
Scheduling with communication for
multiprocessor computation

Scheduling met communicatie voor multiprocessor berekeningen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht

op gezag van de Rector Magnificus, Prof. dr. H.O. Voorma,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen
op woensdag 10 juni 1998 des ochtends te 10.30 uur

door

Jacobus Hendrikus Verriet

geboren op 3 oktober 1970
te Ubbergen

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Utrecht University Repository

https://core.ac.uk/display/39700254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotor: Prof. dr. J. van Leeuwen
Faculteit Wiskunde & Informatica

Co-promotor: Dr. M. Veldhorst
Faculteit Wiskunde & Informatica

ISBN 90-393-2025-X

Contents

Contents iii

Introduction 1

1 Introduction 3
1.1 Communication in parallel computers . 4
1.2 Multiprocessor scheduling . 4
1.3 Models of parallel computation . 5

1.3.1 Shared memory models . 6
1.3.2 Distributed memory models . 7

1.4 An overview of the thesis . 8

2 Preliminaries 9
2.1 Precedence graphs . 9
2.2 General scheduling instances . 10
2.3 Communication-free schedules . 11
2.4 Approximation algorithms . 12
2.5 Special precedence graphs . 13

2.5.1 Tree-like task systems . 13
2.5.2 Interval orders . 14

I Scheduling in the UCT model 15

3 The Unit Communication Times model 17
3.1 Communication requirements . 17
3.2 Non-uniform deadlines . 17
3.3 Problem instances . 18
3.4 Feasible schedules . 18
3.5 Tardiness . 22
3.6 Previous results . 23
3.7 Outline of the first part . 24

4 Individual deadlines 25
4.1 Consistent deadlines . 25
4.2 Computing consistent deadlines . 30

4.2.1 A restricted number of processors . 30
4.2.2 An unrestricted number of processors 33

4.3 List scheduling . 33

iii

4.4 Constructing feasible schedules . 37
4.4.1 Arbitrary graphs on a restricted number of processors 38
4.4.2 Arbitrary graphs on an unrestricted number of processors 42
4.4.3 Outforests on a restricted number of processors 43
4.4.4 Outforests on an unrestricted number of processors 47

4.5 Concluding remarks . 48

5 The least urgent parent property 49
5.1 The least urgent parent property . 49
5.2 Using the least urgent parent property . 50
5.3 List scheduling with the least urgent parent property 52
5.4 Inforests . 55

5.4.1 Constructing minimum-tardiness schedules 55
5.4.2 Using the least urgent parent property for approximation 58

5.5 Concluding remarks . 60

6 Pairwise deadlines 61
6.1 Pairwise consistent deadlines . 61
6.2 Computing pairwise consistent deadlines . 67

6.2.1 Arbitrary precedence graphs . 67
6.2.2 Interval-ordered tasks . 71

6.3 Constructing minimum-tardiness schedules . 76
6.3.1 Precedence graphs of width two . 76
6.3.2 Interval-ordered tasks . 79

6.4 Concluding remarks . 82

7 Dynamic programming 83
7.1 Decompositions into chains . 83
7.2 A dynamic-programming algorithm . 86
7.3 An NP-completeness result . 91
7.4 Another dynamic programming algorithm . 93
7.5 Concluding remarks . 99

II Scheduling in the LogP model 101

8 The LogP model 103
8.1 Communication requirements . 103
8.2 Problem instances . 104
8.3 Feasible schedules . 105
8.4 Previous results . 109
8.5 Outline of the second part . 109

iv

9 Send graphs 111
9.1 An NP-completeness result . 111
9.2 A 2-approximation algorithm . 113
9.3 A polynomial special case . 117
9.4 Concluding remarks . 120

10 Receive graphs 123
10.1 An NP-completeness result . 123
10.2 Two approximation algorithms . 124

10.2.1 An unrestricted number of processors 124
10.2.2 A restricted number of processors . 130

10.3 A polynomial special case . 134
10.4 Concluding remarks . 136

11 Decomposition algorithms 137
11.1 Decompositions of intrees . 137
11.2 Scheduling decomposition forests . 140
11.3 Constructing decompositions of intrees . 145

11.3.1 β-restricted instances . 145
11.3.2 Constructing decompositions ofd-ary intrees 147
11.3.3 Constructing decompositions of arbitrary intrees 151

11.4 Concluding remarks . 155

Conclusion 157

12 Conclusion 159
12.1 Scheduling in the UCT model . 159
12.2 Scheduling in the LogP model . 160
12.3 A comparison of the UCT model and the LogP model 161

Bibliography 163

Acknowledgements 169

Samenvatting 171

Curriculum vitae 173

Index 175

v

vi

Introduction

1

2

1 Introduction
Scheduling is concerned with the management of resources that have to be allocated to activi-
ties over time subject to a number of constraints. A (feasible) schedule is an allocation of the
resources to the activities that satisfies all constraints. The objective of scheduling is finding a
schedule that is optimal with respect to a certain objective function. The resources that have to
be allocated and the constraints that have to be satisfied can be of various types. Hence many
real-life problems can be viewed as scheduling problems.

Crew scheduling. An airline company must allocate personnel (pilots and flight attendants) to
flights, such that the number of pilots and flight attendants is sufficient on each flight, each
employee has a (flight-dependent) period of time off between two flights and each employee
returns home regularly. An objective of crew scheduling could be minimising the number of
employees and equally dividing the working hours among the personnel.

Classroom scheduling. A school has to allocate teachers and classrooms to courses, such that
no teacher is in two classrooms at the same time, no course gets assigned two teachers or two
classrooms, no teacher works more than seven hours on one day and no student has more
than seven courses on one day. The objective of classroom scheduling could be minimising
the total amount of time that the teachers and the students have to be at school.

Vehicle routing. A transport company must allocate trucks to goods that have to be transported,
such that the volume of the goods on one truck does not exceed its capacity, all trucks return
at their depot at the end of each day, no truck driver works more than eight hours on one day
and all goods are loaded and unloaded during office hours. The objective of vehicle routing
could be minimising the number of trucks.

In general, a scheduling problem assumes the existence of a set ofoperations(the activities) and
a set ofmachines(the resources). The machines have to be assigned to the operations over time
subject to a number of constraints.

Machine scheduling. A machine must be allocated to each operation, such that no machine
is assigned to two operations at the same time and exactly one machine is assigned to each
operation.

All scheduling problems are generalisations of the machine scheduling problem. For example,
in crew scheduling, the personnel corresponds to the machines and the flights to the operations.

This thesis is concerned with multiprocessor scheduling, the problem of executing a computer
program on a parallel computer.

Multiprocessor scheduling. The processors of a parallel computer have to be allocated to the
tasks of a computer program, such that no processor executes two tasks at the same time and
every task is executed exactly once.

Usually, a multiprocessor schedule has to satisfy some additional constraints.
Multiprocessor scheduling is a generalisation of machine scheduling: the processors corre-

spond to the machines and the tasks to the operations.

3

1.1 Communication in parallel computers
This thesis is concerned with multiprocessor scheduling with communication. This is an essen-
tial aspect of the problem of executing a computer program on a parallel computer. A computer
program can be seen as a collection of instructions. These include assignments, arithmetic in-
structions, conditional statements, loop statements and subroutine calls. We will assume that the
instructions are combined into clusters. These clusters of instructions will be calledtasks.

A parallel computer can be viewed as a collection ofprocessorsandmemoriesand acom-
munication mechanism; in this thesis, we will not consider the other components of a parallel
computer. The processors are used to execute the tasks of a computer program. The memo-
ries are used to store data. The communication mechanism is used to transfer data between the
components (processors and memories) of the parallel computer.

There are two types of parallel computer that differ in the way memory is used. In adis-
tributed memory computer, each processor has a local memory. The processors of a distributed
memory computer are connected by a communication network, but are not a part of this network.
In shared memory computers, there is a global memory that is used by all processors.

The communication mechanisms of these computers are different. In both models, a data
transfer can be viewed as a sequence ofcommunication operations. In a shared memory com-
puter, data is transferred from a source processor to a destination processor by writing and read-
ing in shared memory. A data transfer consists of awrite operationfollowed by aread operation.
The source processor writes the data in a memory location, after which it can be read by the des-
tination processor. The write operation does not interfere with the availability of the destination
processor. Similarly, the source processor is not involved in the execution of the read operation.
Because simultaneous access of a memory location by two processors is not allowed, the dura-
tion of the write and read operations depends on the number of processors that want to access the
same memory location simultaneously.

In a distributed memory computer, data is transferred by sending messages from one proces-
sor to another through the communication network. In such computers, a data transfer consists
of three communication operations: asend operation, a transport operationand areceive op-
eration. The send operation is executed by the source processor; the send operation submits a
message to the communication network. The transport operation is used to transport a message
over the connections in the communication network from the source processor to the destination
processor. No processor is involved in the execution of the transport operation. After a mes-
sage has been transported, the destination processor can obtain the data from the message by
executing a receive operation. The duration of the send and receive operations depends on the
size of a message. The duration of a transport operation varies with the size of the message, the
distance between the source and the destination processor, the capacity of the connections in the
communication network and the number of messages that reside in the communication network.

1.2 Multiprocessor scheduling
During the execution of a computer program on a given input, each task has to be executed by
one processor and the duration of its execution depends on the input. Some of the tasks have

4

to be executed in a specified order, because the result of a task may be needed to execute other
tasks. Such tasks will be calleddata dependent. Other tasks can be executed in an arbitrary order
or simultaneously on different processors of a parallel computer. If two data-dependent tasks
are executed on different processors, then the result of the first task must be transported to the
processor that executes the other task using the communication mechanism.

Multiprocessor scheduling can be viewed as a generalisation of the machine scheduling prob-
lem. The machines are the processors and the components of the communication mechanism of
the parallel computer. The operations are the tasks and the communication operations. Proces-
sors and components of the communication mechanism have to be allocated to each task and
each communication operation for some period of time. Each task and every send and receive
operation has to be assigned a processor on which it is executed. The write and read operations
have to be allocated a processor and a memory location that must be accessed. A sequence of
connections in the communication network has to be assigned to every transport operation: these
connections form the path over which the corresponding message is sent through the communi-
cation network.

An assignment of processors and components of the communication mechanism to the tasks
and the communication operations has to satisfy many constraints. Usually,

1. no processor can execute two tasks or communication operations at the same time;

2. data-dependent tasks cannot be executed at the same time;

3. if two data-dependent tasks are executed on different processors, then a data transfer must
be executed between these tasks;

4. if communication is modelled by writing and reading messages in shared memory, then

(a) no shared memory location can be accessed by two processors at the same time; and
(b) a task cannot be executed until all data for this task is read by the processor on which

it is executed; and

5. if communication between the processors is modelled by sending messages through a com-
munication network, then

(a) the number of messages sent over a connection of the network at the same time may
not exceed the capacity of the connection; and

(b) a task cannot be executed until all messages required for this task are received by the
processor on which it is executed.

Apart from the large number of constraints that need to be satisfied, there are also many objective
functions that could be minimised or maximised. The most common of these is the minimisation
of themakespan, the duration of the execution of the computer program.

1.3 Models of parallel computation
Because of the large number of different constraints in multiprocessors scheduling and the great
variety of parallel computer architectures, it is difficult to design efficient algorithms that con-

5

struct good multiprocessor schedules. This is the reason to introduce an abstract model of a
parallel computer, amodel of parallel computation. In such a model, one can concentrate on
those aspects in multiprocessor scheduling that have a large impact on the objective function (for
instance, the makespan). A good model of parallel computation helps to understand the essence
of the problem of multiprocessor scheduling with communication.

If the duration of the tasks is large compared to the duration of the communication operations,
then the impact of communication on most objective functions is small. For such problems, we
can use a model of parallel computation in which all communication constraints are removed.
In this model, the duration of the communication operations is assumed to be negligible. A
schedule for a computer program in this model is an allocation of processors over time, such that
no processor executes two tasks at the same time and data-dependent tasks are executed in the
right order. This is the most common scheduling model. Lawler et al. [60] give an overview of the
work on scheduling without communication requirements subject to many additional constraints
and several objective functions.

In a real parallel computer, sending a message through the communication network or access-
ing a shared memory location is a very costly operation compared to a simple arithmetic opera-
tion. So the communication-free model of parallel computation does not capture the complexity
of parallel computation. Many other models have been presented that incorporate communica-
tion in some way. An overview of such models is presented in the remainder of this section.
The communication constraints of the models based on shared memory parallel computers are
described in Section 1.3.1 and those of the models based on distributed memory computers in
Section 1.3.2. Guinand [40] and Juurlink [51] have presented more elaborate overviews of mod-
els of parallel computation.

1.3.1 Shared memory models
Most shared memory models are generalisations of the Parallel Random Access Machine intro-
duced by Fortune and Wyllie [28]. The PRAM is the most common model of parallel compu-
tation. A PRAM consists of an infinite collection of identical processors that each have an un-
limited amount of local memory. The processors execute a computer program in a synchronous
manner: all processors start a task or a communication operation at the same time. The proces-
sors communicate by writing and reading in shared memory. Two processors can read the same
memory location simultaneously, but a memory location cannot be written by one processor and
written or read by another processor at the same time. This model of parallel computation is
also called the Concurrent Read Exclusive Write PRAM. Snir [82] introduced two variants of
the PRAM model: the Exclusive Read Exclusive Write PRAM in which no simultaneous access
of the same memory location is allowed, and the Concurrent Read Concurrent Write PRAM in
which a memory location can be read or written by several processors at the same time.

The PRAM model does not capture the complexity of communication in the execution of
computer programs: a communication operation has the same duration as the execution of a com-
putation instruction whereas in a real parallel computer, a communication operation is far more
time consuming. There are several PRAM-based models of parallel computation that include
other aspects of real parallel computers. Asynchronous variants of the PRAM were presented by
Cole and Zajicek [15, 16] and by Gibbons [34]. In an asynchronous PRAM, the processors need

6

not start the execution of an instruction or a communication operation simultaneously. Hence
processors executing a simple arithmetic instruction do not have to wait for processors that are
reading or writing in shared memory.

Most PRAM-based models of parallel computation include a more realistic representation of
shared memory access than the PRAM itself. The Delay PRAM introduced by Martel and Raghu-
natham [65] and the Local-Memory PRAM of Aggarwal et al. [3] extend the PRAM model by
including a latency for shared memory access. In these models, the duration of a communication
operation is fixed and larger than the duration of an arithmetic operation. The Queue Read Queue
Write PRAM presented by Gibbons et al. [35, 36] includes memory contention: it is allowed to
access the same shared memory location simultaneously, but the duration of a memory access
depends on the number of processors that want to read or write the same memory location. In the
Block Parallel PRAM of Aggarwal et al. [2], accessing a consecutive block of shared memory
locations is less time consuming than separately accessing these memory locations: the duration
of a write or read operation equals the sum of a fixed latency and a function linear in the number
of consecutive memory locations that must be accessed.

1.3.2 Distributed memory models
In the execution of a computer program on a distributed memory computer, each task is executed
by one processor and messages are sent through the communication network. For each pair of
data-dependent tasks scheduled on different processors, one needs to assign a path through the
communication network that will be used to send messages. This is known as routing. In this
thesis, the problem of routing will be ignored.

The simplest model of parallel computation based on a distributed memory parallel computer
is a model in which the communication network is a complete graph (there is a direct connection
between every pair of processors) and each connection in the communication network has an
unbounded capacity. In this model, transporting a message from one processor to another takes
a fixed amount of time. The communication is represented by the duration of the transport
operations only; the duration of the send and receive operations is assumed to be zero. For
multiprocessor scheduling, this is the most common model of parallel computation that does not
neglect the communication costs. It was introduced by Rayward-Smith [79]. An overview of
scheduling problems in this model is given by Chrétienne and Picouleau [13].

This basic model has been generalised in several ways. Papadimitriou and Yannakakis [75]
assume that the fixed duration of the transport operations depends on the topology of the commu-
nication network. Finta and Liu [25, 26] and Picouleau [78] add an overall capacity constraint:
the number of messages that can be sent through the communication network at the same time
is bounded. Kalpakis and Yesha [52, 53], Cosnard and Ferreira [19] and Bampis et al. [6] con-
sider models of parallel computation in which the communication network is not a complete
graph: the duration of transport operations in such networks depends on the distance between
the communicating processors.

Most models of parallel computation include only one or two aspects of real parallel com-
puters, but some include more aspects. These models are all architecture independent and char-
acterise the execution of computer programs on a real parallel computer by a small number of
parameters. The Bulk Synchronous Parallel model was introduced by Valiant [85]. The BSP

7

model is a synchronous model of parallel computation in which the synchronisation costs are not
neglected. These costs are modelled by a communication latency. In addition, the number of
messages that can be sent at the same time is bounded by the throughput of the communication
network, and the duration of send or receive operations is not negligible.

The Postal model was introduced by Bar-Noy and Kipnis [7]. It includes communication
overheads and communication latencies: the send and receive operations have unit length and
the transport operations have a fixed duration that depends on the network topology.

The LogP model was introduced by Culler et al. [21]. The LogP model is named after its
parameters: the latencyL, the overheado, the gapg and the number of processorsP. The LogP
model is more general than the Postal model. Like in the Postal model, the transport operations
in the LogP model have a fixed duration that depends on the topology of the communication net-
work. Sending and receiving a message of unit size takes a fixed amount of time. The bandwidth
of a parallel computer is modelled as well: there is a minimum delay between two consecutive
send and receive operations executed on the same processor.

1.4 An overview of the thesis
This thesis consists of four parts: an introductory part, two main parts and a concluding part. The
introductory part consists of Chapters 1 and 2. In these chapters, the terminology and notation
used in the main parts are presented. The two main parts (Parts I and II) are concerned with
scheduling in two different models of parallel computation and subject to two different objective
functions. These parts are self-contained and can therefore be read separately. The concluding
part consists of Chapter 12.

Part I consists of Chapters 3, 4, 5, 6 and 7. In these chapters, we study the problem of
constructing minimum-tardiness schedules in the Unit Communication Times model, the model
of parallel computation in which communication is represented by a latency of unit length. The
computer programs that are to be scheduled in this model consist of tasks that have been assigned
a deadline. The UCT model is introduced in Chapter 3. In the remaining chapters of Part I, we
present several algorithms that construct minimum-tardiness schedules (schedules in which the
maximum amount of time by which a deadline is exceeded is as small as possible) for special
classes of data dependencies.

Part II is concerned with the problem of constructing minimum-length schedules in the LogP
model. This part consists of Chapters 8, 9, 10, and 11. Chapter 8 is used to introduce the LogP
model. In the remaining chapters of Part II, the complexity of constructing minimum-length
schedules in the LogP model is studied. It is proved that this problem is NP-hard even for a
restricted class of data dependencies. Moreover, in Part II, we present the first approximation
algorithms with a constant approximation ratio for scheduling two special classes of data depen-
dencies in the LogP model.

8

2 Preliminaries
In this chapter, the general notation in multiprocessor scheduling and some preliminary results
are presented. In Section 2.1, we present the terminology for precedence graphs that will be used
throughout this thesis. Section 2.2 presents the general scheduling instances. The general notion
of a schedule is given in Section 2.3. In Section 2.4, the notion of approximation algorithms for
scheduling is presented. Special classes of precedence graphs and the properties of these classes
of precedence graphs are presented in Section 2.5.

2.1 Precedence graphs
In the execution of a computer program on a parallel machine, each task of the program is
executed by exactly one of the processors. The tasks can often not be executed in an arbitrary
order: the result of a task may be needed by other tasks. If the result of tasku1 is needed to
execute tasku2, then the execution ofu1 must be completed before the execution ofu2 can start.
If the execution ofu2 does not require the result ofu1, thenu1 andu2 can be executed in arbitrary
order or at the same time on different processors.

The tasks of a computer program and their data dependencies will be represented by a prece-
dence graph.

Definition 2.1.1. A directed graphis a tupleG= (V,E), whereV is a set ofnodesandE⊆V×V
is a set ofarcsbetween the nodes. An arc is a pair of two nodes ofV: the pair(u1,u2) denotes the
arc fromu1 to u2. A directed graphG = (V,E) is called aprecedence graphor directed acyclic
graph if there is no sequence of arcs(u1,u2),(u2,u3), . . . ,(uk,u1) in E for anyk≥ 1.

Let G = (V,E) be a precedence graph. A node fromV corresponds to a task from the com-
puter program. An arc from one node to another represents a data dependency between the
corresponding tasks: if there is an arc from nodeu1 to nodeu2, then the result of the task corre-
sponding tou1 is needed to execute the task that corresponds tou2. Since there is a one-to-one
correspondence between the tasks of a computer program and the nodes in a precedence graph,
we will use the term task for the nodes in a precedence graph.

Let G be a precedence graph. The setV(G) denotes the set of tasks ofG andE(G) the set of
arcs ofG. Throughout this thesis, we will assume thatV(G) containsn tasks andE(G) contains
e arcs. Apath in G is a sequence ofk≥ 2 tasksu1,u2, . . . ,uk of G, such thatG contains an arc
from ui to ui+1 for all i ∈ {1, . . . ,k−1}. From the definition of precedence graphs, there are no
paths inG from a task to itself. Thelengthof a path is the number of tasks on the path. The
heightof G is the length of a longest path inG.

Let u1 andu2 be two tasks ofG. u1 is called apredecessorof u2 if there is a path inG
from u1 to u2. In that case,u2 is called asuccessorof u1, which is denoted byu1 ≺G u2. The
sets of predecessors and successors of a tasku of G are denoted byPredG(u) andSuccG(u),
respectively. Tasks without successors will be calledsinksand tasks without predecessors will
be calledsources. u2 is called achild of u1 if (u1,u2) is an arc ofG. If u2 is a child ofu1, then

9

u1 is called aparentof u2. This is denoted byu1 ≺G,0 u2. The setsPredG,0(u) andSuccG,0(u)
contain the parents and children ofu, respectively. The number of children of a tasku is the
outdegreeof u; its indegreeequals the number of parents ofu. It is not difficult to prove that
∑u∈V(G) |PredG,0(u)|= ∑u∈V(G) |SuccG,0(u)|= |E(G)|.

Two tasksu1 andu2 of G are calledincomparableif neitheru1 ≺G u2, noru2 ≺G u1. Other-
wise, they are calledcomparable. Thewidth of G is the maximum number of pairwise incom-
parable tasks ofG. Consequently, ifG is a precedence graph of widthw, then every subset of
V(G) with at leastw+ 1 elements contains at least two comparable tasks. Achain in G is a
set of pairwise comparable tasks ofG. Note that the tasks on a path inG form a chain and that
the size of a maximum-size chain inG equals its height. A set of pairwise incomparable tasks
is called ananti-chainin G. So the width ofG equals the size of a maximum-size anti-chain inG.

A topological orderof a precedence graphG is a list containing all tasks ofG, such that
each task has a smaller index in the list than its successors. There is a topological order of all
precedence graphs. A topological order ofG can be constructed inO(n+e) time [18].

The transitive closureof G is a precedence graphG+, such thatV(G+) = V(G) and
E(G+) = {(u1,u2) | u1 ≺G u2}. Hence the transitive closure ofG contains an arc from every
task ofG to each of its successors. Thetransitive reductionof G is a precedence graphG−,
such thatV(G−) = V(G) and for all tasksu1, u2 andu3 of G, u1 ≺G u2 if and only if u1 ≺G− u2

and if u1 ≺G u2 andu2 ≺G u3, then(u1,u3) is not an arc ofG−. Throughout this thesis,e−

equals the number of arcs of the transitive reduction ofG and e+ the number of arcs in the
transitive closure ofG. A transitive closure or a transitive reduction ofG can be constructed in
O(min{n2.376,n+e+ne−}) time [17, 37]. Transitive closures and transitive reductions of prece-
dence graphs will be used to obtain more efficient implementations of algorithms.

Let U be a set of tasks of a precedence graphG. Thesubgraph of G induced by Uis the
precedence graph(U,E(G)∩(U×U)). This precedence graph is denoted byG[U]. A precedence
graphH is called asubgraphof G, if there is a subsetU of V(G), such thatG[U] equalsH. A
prefixof a precedence graphG is a subsetU of V(G), such that for all tasksu1 andu2 of G, if
u2 ∈U andu1≺G u2, thenu1 ∈U .

2.2 General scheduling instances
During the execution of a computer program, the duration of the execution of a task depends
on the input of the computer program. A functionµ is used to specify the execution length of
every task of the computer program for a given input: for each tasku of G, µ(u) is the duration
of the execution ofu. Hence a computer program (for a given input) will be represented by a
tuple (G,µ), whereG is a precedence graph andµ : V(G)→ ZZ+ is a function that assigns an
execution lengthor task lengthto every task ofG. We will assume thatµ is also used to denote
the total execution time of a precedence graph or a set of tasks. So ifU is a set of tasks ofG,
thenµ(U) = ∑u∈U µ(u). In addition,µ(G) = µ(V(G)) = ∑u∈V(G) µ(u).

A general scheduling instanceis represented by a tuple(G,µ,m), such that(G,µ) corresponds
to a computer program andm∈ {2,3, . . . ,∞} equals the number of processors that is available

10

for the execution of this computer program. Ifm= ∞, then the number of available processors
is unrestricted. Since we assume that every task is executed by exactly one processor, instances
(G,µ,∞) correspond to instances(G,m,n). We will not consider instances(G,µ,1), because the
scheduling problems that will be studied in this thesis are easily solvable on one processor.

2.3 Communication-free schedules
A schedule for a computer program corresponds to the execution of the computer program on a
parallel machine for a given input. A schedule assigns a starting time and a processor to all tasks.

Definition 2.3.1. A schedulefor a scheduling instance(G,µ,m) is a pair of functions(σ,π), such
thatσ : V(G)→ IN andπ : V(G)→{1, . . . ,m}.

Consider a schedule(σ,π) for an instance(G,µ,m). σ is anassignment of starting timesand
π anassignment of processors. σ(u) represents thestarting timeof u andπ(u) the processor on
which u is executed. A tasku is said to bescheduledat timeσ(u) on processorπ(u). Each task
has exactly one starting time. So duplication of tasks is not allowed.u starts at timeσ(u) and is
completed at timeσ(u) + µ(u), its completion time. Preemption is not allowed: the execution of
u cannot be interrupted and resumed at a later time.u is said to be executed at timet on processor
π(u) for all timest, such thatσ(u) ≤ t ≤ σ(u) + µ(u)−1. A processor is calledidle at timet if
no task is executed at timet on that processor.

A feasible schedule is a schedule in which no processor executes two tasks at the same time
and the comparable tasks are executed in the right order.

Definition 2.3.2. A schedule(σ,π) for (G,µ,m) is called afeasible communication-free schedule
or feasible schedulefor (G,µ,m) if for all tasksu1 6= u2 of G,

1. if π(u1) = π(u2), thenσ(u1) +µ(u1)≤ σ(u2) or σ(u2) +µ(u2)≤ σ(u1); and

2. if u1≺G u2, thenσ(u1) +µ(u1)≤ σ(u2).

The first constraint states that no processor can execute two tasks at the same time. The
second ensures that a task is scheduled after its predecessors.

Example 2.3.3. Consider the instance(G,µ,2) shown in Figure 2.1. Every task ofG is labelled
with its name and its execution length. A schedule(σ,π) for (G,µ,2) is shown in Figure 2.2:
σ(a1) = 0, σ(a2) = 0, σ(b1) = 1, σ(b2) = 2, σ(c1) = 3, σ(c2) = 3 andσ(d1) = 6. Moreover,
π(a1) = π(b1) = π(c1) = π(d1) = 1 andπ(a2) = π(b2) = π(c2) = 2. It is not difficult to see that
this is a feasible communication-free schedule for(G,µ,2).

Let (σ,π) be a feasible (communication-free) schedule for(G,µ,m). Thelengthor makespan
of (σ,π) is the maximum completion time of a task ofG; the makespan of(σ,π) equals
maxu∈V(G)(σ(u) + µ(u)). (σ,π) is called aminimum-length schedulefor (G,µ,m) if there is
no feasible schedule for(G,µ,m) with a smaller length than(σ,π).

11

b1:2

c1:2 c2:3

d1:1

a1:1 a2:2

b2:1

Figure 2.1. A general scheduling instance(G,µ,2)

b2

d1b1 c1

0 1 2 3 4 5 6 7

a1

a2 c2

Figure 2.2. A feasible communication-free schedule for(G,µ,2)

Feasible schedules in the UCT model and in the LogP model are defined in Chapters 3 and 8,
respectively. Feasible schedules for these models of parallel computation can be viewed as fea-
sible communication-free schedules. However, due to the communication requirements of the
UCT model and the LogP model, a feasible communication-free schedule need not correspond
to a feasible schedule in the UCT model or the LogP model.

2.4 Approximation algorithms
The goal of a scheduling problem is the construction of schedules that are optimal with respect to
a certainobjective function. For multiprocessor scheduling, the minimisation of the makespan is
the most common objective. Lawler et al. [60] give an elaborate overview of scheduling problems
and different objective functions.

Assume we want to minimise objective functionf for a class of scheduling instancesC.
For each instanceI in C, let f ∗(I) = min{ f (σ,π) | (σ,π) is a feasible schedule forI}. Let Algo-
rithm A be an algorithm that constructs feasible schedules for all instancesI in classC. Let A(I)
be the schedule forI constructed by Algorithm A. Letρ∈ IR , such thatρ≥ 1. Then Algorithm A
is called aρ-approximation algorithmif for all instancesI in C, f (A(I))≤ ρ f ∗(I). Algorithm A
is called anapproximation algorithm with asymptotic approximation ratioρ if there is a positive
integerN, such that for all instancesI in C, if f ∗(I)≥ N, then f (A(I))≤ ρ f ∗(I). These notions
of approximation algorithms correspond to those of Garey and Johnson [33]. If there is a non-
negative constantc∈ IR , such thatfA(I)≤ ρ f ∗(I) + c for all instancesI in C, then Algorithm A
is aρ +c-approximation algorithm and an approximation algorithm with asymptotic ratioρ.

12

2.5 Special precedence graphs
In this section, some properties of several special classes of precedence graphs are presented.
Later in this thesis, algorithms will be presented that construct schedules (in the UCT model or
in the LogP model) for precedence graphs from these classes.

2.5.1 Tree-like task systems
Tree-like task systemsmodel divide-and-conquer computer programs, such as the evaluation of
arithmetic expressions [10] and polynomial expressions [74]. We will consider two types of tree-
like task systems: trees in which all tasks have at most one parent and trees in which all tasks
have at most one child.

Definition 2.5.1. Inforestsare precedence graphs in which every task has at most one child. An
intree is an inforest that has exactly one sink. Anoutforestis an inforest in which the arcs have
been reversed: an outforest is a precedence graph in which all tasks have at most one parent. An
outtreeis an outforest with exactly one source.

It is easy to see that an inforest is a collection of intrees and an outforest a collection of
outtrees. The sinks of an inforest and the sources of an outforest will be calledroots. The
sources of an inforest and the sinks of an outforest will be calledleafs. Tree-like task systems
are sparse precedence graphs: a forest (an inforest or an outforest) withk roots contains exactly
n−k arcs.

An inforest (or intree) will be called ad-ary inforest(or d-ary intree) if all tasks have inde-
gree at mostd. Similarly, an outforest (or outtree) is called ad-ary outforest(or d-ary outtree) if
all tasks have outdegree at mostd.

Since in an inforest every task has at most one child, all successors of a task are comparable.

Observation 2.5.2. Let G be an inforest. Let u1, u2 and u3 be three tasks of G. If u1≺G u2 and
u1≺G u3, then u2≺G u3 or u3≺G u2.

Similarly, all predecessors of a task in an outforest are comparable.

Observation 2.5.3. Let G be an outforest. Let u1, u2 and u3 be three tasks of G. If u2 ≺G u1

and u3≺G u1, then u2≺G u3 or u3≺G u2.

Let H be a subgraph of an inforestG. It is not difficult to see thatH is also an inforest.H
will be called asubforestof G. If H is an intree, thenH will be called asubtreeof G. Similarly,
a subgraph of an outforest is an outforest and will also be called a subforest or a subtree.

In this thesis, we will also consider special tree-like task systems. For instance, we will
consider precedence graphs that are both inforests and outforests. In such precedence graphs,
every task has at most one child and at most one parent. These precedence graphs will be called
chain-like task systems.

Moreover, in Chapter 9, send graphs are considered. Asend graphis a precedence graph
consisting of a source and its children. These children are the sinks of the precedence graph.

13

Receive graphsare considered in Chapter 10. A receive graph is a send graph in which the arcs
have been reversed: a receive graph consists of a sink and its parents. Send and receive graphs
are special instances of outtrees and intrees, respectively: a send graph is an outtree of height
two and a receive graph is a intree of height two.

2.5.2 Interval orders
Unlike tree-like task systems, the class ofinterval ordersor interval-ordered tasksis a class of
precedence graphs that are not necessarily sparse.

Definition 2.5.4. A precedence graphG is called aninterval orderif for every taskv of G, there
is a (non-empty) closed intervalI(v)⊆ IR , such that for all tasksv1 andv2 of G,

v1≺G v2 if and only if x< y for all x∈ I(v1) andy∈ I(v2).

Interval orders have a very nice property: the sets of successors of the tasks of an interval
order form a total order. More precisely, ifu1 andu2 are two tasks of an interval orderG, then

SuccG(u1) ⊆ SuccG(u2) or SuccG(u2) ⊆ SuccG(u1).

This property can be generalised.

Proposition 2.5.5. Let G be an interval order. Let U be a non-empty subset of V(G). Then U
contains a task u, such that

SuccG(u) =
⋃
v∈U

SuccG(v).

Proof. By straightforward induction on the number of tasks ofU .

The transitive closure of an interval orderG can be constructed more efficiently than the
transitive closure of an arbitrary precedence graph. First construct a topological orderu1, . . . ,un

of G. This takesO(n+ e) time [18]. Usingu1, . . . ,un, the set of successors of each task can be
computed inductively. AssumeSuccG(ui+1), . . . ,SuccG(un) have been computed. Letv1, . . . ,vk

be the children ofui . SinceG is an interval order, we may assume thatSuccG(v1) ⊆ ·· · ⊆
SuccG(vk). ThenSuccG(ui) = SuccG(vk)∪{v1, . . . ,vk}. For every taskv in SuccG(ui), add an arc
from ui to v. Then the resulting precedence graph is the transitive closure ofG. It is constructed
in O(n+e+) time.

Lemma 2.5.6. Let G be an interval order. Then the transitive closure of G can be constructed
in O(n+e+) time.

14

I Scheduling in the UCT model

15

16

3 The Unit Communication Times model
Part I is concerned with scheduling in the Unit Communication Times model of parallel compu-
tation. The UCT model is presented in this chapter. In Section 3.1, the communication require-
ments of the UCT model are presented. The scheduling model for tasks is extended to tasks with
non-uniform deadlines. The notation concerning non-uniform deadlines are introduced in Sec-
tion 3.2. The general problem instances and feasible schedules for such instances are presented
in Sections 3.3 and 3.4. Section 3.5 introduces the objective functions related to scheduling with
non-uniform deadlines. In Section 3.6, previous results on scheduling in the UCT model are
presented. An outline of the first part of this thesis is presented in Section 3.7.

3.1 Communication requirements
In Section 2.3, feasible communication-free schedules were introduced. For the construction
of feasible communication-free schedules, only two kinds of constraints have to be taken into
account: the precedence constraints and the constraints due to the limited number of processors.
Hence a task can be scheduled on any processor immediately after the completion of the last of
its parents. The time required to transport the result of a task to another processor is neglected.

However, it turns out that communication has a great effect on the performance of parallel
computers. This is the reason why there are many models of parallel computation that include
a notion of communication. Some of these were mentioned in Section 1.3. Since the effect
of communication is ignored in communication-free scheduling, it does not capture the true
complexity of parallel programming.

The UCT model is a model of a distributed-memory computer that takes communication
delays into account. In the UCT model, we will assume that the communication network is a
complete graph: each processor is directly connected to all other processors. The capacities of
these connections are assumed to be unbounded. From this assumption, an unbounded number
of messages can be sent over any connection in the communication network at the same time.
Hence the time required to send one message from one processor to another is independent of the
pair of processors: the interprocessor communication delays are all equal. In the UCT model,
the communication delays are assumed to be of unit length.

