parentsuofLet D’(v) = 2D(v) and let
D’(w) = 2D(w) — 1 for all other parentsv of u. For all sourcesi of G, let D'(u) = 2D(u) — 1.
ThenD(u) < D’(u) < 2D(u) for all tasksu of G. Letu; andu, be two tasks o6, such that; is
a parent ofi,. Since(G, m, D) is consistentD’(u;) < 2D(u;) < 2D(uz) —2 < D’(uz) — 1. Hence
(G,m,D’) is consistent and has the least urgent parent property. |

From the proof of Lemma 5.4.5, it is easy to see that instances with the least urgent parent
property can be constructed in linear time. Moreover, the same construction can be used for
precedence graphs in which every pair of tasks with a common child have the same children.
However, Lemma 5.4.5 is not true for arbitrary precedence graphs.

@b:1.3@hbx1,3 @bs:1,3

o

®oxull@all @asll

Figure 5.6. A consistent instancgs, m,D)
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Example 5.4.6. Consider the consistent instang&, m,D) shown in Figure 5.6. LetG, m D)

be a consistent instance with the least urgent parent property, such’that> D(u) for all
tasksu of G. by is a child ofa; andas. Since(G,m,D’) has the least urgent parent property,
D'(a1) # D'(a3). Similarly, D'(a1) # D’(a) andD’(ap) # D’(a3). So the deadlineb’(a;),
D’'(az) andD’(ag) are all different. Then for somiec {1,2,3}, D'(a) > 3> 2D(&).

Example 5.4.6 shows that Lemma 5.4.5 is not true for arbitrary precedence graphs. The rea-
son is the fact that a task can be the least urgent parent of more than one task. In fact, there are
consistent instancé§, m, D) with positive deadlines, in which a deadline must be increased by
at Ieast%n —1 to obtain a consistent instan(&, m,D’) with the least urgent parent property,
such thaD’(u) > D(u) for all tasksu of G.

Lemma 5.4.5 can be used to construct schedules for all strdhglyonsistent instances
(G,m,D), such thatG is an inforest. Lemma 4.1.10 shows that the strori2gyconsistent in-
stances for inforests can be constructe®im) time. This allows us to prove the following
result.

Theorem 5.4.7. There is an algorithm with an @logn) time complexity that constructs fea-
sible schedules for instancé&, m Dg), such that G is an inforest, with tardiness at most
20" +max,ey () Do(V), wherel* is the tardiness of a minimum-tardiness schedul¢®m, Do).

Proof. Consider an instand&, m,Dg), such thaG is an inforest. LetG, m,D) be the strongly
Do-consistent instance. For all tagksf G, define

/ _ _ : / _ _ .
Dy(u) = Do(u) Verp/l(g)D(v)+1 and D'(u) D(u) Vg}zg)D(V)+1.

ThenD’(u) > 1 for all tasksu of G and (G, m,D’) is stronglyDg-consistent. Le{G,m,D") be
a consistent instance with the least urgent parent property, sucb'that< D”(u) < 2D'(u)
for all tasksu of G. From the proof of Lemma 5.4.5, we may assume Bigu) = 2D’(u) — 1
or D”(u) = 2D’(u) for all tasksu of G. Let S be the schedule fofG,m,Dg) constructed by
Algorithm LEAST URGENT PARENT LIST SCHEDULINAIsing Ist-listL of (G,m,D”). Let¢* be
the tardiness of a minimum-tardiness schedulg @&m, Dg). We will prove that the tardiness
of Sis at most 2* + max,y ) Do(v). DefineDy(u) = Do(u) + ¢* for all tasksu of G. From
Observation 4.1.7, there is an in-time schedule(fym,D1). Let (G,m,D}) be the strongly
D:-consistent instance. From Lemma 4.1.8, for all task§ G,

Di(u) = D(u)+/¢ = D’(u)+(€*+vgi(ré)D(v)—l).

From Lemma 4.1.9, there is an in-time schedule(fdrm, D). HenceD’ (u) > 1 for all tasksu
of G. For all taska of G, defineD/ (u) as follows.

2Dj(u)—1 if D"(u)=2D'(u)—1

Di(u) = :
2D’ (u) if D”(u) = 2D'(u)
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Becaus€G, m,D}) is consistent, so i€G,m,DY). Itis not difficult to see thatG, m, DY) has the
least urgent parent property. Liebe a task of>. If D”(u) = 2D/(u) — 1, thenD/ (u) = 2D/ (u) —
1=2D'(u) = 142(¢* +minyey () D(v) — 1) = D"(u) + 2(¢* 4+-min,cy(g) D(v) — 1). Otherwise,
D”(u) = 2D'(u) andDf (u) = 2D’ (u) = 2D'(u) + 2(¢* + miney(g) D(v) — 1) = D" (u) +2(¢* +
Minyey gy D(V) —1). HenceDY (u) = D" (u) +2(£* +minyey () D(v) — 1) for all tasksu of G. So
L is an Ist-list of(G,m,D/). From Lemma 5.4.25is an in-time schedule fqiG, m, D). Hence
for all tasksu of G,

Sw+1l < Dju)
= D(u) +2(£* +minyey ey D(v) — 1)
< 2D'(u) +2(¢ + Mingey () D(V) — 1)
= 2(D(u)—m|n\,€\, () )+2( +minveV(G)D(V)_1)
< 2Do(u) 420+,

So the tardiness @&as schedule fofG, i, m, Do) is at most 2* + max,cy () Do(V). From Lem-
mas 4.1.10, 5.4.5 and 5.338¢an be constructed @(nlogn) time. O

Consequently, there is a polynomial-time 2-approximation algorithm for inforests with non-
positive deadlines.

Corollary 5.4.8. There is an algorithm with an @logn) time complexity that constructs feasi-
ble schedules for instancéS, m, Dg) with non-positive deadlines, such that G is an inforest, with
tardiness at mos2¢*, where¢* is the tardiness of a minimum-tardiness scheduld ®m, D).

Proof. Obvious from Theorem 5.4.7. O

5.5 Concluding remarks

In this chapter, it was shown that the least urgent property allows the construction of minimum-
tardiness schedules for a larger class of precedence graphs. Because constructing minimum-
length schedules for arbitrary precedence graphs on an unrestricted number of processors is NP-
hard [47, 77, 80] as well as for inforests anprocessors [61], we have identified two special
cases of NP-hard optimisation problems that are solvable in polynomial time.

Like for the problems presented in Chapter 4, some generalisations are possible. Introducing
release dates makes that the existence of in-time schedules with the least urgent parent property
for inforests with the least urgent parent property is not guaranteed. Hence this approach cannot
be generalised to scheduling with release dates and deadlines.

With {0, 1}-communication delays, the definition of the least urgent parent property needs
to be changed. With the altered least urgent parent property, minimum-tardiness schedules for
arbitrary precedence graphs on an unrestricted number of processors and for infonept®on
cessors can also be constructed in polynomial time.
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6 Pairwise deadlines

In Chapter 4, an algorithm was presented for scheduling precedence-constrained tasks with the
objective of minimising the maximum tardiness. This algorithm constructs minimum-tardiness
schedules for a small class of precedence graphs. This is due to the fact that Algoetom D

LINE MODIFICATION does not use the knowledge that a task cannot be scheduled immediately
after two of its parents. In Chapter 5, the least urgent parent property was introduced. For each
task, this property allows the choice of a parent that has to finish after the other parents. Using
the least urgent parent property, minimum-tardiness schedules can be constructed for a larger
class of precedence graphs.

In this chapter, we will use the knowledge that a task cannot be scheduled after two of its
parents in a different way. Like Bartusch et al. [8] for scheduling without communication delays,
we will compute deadlines for sets of tasks: a deadline will be computed for every pair of tasks
instead of for individual tasks. In order to meet the deadlite;,uy) of a pair(us,uz), ug or
up has to be completed at or before tid¢us,up). Like the individual deadlines, the deadline
of a pair of taskgus, uy) depends on the successorsipfandu,: if u; andu, have sufficiently
many common successors that have to be scheduled beford titmen the deadline dfus, up)
is decreased. Using these pairwise deadlines, minimum-tardiness schedules can be constructed
for interval orders om processors and for precedence graphs of width two on two processors.

6.1 Pairwise consistent deadlines

In this section, we will define pairwise deadlines that are met in all in-time schedules. To define
these pairwise consistent deadlines, we need to look at the structure of in-time schedules. Let
Sbe an in-time schedule fdiG,m,D). Letu be a task ofc. Assumeu hask > 1 successors
vi,...,Vk with deadlines at most. u starts at timeS(u) and finishes at tim&u) + 1. Because
of communication delays, at most one tagkan be scheduled at tin®u) + 1. Hence the last
of thek — 1 remaining successors otannot be completed before tirsgu) + 2+ [k;mﬂ Since
the successors af are completed at or before tintek u must be completed at or before time
d-—1- (";nﬂ This observation led to the notion of consistent deadlines in Chapter 4.

Let u; anduy be two tasks ofs that havek > 1 common successors with deadline at most
d. Because the successorsuafandu, meet their deadlines, the first must be scheduled at or
before timed — (%ﬂ Because of the communication delaysandu, cannot both be executed
immediately before a common successowgfandu,. Sou; or u, must be completed at or
before timed — 1 — (n%] Using this observation, we might be able to determine upper bounds
on the completion time of common predecessaru; anduy in each in-time schedule that are
smaller than the consistent deadlinevafs defined in Chapter 4.

To use this knowledge, we will introduce pairwise deadlines. A pair of (not necessarily dif-
ferent) taskgus, up) will be assigned a deadliri2(u;, uz). We will consider instance&s, m, D),
such thaD : V(G) x V(G) — Z is a function that assigns a deadline to every pair of taska of
We will assume thaD(uy, uz) = D(uy, up ) for all pairs of taskgus, up) of G. In addition, we will
useD(u) instead ofD(u, u) for all tasksu of G.
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Let S be a feasible schedule for an instari€& m,D) with pairwise deadlines. The pair
(uz,u2) meets its deadlinié the completion time ofi; or uy is at mostD(uz, uz). If no deadline
D(u1,up) is violated,Swill be called anin-time scheduléor (G, m,D).

Now we will define pairwise consistent deadlines that are met in all in-time schedules for an
instancg G, m,Dg). To define such deadlines, we need the following definitions(usetiy) be a
pair of tasks ofG and letd be an integeNp (uz, Uz, d) equals the number of common successors
of u; anduy with individual deadline at most. Po(us, up, d) equals mak|U | — 1,0}, whereU is
a maximum-size subset of the common successaus ahdu, with individual deadline at least
d+ 1 and pairwise deadline at maktMore precisely, for all pairs of tasKsi;, uy) of G and alll
integersd,

Np(ug,up,d) = |{ve€ Sucg(u;) NSuceg(up) | D(v) < d}|
and

Po(ug,up,d) = max{0,max{|U|—1|U C Suce(u;) NSuce(uz) A
D(v) > d+1 for all tasksvin U A
D(v1,v2) < d for all tasksvy # voinU}}.

Tp(u1,Uz,d) denotes the total number of common successaug ahdu, that must be completed
at or before timed in an in-time schedule fofG, m,D). For all pairs of task$u;, u,) of G and
all integerdd, define

Tp(ug,u2,d) = Np(ug,up,d)+Po(ug, up,d).

In addition, for all tasksu of G, defineTp(u,d) = Np(u,d) + Po(u,d), whereNp(u,d) =
Np(u,u,d) andPp(u,d) = Py (u,u,d). HenceTp(u,d) = Tp(u, u,d) for all tasksu of G.

Note that for all pairs of task@;, u) of G and all integersl, Np (us, Uz, d) = Np(up, uz,d),
Pb(uy,Uz,d) = Pp(Uz, Uz, d), Np(uy,Uz,d) < Np(ug,d) andPp(ug,uz,d) < Pp(u,d).

@®c:1l5
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Figure 6.1. An instance(G, 2,D) with pairwise deadlines
Example 6.1.1. Consider the instancéG,2,D) shown in Figure 6.1. AssumB(bs,by) =
D(by,bs) = D(by, bs) = 3 andD(uy, uz) = min{D(uz),D(uy)} for all other pairs of task&us, u)
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of G. Sincec; has no successor$p(ci,d) = 0 for all d. Tasksb;, b, andbsz have one suc-
cessor with deadline 5 and no other successor$p 8, 5) = Np(bj,5) = 1 andTp(b;, bj,5) =
Np(bi,bj,5) = 1. a1 has two successors with individual deadline 4 and pairwise deadline 3. So
Tp(a1,4) = Np(a1,4) = 2 andTp(as,3) = Pp(a1,3) = 1. Moreover,Tp(a1,5) = 3. Similarly,
TD(a273) =2, TD(a2,4) =3 andTD(a2,5) =4,

To define pairwise consistent deadlines, we need to look at the structure of in-time schedules.
Consider an instancgs, m,D) with pairwise deadlines. Lat; andu, be two tasks of5. Let
U be a non-empty subset 8lice(u;) N Sucg(uz), such that every task id has a deadline at
leastd + 1 and every pair of different tasks ih has a deadline at modt Then in every in-time
schedule fofG,m,D), at most one task ib) can be scheduled at timeor later. Obviously,
every common successor of andu, with deadline at mostl must be scheduled before time
d. Consequently, in each in-time schedule f@&tm,D), at leasfTp(u, uz,d) = Np(ug, up,d) +
Pp(ug, u2,d) common successors of andu, are completed at or before tinde

Let (G,m,D) be an instance with pairwise deadlines. luebe a task ofG, such that
To(u,d) > 1. In an in-time schedule fafG,m, D), Tp(u,d) successors afi are completed at
or before timed. Because at most one successou@fan be executed immediately afteru
must be completed at or before tirde- 1 — [%(TD(u,d) -1)].

Observation 6.1.2. Let (G,m,D) be an instance with pairwise deadlines. Let S be an in-
time schedule fo(G,m,D). Let u be a task of G. Ifpl{u,d) > 1, then Su)+1<d—-1-—

[4(To(u,d) - 1)].
Consider an instand&, m, D) with pairwise deadlines. Let anduy be two tasks 06, such
thatTp (ug, U, d) > 1. In an in-time schedule fdiG,m, D), Tp(uz,up,d) common successors of

u; andu, are completed at or before tinte The first of these starts at or before tirde-
[%TD(ul,uz,d)]. Becauseu; andu, cannot both be executed immediately before a common

successon); or Uy is completed at or before timoe— 1 — [%TD(ul, uz,d)] .

Observation 6.1.3. Let (G,m,D) be an instance with pairwise deadlines. Let S be an in-time
schedule fo{G,m,D). Let u # up be two tasks of G. Ifg{uy, Uz, d) > 1, thenmin{S(u;) +
1 S(Uz) + l} <d-1- {%TD(UL up, d)—l .

Observations 6.1.2 and 6.1.3 are used to define pairwise consistent instances.

Definition 6.1.4. Let (G,m,D) be an instance with pairwise deadliné&, m,D) is calledpair-
wise consistenf for all tasksu; # up of G and all integersl,

1. D(ug,u2) <min{D(u1),D(u2)};
2. if To(uy,d) > 1, thenD(uy) < d—1— [1(Tp(uz,d) - 1)]; and
3. if To(uy, Up,d) > 1, thenD(uy, up) < d—1— [1Tp(uy, up,d)].

(G,m,D) is calledpairwise Dy-consistentf it is pairwise consistent anB(u) < Do(u) for all
tasksu of G. It is calledpairwise strongly [g-consistentf it is pairwise Dg-consistent and for all
tasksu; # up of G,
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1. D(u;) = Do(u1), or there is an integed, such thatTp(u;,d) > 1 andD(u;) =d—1—
[L(Tp(ur,d) —1)]; and

2. D(u1,u2) = min{D(u1),D(uz)}, or there is an integed, such thafTp(us,up,d) > 1 and
D(Ul, Uz) =d-1- {n%TD(Ula Uz,d)—l .

Example 6.1.5. Consider the instancéG,2,D) shown in Figure 6.1. AssumB(by,by) =
D(b1,bz) = D(by,bg) =3 andD(uy, uz) = min{D(u1),D(uz)} for all other pairs of task&uy, uy)
of G. AssumeDg(u) = 5 for all tasksu of G. It is not difficult to see thatG,2,D) is pair-
wiseDp-consistent(G, 2, D) is also pairwise stronglpo-consistent, becaug¥c) = 5= Dy(c),
D(b)) =4=5-1—[3(Tpo(bi,5) - 1)], D(bj,b}) =3=5-1— [1Tp(bj,b;,5)], D(ay) =2 =
3—1—[3(To(a,3)—1)] andD(ap) = 1 =3—1— [$(Tp(a,3) —1)]. The pairwise strongly
Do-consistent deadlines are smaller than the strobghconsistent deadlines: {{G,2,D’) is
stronglyDo-consistent, thed’(ay) = 2, wheread(ay) = 1.

Example 6.1.5 shows that pairwise consistent deadlines can be smaller than the consistent
deadlines, that were defined in Chapter 4. The following lemma shows that the pairwise consis-
tent deadlines cannot be larger.

Lemma 6.1.6. Let(G,m,D;) be the strongly lp-consistent instance ar(&, m, D») the pairwise
strongly Dy-consistent instance. Therp@) < D1 (u) for all tasks u of G.

Proof. It will be proved by induction thab,(u) < D1(u) for all tasksu of G. Letu be a task ofs.
Assume by induction thdd,(v) < D;(v) for all successors of u. It is proved by contradiction
thatDy(u) < D1(u). Supposéd;(u) < Da(u). ThenD1(u) # Do(u). Hence there is an integer
d, such thafNp, (u,d) > 1 andD1(u) = d —1— [ £(Np, (u,d) — 1)]. SinceD(v) < Dy(v) for all
successors of u, Tp,(u,d) > Np,(u,d) > Np, (u,d). Becaus€G,m,D,) is pairwise consistent,
Do(u) <d—1—[L(Tp,(u,d)—1)] <d—1—[2(Np,(u,d)—1)] = D1(u). Contradiction. By
induction,D»(u) < D1(u) for all tasksu of G. O

It is not difficult to see that the deadlines of a pairwixgconsistent instance do not exceed
those of a pairwise stronglyo-consistent instance.

Observation 6.1.7. Let (G,m,D;) and (G,m,D;) be two pairwise [g-consistent instances. If
(G,m,D1) is pairwise strongly [3-consistent, then fus,uy) > D2(u1,uy) for all pairs of tasks
(ug,up) of G.

This shows that for each instan¢&,m Do), there is exactly one pairwise strongBp-
consistent instanc@s, m, D).

Like for stronglyDg-consistent instances, if all original deadlines are increased by the same
amount, then the strongly pairwifg-consistent deadlines are increased by the same amount.

Lemma 6.1.8. Let(G,m,D) be the pairwise strongly §consistent instance an@, m,D’) the
pairwise strongly [-consistent instance. If there is an integer ¢, such thgtuP= Do(u) + ¢
for all tasks u of G, then Buy, uy) = D(uy, uz) + ¢ for all pairs of taskgus, uy) of G.
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Proof. Assume there is an integersuch thabDg(u) = Do(u) + c for all tasksu of G. Itis proved
by induction thaD’(uz,uz) = D(uy,uz) + c for all pairs of taskgus, up) of G. Letu be a task of
G. Assume by induction thd®'(v1,v2) = D(v1,V2) + c for all successors; andv, of u. It will
be proved by contradiction th&X (u) = D(u) +c. Supposé®’(u) # D(u) +c.

Case 1. D(u) = Do(u).
ThenD'(u) # Dy (u). BecauséG, m,D’) is pairwise stronglyDy-consistent, there is an inte-
gerd, such thaflp (u,d) > 1 andD’(u) =d —1— [ (Tp/(u,d) — 1)]. Becausdp(u,d—c) =
Tor(u,d) > 1 and(G,m,D) is pairwise consistenD(u) <d—c—1—[1(Ty(u,d)—1)] =
D’(u) —c < Dg(u). Contradiction. S®'(u) = D(u) +c.

Case 2. D(u) # Do(u).

Because(G,m,D) is pairwise stronglyDo-consistent, there is an integelr such that
To(u,d) > 1 andD(u) = d —1— [2(Tp(u,d)—1)]. SinceTy(u,d+c) = Tp(u,d) > 1
and (G,m,D’) is pairwise consisten)’(u) < d+c—1- [1(Tp(u,d)—1)] = D(u) +c.
BecauseD'(u) # D(u) + ¢, we obtainD’(u) < D(u) + ¢ # Do(u) + ¢ = Dg(u). Since
(G,m,D’) is pairwise stronglyD,-consistent, there is an integd; such thafly (u,d’) > 1
andD’(u) = d' —1— [ £ (Tp(u,d’) — 1)]. SinceTp(u,d’ —c) = T/ (u,d’) > 1 and(G, m,D)
is pairwise consistenD(u) < d’ —c—1— [1(Ty/(u,d’) - 1)] = D’(u) — ¢ < D(u). Contra-
diction. SoD’(u) = D(u) +c.

In either caseP’(u) = D(u) +c¢. Letu; # up be two tasks ofG. Assume by induction that
D’(u1) = D(u1) + ¢, D'(uz) = D(u2) + c andD’(v1,v2) = D(v1,V2) + ¢ for all successors; and
vz of u; anduy. It will be proved by contradiction thad’(u;,up) = D(ug,Uz) + €. Suppose
D’(ug,Uz) # D(ug,Up) +C.

Case 1. D(uz,uz) = min{D(u1),D(uz)}.
ThenD’(ug, uz) # min{D’(u1),D’(up) }. Since(G,m,D’) is pairwise stronghDg-consistent,
there is an integed, such thaflp (uy, Up,d) > 1 andD’(u) =d — 1— [ 1 Ty (ug, up,d)]. Be-
causelp (ug, Uz, d —c) = Tpr(ug, Uz, d) > 1 and(G, m, D) is pairwise consistenD (u,uy) <
d—c—1- [1Tp(us,up,d)| = D'(ug,up) — ¢ < min{D(u1),D(up)}. Contradiction. So
D’(ug,uz) = D(ug, up) +cC.

Case 2. D(uz,uz) # min{D(uz1),D(uz)}.

Because (G,m,D) is pairwise strongly Do-consistent, there is an integet, such
that Tp(ug, Up,d) > 1 and D(ug,Up) = d — 1 — [2Tp(ug,up,d)].  Since Tp (U, p,d +
¢) = Tp(ug,up,d) > 1 and (G,m,D’) is pairwise consistentD’(uj,uz) < d+c—1—
[n%TD(ul,uz,d)] = D(ug,Up) +c. SinceD’(uy,Up) # D(ug,Up) + ¢, we obtainD’(ug, Up) <
D(ug,uz) +c¢# min{D’(uy),D’'(uz) }. BecauséG, m,D’) is pairwise stronghDg-consistent,
there is an integed’, such thafTpy (uy, up,d’) > 1 andD’(u) = d’' — 1 — [ Tp (ug, up,d') |
SinceTp (U, Uz, d’ —¢) = Tpr (ug, Uz, d’) > 1 and(G, m, D) is pairwise consistenB(uz, Uz) <
d—-c—1- [%TD/(ul,uz,d’ﬂ = D/(uz,Up) — ¢ < D(ug, up). Contradiction. S®’(ug, up) =
D(ug,up) +c.

In either caseP’(uz,u) = D(up, U2) +c¢. By induction,D’(uz,uz) = D(up, uz) + ¢ for all pairs
of tasks(uy, uy) of G. O
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Like for strongly Dg-consistent instances, an in-time schedule(f&ym, D) is also an in-
time schedule for the pairwise stronddg-consistent instancgs, m, D).

Lemma 6.1.9. Let(G,m,D) be the pairwise strongly §consistent instance. Let S be a feasible
schedule fofG,m,Dg). Then S is an in-time schedule @, m, Do) if and only if S is an in-time
schedule fo(G,m,D).

Proof. BecauseD(u) < Dp(u) for all tasksu of G, every in-time schedule fofG,m,D) is

an in-time schedule fofG,m,Dg). AssumeS is an in-time schedule fofG,m,Dy). Define
Ds(ug, u2) = min{S(u1) + 1,S(uz) + 1} for all tasksu; andu, of G. We will prove by contradic-
tion that(G, m, Ds) is pairwise consistent. Suppo&, m, Ds) is not pairwise consistent.

Case 1. Tpg(u,d) > 1 andDs(u) > d —1— [ (Tpg(u,d) — 1)] for someu andd.
Every pair of successors ofmeets its deadline. Sthg(u,d) successors ai finish at or
before timed. Henceu must be completed at or before tide- 1 — [n%(TDS(u,d) —-1)]. So

Ds(u) <d—1- [1(Tpg(u,d) — 1)]. Contradiction.

Case 2. TDS(Ula Up,d) > 1 andDs(u,up) >d—1— {n%TDS(Ul, Uz,d)-‘ for someu; # u; andd.
Since every pair of successorswafandu, meets its deadlin€lpg(us, uz,d) common suc-
cessors ofl; andu; finish at or before timel. Thenu; or u, must be completed at or before
timed — 1— [2Tpg(uz, Uz, d)]. SoDs(uy, Up) < d—1—[2Tp (u1,up,d)]. Contradiction.

So (G,m,Dg) is pairwise consistent. Sincgis an in-time schedule fofG, m,Dg), Ds(u) <
Do(u) for all tasksu of G. Hence(G, m,Ds) is pairwiseDg-consistent. From Observation 6.1.7,
D(uy,uz) > Dg(us, up) for all pairs of taskgus, up) of G. Since every deadlin@s(uz, up) is met,
Sis an in-time schedule fdiG,m, D). O

In the remainder of this section, we prove some properties of pairwise stioggignsistent
instances. These will be used to compute such instances.

Lemma 6.1.10. Let (G,m,D) be the pairwise strongly gconsistent instance. Let @and w
be two tasks of G. If Quy,u2) < min{D(u;),D(uz)}, then there are integers d and k, such that
Tp(ug,Up,d) =km+1and D(uj,up) =d —2—k.

Proof. AssumeD(uz,u2) < min{D(u1),D(uz)}. Because(G,m,D) is pairwise stronglyDo-
consistent, there is an integel, such thatTp(ui,up,d) > 1 and D(uj,up) =d —1—
[n%TD(ul,u&d)]. There is an integek > 0, such thatk+ 1)m > Tp(ug, Uz, d) > km+ 1. Then
D(ug,u2) =d —2—k. Supposdp(ug,uz,d) > km+2. ThenTp(ug,d) > Tp(ug, Uz, d) > km+2
andD(u;) <d—2—k=D(uz,uy). Contradiction. Henc@&p (uz, uz,d) = km+ 1. O

The next lemma shows that the deadline of a pair of tasks differs at most one from the mini-
mum of the individual deadlines. This will allow us to redeffguy, uy, d).

Lemma 6.1.11. Let(G, m,D) be the pairwise strongly Pconsistent instance. Let and w be
two tasks of G. If Quy, up) < min{D(u1),D(uz)}, then D(u1) = D(uz) = D(u1,u2) +1and there
is an integer d, such thaipTuy,d) = Tp(up,d) = Tp(ug, Up,d) = (d—D(uz) —1)m+1.
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Proof. AssumeD(us,uz) < min{D(u1),D(u2)}. From Lemma 6.1.10, there are integé@ndk,
such thaflp (uz, uz,d) = km+1 andD(ug, up) = d —2—k. Supposép(u;,d) # Tp(ug, Uz, d) for
some € {1,2}. ThenTp(ui,d) > Tp(u1,Uz,d) +1 > km+ 2. Since(G, m,D) is pairwise consis-
tent,D(u;) <d—2—k=D(u,u). Contradiction. SAp(uy,d) = Tp(up,d) = Tp(ug,Up,d) =
km+ 1. BecausgG,m,D) is pairwise consistenD(u;) <d—1—k=D(uz,up) +1. Since
D(uz,u2) < D(ui), D(u1) = D(u2) =D(ug,u2) +1. SoD(u;) =d —1—kandk=d—D(u;) — 1.
As aresult;Tp(u,d) = Tp(uz,d) = Tp(ug,Uz,d) = (d —D(uz) — I)m+1. O

Lemma 6.1.11 shows that for the computation of the pairwise strdglonsistent instance
(G,m,D), we only need to consider pairs of tagks, u;) of G, such thaD(u;) = D(uz) and
To(u1,d) = Tp(uz,d) = Tp(u1,Uz,d) = (d — D(u;) — 1)m+1 for some integed. The deadlines
of the other pairs can be set to the minimum of the individual deadlines. Moreover, it shows that
Po(u1,uz,d) can be redefined. For all pairs of tagks, u) of G and all integers,

Po(ug,uz,d) = max{0,max{|U|—1|U C Suce(u;) NSuce(uz) A
D(v) =d+1 for all tasksvin U A
D(v1,v2) = d for all tasksvy # vo inU }}.

The result proved in the following lemma will be used for the computation of pairwise
stronglyDgp-consistent instances for interval-ordered tasks.

Lemma 6.1.12. Let(G, m,D) be the pairwise strongly Pconsistent instance. Lef and w be
two tasks of G, such that(Dy,uz) < min{D(u1),D(uz)}. If there is a task w£ uy, up of G, such
that Sucg (u1) NSuce(uz) C Suces(v) and D(v) = D(uy), then Dug, v) = D(ug,v) = D(ug, Up).

Proof. Assume there is a task# uj, up of G, such thaSucg (u;) NSuceg(uz) C Sucg(v) and
D(v) = D(u;). From Lemma 6.1.11D(u;) = D(up) = D(ug,up) + 1 andTp(ug, Uz, d) = (d —
D(u1) — 1)m+ 1 for some integed. Leti € {1,2}. SinceSuce(u1) NSuce(u2) C Suce(v),
To(uj,v,d) > Tp(uz,Up,d). SoTp(uj,v,d) > (d—D(u;) —1)m+ 1. Becaus¢G, m D) is pairwise
consistentD(u;,v) <d—1—(d—D(u;) —1+1) =D(u;) —1=D(v) — 1. From Lemma 6.1.11,
D(u1,V) = D(uz,v) = D(v) — 1= D(ug, up). O

6.2 Computing pairwise consistent deadlines

In this section, two algorithms are presented that compute pairwise strDgglgnsistent in-
stances. The first is presented in Section 6.2.1. The time complexity of this algorithm is ex-
ponential in the width of the precedence graphs; it constructs pairwise strbpglgnsistent
instances for precedence graphs of bounded width in polynomial time. The second algorithm is
presented in Section 6.2.2. It constructs pairwise strobgkgonsistent instances for interval
orders in polynomial time.

6.2.1 Arbitrary precedence graphs

Algorithm PAIRWISE DEADLINE MODIFICATION shown in Figure 6.2 is used to construct pair-
wise stronglyDo-consistent instancg$, m, D) for instancegG, m,Dy). Its structure is similar
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to that of Algorithm DEADLINE MODIFICATION. In each step, it computes the pairwise strongly
Do-consistent deadline of a taslof G, such that the pairwise strongly consistent deadlines of all
successors and all pairs of successons lvdive been computed before, and for all pairs of tasks
(u,v), such that the pairwise strongly consistent deadline les been computed in an earlier
step.

The following notation is used_y denotes the set of tasks Gfwith pairwise stronglyDo-
consistent deadling. Since a pairwise stronglpo-consistent deadline of a task can be smaller
than its original deadline, we have to consider $gtssuch thatd is smaller than the smallest
original deadline. Since a pairwise strondiy-consistent deadline differs at mast- 1 from
the corresponding original deadline, we need &gfssuch that mig.y gy Do(u) —n+1<d <
max,ev(c) Do(U). The setd 4 are used to compute the pairwise strorBlyconsistent deadlines
of pairs of tasks: from Lemma 6.1.11, we only need to compute pairwise deadlines for pairs of
tasks with equal pairwise strongp-consistent deadlines, the other pairwise deadlines can be
set to the minimum of the individual deadlines.

Algorithm PAIRWISE DEADLINE MODIFICATION
Input. An instanceG, m, Dp) with individual deadlines.
Output. The pairwise strongl{Dg-consistent instancgs, m, D).

1. Dmax:= MaXey(c) Do(u)

2. Dmin:= minueV(G) Do(u)

3. ford:=Dmjn—NnN+1t0 Dmax

4. dolgq:=o2

5. for all tasksu of G

6. do D(u) := Do(u)

7. U:=V(G)

8. whileU #£g

9. do letu be a sink ofG[U]

10. for d := Dmjin to Dmax

11. doif Tp(u,d) > 1

12. then D(u) :=min{D(u),d - 1— [ 1 (Tp(u,d) - 1)] }
13. LD(u) = LD(u) U {U}

14. forveV(G)\U

15. do D(u,Vv) :=min{D(u),D(v)}

16. D(v,u) := min{D(u),D(v)}

17. forve I—D(u) \ {u}

18. do for d := Dpin to Dmax

19. do if Tp(u,v,d) > 1

20. then D(u,v) := min{D(u,v),d —1— [2Tp(u,v,d)|}
21. D(v,u) :=D(u,v)

22. Dmin := min{Dmin,min\,Ev(G)\U D(u,v)}
23. U:=U\{u}

Figure 6.2. Algorithm PAIRWISE DEADLINE MODIFICATION
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Example 6.2.1. Let G be the precedence graph shown in Figure 6.1. Assbgia) = 5 for

all tasksu of G. In the beginning, all deadlines are set to 5. AlgorithmR®¥WISE DEADLINE
MODIFICATION computes deadlind3(us, u) as follows. First; is considered. Sinog has no
successord)(c;) = Do(c1) = 5. Nextbs, by andbs are considered. These have one successor
with deadline 5 and no pairs of successors with deadline D(®0 is setto 5-1— [g} =4,
Moreover,b; andb; have a common successor with deadline 5.08,b;) is set to 5-1—

[%] = 3. a1 has two successors with deadline 4. These successors have pairwise deadline 3.
Moreover,a; has three successors with deadline at most D@g) = min{5—1— [%] A4—-1—
[3].3-1-[9]} = 2. Similarly, To(az,3) = 2, Tp(a,4) = 3 andTp(az,5) = 4. Consequently,
D(ap) = min{5—-1-[3],4-1-[%],3—1-[1]|} = 1. The resulting instancéG,2,D) is
pairwise stronglyDo-consistent.

Now we will prove that Algorithm RIRWISE DEADLINE MODIFICATION correctly con-
structs pairwise stronglpo-consistent instances.

Lemma 6.2.2. Let(G,m,Dg) be an instance with individual deadlines. (& m,D) be the in-
stance constructed by AlgorithRAIRWISE DEADLINE MODIFICATION for instance(G, m, Dy).
Then(G,m,D) is pairwise strongly [3-consistent.

Proof. Algorithm PAIRWISE DEADLINE MODIFICATION executes steps. In each step, it com-
putes a deadline for a task @fand for pairs containing this task. Assume the tasks are chosen in
the ordemy, ..., un. For alli < nand all pairs of taskévi,v2) of G, let Dj(v1,V2) be the deadline
of (v1, Vo) after sted and letG; the subgraph of induced by{u,...,u;}. For alli < n, the sets
Lq; coincide with the setky after sted andDpnj @ndDmaxi With the values 0Dmin andDmax
after steq.