The unit-length communication delays add the following constraint to the scheduling prob-
lem. Consider a tasku and a childv of u. If u andv are scheduled on different processors, thenv
cannot start immediately afteru, because the result ofu must be sent to another processor. There
must be a delay of at least one time unit between the completion time ofu and the starting time
of v. If u andv are scheduled on the same processor, then the result ofu need not be sent to
another processor andv can be scheduled immediately afteru.

3.2 Non-uniform deadlines
Apart from communication delays, non-uniform deadlines for tasks are introduced. The most
common objective function for scheduling is the minimisation of the makespan. In scheduling

17

problems with this objective, all tasks have the same priority. However, in many applications,
different tasks have different priorities. Tasks with different deadlines are not equally important:
tasks with a small deadline must be executed early and hence have a high priority, whereas tasks
with large deadlines are less important.

A task should be completed before its deadline. If a tasku finishes after its deadline, then it
is calledtardyand thetardinessof u is defined to be the amount of time by which the completion
time of u exceeds its deadline. Ifu finishes before its deadline, then it is calledin time and
its tardiness equals zero. The objective of the scheduling problems considered in Part I is the
minimisation of the maximum tardiness among all tasks.

The problem of constructing minimum-tardiness schedules is closely related to that of min-
imising the makespan: the makespan of a schedule coincides with a deadline that is met by all
tasks, and if all tasks are assigned deadline zero, then the maximum tardiness of a task in a
schedule equals the makespan of this schedule.

3.3 Problem instances
As shown in Chapter 2, a general scheduling instance is represented by a tuple(G,µ,m), where
G is a precedence graph,µ is a function that assigns an execution length to every task ofG and
m is the number of processors. This scheduling problem is generalised in two ways: there are
unit-length communication delays and every task has a deadline. Since the communication re-
quirements are the same for all arcs, these are not explicitly included in the scheduling instances.

Unlike the communication delays, the deadlines are included in the instances. The new
scheduling instances will be represented by tuples(G,µ,m,D), whereG is a precedence graph,
µ : V(G)→ ZZ+ assigns an execution length to every task ofG, m∈ {2,3, . . . ,∞} is the number
of processors, andD : V(G)→ ZZ assigns a deadline to every task ofG. Note that a deadline may
be non-positive and that a non-positive deadline cannot be met. If all tasks have execution length
one, then the scheduling instance(G,µ,m,D) will be represented by the tuple(G,m,D).

3.4 Feasible schedules
Like for communication-free schedules, a schedule in the UCT model is represented by a pair of
functions. Aschedulefor (G,µ,m,D) is a pair of functions(σ,π), such thatσ : V(G)→ IN and
π : V(G)→{1, . . . ,m}.

Definition 3.4.1. A schedule(σ,π) for (G,µ,m,D) is called afeasible schedulefor (G,µ,m,D)
if for all tasksu1 6= u2 of G,

1. if π(u1) = π(u2), thenσ(u1) +µ(u1)≤ σ(u2) or σ(u2) +µ(u2)≤ σ(u1);

2. if u1≺G u2, thenσ(u1) +µ(u1)≤ σ(u2); and

3. if u1≺G,0 u2 andπ(u1) 6= π(u2), thenσ(u1) +µ(u1) +1≤ σ(u2).

The first two constraints equal those for feasible communication-free schedules; the third
one states that there must be a delay of at least one time unit between data-dependent tasks on
different processors. Note that the feasibility of a schedule does not depend on the deadlines.

18

b1:2,3

c1:2,6 c2:3,6

d1:1,8

a1:1,1 a2:2,2

b2:1,3

Figure 3.1. An instance(G,µ,2,D)

b2

d1b1 c1

0 1 2 3 4 5 6 7

a1

a2 c2

8

Figure 3.2. A feasible schedule for(G,µ,2,D)

Example 3.4.2. Consider the instance(G,µ,2,D) shown in Figure 3.1. Each task ofG is la-
belled with its name, execution length and deadline. Note that(G,µ,2,D) corresponds to the gen-
eral scheduling instance(G,µ,2) shown in Figure 2.1. A feasible schedule(σ,π) for (G,µ,2,D)
is shown in Figure 3.2.a1 anda2 start at time 0 on separate processors.b1 is a successor ofa1,
so it can be scheduled immediately aftera1 on the first processor. Sinceb2 is a successor ofa1

anda2, andb2 is not scheduled on the same processor asa1, there is a delay of one time unit
between the completion time ofa1 and the starting time ofb2. c1 andc2 are both successors of
b2. Only one of these tasks can be executed immediately afterb2 on the second processor. The
other can be scheduled after a delay of one time unit on the first processor. Similarly,d1 cannot
be executed immediately afterc1 andc2, becausec1 andc2 are both parents ofd1. It is easy to
see that the schedule for(G,µ,2) shown in Figure 2.2 is not a feasible schedule for(G,µ,2,D).

In the remaining chapters of Part I, we will use a different definition of feasible schedules.
Using this definition, it is simpler to construct schedules and reason about them. In this definition,
a schedule is only represented by the starting times of the tasks. A corresponding assignment of
processors can be constructed using these starting times.

Definition 3.4.3. A function S: V(G)→ IN is called afeasible assignment of starting timesfor
(G,µ,m,D) if for all tasksu1 andu2 of G and all non-negative integerst,

1. |{u∈V(G) | S(u)≤ t < S(u) +µ(u)}| ≤m;

2. if u1≺G u2, thenS(u2)≥ S(u1) +µ(u1);

19

3. at most one child ofu1 starts at timeS(u1) +µ(u1); and

4. at most one parent ofu1 finishes at timeS(u1).

Note that every feasible schedule implies a feasible assignment of starting times. Conversely,
given a feasible assignment of starting timesS for (G,µ,m,D), we can construct an assignment
of processorsπ, such that(S,π) is a feasible schedule for(G,µ,m,D). Such an assignment
of processors is constructed by Algorithm PROCESSOR ASSIGNMENT COMPUTATIONshown in
Figure 3.3. For all timest starting with time 0, it assigns a processor to all tasks with starting time
t. The following notations are used. At any timet, idle(p) denotes the maximum completion
time of a task that has been assigned to processorp and tasksuimin anduimax denote the first and
last task with starting timet, respectively.

Algorithm PROCESSOR ASSIGNMENT COMPUTATION

Input. A feasible assignment of starting timesS for (G,µ,m,D), such thatV(G) = {u1, . . . ,un}
andS(u1)≤ ·· · ≤ S(un).

Output. An assignment of processorsπ, such that(S,π) is a feasible schedule for(G,µ,m,D).
1. for p := 1 to max{m,n}
2. do idle(p) := 0
3. imax := 0
4. repeat
5. imin := imax+1
6. imax := max{i ≥ imin | S(ui) = S(uimin)}
7. t := S(uimin)
8. U :=∅
9. for i := imin to imax

10. do if ui has a parentv, such thatS(v) +µ(v) = t
11. then π(ui) := π(v)
12. idle(π(ui)) := t +µ(ui)
13. else U := U ∪{ui}
14. for u∈U
15. do determinep, such thatidle(p)≤ t
16. π(u) := p
17. idle(p) := t +µ(u)
18. until imax = n

Figure 3.3. Algorithm PROCESSOR ASSIGNMENT COMPUTATION

Now we will prove that Algorithm PROCESSOR ASSIGNMENT COMPUTATIONcorrectly con-
structs feasible schedules given a feasible assignment of starting times.

Lemma 3.4.4. Let S be a feasible assignment of starting times for(G,µ,m,D). Let π be the
assignment of processors for(G,µ,m,D) constructed by AlgorithmPROCESSOR ASSIGNMENT

COMPUTATION. Then(S,π) is a feasible schedule for(G,µ,m,D).

20

Proof. BecauseS is a feasible assignment of starting times for(G,µ,m,D), there are at mostm
tasksu of G, such thatS(u) ≤ t < S(u) + µ(u) for all times t. So for any tasku of G, when
the tasks ofG with starting timeS(u) are considered by Algorithm PROCESSOR ASSIGNMENT

COMPUTATION, there are sufficiently many processorsp, such thatidle(p) ≤ S(u). So every
tasku has been assigned a processorπ(u). Let u1 andu2 be two tasks ofG. SinceS is a feasible
assignment of starting times for(G,µ,m,D), if u1 ≺G u2, thenS(u2) ≥ S(u1) + µ(u1). If u2 is
a child of u1 andπ(u1) 6= π(u2), thenS(u1) + µ(u1) 6= S(u2). Otherwise,u2 would have been
assigned to the same processor asu1. Assumeπ(u1) = π(u2). Assumeu1 has been assigned a
processor beforeu2. Whenu2 is assigned to a processor,idle(π(u1)) ≥ S(u1) + µ(u1). Because
u2 is assigned to processorπ(u2) = π(u1), S(u2) ≥ idle(π(u1)) ≥ S(u1) + µ(u1). So(S,π) is a
feasible schedule for(G,µ,m,D).

The time complexity of Algorithm PROCESSOR ASSIGNMENT COMPUTATIONcan be deter-
mined as follows. LetS be a feasible assignment of starting times. Constructing a list of tasks
ordered by non-decreasing starting times takesO(nlogn) time. Indicesimin andimax can be com-
puted by one traversal of the list of tasks ordered by non-decreasing starting times. Sinceimin

andimax do not decrease, updating these indices takesO(n) time in total. For each tasku, it has
to be determined whether a parent finishes at timeS(u). This takesO(|PredG,0(u)|) time. If there
is a such a parent, thenu is assigned to the same processor as this parent. Otherwise, it is added
to U and assigned to an arbitrary idle processor. A task is added and removed fromU at most
once. IfU is represented by a queue, then the operations onU takeO(n) time in total. If the
processors are stored in a balanced search tree ordered by non-decreasingidle(p)-value, then
each operation on this tree takesO(logn) time. Soπ is constructed in a total ofO(nlogn+ e)
time.

Lemma 3.4.5. For all feasible assignments of starting times S for an instance(G,µ,m,D), Al-
gorithm PROCESSOR ASSIGNMENT COMPUTATIONconstructs an assignment of processorsπ
for (G,µ,m,D), such that(S,π) is a feasible schedule for(G,µ,m,D), in O(nlogn+e) time.

Because a feasible assignment of starting times for(G,µ,m,D) can be extended to a feasi-
ble schedule for(G,µ,m,D), the term feasible schedule will be used for feasible assignments of
starting times as well.

Let Sbe a feasible schedule for an instance(G,m,D). All tasks ofG have unit length. For
all integerst, defineSt = {u ∈ V(G) | S(u) = t}. Then every task inSt starts at timet and is
completed at timet + 1. St will be called thet th time slotof S. Scan be completely represented
by a list of time slots:S= (S0, . . . , S̀−1), where` is the length ofS. A time slotSt is calledidle
if it contains less thanm tasks.

We conclude this section with a definition that is related to that of feasible schedules.

Definition 3.4.6. Let U be a prefix of a precedence graphG. Let S be a feasible schedule for
(G[U],µ,m,D). Let u be a task inU or a source ofG[V(G)\U]. Thenu is calledreadyat time
t (with respect toS) if the all predecessors ofu are completed at or before timet. u is called
availableat timet (with respect toS) if

21

1. u is ready at timet (with respect toS);

2. at most one parent ofu finishes at timet; and

3. if a parentv of u finishes at timet, then no childw 6= u of v starts at timet.

Let S be a feasible schedule for an instance(G,µ,m,D). It is not difficult to see that any
tasku is available at timeS(u). Note that a task can be available at timet even if m tasks are
being executed at that time. Hence any unscheduled task is available one unit of time after the
completion time of the last of its predecessors.

3.5 Tardiness

The objective of the scheduling problems studied in the first part of the thesis is the minimisation
of the maximum tardiness of a task. LetS be a feasible schedule for an instance(G,µ,m,D).
Let u be a task ofG. The tardinessof u equals max{0,S(u) + µ(u)−D(u)}; its latenessequals
S(u) + µ(u)−D(u). Thetardinessof S is the maximum tardiness of a task ofG: Shas tardiness
max{0,maxu∈V(G)(S(u) + µ(u)−D(u))}. If the tardiness ofS equals zero, then it is called an
in-time schedulefor (G,µ,m,D). The latenessof S is the maximum lateness among the tasks of
G, it equals maxu∈V(G)(S(u) +µ(u)−D(u)).

S is called aminimum-tardiness schedulefor (G,µ,m,D) if there is no feasible schedule for
(G,µ,m,D) whose tardiness is smaller than that ofS. Similarly, S is called aminimum-lateness
schedulefor (G,µ,m,D) if there is no feasible schedule for(G,µ,m,D) whose lateness is smaller
than that ofS. Because the tardiness of a schedule cannot be negative and an in-time schedule
has tardiness zero, any in-time schedule for(G,µ,m,D) is a minimum-tardiness schedule for
(G,µ,m,D). Since the lateness of a schedule can be negative, an in-time schedule for(G,µ,m,D)
need not be a minimum-lateness schedule for(G,µ,m,D).

Clearly, minimising the tardiness and minimising the lateness are closely related problems.
Makespan minimisation is also closely related to minimisation of the tardiness: if all deadlines
equal zero, then the tardiness of a schedule equals its length. So any algorithm that constructs
minimum-tardiness schedules can be used to construct minimum-length schedules.

The tardiness of a schedule can be zero. So for allρ ∈ IR , such thatρ≥ 1, aρ-approximation
algorithm for tardiness minimisation must construct in-time schedules if such schedules ex-
ist. If all deadlines are non-positive, then the tardiness of any schedule is positive, because a
non-positive deadline cannot be met. For such instances, aρ-approximation need not construct
minimum-tardiness schedules.

However, scheduling with non-positive deadlines is a bit unnatural, because a non-positive
deadline cannot be met. There is a model that is equivalent to scheduling with non-positive
deadlines: scheduling withdelivery times[58, 66]. In this model, every tasku has a non-negative
delivery timeq(u). This is the amount of time that expires after the completion time ofu until it is
delivered. The objective in scheduling with delivery times is the minimisation of the maximum
delivery-completion time(the sum of the completion time and the delivery time of a task). If
we have an instance(G,µ,m,D) with non-positive deadlines, then we can chooseq(u) =−D(u)

22

for all tasksu of G. Then minimising the maximum tardiness corresponds to minimising the
maximum delivery-completion time.

3.6 Previous results
Scheduling precedence graphs subject to unit-length communication delays is a well-studied
problem. Minimisation of the makespan is the most common objective of the algorithms for
scheduling with unit-length communication delays. Rayward-Smith [79] was one of the first to
study the problem of scheduling precedence-constrained tasks subject to unit-length communi-
cation delays. He proved that constructing minimum-length schedules for arbitrary precedence
graphs with unit-length tasks is an NP-hard optimisation problem. Lenstra et al. [61] proved the
same for scheduling inforests with unit-length tasks. Constructing minimum-length schedules
for arbitrary precedence graphs with unit-length tasks on an unrestricted number of processors is
an NP-hard optimisation problem as well [47, 77, 80].

For special classes of precedence graphs, it is possible to construct minimum-length sched-
ules in polynomial time. Minimum-length schedules for precedence graphs with unit-length
tasks on two processors can be constructed in polynomial time if the precedence constraints
form an inforest or an outforest [42, 50, 61, 77, 86] or a series-parallel graph [27]. Varvarigou et
al. [86] presented a dynamic-programming algorithm that constructs minimum-length schedules
for outforests with unit-length tasks onmprocessors inO(n2m−2) time; this algorithm constructs
minimum-length schedules in polynomial time if the number of processors is a constant. For
interval-ordered tasks of unit length, a minimum-length schedule onm processors can be con-
structed in polynomial time for any number of processorsm [4, 77]. Minimum-length schedules
for precedence graphs with arbitrary task lengths on an unrestricted number of processors can be
constructed in polynomial time if the precedence constraints form an inforest or an outforest [12],
a series-parallel graph [68, 69] or a bipartite precedence graph [77].

In addition, there are many algorithms that approximate the makespan of a minimum-length
schedule. Rayward-Smith proved that a list scheduling is a 3− 2

m-approximation algorithm for
scheduling arbitrary precedence graphs with unit-length tasks onm processors. Lawler [59]
presented an algorithm that constructs schedules for outforests with unit-length tasks onm pro-
cessors; Guinand et al. [41] proved that the schedules constructed by Lawler’s algorithm are at
most 1

2(m−1) time units longer than the length of a minimum-length schedule onmprocessors.
Moreover, Munier and K̈onig [73] use linear programming in their4

3-approximation algorithm
for scheduling arbitrary precedence graphs with unit-length tasks on an unrestricted number
of processors. Munier and Hanen [72] generalised this algorithm to a7

3 −
1

3m-approximation
algorithm for scheduling arbitrary precedence graphs with unit-length tasks onm processors.
Scḧaffter [81] showed how these algorithms can be generalised to a4

3-approximation algorithm
and a7

3-approximation algorithm for scheduling arbitrary precedence graphs with arbitrary task
lengths on an unrestricted and a restricted number of processors, respectively.

Two of the few results concerning scheduling problems whose objective is not the minimi-
sation of the makespan were presented by Möhring et al. [70]; they study scheduling problems
whose objective is the minimisation of the weighted sum of completion times. They presented
two approximation algorithms: a10

3 −
4

3m-approximation algorithm for scheduling arbitrary

23

precedence graphs with unit-length tasks onm processors and a 6.14232-approximation algo-
rithm for scheduling arbitrary precedence graphs with tasks of arbitrary length onm processors.
In addition, there is a 3-approximation algorithm for scheduling series-parallel graphs with unit-
length tasks and a 5.80899-approximation algorithm for scheduling series-parallel graphs with
arbitrary task lengths [81].

3.7 Outline of the first part
Apart from this chapter, Part I consists of Chapters 4, 5, 6 and 7. These chapters are concerned
with the construction of minimum-tardiness schedules in the UCT model. In Chapter 4, an al-
gorithm for this problem is presented that consists of two parts. The first part computes smaller
deadlines, that are met in all in-time schedules. These deadlines will be called consistent. The
second part of the algorithm is a list scheduling algorithm that uses the consistent deadlines to
construct a feasible schedule. It will be proved that this algorithm is an approximation algorithm
with asymptotic approximation ratio max{2,3− 3

m} for scheduling arbitrary precedence graphs
with non-positive deadlines onm processors and an approximation algorithm with asymptotic
approximation ratio 2− 2

m for scheduling outforests with non-positive deadlines onm proces-
sors. In addition, the algorithm constructs minimum-tardiness schedules for outforests on two
processors and on an unrestricted number of processors. Moreover, it is shown that the algorithm
is a 2-approximation algorithm for scheduling arbitrary precedence graphs with non-positive
deadlines on an unrestricted number of processors.

The least urgent parent property is introduced in Chapter 5. It will be proved that for arbitrary
precedence graphs with the least urgent parent property, minimum-tardiness schedules on an
unrestricted number of processors can be constructed using a list scheduling approach. The
same is proved for scheduling inforests onm processors. If an instance does not have the least
urgent parent property, then its deadlines can be increased, such that the resulting instance has the
least urgent parent property. The construction of instances with the least urgent parent property
is used to construct schedules for arbitrary inforests. Using this construction, we obtain a 2-
approximation algorithm for scheduling inforests with non-positive deadlines onmprocessors.

In Chapter 6, a stronger notion of consistency is introduced by considering pairs of tasks
instead of individual tasks. A list scheduling algorithm uses the pairwise consistent deadlines to
construct minimum-tardiness schedules for interval orders onm processors and for precedence
graphs of width two on two processors. The result on scheduling interval-ordered tasks has been
published in the proceedings of ISAAC’96 [89] and a final version will be published in Parallel
Computing [93].

In Chapter 7, a dynamic-programming approach is used to construct minimum-tardiness
schedules for arbitrary precedence graphs. For precedence graphs of bounded width with unit-
length tasks, it constructs minimum-tardiness schedules onmprocessors in polynomial time. The
same is proved for scheduling precedence graphs of bounded width with arbitrary task lengths
on an unrestricted number of processors. Moreover, constructing minimum-tardiness schedules
for precedence graphs of width three with arbitrary task length on two processors is shown to be
an NP-hard optimisation problem.

24

4 Individual deadlines
The first part of this thesis is concerned with scheduling with non-uniform deadlines subject to
unit-length communication delays. Most scheduling problems with precedence constraints and
non-uniform deadlines neglect the communication costs. Garey and Johnson [31] were the first
that studied a scheduling problem with precedence constraints and non-uniform deadlines. They
presented an algorithm that constructs minimum-tardiness schedules for arbitrary precedence
graphs with unit-length tasks on two processors. Hanen and Munier [44] showed that this algo-
rithm has an asymptotic approximation ratio of 2− 3

2m for scheduling arbitrary precedence graphs
with unit-length tasks and non-positive deadlines onmprocessors. In addition, Brucker et al. [11]
proved that for inforests with unit-length tasks, minimum-tardiness schedules onm processors
can be constructed in polynomial time. Hall and Shmoys [43] showed that list scheduling is a 2-
approximation algorithm for scheduling arbitrary precedence graphs with arbitrary task lengths
with non-positive deadlines onm processors.

In this chapter, I will present an efficient algorithm that constructs schedules for precedence
graphs with non-uniform deadlines subject to unit-length communication delays. The algorithm
has the same overall structure as the one presented by Garey and Johnson [31]. The algorithm
consists of two parts. The first part computes smaller deadlines that are met in all in-time sched-
ules. The deadlines that are met in all in-time schedules will be called consistent. We want these
deadlines to be as small as possible. Consistent deadlines will be defined in Section 4.1. The
computation of the consistent deadline of a tasku depends on the subgraph containing the suc-
cessors ofu: if u has sufficiently many successors that have to be completed at or before timed,
then the deadline ofu is decreased. The algorithm computing consistent deadlines is presented
in Section 4.2.

The second part of the algorithm is a list scheduling algorithm that is presented in Section 4.3.
This algorithm uses a list ordered by non-decreasing consistent deadlines to assign a starting time
to every task. In Section 4.4, the tardiness of the schedules constructed by the list scheduling
algorithm will be computed. It will be proved that the algorithm constructs minimum-tardiness
schedules for outforests with unit-length tasks on two processors and for outforests with arbitrary
task lengths on an unrestricted number of processors. In addition, it will be proved that this
algorithm has an asymptotic approximation ratio of 2− 2

m for scheduling outforests with unit-
length tasks and non-positive deadlines onm processors. Its asymptotic approximation ratio
for scheduling arbitrary precedence graphs with unit-length tasks and non-positive deadlines on
m processors equals max{2,3− 3

m}. Moreover, this algorithm is shown to be a 2-approximation
algorithm for scheduling arbitrary precedence graphs with arbitrary task lengths and non-positive
deadlines on an unrestricted number of processors.

4.1 Consistent deadlines

In this chapter, an algorithm is presented for scheduling precedence graphs with non-uniform
deadlines subject to unit-length communication delays. The algorithm consists of two parts: the
first part determines a priority of the tasks and the second part uses these priorities to assign

25

a starting time to every task. In order to get schedules with a small tardiness, the priority of
the tasks should depend on the deadlines. The priority will be defined using deadlines that
are met in all in-time schedules. In order to get schedules with a small tardiness, we want
these deadlines to be as small as possible. Hence the best possible deadline of a tasku is the
latest completion time ofu in an in-time schedule. However, it is impossible to compute these
completion times efficiently. Hence we will approximate these completion times by computing
smaller deadlines for each task using the deadlines of its successors. These smaller deadlines
will be called consistent. It will be proved that the consistent deadlines are met in all in-time
schedules.

To define consistent deadlines, we need to look at the structure of in-time schedules. Let
S be an in-time schedule for(G,m,D). Let u be a task ofG. Assumeu hask≥ 1 successors
v1, . . . ,vk, such thatD(vi) ≤ d for all i ≤ k. u is scheduled at timeS(u) and finishes at time
S(u) + 1. Because of the communication delays, at most one successorvi of u can be scheduled
at timeS(u) + 1. Hence the last of the otherk−1 successors ofu cannot be completed before
time S(u) + 2+

⌈
k−1
m

⌉
. Since the successors ofu are all executed before timed, u must finish at

or before timed−1−
⌈

k−1
m

⌉
.

Now we will consider the more general instance(G,µ,m,D). Let S be an in-time schedule
for (G,µ,m,D). Let v be a task ofG. v finishes at or before timeD(v). SoS(v) ≤ D(v)−µ(v).
v can be viewed as a chain ofµ(v) subtasks of unit length. DefineµD(v,d) as the number of
unit-length subtasks ofv that are completed at or before timed if v finishes at timeD(v).

µD(v,d) =


0 if d≤ D(v)−µ(v)

µ(v)−D(v) +d if D(v)−µ(v)< d< D(v)

µ(v) if d≥ D(v)

Note that for instances(G,m,D), µD(v,d) ∈ {0,1} for all tasksv of G: if D(v) ≤ d, then
µD(v,d) = 1 and ifD(v)> d, thenµD(v,d) = 0.

Let u be a task ofG. Let k = ∑v∈SuccG(u) µD(v,d) be the total number of unit-length subtasks
of the successors ofu that are completed at or before timed. Thenu must finish at or before time
d−1−

⌈
k−1
m

⌉
.

DefineND(u,d) as the total number of unit-length subtasks of the successors ofu that are
completed at or before timed in any in-time schedule for(G,µ,m,D). More precisely,

ND(u,d) = ∑
v∈SuccG(u)

µD(v,d).

Note that for instances(G,m,D), ND(u,d) equals the number of successors ofu with deadline at
mostd.

Example 4.1.1. Consider the instance(G,2,D) shown in Figure 4.1. The following is easy to
see. ND(di ,9) = 1, ND(c1,8) = 3, ND(c1,9) = 4, ND(bi ,6) = 1, ND(bi ,8) = 4, ND(bi ,9) = 5,
ND(a1,5) = ND(a3,5) = 2, ND(a1,6) = ND(a3,6) = 3, ND(a1,8) = ND(a3,8) = 6, ND(a1,9) =
ND(a3,9) = 7, ND(a2,5) = 3, ND(a2,6) = 4, ND(a2,8) = 7 andND(a2,9) = 8.

26

a2:1,3

b1:1,5 b2:1,5 b3:1,5

c1:1,6

a1:1,3

d1:1,8 d2:1,8 d3:1,8

e1:1,9

a3:1,3

Figure 4.1. An instance(G,2,D)

The following observation allows the definition of consistent instances.

Observation 4.1.2. Let S be an in-time schedule for(G,µ,m,D). Let u be a task of G. If
ND(u,d)≥ 1, then S(u) +µ(u)≤ d−1−

⌈
1
m(ND(u,d)−1)

⌉
.

Observation 4.1.2 is used to define consistent deadlines. We will assume that
⌈

0
∞
⌉

= 0 and⌈
k
∞
⌉

= 1 for all integersk≥ 1.

Definition 4.1.3. An instance(G,µ,m,D) is calledconsistentif for all tasksu of G and all inte-
gersd,

if ND(u,d) ≥ 1, then D(u) ≤ d−1−
⌈

1
m(ND(u,d)−1)

⌉
.

(G,µ,m,D) is calledD0-consistentif it is consistent andD(u) ≤ D0(u) for all tasksu of G. A
D0-consistent instance(G,µ,m,D) is calledstrongly D0-consistentif for all tasksu of G,

D(u) = D0(u) or for somed ∈ ZZ, ND(u,d)≥ 1 andD(u) = d−1−
⌈

1
m(ND(u,d)−1)

⌉
.

Example 4.1.4. Consider the instance(G,2,D) shown in Figure 4.1. AssumeD0(u) = 9 for
all tasksu of G. It is not difficult to see that(G,2,D) is D0-consistent. It is also stronglyD0-
consistent, becauseD(e1) = 9 = D0(e1), D(di) = 8 = 9−1−

⌈
1
2(ND(di ,9)−1)

⌉
, D(c1) = 6 =

8− 1−
⌈

1
2(ND(c1,8)−1)

⌉
, D(bi) = 5 = 6− 1−

⌈
1
2(ND(bi ,6)−1)

⌉
andD(ai) = 3 = 5− 1−⌈

1
2(ND(ai ,5)−1)

⌉
.

The following observations state some properties of consistent instances. The first states that
any consistent instance is strongly consistent with respect to its own deadlines.

Observation 4.1.5. Let (G,µ,m,D) be a consistent instance. Then(G,µ,m,D) is strongly D-
consistent.

27

The second observation states that the deadlines of a stronglyD0-consistent instance are
maximum among theD0-consistent instances. This shows that for each instance(G,µ,m,D0),
there is exactly one stronglyD0-consistent instance(G,µ,m,D).

Observation 4.1.6. Let (G,µ,m,D) and(G,µ,m,D′) be D0-consistent instances. If(G,µ,m,D)
is strongly D0-consistent, then D(u)≥ D′(u) for all tasks u of G.

The third observation states that if all original deadlines are increased by the same amount,
then the tardiness of a minimum-tardiness schedule decreases by the same amount, unless the
tardiness would become negative.

Observation 4.1.7. Let `∗ be the tardiness of a minimum-tardiness schedule for(G,µ,m,D0).
If there is an integer c, such that D(u) = D0(u) + c for all tasks u of G, then the tardiness of a
minimum-tardiness schedule for(G,µ,m,D) equalsmax{0, `∗ −c}.

The following lemma proves that if all original deadlines are increased by the same amount,
then so are the strongly consistent deadlines. This result will be used to compute upper bounds
on the tardiness of schedules.

Lemma 4.1.8. Let(G,µ,m,D) be the strongly D0-consistent instance and let(G,µ,m,D′) be the
strongly D′0-consistent instance. If there is an integer c, such that D′

0(u) = D0(u)+c for all tasks
u of G, then D′(u) = D(u) +c for all tasks u of G.

Proof. Assume there is an integerc, such thatD′0(u) = D0(u) + c for all tasksu of G. We will
prove by induction thatD′(u) = D(u) + c for all tasksu of G. Let u be a task ofG. Assume by
induction thatD′(v) = D(v) + c for all successorsv of u. We will prove by contradiction that
D′(u) = D(u) +c. SupposeD′(u) 6= D(u) +c.

Case 1. D(u) = D0(u).
ThenD′(u)<D′0(u) = D0(u)+c. Because(G,µ,m,D′) is stronglyD′0-consistent, there is an
integerd, such thatND′(u,d)≥ 1 andD′(u) = d−1−

⌈
1
m(ND′(u,d)−1)

⌉
. BecauseND(u,d−

c) = ND′(u,d) ≥ 1 and(G,µ,m,D) is consistent,D(u) ≤ d− c−1−
⌈

1
m(ND′(u,d)−1)

⌉
=

D′(u)−c< D0(u). Contradiction. SoD′(u) = D(u) +c.

Case 2. D(u) 6= D0(u).
Since (G,µ,m,D) is strongly D0-consistent, there is an integerd, such thatND(u,d) ≥
1 and D(u) = d− 1−

⌈
1
m(ND(u,d)−1)

⌉
. BecauseND′(u,d + c) = ND(u,d) ≥ 1 and

(G,µ,m,D′) is consistent,D′(u)≤ d+c−1−
⌈

1
m(ND(u,d)−1)

⌉
= D(u)+c. SinceD′(u) 6=

D(u) + c, we know thatD′(u) < D(u) + c. HenceD′(u) 6= D′0(u). Since (G,µ,m,D′)
is strongly D′0-consistent, there is an integerd′, such thatND′(u,d′) ≥ 1 and D′(u) =
d′ − 1−

⌈
1
m(ND′(u,d′)−1)

⌉
. SinceND(u,d′ − c) = ND′(u,d′) ≥ 1 and(G,µ,m,D) is con-

sistent,D(u) ≤ d′ − c− 1−
⌈

1
m(ND′(u,d′)−1)

⌉
= D′(u)− c < D(u). Contradiction. So

D′(u) = D(u) +c.

In either case,D′(u) = D(u) +c. By induction,D′(u) = D(u) +c for all tasksu of G.

28

The following lemma shows that strongly consistent deadlines are met in all in-time sched-
ules.

Lemma 4.1.9. Let(G,µ,m,D) be the strongly D0-consistent instance. Let S be a feasible sched-
ule for (G,µ,m,D0). Then S is an in-time schedule for(G,µ,m,D0) if and only if S is an in-time
schedule for(G,µ,m,D).

Proof. BecauseD(u) ≤ D0(u) for all tasksu of G, every in-time schedule for(G,µ,m,D) is an
in-time schedule for(G,µ,m,D0). AssumeS is an in-time schedule for(G,µ,m,D0). Define
DS(u) = S(u) + µ(u) for all tasksu of G. We will prove by contradiction that(G,µ,m,DS) is
consistent. Suppose(G,µ,m,DS) is not consistent. Then there is a tasku of G and an integer
d, such thatNDS(u,d) ≥ 1 andDS(u) > d− 1−

⌈
1
m(NDS(u,d)−1)

⌉
. Every successorv of u

meets its deadlineDS(v). SoNDS(u,d) unit-length subtasks of successors ofu finish at or before
time d. Henceu must be completed at or before timed−1−

⌈
1
m(NDS(u,d)−1)

⌉
. SoDS(u) ≤

d−1−
⌈

1
m(NDS(u,d)−1)

⌉
. Contradiction. So(G,µ,m,DS) is consistent. BecauseS is an in-

time schedule for(G,µ,m,D0), (G,µ,m,DS) is alsoD0-consistent. From Observation 4.1.6,
D(u) ≥ DS(u) for all tasksu of G. Since every deadlineDS(u) is met,S is an in-time schedule
for (G,µ,m,D).

The next two results will be used to construct stronglyD0-consistent instances.

Lemma 4.1.10. Let (G,µ,m,D) be the strongly D0-consistent instance. Let u and v be two tasks
of G. If v is the only child of u, then D(u) = min{D0(u),D(v)−µ(v)}.

Proof. Assumev is the only child ofu. Let d = D(v)−µ(v) + 1. ThenND(u,d)≥ µD(v,d) = 1.
So D(u) ≤ d−1 = D(v)−µ(v). We will assume thatD(u) 6= D0(u). Then there is an integer
d′, such thatND(u,d′) ≥ 1 andD(u) = d′ − 1−

⌈
1
m(ND(u,d′)−1)

⌉
. If ND(u,d′) ≤ µ(v), then

D(u1) ≥ D(v)− 1−
⌈

1
m(µ(v)−1)

⌉
≥ D(v)− µ(v). So we may assume thatND(u,d′) > µ(v).

Sincev is the only child ofu and(G,µ,m,D) is consistent,d′ >D(v). Becausev is a predecessor
of all other successors ofu, ND(v,d′) = ND(u,d′)−µ(v)≥ 1. So

D(u) = d′ −1−
⌈

1
m(ND(u,d′)−1)

⌉
= d′ −1−

⌈
1
m(ND(v,d′) +µ(v)−1)

⌉
≥ d′ −1−

⌈
1
m(ND(v,d′)−1)

⌉
−µ(v)

≥ D(v)−µ(v).

SoD(u) = D(v)−µ(v). As a result,D(u) = min{D0(u),D(v)−µ(v)}.

Lemma 4.1.11. Let (G,µ,∞,D) be the strongly D0-consistent instance. Let u be a task of G.
If u has k≥ 2 children v1, . . . ,vk, such that D(v1)−µ(v1) ≤ ·· · ≤ D(vk)−µ(vk), then D(u) =
min{D0(u),D(v1)−µ(v1),D(v2)−µ(v2)−1}.

Proof. Assumeu hask≥ 2 childrenv1, . . . ,vk, such thatD(v1)−µ(v1)≤ ·· · ≤D(vk)−µ(vk). Let
d = D(v1)−µ(v1) + 1. ThenND(u,d)≥ µD(v1,d) = 1. Since(G,µ,∞,D) is consistent,D(u)≤
d−1= D(v1)−µ(v1). AssumeD(u) 6= D0(u) andD(u) 6= D(v1)−µ(v1). Then there is an integer

29

d′, such thatND(u,d′) ≥ 1 andD(u) = d′ −1−d 1
∞ (ND(u,d′)−1)e ≤ D(v1)−µ(v1)−1. Since

d 0
∞e= 0 andd k

∞e= 1 for all k≥ 1, d′ = D(v1)−µ(v1)+1 andND(u,d′)≥ 2. SoµD(u2,d′)≥ 1.
HenceD(v2)−µ(v2) = D(v1)−µ(v1). ThereforeD(u) = d′ −2 = D(v1)−µ(v1)−1 = D(v2)−
µ(v2)−1.

4.2 Computing consistent deadlines
In this section, two algorithms will be presented that construct stronglyD0-consistent instances.
The algorithm presented in Section 4.2.1 computes stronglyD0-consistent deadlines for instances
(G,µ,m,D0). For instances(G,µ,∞,D0), strongly D0-consistent deadlines can be computed
more efficiently using the algorithm presented in Section 4.2.2.