We will prove by induction that all instancé&;, m, D;) are pairwise strongl{po-consistent.
It is easy to see thdiGi,m D1) is pairwise stronglyDo-consistent. Assume by induction that
(Gi,m,Dy) is pairwise stronglyDo-consistent. For ali1, j» <i, Di+1(uj;,uj,) = Di(uj;, Uj,).
So(Gj,m,Dj;1) is pairwise stronglyDo-consistent. Now consides 1. Clearly,Djy1(Uit1) <
Do(ui+1). It is not difficult to see that iffp, , (Ui11,d) > 1, thenDminj < d < Dmaxj. Then
Dis1(Uiz1) <d—1—[Z(Tp,,,(Ui+1,d) —1)]. Moreover, ifDi;1(Ui+1) # Do(Ui11), then there
is an integerd, such thatDminj < d < Dmaxi, Tp,4(Ui+1,d) > 1 andDj1(Uip1) =d —1—
[%(TDi+l(ui+17d) - 1)]

Consider a paifui,1,U;), such thatj <i. It is not difficult to see thaDj1(Uiy1,uj) <
min{Dj; 1(Ui+1),Di+1(uj)}. AssumeDi 1(Uiy1) = Diya(uj) andTp,,,(Uiy1,uj,d) > 1. Then
Dmini < d < Dmaxi- SO Dit1(Ui+1,Uj) < d—1— [2Tp,; (Uis1,uj,d)]. If Disa(Uig,uj) #
min{Dj;1(Ui+1),Dit1(uj)}, then there must be an integdy such thatDmini < d < Dmaxi,
TDi+l(ui+1,uj) > 1 and Di+1(ui+1,uj) =d-1- {%TDiH(UHl,Uj,d)—I. Hence(Gj;+1,m,Dj;1)
is pairwise stronglyDo-consistent. By induction(Gn, m,Dy) is pairwise strongl\Do-consistent.
BecauseGp = G and D(ug,u2) = D(ug, up) for all pairs of taskgug, up) of G, (G,m,D) is
pairwise stronglyDo-consistent. |

The following results will be used to determine the time complexity of AlgoritmRR1SE
DEADLINE MODIFICATION.
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Lemma 6.2.3. Let G be a precedence graph of width w. & m,D) be a pairwise consistent
instance. Then G contains at most w tasks u, such tkat & d for all integers d.

Proof. Itis proved by contradiction th& contains at most tasks with deadlind. Supposés
contains at least+ 1 tasks with deadlind. Letuy, ..., Uy 1 bew+ 1 tasks ofG with deadlined.
SinceG has widthw, we may assume that <g up. ThenNp(ug, D(up)) > 1. BecauséG, m,D)
is pairwise consistenB(u;) < D(uz) —1=d— 1. Contradiction. S@ contains at mosw tasks
with deadlined. |

Corollary 6.2.4. Let G be a precedence graph of width w. [&m, D) be a pairwise consistent
instance. Then for all taskg @nd k of G and all integers d, f(uy, uz,d) <w—1.

Proof. Let u; andu, be two tasks of5. LetU be a maximum-size subset of Suce;(uz) N
Suce(u), such thaD(v) > d+ 1 for all tasksv in U” andD(v1,v») < d for all tasksv; # v,
inU’. ThenPp(ug,uz,d) = max{0,|U|—1}. From Lemma 6.1.11D(v) = d + 1 for all tasksv
inU. Lemma 6.2.3 shows th& contains at mostv tasks with deadline + 1. HencelU| < w.
ConsequentlyPo (ug, up,d) <w-—1. O

The time complexity of Algorithm RRWISE DEADLINE MODIFICATION can be determined
as follows. Consider an instan¢®, m,Dg), such thaG is a precedence graph of width Be-
cause there is a minimum-tardiness schedulé@®m, Dg) of length at mosh, we may assume
that the smallest and largest deadline differ at nmosiMoreover, no deadline is decreased by
more tham. Hence the initialisation part of AlgorithmaPRWISE DEADLINE MODIFICATION
takesO(n?) time.

To obtain a better time complexity, we will consider two cases depending on wigtiser
known to be a transitive closure or not. If it is unknown whet@ds a transitive closure, then
Algorithm PAIRWISE DEADLINE MODIFICATION should first compute the transitive clos@e
of G. This takeD(n+e+ne™) time [37]. In the transitive reduction @, every task has at most
w children. Hencee~ < wn. SoG" can be computed i®(wr?) time. In the remainder of the
analysis of the time complexity @, we will assume thab is a transitive closure.

For each pair of task&us, uy) of G, Algorithm PAIRWISE DEADLINE MODIFICATION has to
computeTp(ug, Uy, d) for all integersd, such thaDpi, < d < Dpax. Since there are schedules
for (G,m,D) of length at mosh, we may assume th&@max— Dmin < n. Np(uz,up,d) can be
computed by determining the number of common successars afidu, with deadlined and
storing these numbers in an array. By applying a prefix sum operation on this array, we obtain
the values\p (uyp, u,d) for all d in O(n) time.

ComputingPp (uz, up,d) is more complicated. In order to compiReg(us,up,d), we need to
consider every subset bfi; 1 NSuce(ur) NSuce(uz). Lemma 6.2.3 shows that 1 contains
at mostw tasks. So at most"2subsetd/ of Lq;1 N Suce(u1) NSuce(uy) have to be taken into
account. For each sub3&tO(|V|?) time is used to check if all pairs of different tasksvohave
deadlined. So the value®s(uy,uy,d) can be computed in a total G(w?2¥n) time.

Tp(u1,d) must be computed for every task and everyd. For each taski;, Tp(uz,uz,d)
needs to be computed for at mest- 1 pairs(up, u) and all integersl. So the computation of
Tp(ug, up,d) takesO(w2"n?) time in total.
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Assigning a deadlin®(uy, uy) to a pair of taskgus,u,) of G takes constant time for each
pair (ug, up). Hence this take®(n?) time in total. The other operations take linear time. Conse-
quently, the pairwise strongo-consistent instance is constructedifw32%n?) time.

Lemma 6.2.5. For all instances(G, m,Dy), such that G is a precedence graph of width w, Al-
gorithm PAIRWISE DEADLINE MODIFICATION constructs the pairwise stronglypEconsistent
instance(G, m, D) in O(w*2"n?) time.

Lemma 6.2.5 shows that @& is a precedence graph of bounded width, then the pairwise
Do-consistent instanc@s, m, D) can be constructed in polynomial time.

Lemma 6.2.6. For all instances(G,m,Dyp), such that G is a precedence graph of constant
width w, AlgorithmPAIRWISE DEADLINE MODIFICATION constructs the pairwise stronglyob
consistent instancgG, m, D) in O(?) time.

6.2.2 Interval-ordered tasks

Lemma 6.2.6 shows that for precedence graphs of constant wjdtie pairwise strongl{o-
consistent deadlines can be computed in polynomial time. Interval orders can have an arbitrarily
large width, so Algorithm RIRWISE DEADLINE MODIFICATION cannot be used to compute pair-
wise consistent deadlines for interval orders in polynomial time. However, using the properties
of interval orders presented in Section 2.5.2, it is possible to construct the pairwise sfbgngly
consistent deadlines in polynomial time. The algorithm computing such deadlines is presented
in this section.

Consider an instancgs, m, Do) with individual deadlines. The main difficulty in the com-
putation of pairwise stronglidp-consistent deadlines is the computatiorPgfus,up,d). For
arbitrary instance$G, m, D), computingPp(us, Uz, d) corresponds to finding a maximum-size
cligue in an undirected graph containing the common successafra; andu, with deadline
d + 1 and edges between the common success@sdv, with pairwise deadling. Since find-
ing a maximume-size clique in an arbitrary undirected graph is a strongly NP-hard optimisation
problem [33], this definition does not give an efficient way of compuBis@;, uz,d). For inter-
val orders, an alternative definition Bf (uz, up,d) can be derived. This definition will allow us
to computePp (ug, Uz, d) in linear time.

Let (G,m,D) be an instance with pairwise deadlines. For all tagksf G, define

dmin(u1) = min{D(uz,uz) | up € V(G) AD(uz) =D(u1)}.
From Lemma 6.1.11, ifG, m, D) is pairwise stronglyDo-consistent, theB(u;) — 1 < dmin(ug) <
D(u,) for all tasksu; of G. Moreover,dmin(u1) = D(u;) — 1 if and only if there is a tasi of G,
such thaD(uy) = D(uz) andD(uy,u2) = D(up) — 1.

Lemma 6.2.7. Let G be an interval order. L€iG, m, D) be the pairwise strongly §consistent
instance. Let uand w be two tasks of G. Then for all integers d,

Po(ug,uz,d) = maxX0,|{ve Suce(u;) NSuce(up) | D(V) =d+ 1A dmin(v) =d} | —1}.

71



Proof. DefineU = {v € Suce(u1) NSuce(uz) | D(V) = d+ LA dmin(v) = d}. LetUp be a
maximume-size subsét’ of Suce(u;) NSuce(uz), such that each task ' has deadling + 1
and each pair of different tasks W' has deadlinedl. From Lemma 6.1.11P(uz,up,d) =
max{0, |Up| — 1}.

Case 1. Po(up,up,d) =0.
Then for every pair of common success@rs, Vo) of u; anduy, if D(vi) = D(v2) =d +1,
thenD(v1,v2) = d+1. Sodmin(v) = d+ 1 for all common successovsof u; anduy, such
thatD(v) =d+1. HenceJ = @ andPp(uz, Uz, d) = max{0,|U| — 1}.

Case 2. Ph(up,up,d) > 1.
ThenUp contains at least two tasks. So for every tashkn Up, there is a task,, such that
D(vi,v2) =d andD(v2) =d+ 1. SoUp is a subset o). SinceG is an interval order, we
may assume thddp = {vi,..., %}, such thatSucg(v1) C --- C Suce(v). We will prove
by contradiction tha) = Up. Suppos&J is not a subset dfip. Letv be a task irJ \ Up.

Case 2.1. Suceg(v1) C Sucg(v).
Then Suce(v1) N Suces(vi) C Suce(v) for all i € {2,...,k}. From Lemma 6.1.12,
D(vi,v) = d for everyi € {1,...,k}. SinceUp is of maximum sizey must be an ele-
ment ofUp. Contradiction.

Case 2.2. Sucg(v) C Suce(vi).
visataskirl, sothere is a task, such thaD(w) = d+1 andD(v,w) =d. If w= vy, then
D(vi,v) = d. Otherwise,Suce(v) N Suce(w) C Suce(vi) and from Lemma 6.1.12,
D(vi,v) = d. In either caseP(vi,v) = d. HenceSucg(vi) NSuce(v) C Suce (Vi)
forallie {2,...,k}. From Lemma 6.1.12D(v;,v) = d for all i < k. BecauséJp is of
maximum sizey must be a task iblp. Contradiction.

SoU = Up andPp(up, up,d) = max{o, |U| — 1}.
O

This result allows the computation of pairwise stronBly-consistent instances without ac-

tually computing a deadline for each pair of tasks. The following lemma shows how the pairwise

deadlines can be computed from the individual deadlines.

Lemma 6.2.8. Let G be an interval order. L&iG, m,D) be the pairwise strongly gconsistent
instance. Let yand w be two different tasks of G. If([D;) = D(uz) and for some integer d,
Tp(ug,d) = Tp(up,d) = (d — D(up) — 1)m+1, then Dlug,up) = D(ug) — 1.

Proof. AssumeD(u;) = D(uz) andTp(uy,d) = Tp(uz,d) = (d—D(u;) — 1)m+ 1 for some inte-
gerd. SinceGis an interval orderSucg;(u;) C Suce(up) or Suce(uz) C Sucg(uz). In either
caseTp(ug,Up,d) = (d—D(u1) —1)m+1. Becaus€G, m, D) is pairwise consistenB(uj, uy) <
d—1—(d—D(u1)—1+41)=D(u;) — 1. From Lemma 6.1.1D(uz,u2) = D(uy) — 1. O
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These results will be used in the algorithm that computes pairwise stréngbpnsistent
instancegG, m,D), such thaG is an interval order. The algorithm starts by setfing) = Do(u)
for all tasksu of G. Next it executes steps. In each step of the algorithm, the pairwise strongly
Do-consistent consistent deadline of a task®fs computed. Algorithm NTERVAL ORDER
DEADLINE MODIFICATION is shown in Figure 6.3.

The following notation is used.q denotes the set of taskof G with pairwise stronglyDo-
consistent deadling. Lq ¢ is the subset df4 containing the tasks, such thaflp(u,d’) = (d’ —
d—1)m+1. Like for Algorithm FAIRWISE DEADLINE MODIFICATION, we need to consider sets
Lg andLg g, such that migy(g) Do(u) —n+1 < d,d” < maxey (g Do(u). U denotes the set
of tasks that have not been considerdgdax denotes the maximumh, such thaty,(u) has not
been computed for the taskof G with pairwise stronglyDo-consistent deadling.

Algorithm INTERVAL ORDER DEADLINE MODIFICATION does not compute deadlines for
the pairs of tasks oB. These can be computed using the $gtg. Using Lemma 6.2.8, every
pair of different tasks of a séfy v gets deadlin@l — 1. The deadlines of the remaining pairs
equal the minimum of the individual deadlines.

Example 6.2.9. Let G be the precedence graph shown in Figure 6.1. NoteGhatan inter-
val order. Assumég(u) =5 for all tasksu of G. Algorithm INTERVAL ORDER DEADLINE
MODIFICATION computes the pairwise strondgDp-consistent instance as follows. First, a dead-
line is computed forc;. Sincec; has no successors, its deadline is not decreaseid. added
to Ls and the deadlineB(b;) are set to 4. Wheib, by and bz are considered, their dead-
lines are not decreased, becaagés their only successor. These tasks are added o since
Tp(bi,5) = 1. The deadlines cdy anda, are set to 3. In the next steg, is considered. First
dmin(by) is set to 3, becaude, 5 containgy, by andbs. SinceTp(ag,4) = 2, the pairwise strongly
Do-consistent deadline @ equals 2. Finally, AlgorithmNTERVAL ORDER DEADLINE MOD-
IFICATION considersay. Tp(ap,3) = 2, soD(ay) is set to 1. The resulting instance is pairwise
stronglyDo-consistent.

Now we will prove that Algorithm NTERVAL ORDER DEADLINE MODIFICATION correctly
computes pairwise stronglp-consistent instances for interval orders.

Lemma 6.2.10. Let G be an interval order. L&iG, m,Dy) be an instance with individual dead-
lines. Let(G,m,D) be the instance constructed by AlgorithMTERVAL ORDER DEADLINE
MODIFICATION for instance(G, m,Dg). Then(G, m, D) is pairwise strongly [3-consistent.

Proof. Algorithm INTERVAL ORDER DEADLINE MODIFICATION executes steps. In each step,

it computes a deadline of a task @f Assume the tasks are chosen in the order..,u,. For

all i < nand all tasksu of G, let D;(u) be the deadline ofi after step. The setsi_‘d and Lij,d/

coincide with the setsy andLy ¢ after steg for alli < n. For alli <n, letG; be the subgraph of

Ginduced by{us,...,u;}. Then all subgraph; are interval orders. We will consider instances

(Gi,m,Dy), whereDj(vy, v2) is defined as follows. W1 andv; are two different elements dlt,‘d,

for some integerd andd’, thenDj(v1,v2) = d — 1. OtherwiseP;(v1,V2) = min{D;(v1), Di(vz)}.
We will prove by induction that the instanc@S;, m, D;) are pairwise stronglfpo-consistent.

It is not difficult to see thatGi,m, D) is pairwise strongl\Dp-consistent. Assume by induction
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Algorithm INTERVAL ORDER DEADLINE MODIFICATION

Input. An instance/G, m, Dp) with individual deadlines, such thétis an interval order.
Output. The pairwise strongl{Dg-consistent instancgs, m, D).

1. Dmin:= minueV(G) Do(u)

2. Dmax:= max,y ) Do(u)

3. ford:=Dmjn—NnN+1t0 Dmax
4. doly:=o

5. for d’ ;= d + 1 to Dmax
6 do Ldtd’ =g

7.  dmax:= Dmax

8. for all tasksu of G

9. do D(u) := Do(u)

10. U :=V(G)

11. whileU # @

12.  doletube a sink ofG[U] with maximumD(u)

13. for d := dmax downto D(u) + 1

14. doforve Ly

15. do dmin(v) :=d

16. for d’ :=d+1to Dmax

17. do if “—d,d" >2

18. then forve Ly g

19. do dmin(v) :=d—1
20. dmax := D(u)

21. for d := D(u) to Dmax

22. do if To(u,d) > 1

23. then D(u) :=min{D(u),d - 1— [ X (Tp(u,d) - 1)] }
24, LD(u) = LD(u) u{u}

25. for d ;= D(u) + 1 to Dmax

26. doif Tp(u,d) = (d—D(u) —1)m+1
27. then LD(u),d = I—D(u),d u{u}

28. for all parentss of u

29. do D(v) := min{D(v),D(u) — 1}

30. U:=U\{u}

Figure 6.3. Algorithm INTERVAL ORDER DEADLINE MODIFICATION

(Gi,m,Dy) is pairwise stronglyDo-consistent. Now considéGi 1,m Diy1). It is easy to see
thatD; 1 (uj,,uj,) = Di(uj,,uj,) andTp,_, (uj,, Uj,,d) = Tp;(uj,,uj,,d) for all ji, j> <iand all
integersd. So(G;j, m,Dj1) is pairwise strongDo-consistent.

Consideru;1. Clearly, Di(Ui+1) = Do(ui+1) or Di(Ui+1) = Dj(v) — 1 for some childv of
Uir1. From Lemma 6.2.8dmin(Vv) is computed correctly for all successar®f ui 1. These
values are used to compug, 1(Ui;1). Suppose€lp,,,(Ui;1,d) > 1 for some integed. Then
d > Dj(ui+1), becaus®;j(v) > Dj(ui+1) for all successors of uj1. HenceDj1(uj11) <d—
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1-[ (o, (Uiy1,d) — 1)|. Itis not difficult to verify thatDi, 1(ui11) = Do(ti+1), or there is an
integerd, such thaflp, , (Ui+1,d) > 1 andDj 1 (Ui+1) =d—1— [&(Tp,,, (Uif1,d) — 1)].

Let (v1,Vv2) be a pair of tasks dB; 1. AssumeD;1(v1,V2) 7 min{Dj11(v1),Di+1(v2)}. Then
Di;1(v1,V2) = Di;y1(v1) — 1= Dj;1(v2) — 1 and for some integet, Tp, ,, (v1,d) = Tp,,, (V2,d) =
(d=Diy1(v1) —1)m+1. ThenTp,,(v1,v2,d) = (d — Di;1(v1) — 1)m+1 andDj1(vi,V2) =
Dis1(vi)—1=d—1-[1Tp,,,(v1,v2,d)]. SO(Gi;1,m, Dj41) is pairwise stronglpo-consistent.
By induction, (Gn,m,Dy,) is pairwise stronglyDp-consistent. Sinc&, = G andDp(up,u) =
D(uy, up) for all pairs of taskgui, up) of G, (G, m,D) is pairwise stronghDp-consistent. O

Now we will determine the time complexity of AlgorithnNTERVAL ORDER DEADLINE
MODIFICATION. Let G be an interval order. Consider an instar{@&m,Dg) with individual
deadlines. Like in the analysis of the time complexity of AlgorithmARvISE DEADLINE MOD-
IFICATION, we start by computing the transitive closureé3if it is unknown whetheG is a tran-
sitive closure. From Lemma 2.5.6;" can be constructed @(n+e") time. In the remainder of
the analysis of the time complexity of AlgorithmiTERVAL ORDER DEADLINE MODIFICATION,
we will assume tha® is a transitive closure.

The fact thaiG is a transitive closure allows us to compdg(u,d) in an efficient way. For
each integed, determine the number of successersf u, such thatD(v) = d. By applying
a prefix sum operation on these numbers, we filadu,d) for all integersd. Since we may
assume that the largest deadline differs at mdsvtm the smallest deadline, the traversal of the
successors af and the prefix sum operation both ta®én) time. Py (u,d) can also be computed
using a traversal of the successorsuof From Lemma 6.2.7P(u,d) equals the number of
successors of u, such thaD(v) = d + 1 anddmin(v) = d. HenceTp(u,d) can be computed in
O(n) time for all integersd simultaneously.

Because we may assume that the smallest and largest deadlines differ af theshitiali-
sation part of Algorithm NTERVAL ORDER DEADLINE MODIFICATION requiresO(n?) time.

The first for-loop (Lines 13-19) of AlgorithhNITERVAL ORDER DEADLINE MODIFICATION
is executed for evergt in Dyin—Nn+1,...,Dmax For every taskin Ly ¢, dmin(V) is determined.
This takedO(|Lg4|) time for eachd’. SoO(|L4|n) time is used to compuiy, (V) for every tasky
in Lg. Since every task is added to exactly onelsgtAlgorithm INTERVAL ORDER DEADLINE
MODIFICATION uses;O(z('?fgmm_n+1 |Lg|n) = O(n?) time for executing its first for-loop.

The main loop (Lines 11-30) is executed for each taskG. In every iteration, the values
To(u,d) are computed in linear time. Hence the pairwise strofighconsistent deadline afis
computed inO(n) time. Addingu to a setLq takes constant time and addingo setsl 4 ¢ takes
O(n) time. The deadline of a parent ofis decreased if it is hot smaller than the deadline.of
This requires constant time for every parenup§oO(|Preds o(u)|) time in total. Consequently,
O(n?) time is used in the main loop.

Hence we have proved the following result.

Lemma 6.2.11. For all instancegG, m, Do), such that G is an interval order, AlgorithhnTER-
VAL ORDER DEADLINE MODIFICATION constructs the pairwise stronglypEconsistent instance
(G,m,D) in O(n?) time.
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6.3 Constructing minimum-tardiness schedules

For pairwise strongl{Do-consistent instancé&, m, D), Algorithm LIST SCHEDULINGis used to
construct schedules for instand€ m, Dy). It will be proved that these schedules are minimum-
tardiness schedules@® is a precedence graph of width two or an interval order. The pairwise
deadlines are not used by AlgorithmdT SCHEDULING, these deadlines were only used to
construct a better priority list than the Ist-lists based on the strdbgigonsistent deadlines.

6.3.1 Precedence graphs of width two

In this section, it is proved that minimum-tardiness schedules for insté@c@sDy), such that

G is a precedence graph of width two, can be constructed in polynomial time. Such schedules
are constructed by AlgorithmIET SCHEDULING using an Ist-list of the pairwise strongBo-
consistent instances, 2,D).

Lemma 6.3.1. Let G be a precedence graph of width two. [Bt2,D) be the pairwise strongly
Do-consistent instance. Let S be a schedule (f8r2,Dg) constructed by AlgorithnLisT
SCHEDULING using an Ist-list of(G,2,D). If there is an in-time schedule f¢6, 2, Dg), then
S is an in-time schedule fé6, 2, Dy).

Proof. Assume there is an in-time schedule {@&,2,Dg). From Lemma 6.1.9, there is an in-
time schedule fofG,2,D). It will be proved by contradiction th&is an in-time schedule for
(G,2,D). Supposeis not an in-time schedule f@65,2,D). Assumes is the first time slot that
contains a tasl; of G in a pair of taskgus, uz) whose deadlin®(uz, up) is violated. Then both
uz andug finish after timeD(uz,uz). HenceD(up,up) <t. From Lemma 6.1.11, there are two
possibilities: mifD(up),D(uz)} <t, or D(us,uz) =t andD(u;) = D(up) =t +1.

Case 1. min{D(u;),D(w)} <t.

Let u be one of the taskg anduy, such thaD(u) <t. Because there is an in-time schedule
for (G,2,D), there are at mostt2asks with deadline at most Hence there is a time slot
beforeS that contains at most one task with deadline at mmokett’ — 1 be the latest time
before timet at which at most one task with deadline at moist scheduled. LelH; be the
subgraph ofG induced byU};tl,S U{ve Ui>tS | v<e u}uU{u}. ThenH; contains at least
2(t —t') + 1 tasks with deadline at mastFrom Observation 4.3.6, no taskidf is available

at timet’ — 1. Hence every task dfi; has a predecessor that is scheduled at time2 or

t'—1.

Case 1.1. Every task oH; has a predecessor&_;.
DefineQ={ve S/_; | D(v) <t}. ThenQ contains exactly one task. Because of
communication delays, at most one successav isfscheduled at timg. Hencet =t’.
As aresultyis a predecessor of SoTp(w,t) > 1. Since(G, 2, D) is pairwise consistent,
D(w) <t—1=t'—1. Hencewis not completed at or before tini&w). Contradiction.

Case 1.2. Not every task oH; has a predecessor$_;.
Letv be a source ofl; without a predecessor &_;. Then a predecesses of v starts
at timet’ — 2.
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Case 1.2.1. S/_, contains exactly one task with a successdijn
v is not available at tim¢’ — 1. Because at most one predecessov & sched-
uled at timet’ — 2, a childx # v of wy starts at tima’ — 1. Since Algorithm LsT
SCHEDULING scheduledk instead ofv, D(x) < D(v). Because every task ¢f; has
a predecessor that is scheduled at time2 ort’ — 1 andx is a child ofwy, all tasks
of Hy are successors af;. HenceTp(wy,t) > 2(t —t') +2. Becausd€G,2,D) is
pairwise consistenb(w;) <t'—2. Sow; is not completed at or before tini(w; ).
Contradiction.

Case 1.2.2. S/_, contains two tasks with a successoHn
Letws be the other task executed at tithe- 2. Thenws, is a predecessor of a task of
H;. Becausés is a precedence graph of width two ang andw, are incomparable
tasks, every task dfi; is a successor af; or wo.

Case 1.2.2.1. Every task oH; is a successor af; andws,.
Thenw; andw; have at least@ —t’) + 1 common successors with deadline at
mostt. HenceNp (wy,wa,t) > 2(t —t') +1. Since(G, 2,D) is pairwise consistent,
D(w1,Wp) <t —2. So(wz,w») violates its deadlin®(w,w,). Contradiction.

Case 1.2.2.2. Hj contains a task dbuce(w) \ Suce (ws).
Let x; be such a task. Assumeg is a source ofH;. X; is not available at time
t' — 1. Becausew, is not a parent ok, a childy; of w; must be executed at
timet’ — 1. Sincey; is scheduled by Algorithm IsT SCHEDULINGIinstead ofxy,
D(y1) < D(x1) <t. We will prove by contradiction that all successorsagfin
Hj are successors of;. SupposeH; contains a task; that is a successor of,
but not a successor of;. ThenS:_; contains a chilg;» of w,, such thaD(y,) <
D(x2) <t. Attimet’— 1, at most one task with deadline at mbss executed.
Soy: = y» andw; = w,. Contradiction. So every task bk, is a successor afy.
Hencew; has at least@ —t’) + 2 successors with deadline at masTherefore
To(wy,t) > 2(t—t') + 2. Becaus€G, 2,D) is pairwise consistenp(wy) <t’—2.
Sow; does not finish at or before timiz(w; ). Contradiction.

Case 1.2.2.3. Hj contains a task dbuce;(w.) \ Suce (wy).
Similar to Case 1.2.2.2.

Case 2. D(u;) =D(up) =t+1andD(ug,up) =t.
In any in-time schedule faiG, 2,D), u; or uy is completed at or before tinte Since there is
an in-time schedule fofG, 2,D), there are at most2- 1 tasks with deadline at most Let
S/_1 be the last time slot before time sl§tthat contains at most one task with deadline at
mostt. Let H, be the subgraph @& induced byU};tl, SU{u, i} u{ve Ui>tS | V=g W}
ThenH, contains at least(2—t’) + 2 tasks. From Observation 4.3.6, no tasklgfs available
at timet’ — 1. Hence every task ¢i, has a predecessor that starts at time2 ort’ — 1.

Case 2.1. Every task oH, has a predecessor&_;.
DefineQ={ve S _;1 | D(v) <t}. Clearly,Q contains exactly one task. Letbe this
task. SinceH; contains at least(2—t’) tasks with deadline at mostNp (w,t) > 2(t —t').
Furthermorey; andu, are successors of. HencePp(w,t) = 1. Consequentiyip (w,t) >

77



2(t—t’)+1. Since(G,2,D) is pairwise consisten(w) <t’— 1. Sow does not finish
at or before timéd(w). Contradiction.

Case 2.2. Not every task oH; has a predecessor$_;.
Letv be a task oH, that has no predecessor$n_,. Assumev is a source oH,. Then
a parentv; of vis executed at timg — 2.

Case 2.2.1. S/_, contains exactly one task with a successdiin

vis not available at tim& — 1. Since only one parent &fis scheduled attimg—2, a

child x # v of wy is executed at timg — 1. Because all tasks éf, have a predecessor

scheduled at tim€ — 2 ort’ — 1 andx is a parent ofvy, wy is a predecessor of all

tasks ofH,. Because is scheduled by Algorithm IST SCHEDULING instead ofv,

D(x) < D(v). Sow; has at least @ —t) + 1 successors with deadline at most

Sinceu; andu, are successors @f;, Py(w,t) = 1. Hencelp(wy,t) > 2(t —t') + 2.

Becaus€G, 2,D) is pairwise consistenD(w;) <t’'— 2. Sow; is not completed at or

before timeD(wy). Contradiction.

Case 2.2.2. S/_, contains two tasks with a successoHs

Let w, be the other task scheduled at tithe 2. Becausés is a precedence graph of

width two andw; andw, are incomparable tasks, every taskbfis a successor of

W1 OI Wo.

Case 2.2.2.1. Every task oH; is a successor af; andws,.
Clearly,Np (wy,wo,t) > 2(t —t') andPp (wy, W, t) > 1. Becaus€G,2,D) is pair-
wise consistentD(wy,w;) <t' —2. So(wz,w,) violates its deadlin® (wy, wz).
Contradiction.

Case 2.2.2.2. Hy contains a task dbuce(wy) \ Suce(w,).
Letx; be such a task. We may assume thds a source oH. x; is not available
at timet’ — 1. Because only one parentxafis scheduled at timg — 2, a childy;
of wy is executed at time — 1. y; is scheduled instead gf, soD(y1) < D(xq) <t.
Sincey; is executed at tim& — 1, y; is not a child ofw,. We will prove by
contradiction that all successorswj in Hp are successors @f;. SupposeHs
contains a task, that is a successor o¥,, but not a successor of;. In that
case,S 1 contains a childy, of wy, such thatD(y2) < D(x2) <t. y» is not a
successor ofvy, soy; # y». Consequently, two tasks with deadline at ntoste
executed at tim& — 1. Contradiction. Therefore every taskif is a successor of
wy. HenceTp (wy,t) = Np(wy,t) + Po(wy,t) > 2(t —t') + 2. Becaus€G,2,D) is
pairwise consisterid(w;) <t’—2. Sow; does not finish at or before tinf&(w; ).
Contradiction.

Case 2.2.2.3. Hy contains a task dduce;(wy) \ Suces(wy).
Similar to Case 2.2.2.2.

O

This allows us to prove that minimum-tardiness schedules for precedence graphs of width
two on two processors can be constructed in polynomial time.
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Theorem 6.3.2. There is an algorithm with an @?) time complexity that constructs minimum-
tardiness schedules for instandg, 2, D), such that G is a precedence graph of width two.

Proof. Consider an instancgs,2,Dp), such thatG is a precedence graph of width two. Let
(G,2,D) be the pairwise stronglipo-consistent instance. L&be the schedule fofG, 2, Dy)
constructed by Algorithm IST SCHEDULING using Ist-listL of (G,2,D). We will prove thatS

is @ minimum-tardiness schedule @, 2,Dg). Let ¢* be the tardiness of a minimum-tardiness
schedule fofG, 2, Dg). DefineDg(u) = Do(u) + ¢* for all tasksu of G. From Observation 4.1.7,
there is an in-time schedule f¢&,2,Dy). Let (G,2,D’) be the pairwise stronglpy-consistent
instance. From Lemma 6.1.8/ (uy,Uz) = D(ug,Up) + £* for all pairs of taskq(us,u;) of G.
Sol is an Ist-list of (G,2,D’). From Lemma 6.3.15is an in-time schedule fofG,m,Dp).
HenceS(u) + 1 < Dg(u) = Do(u) + ¢* for all tasksu of G. So the tardiness d® as schedule
for (G,2,Dp) is at most¢*. HenceSis a minimum-tardiness schedule f@®,2,Dg). From
Lemmas 6.2.6 and 4.3.8can be constructed id(n?) time. O

6.3.2 Interval-ordered tasks

For scheduling interval orders onprocessors, we will use a special kind of Ist-list. Gebe an
interval order andG, m, D) the pairwise stronglfDo-consistent instance. Lef andu, be two
tasks ofG. Thenu; has a higher priority thany if

either D(u;) < D(up), or D(u;) = D(up) and Sucg(ui1) 2 Suceg(uy).

=

A list of tasks ordered by non-increasing priority will be calledraerval order Ist-listor ilst-list
of (G,m,D). Using an ilst-list, Algorithm ILST SCHEDULING constructs in-time schedules, if
such schedules exist. The proof is similar to that of Lemma 6.3.1.

Lemma 6.3.3. Let G be an interval order. L&iG, m, D) be the pairwise strongly gconsistent
instance. Let S be a schedule {@, m,Dy) constructed by AlgorithrhIST SCHEDULINGUSINg
anilst-list of(G,m,D). If there is an in-time schedule f6&, m, Do), then S is an in-time schedule
for (G,m,Do).

Proof. Assume there is an in-time schedule {&,m,Dg). From Lemma 6.1.9, there is an in-
time schedule fo{G,m,D). AssumeS is constructed by Algorithm IST SCHEDULING us-
ing ilst-list L of (G,m,D). It will be proved by contradiction th& is an in-time schedule for
(G,m,Dg). SupposeSis not an in-time schedule fqiG, m,Dg). From Lemma 6.1.9Sis not
an in-time schedule fofG,m,D). AssumeS is the first time slot that contains a task of G

in a pair of taskquy, uz) whose deadlin®(uy, up) is violated. Theru; andu, are completed
after timeD(ug,uy). HenceD(up,up) <t. From Lemma 6.1.11, there are two possibilities:
min{D(u;),D(uz)} <t, orD(u,uz) =t andD(u;) = D(up) =t +1.

Case 1. min{D(u1),D(w)} <t.
Let u be one of the tasks; andu,, such thaD(u) <t. Because there is an in-time schedule
for (G,m,D), G contains at mognt tasks with deadline at mostSo there is a time sI&:_,
before§ that contains less than tasks with deadline at most AssumeS:_ is the latest
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time slot before§ that contains at mosh— 1 tasks with deadline at most Let H; be the
subgraph ofG induced byU};tl/S U{ve Ui>tS | v<e u}U{u}. ThenH; contains at least
m(t —t’) + 1 tasks with deadline at mastFrom Observation 4.3.6, no taskléf is available
at timet’ — 1. Hence every task ¢i; has a predecessor&_>,US/_;.

Case 1.1. Every task oH; has a predecessor&_;.
DefineQ = {ve S/_1 | D(v) <t}. Since each task df; has a deadline at mosteach
task ofH; has a predecessor ®. From Proposition 2.5.5Q contains a taskv that
is a predecessor of all tasks ldf. Because of the communication delays, at most one
successor ofv can be scheduled at timtle Consequentlyt =t’ andu is a successor of
w. SoTp(w,t) > 1. Since(G, m,D) is pairwise consistenD(w) <t—1=t'—1. Sowis
not completed at or before tinig(w). Contradiction.

Case 1.2. Not every task oH; has a predecessor&_;.
DefineW = {ve S,_,US/_1 | vis a parent of a source &f;}. From Proposition 2.5.5,
W contains a task; that is a predecessor of every taskhf DefineW' =W\ {w; }.

Case 1.2.1. Every task ofH; has a predecessor\if’.
From Proposition 2.5.8)' contains a taskv, that is a predecessor of every task of
Hi. Thenw; andw, have at leasin(t —t’) + 1 common successors with deadline at
mostt. SoTp(wy,wz,t) > m(t —t') + 1. Becaus€G,m,D) is pairwise consistent,
D(wy,wz) <t'—2. So(wy, W) violates deadlin®(w;,w). Contradiction.

Case 1.2.2. Not every task ofH; has a predecessor\if’.
Letv be a task ofH; that does not have a predecessdMn Assumev is a source of
Hi. W contains a parent of butW’ does not. Sav; is a parent of.. Not every task of
H; has a predecessor$_, sow; is scheduled at timg — 2. Becaus&,_, does not
contain another parent gfandv is not available at tim€ — 1, S_; contains a chilc
of wy. Algorithm LiST scHEDULINGscheduled at timet’ — 1 instead of/, sox has
asmallest index i thanv. ThusD(x) < D(v). As a resultTp(ws,t) > m(t—t’) +2.
Since (G, m,D) is pairwise consistenD(w;) <t’'—2. Sow; does not finish at or
before timeD(wy). Contradiction.

Case 2. D(ug,uz) =t andD(u;) = D(up) =t +1.

Let u be the task fronu; anduy with the smallest priority (highest index It). LetU be the
set of tasks ofc whose priority is at least as high as thatwfLet v; andv, be two tasks
inU. Clearly,D(v1),D(v2) <D(u) =t+1. If D(v1) <t or D(v2) <t, thenD(vi,v2) <'t.
AssumeD(vi) = D(v2) =t+ 1. Since the priority of;, andv, is at least as high as that of
u, Sucg(u) = Suce(u1) NSuce(uz) C Suce(vi), Suce(v2). By applying Lemma 6.1.12
twice, we obtairD(v1,v,) =t. In an in-time schedule fofG,m,D), at most one task it

is scheduled after time— 1. Since there is an in-time schedule {@,m,D), U contains at
mostmt+ 1 tasks. Therefore there is a time skt ; beforeS that contains at mosh— 1
tasks with priority at least as high asAssumeS._1 is the last such time slot. L&t, be the
subgraph ofs induced byUf;tl, SU{u, i} U{ve US| V=< uz2}. ThenH; contains at
leastm(t —t’) + 2 tasks andD(x1, %) <t for all tasksx; # x, of Hp. From Observation 4.3.6,
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no task ofH; is available at tim¢’ — 1. Hence every task dfl, has a predecessor that is
scheduled at tim& — 2 ort’ — 1.

Case 2.1. Every task oH, has a predecessor$_;.
DefineQ = {ve S _; | D(v) <t}. Since all tasks oH, have a deadline at mos#- 1
and(G,m,D) is pairwise consistent, each taskHf is a successor of a task@ From
Proposition 2.5.5Q contains a taskv that is a predecessor of all taskstéf. Due to
communication delays, at most one successown gn be scheduled at tinte As a
resultt =t’. ThenTp(w,t+1) > 2. Since(G,m,D) is pairwise consistenD(w) <t —1.
Sow finishes after timé(w). Contradiction.

Case 2.2. Not every task oH, has a predecessor$_;.
DefineW = {ve §_,US/_; | vis a parent of a task df,}. From Proposition 2.5.3V
contains a task that is a predecessor of every taskf Obviously,w; is scheduled
attimet’ — 2. LetW' =W\ {wy }.

Case 2.2.1. Every task ofH, has a predecessor\it’.
From Proposition 2.5.8) contains a taskv, that is a predecessor of all tasks of
H,. Then every task oH, is a common successor off andw,. LetV; = {ve
V(Hz) | D(v) <t} andVo = {ve V(Hy) | D(v) =t+1}. Itis easy to see that
Np (w1, Wa,t) > |Vi]. All tasks of H, have a priority at least as high as From
Lemma 6.1.12Pp (w1, Wa,t) > [Vo| — 1. SoTp(wi,Wp,t) > m(t —t') + 1. Because
(G,m,D) is pairwise consistenD(wy,w,) <t' —2. So deadlind(wy, W) is vio-
lated. Contradiction.

Case 2.2.2. Not every task ofH, has a predecessor\if'.
Letv be a task oH; that has no predecessoWi. Assumev is a source ofH,. W’
does not contain a parentaf Sov is a child ofw;. Sincev is not available at time
t'— 1 andS/_, contains only one parent ® S,_; contains another child of w;.
Algorithm LIST SCHEDULINGscheduled instead ofv, sox has a smaller index ib
thanv. Sox has a priority at least as high as Using Lemma 6.1.12D(x1, %) <'t
for all tasksxy # %2 in V(Hz) U {x}. LetVi ={veV(Hz)U{x}|D(v) <t} and
Vo ={veV(Hz)U{x} |D(v) =t+1}. ThenNp(wy,t) > |Vi| andPp(w1,t) > [Vo| — 1.
ThereforeTp (wy,t) > m(t —t') + 2. Since(G,m,D) is pairwise consistenD(w;) <
t' — 2. Hencew; is not completed at or before tinf& w; ). Contradiction.

O

Lemma 6.3.3 shows that minimum-tardiness schedules for interval-ordered tasks can be con-
structed in polynomial time.

Theorem 6.3.4. There is an algorithm with an @) time complexity that constructs minimum-
tardiness schedules for instandgs, 2, Dg), such that G is an interval order.

Proof. Consider an instancés,2,Dyp), such thatG is an interval order. LefG,m,D) be the
pairwise stronglyDp-consistent instance. L&be the schedule fofG, m,Dg) constructed by
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Algorithm LIST SCHEDULINGUSINg ilst-listL of (G, m,D). We will prove thatSis a minimum-
tardiness schedule f¢G, m,Dp). Let ¢* be the tardiness of a minimum-tardiness schedule for
(G,m,Dy). DefineDg(u) = Dg(u) + ¢* for all tasksu of G. From Observation 4.1.7, there is an
in-time schedule fofG,m,Dg). Let (G,m,D’) be the pairwise stronglp-consistent instance.
From Lemma 6.1.8D'(uz,uz) = D(ug,Up) + ¢* for all pairs of tasks(uj,up) of G. Sol is

an ilst-list of (G,m,D’). From Lemma 6.3.3Sis an in-time schedule fo{G,m,D;). Hence
S(u)+1 < Dg(u) = Do(u) +£* for all tasksu of G. So the tardiness &as schedule faiG, m, Do)

is at most¢*. HenceSis a minimum-tardiness schedule f@, m,Dg). From Lemmas 6.2.11
and 4.3.4Scan be constructed i@(n?) time. O

6.4 Concluding remarks

In this chapter, it was shown that minimum-tardiness schedules for precedence graphs of width
two on two processors and for interval ordersnoprocessors can be constructed in polynomial
time. For scheduling with release dates and deadlines, a similar approach as the one presented
in this chapter can be applied: minimum-tardiness schedules for interval orders and precedence
graphs of width two with release dates and deadlines can be constructed in polynomial time [90].
In addition, minimum-tardiness schedule for precedence graphs of width two with arbitrary task
lengths can also be constructed in polynomial time using an approach similar to that presented
in this chapter [91]. This approach is not suited for interval orders with arbitrary task lengths,
because if in an interval order, every task is replaced by a chain of tasks, then the resulting
precedence graph is not an interval order.

Like for outforests, a similar approach as the one presented in this chapter can be used to
construct minimum-tardiness schedules for precedence graphs of width two on two processors
subject to{0, 1}-communication delays in polynomial time. This is not true for interval orders:
using a generalisation of a proof of Hoogeveen et al. [47]a8ter [81] proved that constructing
minimum-length schedules for interval ordersraprocessors subject {®, 1}-communication
delays is an NP-hard optimisation problem. Hence it is unlikely that minimum-tardiness sched-
ules for interval orders om processors subject t0, 1}-communication delays can be con-
structed in polynomial time.
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7 Dynamic programming

In this chapter, we will present two dynamic-programming algorithms for scheduling arbitrary
precedence graphs with non-uniform deadlines subject to unit-length communication delays. Us-
ing these algorithms, we can construct minimum-tardiness schedules for arbitrary precedence
graphs. In Section 7.1, an algorithm of Fulkerson [29] is presented that decomposes prece-
dence graphs of widtlv into w disjoint chains. Such chain decompositions are used by the
dynamic-programming algorithms that are presented in Sections 7.2 and 7.4. The first algorithm
is presented in Section 7.2. This dynamic-programming algorithm constructs minimum-tardiness
schedules for instancé&, m,Do). Itis similar to the dynamic-programming algorithm presented

by Mohring [67] that constructs minimum-length communication-free schedule for precedence
graphs with unit-length tasks and the dynamic-programming algorithm of Veltman [87] that con-
structs minimum-length schedules for precedence graphs with unit-length tasks subject to unit-
length communication delays. Like the algorithms ofiMing [67] and Veltman [87], the time
complexity of the algorithm presented in Section 7.2 is exponential in the width of the prece-
dence graph. Hence it constructs minimum-tardiness schedules in polynomial time for prece-
dence graphs of bounded width.

Sections 7.3 and 7.4 are concerned with scheduling precedence graphs with arbitrary task
lengths. In Section 7.3, it is proved that constructing a minimum-tardiness schedule for a prece-
dence graph of widtlw on less thanw processors is an NP-hard optimisation problem. In
Section 7.4, a second dynamic-programming algorithm is presented. This algorithm constructs
minimum-tardiness schedules for precedence graphs of width at leastv processors. Like
the algorithm presented in Section 7.2, the time complexity of this algorithm is exponential is
the width of the precedence graph, but it constructs minimum-tardiness schedules for precedence
graphs of bounded width.

7.1 Decompositions into chains

In this section, we will show how a precedence graph can be decomposed into disjoint chains.
Every precedence graph can be viewed as a collection of disjoint chains with precedence con-
straints between tasks in different chains: every precedence graphtagtks can be considered

as the disjoint union afi chains consisting of one task. Obviously, precedence graphs that do not
consist ofn pairwise incomparable tasks can be decomposed into a smaller number of chains.

Definition 7.1.1. Let G be a precedence graph. ohain decompositioof G is a collection of
disjoint chain<y,...,Cy in G, such thaC; U---UC, =V (G).

LetCy,...,Ck be a chain decomposition of a precedence g@pfhenC;,...,Cx will be
called a chain decomposition Gfinto k chains.

Example 7.1.2. Let G be the precedence graph shown in Figure 7.1. Itis easy to se® ihat
precedence graph of width two. Figure 7.1 shows a chain decomposit®intd two disjoint
chainsCy = {¢1,1,€1,2,€1,3,C14,C15,C16} andCy = {C21,C22,C2.3,C24}. A chain decomposition
of G into two disjoint chains is not unique: other chain decompositiors obnsisting of two
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Figure 7.1. A chain decomposition of a precedence graph of width two into two chains

chains are formed by the chai@$= {c11,¢1,2,C22,C23,C24} andC;, = {c21,€13,€14,C15,C1 6}
and by the chain€! = {€11,€12,C13,C22,C23,C24} andC; = {C21,C14,C15,C16}-

Because a precedence graph of widthontainsw pairwise incomparable tasks and incom-
parable tasks cannot be elements of one chain, a precedence graph of wédtthot be decom-
posed into less thaw chains. Dilworth [22] proved that a precedence graph of widttan be
viewed as the disjoint union of exactlychains.

Theorem 7.1.3. Let G be a precedence graph of width w. There is a chain decomposition of G
into w disjoint chains.

A chain decomposition of a precedence graph of widtinto w chains will be used by the
dynamic-programming algorithms presented in Sections 7.2 and 7.4. Dilworth’s proof [22] of
Theorem 7.1.3 is not constructive, but the proof by Fulkerson [29] is. In his proof of Dilworth’s
decomposition theorem, Fulkerson presented Algorittii@ DECOMPOSITIONShown in Fig-
ure 7.2 and proved that it constructs chain decompositions of precedence graphs o¥ imtdth
w chains.

Algorithm CHAIN DECOMPOSITIONWOrks as follows. For a precedence graphit con-
structs an undirected bipartite graghthat contains an edge for every pair of comparable tasks
of G and computes a maximum matchingtdf This matching is used to construct a chain de-
composition ofG into disjoint chains.

The time complexity of Algorithm @AIN DECOMPOSITIONCan be determined as follows.
Let G be a precedence graph of width To obtain a better time complexity, we will distinguish
two cases depending on whett@iis known to be a transitive closure or not. If it is unknown
whetherG is a transitive closure, then AlgorithmHaIN DECOMPOSITIONShould start by com-
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Algorithm CHAIN DECOMPOSITION
Input. A precedence grapB of width w, such tha¥ (G) = {uy,...,un}.
Output. A chain decompositiofy,...,Cy of G.
V= {al,...,an}u{bl,...,bn}
E:={(a,bj) |u <c uj}
letH be the undirected bipartite grapi, E)
letM be a maximum matching ¢
E' = {(Ui,Uj) | (aivbj) €M}
letG’ be the precedence grap¥(G),E’)
i=1
while G’ contains unmarked tasks
do letu be an unmarked source &f
10. Ci :={veV(G)|thereis a path fromtovin G’}
11. mark all tasks T
12. i=i+1

CoNoO~LODE

Figure 7.2. Algorithm CHAIN DECOMPOSITION

puting the transitive closure @&. This takeD(n+e+ne") time [37]. In the transitive reduction
of a precedence graph of widtly every task has at most children. Hencee~ < wn. So the
transitive closure ofs can be constructed i@(wr?) time. In the remainder of the analysis of the
time complexity of Algorithm GIAIN DECOMPOSITION, we will assume thaG is a transitive
closure.

SinceG is a transitive closure, the bipartite graghcan be constructed i®(n+e") time.
Sincee™ < n?, H is constructed iD(wr?) time. Hopcroft and Karp [48] presented an algorithm
that computes a maximum matching@{e,/n) time for bipartite graphs witln nodes ance
edges. Alt et al. [5] presented an algorithm whose time complexity is better for dense graphs:
their algorithm constructs a maximum matching of a bipartite gragb(im /ne/logn) time.

The number of edges ¢f equalse™. As a result, a maximum matching of H can be con-
structed inO(min{e™+/n,ny/net /logn}) time. Because the maximum matchingtbtontains
at mostn edges, constructing the precedence gr@ptakesO(n) time. G’ is a chain-like task
system. Since every task & has indegree and outdegree at most one, constructing the chains
in G from G’ takesO(n) time. So constructing a chain decompositiorGahto w disjoint chains

takesO(wr? +min{e"/n,n,/ne" /logn}) time.

Lemma 7.1.4. For all precedence graphs G of width w, Algorith@HAIN DECOMPOSITION
constructs a chain decomposition of G into w chains w6 + min{e*,/n,n,/ne"/logn})
time.

Let G be a precedence graph of width SinceG can be decomposed imtodisjoint chains,
G contains a chain that contains at ledstasks. The transitive closure of a chain containing at

least{! tasks contains at Ieag% arcs. SaG* contains at Ieaél% arcs. Ifwis a constant,

thenG™ contains®(n?) arcs. Hence using the algorithm of Alt et al. [5], a chain decomposition
of a precedence graph of bounded width can be construct®¢thi,/n/logn) time.
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Lemma 7.1.5. For all precedence graphs G of constant width w, AlgoritGrRnIN DECOMPO-
SITION constructs a chain decomposition of G into w chains {im%Q/n/logn) time.

7.2 A dynamic-programming algorithm

In this section, a dynamic-programming algorithm will be presented that constructs minimum-
tardiness schedules for instan¢€ m, D). For precedence graphs of widih it constructs a
minimum-tardiness schedule @(n"+3) time. Hence minimum-tardiness schedules for prece-
dence graphs of bounded width can be constructed in polynomial time. The same approach can
be used to construct schedules that are optimal with respect to other objective functions (includ-
ing the minimisation of the makespan) without increasing the time complexity [91]. This leads
to an improvement over a result presented by Veltman [87], who showed that minimum-length
schedules for precedence graphs of widtban be constructed i@(n?") time.

The time complexity of the dynamic-programming algorithm is exponential in the width of
the precedence graph. It is unlikely that there is an algorithm that constructs minimum-length
schedules ifD(n°) time, wherec is a constant independent of the width of the precedence graph:
Bodlaender and Fellows [9] proved that constructing a minimum-length communication-free
schedule for arbitrary precedence graph& pnocessors i8V[2]-hard, wherdV[2] is the second
class of theW-hierarchy for parametrised problems introduced by Downey and Fellows [23].
This implies that it is unlikely that for all fixed positive integdgsa minimum-length schedule
for a precedence graph érprocessors can be constructedifn®) time for some constamt In
fact, Bodlaender and Fellows [9] proved that constructing minimum-length communication-free
schedules for precedence graphs of widthl onk processors i8V[2]-hard. Their result can be
easily generalised for scheduling subject to unit-length communication delays with the objective
of minimising the maximum tardiness.

Dynamic programming is a method of constructing an optimal solution of a problem by ex-
tending or combining optimal solutions of subproblems. In dynamic programming, the optimal
solutions of the subproblems are stored in a table that has an entry for every (relevant) subprob-
lem. The table is then used to construct the best extension or combination of the optimal solutions
of the subproblems.

A feasible schedul8for an instancéG, m, Do) is a list of time slotS, ..., S_1). For each
timet, U'Z3S is a prefix ofG and(S,...,S-1) is a feasible schedule f¢G[UZ3S],m, Do).
(S,---,S-1) will be called gpartial scheduldor (G, m,Dg). Any schedule&, for (G[U],m, Do),
such that) is a prefix ofG, can be extended to a feasible schedulg @&m, Dg) by scheduling
the remaining tasks after the completion time of the last tadlk.o60 a (minimum-tardiness)
schedule for{G,m,Dg) can be constructed by starting with an empty schedule and repeatedly
adding the next time slot.

This is the basis of the dynamic-programming algorithm presented in this section: a table
containing information about the structure and tardiness of minimume-tardiness partial schedules
of (G,m,Dy) is constructed and used to construct a minimum-tardiness sched(@, forDo).

Let S= (S,...,S-1) be a minimum-tardiness schedule f@,m,Dy). Then for all times
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te{0,...,0—1}, (S,...,S-1) is a feasible schedule f¢G[U!=3 S],m, Do) and$ is a set of
sources ofG[V(G) \ U};cl)s]. So for each task in §, at most one parent afis an element of
S_; and for each taskin S_1, at most one child ofi is an element o§.

The basic idea of extending partial schedules is the followingULbé a prefix ofG and let
(S,---,S-1) be afeasible schedule f6B[U], m,Dp). Then a set of sourcésof G|V (G) \U] is
calledavailablewith respect t&if

1 V| <m
2. for all tasksuin V, at most one parent effinishes at timé; and
3. for all tasksu in U, if u finishes at time, thenV contains at most one child af

Note that the availability 0¥ only depends on the size @¥fand the tasks it that finish at time
t. HenceV will also be called available with respectd,S_1).

If V is available with respect tQU,S_1), then the scheduléS,...,S_1,V) is a feasi-
ble schedule fo(G[U UV],m,Do). Moreover, it is easy to see that for any feasible schedule
S=(S,...,S-1) for (G,m,Dp), the time slotS is available with respect t };33,3_1) for
allt€{0,...,/—1}.

We will represent a partial schedusdor (G, m,Dg) by a tuple(U,V,t,¢): U is the prefix of
G, such thaSis a feasible schedule f¢6[U], m, Dg), t is a starting time that exceeds the starting
times of all tasks ilJ, V is the set of sinks o6[U] that finish at time and/ is the maximum
tardiness of a task id. Note thatv may be empty. The timeis used to denote the next time at
which the remaining tasks @ can be scheduled.

A tuple (U,V,t,¢) will be called afeasible tupleof (G,m, Do) if U is a prefix ofG, V is a
set of sinks ofG[U], and there is a feasible sched@éor (G[U],m, Do) with tardines, such
that S(u) <t —1 for all tasksu in U and S(u) =t — 1 for all tasksu in V. Since there are
minimum-tardiness schedules f@, m, D) of length at mosh, we will only consider feasible
tuples(U,V,t,¢) of (G,m,Dg), suchthat <t <n-—1.

LetS=(S,...,S-1) be a feasible schedule f¢&, m,Dy). For each time € {0,...,¢—1},
the partial schedulés,...,S_1) can be represented by the feasible tqpu{a;és,s,l,t,&) of
(G,m,Dg), wherel; = max{0,max{S(u) +1—Dg(u) | S(u) <t—1}}.

Note that a feasible tupl@J,V,t,¢) of (G, m,Dg) may represent more than one partial sched-
ule. For all partial scheduleSrepresented byU,V.t, /), the availability of a set of sources of
GV (G)\U] attimet only depends ok andV. So all partial schedules representedbyV,t, ¢)
can be extended in the same way. Because the tardiness of such an extension only depends on
¢ and the starting times of the tasks®}V (G) \ U], the minimum-tardiness extensions of the
schedules represented By, V,t,¢) all have the same tardiness. So to construct a minimum-
tardiness schedule f¢6, m, Do), we only need to consider feasible tupleg@fm,Do).

Partial schedules fdiG,m,Dg) can be extended by adding a time slot. The notion of exten-
sions is used for feasible tuples as well. 6tV,t,¢) and(U’,V’' t',¢') be two feasible tuples
of (G,m,Dg). Then(U’,V',t’ ¢') is calledavailablewith respect tqU, V.t ¢) if

1. U =uuVv,
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2.t =t+1;and
3. ' = max{/,max,cy (t +1— Do(u))}.

The setAv(U, V,t,¢) contains all feasible tuples @6, m,Dy) that are available with respect to
(U,V,t,¢). Note thatAv(U,V,t,¢) cannot be empty, becaugd, ot + 1,¢) is an element of
Av(U,V,t, ) for all feasible tuplesU, V,t, ¢) of (G,m,Dy).

LetS=(S,...,S_1) be afeasible tuple dfG, m Do). Then the feasible tuplé ), S, St +
1, max{0,max{S(u) +1—Dg(u) | S(u) <t}}) of (G,m,Dy) is available with respect to the fea-
sible tuple(U'Z3S,S-1,t, max{0,max{S(u) + 1 — Do(u) | S(u) <t —1}}) of (G,m, Do) for all
te{0,...,0—1}.

Let (U,V,t,¢) be a feasible tuple diG,m,Dy). AssumeSis a partial schedule fqiG, m, Do)
corresponding tgU,V,t,¢). DefineT (U,V,t,¢) as the smallest tardiness of a feasible schedule
for (G, m, Do) that extends. More precisely, iU #V(G), then

TUVt0) = min{TU V' t'.0) | (U V' ' 0)e AU,V t.0)},
and ifU =V(G), then
TUV,t,0) = ¢

ThenT(2,,0,0) equals the tardiness of a minimum-tardiness schedulé@an, D). Note
thatT (U, V,t,¢) is independent of the partial schedule correspondifgt¥,t,¢): each schedule
Sfor (G[U], m, Do) with tardines¥, such thas(u) =t — 1 for all tasksuin V andS(u) <t —1 for
all tasksu in U, can be extended to a feasible scheduld@m, Do) with tardinessT (U, V,t, 7).

A minimum-tardiness schedule f6&, m, Do) is computed by Algorithm ™IT EXECUTION
TIMES DYNAMIC PROGRAMMING presented in Figure 7.3. First, it computes a taldd, such
thatTabjU,V,t, ¢] equalsT (U,V,t,¢) for all feasible tuplegU,V,t,¢) of (G,m,Dg). Second, it
uses this table to construct a minimum-tardiness schedul&fon, D).

Now we will prove that Algorithm WIT EXECUTION TIMES DYNAMIC PROGRAMMING
correctly constructs minimum-tardiness schedules.

Lemma 7.2.1. Let S be the schedule fgB, m,Dg) constructed by AlgorithdNIT EXECUTION
TIMES DYNAMIC PROGRAMMING. Then S is a minimum-tardiness schedule(fém, Do).

Proof. Let Tabbe the table constructed by AlgorithnNUr EXECUTION TIMES DYNAMIC PRO-
GRAMMING. We will prove by induction thaTabU,V,t,¢] = T(U,V,t,¢) for all feasible tuples
(U,V,t,¢) of (G,m,Dg). Let (U,V,t,¢) be a feasible tuple ofG,m,Dg). Assume by induction
thatTabU’ V't ¢'| =T (U’,V',t',¢') for all feasible tuplegU’,V',t’ #') in Av(U,V,t,¢).

If U=V(G), thenT (U,V,t,¢) = ¢ for all feasible tuplegU,V,t,¢) of (G,m,Dg). In that
case,TabU,V,t,/] = T(U,V,t,¢). So we may assume thelt # V(G). Becausel (U,V,t,?)
equals migT(U',V',t',¢) | (U,V' .t/ ¢) € AWU,V,1,0)} andTalUu’, V' t' ¢ | =T(U' V' U, )
for all feasible tuplegU’,V’.t’ ¢') in Av(U,V,t,¢), TabU,V,t,¢] equals migT (U’ V't ¢) |
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Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING
Input. An instance/G, m,Dy).

Output. A minimum-tardiness schedule f0&, m,Dg).

1. for all feasible tuplegU,V,t,¢) of (G,m, Do)
2 do TabU,V,t,/] := oo

3. CoNSTRUCT(@,2,0,0)

4. (U t,0) = (2,0,0,0)

5. while U #£V(G)

6 do let (U", V' t' ') = sucqU,V,t,¢)

7 forueV’

8 do Su) :=t

9 (U,V,t,0) := (U V't 1)

11. Procedure CONSTRUCTU,V,t,/)
12, if TahU,V,t,{] = o
13. thenifU =V(G)

14, then TabU,V,t,¢] :=¢

15. else T :=o

16. for (U, V' 1" ¢') € Av(U,V,t,0)

17. do ConsTRUCTU' V' t/ )

18. if TabU’, V' t', 0] <T

19. then T := Tabu’,v’,t", ¢

20. sucdU,V,t,¢0) := (U V' t' )
21. TabU,V,t,¢]:=T

Figure 7.3. Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING

U,V ' 0) e AvU,V,t,0)} = T(U,V,t,0). By induction,TablU,V,t,¢] = T (U, V,t,¢) for all
feasible tuplegU’, Vv’ t’,¢') of (G,m,Do).

In addition, it is not difficult to see that for all feasible tupl@s,V,t,¢) of (G,m,Dy), if
U £V (G), thensucqU,V,t,¢) is a feasible tuple ilw(U, V,t, ¢), such thafabjsucqU,V,t, /)] =
TahU,V,t,/]. Consequently, for all feasible tupléd,V,t,¢) of (G,m,Dy), if U £V (G), then
T(sucqU,V,t,¢)) equalsT (U,V,t, 7).

BecauseTabhU,V,t,/] equalsT (U,V.,t,¢) for all feasible tuplegU,V,t,¢) of (G,m,Do),
Tabho,2,0,0] equals the tardiness of a minimum-tardiness schedul¢Gom,Dg). This is
used to construct a schedule {@, m, Dg). We inductively define feasible tuplés;, Vi, t;, ¢;) of
(G,m,Dp). Let (Up,Vo,t0,%0) = (&,9,0,0). If Uj £V (G), then let(Uj1,Vit1,tiv1,biv1) =
sucqU;, Vi, ti, 4). Assume(Uy, Vi, tk, 4) is the last feasible tuple ofG,m,Dp) that can be
constructed this way. Theby = V(G). It is not difficult to prove thatT (U;,Vi,ti,4) =
T (Up, Vo,to, £o) for all i € {0,...,k}. So each feasible tuplgJ;,\i,ti,¢) of (G,m,Do) repre-
sents a partial schedule fg®&, m, Dg) that can be extended to a minimum-tardiness schedule for
(G,m,Dyg). Itis easy to prove by induction that the feasible tule Vi, i, ) of (G,m, Dg) repre-
sents the partial scheduéy, ..., Vi) foralli € {0,...,k}. So(V4,...,V) is a minimum-tardiness
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schedule fofG, m,Dg). This is the schedule constructed by AlgorithmIW EXECUTION TIMES
DYNAMIC PROGRAMMING. O

The time complexity of Algorithm WIT EXECUTION TIMES DYNAMIC PROGRAMMING can
be determined as follows. Consider an instaf8em, Do), such thaiG is a precedence graph
of width w. In order to obtain a better time complexity, we need to consider two possibilities
depending on whethé&3 is known to be a transitive reduction or not. If it is unknown whetBer
is a transitive reduction, then AlgorithmNUT EXECUTION TIMES DYNAMIC PROGRAMMING
should start by computing the transitive reductionG®f This takesO(n>37) time [17]. In
the remainder of the analysis of the time complexity of AlgorithmItJEXECUTION TIMES
DYNAMIC PROGRAMMING, we will assume tha is a transitive reduction.

AssumeCy, ...,Cy is a chain decomposition @, such thatCi = {ci1,...,Cik } for alli €
{1,...,w}. From Lemma 7.1.4, such a chain decomposition can be construc@dnir? +
ety/n) time.

Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING first computesT (U, V,t, /)
for all feasible tuplegU,V,t, ¢) of (G,m,Dg). Since there is a minimum-tardiness schedule for
(G,m,Dop) of length at mosh, we may assume thate {0,...,n—1}. In addition, because
every task has at moststarting times, at mos¥ different values o need to be taken into
account. A prefit of Gis a selJ.1{Ci1,...,Cip}, such that < by <k; for alli € {1,...,w}.

A set of sinksV of G[U] is a subset of the sétyp,,...,Cup, }- A subseV of {Cip,,...,Cun,}
can be represented by a tuggks,...,ay), such thatg; € {0,1} for all i € {1,...,w}: g =1

if cip, €V anday =01if ¢, ¢ V. So a feasible tuple ofG,m,Dg) can be represented by a
tuple (by,...,bw,a1,...,awt,£), such that 6< by < k anda € {0,1} foralli € {1,...,w}, t €
{0,...,n=1} and/ € Uyev () {1 —Do(u),...,n—Do(u)}. So the number of feasible tuples of
(G,m,Dyg) is at most

w w w n
n32W I_|(k| + 1) < n32W |—l2k| < n322W I—lv_v < 2an+3.
1= 1= I=

For every feasible tupléJ,V,t,¢) of (G,m,Dg), Algorithm UNIT EXECUTION TIMES DY-
NAMIC PROGRAMMING computes the sétv(U,V,t, ). There is a one-to-one correspondence be-
tween the elements éfv(U, V,t, /) and the sets of sources@fV (G) \U]. Becaus& is a prece-
dence graph of widthv and the sources of a precedence graph are incompa@plés) \ U]
has at mostv sources. As a resulfiv(U,V,t,¢) contains at most*2elements. Checking the
availability of a tuple(U’,V’ t’.¢') of (G,m,Dg) with respect taU,V,t,¢) can be done as fol-
lows. U’ must be the s&l UV’, V' must be a set containing at mastsources of5[V (G) \ U],
every task inv may have at most one child M and every task itv’ may have at most one
parent inV. BecauseG is a transitive reduction, every task @fhas indegree and outdegree at
mostw. So the availability of a set of sources BV (G) \ U] can be checked i®(w?) time.
Hence for each feasible tuplg,V,t,¢) of (G,m, Do), Algorithm UNIT EXECUTION TIMES DY-
NAMIC PROGRAMMING usesO(w?2%) time. So Algorithm WIT EXECUTION TIMES DYNAMIC
PROGRAMMING constructs the tabl€abin O(w?22"n"+3) time.

Itis not difficult to see that the construction of the minimum-tardiness schedul&for, Do)
does not require as much time as the construction of the table. So AlgorithmeXECUTION
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TIMES DYNAMIC PROGRAMMING constructs a minimum-tardiness schedule (i8rm, Do) in
O(w?22"n%+3) time. Hence we have proved the following result.

Theorem 7.2.2. There is an algorithm with an @?22%n"+3) time complexity that constructs
minimume-tardiness schedules for instan¢€m, Do), such that G is a precedence graph of
width w.

Consequently, for constamt a minimum-tardiness schedule for a precedence graph of width
w can be constructed in polynomial time.

Theorem 7.2.3. There is an algorithm with an @"*3) time complexity that constructs
minimume-tardiness schedules for instan¢€m,Dy), such that G is a precedence graph of
constant width w.

Proof. Obvious from Theorem 7.2.2. O

7.3 An NP-completeness result

In the previous section, it was proved that there is a polynomial-time algorithm that constructs
minimum-tardiness schedules for precedence graphs of bounded width with unit-length tasks
on m processors. Moreover, using a generalisation of the algorithm presented in Chapter 6, a
minimum-tardiness schedule for precedence graphs of width two with arbitrary task lengths can
be constructed in polynomial time [91].

In this section, it will be shown that constructing a minimum-tardiness schedule for prece-
dence graphs of widthv on less thamw processors is an NP-hard optimisation problem. This is
proved using a polynomial reduction froma®riTioN [33].

Problem. PARTITION
Instance. A set of positive integerd = {a,...,an}.
Question. Is there a subseéY' of A, such thaly ;e 2= 3 aca\ v @?

PARTITION is a well-known NP-complete decision problem [33]. LetdBAWH3ON2 be the
following decision problem.

Problem. WIDTH3ON2
Instance. An instance(G, |, 2,Dg), such thaG is a precedence graph of width three.
Question. Is there an in-time schedule {06, |, 2, Dg)?

Using a polynomial reduction fromaARTITION, it will be shown that WDTH3ONZ2 is an
NP-complete decision problem.

Lemma 7.3.1. There is a polynomial reduction froPARTITION to WIDTH3ONZ2.

Proof. LetA={ay,...,an} be an instance of ARTITION. DefineN = S ,cpaandM =N+ 1.
Construct an instandes, |, 2, Do) as follows.G is a precedence graph consisting of three chains.
The first two chainsC; andC,, each consist ofi + 1 taskscy; andcy; of lengthp(cji) = M,
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such thattj g <g,0 - -- <G, Cjn. The third chainCs, consists oh tasksuy, ..., un with lengths
u(u) =g for alli € {1,...,n} and precedence constraints <go - -- <G, Un. Let Do(u) =
%N + (n+ 1)M for all tasksu of G. Now we can prove that there is a sub8gtof A, such that
Yaca @= Yacap, @if and only if there is an in-time schedule f@@, i, 2,D).

(=) Assume there is a subsai of A, such thaty,cp @ = Yacaa, @ DefineAz = A\ Ag.
A feasible in-time schedul& for (G,,2,Dg) can be constructed as follows. For each
ie{l,....,nfandpe {1,2},if & € Ap, then let

S(Ui) = iM+ Z a;.

j<i:ajeAp
Furthermore, for ali € {0,...,n}, let

S(Cl,i) = iM+ z a; and S(Cz_’i) = iM+ Z a;.

j<i:ajeAq j<i:ajeAr

Clearly, S(cpi+1) > S(cp,) +M for alli € {0,...,n} andp € {1,2}. In addition, for all
ie{l,....,nfandpe {1,2},if a € Ap, then

Su) = S(Cp,ifl)‘i’M and S(up) +p(y) = S(Cp,i)-

So at most two tasks are executed at the same time. Furthermore,iferf@)...,n— 1}
andp e {1,2}, if ui,1 € Ap, then

SUit1) (+DM+ 5 jcii1aen, 8
> iM4M

> iM +ai+zj'<iaj

>

S(up) + p(ui).

SoSis a feasible schedule fdG,1,2,Dp). Every task ofG finishes at or before time
max{S(C1n) + M(C1n), S(Con) + K(C2n)} = NM + %N +M=(n+1)M+ %N. SoSis an
in-time schedule fo(G, y, 2, Dy).