4.2.1 A restricted number of processors
Consider the stronglyD0-consistent instance(G,µ,m,D). For each tasku of G, if ND(u,d) ≥
1, thenD(u) ≤ d− 1−

⌈
1
m(ND(u,d)−1)

⌉
. So in order to compute the stronglyD0-consistent

deadline ofu, the stronglyD0-consistent deadlines of its successors must have been computed
before. This is how Algorithm DEADLINE MODIFICATION shown in Figure 4.2 works: in each
step of the algorithm, it computes the stronglyD0-consistent deadline of a task, such that the
stronglyD0-consistent deadlines of all successors of this task have been computed before.

Algorithm DEADLINE MODIFICATION

Input. An instance(G,µ,m,D0).
Output. The stronglyD0-consistent instance(G,µ,m,D).
1. Dmin := minu∈V(G) D0(u)
2. Dmax := maxu∈V(G) D0(u)
3. for all tasksu of G
4. do D(u) := D0(u)
5. U := V(G)
6. while U 6=∅
7. do let u be a sink ofG[U]
8. for d := Dmin to Dmax

9. do if ND(u,d)≥ 1
10. then D(u) := min{D(u),d−1−

⌈
1
m(ND(u,d)−1)

⌉
}

11. Dmin := min{Dmin,D(u)}
12. U := U \{u}

Figure 4.2. Algorithm DEADLINE MODIFICATION

Example 4.2.1. Let G be the precedence graph shown in Figure 4.1. AssumeD0(u) = 9 for
all tasksu of G. Algorithm DEADLINE MODIFICATION computes deadlinesD(u) as follows.
First it considerse1. Sincee1 has no successors,D(e1) = D0(e1) = 9. Thend1, d2 andd3 are
considered. These tasks have one successor with deadline 9. SoD(di) is set to 9−1−

⌈
0
2

⌉
=

30

8. c1 has three successors with deadline 8 and four successors with deadline at most 9. So
D(c1) = min{8−1−

⌈
2
2

⌉
,9−1−

⌈
3
2

⌉
}= 6. Then the deadlines ofb1, b2 andb3 are computed.

These tasks have one successor with deadline 6, four successors with deadline at most 8 and five
successors with deadline at most 9. HenceD(bi) is set to min{6− 1−

⌈
0
2

⌉
,8− 1−

⌈
3
2

⌉
,9−

1−
⌈

4
2

⌉
} = 5. Finally, Algorithm DEADLINE MODIFICATION considersa1, a2 anda3. First

considera2. It has three successors with deadline 5, four successors with deadline at most 6,
seven successors with deadline at most 8 and eight successors with deadline at most 9. So
D(a2) = min{5− 1−

⌈
2
2

⌉
,6− 1−

⌈
3
2

⌉
,8− 1−

⌈
6
2

⌉
,9− 1−

⌈
7
2

⌉
} = 3. a1 and a3 have two

successors with deadline 5, three successors with deadline at most 6, six successors with deadline
at most 8 and seven successors with deadline at most 9. So the deadlines ofa1 anda3 computed
by Algorithm DEADLINE MODIFICATION equal min{5−1−

⌈
1
2

⌉
,6−1−

⌈
2
2

⌉
,8−1−

⌈
5
2

⌉
,9−

1−
⌈

6
2

⌉
}= 3. The constructed instance(G,2,D) is stronglyD0-consistent.

Now we will prove that Algorithm DEADLINE MODIFICATION correctly constructs strongly
D0-consistent instances.

Lemma 4.2.2. Let (G,µ,m,D) be the instance constructed by AlgorithmDEADLINE MODIFI -
CATION for an instance(G,µ,m,D0). Then(G,µ,m,D) is strongly D0-consistent.

Proof. Algorithm DEADLINE MODIFICATION starts by settingD(u) = D0(u) for all tasksu of G.
In each step, it computes a deadline for a task ofG. Let u1, . . . ,un be the order in which the tasks
are considered. For alli ≤ n, let Gi the subgraph ofG induced by{u1, . . . ,ui}. For all i ≤ n and
all tasksu of G, let Di(u) be the deadline ofu after theith step. Clearly,Di(uj) = · · · = Dn(uj)
for all j ≤ i. Let Dmin,i andDmax,i be the values ofDmin andDmax after stepi.

It will be proved by induction that the instances(Gi ,µ,m,Di) are stronglyD0-consistent. It
is not difficult to see that(G1,µ,m,D1) is stronglyD0-consistent. Assume by induction that
(Gi ,µ,m,Di) is stronglyD0-consistent. Consider(Gi+1,µ,m,Di+1). For all j ≤ i, Di+1(uj) =
Di(uj). So(Gi ,µ,m,Di+1) is stronglyD0-consistent. Now considerui+1. Clearly,Di+1(ui+1)≤
D0(ui+1). AssumeNDi+1(ui+1,d) ≥ 1 for some integerd. ThenDmin,i ≤ d ≤ Dmax,i . Hence
Di+1(ui+1) ≤ d−1−

⌈
1
m(NDi+1(ui+1,d)−1)

⌉
. So(Gi+1,µ,m,Di+1) is D0-consistent. It is easy

to see that ifDi+1(ui+1) 6= D0(ui+1), then there is an integerd, such thatNDi+1(ui+1,d)≥ 1 and
Di+1(ui+1) = d−1−

⌈
1
m(NDi+1(ui+1,d)−1)

⌉
. So (Gi+1,µ,m,Di+1) is stronglyD0-consistent.

By induction,(Gn,µ,m,Dn) is stronglyD0-consistent. SinceG = Gn andD(u) = Dn(u) for all
tasksu of G, (G,µ,m,D) is stronglyD0-consistent.

The time complexity of Algorithm DEADLINE MODIFICATION can be determined as follows.
Consider an instance(G,µ,m,D0). Algorithm DEADLINE MODIFICATION starts by computing
Dmin andDmax and settingD(u) = D0(u) for all tasksu of G. This takesO(n) time. In each step,
the algorithm computes a deadline of a task. This can be done using a reversed topological order
of G. Such an order can be constructed inO(n+ e) time [18]. In order to bound the time com-
plexity, we have to fill in a few details of Algorithm DEADLINE MODIFICATION. We distinguish
two cases: whether or notG is known to be a transitive closure. If it is unknown whetherG is a
transitive closure, then Algorithm DEADLINE MODIFICATION should first compute the transitive
closure ofG. Coppersmith and Winograd [17] proved that the transitive closure of a precedence

31

graph can be computed inO(n2.376) time. Goraľćıkova and Koubek [37] showed that it can be
computed inO(n+ e+ ne−) time. In the remainder of the analysis of the time complexity of
Algorithm DEADLINE MODIFICATION, we assume thatG is a transitive closure.

For the computation of the stronglyD0-consistent deadline of a tasku, we need to compute
ND(u,d) for all d. These values can be computed by traversing the childrenv of u in G+ and
determiningµD(v,d). This takesO(|SuccG(u)|) time for eachd.

We can prove that Algorithm DEADLINE MODIFICATION needs to consider onlyO(n) values
of d for each tasku. These are the valuesD(v) and D(v)− µ(v) + 1 for some taskv of G.
Assumed 6= D(v) andd 6= D(v)−µ(v)+1 for all tasksv of G. AssumeND(u,d)≥ 1. Then after
Algorithm DEADLINE MODIFICATION has consideredd, D(u)≤ d−1−

⌈
1
m(ND(u,d)−1)

⌉
. Let

k be the number of successorsv of u, such thatD(v)−µ(v) + 1< d < D(v). We consider three
cases.

Case 1. k = 0.
Let d′ = max{D(w) | w∈ V(G)∧D(w) < d}. ThenND(u,d′) = ND(u,d). After d′ is con-
sidered by Algorithm DEADLINE MODIFICATION, D(u) ≤ d′ − 1−

⌈
1
m(ND(u,d′)−1)

⌉
≤

d−1−
⌈

1
m(ND(u,d)−1)

⌉
. In that case,d need not be considered by Algorithm DEADLINE

MODIFICATION.

Case 2. 1≤ k≤m−1.
Let d′ = max{D(w)−µ(w) + 1 | w∈ SuccG(u)∧D(w)−µ(w) + 1< d}. Let v be a succes-
sor of u, such thatD(v)− µ(v) + 1< d < D(v). ThenD(v)− µ(v) + 1≤ d′ < d < D(v).
So µD(v,d′) = µ(v)−D(v) + d′ = µ(v)−D(v) + d− (d−d′) = µD(v,d)− (d−d′). Hence
ND(u,d′) ≥ ND(u,d)− k(d− d′) ≥ ND(u,d)−m(d− d′). Moreover, µD(v,d′) ≥ 1. So
ND(u,d′) ≥ 1. After d′ was taken into account,D(u) ≤ d′ − 1−

⌈
1
m(ND(u,d′)−1)

⌉
≤

d′ −1−
⌈

1
m(ND(u,d)−1−m(d′ −d))

⌉
= d−1−

⌈
1
m(ND(u,d)−1)

⌉
. Sod need not be con-

sidered by Algorithm DEADLINE MODIFICATION.

Case 3. k≥m.
Let d′ = min{D(w) | w ∈ SuccG(u)∧D(w) > d}. Let v be a successor ofu, such that
D(v)−µ(v)+1< d<D(v). ThenD(v)≥ d′ ≥D(v)−µ(v)+1. SoµD(v,d′) = µ(v)−D(v)+
d′ = µ(v)−D(v) + d+ (d′ −d) = µD(v,d) + (d′ −d). HenceND(u,d′) ≥ ND(u,d) + k(d′ −
d) ≥ ND(u,d) + m(d′ −d). After d′ has been considered by Algorithm DEADLINE MODI -
FICATION, D(u)≤ d′ −1−

⌈
1
m(ND(u,d′)−1)

⌉
≤ d′ −1−

⌈
1
m(ND(u,d)−1+m(d′ −d))

⌉
=

d−1−
⌈

1
m(ND(u,d)−1)

⌉
. Sod need not be considered by Algorithm DEADLINE MODIFI -

CATION.

So the computation of the stronglyD0-consistent deadline ofu takesO(n|SuccG(u)|) time. Since
the outdegree ofu in G+ equals|SuccG(u)|, this takesO(n2 +ne+) time in total. Hence we have
proved the following result.

Lemma 4.2.3. For all instances(G,µ,m,D0), AlgorithmDEADLINE MODIFICATION constructs
the strongly D0-consistent instance(G,µ,m,D) in O(n2 +ne+) time.

32

A stronglyD0-consistent instance(G,m,D) can be computed more efficiently. The transitive
closureG+ of G can be constructed inO(min{n2.376,n+ e+ ne−}) time. The valuesND(u,d)
can be computed by determining the number of successorsv of u with deadlined for all d. These
numbers are stored in an array and a prefix sum operation is applied on this array. Then we
find ND(u,d) for all d in O(|SuccG(u)|+(Dmax−Dmin)) time. Since there is a feasible schedule
for (G,m,D) of length at mostn, we may assume thatDmax−Dmin is at mostn. Consequently,
the stronglyD0-consistent deadline ofu can be computed inO(n) time. Hence the strongly
D0-consistent instance(G,m,D) can be computed inO(n2 +min{n2.376,n+e+ne−}) time.

Lemma 4.2.4. For all instances(G,m,D0), Algorithm DEADLINE MODIFICATION constructs
the strongly D0-consistent instance(G,m,D) in O(min{n2.376,n2 +ne−}) time.

4.2.2 An unrestricted number of processors
Constructing stronglyD0-consistent instances(G,µ,∞,D) is less complicated than computing
strongly D0-consistent instances(G,µ,m,D). Let (G,µ,∞,D) be the stronglyD0-consistent
instance. Letu be a task ofG. Lemma 4.1.10 shows that ifu has only one childv, then
D(u) = min{D0(u),D(v)−µ(v)}. Moreover, Lemma 4.1.11 states that ifu hask≥ 2 children
v1, . . . ,vk, such thatD(v1)− µ(v1) ≤ D(v2)− µ(v2) and D(v2)− µ(v2) ≤ D(vi)− µ(vi) for all
i ≥ 3, thenD(u) = min{D0(u),D(v1)−µ(v1),D(v2)−µ(v2)−1}.

This can be used to construct stronglyD0-consistent instances(G,µ,∞,D). Consider an
instance(G,µ,∞,D0). Let u1, . . . ,un be a topological order ofG. Assume that the stronglyD0-
consistent deadlines of the tasksui+1, . . . ,un have been computed. Consider taskui . If ui is a sink
of G, then letD(ui) = D0(ui). If ui has exactly one childv, then letD(ui) = min{D0(ui),D(v)−
µ(v)}. Otherwise, letv1, . . . ,vk be the children ofui , such thatD(v1)−µ(v1)≤D(v2)−µ(v2) and
D(v2)−µ(v2)≤D(vi)−µ(vi) for all i ≥ 3. Then letD(ui) = min{D0(ui),D(v1)−µ(v1),D(v2)−
µ(v2)−1}. Clearly, the resulting instance(G,µ,∞,D) is stronglyD0-consistent.

Computing a topological order of a precedence graphG takesO(n+ e) time [18]. For each
task u of G, O(|SuccG,0(u)|) time is required to find two childrenv1 and v2 of u, such that
D(v1)−µ(v1)≤D(v2)−µ(v2) andD(v2)−µ(v2)≤D(vi)−µ(vi) for all i≥ 3. SoO(|SuccG,0(u)|)
time is used to compute the deadline ofu. Consequently, the stronglyD0-consistent instance
(G,µ,∞,D) can be computed inO(n+e) time. Hence we have proved the following result.

Lemma 4.2.5. For all instances(G,µ,∞,D0), the strongly D0-consistent instance(G,µ,∞,D)
can be constructed in O(n+e) time.

4.3 List scheduling
The second step in the construction of feasible schedules uses a list scheduling approach. List
scheduling is a common approach to multiprocessor scheduling that was introduced by Gra-
ham [38, 39] for scheduling without communication delays. His list scheduling algorithm has
been generalised to many other scheduling problems. Rayward-Smith [79] was the first to use
a list scheduling approach for scheduling precedence-constrained tasks subject to unit-length
communication delays.

33

Basically, list scheduling works as follows. A list containing all tasks defines the priority
among the tasks: the first tasks are more important than the last and should be scheduled at an
earlier time. At each time, a list scheduling algorithm determines all tasks that are available at
that time and schedules the available tasks with the smallest index in the priority list.

A schedule constructed by a list scheduling algorithm is determined by the priority list. This
makes list scheduling a useful tool for constructing schedules: many scheduling algorithms con-
sist of an algorithm that constructs a priority list and a list scheduling algorithm that uses this
list to construct a schedule [4, 31, 32, 73, 76]. The same approach is used here: the list schedul-
ing algorithm presented in this section uses a list of tasks ordered by non-decreasing strongly
D0-consistent deadlines to construct a schedule for an instance(G,µ,m,D0).

Algorithm LIST SCHEDULINGis shown in Figure 4.3. Using any list containing all tasks of
G, it constructs feasible schedules for instances(G,µ,m,D). The following notation is used.t is
the current time andN equals the number of tasks that are being executed at timet.

Algorithm LIST SCHEDULING

Input. An instance(G,µ,m,D) and a listL containing all tasks ofG.
Output. A feasible scheduleS for (G,µ,m,D).
1. t := 0
2. N := 0
3. while there are unscheduled tasks
4. do while there are unscheduled tasks available at timet and N<m
5. do let u be the unscheduled available task with the smallest index inL
6. S(u) := t
7. N := N +1
8. if N = m or no unscheduled task is available at timet or at timet +1
9. then t := min{S(u) +µ(u) | S(u) +µ(u)≥ t +1}
10. else t := t +1
11. N := |{v∈V(G) | S(v)≤ t < S(v) +µ(v)}|

Figure 4.3. Algorithm LIST SCHEDULING

d1a1 a2

a3

b1 b2

b3

c1 d2

d3

e1

0 1 2 3 4 5 6 7 8 9 10

Figure 4.4. The schedule for(G,2,D) constructed by Algorithm LIST SCHEDULING

Example 4.3.1. Let (G,2,D) be the instance shown in Figure 4.1. Using priority listL =
(a1,a3,a2,b1,b2,b3,c1,d1,d2,d3,e1), Algorithm LIST SCHEDULING constructs a schedule for
(G,2,D) as follows.a1 anda3 are sources ofG with the smallest index inL. Soa1 anda3 are

34

scheduled at time 0.a2 is the only task that is available at time 1. So it is scheduled at time 1.
b1, b2 andb3 are available at time 2. Since these tasks are all successors ofa2 andb1 has the
smallest index inL, onlyb1 is scheduled at time 2.b2 andb3 are scheduled at time 3.c1 becomes
available at time 5. So it is scheduled at time 5. Only one successor ofc1 can be scheduled at
time 6. Becaused1 is the child ofc1 with the smallest index inL, d1 is the only task scheduled
at time 6. d2 andd3 are scheduled at time 7.e1 is scheduled at time 9, because that is the first
time it becomes available. So Algorithm LIST SCHEDULINGconstructs the schedule shown in
Figure 4.4.

Now we will prove that Algorithm LIST SCHEDULING correctly constructs feasible sched-
ules.

Lemma 4.3.2. Let S be the schedule for an instance(G,µ,m,D) constructed by AlgorithmLIST

SCHEDULINGusing a list containing all tasks of G. Then S is a feasible schedule for(G,µ,m,D).

Proof. For all i ≤ n, let ui be theith task ofG to be assigned a starting time by Algorithm LIST

SCHEDULING. ThenS(u1) ≤ ·· · ≤ S(un). For all i ≤ n, let Gi be the subgraph ofG induced by
{u1, . . . ,un} andSi the restriction ofS to {u1, . . . ,un}. It will be proved by induction thatSi is a
feasible schedule for(Gi ,µ,m,D) for all i ≤ n. Clearly,S1 is a feasible schedule for(G1,µ,m,D).
Assume by induction thatSi is a feasible schedule for(Gi ,µ,m,D). Si+1(u) = Si(u) for all tasks
of Gi . Hence to determine the feasibility ofSi+1 for (Gi+1,µ,m,D), we only need to consider
ui+1. Sinceui+1 is scheduled at timeSi+1(ui+1), at mostm tasks are being executed at time
Si+1(ui+1). SinceSi+1(u1) ≤ ·· · ≤ Si+1(ui+1), at mostm tasks are being executed at each time
t ≥ Si+1(ui+1). Moreover,ui+1 is available at timeSi+1(ui+1). So all predecessors ofui+1 are
completed at or before timeSi+1(ui+1), at most one parent ofui+1 finishes at timeSi+1(ui+1) and
if a parent ofui+1 finishes at timeSi+1(ui+1), then no other child of this parent is scheduled at
time Si+1(ui+1). SoSi+1 is a feasible schedule for(Gi+1,µ,m,D). By induction,Sn is a feasible
schedule for(Gn,µ,m,D). BecauseG = Gn andS(u) = Sn(u) for all tasksu of G, S is a feasible
schedule for(G,µ,m,D).

Before we determine the time complexity of Algorithm LIST SCHEDULING, it is shown how
Algorithm LIST SCHEDULING can be implemented. Consider an instance(G,µ,m,D). For all
tasksu of G, let par(u) be the number of parents ofu that are not completed at or before time
t. Let Av be the set of ready tasks that are available at timet andAv1 the set of ready tasks that
become available at timet +1. The setActivecontains all tasks that are being executed at timet.
At time 0, the setsAv, Av1 andActiveare empty,N equals zero andpar(u) equals the indegree
of u for all tasksu of G.

Algorithm LIST SCHEDULINGconsiders timest until all tasks have been assigned a starting
time. At each timet, if at mostm−1 tasks are being executed at timet, then the unscheduled
available task with the smallest index inL is chosen. Letu be this task.u is scheduled at time
t, removed fromAv and added toActive. Moreover,N is increased by one. If a parentv of u
finishes at timet, then the children ofv in Av are no longer available at timet. These are moved
from Av to Av1.

This is repeated untilm tasks are executed at timet or there are no unscheduled tasks left
that are available at timet. Thent is increased. IfN = m, then the new timet is the next time at

35

which a processor is idle. If there are no tasks that are available at timet or timet + 1, then the
new timet is the next time that a task finishes. Otherwise,t +1 is the new time. The tasks inAv1
are available at the new timet, so these are moved fromAv1 to Av. Then we determine all tasks
in Activethat finish at the new timet. These are removed fromActive. For each of these tasksu,
N is decreased by one andpar(v) is decreased by one for all childrenv of u. If par(v) becomes
zero, then it is added toAvor Av1. If exactly one parent ofv finishes at timet, thenv is added to
Av. Otherwise, it is added toAv1.

The time complexity of Algorithm LIST SCHEDULING can be determined as follows. Ob-
viously, a task is added toAv at most twice. Moreover, a task is added toActiveexactly once.
AssumeAv is represented by a balanced search tree (for instance, a red-black tree [18]) ordered
by non-decreasing index inL andActiveby a balanced search tree ordered by non-decreasing
completion time. Then adding and removing a task inAv or ActivetakesO(logn) time. More-
over, the minimum element inAv or Activecan be found inO(logn) time. Since a task is added
and removed at most three times, these operations takeO(nlogn) time in total. Because all tasks
in Av1 are moved toAv simultaneously,Av1 can be represented by a queue. Then adding and
removing tasks inAv1 takesO(n) time in total.

If a tasku finishes at timet, then par(v) is decreased for all childrenv of u. This takes
O(|SuccG,0(u)|) time, soO(n+e) time in total. If par(v) becomes zero, thenv is added toAvor
Av1 depending on the number of parents ofv that finish at timet. This number can be found in
O(|PredG,0(v)|) time. Hence this requiresO(n+e) time in total.

If a tasku is scheduled at timet and a parentv of u finishes at timet, then the available
children ofv are moved fromAv to Av1. Since there is at most one such parentv, this takes
O(|PredG,0(u)|+ |SuccG,0(v)|) time apart from the time needed to move the tasks fromAv to
Av1. So this takesO(n+e) time in total.

It is easy to see that assigning a starting time to all tasks takesO(n) time. Moreover, at
each timet considered by Algorithm LIST SCHEDULING, either a task starts or a task finishes.
Therefore Algorithm LIST SCHEDULING considers at most 2n different times. Hence we have
proved the following result.

Lemma 4.3.3. For all instances(G,µ,m,D) and all lists L containing all tasks of G, Algo-
rithm LIST SCHEDULING constructs a feasible schedule for(G,µ,m,D) in O(nlogn+ e) time
using priority list L.

Stadtherr [84] proved that using Union-Find operations [30], a list schedule for precedence
graphs with unit-length tasks can be constructed in linear time. This method cannot easily be
generalised for precedence graphs with tasks of arbitrary length.

Lemma 4.3.4. For all instances(G,m,D) and all lists L containing all tasks of G, the schedule
for (G,m,D) constructed by AlgorithmLIST SCHEDULING using priority list L can be con-
structed in O(n+e) time.

The following observations state two important properties of schedules constructed by Al-
gorithm LIST SCHEDULING. The first states that the schedules constructed by Algorithm LIST

SCHEDULINGare independent of the deadlines.

36

Observation 4.3.5. Let L be a list containing all tasks of a precedence graph G. Let S and S′

be the schedules for(G,µ,m,D) and(G,µ,m,D′) constructed by AlgorithmLIST SCHEDULING

using priority list L. Then S(u) = S′(u) for all tasks u of G.

The second observation states that if a tasku is available at a timet and is scheduled at a later
time, then no processor is idle at timet and all tasks with starting timet have a higher priority
thanu.

Observation 4.3.6. Let L be a list containing all tasks of a precedence graph G. Let S be the
schedule for(G,µ,m,D) constructed by AlgorithmLIST SCHEDULINGusing L. Let u1 and u2 be
two tasks of G. If S(u1)< S(u2) and u2 is available at time S(u1), then u1 has a smaller index in
L than u2 and there are m tasks v of G, such that S(v)≤ S(u1)< S(v) +µ(v).

4.4 Constructing feasible schedules

For stronglyD0-consistent instances(G,µ,m,D), we will consider the schedules for(G,µ,m,D0)
constructed by Algorithm LIST SCHEDULINGusing a priority listL that is ordered by the latest
possible starting time in an in-time schedule for(G,µ,m,D). Such a list will be called alatest
starting time listor lst-list of (G,µ,m,D). More precisely,L = (u1, . . . ,un) is called an lst-list of
(G,µ,m,D) if

D(u1)−µ(u1) ≤ D(u2)−µ(u2) ≤ . . . ≤ D(un)−µ(un).

It is not difficult to see that an lst-list of the stronglyD0-consistent instance(G,µ,m,D) can be
constructed inO(nlogn) time. For instances(G,m,D), an lst-list is ordered by non-decreasing
deadlines. For such instances, we may assume that the maximum deadline differs at mostn−1
from the minimum deadline. Using bucket sort [18], an lst-list of(G,m,D) can be constructed in
O(n) time.

b2

d1b1b3 c1 d2

d3

e1

0 1 2 3 4 5 6 7 8 9 10

a1 a3

a2

Figure 4.5. An in-time schedule for(G,2,D0)

Example 4.4.1. Let (G,2,D) be the instance shown in Figure 4.1. LetD0(u) = 9 for all tasks
u of G. Then(G,2,D) is stronglyD0-consistent andL = (a1,a3,a2,b1,b2,b3,c1,d1,d2,d3,e1)
is an lst-list of(G,2,D). Using this list, Algorithm LIST SCHEDULINGconstructs the schedule
shown in Figure 4.4. This is not an in-time schedule for(G,2,D0): e1 violates its deadline.
An in-time schedule for(G,2,D0) is shown in Figure 4.5. This schedule can be constructed by
Algorithm LIST SCHEDULINGusing lst-list(a1,a2,a3,b1,b2,b3,c1,d1,d2,d3,e1) of (G,2,D).

37

Example 4.4.1 shows that Algorithm LIST SCHEDULING does not necessarily construct
minimum-tardiness schedules for an instance(G,m,D0) using an lst-list of the stronglyD0-
consistent instance(G,m,D). In this section, upper bounds on the tardiness of the schedules
constructed by Algorithm LIST SCHEDULING are derived. Sections 4.4.1 and 4.4.2 consider
schedules for arbitrary precedence graphs on a restricted and an unrestricted number of proces-
sors, respectively. Sections 4.4.3 and 4.4.4 are concerned with schedules for outforests on a
restricted and an unrestricted number of processors, respectively.

4.4.1 Arbitrary graphs on a restricted number of processors
In this section, upper bounds on the tardiness of schedules for instances(G,m,D0) constructed
by Algorithm LIST SCHEDULING are derived. Hanen and Munier [44] considered precedence
graphs that have two sources that are predecessors of all other tasks to compute an upper bound
on the tardiness for instances(G,m,D0) for which there is an in-time schedule. The following
lemma was proved by Hanen and Munier [44]. We include a more detailed proof.

Lemma 4.4.2. Let G be a precedence graph with two sources that are predecessors of all other
tasks of G. Let(G,m,D) be the strongly D0-consistent instance. Let S be a schedule for
(G,m,D0) constructed by AlgorithmLIST SCHEDULINGusing an lst-list of(G,m,D). If there is
an in-time schedule for(G,m,D0), then for all tasks u of G, if m= 2, then S(u) +1≤ 2D(u)−1
and if m≥ 3, then S(u) +1≤ (3− 3

m)D(u)− (2− 3
m).

Proof. Assume there is an in-time schedule for(G,m,D0). From Lemma 4.1.9, there is an in-
time schedule for(G,m,D). Let ρ2 = 2 andρm = 3− 3

m for all m≥ 3. It will be proved by
contradiction thatS(u) + 1≤ ρmD(u) + (ρm−1) for all tasksu of G. Suppose there is a tasku
of G, such thatS(u) + 1> ρmD(u)− (ρm−1). Since there is an in-time schedule for(G,m,D),
D(v) ≥ 1 for all tasksv of G. HenceρmD(v) + (ρm−1) ≥ 1 for all tasksv of G. Because both
sources ofG are scheduled at time 0,u cannot be a source ofG. Assume there is no tasku′,
such thatS(u′)< S(u) andS(u′)+1> ρmD(u′)− (ρm−1). Let t = S(u). Let St ′ be the last time
slot beforeSt , such thatSt ′−1∪St ′ contains at most two tasks with deadline at mostD(u) andSt ′

contains at most one task with deadline at mostD(u). There is such a timet ′, becauseS0∪S1

only contains the two sources ofG andS1 does not contain any tasks.
Let H be the subgraph ofG induced by{v ∈

⋃t
i=t ′ Si | D(v) ≤ D(u)}. Since(G,m,D) is

consistent, every predecessor of a task ofH has a smaller deadline thanu. We will prove that
there is a taskv scheduled at timet ′ −1 that is a predecessor of all tasks ofH. We will consider
two possibilities.

Case 1. St ′ contains a taskw with a smaller deadline thanu.

Case 1.1. St ′−1 contains a parentv of w.
From the choice oft ′, v is the only task inSt ′−1 with a smaller deadline thanu. Let x be
a source ofH[V(H) \ {w}]. At most one task with a deadline smaller than that ofx is
scheduled at timet ′. From Observation 4.3.6,x cannot be available at timet ′. Since no
two parents ofx are scheduled at timet ′ −1, x must be a child ofv or a child ofw. In
either case,x is a successor ofv. Sov is a predecessor of all tasks ofH.

38

Case 1.2. St ′−1 does not contain a parent ofw.
Let x be a source ofH[V(H)\{w}]. From the choice oft ′, w is the only task with deadline
at mostD(u) scheduled at timet ′. From Observation 4.3.6,x cannot be available at time
t ′. From the choice oft ′, at most one parent ofx is scheduled at timet ′ −1. Because no
parent ofw is scheduled at timet ′ −1 andx is not available at timet ′, x must be a child of
w. Hencew is a predecessor of all tasks ofH[V(H) \ {w}]. Because of communication
delays, at most one successor ofw can be executed at timet ′+1. Sot ′ = t−1, otherwise,
t ′ would have been chosen differently. SinceD(w)≤ D(u)−1, S(w) + 1 = t ′+ 1 = (t +
1)−1> ρmD(u)− (ρm−1)−1≥ ρm(D(w)+1)−ρm = ρmD(w)≥ ρmD(w)− (ρm−1).
Contradiction.

Case 2. St ′ does not contain a task with a smaller deadline thanu.
Let x be a source ofH. From Observation 4.3.6,x cannot be available at timet ′. SinceSt ′

does not contain a parent ofx, two parents ofx must be executed at timet ′ − 1. SoSt ′−1
contains at least two tasks that are predecessors of all tasks ofH. Let v be one of these tasks.

In either case,v is scheduled at timet ′ −1 and is a predecessor of all tasks ofH. Now we will
inductively construct a set of clusters.C0 contains the tasks ofH that are executed at timet.
AssumeCi has been defined before. Letti be the smallest starting time of a task ofCi . Let t ′i be
the largest timet ′′, such thatt ′′ < ti , t ′′ ≥ t ′ −1 and at mostm−1 tasks ofH are executed at time
t ′′. ThenCi+1 is defined as follows.

1. If t ′i = t ′ −1, or no task ofH is scheduled at timet ′i −1, then letCi+1 be the set of tasks of
H executed at timet ′i . ThenCi+1 is said to be a cluster of Type 1.

2. Otherwise,Ci+1 contains all tasks ofH that are scheduled at timet ′i or t ′i −1. ThenCi+1 is
said to be a cluster of Type 2.

AssumeCk is the last cluster that can be defined this way. Thenv is an element ofCk. Let α1 be
the number of clusters of Type 1 andα2 the number of clusters of Type 2. Note that clusterC0

has no type. The clusters contain all tasks ofH that are contained in a time slot that contains at
mostm−1 tasks ofH. Between two consecutive clusters, only tasks ofH are scheduled.

Consider two consecutive clustersCi andCi+1. It will be proved by contradiction that every
task inCi has a predecessor inCi+1. Let x be a task inCi . Supposex does not have a predecessor
in Ci+1. ThenCi+1 6=Ck, becauseCk containsv andv is a predecessor of all tasks ofH. At time t ′i ,
at mostm−1 tasks with deadline at mostD(x) are scheduled. No predecessor ofx is scheduled
at timet ′i . From Observation 4.3.6,x is not available at timet ′i . So at least two predecessors of
x must be scheduled at timet ′i −1. Since(G,m,D) is consistent, these must be tasks ofH. In
that case,Ci+1 is of Type 2 and these predecessors ofx are elements ofCi+1. Contradiction. So
every task inCi has a predecessor inCi+1. Sincev is a predecessor of all tasks ofH, there is a
path fromv to u, that contains a task in every cluster. Becauseu is an element ofC0, this path
contains at leastα1 + α2 +1 tasks. Since(G,m,D) is consistent,D(u)−D(v)≥ α1 + α2.

From the choice oft ′, every clusterCi of Type 2 contains at least three tasks and each cluster
Ci of Type 1 contains at least two tasks, unlessi = k. Now consider the same cases as before.

39

Case 1. St ′ contains a taskw with a smaller deadline thanu.
v is a parent ofw that is scheduled at timet ′ −1. If the last cluster is of Type 1, then it only
containsv. Hence

ND(v,D(u))−1 ≥ m(t− t ′)− (α1−1)(m−2)−α2(2m−3)
= m(t− t ′)−α1(m−2)−α2(2m−3)+(m−2)
≥ m(t− t ′)− (α1 + α2)(2m−3)+(m−2).

Otherwise, the last cluster is of Type 2 and

ND(v,D(u))−1 ≥ m(t− t ′)−α1(m−2)− (α2−1)(2m−3)− (m−1)
= m(t− t ′)−α1(m−2)−α2(2m−3)− (m−1)+(2m−3)
≥ m(t− t ′)− (α1 + α2)(2m−3)+(m−2).

Case 2. St ′ does not contain a task with a smaller deadline thanu.
At time t ′ −1, two tasks with a smaller deadline thanu are scheduled. One of these tasks is
v. Since no task ofH is scheduled at timet ′, the last cluster can only be of Type 2. Because
no task ofH is scheduled at timet ′,

ND(v,D(u))−1 ≥ m(t− t ′)−α1(m−2)− (α2−1)(2m−3)−m

= m(t− t ′)−α1(m−2)−α2(2m−3)−m+(2m−3)
≥ m(t− t ′)− (α1 + α2)(2m−3)+(m−3).

In either case,ND(v,D(u))−1≥m(t− t ′)− (α1 + α2)(2m−3) + (m−3). Because(G,m,D) is
consistent,D(v)≤ D(u)−1−

⌈
1
m(ND(v,D(u))−1)

⌉
. So

D(u)−D(v) ≥ 1+
⌈

1
m(ND(v,D(u))−1)

⌉
≥ 1+ 1

m(m(t− t ′)− (α1 + α2)(2m−3)+(m−3))
≥ t− t ′ − (α1 + α2)(2− 3

m)+(2− 3
m)

≥ (S(u) +1)− (S(v) +1)− (D(u)−D(v))(2− 3
m)+(1− 3

m).

SinceS(u)+1> ρmD(u)−(ρm−1), we obtainS(v)+1> ρmD(u)−(ρm−1)−(3− 3
m)(D(u)−

D(v)) +(1− 3
m). If m≥ 3, then

S(v) +1 > (3− 3
m)D(u)− (2− 3

m)− (3− 3
m)(D(u)−D(v)) +(1− 3

m)
≥ (3− 3

m)D(v)− (2− 3
m).

Contradiction. Ifm= 2, then

S(v) +1 > 2D(u)−1− (3
2D(u)− 3

2D(v))− 1
2

= 1
2D(u) + 3

2D(v)− 3
2

≥ 1
2(D(v) +1) + 3

2D(v)− 3
2

= 2D(v)−1.

40

Contradiction.

By adding two dummy sources, any precedence graph can be transformed into a precedence
graph with two sources that are predecessors of all other tasks. Using this construction, we can
prove an upper bound on the tardiness of schedules for all instances(G,m,D0).

Lemma 4.4.3. Let (G,m,D) be the strongly D0-consistent instance. Let S be a schedule for
(G,m,D0) constructed by AlgorithmLIST SCHEDULINGusing an lst-list of(G,m,D). If there is
an in-time schedule for(G,m,D0), then for all tasks u of G, if m= 2, then S(u) +1≤ 2D(u) +1
and if m≥ 3, then S(u) +1≤ (3− 3

m)D(u)+(2− 3
m).