(<) AssumeSiis an in-time schedule fofG,,2,Dg). Then all tasks ofG are completed
at or before timgn+ 1)M + %N. Let 1t be the processor assignment #®constructed
by Algorithm PROCESSOR ASSIGNMENT COMPUTATION Each processor can execute
at mostn+ 1 tasks inCy or Cy, otherwise,S has length at leagh+2)M > (n+ 1)M +
Sacad> (N+1)M+ %N. So both processors execute exantlyl tasks of lengtiM. The
sum of the execution lengths of all tasks®@®quals 2n+ 1)M + N. So no processor is
idle before timg(n+1)M + iN. Define

A = {g|m(y)=1} and Ay = {a|m(u)=2}.

Since no processor is idle before tirfe+ 1)M + 3N, Yacp, a= (N+ 1M+ 3N — (n+
M = %ZaeAa-
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Lemma 7.3.1 shows that constructing minimum-tardiness schedules for precedence graph of
width three on two processors is an NP-hard optimisation problem. It is easy to see that a similar
proof can be used to show that constructing minimum-tardiness schedules for precedence graphs
of width w on less thamv processors is NP-hard as well.

Theorem 7.3.2. Constructing minimum-tardiness schedules for instar€&s., m, Do), such
that G is a precedence graph of constant width w @d m < w, is anNP-hard optimisation
problem.

7.4 Another dynamic programming algorithm

In Section 7.2, it was proved that minimum-tardiness schedules for precedence graphs of
bounded width can be constructed in polynomial time if all tasks have unit length. In Sec-
tion 7.3, it is shown that constructing minimum-tardiness schedules for precedence graphs of
width wwith tasks of arbitrary length on less thamprocessors is an NP-hard optimisation prob-
lem. The complexity of constructing minimum-tardiness schedules for precedence graphs of
width w with arbitrary task lengths on at leastprocessors remains open. Without communi-
cation delays, minimum-tardiness schedules for precedence graphs ofwadttv processors

can be constructed by a list scheduling algorithm (using any priority list). This is not true for
scheduling subject to unit-length communication delays.

Example 7.4.1. Consider the instandgés, 3,Dg) shown in Figure 7.4. Note th& is a prece-
dence graph of width three. It is not difficult to see tli@ 3,Do) is consistent. Moreover,
(G,3,Dp) can be converted into a pairwise consistent instance without decreasing any individ-
ual deadlines. Using the Ist-lisa;, bs, b1, by, c3,¢1,C0,d1), Algorithm LIST SCHEDULINGCON-
structs the schedule shown in Figure 7.5. This is not an in-time schedu|&,f8/Dg), because

d; violates its deadline. In Figure 7.6, an in-time schedulé®, Do) is shown. This schedule

can be constructed by Algorithm &1 SCHEDULINGUsIng Ist-list(as, b1, by, bs, c3, €1, C2,d1).

Example 7.4.1 shows that list scheduling does not construct minimum-tardiness schedules for
precedence graphs of widthonw processors. In this section, it will be shown that a minimum-
tardiness schedule for precedence graphs of widthith arbitrary task lengths on at least
processors can be constructed in polynomial time for each congtdrike in Section 7.2, we
will use a dynamic-programming approach that can be generalised to scheduling problems with
other objective functions [91].

Let G be a precedence graph of width Consider an instand&, i, m, Dg), such thatn > w.
In a feasible schedulefor (G, u,m, Do), at mostw tasks can be executed simultaneously. Hence
any feasible schedule @G, , o, Dy) is a feasible schedule fd/G,,m,Dg) as well. On the
other hand, any feasible schedule @&, m, Do) is also a feasible schedule B, , o, D).
Therefore we will consider instancés, , », Do).

A scheduleS for (G, |, »,Dp) is calledgreedyif for all tasksu of G, there is no feasible
scheduleS for (G, ,,Dg), such thatS(u) < S(u) andS(v) = S(v) for all tasksv # u of G.

93



. d1:1,6

AR

@cl5@cl5@csl4

Pt

®b:13@b:13 @bsl,3

Nt

@ a:ll
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Figure 7.5. The schedule fofG, 3,D) constructed by Algorithm IST SCHEDULING
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Figure 7.6. An in-time schedule fo(G, 3,D)

Note that the schedules f(B, |1, o0, Do) constructed by Algorithm IST SCHEDULINGare greedy
schedules.

Let Sbe a feasible schedule f0G, |, 0, Dg). ThenSbe transformed into a greedy schedule
for (G,,,Dq) as follows. Letu be a task ofG. If uis available at time < S(u) andu can
be scheduled at timewithout violating the feasibility ofS, then schedule at timet. This
is repeated until no task can be executed at an earlier time without violating the feasibility. The
resulting schedule is a greedy schedulg €@, «, Dp). Since no task is scheduled at a later time,
the tardiness of this schedule is at most thaBoHence there is a greedy minimum-tardiness
schedule fofG, |, o, Dg).

In a greedy schedule fdiG, |, ,Dp), the number of potential starting times of a task is
bounded. Leest{u) denote the earliest possible starting time of a taska communication-free
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schedule fofG, y, o, D).

es(u) = 0 if uis a source o6
MaX,cpreds o(u) (ES(V) +H(V)) otherwise

In a greedy schedule fdG, |, 0, Do), every tasku of G starts at mosh — 1 time units after
est(u).

Lemma 7.4.2. Let S be a feasible greedy schedule (fGr 1, «,Dg). Then for all tasks u of G,
est{u) < S(u) < estu)+n-—1.

Proof. Obviously, S(u) > est(u) for all tasksu of G. For all tasksu of G, let Ipp(u) be the
maximum number of tasks on a path from a sourcé té a parent ofl.

0 if uis a source oG
Ipp(u) =

MaXcpreds o(u) |PP(V) +1  otherwise

We will prove by induction thaB(u) < est(u) + Ipp(u) for all tasksu of G. This is obvious for
the sources oB. Letu be a task ofs. Assume by induction the(v) < est(v) +Ipp(v) for all
predecessorg of u. Letw be a predecessor afwith a maximum completion time. Thanis
available at timeS(w) + p(w) + 1. Sou starts at timeS(w) + p(w) or at timeS(w) + p(w) + 1.
Consequently,

Su) MaXcpreds o(u) (S(V) +H(V) +1)
maX/ePredG‘g(u) (eSt(V) +1 pp(v) + U(V) + 1)

(w(

)

IA A IA

ma)(/ePrede u eSt(V) + H(V)) + maX/ePredG.O(u) (I pp(v) + 1)
est(u) +Ipp(u).

Clearly, Ipp(u) < n—1. Soestu) < S(u) < estu)+n—1. By induction,estu) < S(u) <
est(u) +n— 1 for all tasksu of G. d

The limited number of potential starting times will be used in the design of a dynamic-
programming algorithm. Latl be a prefix ofG. Then any feasible schedule f@[U], Y, 0, Do)
can be extended to a feasible schedulg @&, o, Dg) by assigning a starting time to the tasks
of G|V (G) \ U]. This is the basis of the dynamic-programming algorithm.

Let Sbe a feasible schedule f6G[U], i, «, Dg), such thatS(u) <t — 1 for all tasksu in U.
LetV be a set of sources @[V (G) \ U]. ThenV is calledavailableat timet with respect to
U,s)if

1. for all taskau in V, all parents ofi are completed at or before tinhe
2. for all tasksuin V, at most one parent affinishes at time; and

3. for all tasksuin U, if u finishes at time, thenV contains at most one child of
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Note that the availability of only depends on the completion times of the sink&[uf]. More-
over, if Sis a feasible schedule f¢G, i, «, Do), then for all timeg € {0, ..., maxcy(g)(S(u) +
p(u))}, the set{u € V(G) | S(u) =t} is available at time& with respect to(U,S,), where
U={ueV(G)|Su) <t-—1}andS, is the restriction oBto U.

Partial (greedy) schedules 0B, u, o, Do) will be represented by tupleg$),St,¢): t is an
integer, such thatst(u) <t < est(u) +n— 1 for some taski of G, U is a prefix ofG andSis a
schedule fofG[U], Y, o, Do) with tardines¥, such thaS(u) <t — 1 for all tasks iflJ. The time
t denotes the next time at which a task®ftan be scheduled. Such a tuplé, St, ¢) will be
called afeasible tupleof (G, Y, », Do).

Since partial (greedy) schedules @B, i, «,Dp) can be extended by assigning a starting
time to unscheduled tasks, we need a notion of extension of feasible tuple@dJ, IS, ¢) and
(U’,S,t',¢') be two feasible tuples diG, 1, «,Dp). Then(U’,S,t’.¢) is calledavailablewith
respecttqU,St,?) if

1. U'\ U is available at time with respect tqU, S);
2. t'>t+1;and
3. ' = max{/,max,cyy (t + K(u) — Do(u))}.

Let Av(U,St,¢) denote the set of feasible tuples(@, |, 0, Do) that are available with respect
to (U,St,?). Note that ifU # V(G), thenAv(U, S t, ¢) cannot be empty, since the feasible tuple
(U,St',£), such that’ =min{t” > t+1[t" € Uyey (g {€StU), ..., esu) +n—1}}, is an element
of Av(U,St, ).

Let S be a greedy schedule @6, 1,0, Dg). Then for all timed, the tuple(Ut, Sy, ,t, 4),
such thaty; = {ue V(G) | Slu) <t -1}, §, is the restriction ofSto U; and ¢ is the tar-
diness ofSy,, is a feasible tuple ofG,,«,Dg). In addition, if Uy # V(G), then the feasi-
ble tuple (U, Sy,t', &y ), wheret’ = min{t” >t + 1 [t" € Uyey(c){estu), ..., est(u) +n—1}},
U={ueV(G)|Su) <t —1}, § is the restriction ofSto U and{y is the tardiness o0&y,
is available with respect t@Ut, S,,t,4). So to construct a minimum-tardiness schedule for
(G,H,,Dp), we only need to consider feasible tuplegGf |, e, Do).

Let (U,St,¢) be a feasible tuple ofG,,«,Dg). DefineT(U,St,¢) as the tardiness of
a minimum-tardiness schedule f0B, 1, «,Dg) that extendsS. Then for all feasible tuples
(U,St,¢) of (G, ,Dp), if U #V(G), then
T(U,St,6) = min{T(U",S,t',¢') | (U',S,t",0) € AW(U,St, )},
and ifU =V(G), then
T(U,St,¢0) = /4.

Note thatT (&, &, 0,0) equals the tardiness of a minimum-tardiness schedul@gqr, «, Dy).
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To implement the computation &f(@, @,t,¢), a tableTabis constructed. Tab contains
an entryTabjU, S t, /] for all feasible tupleqU,St,?¢) of (G, ,Dg). We start by setting
TahU,St, ¢] =  for all feasible tuplegU,St, ¢) of (G, ,,Dg). Algorithm DYNAMIC PRO-
GRAMMING presented in Figure 7.7 constructs a tabéd, such thaffabU,St, /| =T (U,St,¢)
for all feasible tuplegU,Sit,¢) of (G, »,Dp). This table is used to construct a minimum-
tardiness schedule f¢6G, |, o, Do).

Algorithm DYNAMIC PROGRAMMING

Input. An instanceG, 4, o, Dg).

Output. A minimum-tardiness schedule f0&, |1, o, Dg).
1. for all feasible tuplesU,St, ¢) of (G, , o, Do)
2 do TahU,St, ¢ ;=

3. CONSTRUCT(@,9,0,0)

4. (U,St,¢):=(2,2,0,0)

5. whileU #V(G)

6 do let (U, S,t",¢') = sucqU,St,¢)

7 forueU’\U

8 do S(u) :=t

9 (U,St,0) = (U, S,t',0)

11. Procedure CONSTRUCT(U,St, /)
12. if Tahu,St, ) =
13. thenifU =V(G)

14. then TabU,St, (] :=¢

15. else T =

16. for (U’,S,t'.¢') € Ay(U,St, )

17. do ConsTRUCTU’, S, t',¢)

18. if Tabu’, St/ ,¢] < T

19. then T := Tahu’,S,t’, 7|

20. sucdU,St,¢) = (U’ St/ ¢)
21. TabU,St,/]:=T

Figure 7.7. Algorithm DYNAMIC PROGRAMMING

Now we will prove that the schedules constructed by AlgorithiNBMIC PROGRAMMING
are minimum-tardiness schedules.

Lemma 7.4.3. Let S be the schedule f@B, Y, », Dg) constructed by AlgorithrDYNAMIC PRO-
GRAMMING. Then S is a minimum-tardiness schedule(®y, «, Do).

Proof. Let Tab be the table constructed by AlgorithmyRAMIC PROGRAMMING. We can
prove by induction thaffabU,St,¢] equalsT (U,St,¢) for all feasible tuplegU,St,¢) of
(G,H,,Dp). Let (U,St,¢) be a feasible tuple ofG, ., ,Dp). Assume by induction that
TabhU’,S,t’,¢'] equalsT (U’,S,t', ¢') for all feasible tuplegU’,S,t’, ') in AU, S t, ).
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If U=V(G), thenT (U,St,¢) =¢. Inthat caseTabU,St,/ =T(U,St,¢). So we may as-
sume thatl £V (G). ThenT (U, St, /) equals migT (U’, St ¢') | (U',S,t',¢) € AW(U,St,4)}.
Algorithm DYNAMIC PROGRAMMING determines an elemefit)’, S t’, ¢') in AU, S t, ) with
the smallest table entry. HendabU,St,¢] = T(U,St,¢). By induction, TabU,St,¢] =
T(U,St,?) for all feasible tuplegU, St ¢) of (G, o, D).

In addition, it is not difficult to see that for all feasible tuplgs, St,¢) of (G,, 0, Do), if
U #V(G), thensucqU,St,¢) € Av(U,St,¢) andTabsucqU,St,¢)] = TabU,St,¢]. Since
TabU,St, ¢] equalsT (U, St,¢) for all feasible tuplegU, Sit, ¢) of (G, u,», Do), Tabj@, &,0,0]
equals the tardiness of a minimum-tardiness schedulgqr, o, Dy).

We inductively construct a sequence of feasible tuglésS,t;, ) of (G, ,Dp). Let
(Uo, So,t0,%0) = (2,2,0,0). If U #V(G), then let(Uir1,S11,tiv1,4i+1) = sucqUi, §,t,4).
Assume(Uy, S, tk, Uk ) is the last feasible tuple that can be constructed this way. TpenV (G).
Then the schedul§; is the schedule fofG, 1, «, Do) constructed by Algorithm BNAMIC PRO-
GRAMMING. § has tardinesé. Becausd (Uy, S, tk, %) = =T (2,2,0,0) andT (&, 2,0, 0)
is the tardiness of a minimum-tardiness schedulg @&, «, Dg), Algorithm DYNAMIC PRO-
GRAMMING constructs a minimum-tardiness schedule(fgyj, o, Dy). O

The time complexity of Algorithm PNAMIC PROGRAMMING can be determined as follows.
Consider an instandeé, |, 0, Dg), such thaG is a precedence graph of width Like in the anal-
ysis of the time complexity of Algorithm NIT EXECUTION TIMES DYNAMIC PROGRAMMING,
we will assume tha® is a transitive reduction.

AssumeCy,...,Cy is a chain decomposition @, such thaCi = {¢ 1,...,Cix } foralli €
{1,...,w}. From Lemma 7.1.431,...,C, can be constructed i@(wr? +e*/n) time.

Algorithm DYNAMIC PROGRAMMING computesT (U, St, ¢) for all feasible tuplegU,Sit, ¢)
of (G,W,,Dg). There is a greedy minimum-tardiness schedule(@y, «,Dg). Hence we
need to consider at most values oft and at mosn? values of¢. A prefix U of G is a set
Urq{ci1,....Cin}, such that 0< by <k for all i € {1,...,w}. Because the availability of a
feasible tuple with respect {@J, S t,¢) only depends on the starting times of the sink&@f |,
Scan be represented by a tugte, .. .,tw), such that; € U, {est(Cip,),...,est(Cip) +n—1}
foralli € {1,...,w}. So afeasible tupl@J, S t,¢) of (G, , 0, Dg) can be represented by a tuple
(ba,...,bw,t1,...,tw,t,£), such that 0< by < ki andt; € UL {estcCiy),...,estcip)+n—1}
foralli e {1,...,w}, t € Uyev(g){€StU),...,est(u) +n—1} and’ € Uyey (g){estiu) + u(u) —
Do(u),...,est(u) + n— 1+ p(u) — Do(u)}. So the number of feasible tuples(@, p, », Do) is at
most

w w

w
n4 I—ln<k| + 1) < nW+4 |—l2kl < zwnw+4 rlv_r\], < nZW+4.
i= i= =

For each feasible tuplg), St, £) of (G, 0, Dg), Algorithm DYNAMIC PROGRAMMING de-
termines the seAv(U, S t, ¢). An element ofAv(U, S t, ¢) corresponds to a subset of the sources
of G[V(G) \ U] and an integet’, such thatst(u) <t’ < esf{u) +n— 1 for some taski of G.
SinceG is a precedence graph of widihand the sources of a precedence graph are incom-
parable Av(U,St,/) contains at most?2" elements. Since the availability of a feasible tuple
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only depends on the starting times of the sinks and every task ludis indegree and outde-
gree at mostv, checking whether a feasible tuple’, S,t,¢) of (G,,,Dg) is available with
respect tqU, S) takesO(w?) time. Consequently, Algorithm ¥NAMIC PROGRAMMING USES
O(n?w?2") time for each feasible tupl@, S;t, £) of (G, 4, », D). So the tabld@ abis constructed
in O(W?2"n?¥+6) time.

Using table Tah Algorithm DYNAMIC PROGRAMMING constructs minimum-tardiness
schedule for(G,,«,Dg). It is obvious that the construction of the schedule does not take
as much time as the construction of the table. As a result, AlgoritivmAMIC PROGRAM-
MING constructs a minimum-tardiness f(, |, 0, Do) in O(W?2"n?"+6) time. Since any fea-
sible schedule fofG,,«,Dyg) is a feasible schedule fdG, ,«,Dg) for all m > w, we have
proved the following result.

Theorem 7.4.4. There is an algorithm with an @?2"n?"+®) time complexity that constructs
minimum-tardiness schedules for instan¢&sp, m, Dg), such that G is a precedence graph of
width w and m> w.

For every fixedv, minimum-tardiness schedules can be constructed in polynomial time.

Theorem 7.4.5. There is an algorithm with an @?%+®) time complexity that constructs
minimum-tardiness schedules for instan¢&sp, m, Dg), such that G is a precedence graph of
constant width w and ix w.

Proof. Obvious from Theorem 7.4.4. O

7.5 Concluding remarks

In this chapter, it is proved that minimum-tardiness schedules for precedence graphs of bounded
width can be constructed in polynomial time. It is obvious that the dynamic-programming ap-
proaches presented in this chapter can be generalised in many ways. First of all, both algorithms
can be generalised for scheduling with other objective functions [91]. The same is true for
scheduling subject t¢0, 1}-communication delays and for scheduling with release dates and
deadlines. Both generalisations do not increase the time complexity.

The dynamic-programming algorithm for scheduling precedence graphs with unit-length
tasks can be generalised in other ways as well. For instance, if a task cannot be executed by every
processor or the communication delays may have length at least two, then there is a minimum-
tardiness schedule whose length is bounded by a polynomial in the number of tasks. Conse-
quently, the dynamic-programming algorithm presented in Section 7.2 can be generalised to a
polynomial-time algorithm for such problems. This is not true for the algorithm presented in Sec-
tion 7.4. This algorithm does not construct minimum-tardiness schedules for precedence graphs
of bounded width in polynomial time if the number of possible starting times in a minimum-
tardiness schedule is not bounded by a polynomial in the number of tasks. So this algorithm
cannot be used for scheduling preallocated tasks. In addition, Sotskov and Shakhlevich [83]
proved that constructing a minimum-length schedule on three processors for a job shop with
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three jobs is an NP-hard optimisation problem. Hence it is unlikely that there is a polynomial-
time algorithm that constructs minimum-tardiness schedules for precedence graphs of constant
width w with preallocated tasks an > w processors.
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Il Scheduling in the LogP model
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8 The LogP model

Part Il is concerned with scheduling in the LogP model. In this chapter, the LogP model is pre-
sented as a scheduling model. In Section 8.1, the communication requirements of the LogP model
are presented. The general problem instances for LogP scheduling are introduced in Section 8.2,
feasible schedules for such instances are presented in Section 8.3. In Section 8.4, previous results
concerning scheduling in the LogP model are presented. An outline of the second part of this
thesis is presented in Section 8.5.

8.1 Communication requirements

The LogP model [21] is a model of a distributed memory computer. It consists of a number
of identical processors connected by a communication network. Each processor has an unlim-
ited amount of local memory. The processors execute a computer program in an asynchronous
manner: one processor can execute a task while another is involved in a communication action.
Communication is modelled by message-passing: data is transferred between the processors by
sending messages through the communication network.

The LogP model captures the characteristics of a real parallel computer using four parame-
ters.

1. Thelatency Lis an upper bound on the time required to send a unit-length message from one
processor to another via the communication network. The latency depends on the diameter
of the network topology.

2. Theoverhead ds the amount of time during which a processor is involved in sending or
receiving a message consisting of one word. During this time, a processor cannot perform
other operations.

3. Thegap gis the minimum length of the delay between the starting times of two consecutive
message transmissions or two consecutive message receptions on the same pé)tsessor.
the communicatiobandwidthavailable for each processor.

4. Pis thenumber of processors

We will assume thalt, o andg are non-negative integers and tRat {2,3,...,0}.

In addition, Culler et al. [21] make the following assumptions. The communication network
is assumed to be of finite capacity: at each time at rﬁ§$tmessages can be in transit from
or to any processor. If a processor attempts to send a message that causes such a bound to be
exceeded, then this processor stalls until the message can be sent without exceeding the bound of
[gl messages. Moreover, the time needed to transfer a message from one processor to another
is assumed to be exactlytime units: any message arrives at its destination processor ekactly
time units after it has been submitted to the communication network by its source processor.

We will consider azommon data semantif25]: the children of a task all need the complete
result ofu. So the result of the execution of a task needs to be sent at most once to any other
processor even if a processor executes more than one child of
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The communication between processors in the LogP model works as follows. Consider two
different processorp; and p,. Assume processq@; executes a tasl; and the processam,
a child u; of u;. Then the result of the execution af must be transferred from processor
p1 to processomp, beforeu, can be executed. Assume the resultugfis contained in two
messages. Then two messages must be sent from propggeqrocessop,. Figure 8.1 shows
the communication between processptsand p,. The send operationare represented bsg
andsp; r1 andr; are thereceive operationsorresponding tg; ands,, respectively.

g o
- > et

Uz S1 S

I I U2

- < > >
L g o]

Figure 8.1. Communication between two processors in the LogP model

The first message can be sent by proceps@mmediately after the completion of. After
this message has been submitted to the communication network, exdictig units are used
to send it to processqr, through the network. Then it can be received by procepsoiThe
second message cannot be sent immediately after the first: there must be a delay of eileast
units between the starting times of two consecutive send operations on the same processor. The
second message can be receilid@me units after it has been sent. Note that the starting times
of the receive operations differ at leastime units. After the second message has been received
by processop,, u; can be scheduled.

If another child ofu; is scheduled aftew, on processop,, then no additional communica-
tion is necessary: this child can be executed immediately aftérhis is due to the fact that the
result ofu; has already been transferred from procegsdp processops.

Under acommon data semanti¢85], the children of a task all need the complete result
of u and the result of a task has to be sent to any processor at most once. Untigmandent
data semantic$25], each child of a taski needs a separate part of the resuluofUsing an
independent data semantics, a separate set of messages has to be sent for every thald of
is not scheduled on the same processar. dsote that if every task has at most one child, then
there is no difference between a common data semantics and an independent data semantics: if
a tasku has exactly one child, then it requires the complete result &f addition, the problem
of scheduling outforests under an independent data semantics is the same as scheduling inforests
(under either an independent data semantics or a common data semantics).

8.2 Problem instances

The general scheduling instances introduced in Chapter 2 have to be extended to obtain LogP
scheduling instances. These instances are extended with the parameters of the LogP model and
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the sizes of the results of the tasks. Hence we will consider instda@&esc,L,0,g,P), such
that tuple(G, ,c) describes a computer program afdo, g,P) contains the parameters of the
LogP model. In a tupléG, i, c,L,0,9,P), G is a precedence graph; V(G) — Z™ is a function
that assigns an execution length to every tas& ahdc: V(G) — N is a function that specifies
the number of messages needed to send the result of a t&toadnother processor. Because
the result of a sink of5 is not sent to any processor, we will assume ti{a) equals zero for
all sinksu of G. In the remainder of Part I, we will only consider instan¢&sy,c,L,0,g,P),
such thatc(u) > 1 for every tasku of G that is not a sink of. All algorithms presented in
the following chapters can be easily generalised to scheduling instéBges, L,0,g,P) with
arbitrary functiong.

Like for scheduling in the UCT model, some special instances will be considered. If all tasks
have unit length, thep will be omitted. In addition, ift(u) equals one for all tasksof G with
outdegree at least one, themvill be left out. So the instancéG,L,0,g,P) corresponds to the
instance(G, W, ¢, L, 0,9,P), such thapi(u) = 1 for all tasksu of G andc(u) = 1 for all tasksu of
G with outdegree at least one aogdi) = 0 for all sinksu of G.

8.3 Feasible schedules

In the LogP model, processors communicate by sending messages to each other. For each task
u, messages have to be sent to all processors that execute a ahnisckadpt the processor that
executesl. So the corresponding send and receive operations may be scheduled for all processors
but one. Since we assume a common data semantics, no message needs to be sent to the same
processor twice.

Consider a taski; and one of its childrem, that are scheduled on different processors.
Assumeu; is executed on process@i and uy on processop; # pi. Thenc(ui;) messages
my1,...,M ) have to be sent from processpy to processomp;. Sending messagay; to
processomp, will be represented by theend operation gy, ;. This send operation must be
executed on processpi. The reception of message,; is represented by @eceive operation
rup,,i that must be executed by procesper

We will define two setsS(G, P,c) andR(G, P,c) containing the send and the receive opera-
tions, respectivelyS(G, P, c) contains the send operatiofs,;, such thau is a task ofG that is
not a sink ofG, p € {1,...,P} is a processor ands {1,...,c(u)} is the index of a message of
The selR(G, P,c) contains the receive operations,j, such that is a task ofG that is not a sink
of G, pe{1,...,P}andi € {1,...,c(u)}. LetC(G,P,c) be the union oG, P,c) andR(G, P, c),
the set ofcommunication operationdgach communication operatianin C(G, P,c) haslength
p(u) = o.

Note that the communication operations have length zecoeifjuals zero. Because there
must be a delay of at leagttime units between the starting times of two consecutive send oper-
ations or two consecutive receive operations on the same processor, the presence of zero-length
communication operations is not the same as the absence of communication operations.

A scheduldor an instancéG, ., c,L, 0,9, P) is a pair of functiongo, 1), such that : V(G) U
C(G,Pc) —INU{L}andm:V(G)UC(G,Pc) — {1,...,P}U{L}. o assigns a starting time
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to every element o¥/ (G) UC(G,P,c) and Tt assigns a processor to each operatiol (&) U
C(G,P,c). The valuel denotes the starting time and processor of communication operations
that are not scheduled.

Definition 8.3.1. A schedulg(a, ) for (G, ,c,L,0,qg,P) is calledfeasibleif

1. for all tasku of G, o(u) # L andm(u) # L;

2. for all elementsi; andup of V(G) UC(G, P,c), if Ti(ug) = T(u2) # L, thena(up) + p(uz) <
o(up) or a(uz) + H(uz) < o(uy);

3. for all tasksu; andup of G, if up < Uz, thena(uy) + p(u) < o(uy);
4. for all tasksu; anduy of G, if uy is a child ofu; andti(u;) # 1(up), then, for alli < c(up),
)

TU(Suy mup),i) = TWU), TNy m(up),i) = THU2), O(Suymup),i) = O(U1) + H(U1), O(Fy; muy),i) =
O(Suymup),i) +0+Lando(uz) > o(ry, nuy),i) +0;

5. for all send operatiors ands; in S(G,P,c), if Ti(s;) = T(sp) # L, theno(s1) + 9 < 0(sp)
oro(s2) +9 < o(s1);

6. for all receive operationg andr, in R(G,P,c), if 1i(r1) =11(r2) # L, thena(r1) +g < o(ry)
ora(rz) +g<a(r); and

7. for all tasksu of G and all processorp, if no children ofu are scheduled on procesgoor
p=Tu), thena(s,pi) = L andiryp,;) = L.

The first constraint states that all tasks®fhave to be executed. The second and third
correspond to the constraints for feasible communication-free schedules: a processor cannot
execute two tasks at the same time and a task must be scheduled after its predecessors. The
fourth states that messages have to be sent if a task and one of its children are scheduled on
different processors. Moreover, it states that a message must be received lextantyunits
after it has been submitted to the communication network. The fifth and sixth constraint ensure
that there is a delay of at leagtime units between two consecutive send or receive operations on
the same processor. Note that there need not be a delay between a send operation and a receive
operation on the same processor. The last constraint states that some communication operations
need not be executed.

In the definition of the LogP model [21], processors can send messages to other processors,
unless the number of messages in transit from or to one processor exgéedswhich case
the sending processor stalls. The definition of feasible schedules in the LogP model states that
a receive operation must be executed exakttyme units after the corresponding send oper-
ation has been completed. So each processor can send at most one megseggsacutive
time units and at most one message can be sent to the same procegsmnsecutive time
units. Hence the number of messages in transit from or to any processor cannot be larger than
L%&g{*lj < (%1 +1< [é}. So we do not need to consider stalling.

Constructing a schedule for an instar{& ,c,L,0,9,P) corresponds to assigning a start-
ing time and a processor to every task®fnd every communication operation@{G, P,c).
Hence any algorithm that constructs feasible schedules for insté@cpsc,L,0,9,P) uses at
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leasto(y yev(c) C(U)) time. If cmax = Max,ey () C(U) is not bounded by a polynomial imand
log max,cy () M(u), then such an algorithm cannot have a polynomial time complexity.

In a well-structured computer program, the size of a result of a task is not very large. Hence
we may assume that,ax is not exponentially large. In the rest of Part Il, we do not want to
focus on the time needed to schedule the communication operations. Hence we will assume that
Cmax iS bounded by a constant. However, the time complexity of the algorithms presented in
the remaining chapters of Part Il remains polynomiatijfx is bounded by a polynomial in
and log maycy () M(u): the time complexity of the algorithms must be increasey cmax)
to account for the assignment of a starting time and a processor to each communication operation.

This section will be concluded with two examples of feasible schedules. The first is a sched-
ule for the same graph as the one in Sections 2.1 and 3.4.

.d1:1,0

PN

@c:2,1@c:31

PN

@21@by1,1

b1

Qxull1@a21
Figure 8.2. An instance(G,,1,1,1,2)

o 1 2 3 4 5 6 7 8 9 10 11 12 13

ay | Sa; b1 I, C1 Ic, d1

a ra]_ b2 902 C2 S:z

/////

Example 8.3.2. Consider the instances, 1, 1,1,1,2) shown in Figure 8.2. Each task Gfis
labelled with its hame, its execution length and the number of messages required to send its
result to another processor. The instafi@ey, 1,1,1,2) corresponds to the general scheduling
instance(G, |, 2) shown in Figure 2.1 and the UCT instané& |, 2,D) shown in Figure 3.1. A
feasible schedule fdiG, 1, 1,1, 1, 2) is shown in Figure 8.3a; anday are scheduled on different
processorsh, is a common child o&; anday. So the result 0d; is sent to the second processor.
This is represented by taskg andr,,. Note that there is a delay of one time unit between the
completion time ofs,, and the starting time afy,. Sinceay is the only parent ob; andb; is
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the only parent o€;, these tasks can be scheduled without extra communication on the first and
second processor, respectivety.is a child ofb; andb,. Because its parents are scheduled on
different processors, the resultlnfis sent to the first processor befareis executed. Similarly,

the result ofc; is sent to the first processor befatestarts.

The next example shows a schedule for an insté@c¢p, c,L,0,g,P) in whichg exceed®. It
shows that the idle time between consecutive communication operations can be used to execute
tasks.

®):10@y:10 @Vy3:2,0@VY430 @ y5:7,0

N\

@ x1,3
Figure 8.4. Aninstance(G, ,c,2,1,2,2)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X IS1 | Y1 ISx2 | Y2 |Sx3 Y5

x.1 2 x3 Y3 Y4

Figure 8.5. A feasible schedule foiG, u,c,2,1,2,2)

Example 8.3.3. Consider the instancgs, i, ¢, 2, 1,2, 2) shown in Figure 8.4. It is not difficult

to see that the schedule shown in Figure 8.5 is a feasible sched(® forc, 2,1, 2, 2). Note that

y1 andy, are scheduled between the send operations on processor 1. No task can be executed
between the receive operations on processor 2, since all three messages are needed to send the
result ofx to another processor. Although two childrerxafre executed on the second processor,

only three send and receive operations are executed. This is due to the fact that we assume a
common data semantics: the complete resuktisfsent to the second processor and it has to be

sent to this processor exactly once. Under an independent data semantics, two separate sets of
messages must be sent to the second processor: a set of messggasadane fory,.

Examples 8.3.2 and 8.3.3 show that schedules in the LogP model are very different from
communication-free schedules and from schedules in the UCT model. However, communication-
free scheduling and scheduling in the UCT model can be seen as special cases of scheduling
in the LogP model: if all tasks have unit length or the number of processors is unrestricted,
then any communication-free schedule can be viewed as a schedule in the LogP model with
parameters = 0 = g = 0 and any schedule in the UCT model as a schedule in the LogP model
with parameterd =1 ando=g=0.
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A feasible scheduléo, ) for an instanc€G, m,D) in the UCT model can be transformed
into a feasible schedule for the instan¢& c,1,0,0,m) in the LogP model by scheduling the
send and receive operations. For all tasks G, all processorp # T(u) that execute a child of
uand alli € {1,...,c(u)}, send operatios, pj must be executed at tim&u) + 1 on processor
T(u) and receive operation, ;i at timeo(u) +2 on processop. Sinceg = 0 = 0, the resulting
schedule is a feasible schedule {&,c,1,0,0,m). A feasible communication-free schedule for
an instance G, u,m), such thatu(u) = 1 for all tasksu of G, can be transformed into a feasi-
ble schedule for the instan¢&, c,0,0,0,m) in the LogP model in a similar way. Moreover,
communication-free schedules for instan¢€s, «) can be transformed into feasible sched-
ules for instance$G, 1, ¢,0,0,0, ) and schedules in the UCT model for instan¢@sy, 0, D)
into feasible schedules for instand&s i, ¢, 1,0,0, ). Both transformations do not change the
starting time of any tasks, but they may schedule tasks on different processors.

8.4 Previous results

Like for many other models of parallel computation, little is known about scheduling in the LogP
model. A few algorithms have been presented that construct schedules in the LogP model for
common computer programs. These programs include sorting [1, 24], broadcast [54] and the
Fast Fourier Transform [20].

In addition, Lowe and Zimmermann [63, 95] presented an algorithm that constructs schedules
for communication structures of PRAMs on an unrestricted number of processors. The length of
these schedules is at mostr% times the length of a minimum-length schedule, whg(@)
is the grain size 06. Lowe et al. [64] proved the same result for a generalisation of the LogP
model. Moreover, bwe and Zimmermann [63] presented an algorithm that constructs schedules
of length at most twice as long as a minimum-length schedule plus the duration of the sequential
communication operations.

Simultaneously to my research on scheduling in the LogP model, Kort and Trystram [55]
studied the problem of scheduling in the LogP model. They presented three algorithms for
scheduling send graphs under an independent data semantics [25]. They proved doaitailfs
o and all sinks or all messages have the same length, then a minimum-length schedule for a send
graph on an unrestricted number of processors can be constructed in polynomial time. Because
scheduling send graphs under an independent data semantics corresponds to scheduling receive
graphs (under a common data semantics), their result also shows that minimum-length schedules
for receive graphs on an unrestricted number of processors can be constructed in polynomial time
if g equalso and all sources have the same execution length or all message lengths are equal. In
addition, Kort and Trystram [55] showed that if all sinks have the same length and this length is
at least maxg, 20+ L}, then a minimum-length schedule for a send graph on two processors can
be constructed in linear time.

8.5 Outline of the second part

The remaining chapters of Part Il are concerned with the problem of constructing minimum-
length schedules in the LogP model. In the next chapter, we study the problem of scheduling
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send graphs. It is proved that constructing minimum-length schedules for a send graph on an
unrestricted number of processors is a strongly NP-hard optimisation problem. A polynomial-
time algorithm is presented that constructs schedules for send graphsrocessors that are at

most twice as long as a minimum-length schedulé@gmocessors. In addition, it is shown that

if all task lengths are equal, then a minimum-length schedule for a send grdpprogessors

can be constructed in polynomial time.

In Chapter 10, two polynomial-time approximation algorithms for scheduling receive graphs
are presented. The first is a 3-approximation algorithm for scheduling receive graphs on an
unrestricted number of processors. For each conkta@ ", the second algorithm can construct
schedules for receive graphs Biprocessors that are at most% times as long as minimum-
length schedules oR processors. Moreover, it is proved that if all task lengths are equal, then
a minimum-length schedule for a receive graph on an unrestricted number of processors can be
constructed in polynomial time.

In Chapter 11, two algorithms are presented that decompose inforests into subforests whose
sizes do not differ much. Using the decompositions constructed by the first algorithm, schedules
for d-ary inforests orP processors are constructed that have a length that is at most the sum of

d+1-— ‘fir—JrF‘,’ times the length of a minimum-length schedulePprocessors and the duration
of d(P— 1) — 1 communication actions. The decompositions constructed by the other algorithm
can be used to construct schedulesRoprocessors with a length that is at most the sum of
3— Pi-ﬂ times the length of a minimum-length schedule Pprocessors and the duration of

d(d—1)(P— 1) — 1 communication actions.
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9 Send graphs

In this chapter, the problem of scheduling send graphs in the LogP model is studied. In Sec-
tion 9.1, it is proved that constructing minimum-length schedules for send graphs on an unre-
stricted number of processors is a strongly NP-hard optimisation problem. A polynomial-time
2-approximation algorithm for scheduling send graphs is presented in Section 9.2. In Section 9.3,
it is shown that if all task lengths are equal, then a minimum-length schedule for a send graph
can be constructed in polynomial time.

9.1 An NP-completeness result

In this section, we study the complexity of constructing minimum-length schedules for send

graphs in the LogP model. If the number of processors is restricted, then it is not difficult to prove

that this optimisation problem is NP-hard. Using a polynomial reduction froarR3R 10N, it

will be shown that constructing minimum-length schedules for send graphs on an unrestricted
number of processors is strongly NP-hardABPTION is defined as follows [33].

Problem. 3PARTITION

Instance. A setA= {as,...,asm} Of positive integers and an integ8y such thalzi:i“lai =mB
andiB<a < iBforalli e {1,...,3m}.

Question. Are there pairwise disjoint subsefs,...,Am of A, such thatzaeAj a = B for all
je{1,....m?

3PARTITION is a well-known strongly NP-complete decision problem [33ENS GRAPH
SCHEDULINGISs the following decision problem.

Problem. SEND GRAPH SCHEDULING
Instance. An instanceG, |, L, 0,9, %), such thatG is a send graph and an inteder
Question. Is there a feasible schedule f@, i, L, 0,9, ») of length at mosD?

Lemma 9.1.1 shows the existence of a polynomial reduction froaRBRION to SEND
GRAPH SCHEDULING This reduction shows thatE8ib GRAPH SCHEDULINGIS a strongly NP-
complete decision problem.

Lemma 9.1.1. There is a polynomial reduction froBPARTITION to SEND GRAPH SCHEDUL:
ING.

Proof. Let A = {ay,...,asm} and B be an instance of 3RTITION. Construct an instance
(G,H,L,0,0,0) of SEND GRAPH SCHEDULINGas follows.G is a send graph with sourseand
sinksys,...,ysm andz, ..., Zn2. Letp(x) =1, w(y;) =& foralli € {1,...,3m}, w(z) = 3mB

and W(z) = 3mB+ (m+2—i)B for all i € {2,...,m+2}. Letc(x) =1, c(y;) =0 for all
i€{l,...,3m} andc(z) =0 foralli € {1,...,m+2}. LetL=0,0=0 andg=B. In ad-
dition, letD = 4mB+ 1. Now it is proved that there is a collection of pairwise disjoint subsets
A1,...,An of A, such thatzaeAj a=Bforall j € {1,...,m} if and only if there is a feasible
schedule fofG, y, L, 0,9, ) of length at mosD.
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AssumeA, ..., An is a collection of pairwise disjoint subsetsAfsuch thalzaeAj a=B
forall j € {1,...,m}. ThenAjU---UAym = A. A schedulgo, ) for (G,l,L,0,09,0) can
be constructed as follows.starts at time 0 on processor 1. Forial{2,...,m+2}, send
operationsy; 1 is executed at timé — 2)B+ 1 on processor 1 and receive operatiQrm
attime(i —2)B+ 1 on processar Sinkz is scheduled at timmB+ 1 on processor 1 and
sinkz at time(i —2)B+ 1 on processairfor alli € {2,...,m+2}. Forallj € {1,...,m},
defineYj = {y; | a € Aj}. ThenF ey, U(y) =Bforall j € {1,...,m}. The tasks of; are
scheduled without interruption from tinf¢ — 1)B+ 1 to time jB+ 1 on processor 1. Then
the sinksys,...,ysn are scheduled between the send operations on processor 1 and the
sinkszi, .. .,zm.p after the communication operations. Herioen) is a feasible schedule
for (G, L, 0,9, ). Its length equals maxj<m:+2(0(z) + W(z)). z1 is completed at time
0(z1) + W(z1) = mB+1+3mB=4mB+ 1. Foralli € {2,...,m+2}, sinkz finishes at time
0(z)+Wz)=(i—2)B+1+3mB+ (m+2—i)B=4mB+ 1. Hence(o,™) is a feasible
schedule fofG, , L,0,g,) of length at mosb.

Assume(o, ) is a feasible schedule fé6, |, L, 0, g, ) of length at mosb. Thent(z) #

1(z;) for alli # j. So the tasks o6 are scheduled on at least+ 2 processors. Assume

x is scheduled at time 0 on processor 1. There is a zitkat is scheduled aftan+ 1
receive operations. This task cannot start until tmgp+ 1 = mB+ 1. Sincey(z) > 3mB
foralli e {1,...,m+ 2}, we may assume tha,;, is scheduled at timemB+ 1. Since it

starts at timenB+ 1, send operations must be executed at tithe®2)B+ 1 on processor 1
forallie {2,...,m+2}. We may assume that send operatipy is scheduled at time
(i—2)B+1 on processor 1 and receive operatign, at the same time on processor
Hence we may assume thafzy,2) = m+ 2. The remaining sinkg,...,Zn.1 must be
scheduled on processors. 1,m+ 1. Since the length of the sinks,...,zn.1 is larger

than 3nB, zz must be scheduled on processor 1 at tirm@+ 1. Similarly, sinkz must

be scheduled on processaat time (i —2)B+ 1 for alli € {2,...,m+ 1}. Then all sinks
71,...,Zms2 finish at time 4nB+ 1. A sinky; cannot be executed on procesgog 1
before sinkz;, because; is scheduled immediately after receive operatigpy. So sinks
Y1,---,Yam are scheduled between the send operations on processor 1. There is a delay
of mBtime units between the first and last send operation. Since the sum of the length
of the sinksy,...,ysm equalsmB, processor 1 is not idle before tiniz. No sinky;

can start before a send operation and finish after it. Fof all{2,...,m+ 1}, define
Yici={yi|(1—2)B+1<0(yi) <(j—1)B+1}andAj_1 = {a | yi € Y;}. Then the sets

Aj are pairwise disjoint an¥acp @ = Y ey, puy) =Bforall j € {1,...,m}.

O

Lemma 9.1.1 shows thateE®ID GRAPH SCHEDULINGIs a strongly NP-complete decision
and that constructing minimum-length schedules for send graphs on an unrestricted number of
processors is strongly NP-hard.

Theorem 9.1.2. Constructing minimum-length schedules for instan@gyL,0,g,%), such
that G is a send graph, is a strong§P-hard optimisation problem.
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The reduction presented in the proof of Lemma 9.1.1 uses the factitiea exceed. Using
a reduction from RRTITION [33], one can also prove thataf> g ando > 1, then constructing
a minimum-length schedule for a send graph on an unrestricted number of processors is an NP-
hard optimisation problem. It is not clear whether constructing a minimum-length schedule for a
send graph on an unrestricted number of processors remains NP-bagaifdc(x) are bounded
by a constant. If botlo andg equal zero, then a minimum-length schedule for a send graph on
an unrestricted number of processors can be constructed in polynomial time [13].

9.2 A 2-approximation algorithm

In this section, a simple 2-approximation algorithm for scheduling send graphs in the LogP model
is presented. It is obvious that for a minimum-length schedule for an inst&pec,L,0,g,P),

such thatG is a send graph, the number of processors on which a tasksd$cheduled need not
exceed the number of sinks @f For each possible number of processarshe algorithm pre-
sented in this section constructs a schedulé®g c, L, 0,9, P) that uses exactlgn processors.

It will be proved that the shortest of these schedules is at most twice as long as a minimum-length
schedule fo(G, y,c,L,0,9,P).

Consider an instanogs, i, ¢, L, 0,9, P), such thatG is a send graph with soureeand sinks
V1,...,¥n. Thereis a minimum-length schedule {@, , c,L, 0, g, P) that uses at most m{m, P}
processors. Leti < min{n,P} be a positive integer. A feasible schedule &;,c,L,0,9,P)
will be called amtm-processor schedufer (G, c,L,0,g,P) if there are exactlyn processors on
which a task ofG is executed. More precisely, a feasible schedaler) for (G, c,L,0,g,P) is
anm-processor schedule fo6, u, c,L,0,9,P) if [{T(u) |lueV(G)}| =m.

Consider an instandés, i, ¢, L, 0,9, P), such thats is a send graph with sourseand sinks
Vi,.-..,Yn. Algorithm SEND GRAPH SCHEDULINGShown in Figure 9.1 constructs amprocessor
schedule fofG, l, ¢, L, 0,9, P) as follows. The sourceof G is scheduled at time 0 on processor 1
and a set o€(x) send and receive operations is scheduled for each of the processorm2To
ensure that the constructed schedule isrggrocessor schedule, a sink @fis scheduled after
the last receive operation on each of these processors. The remaining sinks are scheduled by a
straightforward modification of Graham’s List scheduling algorithm [38, 39].

Example 9.2.1. Consider the instandgs, |, ¢, 2,1,2, ) shown in Figure 9.2. For this instance,
Algorithm SEND GRAPH SCHEDULINGconstructs the 3-processor schedule shown in Figure 9.3.

x is scheduled on processor 1 at time 0. The resukisfsent to processors 2 and 3. Sink

is scheduled after the last receive operation on processor 2. Simyaityscheduled after the

last receive operation on processor 3. The other sinks are scheduled after the send operations on
processor 1, aften on processor 2, or aftgp on processor 3.

Now we will prove that Algorithm 8ND GRAPH SCHEDULINGcorrectly constructs feasible
m-processor schedules for send graphs.

Lemma 9.2.2. Let G be a send graph with source x and sinks y,yn. Let m< min{n,P}
be a positive integer. Leton, Tn) be the schedule fofG,,c,L,0,9,P) constructed by
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Algorithm SEND GRAPH SCHEDULING

Input. An instance(G,,c,L,0,g,P), such thatG is a send graph with sourceand sinks
Y1,...,¥n and a positive integen < min{n, P}.

Output. A feasiblem-processor schedulem, Ti,) for (G, i, c,L,0,9,P).

1. om(x):=0

2. Tip(x):=1

3. idle(l) :=p(x)

4. forp:=2tom

5. doidle(p):=0

6. for j :=1to ¢(X)

7. do Om(Scp) = HX) + ((P—2)c(x) + | — 1) max{o,g}
8. Tin(Skp,j) =1

9. idle(1) := Om(Sxp,j) +0

10 Om(xp.j) = HO) + (P~ 2)c(x) + | — 1) max{o,g} +L+0
11 Tin(Ipj) '= P

12. idle(p) := Om(rxp,j)+0

13. Om(Yp-1) == idle(p)

14. Tin(Yp-1) =P

15. idle(p) := om(yp-1) + M(Yp-1)

16. fori:=mton
17. do assumedle(p) = mini<j<midle(j)

18. Om(Yi) := idle(p)
19. T(Yi) == P
20. idle(p) :=idle(p) + u(yi)

Figure 9.1. Algorithm SEND GRAPH SCHEDULING

Algorithm SEND GRAPH SCHEDULING Then (om, i) is an m-processor schedule for
(G,ucL,09P).

Proof. x is executed at time 0 on processor 1. It is easy to see that all sinksaoé sched-

uled afterx. For all processorp € {2,...,m} and allj € {1,...,¢c(x)}, send operatios,  j is
scheduled on processor 1 at timg) + ((p— 2)c(x) + j — 1) max{o,g} and the corresponding
receive operation, p j on processop at timep(x) + ((p—2)c(x) + j — 1) max{o,g} + 0+L. So

the send operations are scheduled aftand there is a delay of méa, g} time units between

the starting times of two consecutive send operations or two consecutive receive operations on
the same processor. Moreover, there is a delay of exadilye units between the completion
time of a send operation and the starting time of the corresponding receive operation. For all
processorg € {2,...,m}, a sink ofG is scheduled on processpat the completion time of the

last receive operation on procesgoiClearly, the sinks oG are scheduled after all communica-

tion operations and no processor executes two tasks at the same tirt@,, 8p) is a feasible
schedule fofG, y,c,L,0,9,P). Because every procesgpe {1,...,m} executes at least one task

of G, (om, Tiy) is anm-processor schedule 66, , c,L, 0,9, P). O
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Figure 9.2. An instance(G, |, ¢,2,1,2, )
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Figure 9.3. A 3-processor schedule constructed by AlgoritheENS GRAPH SCHEDULING

The time complexity of Algorithm BND GRAPH SCHEDULINGcan be determined as fol-
lows. Consider an instan¢é, i, ¢, L, 0,9, P), such thatG is a send graph, and a positive integer
m < min{n,P}. Assigning a starting time and a processor to the sour¢& ai— 1 sinks ofG
and the communication operations tak&®) time. If the processors are stored in a balanced
search tree ordered by non-decreasing first idle time, then for each of the remainimg- 1
sinks of G, O(logm) time is used to determine a starting time and a processor. Hg(miegn)
time is used to construct an-processor schedule 66, p, c,L,0,g,P).

Lemma 9.2.3. For all instances(G,,c,L,0,g,P), such that G is a send graph and all posi-
tive integers m< min{n, P}, Algorithm SEND GRAPH SCHEDULINGconNstructs a feasible m-
processor schedule fé¢G, i, ¢, L,0,g,P) in O(nlogn) time.

Now it will be proved that then-processor schedules constructed by AlgorittenS GRAPH
SCHEDULING are at most twice as long as-processor schedules of minimum length. Get
be a send graph with sourseand sinksy,...,y,. Letm < min{n,P} be a positive integer.
Let (om, Tin) be them-processor schedule f6G, |, c,L, 0,9, P) constructed by Algorithm S\ND
GRAPH SCHEDULING Let ¢y, be the length ofom, Ttn) and}, the length of a minimum-length
m-processor schedule f¢6, ,c,L,0,g,P). In anym-processor schedule fg6, u,c,L,0,g,P),
c(x) receive operations have to be executedhon 1 processors. Henceiifi # 1, then every
m-processor schedule f6G, i, c,L, 0,9, P) has length at least

by > H(X)+ ((m—1)c(x) —1)max{o,g} +20+L.
Obviously, every 1-processor schedule Gt 1, c,L,0,g,P) has length at least(x) + 31 M(i)
and ifm= 1, then Algorithm &ND GRAPH SCHEDULINGconstructs a schedule of this length.

Hence we will assume that > 2.
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Assumey is a sink ofG that finishes at timé,,. Theny has been assigned a starting time and
a processor in Lines 13 and 14 or in Lines 18 and 19 of AlgoritlBRISGRAPH SCHEDULING

Case 1. y has been assigned a starting time and a processor in Lines 13 and 14.
Assumert(y) = p. Thenp # 1 andy is scheduled immediately after receive operatiggx)-
This receive operation finishes at tirpéx) + ((p — 1)c(x) — 1) max{o,g} + 20+ L < /..
Obviously,u(y) < 45. So

¢ = omly)+Hy)
= (M) +((p—Dec(x) —1)max{o,g} +20+L) +p(y)
<20k,

Case 2. y has been assigned a starting time and a processor in Lines 18 and 19.
Assumey is scheduled on processpr If p =1, theny is scheduled aftex and the send
operations. Otherwisg,is scheduled after sing,_1. If processor 1 is idle at a timg such
thatp(x) + ((m—1)c(x) — 1) max{0,g} + 0 <t < om(y), theny would have been scheduled
at timet on processor 1. Similarly, if a processgre {2,...,m} is idle at a timet, such
thatp(x) + ((p’ — 1)c(x) — 1) max{o,g} + 20+ L+ u(yy—_1) <t < om(y), theny would have
been scheduled at timieon processop’. Hence processor 1 is busy from tipg) + ((m—
1)c(x) — 1)max{o,g} + o until time oy (y) and each process@ € {2,...,m} from time
H(X) + ((p' — 1)e(x) — 1) max{o,g} + 20+ L+ p(yy_1) until time om(y).
No sink of G can be executed before a receive operation on a proc@ssof2,...,m}.
Because the communication operations are executed as early as possible, the idle periods
in (om, ) ON processors,2.., m before the first sink cannot be avoided. Hence the only
idle time in (om, Tin) that can be avoided is the idle time between the send operations on
processor 1. As a result,

2 (mam(y) + u(y) — ((m—1)c(x) — 1)(max{0,g} — 0))

Om(Y) + mM(Y) — & ((m—1)c(x) — 1)(max{o,g} —0).

In addition, £, > pu(y) and/;, > u(x) + ((m—1)c(x) — 1) max{o,g} + 20+ L, since the last
receive operation on the™ processor cannot be completed before this time. Consequently,

bm

v

bm = Om(y)+H(y)
< L (1= 2HY) + & (M= 1)e(x) — 1)(max{o,g} —0))
< G+ (L= + e
= 20

Consequentlytom, Ttn) is at most twice as long as a minimum-lengtkprocessor schedule for
(G,u,¢c,L,0,9,P).

For each positive integen < min{n, P}, Algorithm SEND GRAPH SCHEDULINGIs used to
construct amm-processor schedul®m, Tin) for (G, i, ¢, L, 0,9, P) of length/y,. Assume(oy, Tk)
is the shortest of these schedules. £et MiNy<m<min{np) fm- ASSumel™ = £ Thenty </ <
20, = 2¢*. Hence we have proved the following result.
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Theorem 9.2.4. There is an algorithm with an @?logn) time complexity that constructs fea-
sible schedules for instancéS, i, c,L, 0,9, P), such that G is a send graph, with length at most
2¢*, wheref* is the length of a minimum-length schedule @t c,L, 0,9, P).

9.3 A polynomial special case

In Section 9.1, it was shown that constructing minimum-length schedules for send graphs is a
strongly NP-hard optimisation problem. In Section 9.2, a 2-approximation algorithm was pre-
sented. In this section, it will be proved that if all task lengths are equal, then a minimum-length
schedule can be constructed in polynomial time.

Let G be a send graph. Consider an instaii€ey,c,L,0,g,P), such thatu(y) = u for
all sourcesy of G. There is a minimum-length schedule @B, c,L,0,9,P) that uses at
most min{n, P} processors. A minimum-length schedule {@,,c,L,0,g,P) is constructed
by computing the length of a minimum-lengthprocessor schedule for all positive integers.
min{n, P}. These lengths are used to construct a minimum-length schedy(@ forc,L,0,g, P).

Let G be a send graph. Consider an instaf@ey, c,L,0,g,P), such that all sinky of G
have execution length(y) = . In anm-processor schedule g6, i, c,L,0,g,P), c(x) receive
operations have to be executedror- 1 processors and at least one sink is scheduled after the
last receive operation on each of these processors. Hgpee(m— 1)c(x) send and receive
operations have to be scheduled. Because the length of a minimum-length 1-processor sched-
ule (G,y,c,L,0,0,P) equalsu(x) + ny, we will only consider the computation of the length of
minimum-lengthm-processor schedules (B, ji, c,L,0,g,P), wherem > 2.

First we will consider anmm-processor schedul@m, Tino) for (G,u,c,L,0,9,P), in which
the communication operations are executed as early as possible. We may assurisesttatd-
uled at time O on processor 1 and that send operaspps are executed before send oper-
ationss, p,1,j for all processorp € {2,...,m—1} and alli,j € {1,...,¢(x)}. So we may
assume that for all processopsc {2,...,m} and alli € {1,...,c(x)}, send operatiors, p;
is scheduled at timg(x) 4 ((p — 2)c(x) +i — 1) max{o,g} and receive operatiory ; at time
u(x) + ((p—2)c(x) +i — L)maxo,g} + L + 0. Hence the last send operation finishes at time

idlemo(1) = HX)+ ((m—1)c(x) — 1) max{o,g} +o.
Since we may assume that the sink&are scheduled immediately after the last communication
operation on processors.2.,m, the first sink on processg@re {2,...,m} finishes at time
idlemo(p) = H(X)+ ((p—1)c(x) — 1) max{o,g} + L+ 20+

Now consider a minimum-lengtim-processor schedul®m, i) for (G,y,c,L,0,9,P). We
may assume that the communication operations are scheduled in the same orde#asrimo).
The sinks ofG are scheduled after the communication operations or between the send operations.
There is a delay of at least mgx g} — o time units between the completion time of a send

operation and the starting time of the next one. d@t,g) = % If there is a delay of
max{0,g} time units between the starting times of two consecutive send operations, then at most
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|a(o,9) | sinks can be scheduled between them. If at Iba&b, g) | sinks are scheduled between
two consecutive send operations, then we may assume that processor 1 is not idle between these
send operations. It is not difficult to see that if more theio,g)] sinks are scheduled between
two consecutive send operations, then one of them can be scheduled at a later time without
increasing the schedule length. Hence we may assume that afeiogy) | sinks are scheduled
between two consecutive send operations. In addition, we may assume that no sink is scheduled
before the first send operation on processor 1. So the total number of sinks scheduled between
the send operations of processor 1 is at njGst— 1) [a(0,9)].

If [a(o,9g)] sinks are scheduled between two consecutive send operstiands,, then the
starting times of these send operations differs exactlja(o,g) . So compared to the starting
times ofs; ands; in (Omo, Timo), the starting time o$; is increased by

inc(o7g) = (G(oag)—‘u_(max{ovg}_o)'

Assumek sinks are scheduled between the send operations on processor 1. We may assume
thatk < (Cn—1)[a(0,9)] andk < n—m+1. In addition, becausg (0, g) | sinks can be sched-
uled between any pair of consecutive send operations without increasing the schedule length, we
may assume th&t> min{n—m+1,(Cn—1)|a(0,9)|}. If k=ko+ (Cn—1)|a(o,g)] for some
non-negative integed, then[a(o,g)] sinks have to be scheduled before the kastend oper-
ations and o (o, g) | before the other send operations except the firdt.<f(Cy, — 1) |0 (0,9) |,
then at mosta(o,g) | sinks have to be scheduled between any pair of consecutive send opera-
tions on processor 1. Hence the last send operation on processor 1 finishes

incmk(1) = max{0,k—(Cn—1)[a(o,g)]}inc(o,g)

time units later than itiom o, Timo). Moreover, the completion times of the first sinks on proces-
sors 2...,mare increased compared to their completion time&ino, o). The send opera-
tionss, p; are scheduled before send operatigns 1,j for all processorp € {2,...,m—1} and
alli,je{1,...,c(x)}. Becausda(o,g)] sinks are scheduled between the lgspairs of con-
secutive send operations on processor 1, the completion times of the first sink on ﬂ@%@st
processors are increased. The completion time of the first sink on progessf®, ..., m} is
increased by

incmk(p) = max{0,k—(Cn—1)|a(o,9)] — (m—p)c(x)}inc(o,q),

becauséa(o,g)]| sinks are scheduled before the lest= k— (Cy,— 1) | a(0,9) | send operations
on processor 1 and tiien— p)c(x) send operations scheduled on processor 1 after send operation
Sy,p.c(x) does not increase the starting time of the first sink on procegssor
Let {mk be the minimum length of am-processor schedule f¢G, |, c,L,0,9,P) in which
k sinks are scheduled between the send operations on processor 1/ykhierthe length of
(om, Thy). SO we may assume that the last send operation on processor 1 finishes at time

idlemk(1) = idlemo(1) +incmk(1)
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and that for all processors< {2,...,m}, the completion time of the first sink on procesgor
equals

idlemk(p) = idlemo(p)+inCmk(p).

Note thatidlemk(m) > idlemk(p) for all processorp € {1,...,m}. Since the remaining—k
sinks have to be scheduled after the send operations on processor 1 or after the first sink on a
processop € {2,...,m}, {m is the smallest integet such that

. 1| ¢—idlemk(p)
¢ > idlemg(m)  and {7J > n—k
" pZ]_ P—

Define

. . idl
ko = min{f e Q | ¢ >idlemk(m) A Z ! emk £ idlemk(p) >n—k}.
Thenlmko < fmk < fmko+ K €mko can be computed i@®(m) time:
. 1 n
lnko = max{|d|em,k(m)va((n*k)u+ Z |d|em,k(p))}-
p=1

If €m0 =idlemk(m), thenly ko= lmk = idlemk(m). So we will assume thd, o # idlemk(m).
Then

Imk = Min{tcZ| g {Lemk(p)J _ E ém,ko—idlem,k(p)}.
=1

I“l p:]_ u
Sincelmyo # idlem(m), S, M € IN. Define
D lmko— |d|emk lmk0o— ld|emk(p)
D = p; - Z :

Note thatD € N andD < m. Assume that for all processopse {1,...,m},

Imko—idlemk(p) = dpH+Tp,

such that 0< rp, < l. Thenlm i — mko equals the smalleste Q, such thatmyko+d € Z and
for at leastD processor, rp+d > . Thenlyk can be computed as follows. Select D8

element in the list of processors ordered by non-increaginglues. Assume the™" processor
in this list is processopy. Then

bk = [lmko+H—Tp]-

Selecting thed™ processor take®(m) time [18], s0/mk can be computed i®(m) time.
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Let £, = ming fmy and* = Miny<memingnpy {m- Thenty, is the length of a minimum-length
m-processor schedule f¢6, |, c,L,0,g,P) and¢* the length of a minimum-length schedule for
(G,i¢,L,0,g,P). For each positive integen < min{n, P}, £;, can be computed i®(n?) time,
because(x) is bounded by a constant. $6 can computed iO(n®) time. If ¢* equalstm,
thenmandk can be used to construct a minimum-length schedule in linear time. Hence we have
proved the following result.

Theorem 9.3.1. There is an algorithm with an %) time complexity that constructs minimum-
length schedules for instancé&, ,c,L,0,g,P), such that G is a send graph and there is a
positive integer Y, such thaty) = u for all sinks y of G.

If max{o,g} — o is divisible by u (for instance, ifg < o or if p= 1), then the length of
a minimum-length schedule fdG,  c,L,0,g,P) can be computed more efficiently. Assume
max{o,g} — ois divisible byp. Thena(o,g) € IN. So we may assume that in a minimum-length
m-processor schedule f@6G,,c,L,0,9,P), exactlyky = min{n, (Cy, — 1)a(o,g)} sinks of G
are scheduled between the send operations on processor 1. Obviagsky,(p) = O for all
processorp € {1,...,m}. So in a minimum-lengtim-processor schedule f¢&, ,c,L,0,g,P),
the last send operation on processor 1 finishes at time

idlemk,(1) = idlemo(l) = u(x)+ ((m—1)c(x) —1)max{o,g}+o.
The completion time of the first sink on procesgar {2,...,m} equals
idlemk,(p) = idlemo(p) = HX)+ ((p—1)c(x) —1)max{o,g} +L+20+ L.

Moreover,/y, is the smallest intege, such that

¢ > idlemk,(m) and E{%LWJ > n—Kknp.
p=1

{m can be computed i@(n) time. Hencel* = Miny<m<mingnp} {m Can be computed io(r?)
time. Given the number of processars such that’* = /5, a minimum-length schedule for
(G,u,¢c,L,0,0,P) can be constructed in linear time. So we have proved the following result.

Theorem 9.3.2. There is an algorithm with an ?) time complexity that constructs minimum-
length schedules for instancé&, ,c,L,0,9,P), such that G is a send graph and there is a
positive integer Y, such thafy) = p for all sinks y of G andnax{o,g} — o is divisible by p.

9.4 Concluding remarks

In this chapter, two polynomial-time algorithms were presented that construct schedules for send
graphs in the LogP model. Both algorithms use the knowledge of the order in which the send
operations have to be scheduled in a minimum-lemgibrocessor schedule. For more general
classes of outforests, it is not obvious what the communication structure of minimum-length
schedules looks like. Hence even for instan@@d., 0, g, P), such thats is an outtree of height
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three, it is not known whether a minimum-length schedule can be constructed in polynomial
time.

Some results concerning scheduling in the UCT model can be generalised for scheduling
in the LogP model. Because the UCT model can be viewed as the LogP model with parameters
L =1 ando=g=0, the NP-completeness proof of Lenstra et al. [61] also shows that constructing
minimum-length schedules for instand& 1,0, 0, P), such thaG is an outtree, is an NP-hard
optimisation problem.

Some algorithms for scheduling subject to communication delays can be generalised for
scheduling in the LogP model. Gdtrenne [12] presented an algorithm that constructs minimum-
length schedules for outforests on an unrestricted number of processors subject to small commu-
nication delays. It is not difficult to transform the schedules constructed by this algorithm into
feasible LogP schedules by introducing the communication operations. The resulting algorithm
constructs minimum-length schedules for instar{€&$4, L, 0, g, ), such thatG is a binary out-
forest andL < p(u) for all tasksu of G, and for instance$G, ., L,0,0, ), such thatG is an
outforest and. < p(u) for all tasksu of G.

Munier [71] presented another algorithm that can be generalised for scheduling in the LogP
model by introducing the communication operations. The generalised algorithm constructs
schedules for instancé&, i, ¢, L, 0,0,), such thaiG is an outforest, that are at most—2F11
times as long as a minimum-length schedule(fdry, c,L,0,0,). Moreover, a more involved
generalisation constructs schedules for instariGs., L, 0,g,»), such thatG is a d-ary out-
forest, that are at most-2 (d + 1) max{o,g} times as long as a minimum-length schedule for
(G, L,0,g,0). Munier [71] also presented an algorithm that can be generalised to an algorithm
that constructs schedules for instan@®sc, L, 0,0, P), such thaG is an outforest. The length of
the schedules constructed by this generalised algorithm are at mqdt4 5)(2— ﬁl) times
as long as minimum-length schedules (@ c,L,0,0,P).

Another possible generalisation is scheduling with a different kind of communication. The
communication in the schedules constructed by the algorithms presented in this chapter works
as follows: if the result of a taskt scheduled on processgris needed by tasks scheduled on
processorp; andpy, then processap must send the result afto processorg; andp,. How-
ever, the result ofi could also be sent from procesgmrto processop,. If such communication
is allowed, then a schedule constructed by AlgorithewS GRAPH SCHEDULINGShould start
with a minimum-length schedule for@x)-item broadcast operation. ¢{x) equals one, then
such a schedule can be constructed in polynomial time [20, 54]. So if broadcast communication
is allowed and only one message is needed to send the result of the source to another proces-
sor, then schedules for send graphs that are at most twice as long as minimum-length schedules
can be constructed in polynomial time. dfx) is at least two, then it is difficult to construct a
minimum-length broadcast schedule. In that case, it is not easy to construct schedules that are at
most twice as long as minimum-length schedules.
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10 Receive graphs

In this chapter, we will consider the problem of scheduling receive graphs in the LogP model.
Note that this problem is equivalent to the problem of scheduling send graphs under an indepen-
dent data semantics. Like in Chapter 9, the structure of minimum-length schedules will be used
to construct good schedules for receive graphs.

In Section 10.1, it is shown that constructing minimum-length schedules for receive graphs
on an unrestricted number of processors is a strongly NP-hard optimisation problem. This is
proved using a polynomial reduction similar to the one presented in the proof of Lemma 9.1.1.

In Section 10.2, two polynomial-time approximation algorithms are presented. Both algo-
rithms assume that does not exceed. The first approximation algorithm constructs schedules
for receive graphs on an unrestricted number of processors that are at most three times as long
as a minimum-length schedule on an unrestricted number of processors. In Section 10.2.2, it is
shown that a schedule éhprocessors that is at mOSﬂ’% times as long as a minimum-length
schedule orP processors can be constructed in polynomial time for all conktarZ *.

In Section 10.3, itis shown that if all task lengths are equal, then a minimum-length schedule
for a receive graph on an unrestricted number of processors can be constructed in polynomial
time. This is an improvement over the result of Kort and Trystram [55] who proved that a
minimum-length schedule for a receive graph on an unrestricted number of processors can be
constructed in polynomial time @ does not exceed and all sources have the same execution
length.

10.1 An NP-completeness result

In Chapter 9, it was proved that constructing minimum-length schedules for send graphs on an
unrestricted number of processors is a strongly NP-hard optimisation problem. This was proved
using the polynomial reduction from BRTITION presented in the proof of Lemma 9.1.1. Let

(G, L,0,9,) be the instance constructed by this reduction for an instanceasf3PON. The

send graptG containsm+ 2 large tasks that must be scheduled on different processors. These
are the only tasks that are scheduled after the communication operations in a minimum-length
schedule fofG, ,L,0,g, ).

By reversing all arcs in send gragh we obtain a receive grag®’. In a minimum-length
schedule fofG', L, 0,9, »), the large tasks are the only ones that are scheduled before the com-
munication operations. Hence the reversal of the minimum-length schedule for the send graph
can be viewed as a minimum-length schedule for the receive graph. Thus a similar reduction as
the one presented in the proof Lemma 9.1.1 can be used to prove that constructing minimum-
length schedules for receive graphs on an unrestricted number of processors is a strongly NP-hard
optimisation problem.

Theorem 10.1.1. Constructing minimum length schedules for instan@@gy L, 0,9, ), such
that G is a receive graph, is a strongNP-hard optimisation problem.

Theorem 10.1.1 shows that it is unlikely that a minimum-length schedule for an instance

123



(G,u,¢c,L,0,0,0), such thaiG is a receive graph angl> o, can be constructed in polynomial
time. It is unknown whether minimum-length schedules on an unrestricted number of processors
can be constructed in polynomial timegitioes not exceed Kort and Trystram [55] proved that

if g < oand all tasks have the same length, then a minimum-length schedule for a receive graph
can be constructed in polynomial time.