Proof. Assume there is an in-time schedule for(G,m,D0). AssumeS is constructed by Al-
gorithm LIST SCHEDULING using lst-listL = (u1, . . . ,un) of (G,m,D). Construct an instance
(G′,m,D′) as follows.G′ is constructed fromG by adding two tasksr1 andr2 and arcs fromr1

andr2 to all sources ofG. For all tasksu of G, let D′0(u) = D0(u) + 2 andD′(u) = D(u) + 2.
In addition, letD′0(r1) = D′0(r2) = D′(r1) = D′(r2) = 1. From Observation 4.1.5,(G′,m,D′)
is stronglyD′-consistent. Because there is an in-time schedule for(G,m,D0), there is also
an in-time schedule for(G′,m,D′0). Let S′ be the schedule for(G′,m,D′0) constructed by
Algorithm LIST SCHEDULING using the lst-listL′ = (r1, r2,u1, . . . ,un) of (G′,m,D′). From
Lemma 4.4.2, ifm = 2, then for all tasksu of G′, S′(u) ≤ 2D′(u)− 1 and if m≥ 3, then
S′(u) ≤ (3− 3

m)D′(u)− (2− 3
m) for all tasksu of G′. It is easy to see thatS′(u) = S(u) + 2

for all tasksu of G. So if m = 2, then for all tasksu of G, S(u) + 1 = (S′(u) + 1)− 2 ≤
2D′(u)− 3 = 2(D(u) + 2)− 3 = 2D(u) + 1. And if m≥ 3, thenS(u) + 1 = (S′(u) + 1)− 2≤
(3− 3

m)D′(u)− (4− 3
m) = (3− 3

m)(D(u)+2)− (4− 3
m) = (3− 3

m)D(u)+(2− 3
m) for all tasksu

of G.

Using Lemma 4.1.8, we can bound the tardiness of the schedules for arbitrary instances
(G,m,D0) constructed using Algorithms DEADLINE MODIFICATION and LIST SCHEDULING.

Theorem 4.4.4. There is an algorithm with an O(min{n2 + ne−,n2.376}) time complexity that
constructs feasible schedules S for instances(G,m,D0), such that

1. if m= 2, then the tardiness of S is at most2`∗+maxu∈V(G) D0(u) +1, and

2. if m≥ 3, then the tardiness of S is at most(3− 2
m)`∗+(2− 2

m)maxu∈V(G) D0(u)+(2− 2
m),

where`∗ is the tardiness of a minimum-tardiness schedule for(G,m,D0).

Proof. Consider an instance(G,m,D0). Define ρ2 = 2 andρm = 3− 2
m for all m≥ 3. Let

(G,m,D) be the stronglyD0-consistent instance. LetS be the schedule for(G,m,D0) con-
structed by Algorithm LIST SCHEDULING using lst-listL of (G,m,D). Let `∗ be the tardi-
ness of a minimum-tardiness schedule for(G,m,D0). We will prove that the tardiness ofS is
at mostρm`

∗+ (ρm−1)maxu∈V(G) D0(u) + (ρm−1). DefineD′0(u) = D0(u) + `∗ for all tasks
u of G. From Observation 4.1.7, there is an in-time schedule for(G,m,D′0). Let (G,m,D′)
be the stronglyD′0-consistent instance. From Lemma 4.1.8,D′(u) = D(u) + `∗ for all tasks
u of G. So L is an lst-list of(G,m,D′). From Lemma 4.4.3,S(u) + 1 ≤ ρmD′(u) + (ρm−

41

1) ≤ ρm(D0(u) + `∗) + (ρm− 1) for all tasksu of G. So the tardiness ofS as schedule for
(G,m,D0) is at mostρm`

∗+ (ρm− 1)maxu∈V(G) D0(u) + (ρm− 1). If m = 2, thenS has tar-
diness at most 2̀∗ + maxu∈V(G) D0(u) + 1. Otherwise,m≥ 3 and S has tardiness at most
(3− 2

m)`∗+ (2− 2
m)maxu∈V(G) D0(u) + (2− 2

m). From Lemmas 4.2.4 and 4.3.4,S can be con-
structed inO(min{n2 +ne−,n2.376}) time.

Theorem 4.4.4 shows that there is a polynomial-time approximation algorithm for schedul-
ing arbitrary precedence graphs with non-positive deadlines onm processors. The asymptotic
approximation ratio of this algorithm equals 2 ifm= 2 and 3− 3

m if m≥ 3.

Corollary 4.4.5. There is an algorithm with an O(min{n2 + ne−,n2.376}) time complexity that
constructs feasible schedules S for instances(G,m,D0) with non-positive deadlines, such that

1. if m= 2, then the tardiness of S is at most2`∗+1, and

2. if m≥ 3, then the tardiness of S is at most(3− 2
m)`∗+(2− 2

m),

where`∗ is the tardiness of a minimum-tardiness schedule for(G,m,D0).

Proof. Obvious from Theorem 4.4.4.

4.4.2 Arbitrary graphs on an unrestricted number of processors
Bounding the tardiness of schedules constructed by Algorithm LIST SCHEDULINGfor instances
(G,µ,∞,D0) is less complicated. The following lemma proves an upper bound for instances
(G,µ,∞,D0) for which there is an in-time schedule.

Lemma 4.4.6. Let (G,µ,∞,D) be the strongly D0-consistent instance. Let S be a schedule for
(G,µ,∞,D0) constructed by AlgorithmLIST SCHEDULING using an lst-list of(G,µ,∞,D). If
there is an in-time schedule for(G,µ,∞,D0), then for all tasks u of G, S(u) +µ(u)≤ 2D(u)−1.

Proof. Assume there is an in-time schedule for(G,µ,∞,D0). From Lemma 4.1.9, there is an
in-time schedule for(G,µ,∞,D). It will be proved by contradiction thatS(u)+µ(u)≤ 2D(u)−1
for all tasksu of G. Suppose there is a tasku of G, such thatS(u) + µ(u)> 2D(u)−1. We may
assume that there is no taskw, such thatS(w)< S(u) andS(w)+µ(w)> 2D(w)−1. Since there
is an in-time schedule for(G,µ,∞,D) and all sources ofG are scheduled at time zero,u cannot
be a source ofG. Let v be a parent ofu with maximum completion time among the parents of
u. Since(G,µ,∞,D) is consistent,D(v) ≤ D(u)−µ(u). Sincev is a parent ofu with the largest
completion time,u is available at timeS(v) + µ(v) + 1. Henceu starts at timeS(v) + µ(v) or at
timeS(v)+µ(v)+1. ThereforeS(v)+µ(v)≥ (S(u)+µ(u))− (µ(u)+1)> 2D(u)−1−2µ(u)≥
2D(v)−1. Contradiction.

Lemma 4.4.6 is used to bound the tardiness of the schedule constructed for all instances
(G,µ,∞,D0).

Theorem 4.4.7. There is an algorithm with an O(nlogn+ e) time complexity that constructs
feasible schedules for instances(G,µ,∞,D0) with tardiness at most2`∗+ maxu∈V(G) D0(u)−1,
where`∗ is the tardiness of a minimum-tardiness schedule for(G,µ,∞,D0).

42

Proof. Consider an instance(G,µ,∞,D0). Let (G,µ,∞,D) be the stronglyD0-consistent in-
stance. LetS be the schedule for(G,µ,∞,D0) constructed by Algorithm LIST SCHEDULING

using lst-listL of (G,µ,∞,D). Let `∗ be the tardiness of a minimum-tardiness schedule for
(G,µ,∞,D0). We will prove that the tardiness ofS is at most 2̀∗+maxu∈V(G) D0(u)−1. Define
D′0(u) = D0(u) + `∗ for all tasksu of G. From Observation 4.1.7, there is an in-time schedule
for (G,µ,∞,D′0). Let (G,µ,∞,D′) be the stronglyD′0-consistent instance. From Lemma 4.1.8,
D′(u) = D(u) + `∗ for all tasksu of G. SoL is an lst-list of(G,µ,∞,D′). From Lemma 4.4.6,
S(u)+µ(u)≤ 2D′(u)−1≤ 2(D0(u)+`∗)−1 for all tasksu of G. So the tardiness ofSas sched-
ule for (G,m,D0) is at most 2̀∗+maxu∈V(G) D0(u)−1. From Lemmas 4.2.5 and 4.3.3,Scan be
constructed inO(nlogn+e) time.

Theorem 4.4.7 shows that there is a polynomial-time 2-approximation algorithm for schedul-
ing arbitrary precedence graphs with non-positive deadlines on an unrestricted number of pro-
cessors.

Corollary 4.4.8. There is an algorithm with an O(nlogn+ e) time complexity that constructs
feasible schedules for instances(G,µ,∞,D0) with non-positive deadlines with tardiness at most
2`∗ −1, where`∗ is the tardiness of a minimum-tardiness schedule for(G,µ,∞,D0).

Proof. Obvious from Theorem 4.4.7.

4.4.3 Outforests on a restricted number of processors
In this section, we consider schedules constructed by Algorithm LIST SCHEDULINGfor instances
(G,m,D), such thatG is an outforest. The bounds on the tardiness for these schedules are better
than those for arbitrary precedence graphs proved in Section 4.4.1.

It will be proved that minimum-tardiness schedules for instances(G,2,D0), such thatG is
an outforest, can be constructed in polynomial time. In order to prove this, we need to bound
the number of idle time slots in any schedule for the stronglyD0-consistent instance(G,m,D)
constructed by Algorithm LIST SCHEDULINGusing an lst-list of(G,m,D).

Lemma 4.4.9. Let G be an outforest. Let(G,m,D) be a consistent instance. Let S be a schedule
for (G,m,D) constructed by AlgorithmLIST SCHEDULING using an lst-list of(G,m,D). Then
the number of idle time slots in S is at mostmaxu∈V(G) D(u)−minu∈V(G) D(u) +1.

Proof. We inductively define a list of tasksu1, . . . ,uk as follows. Letu1 be a task with maximum
completion time. Ifui is not a source ofG, then letui+1 be the parent ofui . Assumeuk is the last
task obtained this way. Thenuk is a source ofG. Defineti = S(ui) for all i ∈ {1, . . . ,k}. Define
I(t) as the number of idle slots inS from time t onward. It will be proved by induction that
I(ti)≤maxu∈V(G) D(u)−D(ui) + 1 for all i ∈ {1, . . . ,k}. Clearly,I(t1)≤ 1≤maxu∈V(G) D(u)−
D(u1) + 1. Let i ≥ 1. Assume by induction thatI(ti) ≤maxu∈V(G) D(u)−D(ui) + 1. Consider
time ti+1. We consider two cases.

Case 1. I(ti+1)− I(ti)≤ 1.
Since(G,m,D) is consistent,D(ui+1)≤D(ui)−1. SoI(ti+1)≤ I(ti)+1≤maxu∈V(G) D(u)−
D(ui) +2≤maxu∈V(G) D(u)−D(ui+1) +1.

43

Case 2. I(ti+1)− I(ti)≥ 2.
SinceG is an outforest,ui is available at timeti+1 + 2. From Observation 4.3.6, the time
slotsSti+1+2, . . . ,Sti−1 cannot be idle. So the time slotsSti+1 andSti+1+1 must be idle. From
Observation 4.3.6,ui is not available at timeti+1 +1. Hence another child ofui+1 is executed
at timeti+1 + 1. Letv be this child. Sincev is scheduled instead ofui , D(v)≤ D(ui). Hence
ND(ui+1,D(ui)) ≥ 2. Since(G,m,D) is consistent,D(ui+1) ≤ D(ui)− 2. Consequently,
I(ti+1) = I(ti) +2≤maxu∈V(G) D(u)−D(ui) +3≤maxu∈V(G) D(u)−D(ui+1) +1.

In either case,I(ti+1)≤maxu∈V(G) D(u)−D(ui+1) +1. By induction,I(tk)≤maxu∈V(G) D(u)−
D(uk) + 1. Sinceuk is a source ofG, uk is available at times 0, . . . ,S(uk)− 1. From Obser-
vation 4.3.6, no processor is idle before timeS(uk). HenceI(0) = I(tk) ≤ maxu∈V(G) D(u)−
D(uk) +1≤maxu∈V(G) D(u)−minu∈V(G) D(u) +1.

Lemma 4.4.9 is used to compute an upper bound on the tardiness of the schedules constructed
by Algorithm LIST SCHEDULINGfor instances(G,m,D0), such thatG is an outtree.

Lemma 4.4.10. Let G be an outtree. Let(G,m,D) be the strongly D0-consistent instance. Let
S be a schedule for(G,m,D0) constructed by AlgorithmLIST SCHEDULINGusing an lst-list L
of (G,m,D). If there is an in-time schedule for(G,m,D0), then for all tasks u of G, S(u) + 1≤
(2− 2

m)D(u)− (1− 2
m).

Proof. Assume there is an in-time schedule for(G,m,D0). From Lemma 4.1.9, there is an in-
time schedule for(G,m,D). It will be proved by contradiction thatS(u) + 1≤ (2− 2

m)D(u)−
(1− 2

m) for all tasksu of G. Suppose there is a tasku, such thatS(u)+1> (2− 2
m)D(u)−(1− 2

m).
Because there is an in-time schedule for(G,m,D), D(v)≥ 1 for all tasksv of G. Since the root of
G is scheduled at time 0,u cannot be the root ofG. AssumeS(u) = t and there is no taskv, such
thatS(v)< t andS(v)+1> (2− 2

m)D(v)−(1− 2
m). Let t ′ be the last time before timet, such that

at most one task with deadline at mostD(u) is scheduled at timet ′. Such a time exists, because
at time 0, only the root ofG is executed. BecauseG is an outtree and(G,m,D) is consistent, a
taskv with deadline at mostD(u) is scheduled at timet ′. Let H be the subgraph ofG induced by
{w∈

⋃t−1
i=t ′+1Si | D(w)≤ D(u)}∪{u}.

Case 1. v is a predecessor of all tasks ofH.
Because of communication delays, at most one successor ofv can be scheduled immediately
afterv. Hencet ′ = t−1 andu is a child ofv. Since(G,m,D) is consistent,D(v)≤ D(u)−1
andS(v)+1 = t = (S(u)+1)−1> (2− 2

m)D(u)− (2− 2
m)− (1− 2

m) = (2− 2
m)D(v)− (1−

2
m). Contradiction.

Case 2. Not every task ofH is a successor ofv.
Let x be a source ofH that is not a successor ofv. From Observation 4.3.6,x cannot be
available at timet ′. Becausev is not a predecessor ofx, a parentw of x must be scheduled at
time t ′ −1 and another child ofw is executed at timet ′. Since this child is scheduled instead
of x, it must have a deadline at mostD(x). Becausev is the only task with deadline at most
D(u) scheduled at timet ′ −1, w is the parent ofv as well. So all tasks ofH are successors of

44

w. Let k be the number of time slots among time slotsSt ′ , . . . ,St−1 that contain at mostm−1
tasks fromH. ThenND(w,D(u))≥m(t− t ′) +1−k(m−2). Since(G,m,D) is consistent,

D(w) ≤ D(u)−1− (t− t ′) +k(1− 2
m

).

Let S′ be the schedule for(G[V(H)∪{w}],m,D) constructed by Algorithm LIST SCHEDUL-
ING using the sublist ofL containing all tasks inV(H)∪ {w}. From Lemma 4.4.9, the
number of idle slots inS′ is at mostD(u)− D(w) + 1. It is not difficult to see that
S(x) = S′(x) + S(w) = S′(x) + t ′ −1 for all tasksx in V(H)∪{w}. So the number of time
slots inSt ′ , . . . ,St−1 that contain at mostm−1 tasks ofH is at mostD(u)−D(w)−1. Hence

D(u)−D(w) ≥ (t− t ′) +1−k(1− 2
m)

≥ (t +1)− t ′ − (D(u)−D(w)−1)(1− 2
m)

≥ (S(u) +1)− (S(w) +1)− (D(u)−D(w))(1− 2
m).

As a result,

S(w) +1 ≥ S(u) +1− (2− 2
m)(D(u)−D(w))

> (2− 2
m)D(u)− (1− 2

m)− (2− 2
m)(D(u)−D(w))

= (2− 2
m)D(w)− (1− 2

m).

Contradiction.

An outforest can be transformed into an outtree by adding two tasks. This construction is
used to compute upper bounds of the tardiness of the schedules constructed by Algorithm LIST

SCHEDULINGfor instances(G,m,D0), such thatG is an outforest.

Lemma 4.4.11. Let G be an outforest. Let(G,m,D) be the strongly D0-consistent instance. Let
S be a schedule for(G,m,D0) constructed by AlgorithmLIST SCHEDULINGusing an lst-list of
(G,m,D). If there is an in-time schedule for(G,m,D0), then for all tasks u of G, S(u) + 1≤
(2− 2

m)D(u)+(1− 2
m).

Proof. Assume there is an in-time schedule for(G,m,D0). AssumeS is constructed by Algo-
rithm LIST SCHEDULINGusing lst-listL = (u1, . . . ,un) of (G,m,D). If G has only one source,
thenG is an outtree. In that case, from Lemma 4.4.10,S(u) + 1≤ (2− 2

m)D(u)− (1− 2
m) for

all tasksu of G. So we may assume thatG has at least two sources. Construct an instance
(G′,m,D′) as follows. G′ is constructed fromG by adding two tasksr ands and arcs fromr
to s, from s to u1 (this is a source ofG) and fromr to all other sources ofG. ThenG′ is an
outtree. For all tasksu of G, let D′(u) = D(u) + 2. In addition, letD′0(r) = D′(r) = 1 and
D′0(s) = D′(s) = 2. Then(G′,m,D′) is stronglyD′-consistent. Because there is an in-time sched-
ule for (G,m,D0), there is also an in-time schedule for(G′,m,D′0). Let S′ be the schedule for

45

(G′,m,D′0) constructed by Algorithm LIST SCHEDULING using lst-listL′ = (r,s,u1, . . . ,un) of
(G′,m,D′). From Lemma 4.4.10,S′(u)≤ (2− 2

m)D′(u)− (1− 2
m) for all tasksu of G′. It is easy

to see thatS′(u) = S(u)+2 for all tasksuof G. So for all tasksu of G, S(u)+1= (S′(u)+1)−2≤
(2− 2

m)D′(u)− (1− 2
m)−2 = (2− 2

m)(D(u) +2)− (3− 2
m) = (2− 2

m)D(u)+(1− 2
m).

Lemma 4.4.11 can be used to bound the tardiness of the constructed schedules for all in-
stances(G,m,D0), such thatG is an outforest.

Theorem 4.4.12. There is an algorithm with an O(n2) time complexity that constructs feasible
schedules for instances(G,m,D0), such that G is an outforest, with tardiness at most(2− 2

m)`∗+
(1− 2

m)maxu∈V(G) D0(u)− (1− 2
m), where`∗ is the tardiness of a minimum-tardiness schedule

for (G,m,D0).

Proof. Consider an instance(G,m,D0), such thatG is an outforest. Let(G,m,D) be the strongly
D0-consistent instance. LetS be the schedule for(G,m,D0) constructed by Algorithm LIST

SCHEDULING using lst-listL of (G,m,D). Let `∗ be the tardiness of a minimum-tardiness
schedule for(G,m,D0). We will prove that the tardiness ofS is at most(2− 2

m)`∗ + (1−
2
m)maxu∈V(G) D0(u) + (1− 2

m). Define D′0(u) = D0(u) + `∗ for all tasksu of G. From Ob-
servation 4.1.7, there is an in-time schedule for(G,m,D′0). Let (G,m,D′) be the strongly
D′0-consistent instance. From Lemma 4.1.8,D′(u) = D(u) + `∗ for all tasksu of G. So
L is an lst-list of (G,m,D′). From Lemma 4.4.11,S(u) + 1 ≤ (2− 2

m)D′(u) + (1− 2
m) ≤

(2− 2
m)(D0(u)+`∗)+(1− 2

m) for all tasksu of G. So the tardiness ofSas schedule for(G,m,D0)
is at most(2− 2

m)`∗+(1− 2
m)maxu∈V(G) D0(u)+(1− 2

m). From Lemmas 4.2.4 and 4.3.4,Scan
be constructed inO(n2) time.

Theorem 4.4.12 shows that a minimum-tardiness schedule for an outforest on two processors
can be constructed in polynomial time.

Theorem 4.4.13. There is an algorithm with an O(n2) time complexity that constructs minimum-
tardiness schedules for instances(G,2,D0), such that G is an outforest.

Proof. Obvious from Theorem 4.4.12.

Moreover, for all scheduling instances(G,m,D0) with non-positive deadlines, such thatG is
an outforest, there is a polynomial-time approximation algorithm with an asymptotic approxima-
tion ratio of 2− 2

m.

Corollary 4.4.14. There is an algorithm with an O(n2) time complexity that constructs feasible
schedules for instances(G,m,D0) with non-positive deadlines, such that G is an outforest, with
tardiness at most(2− 2

m)`∗+(1− 2
m), wherè ∗ is the tardiness of a minimum-tardiness schedule

for (G,m,D0).

Proof. Obvious from Theorem 4.4.12.

46

4.4.4 Outforests on an unrestricted number of processors
In this section, we will derive an upper bound on the tardiness of the constructed schedules
for instances(G,µ,∞,D), such thatG is an outforest, that is smaller than the upper bound for
arbitrary instances(G,µ,∞,D) proved in Section 4.4.2: it will be proved that for all outforestsG,
minimum-tardiness schedules for instances(G,µ,∞,D0) can be constructed in polynomial time.
The basis of the proof is the following lemma.

Lemma 4.4.15. Let G be an outforest. Let(G,µ,∞,D) be the strongly D0-consistent instance.
Let S be a schedule for(G,µ,∞,D0) constructed by AlgorithmLIST SCHEDULINGusing an lst-
list of (G,µ,∞,D). If there is an in-time schedule for(G,µ,∞,D0), then S is an in-time schedule
for (G,µ,∞,D0).

Proof. Assume there is an in-time schedule for(G,µ,∞,D0). From Lemma 4.1.9, there is an
in-time schedule for(G,µ,∞,D). It will be proved by contradiction thatS is an in-time schedule
for (G,µ,∞,D0). SupposeS is not an in-time schedule for(G,µ,∞,D0). From Lemma 4.1.9,S is
not an in-time schedule for(G,µ,∞,D). Assume tasku does not finish at or before timeD(u) and
there is no task that starts beforeu and violates its deadline. Since there is an in-time schedule
for (G,µ,∞,D) and the sources ofG are scheduled at time zero,u cannot be a source ofG. Let v
be the parent ofu. Clearly,u is available at timeS(v) + µ(v) + 1. Sou starts at timeS(v) + µ(v)
or at timeS(v) +µ(v) +1.

Case 1. u starts at timeS(v) +µ(v).
Let d = D(u)−µ(u) + 1. ThenND(v,d) ≥ µD(u,d) = 1. Because(G,µ,∞,D) is consistent,
D(v) ≤ d− 1 = D(u)− µ(u). Sinceu violates its deadline,S(v) + µ(v) = S(u) ≥ D(u)−
µ(u) +1≥ D(v) +1. Contradiction.

Case 2. u starts at timeS(v) +µ(v) +1.
From Observation 4.3.6,u cannot be available at timeS(v) + µ(v). So another childw of
v starts at timeS(v) + µ(v). Since Algorithm LIST SCHEDULINGscheduledw instead ofu,
D(w)−µ(w)≤D(u)−µ(u). Letd = D(u)−µ(u)+1. ThenND(v,d)≥ µD(u,d)+µD(w,d)≥
2. Because(G,µ,∞,D) is consistent,D(v) ≤ d− 2 = D(u)− µ(u)− 1. Becauseu is not
completed at or before timeD(u), S(u) ≥ D(u)− µ(u) + 1. SoS(v) + µ(v) = S(u)− 1≥
D(u)−µ(u)≥ D(v) +1. Contradiction.

Using this result, we can prove that minimum-tardiness schedules for outforests on an unre-
stricted number of processors can be constructed in polynomial time.

Theorem 4.4.16. There is an algorithm with an O(nlogn) time complexity that constructs
minimum-tardiness schedules for instances(G,µ,∞,D0), such that G is an outforest.

Proof. Consider an instance(G,µ,∞,D0), such thatG is an outforest. Let(G,µ,∞,D) be the
stronglyD0-consistent instance. LetS be the schedule for(G,µ,∞,D0) constructed by Algo-
rithm LIST SCHEDULING using lst-listL of (G,µ,∞,D). We will prove thatS is a minimum-
tardiness schedule for(G,µ,∞,D0). Let `∗ be the tardiness of a minimum-tardiness schedule

47

for (G,µ,∞,D0). DefineD′0(u) = D0(u) + `∗ for all tasksu of G. From Observation 4.1.7,
there is an in-time schedule for(G,µ,∞,D′0). Let (G,µ,∞,D′) be the stronglyD′0-consistent
instance. From Lemma 4.1.8,D′(u) = D(u) + `∗ for all tasks u of G. So L is an lst-
list of (G,µ,∞,D′). From Lemma 4.4.15,S is an in-time schedule for(G,µ,∞,D′0). Hence
S(u) + µ(u) ≤ D′0(u) ≤ D0(u) + `∗ for all tasksu of G. So the tardiness ofS as schedule for
(G,µ,∞,D0) is at most̀ ∗. SoS is a minimum-tardiness schedule for(G,µ,∞,D0). From Lem-
mas 4.2.5 and 4.3.3,Scan be constructed inO(nlogn) time.

4.5 Concluding remarks
In this chapter, an algorithm was presented for scheduling precedence-constrained tasks with
non-uniform deadlines subject to unit-length communication delays. It is the first polynomial-
time algorithm that constructs minimum-tardiness schedules (for outforests) subject to non-zero
communication delays.

Most results presented in this chapter can be generalised in two ways. First, if we consider
scheduling with release dates (a task cannot start before its release date) and deadlines, then
minimum-tardiness schedules for outforests on two processors [88] and on an unrestricted num-
ber of processors can be constructed in polynomial time.

Second, if we consider{0,1}-communication delays instead of unit-length communication
delays, then an algorithm similar to the one presented in this chapter constructs minimum-
tardiness schedules for outforests on two processors or on an unrestricted number of processors.
With {0,1}-communication delays, every arc has communication delay zero or one. If a task
u1 is a parent ofu2 and the arc fromu1 to u2 has communication delay zero, thenu2 can be
scheduled immediately afteru1 on any processor. If the delay of this arc equals one andu2 is
scheduled immediately afteru1, then it must be executed on the same processor asu1.

48

5 The least urgent parent property
In Chapter 4, an algorithm was presented for scheduling precedence graphs with non-uniform
deadlines subject to unit-length communication delays. This algorithm has the same overall
structure as the one presented by Garey and Johnson [31] for scheduling without communication
delays. In the first step, consistent deadlines are computed. In the second, the tasks are scheduled
by a list scheduling algorithm.

The exact deadline modification for a tasku depends on the subgraph of its successors:
if u has sufficiently many successors that have to be completed at or before timed, then the
deadline ofu is decreased. For the case of scheduling on two processors without communica-
tion delays [31], this turns out to be sufficient: the algorithm of Garey and Johnson constructs
minimum-tardiness schedules for arbitrary precedence graphs on two processors.

For scheduling subject to unit-length communication delays, we are only able to construct
minimum-tardiness schedules for outforests on two processors or an unrestricted number of pro-
cessors. In Chapter 4, Algorithm DEADLINE MODIFICATION was presented. This algorithm uses
the knowledge that for every tasku, at most one child ofu can be scheduled immediately after
u. However, it does not use the knowledge that at most one predecessor ofu can be scheduled
immediately beforeu.

In this chapter, we will consider instances that satisfy a special constraint, called the least
urgent parent property. For instances with the least urgent parent property, every tasku that
is not a source has a parent that is the best candidate to be scheduled immediately beforeu.
We can construct minimum-tardiness schedules for arbitrary precedence graphs with the least
urgent parent property on an unrestricted number of processors and for inforests with the least
urgent parent property onm processors. By transforming arbitrary instances into instances with
the least urgent parent property and constructing schedules for these instances, we obtain a 2-
approximation algorithm for scheduling inforests with non-positive deadlines onmprocessors.

5.1 The least urgent parent property
The least urgent parent property entails that every task that is not a source has a parent that is
the best candidate to be executed immediately before this task. This least urgent parent has a
deadline that exceeds the deadlines of all other parents.

Definition 5.1.1. An instance(G,µ,m,D) has theleast urgent parent propertyif for all tasksu
of G, if u is not a source, thenu has a parent whose deadline exceeds the deadlines of the other
parents ofu. This parent is called theleast urgent parentof u.

In a schedule with the least urgent parent property, the completion time of the least urgent
parent of a task exceeds the completion times of the other parents.

Definition 5.1.2. Let (G,µ,m,D) be an instance with the least urgent parent property. LetSbe
a feasible schedule for(G,µ,m,D). S is a schedule for(G,µ,m,D) with the least urgent parent
propertyif for all tasksu of G, if u is not a source ofG, then the least urgent parent ofu finishes
after the other parents ofu.

49

The least urgent parent property is closely related to the favoured child property that was
introduced by Lawler [59]. A scheduleSfor an instance(G,m,D) has the favoured child property
if for each tasku of G, a child ofu is scheduled before all other children ofu. This child is the
favoured child ofu.

b1:1,3 b2:1,2 b3:1,3

c1:1,5

a1:1,1

c2:1,4 c3:1,4

d1:1,6

Figure 5.1. An instance(G,2,D) with the least urgent parent property

b3b2 d1

b1

c1

0 1 2 3 4 5 6

a1

c2

c3

Figure 5.2. A schedule for(G,2,D) with the least urgent parent property

Example 5.1.3. Figure 5.1 shows an instance(G,2,D) with the least urgent parent property.a1

is the least urgent parent ofb1, b2 andb3, b1 is the least urgent parent ofc1 andc2, b3 is the least
urgent parent ofc3 andc1 is the least urgent parent ofd1. Figure 5.2 shows a feasible schedule
for (G,2,D) with the least urgent parent property.

5.2 Using the least urgent parent property
In this section, it will be proved that for all consistent instances(G,µ,∞,D) with the least urgent
parent property, Algorithm LIST SCHEDULING, that was presented in Chapter 4, constructs in-
time schedules if such schedules exist. In fact, this is proved for all instances(G,µ,∞,D), such
that each tasku of G has at most one parent with deadlineD(u)−µ(u). Obviously, all consistent
instances with the least urgent parent property satisfy this constraint.

Lemma 5.2.1. Let (G,µ,∞,D) be the strongly D0-consistent instance. Let S be a schedule for
(G,µ,∞,D0) constructed by AlgorithmLIST SCHEDULING using an lst-list of(G,µ,∞,D). If
every task u of G has at most one parent with deadline D(u)− µ(u) and there is an in-time
schedule for(G,µ,∞,D0), then S is an in-time schedule for(G,µ,∞,D0).

50

Proof. Assume there is an in-time schedule for(G,µ,∞,D0) and every tasku of G has at most one
parent with deadlineD(u)−µ(u). It will be proved by contradiction thatS is an in-time schedule
for (G,µ,∞,D0). SupposeS is not an in-time schedule for(G,µ,∞,D0). From Lemma 4.1.9,
S is not an in-time schedule for(G,µ,∞,D). Let u be a task with an earliest starting time that
violates its deadline. ThenS(u) + µ(u)> D(u) and there is no taskv, such thatS(v)< S(u) and
S(v)+µ(v)>D(v). Because there is an in-time schedule for(G,µ,∞,D) and the sources ofG are
scheduled at time 0,u cannot be a source ofG. Letv1 be a parent ofu with the largest completion
time among the parents ofu. Sinceu is available at timeS(v1)+µ(v1)+1, u is scheduled at time
S(v1) +µ(v1) or at timeS(v1) +µ(v1) +1.

Case 1. S(u) = S(v1) +µ(v1).
Since(G,µ,∞,D) is consistent,D(v1)≤D(u)−µ(u). HenceS(v1)+µ(v1) = S(u)> D(u)−
µ(u)≥ D(v1). Contradiction.

Case 2. S(u) = S(v1) +µ(v1) +1.

Case 2.1. v1 is the only parent ofu that finishes at timeS(v1) +µ(v1).
From Observation 4.3.6,u is not available at timeS(v1) + µ(v1). So another childw of
v1 starts at timeS(v1) +µ(v1). Since Algorithm LIST SCHEDULINGscheduledw instead
of u, D(w)−µ(w) ≤ D(u)−µ(u). From Lemma 4.1.11,D(v1) ≤ D(u)−µ(u)− 1. So
S(v1) +µ(v1) = S(u)−1> D(u)−µ(u)−1≥ D(v1). Contradiction.

Case 2.2. At least two parents ofu finish at timeS(v1) +µ(v1).
Let v2 be another parent ofu that finishes at timeS(v1) +µ(v1). AssumeD(v1)≤ D(v2).
Because at most one parent ofu has deadlineD(u)− µ(u), D(v1) ≤ D(u)− µ(u)− 1.
HenceS(v1) +µ(v1) = S(u)−1> D(u)−µ(u)−1≥ D(v1). Contradiction.

This shows that for instances with the least urgent parent property, minimum-tardiness sched-
ules can be constructed in polynomial time.

Theorem 5.2.2. There is an algorithm with an O(nlogn+ e) time complexity that constructs
minimum-tardiness schedules for instances(G,µ,∞,D0), such that the strongly D0-consistent
instance(G,µ,∞,D) has the least urgent parent property.

Proof. Consider an instance(G,µ,∞,D0). Let (G,µ,∞,D) be the stronglyD0-consistent in-
stance. Assume(G,µ,∞,D) has the least urgent parent property. Then every tasku of G has at
most one parent with deadlineD(u)−µ(u). LetSbe the schedule for(G,µ,∞,D0) constructed by
Algorithm LIST SCHEDULINGusing lst-listL of (G,µ,∞,D). We will prove thatSis a minimum-
tardiness schedule for(G,µ,∞,D0). Let `∗ be the tardiness of a minimum-tardiness schedule for
(G,µ,∞,D0). DefineD′0(u) = D0(u) + `∗ for all tasksu of G. From Observation 4.1.7, there
is an in-time schedule for(G,µ,∞,D′0). Let (G,µ,∞,D′) be the stronglyD′0-consistent instance.
From Lemma 4.1.8,D′(u) = D(u)+ `∗ for all tasksu of G. SoL is an lst-list of(G,µ,∞,D′) and
every tasku of G has at most one parent with deadlineD′(u)−µ(u). From Lemma 5.2.1,S is
an in-time schedule for(G,µ,∞,D′0). HenceS(u) +µ(u)≤ D′0(u) = D0(u) + `∗ for all tasksu of

51

G. So the tardiness ofSas schedule for(G,µ,∞,D0) is at most̀ ∗. SoS is a minimum-tardiness
schedule for(G,µ,∞,D0). From Lemmas 4.2.5 and 4.3.3,Scan be constructed inO(nlogn+ e)
time.

5.3 List scheduling with the least urgent parent property

In this section, we present an algorithm that constructs schedules with the least urgent parent
property on a restricted number of processors for precedence graphs with unit-length tasks. We
will use an algorithm that is similar to Algorithm LIST SCHEDULING. Algorithm LEAST UR-
GENT PARENT LIST SCHEDULINGis presented in Figure 5.3. The starting time of the least
urgent parent of a tasku is determined after all other parentsu are completed. Unfortunately,
for instances(G,µ,m,D) with the least urgent parent property, the least urgent parent of a task
u of G could start before and finish after another parent ofu in a schedule for(G,µ,m,D) with
the least urgent parent property. Since Algorithm LIST SCHEDULINGdoes not schedule a task at
an earlier time than a task that was already scheduled, Algorithm LEAST URGENT PARENT LIST

SCHEDULINGwill only be used for instances(G,m,D) with the least urgent parent property.
We use the same notation as for Algorithm LIST SCHEDULING. t is the current time.N is the

number of tasks scheduled at timet. Moreover, an available tasku will be calledlup-availableat
time t if it is available at timet and ifu is the least urgent parent of a taskv, then all other parents
of v finish at or before timet.

Algorithm LEAST URGENT PARENT LIST SCHEDULING

Input. An instance(G,m,D) with the least urgent parent property and a listL containing all tasks
of G.

Output. A feasible scheduleS for (G,m,D) with the least urgent parent property.
1. t := 0
2. N := 0
3. while there are unscheduled tasks
4. do while there are unscheduled tasks lup-available at timet and N<m
5. do let u be the unscheduled lup-available task with the smallest index inL
6. S(u) := t
7. N := N +1
8. t := t +1
9. N := 0

Figure 5.3. Algorithm LEAST URGENT PARENT LIST SCHEDULING

Example 5.3.1. Consider the instance(G,2,D) shown in Figure 5.1.(G,2,D) has the least
urgent parent property. Using priority listL = (a1,b2,b1,b3,c3,c2,c1,d1), Algorithm LEAST

URGENT PARENT LIST SCHEDULINGconstructs a schedule for(G,2,D) as follows. At time 0,
a1 is scheduled, becausea1 is not the least urgent parent of a task with at least two unscheduled
parents.b2 andb3 become lup-available at time 1;b1 does not, because it is the least urgent

52

parent ofc1 andc2, andb2 is another unscheduled parent ofc1 andc2. At time 1, b2 is sched-
uled, because it has a smaller index inL thanb3. After b2 has been scheduled,b1 is the only
unscheduled parent ofc1 andc2. Henceb1 becomes lup-available at time 2. Tasksb1 andb3 are
scheduled at time 2. Thenc2 andc3 become lup-available at time 3. Sincec1 is the least urgent
parent ofd1, it is not lup-available at time 3. Bothc2 andc3 are scheduled at time 3. Thereafter,
c1 is scheduled at time 4 andd1 at time 5. Hence we obtain the schedule shown in Figure 5.2.
This schedule has the least urgent parent property.

Now we will prove that Algorithm LEAST URGENT PARENT LIST SCHEDULINGcorrectly
constructs feasible schedules with the least urgent parent property.

Lemma 5.3.2. Let (G,m,D) be an instance with the least urgent parent property. Let S be the
schedule for(G,m,D) constructed by AlgorithmLEAST URGENT PARENT LIST SCHEDULING

using a list containing all tasks of G. Then S is a feasible schedule for(G,m,D) with the least
urgent parent property.

Proof. For all i ≤ n, let ui be theith task ofG to be assigned a starting time by Algorithm LEAST

URGENT PARENT LIST SCHEDULING. ThenS(u1)≤ ·· · ≤ S(un). For all i ≤ n, let Gi be the sub-
graph ofG induced by{u1, . . . ,ui} andSi the restriction ofS to {u1, . . . ,ui}. Then the instances
(Gi ,m,D) all have the least urgent parent property. It will be proved by induction thatSi is a fea-
sible schedule for(Gi ,m,D) with the least urgent parent property for alli ∈ {1, . . . ,n}. Clearly,
S1 is a feasible schedule for(G1,m,D) with the least urgent parent property. Assume by induc-
tion thatSi is a feasible schedule for(Gi ,m,D) with the least urgent parent property. Because
Si+1(u) = Si(u) for all tasksu of Gi , we only need to considerui+1 to determine the feasibility of
Si+1 for (Gi+1,m,D). Sinceui+1 is scheduled at timeSi+1(ui+1), at mostm tasks are scheduled
at timeSi+1(ui+1). Moreover,ui+1 is available at timeSi+1(ui+1), because it is lup-available
at timeSi+1(ui+1). So all predecessors ofui+1 are completed at or before timeSi+1(ui+1), at
most one parent ofui+1 finishes at timeSi+1(ui+1), and if a parentv of ui+1 finishes at time
Si+1(ui+1), then no other child ofv is scheduled at timeSi+1(ui+1). SoSi+1 is a feasible schedule
for (Gi+1,m,D). In addition, ifui+1 is the least urgent parent of a taskv, then it is scheduled after
all other parents ofv, sinceui+1 is lup-available at timeSi+1(ui+1). SoSi+1 is a feasible schedule
for (Gi+1,m,D) with the least urgent parent property. By induction,Sn is a feasible schedule for
(Gn,m,D) with the least urgent parent property. BecauseGn = G andSn(u) = S(u) for all tasks
u of G, S is a feasible schedule for(G,m,D) with the least urgent parent property.

Algorithm LEAST URGENT PARENT LIST SCHEDULINGcan be implemented as follows.
Consider an instance(G,m,D) with the least urgent parent property. For all tasksu of G, let
par(u) be the number of parents ofu that are not completed at or before timet and lup(u)
the number of childrenv of u, such thatu is the least urgent parent ofv and the number of
unscheduled parents ofv is at least two. Then an available tasku is lup-available iflup(u) = 0.
A tasku will be calledlup-readyif par(u) = 0 andlup(u) = 0. Av is the set of lup-ready tasks
that are lup-available at timet, andAv1 the set of lup-ready tasks that become lup-available at
time t + 1. At time 0, the setsAv andAv1 are empty,N equals zero, and for all tasksu of G,
par(u) equals the indegree ofu andlup(u) the number of childrenv of u with indegree at least
two, such thatu is the least urgent parent ofv.

53

Algorithm LEAST URGENT PARENT LIST SCHEDULINGconsiders timest until all tasks have
been assigned a starting time. At each timet, the unscheduled lup-available task with the smallest
index in L is chosen. Assumeu is this task. u is scheduled at timet and removed fromAv.
Moreover,N is increased by one. If a parentv of u finishes at timet, then the children ofv in Av
are no longer lup-available at timet, becauseu is scheduled at timet. So the children ofv are
moved fromAv to Av1.

This is repeated untilm tasks are scheduled at timet or there are no unscheduled lup-available
tasks. Thent is increased by one. Because the tasks inAv1 becomes available at the new time
t, the tasks ofAv1 are moved toAv. Then all tasks that finish at the new timet are considered.
For each of these tasksu, par(v) is decreased by one for all childrenv of u. If par(v) andlup(v)
both equal zero, thenv is lup-ready at timet. Thenv is added toAvor Av1. If exactly one parent
of v finishes at timet, thenv is lup-available at timet and it is added toAv. Otherwise, it is added
to Av1, because it becomes lup-available at timet + 1. In addition, ifpar(v) becomes one, then
lup(w) can be decreased for the least urgent parentw of v. If par(w) andlup(w) both equal zero,
thenw is lup-ready at timet. If at most one parent ofw is scheduled at timet−1, thenw is added
to Av. Otherwise, it is added toAv1, because it becomes lup-available at timet +1.

The time complexity of Algorithm LIST SCHEDULINGcan be determined as follows. Obvi-
ously, a task is added toAv at most twice. AssumeAv is represented by a balanced search tree
ordered by non-decreasing index inL. Then adding and removing a task inAv takesO(logn)
time. In addition, the smallest element ofAv can be found inO(logn) time. Because a task
is added and removed at most twice, these operations takeO(nlogn) time in total. Av1 can be
represented by a queue. Because all tasks inAv1 are moved toAv simultaneously, adding and
removing tasks inAv1 takesO(n) time in total.

If a tasku finishes at timet, then par(v) is decreased for all childrenv of u. This takes
O(|SuccG,0(u)|) time, soO(n+ e) time in total. If par(v) becomes zero andlup(v) equals zero,
thenv is added toAv or Av1 depending on the number of parents ofv that finish at timet. This
number can be found inO(|PredG,0(u)|) time. Hence this requiresO(n+ e) time in total. If
par(v) becomes one, thenlup(w) is decreased by one for the least urgent parentw of v. If
lup(w) andpar(w) both equal zero, thenw is added toAvor Av1. Because every task has exactly
one least urgent parent, this requiresO(n+e) time in total.

If a tasku is scheduled at timet and a parentv of u finishes at timet, then the lup-available
children ofv are moved fromAv to Av1. Since there is at most one such parentv, this takes
O(|PredG,0(u)|+ |SuccG,0(v)|) time apart from the time needed to move the tasks fromAv to
Av1. So this takesO(n+e) time in total.

It is easy to see that assigning a starting time to every task ofG takesO(n) time. Moreover,
it is not difficult to see that the length of the schedule constructed by Algorithm LEAST URGENT

PARENT LIST SCHEDULINGis at mostn. Hence we have proved the following result.

Lemma 5.3.3. For all instances(G,m,D) with the least urgent parent property and all lists L
containing all tasks of G, AlgorithmLEAST URGENT PARENT LIST SCHEDULINGconstructs a
feasible schedule for(G,m,D) with the least urgent parent property in O(nlogn+ e) time using
priority list L.

54

Because any consistent instance(G,m,D), such thatG is an outforest, has the least urgent
parent property, Algorithms LIST SCHEDULINGand LEAST URGENT PARENT LIST SCHEDUL-
ING construct the same schedule for instances(G,m,D), such thatG is an outforest.

Observation 5.3.4. Let G be an outforest. Let L be a list containing all tasks of G. Let S be the
schedule for(G,m,D) constructed by AlgorithmLIST SCHEDULINGusing L and S′ the schedule
for (G,m,D) constructed by AlgorithmLEAST URGENT PARENT LIST SCHEDULINGusing L.
Then S(u) = S′(u) for all tasks u of G.

The following observation states an important property of schedules constructed by Algo-
rithm LEAST URGENT PARENT LIST SCHEDULING. It is similar to Observation 4.3.6 that states
a property of schedules constructed by Algorithm LIST SCHEDULING: it states that if a tasku is
lup-available at timet andu is scheduled at a later time, then no processor is idle at timet and
all tasks scheduled at timet have a higher priority thanu.

Observation 5.3.5. Let (G,m,D) be an instance with the least urgent parent property. Let S be
the schedule for(G,m,D) constructed by AlgorithmLEAST URGENT PARENT LIST SCHEDUL-
ING using list L containing all tasks of G. Let u1 and u2 be two tasks of G. If S(u1)< S(u2) and
u2 is lup-available at time S(u1), then u1 has a smaller index in L than u2 and there are m tasks
v of G, such that S(v) = S(u1).

5.4 Inforests
In this section, I will present an approximation algorithm for scheduling inforests. It will be
proved in Section 5.4.1 that Algorithm LEAST URGENT PARENT LIST SCHEDULINGcan be used
to construct minimum-tardiness schedules for inforests with the least urgent parent property. In
Section 5.4.2, this result is used to present a 2-approximation algorithm for scheduling arbitrary
inforests. This algorithm transforms an arbitrary instance into an instance with the least urgent
parent property and uses Algorithm LEAST URGENT PARENT LIST SCHEDULINGto construct a
schedule whose tardiness is at most twice the tardiness of a minimum-tardiness schedule.

5.4.1 Constructing minimum-tardiness schedules
In this section, we will consider the schedules for instances with the least urgent parent property
constructed by Algorithm LEAST URGENT PARENT LIST SCHEDULING. This algorithm does not
construct minimum-tardiness schedules for all instances with the least urgent parent property.

Example 5.4.1. Consider the instance(G,2,D) shown in Figure 5.4. This instance has the least
urgent parent property. In any in-time schedule for(G,2,D), a1 anda2 are scheduled at time 0.
In fact, there is only one in-time schedule for(G,2,D) and it is shown in Figure 5.5. So there is
no in-time schedule for(G,2,D) with the least urgent parent property.

Example 5.4.1 shows that Algorithm LEAST URGENT PARENT LIST SCHEDULINGdoes not
construct minimum-tardiness schedules for arbitrary precedence graphs with the least urgent
parent property. However, we will show that it does construct such schedules for inforests with
the least urgent parent property.

55

a1:1,1 a2:1,2

b1:1,3 b2:1,4 b3:1,4 b4:1,3 b5:1,3 b6:1,2

Figure 5.4. An instance(G,2,D) with the least urgent parent property

0 1 2 3 4

a1

a2

b1 b2

b3

b4

b5b6

Figure 5.5. The only in-time schedule for(G,2,D)

Lemma 5.4.2. Let G be an inforest. Let(G,m,D) be the strongly D0-consistent instance. If
(G,m,D) has the least urgent parent property and there is an in-time schedule for(G,m,D0), then
any schedule for(G,m,D0) constructed by AlgorithmLEAST URGENT PARENT LIST SCHEDUL-
ING using an lst-list of(G,m,D) is an in-time schedule for(G,m,D0).

Proof. Assume there is an in-time schedule for(G,m,D0) and (G,m,D) has the least urgent
parent property. From Lemma 4.1.9, there is an in-time schedule for(G,m,D). Let S be a
schedule for(G,m,D0) constructed by Algorithm LEAST URGENT PARENT LIST SCHEDULING

using an lst-list of(G,m,D). It will be proved by contradiction thatS is an in-time schedule for
(G,m,D0). SupposeS is not an in-time schedule for(G,m,D0). From Lemma 4.1.9,S is not
an in-time schedule for(G,m,D). Let St be the earliest time slot that contains a tasku, such
thatD(u) ≤ t. Since there is an in-time schedule for(G,m,D), there are at mostmt tasks with
deadline at mostt. Let St ′−1 be the last time slot beforeSt that contains at mostm− 1 tasks
with deadline at mostt. Let H be the subgraph ofG induced by

⋃t−1
i=t ′ Si ∪{u}. ThenH contains

m(t− t ′) +1 tasks with deadline at mostt. DefineQ = {v∈ St ′−1 | D(v)≤ t}.

Case 1. t = t ′.
From Observation 5.3.5,u cannot be lup-available at timet ′ −1.

Case 1.1. u is available at timet ′ −1.
Thenu is the least urgent parent of a taskv, such that at least two parents ofv are not
scheduled before timet ′ −1. Sinceu is scheduled at timet, another parentw of v must be
scheduled at timet ′ −1. Sinceu is the least urgent parent ofv, D(w)≤ D(u)−1≤ t−1.
Sow violates its deadline. Contradiction.

Case 1.2. u is not available at timet ′ −1.
Q cannot contain a parent ofu, because it would violate its deadline. Because every task
of G has outdegree at most one, two parents ofu must be scheduled at timet ′ −2. SinceS

56

has the least urgent parent property, the least urgent parent ofu must be executed at time
t ′ −1. ThenQ contains a parent ofu. Contradiction.

Case 2. t 6= t ′.
For each taskv in Q, at most one child ofv can be scheduled at timet ′. Sincem tasks with
deadline at mostt are scheduled at timet ′, some tasks ofH have no predecessor inQ. Let
V0 be the set containing the tasks inSt ′ that have a parent inQ. DefineV1 as the set of tasks
in St ′ \V0 that are the least urgent parent of some taskw that has another parent inQ. Let
V = V0∪V1. Since every task has at most one child,|V| ≤ |Q| ≤ m− 1. SoSt ′ \V is not
empty. Letv be a task inSt ′ \V. From Observation 5.3.5,v is not lup-available at timet ′ −1.

Case 2.1. v is available at timet ′ −1.
Thenv is the least urgent parent of a taskw, such that at least two parents ofw are not
scheduled before timet ′−1. Becausev is scheduled at timet ′, another parentw′ of wmust
be scheduled at timet ′ −1. Sincev is the least urgent parent ofw, D(w′)≤ D(v)−1≤ t.
Sow′ is a task ofQ andv must be an element ofV1. Contradiction.

Case 2.2. v is not available at timet ′ −1.
No parent ofv is scheduled at timet ′ −1 and no task has more than one child, so two
parents ofv must be executed at timet ′ −2. SinceShas the least urgent parent property,
the least urgent parent ofv must be scheduled at timet ′ −1. Sov must be an element of
V0. Contradiction.

Using Lemma 5.4.2, the next theorem proves that minimum-tardiness schedules for inforests
with the least urgent parent property can be constructed in polynomial time.

Theorem 5.4.3. There is an algorithm with an O(nlogn) time complexity that constructs
minimum-tardiness schedules for instances(G,m,D0), such that G is an inforest and the strongly
D0-consistent instance(G,m,D) has the least urgent parent property.

Proof. Consider an instance(G,m,D0), such thatG is an inforest. Let(G,m,D) be the strongly
D0-consistent instance. Assume(G,m,D) has the least urgent parent property. LetS be the
schedule for(G,m,D0) constructed by Algorithm LEAST URGENT PARENT LIST SCHEDULING

using lst-listL of (G,m,D). We will prove thatSis a minimum-tardiness schedule for(G,m,D0).
Let `∗ be the tardiness of a minimum-tardiness schedule for(G,m,D0). DefineD′0(u) = D0(u)+
`∗ for all tasksu of G. From Observation 4.1.7, there is an in-time schedule for(G,m,D′0). Let
(G,m,D′) be the stronglyD′0-consistent instance. From Lemma 4.1.8,D′(u) = D(u) + `∗ for all
tasksu of G. SoL is an lst-list of(G,m,D′) and(G,m,D′) has the least urgent parent property.
From Lemma 5.4.2,Sis an in-time schedule for(G,m,D′0). HenceS(u)+1≤D′0(u) = D0(u)+`∗

for all tasksu of G. So the tardiness ofS as schedule for(G,m,D0) is at most`∗. Hence
S is a minimum-tardiness schedule for(G,m,D0). From Lemmas 4.1.10 and 5.3.3,S can be
constructed inO(nlogn) time.

57

Let G be a chain-like task system. Because a chain-like task system is an outforest, every
stronglyD0-consistent instance(G,m,D) has the least urgent parent property. Since every chain-
like task system is an inforest, a minimum-tardiness schedule for a chain-like task system can be
constructed in polynomial time.

Theorem 5.4.4. There is an algorithm with an O(nlogn) time complexity that constructs
minimum-tardiness schedules for instances(G,m,D0), such that G is a chain-like task system.

Proof. Obvious from Theorem 5.4.3.

5.4.2 Using the least urgent parent property for approximation
Algorithm LEAST URGENT PARENT LIST SCHEDULINGcan be used to schedules for all in-
stances(G,m,D0) if the stronglyD0-consistent instance(G,m,D) is transformed into an instance
(G,m,D′) with the least urgent parent property. This is the basis of the approximation algorithm
for scheduling inforests presented in this section. This algorithm works as follows. First the
stronglyD0-consistent instance(G,m,D) is transformed into a consistent instance(G,m,D′) with
the least urgent parent property. Second Algorithm LEAST URGENT PARENT LIST SCHEDULING

constructs a schedule for(G,m,D′).
The following lemma shows how to construct an instance with the least urgent parent property

from a consistent instance(G,m,D), such thatG is an inforest.

Lemma 5.4.5. Let G be an inforest. Let(G,m,D) be a consistent instance. If D(u) ≥ 1 for all
tasks u of G, then there is a consistent instance(G,m,D′) with the least urgent parent property,
such that for all tasks u of G, D(u)≤ D′(u)≤ 2D(u).

Proof. AssumeD(u)≥ 1 for all tasksu of G. Let u be a task ofG that is not a source ofG. Let
v be a parent ofu with maximum deadline among the parents ofu. Let D′(v) = 2D(v) and let
D′(w) = 2D(w)−1 for all other parentsw of u. For all sourcesu of G, let D′(u) = 2D(u)−1.
ThenD(u)≤D′(u)≤ 2D(u) for all tasksu of G. Let u1 andu2 be two tasks ofG, such thatu1 is
a parent ofu2. Since(G,m,D) is consistent,D′(u1)≤ 2D(u1)≤ 2D(u2)−2≤D′(u2)−1. Hence
(G,m,D′) is consistent and has the least urgent parent property.

From the proof of Lemma 5.4.5, it is easy to see that instances with the least urgent parent
property can be constructed in linear time. Moreover, the same construction can be used for
precedence graphs in which every pair of tasks with a common child have the same children.
However, Lemma 5.4.5 is not true for arbitrary precedence graphs.

a1:1,1 a2:1,1 a3:1,1

b1:1,3 b2:1,3 b3:1,3

Figure 5.6. A consistent instance(G,m,D)

58

Example 5.4.6. Consider the consistent instance(G,m,D) shown in Figure 5.6. Let(G,m,D′)
be a consistent instance with the least urgent parent property, such thatD′(u) ≥ D(u) for all
tasksu of G. b1 is a child ofa1 anda3. Since(G,m,D′) has the least urgent parent property,
D′(a1) 6= D′(a3). Similarly, D′(a1) 6= D′(a2) andD′(a2) 6= D′(a3). So the deadlinesD′(a1),
D′(a2) andD′(a3) are all different. Then for somei ∈ {1,2,3}, D′(ai)≥ 3> 2D(ai).

Example 5.4.6 shows that Lemma 5.4.5 is not true for arbitrary precedence graphs. The rea-
son is the fact that a task can be the least urgent parent of more than one task. In fact, there are
consistent instances(G,m,D) with positive deadlines, in which a deadline must be increased by
at least1

2n− 1 to obtain a consistent instance(G,m,D′) with the least urgent parent property,
such thatD′(u)≥ D(u) for all tasksu of G.

Lemma 5.4.5 can be used to construct schedules for all stronglyD0-consistent instances
(G,m,D), such thatG is an inforest. Lemma 4.1.10 shows that the stronglyD0-consistent in-
stances for inforests can be constructed inO(n) time. This allows us to prove the following
result.

Theorem 5.4.7. There is an algorithm with an O(nlogn) time complexity that constructs fea-
sible schedules for instances(G,m,D0), such that G is an inforest, with tardiness at most
2`∗+maxv∈V(G) D0(v), wherè ∗ is the tardiness of a minimum-tardiness schedule for(G,m,D0).

Proof. Consider an instance(G,m,D0), such thatG is an inforest. Let(G,m,D) be the strongly
D0-consistent instance. For all tasksu of G, define

D′0(u) = D0(u)− min
v∈V(G)

D(v) +1 and D′(u) = D(u)− min
v∈V(G)

D(v) +1.

ThenD′(u) ≥ 1 for all tasksu of G and(G,m,D′) is stronglyD′0-consistent. Let(G,m,D′′) be
a consistent instance with the least urgent parent property, such thatD′(u) ≤ D′′(u) ≤ 2D′(u)
for all tasksu of G. From the proof of Lemma 5.4.5, we may assume thatD′′(u) = 2D′(u)−1
or D′′(u) = 2D′(u) for all tasksu of G. Let S be the schedule for(G,m,D0) constructed by
Algorithm LEAST URGENT PARENT LIST SCHEDULINGusing lst-listL of (G,m,D′′). Let `∗ be
the tardiness of a minimum-tardiness schedule for(G,m,D0). We will prove that the tardiness
of S is at most 2̀∗+ maxv∈V(G) D0(v). DefineD1(u) = D0(u) + `∗ for all tasksu of G. From
Observation 4.1.7, there is an in-time schedule for(G,m,D1). Let (G,m,D′1) be the strongly
D1-consistent instance. From Lemma 4.1.8, for all tasksu of G,

D′1(u) = D(u) + `∗ = D′(u)+(`∗+ min
v∈V(G)

D(v)−1).

From Lemma 4.1.9, there is an in-time schedule for(G,m,D′1). HenceD′1(u)≥ 1 for all tasksu
of G. For all tasksu of G, defineD′′1(u) as follows.

D′′1(u) =

2D′1(u)−1 if D′′(u) = 2D′(u)−1

2D′1(u) if D′′(u) = 2D′(u)

59

Because(G,m,D′1) is consistent, so is(G,m,D′′1). It is not difficult to see that(G,m,D′′1) has the
least urgent parent property. Letu be a task ofG. If D′′(u) = 2D′(u)−1, thenD′′1(u) = 2D′1(u)−
1 = 2D′(u)−1+2(`∗+minv∈V(G) D(v)−1) = D′′(u) +2(`∗+minv∈V(G) D(v)−1). Otherwise,
D′′(u) = 2D′(u) andD′′1(u) = 2D′1(u) = 2D′(u) + 2(`∗+ minv∈V(G) D(v)−1) = D′′(u) + 2(`∗+
minv∈V(G) D(v)−1). HenceD′′1(u) = D′′(u)+2(`∗+minv∈V(G) D(v)−1) for all tasksu of G. So
L is an lst-list of(G,m,D′′1). From Lemma 5.4.2,S is an in-time schedule for(G,m,D′′1). Hence
for all tasksu of G,

S(u) +1 ≤ D′′1(u)
= D′′(u) +2(`∗+minv∈V(G) D(v)−1)
≤ 2D′(u) +2(`∗+minv∈V(G) D(v)−1)
= 2(D(u)−minv∈V(G) D(v) +1) +2(`∗+minv∈V(G) D(v)−1)
≤ 2D0(u) +2`∗.

So the tardiness ofSas schedule for(G,µ,m,D0) is at most 2̀∗+ maxv∈V(G) D0(v). From Lem-
mas 4.1.10, 5.4.5 and 5.3.3,Scan be constructed inO(nlogn) time.

Consequently, there is a polynomial-time 2-approximation algorithm for inforests with non-
positive deadlines.

Corollary 5.4.8. There is an algorithm with an O(nlogn) time complexity that constructs feasi-
ble schedules for instances(G,m,D0) with non-positive deadlines, such that G is an inforest, with
tardiness at most2`∗, where`∗ is the tardiness of a minimum-tardiness schedule for(G,m,D0).

Proof. Obvious from Theorem 5.4.7.

5.5 Concluding remarks
In this chapter, it was shown that the least urgent property allows the construction of minimum-
tardiness schedules for a larger class of precedence graphs. Because constructing minimum-
length schedules for arbitrary precedence graphs on an unrestricted number of processors is NP-
hard [47, 77, 80] as well as for inforests onm processors [61], we have identified two special
cases of NP-hard optimisation problems that are solvable in polynomial time.

Like for the problems presented in Chapter 4, some generalisations are possible. Introducing
release dates makes that the existence of in-time schedules with the least urgent parent property
for inforests with the least urgent parent property is not guaranteed. Hence this approach cannot
be generalised to scheduling with release dates and deadlines.

With {0,1}-communication delays, the definition of the least urgent parent property needs
to be changed. With the altered least urgent parent property, minimum-tardiness schedules for
arbitrary precedence graphs on an unrestricted number of processors and for inforests onm pro-
cessors can also be constructed in polynomial time.

60

6 Pairwise deadlines
In Chapter 4, an algorithm was presented for scheduling precedence-constrained tasks with the
objective of minimising the maximum tardiness. This algorithm constructs minimum-tardiness
schedules for a small class of precedence graphs. This is due to the fact that Algorithm DEAD-
LINE MODIFICATION does not use the knowledge that a task cannot be scheduled immediately
after two of its parents. In Chapter 5, the least urgent parent property was introduced. For each
task, this property allows the choice of a parent that has to finish after the other parents. Using
the least urgent parent property, minimum-tardiness schedules can be constructed for a larger
class of precedence graphs.

In this chapter, we will use the knowledge that a task cannot be scheduled after two of its
parents in a different way. Like Bartusch et al. [8] for scheduling without communication delays,
we will compute deadlines for sets of tasks: a deadline will be computed for every pair of tasks
instead of for individual tasks. In order to meet the deadlineD(u1,u2) of a pair(u1,u2), u1 or
u2 has to be completed at or before timeD(u1,u2). Like the individual deadlines, the deadline
of a pair of tasks(u1,u2) depends on the successors ofu1 andu2: if u1 andu2 have sufficiently
many common successors that have to be scheduled before timed, then the deadline of(u1,u2)
is decreased. Using these pairwise deadlines, minimum-tardiness schedules can be constructed
for interval orders onm processors and for precedence graphs of width two on two processors.

6.1 Pairwise consistent deadlines

In this section, we will define pairwise deadlines that are met in all in-time schedules. To define
these pairwise consistent deadlines, we need to look at the structure of in-time schedules. Let
S be an in-time schedule for(G,m,D). Let u be a task ofG. Assumeu hask≥ 1 successors
v1, . . . ,vk with deadlines at mostd. u starts at timeS(u) and finishes at timeS(u) + 1. Because
of communication delays, at most one taskvi can be scheduled at timeS(u) + 1. Hence the last
of thek−1 remaining successors ofu cannot be completed before timeS(u)+2+

⌈
k−1
m

⌉
. Since

the successors ofu are completed at or before timed, u must be completed at or before time
d−1−

⌈
k−1
m

⌉
. This observation led to the notion of consistent deadlines in Chapter 4.

Let u1 andu2 be two tasks ofG that havek≥ 1 common successors with deadline at most
d. Because the successors ofu1 andu2 meet their deadlines, the first must be scheduled at or
before timed−

⌈
k
m

⌉
. Because of the communication delays,u1 andu2 cannot both be executed

immediately before a common successor ofu1 andu2. So u1 or u2 must be completed at or
before timed−1−

⌈
k
m

⌉
. Using this observation, we might be able to determine upper bounds

on the completion time of common predecessorsv of u1 andu2 in each in-time schedule that are
smaller than the consistent deadline ofv as defined in Chapter 4.

To use this knowledge, we will introduce pairwise deadlines. A pair of (not necessarily dif-
ferent) tasks(u1,u2) will be assigned a deadlineD(u1,u2). We will consider instances(G,m,D),
such thatD : V(G)×V(G)→ ZZ is a function that assigns a deadline to every pair of tasks ofG.
We will assume thatD(u1,u2) = D(u2,u1) for all pairs of tasks(u1,u2) of G. In addition, we will
useD(u) instead ofD(u,u) for all tasksu of G.

61

Let S be a feasible schedule for an instance(G,m,D) with pairwise deadlines. The pair
(u1,u2) meets its deadlineif the completion time ofu1 or u2 is at mostD(u1,u2). If no deadline
D(u1,u2) is violated,Swill be called anin-time schedulefor (G,m,D).

Now we will define pairwise consistent deadlines that are met in all in-time schedules for an
instance(G,m,D0). To define such deadlines, we need the following definitions. Let(u1,u2) be a
pair of tasks ofG and letd be an integer.ND(u1,u2,d) equals the number of common successors
of u1 andu2 with individual deadline at mostd. PD(u1,u2,d) equals max{|U |−1,0}, whereU is
a maximum-size subset of the common successors ofu1 andu2 with individual deadline at least
d+ 1 and pairwise deadline at mostd. More precisely, for all pairs of tasks(u1,u2) of G and all
integersd,

ND(u1,u2,d) = |{v∈ SuccG(u1)∩SuccG(u2) | D(v)≤ d}|

and

PD(u1,u2,d) = max{0,max{|U |−1 |U ⊆ SuccG(u1)∩SuccG(u2) ∧
D(v)≥ d+1 for all tasksv in U ∧
D(v1,v2)≤ d for all tasksv1 6= v2 in U}}.

TD(u1,u2,d) denotes the total number of common successors ofu1 andu2 that must be completed
at or before timed in an in-time schedule for(G,m,D). For all pairs of tasks(u1,u2) of G and
all integersd, define

TD(u1,u2,d) = ND(u1,u2,d) +PD(u1,u2,d).

In addition, for all tasksu of G, define TD(u,d) = ND(u,d) + PD(u,d), where ND(u,d) =
ND(u,u,d) andPD(u,d) = PD(u,u,d). HenceTD(u,d) = TD(u,u,d) for all tasksu of G.

Note that for all pairs of tasks(u1,u2) of G and all integersd, ND(u1,u2,d) = ND(u2,u1,d),
PD(u1,u2,d) = PD(u2,u1,d), ND(u1,u2,d)≤ ND(u1,d) andPD(u1,u2,d)≤ PD(u1,d).

a2:1,1

b1:1,4 b2:1,4 b3:1,4

c1:1,5

a1:1,2

Figure 6.1. An instance(G,2,D) with pairwise deadlines

Example 6.1.1. Consider the instance(G,2,D) shown in Figure 6.1. AssumeD(b1,b2) =
D(b1,b3) = D(b2,b3) = 3 andD(u1,u2) = min{D(u1),D(u2)} for all other pairs of tasks(u1,u2)

62

of G. Sincec1 has no successors,TD(c1,d) = 0 for all d. Tasksb1, b2 andb3 have one suc-
cessor with deadline 5 and no other successors, soTD(bi ,5) = ND(bi ,5) = 1 andTD(bi ,bj ,5) =
ND(bi ,bj ,5) = 1. a1 has two successors with individual deadline 4 and pairwise deadline 3. So
TD(a1,4) = ND(a1,4) = 2 andTD(a1,3) = PD(a1,3) = 1. Moreover,TD(a1,5) = 3. Similarly,
TD(a2,3) = 2, TD(a2,4) = 3 andTD(a2,5) = 4.

To define pairwise consistent deadlines, we need to look at the structure of in-time schedules.
Consider an instance(G,m,D) with pairwise deadlines. Letu1 andu2 be two tasks ofG. Let
U be a non-empty subset ofSuccG(u1)∩SuccG(u2), such that every task inU has a deadline at
leastd+ 1 and every pair of different tasks inU has a deadline at mostd. Then in every in-time
schedule for(G,m,D), at most one task inU can be scheduled at timed or later. Obviously,
every common successor ofu1 andu2 with deadline at mostd must be scheduled before time
d. Consequently, in each in-time schedule for(G,m,D), at leastTD(u1,u2,d) = ND(u1,u2,d) +
PD(u1,u2,d) common successors ofu1 andu2 are completed at or before timed.

Let (G,m,D) be an instance with pairwise deadlines. Letu be a task ofG, such that
TD(u,d) ≥ 1. In an in-time schedule for(G,m,D), TD(u,d) successors ofu are completed at
or before timed. Because at most one successor ofu can be executed immediately afteru, u
must be completed at or before timed−1−

⌈
1
m(TD(u,d)−1)

⌉
.

Observation 6.1.2. Let (G,m,D) be an instance with pairwise deadlines. Let S be an in-
time schedule for(G,m,D). Let u be a task of G. If TD(u,d) ≥ 1, then S(u) + 1 ≤ d− 1−⌈

1
m(TD(u,d)−1)

⌉
.

Consider an instance(G,m,D) with pairwise deadlines. Letu1 andu2 be two tasks ofG, such
thatTD(u1,u2,d)≥ 1. In an in-time schedule for(G,m,D), TD(u1,u2,d) common successors of
u1 and u2 are completed at or before timed. The first of these starts at or before timed−⌈

1
mTD(u1,u2,d)

⌉
. Becauseu1 andu2 cannot both be executed immediately before a common

successor,u1 or u2 is completed at or before timed−1−
⌈

1
mTD(u1,u2,d)

⌉
.

Observation 6.1.3. Let (G,m,D) be an instance with pairwise deadlines. Let S be an in-time
schedule for(G,m,D). Let u1 6= u2 be two tasks of G. If TD(u1,u2,d) ≥ 1, thenmin{S(u1) +
1,S(u2) +1} ≤ d−1−

⌈
1
mTD(u1,u2,d)

⌉
.

Observations 6.1.2 and 6.1.3 are used to define pairwise consistent instances.

Definition 6.1.4. Let (G,m,D) be an instance with pairwise deadlines.(G,m,D) is calledpair-
wise consistentif for all tasksu1 6= u2 of G and all integersd,

1. D(u1,u2)≤min{D(u1),D(u2)};
2. if TD(u1,d)≥ 1, thenD(u1)≤ d−1−

⌈
1
m(TD(u1,d)−1)

⌉
; and

3. if TD(u1,u2,d)≥ 1, thenD(u1,u2)≤ d−1−
⌈

1
mTD(u1,u2,d)

⌉
.

(G,m,D) is calledpairwise D0-consistentif it is pairwise consistent andD(u) ≤ D0(u) for all
tasksu of G. It is calledpairwise strongly D0-consistentif it is pairwiseD0-consistent and for all
tasksu1 6= u2 of G,

63

1. D(u1) = D0(u1), or there is an integerd, such thatTD(u1,d) ≥ 1 andD(u1) = d− 1−⌈
1
m(TD(u1,d)−1)

⌉
; and

2. D(u1,u2) = min{D(u1),D(u2)}, or there is an integerd, such thatTD(u1,u2,d) ≥ 1 and
D(u1,u2) = d−1−

⌈
1
mTD(u1,u2,d)

⌉
.

Example 6.1.5. Consider the instance(G,2,D) shown in Figure 6.1. AssumeD(b1,b2) =
D(b1,b3) = D(b2,b3) = 3 andD(u1,u2) = min{D(u1),D(u2)} for all other pairs of tasks(u1,u2)
of G. AssumeD0(u) = 5 for all tasksu of G. It is not difficult to see that(G,2,D) is pair-
wiseD0-consistent.(G,2,D) is also pairwise stronglyD0-consistent, becauseD(c) = 5 = D0(c),
D(bi) = 4 = 5−1−

⌈
1
2(TD(bi ,5)−1)

⌉
, D(bi ,bj) = 3 = 5−1−

⌈
1
2TD(bi ,bj ,5)

⌉
, D(a1) = 2 =

3−1−
⌈

1
2(TD(a1,3)−1)

⌉
andD(a2) = 1 = 3−1−

⌈
1
2(TD(a2,3)−1)

⌉
. The pairwise strongly

D0-consistent deadlines are smaller than the stronglyD0-consistent deadlines: if(G,2,D′) is
stronglyD0-consistent, thenD′(a2) = 2, whereasD(a2) = 1.