10.2 Two approximation algorithms

In this section, two polynomial-time approximation algorithms for scheduling receive graphs in
the LogP model are presented. The first is presented in Section 10.2.1. It constructs schedules
for receive graphs on an unrestricted number of processors. The length of these schedules are at
most three times as long as a minimum-length schedule on an unrestricted number of processors.
The algorithm presented in Section 10.2.2 constructs schedules for receive graphs on a restricted
number of processors. It is shown that for each conanZ ", a schedule o processors
that is at most 3 Wll times as long as a minimum-length schedulePoprocessors can be
constructed in polynomial time.

Both algorithms divide the set of sources of a receive graph into two setsG beta re-
ceive graph. Consider an instan@e, y,c,L,0,g,P). A sourcey of G is calledcommunication
intensiveif p(y) < c(y)o. Otherwise, it is calledomputation intensiveHence a sourcg of
G is communication intensive if the total duration of the send operations needed to send the
result ofy to another processor exceeds the execution lengyh dhe sets of communication-
intensive and computation-intensive sources will be used to compute lower bounds on the length
of minimum-length schedules for receive graphs.

10.2.1 An unrestricted number of processors

In this section, an approximation algorithm for scheduling receive graphs on an unrestricted
number of processors is presented. For this algorithm, we will assumg dioats not exceed.
The algorithm constructs schedules for receive graphs on an unrestricted number of processors
that are at most three times as long as a minimum-length schedule on an unrestricted number of
processors. The algorithm is similar to the 3-approximation algorithm of Hollerman et al. [46]
for scheduling send and receive graphs in a model of parallel computation that resembles the
LogP model.

We start by proving some properties of minimum-length schedules for receive graphs on an
unrestricted number of processors. The next lemma shows that if a source of a receiv@ igraph
not scheduled on the same processor as the sik tifen the receive operations corresponding
to this source may be scheduled after the sourc&tbht are scheduled on the same processor
as the sink ofs. This result is not true ify exceed®. If g exceed®, then some sources &
may have to be scheduled between the receive operations in a minimum-length sche@ule for
on an unrestricted number of processors.

Lemma 10.2.1. Let G be a receive graph with sink x and sourcgs y,yn. If g < o, then there
is a minimum-length schedufe, ) for (G, ,c,L,0,g,), such that for all sources ynd y; of
G, if i(yi) = mi(x) andm(y;j) # 1(x), thena(yi) < o(ry, nx ) for all k < c(yj).
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Proof. Assumeg < 0. Let (o,1) be a minimum-length schedule f¢6, 1, c,L,0,g,). We
may assume that is scheduled on processor 1. letandy; be two sources o6. Assume
m(yi) = 1 andm(y;) # 1. Assumeo(yi) > o(ry, 1) for somek < c(y;). We may assume that
a(yi) = 0(ry; 1k) +0. Theny; can be scheduled at ting&ry, 1 ), ry; 1k at timea(ry; 1k) + K(i)
andsy; 1 x attimeo(ry, 1) +H(yi) —0—L without violating the feasibility ofo, ) or increasing
its length. By repeating this step, a minimum-length schedaler) for (G, c,L,0,g,) is
constructed in which no source Gfis scheduled after a receive operation on processgr O

Lemma 10.2.2 proves that in a minimum-length scheduteafa receive grapi on an
unrestricted number of processors, all processors that do not execute theGimgeaf to execute
at most one task. Unlike Lemma 10.2.1, this result is true for scheduling with arbiteargg.

Lemma 10.2.2. Let G be areceive graph with sink x and sourcgs .y, y,. There is a minimum-
length scheduléo, ) for (G, ,c,L,0,9,), such that for all processors $ 1(x), at most one
source of G is executed on processor p.

Proof. Let (o, ) be a minimum-length schedule @&, |, ¢, L, 0,9, ). We may assume thats
scheduled on processor 1. Assume two souycasdy; of G are scheduled on processms 1.
Let processop’ be a processor on which no task®fis executed. Theg; can be scheduled
on processop’ at timeo(y;) and send operatiog), 1 x on the same processor at tim(afsyj,lyk)
for all k < c(yj). This does not violate the feasibility 6f, ) nor does it increase its length. By
repeating this step, we obtain a minimum-length scheg@ulg) for (G, ,c,L,0,g,), such that
at most one source @ is executed on processpifor all processorg # 11(X). |

The following lemma shows that there is a minimum-length schedule for a receive @raph
on an unrestricted number of processors, in which the receive operations corresponding to the
sources ofG with a small execution length are scheduled before the receive operations corre-
sponding to the sources G&fwith a large execution length.

Lemma 10.2.3. Let G be areceive graph with sink x and sourcgsy,yn,. There is a minimum-
length schedul¢o, ) for (G, ,c,L,0,9,), such that for all sourcesiyand y; of G, if i(y;) <
K(yj) andTi(yi), Ti(y;) 7 T(X), theno(ry, nx.is) < O(ry; .k ) for all ki < c(yi) and k < c(y;).

Proof. Let (o,1T) be a minimum-length schedule f¢&, 1, c,L,0,9,). We may assume that
is scheduled on processor 1. From Lemma 10.2.2, we may assume that all propegsbrs
execute at most one task Gi Lety; andy; be two sources oG that are not scheduled on
processor 1. Assumgy;) < U(yj) ando(y;) = a(y;) = 0. Receive operations; 1 x can start
at timep(yi) +L + o0 on processor 1, receive operatians, k at timep(yj) +L +o0. Assume
o(ryj_yl_kj) < o(ry 1K) for somek; < c(yi) andk; < c(yj). Then ry; 1k can be scheduled at
timea(ry, 1) andry, 1 attimea(ry; 1x;). In addition, send operatiomsg 1, andsy, 1, can be
scheduled. +otime units before receive operations, i, andry, 1 k;, respectively. This does not
violate the feasibility of o, TT) or increase its length, because all receive operations have length
By repeating this step, we obtain a minimum-length schemlg) for (G,,c,L,0,g,P), such
that for all sourcey; andy; of G, if Ti(y; ), T(y;j) # T(x) andp(y;) < U(y;j), then receive operation
ry.mx).k i scheduled before receive operatigny i, for all ki < c(y;) andkj < c(y;). |
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Lemma 10.2.4 shows that in a minimum-length schedule for a receive @aphan unre-
stricted number of processors, all communication-intensive sourd8avdy be scheduled on
the same processor as the sinkof

Lemma 10.2.4. Let G be a receive graph with sink x and sourcgs y,yn. If g < o, then there
is @ minimum-length scheduie, ) for (G,,c,L,0,g,), such that for all sources; yf G, if
H(Yi) < c(yi)o, thenm(y;) = Ti(x).

Proof. Assumeg < o. Let (g, ) be a minimum-length schedule f(B, i, c,L,0,g,»). We may
assume that is executed on processor 1. From Lemmas 10.2.1 and 10.2.3, we may assume that
the sources on processor 1 are scheduled before the receive operations of the sources scheduled
on another processor and that for each soyra# G, if y; is not scheduled on processor 1,
then the receive operatiomg 1 j are scheduled on processor 1 without interruption. Assume

yi is a source of, such thatu(y;) < c(yi)o andm(y;) # 1. We may assume that(ry, 11) <

<o < 0(ry 1c(y))- Thenry 1 ¢y, finishes at timeo(ry, 11) +¢(i)o > o(ry, 1.1) + K(Yi). Then

yi can be scheduled at tim®ry, 1.1) on processor 1 without increasing the length(@fm) or
violating its feasibility. By repeating this step, we obtain a minimum-length schédutg for

(G, ¢,L,0,0,), such that for all sourceg of G, if u(yi) < c(vi)o, theny; is scheduled on
processort(Xx). O

The next lemma proves that it can be determined in polynomial time whether the schedule
for a receive grapks in which all tasks ofs are scheduled on the same processor is a minimum-
length schedule fo& on an unrestricted number of processors.

Lemma 10.2.5. Let G be a receive graph with sink x and sources y,yn. If g <o, then
a schedule fo(G, ,c,L,0,9,») of length |{x) + 1, u(yi) is @ minimum-length schedule for
(G,1¢,L,0,9,) if and only if for all sourcesyof G, if (yi) > c(yi)o, theny i_; p(y;) < (c(vi) +
1)o+L+H(yi)-

Proof. Assumeg < o. We will prove that a minimum-length schedule f@, u,c,L,0,g,P) has
lengthp(x) + 14 p(yi) if and only if for all computation-intensive sourcgof G, Z?:l uiy;j) <
(c(yi) +1)o+ L+ u(yi).

(=) Assume a minimum-length schedule f@,,c,L,0,g,%) has lengthu(x) + S 1(yi).
Lety; be a source o65. Assumey(y;) > c(y;)o. It will be proved by contradiction that
YT Hly)) < (c(yi) +1)o+L+u(yi). Supposg g p(y;j) > (c(vi) +1)o+L+u(yi). Then
construct a schedule, ) for (G, ,c,L, 0,0, o) as follows. Taskgx,...,Yi—1,Yi+1,---,Yn
are scheduled without interruption on processor 1 from time 0 onwaislscheduled on
processor 2 at time 0. For &K c(y;), receive operation, 1 is scheduled on processor 1
at time maxy ;. M(y;),l(yi) +0+L} + (k—1)o. For allk < c(yi), send operatios, 1 k
is scheduled on processor 2 at timfy, 1 k) — L —0. X is scheduled immediately after
Iy, Lc(y) ON processor 1. Thef, ) is a feasible schedule f¢G, , ¢, L, 0,9, ») of length

n
M) +max{u(yi) + (c(yi) + 1)o+L, ; M(yj) +c(yi)o} < MX)+ 3 H(Yj)-
1A =1
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Contradiction.

(«) Assume for all sourceg of G, if p(yi) > c(yi)o, theny|_; p(yj) < (c(yi) +1)o+L+
U(yi). Let (o,m) be a minimum-length schedule fé&, ., c,L,0,g,). Since there is a
schedule for(G, ,c,L,0,g,) of lengthp(x) + S, u(yi), the length of(o, ) is at most
H(X) + S, M(yi). Itis proved by contradiction thdio, ) has lengthu(x) + ST 4 H(yi).
Suppose the length ¢6, 1) is less thamu(x) + S K(yi). Then at least one sourgeof G
is not scheduled on the same processot. #&om Lemma 10.2.4, we may assume that all
communication-intensive sourcgsf G are scheduled on processgk). Hence we may
assume that(y;) > c(y;)o. So(o,m) has length at least

n

W) + (e(i) + Do+ L+uX) > u(X)+;u(yi)-

I
Contradiction.

O

The properties of minimum-length schedules proved in the preceding lemmas will be used to
compute upper bounds on the length of the schedules constructed by AlgomtRESWRICTED
RECEIVE GRAPH SCHEDULING Consider an instand&, |, ¢,L, 0,9, »), such thaG is a receive
graph andg < 0. AssumeG has sinkx and sourcey,...,Yn. Algorithm UNRESTRICTED
RECEIVE GRAPH SCHEDULINGconstructs a schedule, ) for (G,p,c,L,0,9,0) as follows.

The communication-intensive sources@fand its sinkx are scheduled on processor 1. All
computation-intensive sources®fare scheduled on a separate processor. The receive operations
are scheduled after the sources on processor 1, such {ig)ik p(y;) andy; andy; are not
scheduled on processor 1, then receive operatipag are executed before receive operations

ry; 1k - Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGs presented in Figure 10.1.

Example 10.2.6. Consider the instand&, , ¢, 1,2, 2, ) shown in Figure 10.2. Algorithm k-
RESTRICTED RECEIVE GRAPH SCHEDULINGoONstructs a schedule f¢B, i, ¢, 1,2, 2, ) as fol-

lows. The sel; = {y1,Y»,y3} contains the communication-intensive source&ofhese tasks

are scheduled on processor 1 from time 0 onward. The other tasks are scheduled on a separate
processor. Since the execution lengthygfis smaller than that ofs, the communication op-
erations ofy, are executed before thoseysf Sinkx is scheduled on processor 1 after the last
receive operation. So AlgorithmNRESTRICTED RECEIVE GRAPH SCHEDULINGoNStructs the
schedule fofG, , c,1,2,2,0) shown in Figure 10.3.

Now we will prove that Algorithm WRESTRICTED RECEIVE GRAPH SCHEDULINGOI-
rectly constructs feasible schedules for receive graphs on an unrestricted number of processors.

Lemma 10.2.7. Let G be a receive graph. L€t, ) be the schedule fofG,,c,L,0,g, o)
constructed by AlgorithftdNRESTRICTED RECEIVE GRAPH SCHEDULINGIf g < o, then(o, )
is a feasible schedule f¢G, i, c,L,0,g,).
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Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING
Input. An instance(G, ,c,L,0,g,), such thag < o andG is a receive graph with sinkand

sources, ..., Yn, such tha(ys) < -+ < p(yn)-
Output. A feasible scheduléo, ) for (G, c,L,0,g,).

1. idle(1):=0

2. p=1

3. fori:=1ton

4. doif u(yi) <c(yi)o

5. then o(y;) :=idle(1)

6. my) =1

7. idle(1) :=idle(1) + u(yi)

8. else p:=p+1

9. o(y;):=0

10. ;) :=p

11. fori:=2top

12. do lety be the sink ofG executed on processor
13. for j :=1to c(y)

14. do o(ry1,j) .= max{idle(1),u(y) + L+ jo}
15. T(ry1j) =

16. o(sy1j):=0(ry1j)—L—o0

17. (ry1j) =i

18. idle(1) :=o(ry1j)+0

19. o(x) :=idle(1)

20. (x):=1

Figure 10.1. Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING

Proof. Assumeg < 0. Let (g, ) be the schedule fofG, ,c,L,0,g,0) constructed by Algo-

rithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGObviously, processor 1 does not execute

two tasks or communication operations at the same time. For all gwkS, such thatt(y) # 1,

and allj € {1,...,c(y)}, send operatiosy; j starts after the completion time gf Because all
processorp # 1 execute at most one task, no processor executes two tasks or communication
operations at the same time. Singel 0 and no two communication operations are executed

on the same processor at the same time, there is a delay of agléas units between two
consecutive send or receive operations on the same processor. In addition, the receive operations
are scheduledl + o time units after the corresponding send operations(d5n) is a feasible
schedule fofG, y,c,L,0,g, ). O

The time complexity of Algorithm MRESTRICTED RECEIVE GRAPH SCHEDULINGan be
determined as follows. Le&b be a receive graph. Sorting the source$dfy non-decreasing
execution length take®(nlogn) time. Clearly, assigning a starting time and a processor to the
tasks ofG and the communication operations tak¥s) time. It is easy to see that the remaining
operations tak®(n) time.
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@ x1,0

7NN

0):13 @Y221 @Y3:3,2 @Y2:3,1 @Y57,2
Figure 10.2. An instancegG, ¢, 1,2, 2, o)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y1 Y2 Y3 Iys1,1 ys, 11 | Tys22 | X
y4 %’47171
Y5 511 | S512

Figure 10.3. A feasible schedule fqiG, 1, ¢, 1,2,2, o)

Lemma 10.2.8. For all instances(G, 4, ¢,L,0,0,), such that G is a receive graph and<go,
Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULIN®oNstructs a feasible schedule for
(G, ¢,L,0,0,) in O(nlogn) time.

Now we will prove that Algorithm WWRESTRICTED RECEIVE GRAPH SCHEDULINGS a 3-
approximation algorithm. Le® be a receive graph with sinkand sourceg;, .. .,Yn, such that
H(y1) <--- < H(yn). Assumeg < 0. Let (o, 1) be the schedule faiG, y, ¢, L, 0,9, ) constructed
by Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING Lety;,,...,Y; be the sources
of G that are not scheduled on processor 1. Tagt)) > c(yi;)o for all j < k. We will assume
thati; <--- <ix. Lety.,,...,Yi, be the sources d& scheduled on processor 1, such that
k41 < -0 < ln.

Thenx is scheduled immediately after receive operaﬁpknl’c(wk). If processor 1 is not idle
before timeo(x), then(o, ) has length

n k

S M) )0 HX.
j=k+1 1

J:

Otherwise, there is g € {1,...,k}, such that receive operaticrgjl_yl starts at timeu(y;; ) +
L + o and processor 1 executes receive operauigpgh such that > j andi < c(y;, ), without
interruption from timeu(y;, ) + L + o until time o(x). In this case(o, m) has length

k
MO, ) + 5 (yi )o+L+0-+p(x).
1=)
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Let ¢ the length of(o, ). Then

k n k

< px) + maX{J;c(yi ;)o+ j:ZHH(Yi i) 1rgj@a§>§(u(yi )+ I; c(yi)o+L+0)}.

Let¢* be the length of a minimum-length schedule(@t , c,L, 0,9, »). Clearly,¢* > p(x) +
u(y) for all sourcesy of G. In addition, for each sourcg of G, eithery; itself or c(y;) receive
operations are scheduled on the same processanasfeasible schedule f¢6G, ,c,L,0,g, ).
Hence

£ > 0+ 3 minfuy).cly)o}
Consequently,

< 00+ max SRy (yi)0+ 3Ty MY, ) maxe (W) + SEj ey o+ L +0)}
< max{{*,¢*+ ¢ +L+0}
= 20"+L+o.

If the length of a minimum-length schedule f@, y,c,L,0,g, ) equalsu(x) + z?:1 H(Y;j), then

this can be checked in linear time using Lemma 10.2.5. In that case, we can construct a minimum-
length schedule fofG, i, c,L,0,g,) by scheduling all tasks on one processor. Otherwise, in a
minimume-length schedule fdiG, , ¢, L, 0,9, ), there is a sink that is scheduled on a different
processor thar. Hencel* > u(x) +20+L and/ < 2¢*+ L+ 0 < 3¢*. Hence we have proved

the following result.

Theorem 10.2.9. There is an algorithm with an @logn) time complexity that constructs fea-
sible schedules for instancé®, |, c,L, 0,9, ), such that G is a receive graph and<go, with
length at mos8¢*, wheref* is the length of a minimum-length schedule G, c,L, 0,9, ).

Note that ifL ando are bounded by a constant, then AlgorithmiRESTRICTED RECEIVE
GRAPH SCHEDULINGIS an approximation algorithm with asymptotic approximation ratio two.

10.2.2 Arestricted number of processors

In this section, an approximation algorithm is presented that constructs schedules for receive
graphs on a restricted number of processors. Consider an ingtajce,L,0,g,P), such thats

is a receive graphy < o andP # «. Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING
constructs a schedule f¢6, 1, c,L,0,g,P). Like Algorithm UNRESTRICTED RECEIVE GRAPH
SCHEDULING, the communication-intensive sources®@fwill be scheduled on the same pro-
cessor as its sink, the other sourcesGotan be scheduled on any processor. A schedule for
(G,u,¢c,L,0,0,P) is constructed by extending a feasible schedule for the subgraplnafuced

by the set of computation-intensive sourcesXof Algorithm RESTRICTED RECEIVE GRAPH
SCHEDULINGIs presented in Figure 10.4.
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Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING
Input. An instanceG, ,c,L,0,g,P), such thagg < o, P # « andG is a receive graph with sink
x and sourcegy, . .., Yn.
Output. A feasible scheduléo, ) for (G, c,L,0,9,P).
Yo = {yi [ u(yi) < c(yi)o}
Yo = {yi | K(yi) > c(yi)o}
let(o, ) be a feasible schedule f6&[Y,],,c,L,0,9,P)
forp:=1to P
do idle(p) := max{o(y) + H(y) |y € Y2ATI(y) = p}
Yzpi={yeYz|(y) = p}
assumédle(1) < --- <idle(P)
foryeY;
do o(y) :=idle(1)
10. idle(1) :=idle(1) 4+ pu(y)
11. forp:=2to P
12.  doforyeYzp

©CoNo~wWDNE

13. do for j :=1to c(y)

14. do a(ryyj) :==maxidle(1),idle(p) + L+ jo}
15. m(ryj) =1

16 0(sy1j) == 0(rysj) —L—o

17 T(sy1j) =P

18. idle(1) :=0a(ry1j)+o0

19. idle(p) :=o(sy1,j)+0

20. o(x) :=idle(1)

21. (x):=1

Figure 10.4. Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING

Example 10.2.10. Consider the instand&, , ¢, 1,2, 2, 2) shown in Figure 10.5. Apart from the
number of processors, this instance equals the one shown in Figure 10.2. Yhe $&1,Y2,Y3}
contains the communication-intensive source&ofThese tasks are scheduled on processor 1.
Assume Algorithm RSTRICTED RECEIVE GRAPH SCHEDULINGtarts with a schedule in which

y4 starts at time 0 on processor 1 ayglat time 0 on processor 2. Then, y, andys are
scheduled on the same processoygabecause the execution lengthyafis smaller than that of

ys. Receive operations, 1; are scheduled aftgr on processor 2x is executed after the last
receive operation on processor 1. So AlgorithmSRRICTED RECEIVE GRAPH SCHEDULING
constructs the schedule 0B, i, ¢, 1,2, 2, 2) shown in Figure 10.6.

Now we will prove that Algorithm RSTRICTED RECEIVE GRAPH SCHEDULIN&Orrectly
constructs feasible schedules for receive graphs on a restricted number of processors.

Lemma 10.2.11. Let G be a receive graph. Lét,m) be the schedule fofG,y,c,L,0,9,P)
constructed by AlgorithrRESTRICTED RECEIVE GRAPH SCHEDULINGIf g < o, then(a, ) is
a feasible schedule fdiG, i, c,L,0,9,P).
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@ x1,0

7NN

0113 @Y22,1 @Y3:3,2 @Y4:3,1 @VY5:7.2
Figure 10.5. An instance(G, ., c,1,2,2,2)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y4 Y1 Y2 Y3 ys, 11 | Tys22 | X

Y5 5,11 | Sy5,1,2

Figure 10.6. A feasible schedule foiG, ,c,1,2,2,2)

Proof. Assumeg < 0 andG has sinkx and sourcegs,...,yn. DefineYr = {yi | u(vi) < c(yi)o}
andY2 = {yi | H(yi) > c(yi)o}. Let (0o,Th) be a feasible schedule f¢6[Yz], . c,L,0,9,P).
Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGXtends(dp, Tp) to a scheduléo, )

for (G,y,c,L,0,9,P). Itis obvious that no processor executes two tasks at the same time. It is
easy to see that there is a delay of exattiyme units between the completion time of a send
operation and the starting time of the corresponding receive operation. Berausand all
receive operations are scheduled on processor 1, there is a delay of gttiegstinits between

a pair of consecutive send and receive operations on the same procesgmmSe a feasible
schedule fo(G, y,c,L,0,9,P). ]

The time complexity of Algorithm RSTRICTED RECEIVE GRAPH SCHEDULIN&an be
determined as follows. LeG be a receive graph with sink and sources,...,y,. Let
Y1 ={yi | (yi) < c(yi)o} andYz = {yi | i(yi) > c(yi)o}. Y1 andY, can be computed i®(n)
time. Let(0p,Tp) be a feasible schedule f06[Y2], 1, c,L,0,9,P). Sorting the processors by
non-decreasing maximum completion time tak¥®logP) time. Assigning a starting time and
a processor to every task ¥f takesO(n) time. It is easy to see that the starting times and
processors for the communication operations can be assigned in linear time as well. So Algo-
rithm UNRESTRICTED RECEIVE GRAPH SCHEDULIN®SsesO(nlogn) time apart from the time
needed to constru¢bo, Th).

Lemma 10.2.12. For all instanceg G, y,c,L,0,g,P), such that G is a receive graph and<go,

if a feasible schedule for n incomparable tasks can be constructed(T(nQ) time, then
Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGconstructs a feasible schedule for
(G,u,¢c,L,0,09,P) in O(T(n) +nlogn) time.

Consider an instanc@s, y,c,L,0,g,P), such thag < o0 andG is a receive graph with sink
x and sourcegy,...,yn. DefineYr = {yi | u(yi) < c(yi)o} andY> = {y; | u(yi) > c(y;)o}. Let
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(00, Tp) be a feasible schedule f66[Y,], 1, c,L,0,9,P). Assume Algorithm RSTRICTED RE

CEIVE GRAPH SCHEDULINGextendg 0p, Th) to a feasible schedule, ) for (G, y,c,L,0,9,P).

Let ¢* be the length of a minimum-length schedule {@,,c,L,0,9,P) and/ the length of

(o,m). Because any schedule on a restricted number of processors can be viewed as a schedule
on an unrestricted number of processors,

n
> p(x) +§1min{u(yi),0(yi)0} = M)+ Y Uy + Z c(y)o.
i= yen, YEY>
In addition, £* > pu(x) + % S H(yi). If the schedule in which all tasks are scheduled on one
processor is not of minimum length, thén> p(x) + L 4 2o.
Lety* be a source oY, with a maximum completion time. Then its completion time equals
the length of(op, Tp). It is possible that every task ¥j is scheduled aftey*. Hence

< oy)+HY)+ Y uy)+ > c(y)o+L+o+H(X).
yeYL yeYoim(y)#1
Assume/y is the length of(gp, o) and/j is the length of a minimum-length schedule for
(G[Y2],u,c,L,0,9,P). Clearly,£§ < £*. Assumelp < pf. Then

¢ O(y") +HY") + Yyev; KY) + Syevomy)£1€(Y)0+ L+ 0+ H(X)
plo+L*+L+o
(p+1)¢*+L+o.

So if * > pu(x) + T, M(Yi), thent < (p+2)¢*. If the schedule in which all tasks are executed
on one processor is of minimum length, then its length is at rhodf (o, 1) is longer than
H(X) + 31 1(yi), then replacéo, ) by the schedule in which all tasks are executed by the same
processor. Then this schedule is at mst2 times as long as a minimum-length schedule for
(G,u,¢c,L,0,0,P).

Note that ifL and o are bounded by a constant, then AlgorithreSRRICTED RECEIVE
GRAPH SCHEDULINGIS an approximation algorithm with asymptotic approximation ratiel.

A

<
<

There are many algorithms for scheduling incomparable tasksidentical processors. Us-
ing Graham'’s List scheduling algorithm [38, 39], we obtain an algorithm that constructs sched-
ules onP processors that are at mosH% times as long as a minimum-length schedulePon
processors [92].

By using different algorithms, we obtain better approximation bounds. Coffman et al. [14]
presented Algorithm MLTIFIT. k iterations of this algorithm construct schedulesRoproces-
sors that are at mo%ﬁ + 2 Ktime as long as a minimum-length schedulePoprocessors [94].
k iterations of Algorithm MULTIFIT takeO(nlogn+ knlogP) time. Hence we have proved the
following result.

Theorem 10.2.13. For all constant ke Z™, there is an algorithm with an logn) time com-
plexity that constructs feasible schedules for instaiGeg, ¢,L, 0,9, P), such that G is a receive
graph and g< o, with length at mo f—f +27K)¢*, wheret* is the length of a minimum-length
schedule fo(G, ,c,L,0,g,P).
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Hochbaum and Shmoys [45] presented a polynomial approximation scheme for scheduling
incomparable tasks on identical processors. For k&t ©, a schedule oR processors that is
at most 4+ Wll times as long as the length of a minimum-length schedulP processors can

be constructed iD(((k+ 1)n)k+Dlogk+1)y time using this approximation scheme [62]. Hence
we have proved the following result.

Theorem 10.2.14. For all constant ke Z ™, there is an algorithm with an @(<t1109k+1)) time
complexity that constructs feasible schedules for instaf@eg, c,L,0,g,P), such that G is a
receive graph and & o, with length at mos{3+ Wll)ﬁ*, wheref* is the length of a minimum-
length schedule fofG, u,c,L,0,9,P).

10.3 A polynomial special case

In Section 10.2, two approximation algorithms for scheduling receive graphs were presented.
Constructing minimum-length schedules for receive graphs on an unrestricted number of proces-
sors is a strongly NP-hard optimisation problem. Kort and Trystram showed thaloiés not
exceedo and all sources of a receive graph have the same execution length, then a minimum-
length schedule for this receive graph on an unrestricted number of processors can be constructed
in polynomial time. In this section, this result is improved: it is proved that if all sources have the
same execution length, then a minimum-length schedule on an unrestricted number of processors
can be constructed in polynomial time evely gxceed®.

Consider an instancéG, ,c,L,0,g,), such thatG is a receive graph with sink and
sourcesy,...,Yn. Assumep(yi) = --- = l(Yn) = . There is a minimum-length schedule
for (G, ¢,L,0,0,%) in which the tasks and the communication operations are scheduled on
at mostn processors. From Lemma 10.2.2, we may assume that all processors, expect that
one that executes, execute at most one source ®f To obtain a minimum-length schedule
for (G, ¢c,L,0,g,), the sourcey with minimum c(y) should be scheduled on another pro-
cessor tharx. Assumec(y;) < --- < c(yn). In a minimum-lengthm-processor schedule for
(G,H,¢,L,0,0,0), x is scheduled on processoryl,on processor+ 1 for alli < m—1 and the
remaining sources db on processor 1. Sources,...,ym_1 are completed at timg. Then
Cm= 2{211 c(yi) receive operations have to be scheduled on processor 1.

The sinksys,...,y, have to be scheduled before the first receive operation or between the
receive operations on processor 1. There is a delay of leasfaygx— o time units between
two consecutive receive operations on processor l.oletg) = %f‘}_" . Because there is
a delay of at least mgo,g} — o time units between a pair of consecutive receive operations, at
least|a(o,g)| sources can be scheduled between a pair of consecutive receive operations. If at
least[a(o,g)| sources are scheduled between two consecutive receive operations, then we may
assume that processor 1 is not idle between these receive operations. We may assume that at
most[a(0,g)] sources are scheduled between two consecutive receive operations: if more than
[a(0,0)] sources are scheduled between two consecutive receive operations, then the first of
these receive operations can be scheduled at a later time without increasing the schedule length.

The length of anmm-processor schedule depends on the number of sources executed between
the receive operations. Lkbe this number. We may assume tkat (Cy,—1)[a(0,g)] andk <
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n—m+1. Let/my be the minimum length of am-processor schedule f¢6, ,c,L,0,9,P) in
whichk sources are scheduled between the receive operations. In saepragessor schedule,
the first receive operation can start at time

max{(n—k— (m— 1))y, u+ L+ 0}.

If [a(o,g)] sources are scheduled between two consecutive receive operations, then the starting
times of these receive operations differ(o,g) |+ 0. This is

inc(0,9) = [a(0,g)]u—(max{o,g} —o)

more than when the receive operations are scheduled with as little delay as possible. So each
time [a(0,g)] sources are scheduled between two consecutive receive operations, the starting
time ofx increases bync(o, g).

Hencelmy equals

max{(n—k— (m— 1))y, p+L+0} + (Cn— 1) max{o,g} + 0+incmnk(0,9) + H(X),
whereincm(0,9) = max{0,k— (Cm— 1) [a(0,9) | }inc(o, ).

Let £, = mingdmk. Thenty, is the length of a minimum-lengtm-processor schedule for
(G,u,¢c,L,0,0,P). Sincec(yi) is bounded by a constant for all sourge®f G, ¢, can be com-
puted inO(n) time. The lengthY* of a minimum-length schedule fd6G,y, c,L,0,9,P) equals
MiNi<m<n . This can be computed iB(n?) time. If £* = {mk, thenm andk can be used to
construct a schedule of lengthin linear time. Hence we have proved the following result.

Theorem 10.3.1. There is an algorithm with an @?) time complexity that constructs minimum-
length schedules for instancéS, y,c,L, 0,9, ), such that G is a receive graph and there is a
positive integer Y, such thafy) = p for all sources y of G.

If max{o,g} —ois divisible by, then a minimum-length schedule @, y,c,L,0,g, ) can
be constructed more efficiently. L&tbe a receive graph with sinkand sourceyy, ..., Yyn, Such
thatc(yr) < --- < c(yn). Assume mafo,g} — ois divisible byp. Then we may assume that in a
minimum-lengthm-processor schedule B, |, c, L, 0,9, »), exactlykm = min{n—m+1, (Cy,—
1)a(o,g)} sources ofs are scheduled between the receive operations on processor 1 and that the
remaining sources are scheduled before the first receive operation. Betwaysgo,g) equals
zero, the length of such a schedule equals

max{ (N —kn — (M— 1)), b+ L +0} + (G — 1) max{0, g} + 0+ H(X).

The valuegn,, can be computed in linear time, because we assumed(tjais bounded
by a constant for all sources of G. Let £* = Mini<m<nmyy. Assumel* = lny,. Usingm,
a schedule fofG, ¢, L,0,g,») of length/* can be constructed i@(n) time. Because(y;) is
bounded by a constant for all sourgesf G, sorting the sources @& by non-decreasing message
lengths task©(n) time. Hence we have proved the following result.
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Theorem 10.3.2. There is an algorithm with an @) time complexity that constructs minimum-
length schedules for instancé€S, ¢, L, 0,g,), such that G is a receive graph and there is a
positive integer Y, such thafy) =  for all sources y of G anthax{0,g} — o is divisible by p.

Both Theorem 10.3.1 and 10.3.2 improve a result of Kort and Trystram [55], who presented
an algorithm that constructs minimum-length schedules for receive graphs with sources of equal
length inO(n?) time if g does not exceed.

10.4 Concluding remarks

The problem of scheduling send and receive graphs in the LogP model was studied in Chapters 9
and 10, respectively. Although send and receive graphs can be transformed into each other by
reversing the arcs, scheduling send graphs is less complicated than scheduling receive graphs.
This is due to the fact that we consider a common data semantics. For receive graphs, there is
no difference between a common data semantics and an independent data semantics. For send
graphs, there is a difference. Scheduling send graphs under an independent semantics is the same
as scheduling receive graphs: messages have to be sent for all sinks that are not scheduled on the
same processor as the source. Scheduling send graphs under a common data semantics is less
complicated, because at most one set of messages has to be sent to any processor.

Like for scheduling send graphs, there are a lot of possible generalisatigns.dfthen we
can prove properties of minimum-length schedules similar to those proved in Section 10.2.1.
However, these results do not allow us to prove that Algorithms&RESTRICTED RECEIVE
GRAPH SCHEDULINGand RESTRICTED RECEIVE GRAPH SCHEDULING@re approximation al-
gorithms with a constant approximation ratio for scheduling with arbitanydg. This is due to
the fact that the number of communication operations that must be scheduledvpranessor
schedule for a receive graph depends on the processor assignment. Because the number of com-
munication operations in an-processor schedule for a send graph is independent of the proces-
sor assignment, we were able to present a 2-approximation algorithm for scheduling send graphs
with arbitraryo andg.

Itis unknown whether minimum-length schedules on a restricted number of processors can be
constructed in polynomial time if all sources have the same execution length. Kort and Trystram
proved that if all sources have the same execution length and this length exceddsamast },
then a minimum-length schedule on two processors can be constructed in polynomial time. They
also proved that i€(y) is the same for all sourcesof a receive graph, then a minimum-length
schedule for this receive graph on an unrestricted number of processors can be constructed in
polynomial time.

Like for send graphs, the structure of minimum-length schedules for more general inforests
is far more complicated than that of minimum-length schedules for receive graphs. Hence it
is difficult to construct approximation algorithms with a constant approximation ratio for more
general inforests. In Chapter 11, two algorithms are presented for scheduling general inforests
in the LogP model.
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11 Decomposition algorithms

In this chapter, two approximation algorithms are presented for scheduling intrees in the LogP
model. The basis of these algorithms are two algorithms that decompose intrees into a number
of subforests whose sizes do not differ much. Using such decompositions, communication-free
schedules are constructed. These are transformed into feasible schedules by introducing the
communication operations.