Example 6.1.5 shows that pairwise consistent deadlines can be smaller than the consistent
deadlines, that were defined in Chapter 4. The following lemma shows that the pairwise consis-
tent deadlines cannot be larger.

Lemma 6.1.6. Let(G,m,D1) be the strongly D0-consistent instance and(G,m,D2) the pairwise
strongly D0-consistent instance. Then D2(u)≤ D1(u) for all tasks u of G.

Proof. It will be proved by induction thatD2(u)≤D1(u) for all tasksu of G. Letu be a task ofG.
Assume by induction thatD2(v)≤ D1(v) for all successorsv of u. It is proved by contradiction
thatD2(u) ≤ D1(u). SupposeD1(u) < D2(u). ThenD1(u) 6= D0(u). Hence there is an integer
d, such thatND1(u,d)≥ 1 andD1(u) = d−1−

⌈
1
m(ND1(u,d)−1)

⌉
. SinceD2(v)≤D1(v) for all

successorsv of u, TD2(u,d)≥ ND2(u,d)≥ ND1(u,d). Because(G,m,D2) is pairwise consistent,
D2(u)≤ d−1−

⌈
1
m(TD2(u,d)−1)

⌉
≤ d−1−

⌈
1
m(ND1(u,d)−1)

⌉
= D1(u). Contradiction. By

induction,D2(u)≤ D1(u) for all tasksu of G.

It is not difficult to see that the deadlines of a pairwiseD0-consistent instance do not exceed
those of a pairwise stronglyD0-consistent instance.

Observation 6.1.7. Let (G,m,D1) and (G,m,D2) be two pairwise D0-consistent instances. If
(G,m,D1) is pairwise strongly D0-consistent, then D1(u1,u2)≥ D2(u1,u2) for all pairs of tasks
(u1,u2) of G.

This shows that for each instance(G,m,D0), there is exactly one pairwise stronglyD0-
consistent instance(G,m,D).

Like for stronglyD0-consistent instances, if all original deadlines are increased by the same
amount, then the strongly pairwiseD0-consistent deadlines are increased by the same amount.

Lemma 6.1.8. Let (G,m,D) be the pairwise strongly D0-consistent instance and(G,m,D′) the
pairwise strongly D′0-consistent instance. If there is an integer c, such that D′

0(u) = D0(u) + c
for all tasks u of G, then D′(u1,u2) = D(u1,u2) +c for all pairs of tasks(u1,u2) of G.

64

Proof. Assume there is an integerc, such thatD′0(u) = D0(u)+c for all tasksu of G. It is proved
by induction thatD′(u1,u2) = D(u1,u2)+c for all pairs of tasks(u1,u2) of G. Let u be a task of
G. Assume by induction thatD′(v1,v2) = D(v1,v2) + c for all successorsv1 andv2 of u. It will
be proved by contradiction thatD′(u) = D(u) +c. SupposeD′(u) 6= D(u) +c.

Case 1. D(u) = D0(u).
ThenD′(u) 6= D′0(u). Because(G,m,D′) is pairwise stronglyD′0-consistent, there is an inte-
gerd, such thatTD′(u,d)≥ 1 andD′(u) = d−1−

⌈
1
m(TD′(u,d)−1)

⌉
. BecauseTD(u,d−c) =

TD′(u,d)≥ 1 and(G,m,D) is pairwise consistent,D(u)≤ d−c−1−
⌈

1
m(TD′(u,d)−1)

⌉
=

D′(u)−c< D0(u). Contradiction. SoD′(u) = D(u) +c.

Case 2. D(u) 6= D0(u).
Because(G,m,D) is pairwise stronglyD0-consistent, there is an integerd, such that
TD(u,d) ≥ 1 andD(u) = d− 1−

⌈
1
m(TD(u,d)−1)

⌉
. SinceTD′(u,d + c) = TD(u,d) ≥ 1

and (G,m,D′) is pairwise consistent,D′(u) ≤ d + c− 1−
⌈

1
m(TD(u,d)−1)

⌉
= D(u) + c.

BecauseD′(u) 6= D(u) + c, we obtainD′(u) < D(u) + c 6= D0(u) + c = D′0(u). Since
(G,m,D′) is pairwise stronglyD′0-consistent, there is an integerd′, such thatTD′(u,d′) ≥ 1
andD′(u) = d′ −1−

⌈
1
m(TD′(u,d′)−1)

⌉
. SinceTD(u,d′ −c) = TD′(u,d′)≥ 1 and(G,m,D)

is pairwise consistent,D(u)≤ d′ −c−1−
⌈

1
m(TD′(u,d′)−1)

⌉
= D′(u)−c< D(u). Contra-

diction. SoD′(u) = D(u) +c.

In either case,D′(u) = D(u) + c. Let u1 6= u2 be two tasks ofG. Assume by induction that
D′(u1) = D(u1) + c, D′(u2) = D(u2) + c andD′(v1,v2) = D(v1,v2) + c for all successorsv1 and
v2 of u1 andu2. It will be proved by contradiction thatD′(u1,u2) = D(u1,u2) + c. Suppose
D′(u1,u2) 6= D(u1,u2) +c.

Case 1. D(u1,u2) = min{D(u1),D(u2)}.
ThenD′(u1,u2) 6= min{D′(u1),D′(u2)}. Since(G,m,D′) is pairwise stronglyD′0-consistent,
there is an integerd, such thatTD′(u1,u2,d)≥ 1 andD′(u) = d−1−

⌈
1
mTD′(u1,u2,d)

⌉
. Be-

causeTD(u1,u2,d−c) = TD′(u1,u2,d)≥ 1 and(G,m,D) is pairwise consistent,D(u1,u2)≤
d− c− 1−

⌈
1
mTD′(u1,u2,d)

⌉
= D′(u1,u2)− c < min{D(u1),D(u2)}. Contradiction. So

D′(u1,u2) = D(u1,u2) +c.

Case 2. D(u1,u2) 6= min{D(u1),D(u2)}.
Because (G,m,D) is pairwise stronglyD0-consistent, there is an integerd, such
that TD(u1,u2,d) ≥ 1 and D(u1,u2) = d− 1−

⌈
1
mTD(u1,u2,d)

⌉
. Since TD′(u1,u2,d +

c) = TD(u1,u2,d) ≥ 1 and (G,m,D′) is pairwise consistent,D′(u1,u2) ≤ d + c− 1−⌈
1
mTD(u1,u2,d)

⌉
= D(u1,u2) + c. SinceD′(u1,u2) 6= D(u1,u2) + c, we obtainD′(u1,u2) <

D(u1,u2) +c 6= min{D′(u1),D′(u2)}. Because(G,m,D′) is pairwise stronglyD′0-consistent,
there is an integerd′, such thatTD′(u1,u2,d′) ≥ 1 andD′(u) = d′ −1−

⌈
1
mTD′(u1,u2,d′)

⌉
.

SinceTD(u1,u2,d′ −c) = TD′(u1,u2,d′)≥ 1 and(G,m,D) is pairwise consistent,D(u1,u2)≤
d′ −c−1−

⌈
1
mTD′(u1,u2,d′)

⌉
= D′(u1,u2)−c< D(u1,u2). Contradiction. SoD′(u1,u2) =

D(u1,u2) +c.

In either case,D′(u1,u2) = D(u1,u2) + c. By induction,D′(u1,u2) = D(u1,u2) + c for all pairs
of tasks(u1,u2) of G.

65

Like for stronglyD0-consistent instances, an in-time schedule for(G,m,D0) is also an in-
time schedule for the pairwise stronglyD0-consistent instance(G,m,D).

Lemma 6.1.9. Let(G,m,D) be the pairwise strongly D0-consistent instance. Let S be a feasible
schedule for(G,m,D0). Then S is an in-time schedule for(G,m,D0) if and only if S is an in-time
schedule for(G,m,D).

Proof. BecauseD(u) ≤ D0(u) for all tasksu of G, every in-time schedule for(G,m,D) is
an in-time schedule for(G,m,D0). AssumeS is an in-time schedule for(G,m,D0). Define
DS(u1,u2) = min{S(u1)+1,S(u2)+1} for all tasksu1 andu2 of G. We will prove by contradic-
tion that(G,m,DS) is pairwise consistent. Suppose(G,m,DS) is not pairwise consistent.

Case 1. TDS(u,d)≥ 1 andDS(u)> d−1−
⌈

1
m(TDS(u,d)−1)

⌉
for someu andd.

Every pair of successors ofu meets its deadline. SoTDS(u,d) successors ofu finish at or
before timed. Henceu must be completed at or before timed−1−

⌈
1
m(TDS(u,d)−1)

⌉
. So

DS(u)≤ d−1−
⌈

1
m(TDS(u,d)−1)

⌉
. Contradiction.

Case 2. TDS(u1,u2,d)≥ 1 andDS(u1,u2)> d−1−
⌈

1
mTDS(u1,u2,d)

⌉
for someu1 6= u2 andd.

Since every pair of successors ofu1 andu2 meets its deadline,TDS(u1,u2,d) common suc-
cessors ofu1 andu2 finish at or before timed. Thenu1 or u2 must be completed at or before
time d−1−

⌈
1
mTDS(u1,u2,d)

⌉
. SoDS(u1,u2)≤ d−1−

⌈
1
mTDS(u1,u2,d)

⌉
. Contradiction.

So (G,m,DS) is pairwise consistent. SinceS is an in-time schedule for(G,m,D0), DS(u) ≤
D0(u) for all tasksu of G. Hence(G,m,DS) is pairwiseD0-consistent. From Observation 6.1.7,
D(u1,u2)≥DS(u1,u2) for all pairs of tasks(u1,u2) of G. Since every deadlineDS(u1,u2) is met,
S is an in-time schedule for(G,m,D).

In the remainder of this section, we prove some properties of pairwise stronglyD0-consistent
instances. These will be used to compute such instances.

Lemma 6.1.10. Let (G,m,D) be the pairwise strongly D0-consistent instance. Let u1 and u2

be two tasks of G. If D(u1,u2) < min{D(u1),D(u2)}, then there are integers d and k, such that
TD(u1,u2,d) = km+1 and D(u1,u2) = d−2−k.

Proof. AssumeD(u1,u2) < min{D(u1),D(u2)}. Because(G,m,D) is pairwise stronglyD0-
consistent, there is an integerd, such thatTD(u1,u2,d) ≥ 1 and D(u1,u2) = d − 1−⌈

1
mTD(u1,u2,d)

⌉
. There is an integerk≥ 0, such that(k+ 1)m≥ TD(u1,u2,d) ≥ km+ 1. Then

D(u1,u2) = d−2−k. SupposeTD(u1,u2,d)≥ km+2. ThenTD(u1,d)≥ TD(u1,u2,d)≥ km+2
andD(u1)≤ d−2−k = D(u1,u2). Contradiction. HenceTD(u1,u2,d) = km+1.

The next lemma shows that the deadline of a pair of tasks differs at most one from the mini-
mum of the individual deadlines. This will allow us to redefinePD(u1,u2,d).

Lemma 6.1.11. Let (G,m,D) be the pairwise strongly D0-consistent instance. Let u1 and u2 be
two tasks of G. If D(u1,u2)<min{D(u1),D(u2)}, then D(u1) = D(u2) = D(u1,u2)+1 and there
is an integer d, such that TD(u1,d) = TD(u2,d) = TD(u1,u2,d) = (d−D(u1)−1)m+1.

66

Proof. AssumeD(u1,u2)<min{D(u1),D(u2)}. From Lemma 6.1.10, there are integersd andk,
such thatTD(u1,u2,d) = km+1 andD(u1,u2) = d−2−k. SupposeTD(ui ,d) 6= TD(u1,u2,d) for
somei ∈ {1,2}. ThenTD(ui ,d)≥ TD(u1,u2,d)+1≥ km+2. Since(G,m,D) is pairwise consis-
tent,D(ui) ≤ d−2− k = D(u1,u2). Contradiction. SoTD(u1,d) = TD(u2,d) = TD(u1,u2,d) =
km+ 1. Because(G,m,D) is pairwise consistent,D(ui) ≤ d− 1− k = D(u1,u2) + 1. Since
D(u1,u2)<D(ui), D(u1) = D(u2) = D(u1,u2)+1. SoD(u1) = d−1−k andk = d−D(u1)−1.
As a result,TD(u1,d) = TD(u2,d) = TD(u1,u2,d) = (d−D(u1)−1)m+1.

Lemma 6.1.11 shows that for the computation of the pairwise stronglyD0-consistent instance
(G,m,D), we only need to consider pairs of tasks(u1,u2) of G, such thatD(u1) = D(u2) and
TD(u1,d) = TD(u2,d) = TD(u1,u2,d) = (d−D(u1)−1)m+1 for some integerd. The deadlines
of the other pairs can be set to the minimum of the individual deadlines. Moreover, it shows that
PD(u1,u2,d) can be redefined. For all pairs of tasks(u1,u2) of G and all integersd,

PD(u1,u2,d) = max{0,max{|U |−1 |U ⊆ SuccG(u1)∩SuccG(u2) ∧
D(v) = d+1 for all tasksv in U ∧
D(v1,v2) = d for all tasksv1 6= v2 in U}}.

The result proved in the following lemma will be used for the computation of pairwise
stronglyD0-consistent instances for interval-ordered tasks.

Lemma 6.1.12. Let (G,m,D) be the pairwise strongly D0-consistent instance. Let u1 and u2 be
two tasks of G, such that D(u1,u2)<min{D(u1),D(u2)}. If there is a task v6= u1,u2 of G, such
that SuccG(u1)∩SuccG(u2)⊆SuccG(v) and D(v) = D(u1), then D(u1,v) = D(u2,v) = D(u1,u2).

Proof. Assume there is a taskv 6= u1,u2 of G, such thatSuccG(u1)∩SuccG(u2)⊆ SuccG(v) and
D(v) = D(u1). From Lemma 6.1.11,D(u1) = D(u2) = D(u1,u2) + 1 andTD(u1,u2,d) = (d−
D(u1)−1)m+ 1 for some integerd. Let i ∈ {1,2}. SinceSuccG(u1)∩SuccG(u2) ⊆ SuccG(v),
TD(ui ,v,d)≥ TD(u1,u2,d). SoTD(ui ,v,d)≥ (d−D(u1)−1)m+1. Because(G,m,D) is pairwise
consistent,D(ui ,v)≤ d−1− (d−D(u1)−1+1) = D(u1)−1 = D(v)−1. From Lemma 6.1.11,
D(u1,v) = D(u2,v) = D(v)−1 = D(u1,u2).

6.2 Computing pairwise consistent deadlines
In this section, two algorithms are presented that compute pairwise stronglyD0-consistent in-
stances. The first is presented in Section 6.2.1. The time complexity of this algorithm is ex-
ponential in the width of the precedence graphs; it constructs pairwise stronglyD0-consistent
instances for precedence graphs of bounded width in polynomial time. The second algorithm is
presented in Section 6.2.2. It constructs pairwise stronglyD0-consistent instances for interval
orders in polynomial time.

6.2.1 Arbitrary precedence graphs
Algorithm PAIRWISE DEADLINE MODIFICATION shown in Figure 6.2 is used to construct pair-
wise stronglyD0-consistent instances(G,m,D) for instances(G,m,D0). Its structure is similar

67

to that of Algorithm DEADLINE MODIFICATION. In each step, it computes the pairwise strongly
D0-consistent deadline of a tasku of G, such that the pairwise strongly consistent deadlines of all
successors and all pairs of successors ofu have been computed before, and for all pairs of tasks
(u,v), such that the pairwise strongly consistent deadline ofv has been computed in an earlier
step.

The following notation is used.Ld denotes the set of tasks ofG with pairwise stronglyD0-
consistent deadlined. Since a pairwise stronglyD0-consistent deadline of a task can be smaller
than its original deadline, we have to consider setsLd, such thatd is smaller than the smallest
original deadline. Since a pairwise stronglyD0-consistent deadline differs at mostn− 1 from
the corresponding original deadline, we need setsLd, such that minu∈V(G) D0(u)−n+ 1≤ d ≤
maxu∈V(G) D0(u). The setsLd are used to compute the pairwise stronglyD0-consistent deadlines
of pairs of tasks: from Lemma 6.1.11, we only need to compute pairwise deadlines for pairs of
tasks with equal pairwise stronglyD0-consistent deadlines, the other pairwise deadlines can be
set to the minimum of the individual deadlines.

Algorithm PAIRWISE DEADLINE MODIFICATION

Input. An instance(G,m,D0) with individual deadlines.
Output. The pairwise stronglyD0-consistent instance(G,m,D).
1. Dmax := maxu∈V(G) D0(u)
2. Dmin := minu∈V(G) D0(u)
3. for d := Dmin−n+1 to Dmax

4. do Ld :=∅
5. for all tasksu of G
6. do D(u) := D0(u)
7. U := V(G)
8. while U 6=∅
9. do let u be a sink ofG[U]
10. for d := Dmin to Dmax

11. do if TD(u,d)≥ 1
12. then D(u) := min

{
D(u),d−1−

⌈
1
m(TD(u,d)−1)

⌉}
13. LD(u) := LD(u)∪{u}
14. for v∈V(G)\U
15. do D(u,v) := min{D(u),D(v)}
16. D(v,u) := min{D(u),D(v)}
17. for v∈ LD(u) \{u}
18. do for d := Dmin to Dmax

19. do if TD(u,v,d)≥ 1
20. then D(u,v) := min{D(u,v),d−1−

⌈
1
mTD(u,v,d)

⌉
}

21. D(v,u) := D(u,v)
22. Dmin := min{Dmin,minv∈V(G)\U D(u,v)}
23. U := U \{u}

Figure 6.2. Algorithm PAIRWISE DEADLINE MODIFICATION

68

Example 6.2.1. Let G be the precedence graph shown in Figure 6.1. AssumeD0(u) = 5 for
all tasksu of G. In the beginning, all deadlines are set to 5. Algorithm PAIRWISE DEADLINE

MODIFICATION computes deadlinesD(u1,u2) as follows. Firstc1 is considered. Sincec1 has no
successors,D(c1) = D0(c1) = 5. Nextb1, b2 andb3 are considered. These have one successor
with deadline 5 and no pairs of successors with deadline 5. SoD(bi) is set to 5−1−

⌈
0
2

⌉
= 4.

Moreover,bi andbj have a common successor with deadline 5. SoD(bi ,bj) is set to 5− 1−⌈
1
2

⌉
= 3. a1 has two successors with deadline 4. These successors have pairwise deadline 3.

Moreover,a1 has three successors with deadline at most 5. SoD(a1) = min{5−1−
⌈

2
2

⌉
,4−1−⌈

1
2

⌉
,3−1−

⌈
0
2

⌉
}= 2. Similarly,TD(a2,3) = 2, TD(a2,4) = 3 andTD(a2,5) = 4. Consequently,

D(a2) = min{5− 1−
⌈

3
2

⌉
,4− 1−

⌈
2
2

⌉
,3− 1−

⌈
1
2

⌉
} = 1. The resulting instance(G,2,D) is

pairwise stronglyD0-consistent.

Now we will prove that Algorithm PAIRWISE DEADLINE MODIFICATION correctly con-
structs pairwise stronglyD0-consistent instances.

Lemma 6.2.2. Let (G,m,D0) be an instance with individual deadlines. Let(G,m,D) be the in-
stance constructed by AlgorithmPAIRWISE DEADLINE MODIFICATION for instance(G,m,D0).
Then(G,m,D) is pairwise strongly D0-consistent.

Proof. Algorithm PAIRWISE DEADLINE MODIFICATION executesn steps. In each step, it com-
putes a deadline for a task ofG and for pairs containing this task. Assume the tasks are chosen in
the orderu1, . . . ,un. For all i ≤ n and all pairs of tasks(v1,v2) of G, let Di(v1,v2) be the deadline
of (v1,v2) after stepi and letGi the subgraph ofG induced by{u1, . . . ,ui}. For all i ≤ n, the sets
Ld,i coincide with the setsLd after stepi andDmin,i andDmax,i with the values ofDmin andDmax

after stepi.
We will prove by induction that all instances(Gi ,m,Di) are pairwise stronglyD0-consistent.

It is easy to see that(G1,m,D1) is pairwise stronglyD0-consistent. Assume by induction that
(Gi ,m,Di) is pairwise stronglyD0-consistent. For allj1, j2 ≤ i, Di+1(uj1,uj2) = Di(uj1,uj2).
So (Gi ,m,Di+1) is pairwise stronglyD0-consistent. Now considerui+1. Clearly,Di+1(ui+1) ≤
D0(ui+1). It is not difficult to see that ifTDi+1(ui+1,d) ≥ 1, thenDmin,i ≤ d ≤ Dmax,i . Then
Di+1(ui+1) ≤ d−1−

⌈
1
m(TDi+1(ui+1,d)−1)

⌉
. Moreover, ifDi+1(ui+1) 6= D0(ui+1), then there

is an integerd, such thatDmin,i ≤ d ≤ Dmax,i , TDi+1(ui+1,d) ≥ 1 andDi+1(ui+1) = d− 1−⌈
1
m(TDi+1(ui+1,d)−1)

⌉
.

Consider a pair(ui+1,uj), such thatj ≤ i. It is not difficult to see thatDi+1(ui+1,uj) ≤
min{Di+1(ui+1),Di+1(uj)}. AssumeDi+1(ui+1) = Di+1(uj) andTDi+1(ui+1,uj ,d) ≥ 1. Then
Dmin,i ≤ d ≤ Dmax,i . So Di+1(ui+1,uj) ≤ d− 1−

⌈
1
mTDi+1(ui+1,uj ,d)

⌉
. If Di+1(ui+1,uj) 6=

min{Di+1(ui+1),Di+1(uj)}, then there must be an integerd, such thatDmin,i ≤ d ≤ Dmax,i ,
TDi+1(ui+1,uj) ≥ 1 andDi+1(ui+1,uj) = d− 1−

⌈
1
mTDi+1(ui+1,uj ,d)

⌉
. Hence(Gi+1,m,Di+1)

is pairwise stronglyD0-consistent. By induction,(Gn,m,Dn) is pairwise stronglyD0-consistent.
BecauseGn = G and Dn(u1,u2) = D(u1,u2) for all pairs of tasks(u1,u2) of G, (G,m,D) is
pairwise stronglyD0-consistent.

The following results will be used to determine the time complexity of Algorithm PAIRWISE

DEADLINE MODIFICATION.

69

Lemma 6.2.3. Let G be a precedence graph of width w. Let(G,m,D) be a pairwise consistent
instance. Then G contains at most w tasks u, such that D(u) = d for all integers d.

Proof. It is proved by contradiction thatG contains at mostw tasks with deadlined. SupposeG
contains at leastw+1 tasks with deadlined. Letu1, . . . ,uw+1 bew+1 tasks ofG with deadlined.
SinceG has widthw, we may assume thatu1≺G u2. ThenND(u1,D(u2))≥ 1. Because(G,m,D)
is pairwise consistent,D(u1)≤D(u2)−1 = d−1. Contradiction. SoG contains at mostw tasks
with deadlined.

Corollary 6.2.4. Let G be a precedence graph of width w. Let(G,m,D) be a pairwise consistent
instance. Then for all tasks u1 and u2 of G and all integers d, PD(u1,u2,d)≤ w−1.

Proof. Let u1 andu2 be two tasks ofG. Let U be a maximum-size subsetU ′ of SuccG(u1)∩
SuccG(u2), such thatD(v) ≥ d + 1 for all tasksv in U ′ andD(v1,v2) ≤ d for all tasksv1 6= v2

in U ′. ThenPD(u1,u2,d) = max{0, |U |−1}. From Lemma 6.1.11,D(v) = d + 1 for all tasksv
in U . Lemma 6.2.3 shows thatG contains at mostw tasks with deadlined + 1. Hence|U | ≤ w.
Consequently,PD(u1,u2,d)≤ w−1.

The time complexity of Algorithm PAIRWISE DEADLINE MODIFICATION can be determined
as follows. Consider an instance(G,m,D0), such thatG is a precedence graph of widthw. Be-
cause there is a minimum-tardiness schedule for(G,m,D0) of length at mostn, we may assume
that the smallest and largest deadline differ at mostn. Moreover, no deadline is decreased by
more thann. Hence the initialisation part of Algorithm PAIRWISE DEADLINE MODIFICATION

takesO(n2) time.
To obtain a better time complexity, we will consider two cases depending on whetherG is

known to be a transitive closure or not. If it is unknown whetherG is a transitive closure, then
Algorithm PAIRWISE DEADLINE MODIFICATION should first compute the transitive closureG+

of G. This takesO(n+e+ne−) time [37]. In the transitive reduction ofG, every task has at most
w children. Hencee− ≤ wn. SoG+ can be computed inO(wn2) time. In the remainder of the
analysis of the time complexity ofG, we will assume thatG is a transitive closure.

For each pair of tasks(u1,u2) of G, Algorithm PAIRWISE DEADLINE MODIFICATION has to
computeTD(u1,u2,d) for all integersd, such thatDmin ≤ d ≤ Dmax. Since there are schedules
for (G,m,D) of length at mostn, we may assume thatDmax−Dmin ≤ n. ND(u1,u2,d) can be
computed by determining the number of common successors ofu1 andu2 with deadlined and
storing these numbers in an array. By applying a prefix sum operation on this array, we obtain
the valuesND(u1,u2,d) for all d in O(n) time.

ComputingPD(u1,u2,d) is more complicated. In order to computePD(u1,u2,d), we need to
consider every subset ofLd+1∩SuccG(u1)∩SuccG(u2). Lemma 6.2.3 shows thatLd+1 contains
at mostw tasks. So at most 2w subsetsV of Ld+1∩SuccG(u1)∩SuccG(u2) have to be taken into
account. For each subsetV, O(|V|2) time is used to check if all pairs of different tasks ofV have
deadlined. So the valuesPD(u1,u2,d) can be computed in a total ofO(w22wn) time.

TD(u1,d) must be computed for every tasku1 and everyd. For each tasku1, TD(u1,u2,d)
needs to be computed for at mostw−1 pairs(u1,u2) and all integersd. So the computation of
TD(u1,u2,d) takesO(w32wn2) time in total.

70

Assigning a deadlineD(u1,u2) to a pair of tasks(u1,u2) of G takes constant time for each
pair (u1,u2). Hence this takesO(n2) time in total. The other operations take linear time. Conse-
quently, the pairwise stronglyD0-consistent instance is constructed inO(w32wn2) time.

Lemma 6.2.5. For all instances(G,m,D0), such that G is a precedence graph of width w, Al-
gorithm PAIRWISE DEADLINE MODIFICATION constructs the pairwise strongly D0-consistent
instance(G,m,D) in O(w32wn2) time.

Lemma 6.2.5 shows that ifG is a precedence graph of bounded width, then the pairwise
D0-consistent instance(G,m,D) can be constructed in polynomial time.

Lemma 6.2.6. For all instances(G,m,D0), such that G is a precedence graph of constant
width w, AlgorithmPAIRWISE DEADLINE MODIFICATION constructs the pairwise strongly D0-
consistent instance(G,m,D) in O(n2) time.

6.2.2 Interval-ordered tasks
Lemma 6.2.6 shows that for precedence graphs of constant widthw, the pairwise stronglyD0-
consistent deadlines can be computed in polynomial time. Interval orders can have an arbitrarily
large width, so Algorithm PAIRWISE DEADLINE MODIFICATION cannot be used to compute pair-
wise consistent deadlines for interval orders in polynomial time. However, using the properties
of interval orders presented in Section 2.5.2, it is possible to construct the pairwise stronglyD0-
consistent deadlines in polynomial time. The algorithm computing such deadlines is presented
in this section.

Consider an instance(G,m,D0) with individual deadlines. The main difficulty in the com-
putation of pairwise stronglyD0-consistent deadlines is the computation ofPD(u1,u2,d). For
arbitrary instances(G,m,D), computingPD(u1,u2,d) corresponds to finding a maximum-size
clique in an undirected graph containing the common successorsv of u1 andu2 with deadline
d+1 and edges between the common successorsv1 andv2 with pairwise deadlined. Since find-
ing a maximum-size clique in an arbitrary undirected graph is a strongly NP-hard optimisation
problem [33], this definition does not give an efficient way of computingPD(u1,u2,d). For inter-
val orders, an alternative definition ofPD(u1,u2,d) can be derived. This definition will allow us
to computePD(u1,u2,d) in linear time.

Let (G,m,D) be an instance with pairwise deadlines. For all tasksu1 of G, define

dmin(u1) = min{D(u1,u2) | u2 ∈V(G)∧D(u2) = D(u1)}.

From Lemma 6.1.11, if(G,m,D) is pairwise stronglyD0-consistent, thenD(u1)−1≤ dmin(u1)≤
D(u1) for all tasksu1 of G. Moreover,dmin(u1) = D(u1)−1 if and only if there is a tasku2 of G,
such thatD(u2) = D(u1) andD(u1,u2) = D(u1)−1.

Lemma 6.2.7. Let G be an interval order. Let(G,m,D) be the pairwise strongly D0-consistent
instance. Let u1 and u2 be two tasks of G. Then for all integers d,

PD(u1,u2,d) = max{0, |{v∈ SuccG(u1)∩SuccG(u2) | D(v) = d+1∧dmin(v) = d}|−1}.

71

Proof. DefineU = {v ∈ SuccG(u1)∩SuccG(u2) | D(v) = d + 1∧ dmin(v) = d}. Let UP be a
maximum-size subsetU ′ of SuccG(u1)∩SuccG(u2), such that each task inU ′ has deadlined+1
and each pair of different tasks inU ′ has deadlined. From Lemma 6.1.11,PD(u1,u2,d) =
max{0, |UP|−1}.

Case 1. PD(u1,u2,d) = 0.
Then for every pair of common successors(v1,v2) of u1 andu2, if D(v1) = D(v2) = d + 1,
thenD(v1,v2) = d + 1. Sodmin(v) = d + 1 for all common successorsv of u1 andu2, such
thatD(v) = d+1. HenceU =∅ andPD(u1,u2,d) = max{0, |U |−1}.

Case 2. PD(u1,u2,d)≥ 1.
ThenUP contains at least two tasks. So for every taskv1 in UP, there is a taskv2, such that
D(v1,v2) = d andD(v2) = d + 1. SoUP is a subset ofU . SinceG is an interval order, we
may assume thatUP = {v1, . . . ,vk}, such thatSuccG(v1) ⊆ ·· · ⊆ SuccG(vk). We will prove
by contradiction thatU = UP. SupposeU is not a subset ofUP. Let v be a task inU \UP.

Case 2.1. SuccG(v1)⊆ SuccG(v).
Then SuccG(v1)∩SuccG(vi) ⊆ SuccG(v) for all i ∈ {2, . . . ,k}. From Lemma 6.1.12,
D(vi ,v) = d for every i ∈ {1, . . . ,k}. SinceUP is of maximum size,v must be an ele-
ment ofUP. Contradiction.

Case 2.2. SuccG(v)⊆ SuccG(v1).
v is a task inU , so there is a taskw, such thatD(w) = d+1 andD(v,w) = d. If w= v1, then
D(v1,v) = d. Otherwise,SuccG(v)∩SuccG(w) ⊆ SuccG(v1) and from Lemma 6.1.12,
D(v1,v) = d. In either case,D(v1,v) = d. HenceSuccG(v1)∩SuccG(v) ⊆ SuccG(vi)
for all i ∈ {2, . . . ,k}. From Lemma 6.1.12,D(vi ,v) = d for all i ≤ k. BecauseUP is of
maximum size,v must be a task inUP. Contradiction.

SoU = UP andPD(u1,u2,d) = max{0, |U |−1}.

This result allows the computation of pairwise stronglyD0-consistent instances without ac-
tually computing a deadline for each pair of tasks. The following lemma shows how the pairwise
deadlines can be computed from the individual deadlines.

Lemma 6.2.8. Let G be an interval order. Let(G,m,D) be the pairwise strongly D0-consistent
instance. Let u1 and u2 be two different tasks of G. If D(u1) = D(u2) and for some integer d,
TD(u1,d) = TD(u2,d) = (d−D(u1)−1)m+1, then D(u1,u2) = D(u1)−1.

Proof. AssumeD(u1) = D(u2) andTD(u1,d) = TD(u2,d) = (d−D(u1)−1)m+1 for some inte-
gerd. SinceG is an interval order,SuccG(u1)⊆ SuccG(u2) or SuccG(u2)⊆ SuccG(u1). In either
case,TD(u1,u2,d) = (d−D(u1)−1)m+1. Because(G,m,D) is pairwise consistent,D(u1,u2)≤
d−1− (d−D(u1)−1+1) = D(u1)−1. From Lemma 6.1.11,D(u1,u2) = D(u1)−1.

72

These results will be used in the algorithm that computes pairwise stronglyD0-consistent
instances(G,m,D), such thatG is an interval order. The algorithm starts by settingD(u) = D0(u)
for all tasksu of G. Next it executesn steps. In each step of the algorithm, the pairwise strongly
D0-consistent consistent deadline of a task ofG is computed. Algorithm INTERVAL ORDER

DEADLINE MODIFICATION is shown in Figure 6.3.
The following notation is used.Ld denotes the set of tasksu of G with pairwise stronglyD0-

consistent deadlined. Ld,d′ is the subset ofLd containing the tasksu, such thatTD(u,d′) = (d′ −
d−1)m+1. Like for Algorithm PAIRWISE DEADLINE MODIFICATION, we need to consider sets
Ld andLd,d′ , such that minu∈V(G) D0(u)− n+ 1≤ d,d′ ≤ maxu∈V(G) D0(u). U denotes the set
of tasks that have not been considered.dmax denotes the maximumd, such thatdmin(u) has not
been computed for the tasksu of G with pairwise stronglyD0-consistent deadlined.

Algorithm INTERVAL ORDER DEADLINE MODIFICATION does not compute deadlines for
the pairs of tasks ofG. These can be computed using the setsLd,d′ . Using Lemma 6.2.8, every
pair of different tasks of a setLd,d′ gets deadlined− 1. The deadlines of the remaining pairs
equal the minimum of the individual deadlines.

Example 6.2.9. Let G be the precedence graph shown in Figure 6.1. Note thatG is an inter-
val order. AssumeD0(u) = 5 for all tasksu of G. Algorithm INTERVAL ORDER DEADLINE

MODIFICATION computes the pairwise stronglyD0-consistent instance as follows. First, a dead-
line is computed forc1. Sincec1 has no successors, its deadline is not decreased.c1 is added
to L5 and the deadlinesD(bi) are set to 4. Whenb1, b2 and b3 are considered, their dead-
lines are not decreased, becausec1 is their only successor. These tasks are added toL4,5, since
TD(bi ,5) = 1. The deadlines ofa1 anda2 are set to 3. In the next step,a1 is considered. First
dmin(bi) is set to 3, becauseL4,5 containsb1, b2 andb3. SinceTD(a1,4) = 2, the pairwise strongly
D0-consistent deadline ofa1 equals 2. Finally, Algorithm INTERVAL ORDER DEADLINE MOD-
IFICATION considersa2. TD(a2,3) = 2, soD(a2) is set to 1. The resulting instance is pairwise
stronglyD0-consistent.

Now we will prove that Algorithm INTERVAL ORDER DEADLINE MODIFICATION correctly
computes pairwise stronglyD0-consistent instances for interval orders.

Lemma 6.2.10. Let G be an interval order. Let(G,m,D0) be an instance with individual dead-
lines. Let(G,m,D) be the instance constructed by AlgorithmINTERVAL ORDER DEADLINE

MODIFICATION for instance(G,m,D0). Then(G,m,D) is pairwise strongly D0-consistent.

Proof. Algorithm INTERVAL ORDER DEADLINE MODIFICATION executesn steps. In each step,
it computes a deadline of a task ofG. Assume the tasks are chosen in the orderu1, . . . ,un. For
all i ≤ n and all tasksu of G, let Di(u) be the deadline ofu after stepi. The setsLi

d andLi
d,d′

coincide with the setsLd andLd,d′ after stepi for all i ≤ n. For all i ≤ n, let Gi be the subgraph of
G induced by{u1, . . . ,ui}. Then all subgraphsGi are interval orders. We will consider instances
(Gi ,m,Di), whereDi(v1,v2) is defined as follows. Ifv1 andv2 are two different elements ofLi

d,d′

for some integersd andd′, thenDi(v1,v2) = d−1. Otherwise,Di(v1,v2) = min{Di(v1),Di(v2)}.
We will prove by induction that the instances(Gi ,m,Di) are pairwise stronglyD0-consistent.

It is not difficult to see that(G1,m,D1) is pairwise stronglyD0-consistent. Assume by induction

73

Algorithm INTERVAL ORDER DEADLINE MODIFICATION

Input. An instance(G,m,D0) with individual deadlines, such thatG is an interval order.
Output. The pairwise stronglyD0-consistent instance(G,m,D).
1. Dmin := minu∈V(G) D0(u)
2. Dmax := maxu∈V(G) D0(u)
3. for d := Dmin−n+1 to Dmax

4. do Ld :=∅
5. for d′ := d+1 to Dmax

6. do Ld,d′ :=∅
7. dmax := Dmax

8. for all tasksu of G
9. do D(u) := D0(u)
10. U := V(G)
11. while U 6=∅
12. do let u be a sink ofG[U] with maximumD(u)
13. for d := dmax downto D(u) +1
14. do for v∈ Ld

15. do dmin(v) := d
16. for d′ := d+1 to Dmax

17. do if |Ld,d′ | ≥ 2
18. then for v∈ Ld,d′

19. do dmin(v) := d−1
20. dmax := D(u)
21. for d := D(u) to Dmax

22. do if TD(u,d)≥ 1
23. then D(u) := min

{
D(u),d−1−

⌈
1
m(TD(u,d)−1)

⌉}
24. LD(u) := LD(u)∪{u}
25. for d := D(u) +1 to Dmax

26. do if TD(u,d) = (d−D(u)−1)m+1
27. then LD(u),d := LD(u),d∪{u}
28. for all parentsv of u
29. do D(v) := min{D(v),D(u)−1}
30. U := U \{u}

Figure 6.3. Algorithm INTERVAL ORDER DEADLINE MODIFICATION

(Gi ,m,Di) is pairwise stronglyD0-consistent. Now consider(Gi+1,m,Di+1). It is easy to see
thatDi+1(uj1,uj2) = Di(uj1,uj2) andTDi+1(uj1,uj2,d) = TDi (uj1,uj2,d) for all j1, j2 ≤ i and all
integersd. So(Gi ,m,Di+1) is pairwise stronglyD0-consistent.

Considerui+1. Clearly, Di(ui+1) = D0(ui+1) or Di(ui+1) = Di(v)− 1 for some childv of
ui+1. From Lemma 6.2.8,dmin(v) is computed correctly for all successorsv of ui+1. These
values are used to computeDi+1(ui+1). SupposeTDi+1(ui+1,d) ≥ 1 for some integerd. Then
d ≥ Di(ui+1), becauseDi(v) > Di(ui+1) for all successorsv of ui+1. HenceDi+1(ui+1) ≤ d−

74

1−
⌈

1
m(TDi+1(ui+1,d)−1)

⌉
. It is not difficult to verify thatDi+1(ui+1) = D0(ui+1), or there is an

integerd, such thatTDi+1(ui+1,d)≥ 1 andDi+1(ui+1) = d−1−
⌈

1
m(TDi+1(ui+1,d)−1)

⌉
.

Let (v1,v2) be a pair of tasks ofGi+1. AssumeDi+1(v1,v2) 6= min{Di+1(v1),Di+1(v2)}. Then
Di+1(v1,v2) = Di+1(v1)−1 = Di+1(v2)−1 and for some integerd, TDi+1(v1,d) = TDi+1(v2,d) =
(d−Di+1(v1)− 1)m+ 1. ThenTDi+1(v1,v2,d) = (d−Di+1(v1)− 1)m+ 1 andDi+1(v1,v2) =
Di+1(v1)−1= d−1−

⌈
1
mTDi+1(v1,v2,d)

⌉
. So(Gi+1,m,Di+1) is pairwise stronglyD0-consistent.

By induction,(Gn,m,Dn) is pairwise stronglyD0-consistent. SinceGn = G andDn(u1,u2) =
D(u1,u2) for all pairs of tasks(u1,u2) of G, (G,m,D) is pairwise stronglyD0-consistent.

Now we will determine the time complexity of Algorithm INTERVAL ORDER DEADLINE

MODIFICATION. Let G be an interval order. Consider an instance(G,m,D0) with individual
deadlines. Like in the analysis of the time complexity of Algorithm PAIRWISE DEADLINE MOD-
IFICATION, we start by computing the transitive closure ofG if it is unknown whetherG is a tran-
sitive closure. From Lemma 2.5.6,G+ can be constructed inO(n+e+) time. In the remainder of
the analysis of the time complexity of Algorithm INTERVAL ORDER DEADLINE MODIFICATION,
we will assume thatG is a transitive closure.

The fact thatG is a transitive closure allows us to computeND(u,d) in an efficient way. For
each integerd, determine the number of successorsv of u, such thatD(v) = d. By applying
a prefix sum operation on these numbers, we findND(u,d) for all integersd. Since we may
assume that the largest deadline differs at mostn from the smallest deadline, the traversal of the
successors ofu and the prefix sum operation both takeO(n) time. PD(u,d) can also be computed
using a traversal of the successors ofu. From Lemma 6.2.7,PD(u,d) equals the number of
successorsv of u, such thatD(v) = d + 1 anddmin(v) = d. HenceTD(u,d) can be computed in
O(n) time for all integersd simultaneously.

Because we may assume that the smallest and largest deadlines differ at mostn, the initiali-
sation part of Algorithm INTERVAL ORDER DEADLINE MODIFICATION requiresO(n2) time.

The first for-loop (Lines 13–19) of Algorithm INTERVAL ORDER DEADLINE MODIFICATION

is executed for everyd in Dmin−n+1, . . . ,Dmax. For every taskv in Ld,d′ , dmin(v) is determined.
This takesO(|Ld|) time for eachd′. SoO(|Ld|n) time is used to computedmin(v) for every taskv
in Ld. Since every task is added to exactly one setLd, Algorithm INTERVAL ORDER DEADLINE

MODIFICATION usesO(∑Dmax
d=Dmin−n+1 |Ld|n) = O(n2) time for executing its first for-loop.

The main loop (Lines 11–30) is executed for each tasku of G. In every iteration, the values
TD(u,d) are computed in linear time. Hence the pairwise stronglyD0-consistent deadline ofu is
computed inO(n) time. Addingu to a setLd takes constant time and addingu to setsLd,d′ takes
O(n) time. The deadline of a parent ofu is decreased if it is not smaller than the deadline ofu.
This requires constant time for every parent ofu, soO(|PredG,0(u)|) time in total. Consequently,
O(n2) time is used in the main loop.

Hence we have proved the following result.

Lemma 6.2.11. For all instances(G,m,D0), such that G is an interval order, AlgorithmINTER-
VAL ORDER DEADLINE MODIFICATION constructs the pairwise strongly D0-consistent instance
(G,m,D) in O(n2) time.

75

6.3 Constructing minimum-tardiness schedules
For pairwise stronglyD0-consistent instances(G,m,D), Algorithm LIST SCHEDULINGis used to
construct schedules for instances(G,m,D0). It will be proved that these schedules are minimum-
tardiness schedules ifG is a precedence graph of width two or an interval order. The pairwise
deadlines are not used by Algorithm LIST SCHEDULING; these deadlines were only used to
construct a better priority list than the lst-lists based on the stronglyD0-consistent deadlines.

6.3.1 Precedence graphs of width two
In this section, it is proved that minimum-tardiness schedules for instances(G,2,D0), such that
G is a precedence graph of width two, can be constructed in polynomial time. Such schedules
are constructed by Algorithm LIST SCHEDULING using an lst-list of the pairwise stronglyD0-
consistent instance(G,2,D).

Lemma 6.3.1. Let G be a precedence graph of width two. Let(G,2,D) be the pairwise strongly
D0-consistent instance. Let S be a schedule for(G,2,D0) constructed by AlgorithmLIST

SCHEDULING using an lst-list of(G,2,D). If there is an in-time schedule for(G,2,D0), then
S is an in-time schedule for(G,2,D0).

Proof. Assume there is an in-time schedule for(G,2,D0). From Lemma 6.1.9, there is an in-
time schedule for(G,2,D). It will be proved by contradiction thatS is an in-time schedule for
(G,2,D). SupposeS is not an in-time schedule for(G,2,D). AssumeSt is the first time slot that
contains a tasku1 of G in a pair of tasks(u1,u2) whose deadlineD(u1,u2) is violated. Then both
u1 andu2 finish after timeD(u1,u2). HenceD(u1,u2) ≤ t. From Lemma 6.1.11, there are two
possibilities: min{D(u1),D(u2)} ≤ t, or D(u1,u2) = t andD(u1) = D(u2) = t +1.

Case 1. min{D(u1),D(u2)} ≤ t.
Let u be one of the tasksu1 andu2, such thatD(u)≤ t. Because there is an in-time schedule
for (G,2,D), there are at most 2t tasks with deadline at mostt. Hence there is a time slot
beforeSt that contains at most one task with deadline at mostt. Let t ′ −1 be the latest time
before timet at which at most one task with deadline at mostt is scheduled. LetH1 be the
subgraph ofG induced by

⋃t−1
i=t ′ Si ∪{v∈

⋃
i≥t Si | v≺G u}∪{u}. ThenH1 contains at least

2(t− t ′)+1 tasks with deadline at mostt. From Observation 4.3.6, no task ofH1 is available
at timet ′ −1. Hence every task ofH1 has a predecessor that is scheduled at timet ′ −2 or
t ′ −1.

Case 1.1. Every task ofH1 has a predecessor inSt ′−1.
Define Q = {v ∈ St ′−1 | D(v) ≤ t}. ThenQ contains exactly one taskw. Because of
communication delays, at most one successor ofw is scheduled at timet ′. Hencet = t ′.
As a result,w is a predecessor ofu. SoTD(w, t)≥ 1. Since(G,2,D) is pairwise consistent,
D(w)≤ t−1 = t ′ −1. Hencew is not completed at or before timeD(w). Contradiction.

Case 1.2. Not every task ofH1 has a predecessor inSt ′−1.
Let v be a source ofH1 without a predecessor inSt ′−1. Then a predecessorw1 of v starts
at timet ′ −2.

76

Case 1.2.1. St ′−2 contains exactly one task with a successor inH1.
v is not available at timet ′ − 1. Because at most one predecessor ofv is sched-
uled at timet ′ − 2, a childx 6= v of w1 starts at timet ′ − 1. Since Algorithm LIST

SCHEDULING scheduledx instead ofv, D(x) ≤ D(v). Because every task ofH1 has
a predecessor that is scheduled at timet ′ −2 or t ′ −1 andx is a child ofw1, all tasks
of H1 are successors ofw1. HenceTD(w1, t) ≥ 2(t − t ′) + 2. Because(G,2,D) is
pairwise consistent,D(w1)≤ t ′ −2. Sow1 is not completed at or before timeD(w1).
Contradiction.

Case 1.2.2. St ′−2 contains two tasks with a successor inH1.
Let w2 be the other task executed at timet ′ −2. Thenw2 is a predecessor of a task of
H1. BecauseG is a precedence graph of width two andw1 andw2 are incomparable
tasks, every task ofH1 is a successor ofw1 or w2.

Case 1.2.2.1. Every task ofH1 is a successor ofw1 andw2.
Thenw1 andw2 have at least 2(t− t ′) + 1 common successors with deadline at
mostt. HenceND(w1,w2, t)≥ 2(t− t ′)+1. Since(G,2,D) is pairwise consistent,
D(w1,w2)≤ t ′ −2. So(w1,w2) violates its deadlineD(w1,w2). Contradiction.

Case 1.2.2.2. H1 contains a task ofSuccG(w1)\SuccG(w2).
Let x1 be such a task. Assumex1 is a source ofH1. x1 is not available at time
t ′ − 1. Becausew2 is not a parent ofx, a child y1 of w1 must be executed at
time t ′ −1. Sincey1 is scheduled by Algorithm LIST SCHEDULINGinstead ofx1,
D(y1) ≤ D(x1) ≤ t. We will prove by contradiction that all successors ofw2 in
H1 are successors ofw1. SupposeH1 contains a taskx2 that is a successor ofw2,
but not a successor ofw1. ThenSt ′−1 contains a childy2 of w2, such thatD(y2)≤
D(x2) ≤ t. At time t ′ −1, at most one task with deadline at mostt is executed.
Soy1 = y2 andw1 = w2. Contradiction. So every task ofH1 is a successor ofw1.
Hencew1 has at least 2(t− t ′) + 2 successors with deadline at mostt. Therefore
TD(w1, t)≥ 2(t− t ′)+2. Because(G,2,D) is pairwise consistent,D(w1)≤ t ′ −2.
Sow1 does not finish at or before timeD(w1). Contradiction.

Case 1.2.2.3. H1 contains a task ofSuccG(w2)\SuccG(w1).
Similar to Case 1.2.2.2.

Case 2. D(u1) = D(u2) = t +1 andD(u1,u2) = t.
In any in-time schedule for(G,2,D), u1 or u2 is completed at or before timet. Since there is
an in-time schedule for(G,2,D), there are at most 2t−1 tasks with deadline at mostt. Let
St ′−1 be the last time slot before time slotSt that contains at most one task with deadline at
mostt. Let H2 be the subgraph ofG induced by

⋃t−1
i=t ′ Si ∪{u1,u2}∪{v∈

⋃
i≥t Si | v≺G u2}.

ThenH2 contains at least 2(t−t ′)+2 tasks. From Observation 4.3.6, no task ofH2 is available
at timet ′ −1. Hence every task ofH2 has a predecessor that starts at timet ′ −2 or t ′ −1.

Case 2.1. Every task ofH2 has a predecessor inSt ′−1.
DefineQ = {v∈ St ′−1 | D(v) ≤ t}. Clearly,Q contains exactly one task. Letw be this
task. SinceH2 contains at least 2(t−t ′) tasks with deadline at mostt, ND(w, t)≥ 2(t−t ′).
Furthermore,u1 andu2 are successors ofw. HencePD(w, t) = 1. Consequently,TD(w, t)≥

77

2(t− t ′) + 1. Since(G,2,D) is pairwise consistent,D(w) ≤ t ′ −1. Sow does not finish
at or before timeD(w). Contradiction.

Case 2.2. Not every task ofH2 has a predecessor inSt ′−1.
Let v be a task ofH2 that has no predecessor inSt ′−1. Assumev is a source ofH2. Then
a parentw1 of v is executed at timet ′ −2.

Case 2.2.1. St ′−2 contains exactly one task with a successor inH2.
v is not available at timet ′ −1. Since only one parent ofx is scheduled at timet ′ −2, a
child x 6= v of w1 is executed at timet ′ −1. Because all tasks ofH2 have a predecessor
scheduled at timet ′ −2 or t ′ −1 andx is a parent ofw1, w1 is a predecessor of all
tasks ofH2. Becausex is scheduled by Algorithm LIST SCHEDULING instead ofv,
D(x) ≤ D(v). So w1 has at least 2(t − t ′) + 1 successors with deadline at mostt.
Sinceu1 andu2 are successors ofw1, PD(w1, t) = 1. HenceTD(w1, t)≥ 2(t− t ′) + 2.
Because(G,2,D) is pairwise consistent,D(w1)≤ t ′ −2. Sow1 is not completed at or
before timeD(w1). Contradiction.

Case 2.2.2. St ′−2 contains two tasks with a successor inH2.
Let w2 be the other task scheduled at timet ′ −2. BecauseG is a precedence graph of
width two andw1 andw2 are incomparable tasks, every task ofH2 is a successor of
w1 or w2.

Case 2.2.2.1. Every task ofH2 is a successor ofw1 andw2.
Clearly,ND(w1,w2, t)≥ 2(t− t ′) andPD(w1,w2, t)≥ 1. Because(G,2,D) is pair-
wise consistent,D(w1,w2) ≤ t ′ −2. So(w1,w2) violates its deadlineD(w1,w2).
Contradiction.

Case 2.2.2.2. H2 contains a task ofSuccG(w1)\SuccG(w2).
Let x1 be such a task. We may assume thatx1 is a source ofH2. x1 is not available
at timet ′ −1. Because only one parent ofx1 is scheduled at timet ′ −2, a childy1

of w1 is executed at timet ′−1. y1 is scheduled instead ofx1, soD(y1)≤D(x1)≤ t.
Sincey1 is executed at timet ′ − 1, y1 is not a child ofw2. We will prove by
contradiction that all successors ofw2 in H2 are successors ofw1. SupposeH2

contains a taskx2 that is a successor ofw2, but not a successor ofw1. In that
case,St ′−1 contains a childy2 of w2, such thatD(y2) ≤ D(x2) ≤ t. y2 is not a
successor ofw1, soy1 6= y2. Consequently, two tasks with deadline at mostt are
executed at timet ′ −1. Contradiction. Therefore every task ofH2 is a successor of
w1. HenceTD(w1, t) = ND(w1, t) +PD(w1, t)≥ 2(t− t ′) +2. Because(G,2,D) is
pairwise consistentD(w1)≤ t ′ −2. Sow1 does not finish at or before timeD(w1).
Contradiction.

Case 2.2.2.3. H2 contains a task ofSuccG(w2)\SuccG(w1).
Similar to Case 2.2.2.2.

This allows us to prove that minimum-tardiness schedules for precedence graphs of width
two on two processors can be constructed in polynomial time.

78

Theorem 6.3.2. There is an algorithm with an O(n2) time complexity that constructs minimum-
tardiness schedules for instances(G,2,D0), such that G is a precedence graph of width two.

Proof. Consider an instance(G,2,D0), such thatG is a precedence graph of width two. Let
(G,2,D) be the pairwise stronglyD0-consistent instance. LetS be the schedule for(G,2,D0)
constructed by Algorithm LIST SCHEDULINGusing lst-listL of (G,2,D). We will prove thatS
is a minimum-tardiness schedule for(G,2,D0). Let `∗ be the tardiness of a minimum-tardiness
schedule for(G,2,D0). DefineD′0(u) = D0(u)+ `∗ for all tasksu of G. From Observation 4.1.7,
there is an in-time schedule for(G,2,D′0). Let (G,2,D′) be the pairwise stronglyD′0-consistent
instance. From Lemma 6.1.8,D′(u1,u2) = D(u1,u2) + `∗ for all pairs of tasks(u1,u2) of G.
So L is an lst-list of(G,2,D′). From Lemma 6.3.1,S is an in-time schedule for(G,m,D′0).
HenceS(u) + 1≤ D′0(u) = D0(u) + `∗ for all tasksu of G. So the tardiness ofS as schedule
for (G,2,D0) is at most`∗. HenceS is a minimum-tardiness schedule for(G,2,D0). From
Lemmas 6.2.6 and 4.3.4,Scan be constructed inO(n2) time.

6.3.2 Interval-ordered tasks
For scheduling interval orders onmprocessors, we will use a special kind of lst-list. LetG be an
interval order and(G,m,D) the pairwise stronglyD0-consistent instance. Letu1 andu2 be two
tasks ofG. Thenu1 has a higher priority thanu2 if

either D(u1) < D(u2), or D(u1) = D(u2) and SuccG(u1)) SuccG(u2).

A list of tasks ordered by non-increasing priority will be called aninterval order lst-listor ilst-list
of (G,m,D). Using an ilst-list, Algorithm LIST SCHEDULING constructs in-time schedules, if
such schedules exist. The proof is similar to that of Lemma 6.3.1.

Lemma 6.3.3. Let G be an interval order. Let(G,m,D) be the pairwise strongly D0-consistent
instance. Let S be a schedule for(G,m,D0) constructed by AlgorithmLIST SCHEDULINGusing
an ilst-list of(G,m,D). If there is an in-time schedule for(G,m,D0), then S is an in-time schedule
for (G,m,D0).

Proof. Assume there is an in-time schedule for(G,m,D0). From Lemma 6.1.9, there is an in-
time schedule for(G,m,D). AssumeS is constructed by Algorithm LIST SCHEDULING us-
ing ilst-list L of (G,m,D). It will be proved by contradiction thatS is an in-time schedule for
(G,m,D0). SupposeS is not an in-time schedule for(G,m,D0). From Lemma 6.1.9,S is not
an in-time schedule for(G,m,D). AssumeSt is the first time slot that contains a tasku1 of G
in a pair of tasks(u1,u2) whose deadlineD(u1,u2) is violated. Thenu1 andu2 are completed
after timeD(u1,u2). HenceD(u1,u2) ≤ t. From Lemma 6.1.11, there are two possibilities:
min{D(u1),D(u2)} ≤ t, or D(u1,u2) = t andD(u1) = D(u2) = t +1.

Case 1. min{D(u1),D(u2)} ≤ t.
Let u be one of the tasksu1 andu2, such thatD(u)≤ t. Because there is an in-time schedule
for (G,m,D), G contains at mostmt tasks with deadline at mostt. So there is a time slotSt ′−1
beforeSt that contains less thanm tasks with deadline at mostt. AssumeSt ′−1 is the latest

79

time slot beforeSt that contains at mostm−1 tasks with deadline at mostt. Let H1 be the
subgraph ofG induced by

⋃t−1
i=t ′ Si ∪{v∈

⋃
i≥t Si | v≺G u}∪{u}. ThenH1 contains at least

m(t− t ′)+1 tasks with deadline at mostt. From Observation 4.3.6, no task ofH1 is available
at timet ′ −1. Hence every task ofH1 has a predecessor inSt ′−2∪St ′−1.

Case 1.1. Every task ofH1 has a predecessor inSt ′−1.
DefineQ = {v∈ St ′−1 | D(v) ≤ t}. Since each task ofH1 has a deadline at mostt, each
task of H1 has a predecessor inQ. From Proposition 2.5.5,Q contains a taskw that
is a predecessor of all tasks ofH1. Because of the communication delays, at most one
successor ofw can be scheduled at timet ′. Consequently,t = t ′ andu is a successor of
w. SoTD(w, t)≥ 1. Since(G,m,D) is pairwise consistent,D(w)≤ t−1 = t ′ −1. Sow is
not completed at or before timeD(w). Contradiction.

Case 1.2. Not every task ofH1 has a predecessor inSt ′−1.
DefineW = {v∈ St ′−2∪St ′−1 | v is a parent of a source ofH1}. From Proposition 2.5.5,
W contains a taskw1 that is a predecessor of every task ofH1. DefineW′ = W \{w1}.

Case 1.2.1. Every task ofH1 has a predecessor inW′.
From Proposition 2.5.5,W′ contains a taskw2 that is a predecessor of every task of
H1. Thenw1 andw2 have at leastm(t− t ′) + 1 common successors with deadline at
most t. So TD(w1,w2, t) ≥ m(t − t ′) + 1. Because(G,m,D) is pairwise consistent,
D(w1,w2)≤ t ′ −2. So(w1,w2) violates deadlineD(w1,w2). Contradiction.

Case 1.2.2. Not every task ofH1 has a predecessor inW′.
Let v be a task ofH1 that does not have a predecessor inW′. Assumev is a source of
H1. W contains a parent ofv, butW′ does not. Sow1 is a parent ofv. Not every task of
H1 has a predecessor inSt ′−1, sow1 is scheduled at timet ′ −2. BecauseSt ′−2 does not
contain another parent ofv andv is not available at timet ′ −1, St ′−1 contains a childx
of w1. Algorithm LIST SCHEDULINGscheduledx at timet ′ −1 instead ofv, sox has
a smallest index inL thanv. ThusD(x)≤D(v). As a result,TD(w1, t)≥m(t− t ′)+2.
Since(G,m,D) is pairwise consistent,D(w1) ≤ t ′ − 2. Sow1 does not finish at or
before timeD(w1). Contradiction.

Case 2. D(u1,u2) = t andD(u1) = D(u2) = t +1.
Let u be the task fromu1 andu2 with the smallest priority (highest index inL). LetU be the
set of tasks ofG whose priority is at least as high as that ofu. Let v1 andv2 be two tasks
in U . Clearly,D(v1),D(v2) ≤ D(u) = t + 1. If D(v1) ≤ t or D(v2) ≤ t, thenD(v1,v2) ≤ t.
AssumeD(v1) = D(v2) = t + 1. Since the priority ofv1 andv2 is at least as high as that of
u, SuccG(u) = SuccG(u1)∩SuccG(u2) ⊆ SuccG(v1),SuccG(v2). By applying Lemma 6.1.12
twice, we obtainD(v1,v2) = t. In an in-time schedule for(G,m,D), at most one task inU
is scheduled after timet−1. Since there is an in-time schedule for(G,m,D), U contains at
mostmt+ 1 tasks. Therefore there is a time slotSt ′−1 beforeSt that contains at mostm−1
tasks with priority at least as high asu. AssumeSt ′−1 is the last such time slot. LetH2 be the
subgraph ofG induced by

⋃t−1
i=t ′ Si ∪{u1,u2}∪{v∈

⋃
i≥t Si | v≺G u2}. ThenH2 contains at

leastm(t− t ′)+2 tasks andD(x1,x2)≤ t for all tasksx1 6= x2 of H2. From Observation 4.3.6,

80

no task ofH2 is available at timet ′ − 1. Hence every task ofH2 has a predecessor that is
scheduled at timet ′ −2 or t ′ −1.

Case 2.1. Every task ofH2 has a predecessor inSt ′−1.
DefineQ = {v ∈ St ′−1 | D(v) ≤ t}. Since all tasks ofH2 have a deadline at mostt + 1
and(G,m,D) is pairwise consistent, each task ofH2 is a successor of a task inQ. From
Proposition 2.5.5,Q contains a taskw that is a predecessor of all tasks ofH2. Due to
communication delays, at most one successor ofw can be scheduled at timet ′. As a
result,t = t ′. ThenTD(w, t +1)≥ 2. Since(G,m,D) is pairwise consistent,D(w)≤ t−1.
Sow finishes after timeD(w). Contradiction.

Case 2.2. Not every task ofH2 has a predecessor inSt ′−1.
DefineW = {v∈ St ′−2∪St ′−1 | v is a parent of a task ofH2}. From Proposition 2.5.5,W
contains a taskw1 that is a predecessor of every task ofH2. Obviously,w1 is scheduled
at timet ′ −2. LetW′ = W \{w1}.

Case 2.2.1. Every task ofH2 has a predecessor inW′.
From Proposition 2.5.5,W′ contains a taskw2 that is a predecessor of all tasks of
H2. Then every task ofH2 is a common successor ofw1 and w2. Let V1 = {v ∈
V(H2) | D(v) ≤ t} and V2 = {v ∈ V(H2) | D(v) = t + 1}. It is easy to see that
ND(w1,w2, t) ≥ |V1|. All tasks of H2 have a priority at least as high asu. From
Lemma 6.1.12,PD(w1,w2, t) ≥ |V2| −1. SoTD(w1,w2, t) ≥ m(t − t ′) + 1. Because
(G,m,D) is pairwise consistent,D(w1,w2) ≤ t ′ − 2. So deadlineD(w1,w2) is vio-
lated. Contradiction.

Case 2.2.2. Not every task ofH2 has a predecessor inW′.
Let v be a task ofH2 that has no predecessor inW′. Assumev is a source ofH2. W′

does not contain a parent ofv. Sov is a child ofw1. Sincev is not available at time
t ′ −1 andSt ′−2 contains only one parent ofv, St ′−1 contains another childx of w1.
Algorithm LIST SCHEDULINGscheduledx instead ofv, sox has a smaller index inL
thanv. Sox has a priority at least as high asu. Using Lemma 6.1.12,D(x1,x2) ≤ t
for all tasksx1 6= x2 in V(H2)∪ {x}. Let V1 = {v ∈ V(H2)∪ {x} | D(v) ≤ t} and
V2 = {v∈V(H2)∪{x} |D(v) = t +1}. ThenND(w1, t)≥ |V1| andPD(w1, t)≥ |V2|−1.
ThereforeTD(w1, t)≥m(t− t ′) + 2. Since(G,m,D) is pairwise consistent,D(w1)≤
t ′ −2. Hencew1 is not completed at or before timeD(w1). Contradiction.

Lemma 6.3.3 shows that minimum-tardiness schedules for interval-ordered tasks can be con-
structed in polynomial time.

Theorem 6.3.4. There is an algorithm with an O(n2) time complexity that constructs minimum-
tardiness schedules for instances(G,2,D0), such that G is an interval order.

Proof. Consider an instance(G,2,D0), such thatG is an interval order. Let(G,m,D) be the
pairwise stronglyD0-consistent instance. LetS be the schedule for(G,m,D0) constructed by

81

Algorithm LIST SCHEDULINGusing ilst-listL of (G,m,D). We will prove thatS is a minimum-
tardiness schedule for(G,m,D0). Let `∗ be the tardiness of a minimum-tardiness schedule for
(G,m,D0). DefineD′0(u) = D0(u) + `∗ for all tasksu of G. From Observation 4.1.7, there is an
in-time schedule for(G,m,D′0). Let (G,m,D′) be the pairwise stronglyD′0-consistent instance.
From Lemma 6.1.8,D′(u1,u2) = D(u1,u2) + `∗ for all pairs of tasks(u1,u2) of G. So L is
an ilst-list of (G,m,D′). From Lemma 6.3.3,S is an in-time schedule for(G,m,D′0). Hence
S(u)+1≤D′0(u) = D0(u)+`∗ for all tasksuof G. So the tardiness ofSas schedule for(G,m,D0)
is at most̀ ∗. HenceS is a minimum-tardiness schedule for(G,m,D0). From Lemmas 6.2.11
and 4.3.4,Scan be constructed inO(n2) time.

6.4 Concluding remarks
In this chapter, it was shown that minimum-tardiness schedules for precedence graphs of width
two on two processors and for interval orders onm processors can be constructed in polynomial
time. For scheduling with release dates and deadlines, a similar approach as the one presented
in this chapter can be applied: minimum-tardiness schedules for interval orders and precedence
graphs of width two with release dates and deadlines can be constructed in polynomial time [90].
In addition, minimum-tardiness schedule for precedence graphs of width two with arbitrary task
lengths can also be constructed in polynomial time using an approach similar to that presented
in this chapter [91]. This approach is not suited for interval orders with arbitrary task lengths,
because if in an interval order, every task is replaced by a chain of tasks, then the resulting
precedence graph is not an interval order.

Like for outforests, a similar approach as the one presented in this chapter can be used to
construct minimum-tardiness schedules for precedence graphs of width two on two processors
subject to{0,1}-communication delays in polynomial time. This is not true for interval orders:
using a generalisation of a proof of Hoogeveen et al. [47], Schäffter [81] proved that constructing
minimum-length schedules for interval orders onm processors subject to{0,1}-communication
delays is an NP-hard optimisation problem. Hence it is unlikely that minimum-tardiness sched-
ules for interval orders onm processors subject to{0,1}-communication delays can be con-
structed in polynomial time.

82

7 Dynamic programming
In this chapter, we will present two dynamic-programming algorithms for scheduling arbitrary
precedence graphs with non-uniform deadlines subject to unit-length communication delays. Us-
ing these algorithms, we can construct minimum-tardiness schedules for arbitrary precedence
graphs. In Section 7.1, an algorithm of Fulkerson [29] is presented that decomposes prece-
dence graphs of widthw into w disjoint chains. Such chain decompositions are used by the
dynamic-programming algorithms that are presented in Sections 7.2 and 7.4. The first algorithm
is presented in Section 7.2. This dynamic-programming algorithm constructs minimum-tardiness
schedules for instances(G,m,D0). It is similar to the dynamic-programming algorithm presented
by Möhring [67] that constructs minimum-length communication-free schedule for precedence
graphs with unit-length tasks and the dynamic-programming algorithm of Veltman [87] that con-
structs minimum-length schedules for precedence graphs with unit-length tasks subject to unit-
length communication delays. Like the algorithms of Möhring [67] and Veltman [87], the time
complexity of the algorithm presented in Section 7.2 is exponential in the width of the prece-
dence graph. Hence it constructs minimum-tardiness schedules in polynomial time for prece-
dence graphs of bounded width.

Sections 7.3 and 7.4 are concerned with scheduling precedence graphs with arbitrary task
lengths. In Section 7.3, it is proved that constructing a minimum-tardiness schedule for a prece-
dence graph of widthw on less thanw processors is an NP-hard optimisation problem. In
Section 7.4, a second dynamic-programming algorithm is presented. This algorithm constructs
minimum-tardiness schedules for precedence graphs of widthw on at leastw processors. Like
the algorithm presented in Section 7.2, the time complexity of this algorithm is exponential is
the width of the precedence graph, but it constructs minimum-tardiness schedules for precedence
graphs of bounded width.

7.1 Decompositions into chains
In this section, we will show how a precedence graph can be decomposed into disjoint chains.
Every precedence graph can be viewed as a collection of disjoint chains with precedence con-
straints between tasks in different chains: every precedence graph withn tasks can be considered
as the disjoint union ofn chains consisting of one task. Obviously, precedence graphs that do not
consist ofn pairwise incomparable tasks can be decomposed into a smaller number of chains.

Definition 7.1.1. Let G be a precedence graph. Achain decompositionof G is a collection of
disjoint chainsC1, . . . ,Ck in G, such thatC1∪·· ·∪Ck = V(G).

Let C1, . . . ,Ck be a chain decomposition of a precedence graphG. ThenC1, . . . ,Ck will be
called a chain decomposition ofG into k chains.

Example 7.1.2. Let G be the precedence graph shown in Figure 7.1. It is easy to see thatG is a
precedence graph of width two. Figure 7.1 shows a chain decomposition ofG into two disjoint
chainsC1 = {c1,1,c1,2,c1,3,c1,4,c1,5,c1,6} andC2 = {c2,1,c2,2,c2,3,c2,4}. A chain decomposition
of G into two disjoint chains is not unique: other chain decompositions ofG consisting of two

83

C1 C2

c1,1

c1,2

c1,3

c1,4

c1,5

c1,6

c2,1

c2,2

c2,3

c2,4

Figure 7.1. A chain decomposition of a precedence graph of width two into two chains

chains are formed by the chainsC′1 = {c1,1,c1,2,c2,2,c2,3,c2,4} andC′2 = {c2,1,c1,3,c1,4,c1,5,c1,6}
and by the chainsC′′1 = {c1,1,c1,2,c1,3,c2,2,c2,3,c2,4} andC′′2 = {c2,1,c1,4,c1,5,c1,6}.

Because a precedence graph of widthw containsw pairwise incomparable tasks and incom-
parable tasks cannot be elements of one chain, a precedence graph of widthw cannot be decom-
posed into less thanw chains. Dilworth [22] proved that a precedence graph of widthw can be
viewed as the disjoint union of exactlyw chains.

Theorem 7.1.3. Let G be a precedence graph of width w. There is a chain decomposition of G
into w disjoint chains.

A chain decomposition of a precedence graph of widthw into w chains will be used by the
dynamic-programming algorithms presented in Sections 7.2 and 7.4. Dilworth’s proof [22] of
Theorem 7.1.3 is not constructive, but the proof by Fulkerson [29] is. In his proof of Dilworth’s
decomposition theorem, Fulkerson presented Algorithm CHAIN DECOMPOSITIONshown in Fig-
ure 7.2 and proved that it constructs chain decompositions of precedence graphs of widthw into
w chains.

Algorithm CHAIN DECOMPOSITION works as follows. For a precedence graphG, it con-
structs an undirected bipartite graphH that contains an edge for every pair of comparable tasks
of G and computes a maximum matching ofH. This matching is used to construct a chain de-
composition ofG into disjoint chains.

The time complexity of Algorithm CHAIN DECOMPOSITIONcan be determined as follows.
Let G be a precedence graph of widthw. To obtain a better time complexity, we will distinguish
two cases depending on whetherG is known to be a transitive closure or not. If it is unknown
whetherG is a transitive closure, then Algorithm CHAIN DECOMPOSITIONshould start by com-

84

Algorithm CHAIN DECOMPOSITION

Input. A precedence graphG of width w, such thatV(G) = {u1, . . . ,un}.
Output. A chain decompositionC1, . . . ,Cw of G.
1. V := {a1, . . . ,an}∪{b1, . . . ,bn}
2. E := {(ai ,bj) | ui ≺G uj}
3. letH be the undirected bipartite graph(V,E)
4. letM be a maximum matching ofH
5. E′ := {(ui ,uj) | (ai ,bj) ∈M}
6. letG′ be the precedence graph(V(G),E′)
7. i := 1
8. while G′ contains unmarked tasks
9. do let u be an unmarked source ofG′

10. Ci := {v∈V(G) | there is a path fromu to v in G′}
11. mark all tasks inCi

12. i := i +1

Figure 7.2. Algorithm CHAIN DECOMPOSITION

puting the transitive closure ofG. This takesO(n+e+ne−) time [37]. In the transitive reduction
of a precedence graph of widthw, every task has at mostw children. Hencee− ≤ wn. So the
transitive closure ofG can be constructed inO(wn2) time. In the remainder of the analysis of the
time complexity of Algorithm CHAIN DECOMPOSITION, we will assume thatG is a transitive
closure.