The decompositions of an intree are defined in Section 11.1. The algorithm presented in
Section 11.2 uses these decompositions to construct communication-free schedules. In Sec-
tion 11.3, two algorithms are presented that construct decompositiathaugf intrees and of
arbitrary intrees, respectively. Using these decompositions, the algorithm presented in Sec-
tion 11.2 constructs communication-free schedule® gnocessors fod-ary intrees that are at

mostd+1— c(112+_+g times as long as a minimum-length communication-free schedukgooces-
sors. For arbitrary intrees, the communication-free schedul®spracessors constructed using

the decompositions of the second algorithm are at mes% times as long as a minimum-
length communication-free scheduleBprocessors.

The constructed communication-free schedules are transformed into feasible schedules by
introducing the communication operations. For both types of decompositions, the number of
communication operations that must be introduced is independent of the number of tasks. The
length of the schedules fordaary intree constructed using the first decomposition algorithm are
increased by the total duration of at magP — 1) communication actions. The length of the
schedules constructed using the second decomposition algorithm increases by the total duration
of at mostd(d — 1)(P — 1) — 1 communication actions.

Hence the schedules constructed using the decompositions constructed by the first decompo-
sition algorithm have a large computation part and a small communication part and the schedules
constructed using the decompositions constructed by the second decomposition algorithm have
a small computation part and a large communication part.

11.1 Decompositions of intrees

In this section, the decompositions of an intree will be defined. A decomposition of an intree is
a collection of disjoint subforests whose roots have the same child.

Definition 11.1.1. Let G be an intree. Adecompositiorof G is a non-empty sequence of sub-
forests(Gy, ..., Gk) of G, such that

1. V(G)U---UV(Gy) =V(G);

2. foralli # j,V(G)NV(Gj) = @;

3. foralli € {1,...,k}, the roots ofG; all have the same child i6; and

4. foralli € {1,...,k}, no task ofG; has a predecessor @1, ...,Gx.
A sequence of instancé&G1, ., ¢,L,0,9,P), ..., (Gk W c,L,0,g,P)) will be called adecomposi-
tion of the instancéG, y,c,L,0,g,P) if (Gy,...,Gk) is a decomposition d&.
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The fact that all roots of a subforest in a decomposition of an intree have the same parent will
play an important role in the analysis of the algorithms presented in this chapter.

Let G be an intree. Let(Gi,¢,L,0,9,P),...,(Gk ¢, L,0,09,P)) be a decomposition of
(G,u,¢c,L,0,09,P). We will use a shorthand notatiofG;, . ..,Gy) is said to be a decomposition
of (G, ¢c,L,0,g9,P). Each forest5; will be calleddecomposition forestf a forestG; has only
one root, it will also be called decomposition tree

@ d::1,0

TN

®c:ll@cll@cll@csll @cs:l,1

A
Gy

@®h:1,1@bx;1,1 @bsl1@bs:1,1 @bs:1,1 @bs:l,1

S ANA

Qal11@a1l1 @azll1@a:ll1@asl,1@a:1,1 @ar:1,1 @as:l,l

Figure 11.1. A decomposition(G1, Gy, Gz) of an instancéG, L, 0,9, P)

Example 11.1.2. LetG be the intree shown in Figure 11.1. A decomposi{iGa, G, Gs) of G
is shown as well. The roots @&, are the taskb;, b, andbs. These are all parents of. G, and
G3 have only one root. It is obvious that no successor of a task a$ a task ofG, or Gz and
that a task of5, has no predecessor @g.

Let G be an intree and l€G;, ..., Gy) be a decomposition dfG, i, ¢, L, 0,9, P). Since a task
of G; has no predecessors@®, 1, ...,Gk and the root of5 is a successor of all other tasks@f
Gk must be an intree whose root is the root®f

Observation 11.1.3. Let G be an intree. LefGy, . ..,Gk) be a decomposition of G. Ther G
an intree and its root is the root of G.

Let G be an intree. LefGy, ..., Gk) be a decomposition d¢f5, y, ¢, L, 0,9, P). We will divide
each decomposition fore&; into two parts. For eache {1,...,k}, the setA(G;) contains all
tasks ofG; that have a predecessor outsf@eandB(G;) is the set of tasks d&; do not have a
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predecessor outsidg. More precisely,
AGi) = {ueV(G)|Preds(u)\V(G) # 2}
and
B(Gi) = {ueV(G)|Preds(u) CV(Gi)}.

Note thatA(G;) does not contain any sources®@fnd that every task iA(G;) has a predecessor
outsideB(G;). Let A(Gy, ..., Gk) be the subforest db induced byA(G1) U---UA(Gy). Itis not
difficult to see that ifA(Gy, ..., Gk) is not the empty precedence graph, tié,,...,Gy) is a
subtree of5 with the same root &S. Moreover, itk > 2, thenA(Gy, ..., Gk) cannot be the empty
precedence graph. In addition, it is easy to see that the tasks iB@&gare incomparable with
tasks in a seB(G;) for all j #1i.

Example 11.1.4. Let G be the intree shown in Figure 11.1. L@;,G,,G3) be the decom-
position of (G,L,0,g,P) shown in Figure 11.1. Since no task Gf has a predecessor out-
side G1, A(G1) = @ and B(G1) = {a1,ay,a3,a4,8s,b1,b2,b3}. Similarly, A(G;) = @ and
B(G2) = {as,a7,as,bs,bs, c5}. Tasksc, andd; of Gg have a predecessor outsi@g: c; is a
successor of all tasks @; andd, of all tasks ofG; andG,. HenceA(Gs) = {cp,d;} and
B(G3) = {ba,c1,C3,C4}. SOA(Gy,...,Gx) is the intree with tasks, andd; and an arc front,

to d;.

Let G be an intree. LetGy,...,Gk) be a decomposition ofG,,c,L,0,9,P). The num-
ber of roots ofG; is denoted by &;. The following lemma will be used to bound the num-
ber of communication operations that must be introduced in a communication-free schedule for
(G,u,c,L,0,0,P).

Lemma 11.1.5. Let G be ad-ary intree. IfGy,...,G) is a decomposition diG, y, c,L, 0,9, P)
into k > 2 subforests, then

(|Predso(u)[—1) < d(#Gy+ - +#G—1)—1
uev(AG].....G)

Proof. Assume(G;,...,Gy) is a decomposition ofG, ¢, L, 0,9, P) into k > 2 subforests. Let
U be the union o¥/ (A(Gy,...,Gx)) and the set of parents of the tasks%6y, ..., Gk). Letu be
ataskinU. If [Predgy; o(u)| > 1, thenuis a task ofA(Gy, ..., G). SinceG[U] is an intree, the
number of arcs o6[U] equalsU| — 1. Hence

SueV(AGL,...Go) (IPredeo(W) = 1) = Yuev(aG...co) (IPredsu)o(u)| — 1)
= Yueu [Predguo(u)| — [V (A(Gy,...,Gx))|
= |U[-1-V(AGy..., ))\

[U\V(A(Gy,...,Gk))| — 1.

The tasks ilJ \ V(A(Gy,...,Gk)) do not have a predecessor outside their subforests, but their
children inA(Gy,...,Gx) do. These children have a parent that is a root of a decomposition
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forest. The root ofG is also the root of5x and cannot be an elementdf\ V(A(Gy,...,G)).
So the number of tasks @Gy, ...,Gx) with a parent outsid&(Gg,...,Gx) is at most B, +
-+ +#Gy — 1. Every task ofs has indegree at modt SoU \ V(A(Gy,...,Gk)) contains at most
d(#Gy+ -+ +#Gk — 1) tasks. Hencg ey (aG,,....q,) (|Predo(u)| — 1) < d(#Gy + - + #Gy —
1)—1. O

Let G be an intree. Le{Gs,...,Gx) be a decomposition ofG,,c,L,0,g,P). For all
ie{l,....k}, letriq,...,ri 4 be the roots of5;. Define an intredd(Gy,...,Gk) as follows.
V(D(Gy,...,Ck)) = Urzl{fi,17~.~,fi,#ei} andD(Gy,...,Gk) contains an arc form j, to ri, j,
if there is a path irG fromr;_ j, tor;, j, that does not contain another tasRifD(Gg, ..., Gy)).
If D(Gy,...,Gk) contains an arc from j, tori, j,, thenr, ;, is called adecomposition chilaf
ri,,j; andr;, j, adecomposition paremdf rj,, j,.

Example 11.1.6. Let G be the intree shown in Figure 11.1. L@&-,Gy, G3) be the decompo-
sition of (G,L,0,9,P) shown in Figure 11.1G; has rootdy, by, andbs; cs is the only root of

G, andGs has rootd;. HenceD(Gq,...,Gk) contains task®s, by, bs, cs andd;. Moreover, it

contains arcgbs, d;), (bp,d1), (bs,d1) and(cs,dz).

11.2 Scheduling decomposition forests

The decompositions defined in Section 11.1 will be used to construct communication-free sched-
ules for instance$G, |, c,L,0,9,P), such thatG is an intree and® # . The communication
operations are introduced in these communication-free schedules for every pair af;taskls

up, such thaty; is a parent ofl, andu; anduy are scheduled on different processors. Such a
pair of tasks will be called aommunicating paiand the number of communicating pairs will

be called theommunication requiremenf the communication-free schedule.

Hu [49] proved that a minimum-length communication-free schedule for an inforest with
unit-length tasks o processors can be constructed in polynomial time. Kunde [57] showed that
critical path scheduling constructs communication-free schedules for inforests with arbitrary task
lengths onP processors that are at mos%?,% times as long as a minimum-length schedule.
Unfortunately, the communication requirements of the schedules constructed by the algorithms
of Kunde and Hu may be as high &s— %)n+% for d-ary intrees. As a result, introducing
communication operations in such schedules will greatly increase the length of the schedule.

Using a decomposition of an intree, we will construct communication-free schedules that are
longer than those constructed by critical path scheduling, but have only a small communication
requirement. Algorithm BCOMPOSITION FOREST SCHEDULIN@resented in Figure 11.2 uses
a decomposition of an intree to construct a communication-free schedul®.desan intree and
let (Gy,...,Gk) be a decomposition diG, ,c,L,0,g,P) into k < P subforests. Algorithm B-
COMPOSITION FOREST SCHEDULINGvOrks as follows. For eache {1,...,k}, the tasks in
B(G;) are scheduled without interruption from time 0 onward on procas3dre tasks irA(G;)
are scheduled on one of the processors.1i — 1 not before the maximum completion time of a
task inB(G;).
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Algorithm DECOMPOSITION FOREST SCHEDULING

Input. An instance(G, ,c,L,0,g,P), such thatG is an intree and a decompositi¢Bs, . . .

of (G, ¢,L,0,9,P) consisting ok < P decomposition forests.
Output. A feasible communication-free sched(te 1) for (G, y,c,L,0,9,P).

1. fori:=1tok

2 doidle(i):=0

3. U :=B(G)

4. while U # &

5 do letu be a source oB[U]

6 o(u) :=idle(i)

7 mu) =i

8. idle(i) :=idle(i) + p(u)

9. U:=U\{u}

10. last(i) :=idle(i)

11. U:=AG)

12. while U # @

13. do letu be a source 0B[U]

14. letv ¢ B(G;i) be a parent ofi with maximum completion time
15. o(u) := max{idle(t(v)),last(i)}
16. m(u) :=T1(V)

17. idle(ti(v)) := o(u) + p(u)

18. U:=U\{u}

Figure 11.2. Algorithm DECOMPOSITION FOREST SCHEDULING

0 1 2 3 4 5 6 7 8 9 10
ap|ax|ag|as|as | by ba]|bsfco]ds

a |az |ag | bs | be|cs

b4 Ci|C|C

Figure 11.3. A schedule built by Algorithm BECOMPOSITION FOREST SCHEDULING

Example 11.2.1. Let (G,L,0,9,3) be the instance shown in Figure 11.1. Consider its decom-
position (Gy, G2, G3) that is also shown in Figure 11.1. AlgorithmEDOMPOSITION FOREST
SCHEDULING constructs a communication-free schedule(férL, 0,9, 3) as follows. The tasks

in B(G1) = {a1,ay,a3,a4,as, b1, by, bz} are scheduled on processor 1 from time 0 onward. Sim-
ilarly, the tasks iB(G,) = {as,ar,as,bs,bs, c5} are scheduled on processor 2 from time 0 on-
ward. B(G3) contains taskba, 1, ¢z andcs; these are scheduled on processor 3 from time 0
onward. A(Gs) contains tasks, andd;. bs is the parent of, outsideB(Gs) with the largest
completion time. Sa; is scheduled on processor 1 aftgr Because; is the parent ofl; with

the largest completion time art is not an element oB(G3), d; is scheduled on processor 1
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afterc,. The resulting schedule is shown in Figure 11.3. It has communication requirement 4,
becauséc;,d;), (c3,d1), (Cs,d1) and(cs,d;) are communication pairs.

Now we will prove that Algorithm [ECOMPOSITION FOREST SCHEDULIN@&Orrectly con-
structs feasible communication-free schedules.

Lemma 11.2.2. Let G be an intree. LetGy,...,Gx) be a decomposition diG,,c,L,0,9,P)
into k < P subforests. Leto, M) be the schedule f(iGg, . ..,Gk) constructed by AlgorithrDe-
COMPOSITION FOREST SCHEDULING Then(o, ) is a feasible communication-free schedule
for (Ga H, Cv La Oa gv P)

Proof. Letube atask of5. Assumeuis a task ofG;. First we will assume thatis an element of
B(Gi). Thenuis scheduled on processiaand obviously, no other task is scheduled at the same
time on this processor. Moreover, because the order in which the taBk&gfare executed is a
topological order of5[B(G;)], u is scheduled after its predecessors. Second we will assume that
uis an element oA(G;). Thenu has a parent outsid&G;). Sou is scheduled after one of its
parentss outsideB(G;) on processor(v). Clearly, processam(v) does not execute another task

at the same time. Sinaedoes not start before the completion time of the last task(@ ), u

is scheduled after its predecessors. Hefwen) is a feasible communication-free schedule for
(G,u,¢c,L,0,0,P). |

The time complexity of Algorithm BCOMPOSITION FOREST SCHEDULIN@an be deter-
mined as follows. Le6G be anintree and I1€t31, . .., G) be a decomposition ¢f5, ., ¢, L, 0,9, P)
intok < P subforests. Lete {1,...,k}. The tasks iB(G;) can be scheduled using a topological
order ofG[B(G;)]. Such an order can be constructe@®ifiB(G;)|) time [18]. Using a topological
order ofG[B(G;)], the tasks iB(G;) can be scheduled i&(|B(G;)|) time. The tasks if\(G;) can
be scheduled using a topological orde@dA(G;)]. Letube atask irA(G;). The parents af out-
sideB(G;) can be found irO(|Preds o(u)| + |B(Gi)|) time. Then determining a parent obut-
sideB(G;) with the largest completion time requir€§|Preds o(u)|) time. So assigning a start-
ing time and a processor to every taskfG;) takesO(Y yea(g;) |Preds,o(u)| +|A(G))||B(Gi))
time. Since the setd(G;) andB(G;) are all disjoint, Algorithm EECOMPOSITION FOREST
SCHEDULING constructs a feasible communication-free schedu®(inf) time.

Lemma 11.2.3. For all instancesG, ,c,L,0,g,P), such that G is an intree, and all decompo-
sitions (Gy, ...,Gk) of (G,,¢,L,0,9,P) into at most P decomposition forests, Algoritiire-
COMPOSITION FOREST SCHEDULINGoOnNSstructs a feasible communication-free schedule for
(G,.¢,L,0,g,P) in O(n?) time.

The following lemma gives an important property of the communication-free schedules con-
structed by Algorithm [BECOMPOSITION FOREST SCHEDULING This result will be used to
construct upper bounds on the length of a communication-free schedule constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULING

Lemma 11.2.4. Let G be an intree. LefGy,...,Gx) be a decomposition dfG,,c,L,0,g,P),
such that k< P. Let(o, ) be the communication-free schedule @, c,L, 0, g, P) constructed
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by AlgorithmDECOMPOSITION FOREST SCHEDULINGThen for all i€ {1,...,k}, all roots r of
Gj and all tasks u of G, if & V(G;), m(u) = 1(r) ando(u) > o(r), then r<g u.

Proof. We will prove by induction that for all € {1,... k}, for all rootsr; of G; and all tasks
u of G, if uis not a task ofG;, (u) = 11(r;) ando(u) > o(r;), thenr; <g u. Leti e {1,... k}.
Assume by induction that for ajl<i— 1, for all rootsr; of G; and all tasksi of G, if u ¢V (G;j),
m(u) = 1(r;) anda(u) > o(rj), thenr; <g u. Letr; be a root ofG;. We will prove by induction
that for all taskau of G, if u¢ V(G;i), (u) = 1(r;) ando(u) > o(ri), thenr; <g u. Letu be a
task of G. Assume by induction that for all predecessoxs u, if v¢ V(G;), r(v) = 1i(r;) and
o(v) > a(ri), thenr; <g v. Assumeu is not a task of5;, m(u) = 1(ri) ando(u) > o(r;). Thenu
must be a task in a s&(G;/) for somei’ > i+ 1. Hence a paremof uis scheduled on processor
(r).

Case 1. vis a task ofG;.
Becausau is not a task of5; andv is a parent ofi, v must be a root o6;. Because all roots
of G; have the same child; is a predecessor of

Case 2. vis not a task of5;.

Case 2.1. a(v) > a(rj).
By induction,v is a successor af. Henceu is a successor of.

Case 2.2. 6(v) < a(rj).
Since (o,m) is a feasible communication-free schedule &, c,L,0,9,P), o(v) <
o(ri). Hencev must be a task of a decomposition for€st, such thatj’ < i. Becausei
is not a task of5;;, v must be a root 0G;.. By induction,r; is a successor of. Because
G is an inforest, all successorsware comparable. Becausés scheduled after;, u is
a successor af.

O

Next we will compute an upper bound on the length of the communication-free schedules
constructed by Algorithm BCOMPOSITION FOREST SCHEDULINGLet G be an intree and let
(Gg,...,Gk) be a decomposition diG, ,c,L,0,g,P) into at mostP decomposition forests. Let
(o, 1) be the communication-free schedule @, ,c,L, 0,9, P) constructed by Algorithm B-
COMPOSITION FOREST SCHEDULINGISING(Gy,...,Gk). Assume decomposition foreSt has
rootsri1,...,rg. LetC(r; ;) be the completion time of ;.

Consider a root; j of Gj. From Lemma 11.2.4, all tasks scheduled aftgron processor
1(r,j) are either tasks d&; or successors of j. Letr;, j, andrj, j, be roots of decompositions
forestsG;;, andG;,. If rj, j, andr;, j, are both decomposition parentsrof andiy # ip, thenr;, j;
andr;, j, are incomparable and must be scheduled on different processors.

Consider aroat; j of decomposition fore€d;. Since(o, 1) is a communication-free schedule
and all decomposition parents gf; are scheduled on different processors, there is a decompo-
sition parentry j» of rj j, such that the path from the child of ; to r; j is scheduled without
interruption. The first task of such a path starts either at the completion time;ofr at the
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maximum completion time of a task B(G;). Let p(u,v) denote the unique path from the child
of utovifitexists. Then for al < kandj < #G;,

C(rij) MaX,, . cPredys, g, olri.i) (MAXK(B(GI)),C(Gi) } +H(p(ryj. i j)))
)(

< ;
S max{u(Gi)7ma)ﬁlyj/EPl’ECb((;l Gk)\o(l’i‘j C(G|/) +I"l(p(r|/,]/7r|«1)))}'

We can prove by induction that for alK kand allj € {1,...,#G;},

C(rij) < max{pu(G), max (K(Gir) +u(p(rirjr,rij)))}

Tir 1 €Predy(g ) (Mi.j)
Sincery 1 is the root ofG, the length of o, ) is at most
max{(Gx), max(K(Gi) + H(p(ri,1;Mk1)))}-
1<i<k

Finally, we will compute an upper bound on the communication requirement of the sched-
ules constructed by Algorithm ECOMPOSITION FOREST SCHEDULING Let G be an intree
and(Gy,...,Gk) a decomposition ofG,,c,L,0,9,P) into k < P decomposition forests. Let
(o,m) be the communication-free schedule &, ., c,L,0,g,P) constructed by Algorithm B-
COMPOSITION FOREST SCHEDULINGISING (Gy,...,Gk). Letv be a task ofG. If a parent of
v is not scheduled on the same processov,akenv must be a task oA(Gy,...,Gy). Any
task of A(Gy,...,Gk) is scheduled on the same processor as one of its parents. So at most
|Preds o(v)| — 1 parents ofv are executed on a different processor. From Lemma 11.1.5, the
communication requirement 66, 1) is at most

(|Predgo(u)[—1) < d(#Gy+ - +#G—1)—1
ueV(A(Gy,...,Gk))

Hence we have proved the following result.

Lemma 11.2.5. For all instances(G,,c,L,0,9,P), such that G is an intree, and all decom-
positions(Gy, ..., Gk) of (G,y,c,L,0,g,P) consisting of at most P decomposition forests, Algo-
rithm DECOMPOSITION FOREST SCHEDULING&ONStructs a communication-free schedule for
(G,H, C, L,O, g, P) with length at mosmaX{M(Gk)a maX1§i<k(u(Gi) + I-l( p(ri,l7rk,1)>)} and com-
munication requirement at most#G; + - - - +#Gx — 1) — 1in O(n?) time.

Now we will shown how to introduce the communication operations in the communication-
free schedules constructed by AlgorithnE@OMPOSITION FOREST SCHEDULING Let G be
an intree. Let(Gg,...,G) be a decomposition ofG,,c,L,0,g,P) into at mostP decom-
position forests. Consider the communication-free scheg@ula) for (G, c,L,0,9,P) con-
structed by Algorithm BECOMPOSITION FOREST SCHEDULING A feasible scheduléog, 1i)
for (G,u,c,L,0,09,P) can be constructed by introducing communication operations between
all communicating pairs. This is done as follows. Assufog uy) is a communicating
pair. LetU = {ue V(G) | o(u) > o(uz)}. Increase the starting time of all tasks lh
by (c(u1) —1)maxo,g} +L+20. For alli < c(u1), schedule send operatia®), ry,); at
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time a(uz) + (i — 1)max{o,g} on processom(u;) and receive operationy, r,),; at time
o(uz) + (i —1)max{o,g} + L+ 0 on processoruy). If these communication operations are
introduced for all communicating pairs, then the length(@f, 1) is at most the sum of the
length of (o, ) and (d(#G1 + - - - + #CGx — 1) — 1) (L + 0+ cmaxmax{0,9}). Itis easy to see that
the introduction of these communication operations t&k@g) time. Hence we have proved the
following result.

Theorem 11.2.6. For all instancegG, i, c,L,0,g,P), such that G is an intree, and all decompo-
sitions(Gy, ...,Gk) of (G, ¢,L,0,9,P) into at most P decomposition forests, a feasible sched-
ule for (G,p,c,L,0,9,P) of length at mosmax{p(Gy), max <ik(K(Gi) + K(p(ri1,Tk1)))} +
(d(#Gy + - - - +#G¢ — 1) — 1)(L + 0+ cmaxmax{o,g}) can be constructed in @?) time.

11.3 Constructing decompositions of intrees

In this section, two algorithms are presented for constructing decompositions of intrees that
are to be used by Algorithm ECOMPOSITION FOREST SCHEDULINdor the construction of
communication-free schedules. Both algorithms construct decompositions for a special class
of instances, calle@-restricted instances. Such instances will be defined in Section 11.3.1.
In addition, it is shown how decompositions @restricted instances can be used to construct
schedules for arbitrary instances.

The first decomposition algorithm is presented in Section 11.3.2. This algorithm constructs
decompositions odl-ary intrees. The second decomposition algorithm, that is presented in Sec-
tion 11.3.3, constructs decompositions of arbitrary intrees. Both algorithms decompose an intree
into a sequence of subforests whose sizes do not differ much.

11.3.1 [-restricted instances

Let G be an intree. Consider an instar(& |, c,L,0,g,P). If the lengths of the tasks @ can

be arbitrarily large, then it is impossible to construct decompositioi&gi, c,L,0,g,P) into a

small number of decomposition forests whose total execution lengths do not differ much. Hence
we will construct instances in which the maximum task length is bounded. Such instances will
be called3-restricted and are defined as follows.

Definition 11.3.1. Let B be a positive integer. An instand&,,c,L,0,9,P) is called -
restrictedif for all tasksu of G,

1. p(u) <B;and
2. if |Preds o(u)| > 2, thenp(u) = 1.

We will show that any instandgs, |, ¢, L, 0,9, P), such thaG is an intree, can be transformed
into ap-restricted instanc€Gg, g, Cg, L, 0,0, P) and that the schedules f0Bg, 1ig, Cg, L, 0,9, P)
constructed by Algorithm BCOMPOSITION FOREST SCHEDULINGJsIng a decomposition of
(Gp, Mg, Cg, L, 0,0,P) can be transformed into feasible scheduleg@m, c, L, 0,g, P) without in-
creasing the schedule length. The choic@ efill be delayed until the analysis of the schedules
constructed by Algorithm BCOMPOSITION FOREST SCHEDULIN@®ISing the decompositions of
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B-restricted instances.

The following observation is used for the construction of decompositiofisre$tricted in-
stancegG, ¢, L,0,0,P).

Observation 11.3.2. Let 3 be a positive integer. LefG,,c,L,0,9,P) be ap-restricted in-
stance. Let U be a set of tasks of G. Ti&flU],,c,L,0,g,P) is aB-restricted instance.

[B-restricted instances can be constructed as follows.pls a positive integer. Consider
an instancgG, y,c,L,0,9,P). If (G,,c,L,0,g9,P) is not B-restricted, then @-restricted in-
stance(Gg, g, C,L,0,0,P) can be constructed as follows. Letbe a task ofG. Assume
M(u) =kiB+ko+1, suchthat & ky <B—1. If kp =0, then lek, = k;. Otherwise, lek, =k; + 1.
Thenu is replaced by a chain dd, + 1 tasksz,,z,1,...,2uk,, such thatz,o <co 2,1 <c0

=60 Zuky Mp(Zuo) = L bg(zu1) = - = Wp(Zuk,—1) = Bandpg(zuk,) = H(u) -1 - (k — 1)B.
In addition, letcg(zy0) = --- = Cg(Zuk,—1) = 1 andcg(zyk,) = c(u). Then(Gg, kg, Cp,L,0,9,P)
is aB-restricted instance. Itis not difficult to see tl@f contains at mos(t@ +2)n tasks and

at most(@ +1)n+earcs.

The following lemma is used to transform a schedule fBfrastricted instance into a sched-
ule for the corresponding original instance.

Lemma 11.3.3. Let G be an intree. LefG,,...,Gk) be a decomposition diG, u,c,L,0,9,P)
consisting of at most P decomposition forests. (cett) be the communication-free schedule
for (G,u,c,L,0,9,P) constructed by AlgorithrDECOMPOSITION FOREST SCHEDULINGISING
(Gg,...,Gk). Let u and w be two tasks of G. Ifwis the only parent of gand w is the only
child of w, thent(u;) = T(uy).

Proof. Assumeus is the only parent ofi, andus is the only child ofu;. Assumeu; is a task of
Gi.

Case 1. Uy is an element oA(G;).
Thenu, is scheduled on the same processor as one of its parents. Begaagbe only
parent ofuy, T(u1) = T(Uy).

Case 2. Uy is an element oB(G;).
Thenuy has no predecessors outsi@e Henceu; is a task ofG;. Because every predecessor
of uy is a predecessor b, u; is an element oB(G;). Sor(u;) = T(Uy).

O

Let G be an intree. Consider an instarfi& ,c,L,0,9,P). Let(Gy,...,Gk) be a decomposi-
tion of theB-restricted instancéGg, kg, Cg, L, 0,9, P) consisting ok < P decomposition forests.
Let (og,T3) be the communication-free schedule {@g, ug,Cp, L, 0,9,P) constructed by Al-
gorithm DECOMPOSITION FOREST SCHEDULINGIsINg (G1,...,Gk). Let u be a task ofG.
Lemma 11.3.3 shows all subtaskg of u are scheduled on the same processor.
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It is not difficult to reschedule the tasks on each processor, such that the smhtaslks
scheduled immediately aftey,; for all tasksu of G and alli € {0,...,k,—1}. Let (o,m) be
the schedule fo(Gg, U, Cg, L, 0,9,P) in which all subtasks of the same task®@fre scheduled
without interruption on one processor. It is not difficult to see that the length and communication
requirement of g, 1) do not differ from those ofog, 7). The scheduléo, ) can be transformed
into a feasible communication-free schedule Gt c,L,0,9,P): u can be scheduled at time
0(z,,0) ONn processor(z,o). Let (d’,1) be the resulting schedule f¢6,,c,L,0,9,P). The
length of (o’, 1) equals that ofag, 7). Moreover, because no task is scheduled on a different
processor, the communication requirementaf ) equals that ofag, T).

It is not difficult to see thata’, 1) can be constructed frorfog, 13) in O(|V(Gg)|) time.
Hence we have proved the following result.

Lemma 11.3.4. Let G be an intree. Letop,T3) be the communication-free schedule for the
B-restricted instancéGg, W, Cg, L, 0,9, P) constructed by AlgorithrDECOMPOSITION FOREST
SCHEDULING using a decompositiofGy, . . ., G) of (Gg, kg, Cg, L, 0,9,P) into k < P subforests.
Then a feasible communication-free schedule(féry,c,L,0,g,P) with the same length and

communication requirement &g, i) can be constructed in Q%n) time.

Lemma 11.3.4 shows that we only need to construct decompositifaesfricted instances.

11.3.2 Constructing decompositions of d-ary intrees

In this section, an algorithm is presented that constructs decompositidrarpfintrees. LeG

be ad-ary intree. Let(G,y,c,L,0,9,P) be aB-restricted instance. The next lemma allows the
decomposition of G, i, c,L, 0,9, P) into intrees whose sizes do not differ much. Ldie a task

of G. The subgraph of induced by a task and its predecessors is an intree with reotT his
intree is denoted b¥g(u). SoTg(u) = G[Predz(u) U {u}]. The following lemma is similar to a
lemma of Kosaraju [56] that considers the number of leafs of binary trees.

Lemma 11.3.5. Let G be a d-ary intree. LefG,,c,L,0,9,P) be ap-restricted instance. If
H(G) > B, then G contains a task u, such taK p(Te(u)) <d(B—1)+ 1.

Proof. It will be proved by induction that for alf-ary intreesG, if (G,y,c,L,0,g,P) is B-
restricted angl(G) > 3, thenG contains a task, such thap < p(Tg(u)) <d(B—1)+1. LetG
be ad-ary intree. Letr be the root ofG. If G contains exactly one task, thefiTg(r)) = B. So
we may assume th& containsn > 2 tasks. Assume by induction that for dHary intreesG’
with at mostn — 1 tasks, if(G', |/, c/,L’,o',d’,P) is B-restricted ang(G') > B, thenG' contains
a tasku, such thap < Y/ (Te(u)) <d(B—1)+1. AssumgG,,c,L,0,g,P) is B-restricted and
B < u(G).

Case 1. r has indegree one.
Letube the parentaf. If u(Tg(u)) <B—1, thenB < W(Ta(r)) <p(r)+w(Te(u)) <2B—-1<
d(B—1)+ 1. Otherwise, by inductiorifg(u) contains a task, such thaf3 < p(Tg(v)) <
dp—1)+1.
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Case 2. r has indegree at least two.
Thenr has length one. Ifi(Tg(u)) < B—1 for all parentsu of r, then < u(Tg(u)) <
d(B—1)+1. Otherwises has a parent, such thatu(Tg(u)) > B. By induction, Tg(u)
contains a task, such thap < u(Tg(v)) <d(p—1)+1.

O

By repeatedly applying this result, one can construct a decompositiofs-wéstricted in-
stancegG, ., ¢,L,0,9,P), such thatG is ad-ary intree. This is done by Algorithah-ARY INTREE
DECOMPOSITIONShown in Figure 11.4. Algorithrd-ARY INTREE DECOMPOSITIONexecutes
at mostP — 1 steps. In each step, it determines a subtre& ahd removes the tasks of this
subforest fronG.

Algorithm d-ARY INTREE DECOMPOSITION
Input. A B-restricted instancéG, i, ¢,L,0,g,P), such thatG is ad-ary intree andP # o.
Output. A decompositionGy,...,Gk) of (G,y,c,L,0,g,P), such thak <P, for all i < k-1,
B<WG) <d(B—1)+1andifk <P, thenu(Gy) <d(B—1)+1.
i=1
while y(G) >d(B—1)+1landi <P
do letu; be a task of5, such tha < p(Te(u)) <d(B—1)+1
G = TG(ui)
G:=G|V(G)\V(G)]
i=i+1
G =G

NoghrwhE

Figure 11.4. Algorithm d-ARY INTREE DECOMPOSITION

Example 11.3.6. Let (G,L,0,q,3) be the instance shown in Figure 11.5 and its decomposition
(G1,G2,G3) that is also shown in Figure 11.8G1, Gy, Gs) is constructed by Algorithnd-ARY
INTREE DECOMPOSITIONUSINg = 3. G; contains seven task&, contains six tasks an@s
contains the remaining three tasks.

Now we will prove that Algorithmd-ARY INTREE DECOMPOSITIONcorrectly constructs
decompositions of intrees.

Lemma 11.3.7. Let (G,y,c,L,0,9,P) be ap-restricted instance, such that G is a d-ary intree
and P# . Let(Gy,...,Gk) be the sequence of subforests of G constructed by Algoritarvd
INTREE DECOMPOSITION Then(Gy,...,Gy) is a decomposition diG, y, ¢, L,0,9,P), k< P, for
alli <k—-1,B<pGi) <d(B-1)+1landifk< P, then {Gy) <d(B—-1)+1.

Proof. Algorithm d-ARY INTREE DECOMPOSITIONexecutek — 1 < P — 1 steps. Before each
stepi, G contains at leasd( — 1) 4 2 task. Then Algorithnt-ARY INTREE DECOMPOSITION
chooses a taslg, such tha3 < p(Te(u)) <d(f—1)+ 1. From Lemma 11.3.5, there is such
a task. TherG; equalsTs(u;) and the tasks o6; are removed fronG. So for alli < k-1,
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Figure 11.5. A decomposition constructed by AlgorithddiARY INTREE DECOMPOSITION

B<UGi) <d(B—1)+1. Afterk— 1 steps, the remaining tasks ®fform decomposition tree

Gk. Obviously, ifk < P—1, thenp(Gy) < d(B—1) + 1. Otherwise, Algorithnd-ARY INTREE
DEcCOoMPOSITIONwould have executed another step. Because the tasks of decomposition forest
G; are removed after stapthe subforest&; are pairwise disjoint and a task @ cannot have a
predecessor iGi1,...,Gk. S0(Gy,...,Ck) is a decomposition ofG, 1, c,L,0,9,P). O

The time complexity of Algorithnd-ARY INTREE DECOMPOSITIONcan be determined as
follows. Let(G,u,c,L,0,g,P) be ap-restricted instance, such thats ad-ary intree andP # co.
For each tash of G, computep(Tg(u)). These values can be computeddmn) time for all
tasks. By traversing the tasks®fas described in the proof of Lemma 11.3.5, a 1@k G, such
that < p(Te(u)) < d(B—1)+1 can be determined i®(n) time. Then the subtre&s(u) can
be removed by subtracting Te(u)) from p(Tg(v)) for all successors of u. This takes linear
time for each subforest, $&(nP) time in total. Using the roots of the decomposition forests, the
decomposition forests itself can be constructe@(n) time by traversing the tasks & from its
root to the sources.

Lemma 11.3.8. For all B-restricted instancegG,,c,L,0,g,P), such that G is a d-ary in-
tree and P## o, Algorithm d-ARY INTREE DECOMPOSITION constructs a decomposition
(Gy,...,Gx) of (G,y,c,L,0,0,P), such that k< P, forall i <k—1, B < wGj) <d(B—-1)+1
and if k< P, then [{Gx) < d(B—1)+1, in O(nP) time.

Now we will compute upper bounds on the lengths of the schedules constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULINGISIng the decompositions constructed by Al-
gorithm d-ARY INTREE DECOMPOSITION Consider g3-restricted instancéG, y,c,L,0,g,P),
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such thatG is a d-ary intree andP # . Assume(Gy,...,Gx) is the decomposition of
(G, ¢,L,0,0,P) constructed by Algorithnd-ARY INTREE DECOMPOSITION Let (o,m) be
the communication-free schedule {@, 1, c,L,0,g, P) constructed by Algorithm BCcomMpPOSt
TION FOREST SCHEDULINGUSing decompositio(Gy, . ..,Gk). Let/ be the length ofo, M) and
¢* the length of a minimum-length communication-free schedulé®p,c,L,0,g,P). Assume
ri is the root ofG;. Then for alli <Kk,

1 G
> —u(Gi)+u(p(ri,rk)) and (* > %.
From Lemma 11.2.5,0, ) has length at most mép(Gy), maxi<j<k(H(G;j) +u(p(rj,r«)))}
and communication requirement at mo§#G; + - -- +#Gx — 1) —1=d(k— 1) — 1. We will

consider two cases.

Case 1. k< P, ork= P andp(Gy) < maxi<jk(K(Gj) +H(p(rj,rx)))-

In that case,
¢ < max<j<k(W(Gj) +H(p(ry,ry)))
< max<j<k(C+ (1- 2)N(G)))
< 4 (1-3)dB
< O+ (1-5)dByg
= (+d(P-1) )0

Then
¢ < WGk
< WG -(P-1)B
< g (WG)—(P-1)B)*
= (P-PP-1 )0

Hence the length ofo, 1) is at most

B B o\
max{l+d(P—-1)——,P—-P(P—-1)——=}¢".
P Lye P PP Vg
This bound is as small as possible if-{dP — 1) equaIsP P(P— 1)% In that case,
B_dig, Then
P2—P_ . dP—1). . d?+d. .
b= Prgyp)t = Mogpp ) = At

From Lemma 11.2.5, the communication requiremeniooft) is at mosd(#Gy + - - - +#Gx —
1) —1. Since all decompositions fore€sare intrees ankl < P, the communication requirement
is at mosd(P — 1) — 1. Hence we have proved the following lemma.
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Lemma 11.3.9. There is an algorithm with an @P) time complexity that constructs feasible
schedules fo%-restricted instance&G, |, ¢, L, 0,9,P), such that G is ad-ary intree and-P o,

with length at mostd + 1 — %1—*3)6* + (d(P—1) — 1)(L + 0+ cmaxmax{0,g}), wheref* is the

length of a minimum-length schedule {&, y,c,L,0,9,P).

In Section 11.3.1, it was shown how a schedule fBrastricted instance can be transformed

i i i H(G)
into a schedule for an arbitrary instance. If we chopse 7, then the number of tasks (&g

is at most(d + P+ 2)n. Using Lemma 11.3.9, we obtain the following result.

Theorem 11.3.10. There is an algorithm with an @d -+ P)n?) time complexity that constructs
feasible schedules for instand@s, i, ¢, L, 0,9, P), such that G is a d-ary intree and$ o, with
Iength.a't mostd+1— ‘ﬁr—?)f* + (d(P—1) — 1)(L+ 0+ cmaxmax{o,g}), wheref* is the length
of a minimum-length schedule (&, , c,L,0,g,P).

Proof. Obvious from Lemmas 11.3.9 and 11.3.4. O

11.3.3 Constructing decompositions of arbitrary intrees

In this section, we will construct different decompositions of intrees. These decompositions
consist of inforests that are smaller than those constructed by Algodtiamy INTREE DE-
comMPOSITIONand consist of more than one tree. The decomposition algorithm can also be
used for inforests by assuming that all roots have the same (dummy) parent. The basis of the
decomposition algorithm is the following lemma.

Lemma 11.3.11. Let G be anintree. L€iG, , c,L, 0,9, P) be apB-restricted instance. If(G) >
B, then G contains a collection of taskg U ., Uy, such tha < pu(Te(u1)) +- - -+ K(Te(uk)) < 2B
and if k> 2, then y, ..., ux have the same child v and v has at least kparents.

Proof. It will be proved by induction that for all intreeS, if (G,y,c,L,0,g,P) is B-restricted
andp(G) > B, thenG contains a collection of tasks;, ..., u, such thaP < p(Tg(u)) +---+
W(Te(uk)) < 2Bandifk > 2, thenuy, ..., ux have the same childandv has at least+ 1 parents.
Let G be an intree. Let be the root ofG. If G contains exactly one task, theuiT(r)) = B.
So we may assume th@tcontainsn > 2 tasks. Assume by induction that for all intre&swith
at mostn — 1 tasks, if(G',/,c,L’,d',d,P’) is B-restricted anqi(G’) > B, thenG’ contains a
collection of taskaly, ..., ux, such tha3 < Y (Te(u1)) + -+ W (Te(w)) < 2B and ifk > 2,
thenuy,...,ux have the same childandv has at leask+ 1 parents. Assumgs, ,c,L,0,g,P)
is B-restricted ang(G) > B.

Case 1. r has indegree one.
Letu be the parent of. If u(Ts(u)) <B—1, thenB < u(Ta(r)) < u(r) +W(Te(u)) <23 -—1.
Otherwise,u(Tg(u)) > B and, by inductionTg(u) contains a collection of tasks, ..., v
with the same childv, such thaP} < w(Tg(v1)) + -+ W(Te(W)) < 2B and ifk > 2, thenw
has at least+ 1 parents.
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Case 2. r has indegree at least two.
Thenr has length one. Ifi(Ts(r)) < 2B, thenp < u(Te(r)) < 2B. So we may assume that
W(Ta(r)) > 2B+ 1. Letuy,...,un be the parents af Assumeu(Tg(u1)) > -+ > W(Te(Um)).
If W(Te(u1)) > B, then, by inductionTs(u;) contains a collection of tasks, ..., v, such
thatB < w(Te(va)) +- -+ W(Ta(w)) < 2B and ifk > 2, thenvy, ..., w have the same chile
andw has at leask+ 1 parents. So we will assume thafTg(u;)) < p—1. We know that
W(Te(ur)) + -+ W(Te(um)) = W(Ta(r)) —1 > 2B. Letk be the smallest integer, such that
W(Ta(u1)) + -+ W(Tae(uk)) > B. Thenk<m—1 andf < W(Te(uz)) + -+ + W(Ta(uk)) <
B—1+n(To(w)) < 2B 2.

O

Like Algorithm d-ARY INTREE DECOMPOSITION Algorithm INTREE DECOMPOSITION
shown in Figure 11.6 constructs decompositions of arbitrary intrees by repeatedly removing a
subforest.

Algorithm INTREE DECOMPOSITION

Input. A B-restricted instancéG, i, ¢,L,0,g,P), such thatG is an intree and £ co.

Output. A decompositionGy,...,Gk) of (G,y,c,L,0,g,P), such thak <P, for all i < k-1,

B <WGi) < 2B andifk < P, thenu(Gy) < 2p.
i=1
while §(G) > 2B andi <P
do letuis,..., Uiy be tasks of5 with the same child an < 37, u(T(ui j)) < 2B

Gi := GV (Te(Ui1))U--- UV (Te(Uin))]
G:=GV(G)\V(G)]
i=i+1

G =G

NogarwNhE

Figure 11.6. Algorithm INTREE DECOMPOSITION

Example 11.3.12. Consider the instandés, L, 0,0, 3) shown in Figure 11.7 and its decomposi-

tion (G1, Gy, Gz) that is also shown in Figure 11.7. This is the same instance as the one shown in
Figure 11.5.(G1, Gy, G3) is constructed by AlgorithmNTREE DECOMPOSITIONUSING = 3.
Decomposition tree§&; andG3 contain five tasks(3, contains the other six tasks. The sizes of
these decomposition forests differ less than those of the decomposition forests of the decompo-
sition constructed by Algorithrd-ARY INTREE DECOMPOSITIONshown in Figure 11.5.

Now we will prove that Algorithm NTREE DECOMPOSITIONCOrrectly constructs decompo-
sitions of intrees.

Lemma 11.3.13. Let(G,,c,L,0,g,P) be ap-restricted instance, such that G is an intree and
P £ 0. Let(Gy,...,Gk) be the sequence of subforests of G constructed by AlgotitimREE
DECOMPOSITION Then(Gy,...,Gy) is a decomposition ofG, y,c,L,0,9,P), k < P, for all

i <k—1,B<G) <2Bandif k< P, then {Gy) < 2.
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Figure 11.7. A decomposition constructed by AlgorithriTREE DECOMPOSITION

Proof. Algorithm INTREE DECOMPOSITIONexecutek — 1 < P—1 steps. Before each stgfs
contains at leastf2+ 1 tasks. Then AlgorithmNTREE DECOMPOSITIONChooses a number of
tasksui 1, ..., U n, With the same child, such thBt< pw(Te(ui 1)) + -+ W(Ta(Uin)) < 2B. From
Lemma 11.3.11, there is such a collection of tasks. TBeequals the subgraph & induced
by the tasksi 1, ..., Ui n, and their predecessors. Herfgel (G;) < 2 for all i < k. The tasks
of G; are removed fronG. After k—1 steps, the remaining tasks form decomposition Gge
If k< P—1, thenp(Gy) < 2B. Otherwise, Algorithm NTREE DECOMPOSITIONwould have
executed another step. Because the tasks of decomposition@erstremoved after stapthe
subforestss; are pairwise disjoint and a task@ cannot have a predecessodn 1,...,Gk. So
(Gy,...,Gx) is a decomposition ofG, u,c,L,0,9,P). O

The time complexity of AlgorithmNTREE DECOMPOSITIONcan be determined as follows.
Let G be an intree. Considerfarestricted instancéG, p, ¢, L, 0,9, P), such thaP £ «. For each
tasku of G, computau(Ts(u)). These values can be computedifn) time for all tasks of5. By
traversing the tasks @ as described in the proof of Lemma 11.3.11, a number of tasks , uny
with the same child, such th@t< p(Te(u1)) +- - + (T (um)) < 2B can be chosen i@(n) time.
Then the subtre€ks(uz), . .., Te(un) can be removed by subtractipfTc(u1)) +- - -+ W(Te(Um))
from p(Tg(v)) for all successors of u. Since the taskesy, .. .,un have the same successors, this
takes linear time for each subforest,3mP) time in total. Using the roots of the decomposition
forests, the decomposition forests itself can be construct&fnitime by traversing the tasks
of G from its root to the sources.

Lemma 11.3.14. Let(G,p,c,L,0,g,P) be ap-restricted instance, such that G is an intree and
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P # 0. Then AlgorithmlNTREE DECOMPOSITIONcONStructs a decompositidi®y, . . ., G) of
(G, ¢,L,0,0,P), suchthat k< P, foralli <k—1, B < W(Gj) < 2B and ifk< P, then {Gx) < 2B,
in O(nP) time.

Now we will prove an upper bound on the length of the schedules constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULINGISINg the decompositions constructed by Algo-
rithm INTREE DECOMPOSITION Let (G, u, ¢, L, 0,9, P) be aB-restricted instance, such tHatis
an intree andP # . Let (Gy,...,Gx) be the decomposition d¢f5, i, ¢, L, 0,9,P) constructed by
Algorithm INTREE DECOMPOSITION Using this decomposition, Algorithm EZOMPOSITION
FOREST SCHEDULINGcoNnstructs a communication-free schedidern) for (G, c,L,0,9,P).

From Lemma 11.2.5, its length is at most maiu(Gy), maxi<i<k(K(Gi) + H(p(ri1,rk 1))},
wherer; j is the the root of the! subtree ofG;.

Let ¢* be the length of a minimum-length schedule & y,c,L,0,g,P). Obviously, for all
i <Kk,

1 G
£x guG) tupn)  and o> HO)
The length of(o, M) equals the completion time of 1, sincery 1 is the root ofG. Two cases need
to be taken into account.

Case 1. k< P, ork= P andp(Gx) < maxi<j<k(U(Gj) +H(p(rj,1,rk1)))-
Then

IA AN IACIA

I
—
[N
+
N
—~
o
|
=
~
[
~—
()
*

Case 2. k=P andu(Gy) > max<j<k(H(Gj) + H(p(rj1.Tk1)))-

In that case,
¢ < u(Gy)

< WG -(P-1)B

< e - (P-1p)r

= (P—P(P-1)%5)0

Hence the length ofo, 1) is at most
max{1+2(P71)L PfP(Pfl)L}Z*.

W(G)’ H(G)
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This bound is as small as possible if-12P — 1)% equalsP — P(P — 1)%. In that case,
G
B =7z and
P-1 6
< (42— = (3———=)0".
£ = 4250 = B

From Lemma 11.2.5, the communication requirement®fr) is at mostd(#G1 + --- +
#Gx — 1) — 1. Each decomposition forest consists of a collection of trees whose roots have the
same parent. From Lemma 11.3.11, if a decomposition forest consists of more than one tree,
then we may assume that the child of the roots of these trees has another parent. In addition,
decomposition foresby consists of one tree. Hence the number of roots of the decomposition
forests is at most mgd —1,1}(P—1)+ 1= (d — 1)(P—1) + 1, whered is the maximum
indegree irG.

Moreover, if G is an inforest instead of an intree, then a dummy root can be added. This
dummy root is the child of the roots @. For the constructed intree, a schedule can be con-
structed. By removing the dummy root, we obtain a feasible schedu{&ferc,L,0,9,P). The
indegree of the dummy root need not be taken into account. So we have proved the following
lemma.

Lemma 11.3.15. There is an algorithm with an @P) time complexity that constructs feasible
schedules fo%-restricted instance&G, |, ¢, L, 0,9,P), such that G is ad-ary intree and-P o,

with length at mos¢3 — %)é* +(d(d—1)(P—1) —1)(L+0+cmaxmax{0,g}), where/* is the
length of a minimum-length schedule {&, y,c,L,0,g,P).

Using the transformation of schedules firestricted instances into schedules for arbitrary
instances, we can prove the following result.

Theorem 11.3.16. There is an algorithm with an @d -+ P)n?) time complexity that constructs
feasible schedules for instand@s, y, ¢, L, 0,9, P), such that G is a d-ary intree and+ «, with
length at most(3 — 525)¢* + (d(d — 1)(P — 1) — 1)(L + 0+ cmaxmax{0,g}), where/* is the
length of a minimum-length schedule {&, y,c,L,0,g,P).

Proof. Obvious from Lemmas 11.3.15 and 11.3.4. O

11.4 Concluding remarks

In Sections 11.3.2 and 11.3.3, two algorithms were presented that construct decompositions of
d-ary intrees with arbitrary task lengths. The schedules constructed by Algorithoo -
POSITION FOREST SCHEDULINAISing the decompositions constructed by Algoritrdrary

INTREE DECOMPOSITIONand INTREE DECOMPOSITIONconSsist of two parts: a computation

part that depends on the execution lengths of the tasks and the precedence constraints and that is
independent of the communication requirements, and a communication part that depends on the
communication requirements and that is independent of the execution lengths of the tasks and
the precedence constraints.
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A decomposition of al-ary intree constructed by Algorithia-ARY INTREE DECOMPOSH
TION is a sequence of intrees. The size of the largest decomposition tree of such a decomposition
can bed times as large as the size of the smallest one. Hence the schedules constructed using the
decompositions of Algorithnd-ARY INTREE DECOMPOSITIONhave a large computation part.
Moreover, because the total number of roots of the decomposition forests of a decomposition
constructed by Algorithnd-ARY INTREE DECOMPOSITIONIS small, the communication part of
these schedules is small.

A decomposition of @-ary intree constructed by AlgorithnifREE DECOMPOSITIONCON-
sists of inforests with at most— 1 roots. The size of the largest decomposition forest of such
a decomposition can be at most twice as large as the size of the smallest one. As a result, the
computation part of the schedules constructed using the decompositions of AlgaxittRed
DECOMPOSITIONIs small. However, because the number of roots of these decomposition forests
of a decomposition constructed by AlgorithmTREE DECOMPOSITIONcan be large, the com-
munication part of these schedules may be large.

Hence the schedules constructed using the decompositions of AlgodtamRs INTREE DE-
COMPOSITIONand INTREE DECOMPOSITIONgive a trade-off between computation and com-
munication.

The decompositions constructed by Algoriththe\RY INTREE DECOMPOSITIONand IN-
TREE DECOMPOSITIONare used to construct communication-free schedules in which subse-
guently the communication operations are introduced. By using different kinds of communica-
tion, these decompositions can be used to construct schedules in any model of parallel compu-
tation. Using the decompositions constructed by AlgorithiARY INTREE DECOMPOSITION
schedules o processors fod-ary intrees can be constructed whose length is at most the sum

ofd+1— ‘(’;—ﬁ‘,’ times the length of a minimum-length scheduleRyprocessors and the duration
of d(P— 1) — 1 communication actions. Similarly, the decompositions constructed by Algo-
rithm INTREE DECOMPOSITIONcan be used to construct schedules@rocessors of length at
most the sum of 3- % times the length of a minimum-length schedulePoprocessors and the

duration ofd(d — 1)(P — 1) — 1 communication actions.
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12 Conclusion

In this thesis, we studied the complexity of scheduling in two models of parallel computation:
the UCT model and the LogP model. In this chapter, we give an overview of the results presented
in this thesis and some related problems that remain open. Section 12.1 is concerned with the
results presented in Part I, Section 12.2 with those presented in Part Il. In Section 12.3, we
compare the complexity of scheduling in the UCT model and the LogP model.

12.1 Scheduling in the UCT model

In Part I, we studied the complexity of constructing minimum-tardiness schedules in the UCT
model. In Chapters 4, 5 and 6, we presented several polynomial-time algorithms with the same
structure: first these algorithms modify the deadlines and second they apply a list scheduling
algorithm that uses the modified deadlines. In Chapter 4, consistent deadlines were computed
by considering the set of successors of each task. These consistent deadlines are used by a list
scheduling algorithm to construct a schedule. The resulting algorithm is proved to be an approxi-
mation algorithm with asymptotic approximation ratio nja,3 — %} for scheduling precedence
graphs with unit-length tasks and non-positive deadlinempnocessors and a 2-approximation
algorithm for scheduling precedence graphs with arbitrary task lengths and non-positive dead-
lines on an unrestricted number of processors. Moreover, the algorithm was shown to be an
approximation algorithm with asymptotic approximation ratie % for scheduling outforests

with unit-length tasks and non-positive deadlinesneprocessors. The algorithm constructs
minimum-tardiness schedules for outforests with arbitrary task lengths on an unrestricted num-
ber of processors and for outforests with unit-length tasks on two processors.

The least urgent parent property was introduced in Chapter 5. The least urgent parent property
was used to construct an approximation algorithm for scheduling inforests. Using a transforma-
tion of inforests with consistent deadlines into inforests with the least urgent parent property, a
polynomial-time algorithm for scheduling inforests was presented. This algorithm was shown to
be a 2-approximation algorithm for scheduling inforests with unit-length tasks and non-positive
deadlines omm processors. Moreover, it was proved that minimum-tardiness schedules can be
constructed in polynomial time for chain-like task systems with unit-length tasks pmoces-
sors and for precedence graphs with the least urgent parent property and arbitrary task lengths on
an unrestricted number of processors.

The deadline modification part of the algorithms presented in Chapter 6 considers pairs of
tasks instead of individual tasks. It computes pairwise consistent deadlines that may be smaller
than the consistent deadlines computed in Chapter 4. The pairwise consistent deadlines are
used by a list scheduling algorithm. This approach is used by both algorithms that were pre-
sented in Chapter 6. The first algorithm constructs minimum-tardiness schedules for precedence
graphs of width two with unit-length tasks on two processors in polynomial time; the second is a
polynomial-time algorithm that constructs minimum-tardiness schedules for interval orders with
unit-length tasks om processors.

In Chapter 7, two dynamic-programming algorithms were presented. Both algorithms con-
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struct minimum-tardiness schedules for precedence graphs of bounded width in polynomial time.
The first constructs minimum-tardiness schedules for precedence graphs of constawtwittith
unit-length tasks om processors. For precedence graphs of constant wigtth arbitrary task
lengths, the second algorithm constructs minimum-tardiness schedutes amprocessors. In
addition, we proved that for precedence graphs of widthith arbitrary task lengths, construct-

ing minimum-tardiness schedules wr< w— 1 processors is an NP-hard optimisation problem.

Many generalisations of the problems studied in Part | remain open. For example, most
algorithms presented in Chapters 4, 5 and 6 are approximation algorithms with a constant ap-
proximation ratio for scheduling precedence graphs with unit-length tasks on a restricted number
of processors. It would be interesting to determine approximation ratios of similar algorithms for
scheduling with arbitrary task lengths or with tasks with execution lengths taken from a restricted
set of execution lengths.

The algorithm presented in Chapter 4 for scheduling precedence graphs with unit-length
tasks and non-positive deadlinesraprocessors is an approximation algorithm with asymptotic
approximation ratio ma, 3 — %}. It would be interesting to know whether this algorithm has
an asymptotic approximation ratio that is smaller than 2 for scheduling on two processors and
whether there are polynomial-time approximation algorithms with better approximation ratios.

In Chapter 5, a 2-approximation algorithm for scheduling inforests was presented. This algo-
rithm uses a transformation of inforests with consistent deadlines to inforests with the least urgent
parent property to construct schedules for arbitrary inforests. The algorithm has a constant ap-
proximation ratio, because good schedules can be constructed for inforests with the least urgent
parent property and because inforests with consistent deadlines can be transformed into inforests
with the least urgent parent property without greatly increasing the deadlines. A generalisation
could be extending this approach to a larger class of precedence graphs.

In Chapter 6, we considered pairs of tasks to compute smaller deadlines that are metin all in-
time schedules. These pairwise consistent deadlines were used to construct minimum-tardiness
schedules for precedence graphs of width two on two processors and for interval oraers on
processors. If larger sets of tasks are taken into account, then we might be able to compute even
smaller deadlines. It would be interesting to determine whether there are classes of precedence
graphs for which the consistent deadlines computed by considering larger sets of tasks can be
used to construct minimum-tardiness schedules.

12.2 Scheduling in the LogP model

In Part 11, the problem of constructing minimum-length schedules in the LogP model was stud-
ied. In Chapter 9, we studied the problem of scheduling send graphs in the LogP model. Con-
structing minimum-length schedules for a send graph on an unrestricted number of processors
was shown to be a strongly NP-hard optimisation problem. We presented a polynomial-time
2-approximation algorithm for scheduling send graph$@rocessors. Moreover, we showed
that if all sinks of a send graph have the same execution length, then a minimum-length schedule
for this send graph oR processors can be constructed in polynomial time.

In Chapter 10, two polynomial-time approximation algorithms for scheduling receive graphs
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were presented. The first is a 3-approximation algorithm that constructs schedules for receive
graphs on an unrestricted number of processors. For each coast#ht, the second algorithm
constructs schedules for receive graphdPgrocessors that are at mosk?ki—l times as long
as minimum-length schedules Brprocessors. Moreover, we proved that if the execution length
of the sources of a receive graph are all equal, then a minimum-length schedule for this receive
graph on an unrestricted number of processors can be constructed in polynomial time.

In Chapter 11, two polynomial-time algorithms were presented that use decompositions to
construct schedules for inforests. The first constructs schedulésafgrintrees orP processors

that have a length that is at most the sundef1 — ‘?ir—Jrg times the length of a minimum-length
schedule orP processors and the durationd(P — 1) — 1 communication actions. The second
algorithm constructs schedules fivary inforests orP processors with a length that is at most
the sum of 3- % times the length of a minimum-length schedulePoprocessors and the du-

ration ofd(d — 1)(P— 1) — 1 communication actions.

Because scheduling in the LogP model is a new field of research, many open problems re-
main. In Chapters 9 and 10, we considered very simple precedence graphs (send and receive
graphs). Even for these precedence graphs, constructing minimum-length schedules was proved
to be strongly NP-hard. It would be interesting to determine special cases for which these prob-
lems become solvable in polynomial time. For instance, it is unknown whether minimum-length
schedules for send or receive graphs with a constant number of different execution lengths can
be constructed in polynomial time. Another generalisation is focusing on a special choice of the
LogP parameters (for instance, scheduling with gap zero).

Another interesting open problem is finding polynomial-time approximation algorithms with
better approximation ratios than those of the algorithms presented in Chapters 9 and 10. In par-
ticular, there should be algorithms with better approximation ratios than those of the algorithms
for scheduling receive graphs presented in Chapter 10.

In Chapters 9 and 10, it was shown that if the tasks of a send graph or a receive graph have the
same execution length, then a minimum-length schedule can be constructed in polynomial time.
An interesting generalisation of these results would be considering the problem of scheduling
more general precedence graphs with tasks of equal length. Classes of precedence graphs that
resemble send or receive graphs are inforests (outforests) of height three in which the root is
the only task with indegree (outdegree) greater than one, and precedence graphs of height two
with a constant number of sources (sinks) and an arbitrary number of sinks (sources). For such
classes of precedence graphs, it would be interesting to construct approximation algorithms with
a constant approximation ratio.

12.3 A comparison of the UCT model and the LogP model

As shown in Chapters 3 and 8, there is a great difference between the UCT model and the LogP
model. The UCT model is a model of parallel computation in which communication is repre-
sented by delays with a small fixed duration. The LogP model characterises the communication
in a parallel computer by latencies, overheads and gaps. In this section, we consider the effects
of these types of communication on the complexity of multiprocessor scheduling.
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The UCT model captures one aspect of communication in a parallel computer: a communica-
tion latency that models the time needed to send a message through the communication network.
In a schedule in the UCT model the result of a task is available on all processors one time unit
after its completion time. So the result of a task becomes available at the same time on all pro-
cessors (except the sending processor). No processor is involved in the transfer of data. This
makes it easy to construct good schedules in the UCT model: for small precedence graphs, near-
optimal schedules can be constructed by hand. In addition, the simplicity of the UCT model
allows the computation of good lower bounds on the length (or tardiness) of minimum-length
(or minimume-tardiness) schedules. The lower bounds can be used to prove strong approximation
ratios for algorithms for scheduling in the UCT model. As a result, there are many approximation
algorithms for scheduling in the UCT model with a constant approximation ratio.

The LogP model is a more complicated model of parallel computation that captures several
aspects of communication in a parallel computer by four parameters: ldtepegrhead, gap
g and number of processaRs The existence of communication operations makes scheduling in
the LogP model a very complicated problem. In a schedule in the LogP model the result of a
task does not become available on all processors automatically: the processors have to execute
communication operations to send and receive data. The data does not become available on all
processors at the same time, because a result has to be sent to each processor separately and
there is a minimum delay between consecutive communication operations on the same proces-
sor. Deciding to which processors a result must be sent is one of the difficulties in scheduling
in the LogP model. A second difficulty is due to the gaps between consecutive communication
operations on the same processor. If the length of the gaps exceeds that of the overheads (in
other words, ifg exceed®), then a processor is available for the execution of tasks between two
consecutive send or receive operations. Executing tasks between two consecutive send or receive
operations may increase or decrease the schedule length. Hence choosing tasks to be scheduled
between a pair of consecutive communication operations is another difficulty in scheduling in the
LogP model. These communication-related difficulties make scheduling in the LogP model very
complicated: even for small precedence graphs, it is difficult to construct near-optimal sched-
ules by hand. Moreover, since it is not clear which communication operations must be executed
in a minimum-length schedule and whether tasks should be scheduled between communication
operations, most lower bounds of the length of schedules in LogP model are far below the ac-
tual length of minimum-length schedules. As a result, all known approximation algorithms for
scheduling in the LogP model either have a parameter-dependent approximation ratio, or a con-
stant approximation ratio for a very restricted class of precedence graphs.

The results show that the effect of the communication requirements is very different for the
complexity of scheduling in the UCT model and scheduling in the LogP model. For simple
precedence graphs, one can easily construct near-optimal schedules in the UCT model, but it is
difficult to construct such schedules in the LogP model. Hence the complexity of scheduling
in the UCT model mainly depends on the precedence constraints, whereas the complexity of
scheduling in the LogP model is mainly determined by the existence of communication opera-
tions and the length of the overheads and the gaps (parametads).
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Samenvatting

Multiprocessor schedulingoudt zich bezig met de planning van de uitvoering van computer-
programma’s op een parallelle computer. EBemputerprogrammé&an worden gezien als een
collectie instructies die gegroepeerd zijntétken Een parallelle computer is een computer met
meerdergorocessorerdie verbonden zijn door eesommunicatie-netwerkElke processor kan
taken van een computerprogramma uitvoeren.

Tijdens de uitvoering van een computerprogramma op een parallelle computer wordt elke
taaké&en maal uitgevoerd. In het algemeen kunnen de taken van een computerprogramma niet
in een willekeurige volgorde worden uitgevoerd: het resultaat van een taak kan nodig zijn
om een andere taak uit te voeren. Zulke taken wordiia-afhankelijikgenoemd. De data-
afhankelijkheden defigren de structuur van het computerprogramma: als tadiet resultaat
van taaku; nodig heeft, dan kan, pas worden uitgevoerd nadai is voltooid. Als er geen
data-afhankelijkheid bestaat tussen twee taken, dan kunnen ze in willekeurige volgorde of tege-
lijkertijd worden uitgevoerd.

Als twee data-afhankelijke taken enuy op verschillende processoren worden uitgevoerd,
dan moet het resultaat van naar de processor dig uitvoert worden overgebracht. Dit transport
van informatie wordcommunicatiggenoemd. Het resultaat vapkan naar een andere processor
worden overgebracht door het sturen van berichten door het communicatie-netwerk.

Eenschedulegeeft voor elke taak aan welke processor hem uitvoert en op welk tijdstip. Het
doel van multiprocessor scheduling is het construeren vars@wdulevan zo kort mogelijke
duur, rekening houdend met de communicatie veroorzaakt door de data-afhankelijkheden tussen
de taken. De duur van een schedule wordt in grote mate bepaald door de hoeveelheid communi-
catie in het schedule: de duur van een schedule kan toenemen doordat een processor lange tijd
geen taken kan uitvoeren, omdat hij staat te wachten op het resultaat van een taak die op een
andere processor wordt uitgevoerd.

Omdat de wijze waarop processoren van parallelle computers communiceren verschilt per
computer, is het uiterst moeilijk om op efirite wijze goede schedules te construeren voor een
computerprogramma op een parallelle computer. Daarom wordt in het algemeen een model van
een parallelle computer gebruikt in plaats een echte parallelle computer. Zo’n model wordt een
parallel berekeningsmodglenoemd. In een parallel berekeningsmodel kan men zich concen-
treren op die aspecten van communicatie die een grote invloed hebben op de kwaliteit van een
schedule. Dit geeft de mogelijkheid deze aspecten beter te begrijpen.

In dit proefschrift worden twee parallelle berekeningsmodellen beschouwd: het UCT model
en het LogP model. Het UCT model richt zich op het bestudererégaraspect van commu-
nicatie: een tijdvertraging die nodig is om resultaten tussen processoren te transporteren. Het
LogP model is een model dat meerdere aspecten van communicatie in acht neemt: door middel
van een geschikt gekozen invulling van zijn parameters, g en P kan het LogP model de
communicatie in vele parallelle computers modelleren.

Communicatie in het UCT model werkt als volgt. Als tagkhet resultaat van taak nodig
heeft en deze taken zijn op verschillende processoren uitgevoerd, dan moet er een vertraging van
tenminsteéén tijdstap zijn tussen de tijd waarop wordt voltooid en de tijd waarop; start.
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Deze vertraging is nodig om het resultaat vamaar de processor die uitvoert te sturen. Als
u; enu, op dezelfde processor worden uitgevoerd, dan is het resultaat;valnop de juiste
processor beschikbaar en is er geen vertraging nodig. In dat gevab ldirect nau; worden
uitgevoerd.

Communicatie in het LogP model is veel ingewikkelder. Beschouw wederom twee data-
afhankelijke takeru; en u, die op verschillende processoren worden uitgevoerd. Neem aan
dat het resultaat vamy moet worden getransporteerd naar de processamdigtvoert. In vele
gevallen kan het transporteren van het resultaat van een taak nié&métericht, maar zijn
meerdere berichten nodig. Deze moeten naar de procesar uiiwoert worden gestuurd. Het
versturen var@én bericht kosb tijdstappen op de processor diguitvoert; het ontvangen ervan
kosto tijdstappen op de processor diguitvoert. Daarnaast kan elke processor ten hoagsie
bericht versturen of ontvangen in elgeopeenvolgende tijdstappen en is er een vertraging van
precied. tijdstappen tussen het versturen en het ontvangen van een bericht.

In het eerste deel van dit proefschrift (hoofdstukken 3, 4, 5, 6 en 7) worden algoritmen be-
schreven die op effiéhte wijze schedules in het UCT model construeren. In hoofdstuk 4 wordt
een algoritme beschreven dat goede schedules construeert voor willekeurige computerprogram-
ma’s. Voor computerprogramma’s met emrtforest-structuuconstrueert dit algoritme optimale
schedules. In hoofdstuk 5 beschrijven we algoritmen die goede schedules construeren voor com-
puterprogramma’s met eenforest-structuur De algoritmen die worden beschreven in hoofd-
stukken 6 en 7 construeren optimale schedules voor computerprogramma’s waarin het maximum
aantal paarsgewijs data-onafhankelijke taken klein is en voor computerprogramma’s rimet een
terval order-structuur

Het tweede deel van dit proefschrift (hoofdstukken 8, 9, 10 en 11) houdt zich bezig met
scheduling in het LogP model. In hoofdstukken 9 en 10 bewijzen we dat het construeren van
optimale schedules voor computerprogramma’s met een zeer eenvoudige boomstagtdur (
graph-structuurof receive graph-structuQrwaarschijnlijk niet op effiéénte wijze mogelijk is.

In deze hoofdstukken worden effégite algoritmen beschreven die goede (maar niet noodzake-
lijk optimale) schedules construeren voor computerprogramma’s met een dergelijke structuur.
In hoofdstuk 11 worden decompositie-algoritmen gebruikt om op éfftei wijze schedules te
construeren voor computerprogramma’s met een algefmeom@structuur

Het blijkt dat optimale schedules in het UCT model op effite wijze kunnen worden ge-
construeerd als de structuur van de computerprogramma’s eenvoudig is (bijvoorbeeld computer-
programma’s met een boomstructuur). De eenvoudige aard van de communicatie in het UCT
model maakt dit mogelijk. Vandaar dat de complexiteit van scheduling in het UCT model met
name bepaald wordt door de structuur van de computerprogramma’s. Daarentegen maakt de
communicatie het moeilijk om goede schedules in het LogP model te construeren, zelfs als de
structuur van de computerprogramma’s zeer eenvoudig is (bijvoorbeeld computerprogramma’s
met een send graph-structuur). Hieruit blijkt dat de complexiteit van scheduling in het LogP
model in grote mate wordt bepaald door de ingewikkelde vorm van communicatie in dit model.
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