SinceG is a transitive closure, the bipartite graphH can be constructed inO(n+ e+) time.
Sincee+ ≤ n2, H is constructed inO(wn2) time. Hopcroft and Karp [48] presented an algorithm
that computes a maximum matching inO(e

√
n) time for bipartite graphs withn nodes ande

edges. Alt et al. [5] presented an algorithm whose time complexity is better for dense graphs:
their algorithm constructs a maximum matching of a bipartite graph inO(n

√
ne/ logn) time.

The number of edges ofH equalse+. As a result, a maximum matchingM of H can be con-
structed inO(min{e+√n,n

√
ne+/ logn}) time. Because the maximum matching ofH contains

at mostn edges, constructing the precedence graphG′ takesO(n) time. G′ is a chain-like task
system. Since every task inG′ has indegree and outdegree at most one, constructing the chains
in G from G′ takesO(n) time. So constructing a chain decomposition ofG into w disjoint chains
takesO(wn2 +min{e+√n,n

√
ne+/ logn}) time.

Lemma 7.1.4. For all precedence graphs G of width w, AlgorithmCHAIN DECOMPOSITION

constructs a chain decomposition of G into w chains in O(wn2 + min{e+√n,n
√

ne+/ logn})
time.

Let G be a precedence graph of widthw. SinceG can be decomposed intow disjoint chains,
G contains a chain that contains at leastn

w tasks. The transitive closure of a chain containing at

least n
w tasks contains at leastn(n−w)

2w2 arcs. SoG+ contains at leastn(n−w)
2w2 arcs. Ifw is a constant,

thenG+ containsΘ(n2) arcs. Hence using the algorithm of Alt et al. [5], a chain decomposition
of a precedence graph of bounded width can be constructed inO(n2

√
n/ logn) time.

85

Lemma 7.1.5. For all precedence graphs G of constant width w, AlgorithmCHAIN DECOMPO-
SITION constructs a chain decomposition of G into w chains in O(n2

√
n/ logn) time.

7.2 A dynamic-programming algorithm
In this section, a dynamic-programming algorithm will be presented that constructs minimum-
tardiness schedules for instances(G,m,D0). For precedence graphs of widthw, it constructs a
minimum-tardiness schedule inO(nw+3) time. Hence minimum-tardiness schedules for prece-
dence graphs of bounded width can be constructed in polynomial time. The same approach can
be used to construct schedules that are optimal with respect to other objective functions (includ-
ing the minimisation of the makespan) without increasing the time complexity [91]. This leads
to an improvement over a result presented by Veltman [87], who showed that minimum-length
schedules for precedence graphs of widthw can be constructed inO(n2w) time.

The time complexity of the dynamic-programming algorithm is exponential in the width of
the precedence graph. It is unlikely that there is an algorithm that constructs minimum-length
schedules inO(nc) time, wherec is a constant independent of the width of the precedence graph:
Bodlaender and Fellows [9] proved that constructing a minimum-length communication-free
schedule for arbitrary precedence graphs onk processors isW[2]-hard, whereW[2] is the second
class of theW-hierarchy for parametrised problems introduced by Downey and Fellows [23].
This implies that it is unlikely that for all fixed positive integersk, a minimum-length schedule
for a precedence graph onk processors can be constructed inO(nc) time for some constantc. In
fact, Bodlaender and Fellows [9] proved that constructing minimum-length communication-free
schedules for precedence graphs of widthk+1 onk processors isW[2]-hard. Their result can be
easily generalised for scheduling subject to unit-length communication delays with the objective
of minimising the maximum tardiness.

Dynamic programming is a method of constructing an optimal solution of a problem by ex-
tending or combining optimal solutions of subproblems. In dynamic programming, the optimal
solutions of the subproblems are stored in a table that has an entry for every (relevant) subprob-
lem. The table is then used to construct the best extension or combination of the optimal solutions
of the subproblems.

A feasible scheduleSfor an instance(G,m,D0) is a list of time slots(S0, . . . , S̀−1). For each
time t,

⋃t−1
i=0 Si is a prefix ofG and(S0, . . . ,St−1) is a feasible schedule for(G[

⋃t−1
i=0 Si],m,D0).

(S0, . . . ,St−1) will be called apartial schedulefor (G,m,D0). Any scheduleSU for (G[U],m,D0),
such thatU is a prefix ofG, can be extended to a feasible schedule for(G,m,D0) by scheduling
the remaining tasks after the completion time of the last task ofU . So a (minimum-tardiness)
schedule for(G,m,D0) can be constructed by starting with an empty schedule and repeatedly
adding the next time slot.

This is the basis of the dynamic-programming algorithm presented in this section: a table
containing information about the structure and tardiness of minimum-tardiness partial schedules
of (G,m,D0) is constructed and used to construct a minimum-tardiness schedule for(G,m,D0).

Let S= (S0, . . . , S̀−1) be a minimum-tardiness schedule for(G,m,D0). Then for all times

86

t ∈ {0, . . . , `−1}, (S0, . . . ,St−1) is a feasible schedule for(G[
⋃t−1

i=0 Si],m,D0) andSt is a set of
sources ofG[V(G) \

⋃t−1
i=0 Si]. So for each tasku in St , at most one parent ofu is an element of

St−1 and for each tasku in St−1, at most one child ofu is an element ofSt .
The basic idea of extending partial schedules is the following. LetU be a prefix ofG and let

(S0, . . . ,St−1) be a feasible schedule for(G[U],m,D0). Then a set of sourcesV of G[V(G)\U] is
calledavailablewith respect toS if

1. |V| ≤m;

2. for all tasksu in V, at most one parent ofu finishes at timet; and

3. for all tasksu in U , if u finishes at timet, thenV contains at most one child ofu.

Note that the availability ofV only depends on the size ofV and the tasks inU that finish at time
t. HenceV will also be called available with respect to(U,St−1).

If V is available with respect to(U,St−1), then the schedule(S0, . . . ,St−1,V) is a feasi-
ble schedule for(G[U ∪V],m,D0). Moreover, it is easy to see that for any feasible schedule
S= (S0, . . . , S̀−1) for (G,m,D0), the time slotSt is available with respect to(

⋃t−1
i=0 Si ,St−1) for

all t ∈ {0, . . . , `−1}.

We will represent a partial scheduleS for (G,m,D0) by a tuple(U,V, t, `): U is the prefix of
G, such thatSis a feasible schedule for(G[U],m,D0), t is a starting time that exceeds the starting
times of all tasks inU , V is the set of sinks ofG[U] that finish at timet and` is the maximum
tardiness of a task inU . Note thatV may be empty. The timet is used to denote the next time at
which the remaining tasks ofG can be scheduled.

A tuple (U,V, t, `) will be called afeasible tupleof (G,m,D0) if U is a prefix ofG, V is a
set of sinks ofG[U], and there is a feasible scheduleS for (G[U],m,D0) with tardiness̀ , such
that S(u) ≤ t − 1 for all tasksu in U and S(u) = t − 1 for all tasksu in V. Since there are
minimum-tardiness schedules for(G,m,D0) of length at mostn, we will only consider feasible
tuples(U,V, t, `) of (G,m,D0), such that 0≤ t ≤ n−1.

Let S= (S0, . . . , S̀−1) be a feasible schedule for(G,m,D0). For each timet ∈ {0, . . . , `−1},
the partial schedule(S0, . . . ,St−1) can be represented by the feasible tuple(

⋃t−1
i=0 Si ,St−1, t, `t) of

(G,m,D0), where`t = max{0,max{S(u) +1−D0(u) | S(u)≤ t−1}}.
Note that a feasible tuple(U,V, t, `) of (G,m,D0) may represent more than one partial sched-

ule. For all partial schedulesS represented by(U,V, t, `), the availability of a set of sources of
G[V(G)\U] at timet only depends onU andV. So all partial schedules represented by(U,V, t, `)
can be extended in the same way. Because the tardiness of such an extension only depends on
` and the starting times of the tasks ofG[V(G) \U], the minimum-tardiness extensions of the
schedules represented by(U,V, t, `) all have the same tardiness. So to construct a minimum-
tardiness schedule for(G,m,D0), we only need to consider feasible tuples of(G,m,D0).

Partial schedules for(G,m,D0) can be extended by adding a time slot. The notion of exten-
sions is used for feasible tuples as well. Let(U,V, t, `) and(U ′,V ′, t ′, `′) be two feasible tuples
of (G,m,D0). Then(U ′,V ′, t ′, `′) is calledavailablewith respect to(U,V, t, `) if

1. U ′ = U ∪V ′;

87

2. t ′ = t +1; and

3. `′ = max{`,maxu∈V ′(t +1−D0(u))}.

The setAv(U,V, t, `) contains all feasible tuples of(G,m,D0) that are available with respect to
(U,V, t, `). Note thatAv(U,V, t, `) cannot be empty, because(U,∅, t + 1, `) is an element of
Av(U,V, t, `) for all feasible tuples(U,V, t, `) of (G,m,D0).

LetS= (S0, . . . , S̀−1) be a feasible tuple of(G,m,D0). Then the feasible tuple(
⋃t

i=0Si ,St , t +
1,max{0,max{S(u) + 1−D0(u) | S(u)≤ t}}) of (G,m,D0) is available with respect to the fea-
sible tuple(

⋃t−1
i=0 Si ,St−1, t,max{0,max{S(u) + 1−D0(u) | S(u) ≤ t−1}}) of (G,m,D0) for all

t ∈ {0, . . . , `−1}.

Let (U,V, t, `) be a feasible tuple of(G,m,D0). AssumeS is a partial schedule for(G,m,D0)
corresponding to(U,V, t, `). DefineT(U,V, t, `) as the smallest tardiness of a feasible schedule
for (G,m,D0) that extendsS. More precisely, ifU 6= V(G), then

T(U,V, t, `) = min{T(U ′,V ′, t ′, `′) | (U ′,V ′, t ′, `′) ∈ Av(U,V, t, `)},

and ifU = V(G), then

T(U,V, t, `) = `.

ThenT(∅,∅,0,0) equals the tardiness of a minimum-tardiness schedule for(G,m,D0). Note
thatT(U,V, t, `) is independent of the partial schedule corresponding to(U,V, t, `): each schedule
Sfor (G[U],m,D0) with tardiness̀ , such thatS(u) = t−1 for all tasksu in V andS(u)≤ t−1 for
all tasksu in U , can be extended to a feasible schedule for(G,m,D0) with tardinessT(U,V, t, `).

A minimum-tardiness schedule for(G,m,D0) is computed by Algorithm UNIT EXECUTION

TIMES DYNAMIC PROGRAMMING presented in Figure 7.3. First, it computes a tableTab, such
thatTab[U,V, t, `] equalsT(U,V, t, `) for all feasible tuples(U,V, t, `) of (G,m,D0). Second, it
uses this table to construct a minimum-tardiness schedule for(G,m,D0).

Now we will prove that Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING

correctly constructs minimum-tardiness schedules.

Lemma 7.2.1. Let S be the schedule for(G,m,D0) constructed by AlgorithmUNIT EXECUTION

TIMES DYNAMIC PROGRAMMING. Then S is a minimum-tardiness schedule for(G,m,D0).

Proof. Let Tabbe the table constructed by Algorithm UNIT EXECUTION TIMES DYNAMIC PRO-
GRAMMING. We will prove by induction thatTab[U,V, t, `] = T(U,V, t, `) for all feasible tuples
(U,V, t, `) of (G,m,D0). Let (U,V, t, `) be a feasible tuple of(G,m,D0). Assume by induction
thatTab[U ′,V ′, t ′, `′] = T(U ′,V ′, t ′, `′) for all feasible tuples(U ′,V ′, t ′, `′) in Av(U,V, t, `).

If U = V(G), thenT(U,V, t, `) = ` for all feasible tuples(U,V, t, `) of (G,m,D0). In that
case,Tab[U,V, t, `] = T(U,V, t, `). So we may assume thatU 6= V(G). BecauseT(U,V, t, `)
equals min{T(U ′,V ′, t ′, `′) | (U ′,V ′, t ′, `′)∈Av(U,V, t, `)} andTab[U ′,V ′, t ′, `′] = T(U ′,V ′, t ′, `′)
for all feasible tuples(U ′,V ′, t ′, `′) in Av(U,V, t, `), Tab[U,V, t, `] equals min{T(U ′,V ′, t ′, `′) |

88

Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING

Input. An instance(G,m,D0).
Output. A minimum-tardiness schedule for(G,m,D0).
1. for all feasible tuples(U,V, t, `) of (G,m,D0)
2. do Tab[U,V, t, `] := ∞
3. CONSTRUCT(∅,∅,0,0)
4. (U,V, t, `) := (∅,∅,0,0)
5. while U 6= V(G)
6. do let (U ′,V ′, t ′, `′) = succ(U,V, t, `)
7. for u∈V ′

8. do S(u) := t
9. (U,V, t, `) := (U ′,V ′, t ′, `′)
10.
11. Procedure CONSTRUCT(U,V, t, `)
12. if Tab[U,V, t, `] = ∞
13. then if U = V(G)
14. then Tab[U,V, t, `] := `
15. else T := ∞
16. for (U ′,V ′, t ′, `′) ∈ Av(U,V, t, `)
17. do CONSTRUCT(U ′,V ′, t ′, `′)
18. if Tab[U ′,V ′, t ′, `′]< T
19. then T := Tab[U ′,V ′, t ′, `′]
20. succ(U,V, t, `) := (U ′,V ′, t ′, `′)
21. Tab[U,V, t, `] := T

Figure 7.3. Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING

(U ′,V ′, t ′, `′) ∈ Av(U,V, t, `)} = T(U,V, t, `). By induction,Tab[U,V, t, `] = T(U,V, t, `) for all
feasible tuples(U ′,V ′, t ′, `′) of (G,m,D0).

In addition, it is not difficult to see that for all feasible tuples(U,V, t, `) of (G,m,D0), if
U 6=V(G), thensucc(U,V, t, `) is a feasible tuple inAv(U,V, t, `), such thatTab[succ(U,V, t, `)] =
Tab[U,V, t, `]. Consequently, for all feasible tuples(U,V, t, `) of (G,m,D0), if U 6= V(G), then
T(succ(U,V, t, `)) equalsT(U,V, t, `).

BecauseTab[U,V, t, `] equalsT(U,V, t, `) for all feasible tuples(U,V, t, `) of (G,m,D0),
Tab[∅,∅,0,0] equals the tardiness of a minimum-tardiness schedule for(G,m,D0). This is
used to construct a schedule for(G,m,D0). We inductively define feasible tuples(Ui ,Vi , ti , `i) of
(G,m,D0). Let (U0,V0, t0, `0) = (∅,∅,0,0). If Ui 6= V(G), then let(Ui+1,Vi+1, ti+1, `i+1) =
succ(Ui ,Vi , ti , `i). Assume(Uk,Vk, tk, `k) is the last feasible tuple of(G,m,D0) that can be
constructed this way. ThenUk = V(G). It is not difficult to prove thatT(Ui ,Vi , ti , `i) =
T(U0,V0, t0, `0) for all i ∈ {0, . . . ,k}. So each feasible tuple(Ui ,Vi , ti , `i) of (G,m,D0) repre-
sents a partial schedule for(G,m,D0) that can be extended to a minimum-tardiness schedule for
(G,m,D0). It is easy to prove by induction that the feasible tuple(Ui ,Vi , ti , `i) of (G,m,D0) repre-
sents the partial schedule(V1, . . . ,Vi) for all i ∈ {0, . . . ,k}. So(V1, . . . ,Vk) is a minimum-tardiness

89

schedule for(G,m,D0). This is the schedule constructed by Algorithm UNIT EXECUTION TIMES

DYNAMIC PROGRAMMING.

The time complexity of Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMINGcan
be determined as follows. Consider an instance(G,m,D0), such thatG is a precedence graph
of width w. In order to obtain a better time complexity, we need to consider two possibilities
depending on whetherG is known to be a transitive reduction or not. If it is unknown whetherG
is a transitive reduction, then Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING

should start by computing the transitive reduction ofG. This takesO(n2.376) time [17]. In
the remainder of the analysis of the time complexity of Algorithm UNIT EXECUTION TIMES

DYNAMIC PROGRAMMING, we will assume thatG is a transitive reduction.
AssumeC1, . . . ,Cw is a chain decomposition ofG, such thatCi = {ci,1, . . . ,ci,ki} for all i ∈

{1, . . . ,w}. From Lemma 7.1.4, such a chain decomposition can be constructed inO(wn2 +
e+√n) time.

Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING first computesT(U,V, t, `)
for all feasible tuples(U,V, t, `) of (G,m,D0). Since there is a minimum-tardiness schedule for
(G,m,D0) of length at mostn, we may assume thatt ∈ {0, . . . ,n− 1}. In addition, because
every task has at mostn starting times, at mostn2 different values of̀ need to be taken into
account. A prefixU of G is a set

⋃w
i=1{ci,1, . . . ,ci,bi}, such that 0≤ bi ≤ ki for all i ∈ {1, . . . ,w}.

A set of sinksV of G[U] is a subset of the set{c1,b1, . . . ,cw,bw}. A subsetV of {c1,b1, . . . ,cw,bw}
can be represented by a tuple(a1, . . . ,aw), such thatai ∈ {0,1} for all i ∈ {1, . . . ,w}: ai = 1
if ci,bi ∈ V andai = 0 if ci,bi 6∈ V. So a feasible tuple of(G,m,D0) can be represented by a
tuple (b1, . . . ,bw,a1, . . . ,aw, t, `), such that 0≤ bi ≤ ki andai ∈ {0,1} for all i ∈ {1, . . . ,w}, t ∈
{0, . . . ,n−1} and` ∈

⋃
u∈V(G){1−D0(u), . . . ,n−D0(u)}. So the number of feasible tuples of

(G,m,D0) is at most

n32w
w

∏
i=1

(ki +1) ≤ n32w
w

∏
i=1

2ki ≤ n322w
w

∏
i=1

n
w
≤ 2wnw+3.

For every feasible tuple(U,V, t, `) of (G,m,D0), Algorithm UNIT EXECUTION TIMES DY-
NAMIC PROGRAMMING computes the setAv(U,V, t, `). There is a one-to-one correspondence be-
tween the elements ofAv(U,V, t, `) and the sets of sources ofG[V(G)\U]. BecauseG is a prece-
dence graph of widthw and the sources of a precedence graph are incomparable,G[V(G) \U]
has at mostw sources. As a result,Av(U,V, t, `) contains at most 2w elements. Checking the
availability of a tuple(U ′,V ′, t ′, `′) of (G,m,D0) with respect to(U,V, t, `) can be done as fol-
lows. U ′ must be the setU ∪V ′, V ′ must be a set containing at mostm sources ofG[V(G)\U],
every task inV may have at most one child inV ′ and every task inV ′ may have at most one
parent inV. BecauseG is a transitive reduction, every task ofG has indegree and outdegree at
mostw. So the availability of a set of sources ofG[V(G) \U] can be checked inO(w2) time.
Hence for each feasible tuple(U,V, t, `) of (G,m,D0), Algorithm UNIT EXECUTION TIMES DY-
NAMIC PROGRAMMING usesO(w22w) time. So Algorithm UNIT EXECUTION TIMES DYNAMIC

PROGRAMMINGconstructs the tableTab in O(w222wnw+3) time.
It is not difficult to see that the construction of the minimum-tardiness schedule for(G,m,D0)

does not require as much time as the construction of the table. So Algorithm UNIT EXECUTION

90

TIMES DYNAMIC PROGRAMMING constructs a minimum-tardiness schedule for(G,m,D0) in
O(w222wnw+3) time. Hence we have proved the following result.

Theorem 7.2.2. There is an algorithm with an O(w222wnw+3) time complexity that constructs
minimum-tardiness schedules for instances(G,m,D0), such that G is a precedence graph of
width w.

Consequently, for constantw, a minimum-tardiness schedule for a precedence graph of width
w can be constructed in polynomial time.

Theorem 7.2.3. There is an algorithm with an O(nw+3) time complexity that constructs
minimum-tardiness schedules for instances(G,m,D0), such that G is a precedence graph of
constant width w.

Proof. Obvious from Theorem 7.2.2.

7.3 An NP-completeness result
In the previous section, it was proved that there is a polynomial-time algorithm that constructs
minimum-tardiness schedules for precedence graphs of bounded width with unit-length tasks
on m processors. Moreover, using a generalisation of the algorithm presented in Chapter 6, a
minimum-tardiness schedule for precedence graphs of width two with arbitrary task lengths can
be constructed in polynomial time [91].

In this section, it will be shown that constructing a minimum-tardiness schedule for prece-
dence graphs of widthw on less thanw processors is an NP-hard optimisation problem. This is
proved using a polynomial reduction from PARTITION [33].

Problem. PARTITION

Instance. A set of positive integersA = {a1, . . . ,an}.
Question. Is there a subsetA′ of A, such that∑a∈A′ a = ∑a∈A\A′ a?

PARTITION is a well-known NP-complete decision problem [33]. Let WIDTH3ON2 be the
following decision problem.

Problem. WIDTH3ON2
Instance. An instance(G,µ,2,D0), such thatG is a precedence graph of width three.
Question. Is there an in-time schedule for(G,µ,2,D0)?

Using a polynomial reduction from PARTITION, it will be shown that WIDTH3ON2 is an
NP-complete decision problem.

Lemma 7.3.1. There is a polynomial reduction fromPARTITION to WIDTH3ON2.

Proof. Let A = {a1, . . . ,an} be an instance of PARTITION. DefineN = ∑a∈A a andM = N + 1.
Construct an instance(G,µ,2,D0) as follows.G is a precedence graph consisting of three chains.
The first two chains,C1 andC2, each consist ofn+ 1 tasksc1,i andc2,i of lengthµ(cj,i) = M,

91

such thatcj,0 ≺G,0 · · · ≺G,0 cj,n. The third chain,C3, consists ofn tasksu1, . . . ,un with lengths
µ(ui) = ai for all i ∈ {1, . . . ,n} and precedence constraintsu1 ≺G,0 · · · ≺G,0 un. Let D0(u) =
1
2N + (n+ 1)M for all tasksu of G. Now we can prove that there is a subsetA1 of A, such that
∑a∈A1

a = ∑a∈A\A1
a if and only if there is an in-time schedule for(G,µ,2,D).

(⇒) Assume there is a subsetA1 of A, such that∑a∈A1
a = ∑a∈A\A1

a. DefineA2 = A\A1.
A feasible in-time scheduleS for (G,µ,2,D0) can be constructed as follows. For each
i ∈ {1, . . . ,n} andp∈ {1,2}, if ai ∈ Ap, then let

S(ui) = iM + ∑
j<i:aj∈Ap

aj .

Furthermore, for alli ∈ {0, . . . ,n}, let

S(c1,i) = iM + ∑
j≤i:aj∈A1

aj and S(c2,i) = iM + ∑
j≤i:aj∈A2

aj .

Clearly,S(cp,i+1) ≥ S(cp,i) + M for all i ∈ {0, . . . ,n} and p ∈ {1,2}. In addition, for all
i ∈ {1, . . . ,n} andp∈ {1,2}, if ai ∈ Ap, then

S(ui) = S(cp,i−1) +M and S(ui) +µ(ui) = S(cp,i).

So at most two tasks are executed at the same time. Furthermore, for alli ∈ {0, . . . ,n−1}
andp∈ {1,2}, if ui+1 ∈ Ap, then

S(ui+1) = (i +1)M + ∑ j<i+1:aj∈Ap aj

≥ iM +M

> iM +ai + ∑ j<i aj

≥ S(ui) +µ(ui).

So S is a feasible schedule for(G,µ,2,D0). Every task ofG finishes at or before time
max{S(c1,n) + µ(c1,n),S(c2,n) + µ(c2,n)} = nM + 1

2N + M = (n+ 1)M + 1
2N. So S is an

in-time schedule for(G,µ,2,D0).

(⇐) AssumeS is an in-time schedule for(G,µ,2,D0). Then all tasks ofG are completed
at or before time(n+ 1)M + 1

2N. Let π be the processor assignment forS constructed
by Algorithm PROCESSOR ASSIGNMENT COMPUTATION. Each processor can execute
at mostn+ 1 tasks inC1 or C2, otherwise,S has length at least(n+ 2)M > (n+ 1)M +
∑a∈A a> (n+1)M + 1

2N. So both processors execute exactlyn+1 tasks of lengthM. The
sum of the execution lengths of all tasks ofG equals 2(n+ 1)M + N. So no processor is
idle before time(n+1)M + 1

2N. Define

A1 = {ai | π(ui) = 1} and A2 = {ai | π(ui) = 2}.

Since no processor is idle before time(n+ 1)M + 1
2N, ∑a∈A1

a = (n+ 1)M + 1
2N− (n+

1)M = 1
2 ∑a∈A a.

92

Lemma 7.3.1 shows that constructing minimum-tardiness schedules for precedence graph of
width three on two processors is an NP-hard optimisation problem. It is easy to see that a similar
proof can be used to show that constructing minimum-tardiness schedules for precedence graphs
of width w on less thanw processors is NP-hard as well.

Theorem 7.3.2. Constructing minimum-tardiness schedules for instances(G,µ,m,D0), such
that G is a precedence graph of constant width w and2≤ m< w, is anNP-hard optimisation
problem.

7.4 Another dynamic programming algorithm
In Section 7.2, it was proved that minimum-tardiness schedules for precedence graphs of
bounded width can be constructed in polynomial time if all tasks have unit length. In Sec-
tion 7.3, it is shown that constructing minimum-tardiness schedules for precedence graphs of
width w with tasks of arbitrary length on less thanw processors is an NP-hard optimisation prob-
lem. The complexity of constructing minimum-tardiness schedules for precedence graphs of
width w with arbitrary task lengths on at leastw processors remains open. Without communi-
cation delays, minimum-tardiness schedules for precedence graphs of widthw on w processors
can be constructed by a list scheduling algorithm (using any priority list). This is not true for
scheduling subject to unit-length communication delays.

Example 7.4.1. Consider the instance(G,3,D0) shown in Figure 7.4. Note thatG is a prece-
dence graph of width three. It is not difficult to see that(G,3,D0) is consistent. Moreover,
(G,3,D0) can be converted into a pairwise consistent instance without decreasing any individ-
ual deadlines. Using the lst-list(a1,b3,b1,b2,c3,c1,c2,d1), Algorithm LIST SCHEDULINGcon-
structs the schedule shown in Figure 7.5. This is not an in-time schedule for(G,3,D0), because
d1 violates its deadline. In Figure 7.6, an in-time schedule for(G,3,D0) is shown. This schedule
can be constructed by Algorithm LIST SCHEDULINGusing lst-list(a1,b1,b2,b3,c3,c1,c2,d1).

Example 7.4.1 shows that list scheduling does not construct minimum-tardiness schedules for
precedence graphs of widthw onw processors. In this section, it will be shown that a minimum-
tardiness schedule for precedence graphs of widthw with arbitrary task lengths on at leastw
processors can be constructed in polynomial time for each constantw. Like in Section 7.2, we
will use a dynamic-programming approach that can be generalised to scheduling problems with
other objective functions [91].

Let G be a precedence graph of widthw. Consider an instance(G,µ,m,D0), such thatm≥w.
In a feasible scheduleSfor (G,µ,m,D0), at mostw tasks can be executed simultaneously. Hence
any feasible schedule for(G,µ,∞,D0) is a feasible schedule for(G,µ,m,D0) as well. On the
other hand, any feasible schedule for(G,µ,m,D0) is also a feasible schedule for(G,µ,∞,D0).
Therefore we will consider instances(G,µ,∞,D0).

A scheduleS for (G,µ,∞,D0) is calledgreedyif for all tasksu of G, there is no feasible
scheduleS′ for (G,µ,∞,D0), such thatS′(u) < S(u) andS′(v) = S(v) for all tasksv 6= u of G.

93

b1:1,3 b2:1,3 b3:1,3

c1:1,5

a1:1,1

c2:1,5 c3:1,4

d1:1,6

Figure 7.4. A consistent instance(G,3,D)

b3

b2

d1b1 c1

0 1 2 3 4 5 6

a1

c2

c3

7

Figure 7.5. The schedule for(G,3,D) constructed by Algorithm LIST SCHEDULING

b3

b2

d1b1

c1

0 1 2 3 4 5 6

a1 c2

c3

7

Figure 7.6. An in-time schedule for(G,3,D)

Note that the schedules for(G,µ,∞,D0) constructed by Algorithm LIST SCHEDULINGare greedy
schedules.

Let Sbe a feasible schedule for(G,µ,∞,D0). ThenSbe transformed into a greedy schedule
for (G,µ,∞,D0) as follows. Letu be a task ofG. If u is available at timet < S(u) andu can
be scheduled at timet without violating the feasibility ofS, then scheduleu at time t. This
is repeated until no task can be executed at an earlier time without violating the feasibility. The
resulting schedule is a greedy schedule for(G,µ,∞,D0). Since no task is scheduled at a later time,
the tardiness of this schedule is at most that ofS. Hence there is a greedy minimum-tardiness
schedule for(G,µ,∞,D0).

In a greedy schedule for(G,µ,∞,D0), the number of potential starting times of a task is
bounded. Letest(u) denote the earliest possible starting time of a tasku in a communication-free

94

schedule for(G,µ,∞,D0).

est(u) =

0 if u is a source ofG

maxv∈PredG,0(u)(est(v) +µ(v)) otherwise

In a greedy schedule for(G,µ,∞,D0), every tasku of G starts at mostn−1 time units after
est(u).

Lemma 7.4.2. Let S be a feasible greedy schedule for(G,µ,∞,D0). Then for all tasks u of G,
est(u)≤ S(u)≤ est(u) +n−1.

Proof. Obviously,S(u) ≥ est(u) for all tasksu of G. For all tasksu of G, let l pp(u) be the
maximum number of tasks on a path from a source ofG to a parent ofu.

l pp(u) =

0 if u is a source ofG

maxv∈PredG,0(u) l pp(v) +1 otherwise

We will prove by induction thatS(u)≤ est(u) + l pp(u) for all tasksu of G. This is obvious for
the sources ofG. Let u be a task ofG. Assume by induction thatS(v) ≤ est(v) + l pp(v) for all
predecessorsv of u. Let w be a predecessor ofu with a maximum completion time. Thenu is
available at timeS(w) + µ(w) + 1. Sou starts at timeS(w) + µ(w) or at timeS(w) + µ(w) + 1.
Consequently,

S(u) ≤ maxv∈PredG,0(u)(S(v) +µ(v) +1)
≤ maxv∈PredG,0(u)(est(v) + l pp(v) +µ(v) +1)
≤ maxv∈PredG,0(u)(est(v) +µ(v)) +maxv∈PredG,0(u)(l pp(v) +1)
= est(u) + l pp(u).

Clearly, l pp(u) ≤ n− 1. Soest(u) ≤ S(u) ≤ est(u) + n− 1. By induction,est(u) ≤ S(u) ≤
est(u) +n−1 for all tasksu of G.

The limited number of potential starting times will be used in the design of a dynamic-
programming algorithm. LetU be a prefix ofG. Then any feasible schedule for(G[U],µ,∞,D0)
can be extended to a feasible schedule for(G,µ,∞,D0) by assigning a starting time to the tasks
of G[V(G)\U]. This is the basis of the dynamic-programming algorithm.

Let Sbe a feasible schedule for(G[U],µ,∞,D0), such thatS(u) ≤ t−1 for all tasksu in U .
Let V be a set of sources ofG[V(G) \U]. ThenV is calledavailableat timet with respect to
(U,S) if

1. for all tasksu in V, all parents ofu are completed at or before timet;

2. for all tasksu in V, at most one parent ofu finishes at timet; and

3. for all tasksu in U , if u finishes at timet, thenV contains at most one child ofu.

95

Note that the availability ofV only depends on the completion times of the sinks ofG[U]. More-
over, if S is a feasible schedule for(G,µ,∞,D0), then for all timest ∈ {0, . . . ,maxu∈V(G)(S(u) +
µ(u))}, the set{u ∈ V(G) | S(u) = t} is available at timet with respect to(U,SU), where
U = {u∈V(G) | S(u)≤ t−1} andSU is the restriction ofS to U .

Partial (greedy) schedules for(G,µ,∞,D0) will be represented by tuples(U,S, t, `): t is an
integer, such thatest(u)≤ t ≤ est(u) + n−1 for some tasku of G, U is a prefix ofG andS is a
schedule for(G[U],µ,∞,D0) with tardiness̀ , such thatS(u)≤ t−1 for all tasks inU . The time
t denotes the next time at which a task ofG can be scheduled. Such a tuple(U,S, t, `) will be
called afeasible tupleof (G,µ,∞,D0).

Since partial (greedy) schedules for(G,µ,∞,D0) can be extended by assigning a starting
time to unscheduled tasks, we need a notion of extension of feasible tuples. Let(U,S, t, `) and
(U ′,S′, t ′, `′) be two feasible tuples of(G,µ,∞,D0). Then(U ′,S′, t ′, `′) is calledavailablewith
respect to(U,S, t, `) if

1. U ′ \U is available at timet with respect to(U,S);

2. t ′ ≥ t +1; and

3. `′ = max{`,maxu∈U ′\U (t +µ(u)−D0(u))}.

Let Av(U,S, t, `) denote the set of feasible tuples of(G,µ,∞,D0) that are available with respect
to (U,S, t, `). Note that ifU 6= V(G), thenAv(U,S, t, `) cannot be empty, since the feasible tuple
(U,S, t ′, `), such thatt ′= min{t ′′ ≥ t +1 | t ′′ ∈

⋃
u∈V(G){est(u), . . . ,est(u)+n−1}}, is an element

of Av(U,S, t, `).
Let S be a greedy schedule for(G,µ,∞,D0). Then for all timest, the tuple(Ut ,SUt , t, `t),

such thatUt = {u ∈ V(G) | S(u) ≤ t − 1}, SUt is the restriction ofS to Ut and `t is the tar-
diness ofSUt , is a feasible tuple of(G,µ,∞,D0). In addition, if Ut 6= V(G), then the feasi-
ble tuple(U,SU , t ′, `U), wheret ′ = min{t ′′ ≥ t + 1 | t ′′ ∈

⋃
u∈V(G){est(u), . . . ,est(u) + n−1}},

U = {u ∈ V(G) | S(u) ≤ t ′ − 1}, SU is the restriction ofS to U and`U is the tardiness ofSU ,
is available with respect to(Ut ,SUt , t, `t). So to construct a minimum-tardiness schedule for
(G,µ,∞,D0), we only need to consider feasible tuples of(G,µ,∞,D0).

Let (U,S, t, `) be a feasible tuple of(G,µ,∞,D0). DefineT(U,S, t, `) as the tardiness of
a minimum-tardiness schedule for(G,µ,∞,D0) that extendsS. Then for all feasible tuples
(U,S, t, `) of (G,µ,∞,D0), if U 6= V(G), then

T(U,S, t, `) = min{T(U ′,S′, t ′, `′) | (U ′,S′, t ′, `′) ∈ Av(U,S, t, `)},

and ifU = V(G), then

T(U,S, t, `) = `.

Note thatT(∅,∅,0,0) equals the tardiness of a minimum-tardiness schedule for(G,µ,∞,D0).

96

To implement the computation ofT(∅,∅, t, `), a tableTab is constructed.Tab contains
an entryTab[U,S, t, `] for all feasible tuples(U,S, t, `) of (G,µ,∞,D0). We start by setting
Tab[U,S, t, `] = ∞ for all feasible tuples(U,S, t, `) of (G,µ,∞,D0). Algorithm DYNAMIC PRO-
GRAMMING presented in Figure 7.7 constructs a tableTab, such thatTab[U,S, t, `] = T(U,S, t, `)
for all feasible tuples(U,S, t, `) of (G,µ,∞,D0). This table is used to construct a minimum-
tardiness schedule for(G,µ,∞,D0).

Algorithm DYNAMIC PROGRAMMING

Input. An instance(G,µ,∞,D0).
Output. A minimum-tardiness schedule for(G,µ,∞,D0).
1. for all feasible tuples(U,S, t, `) of (G,µ,∞,D0)
2. do Tab[U,S, t, `] := ∞
3. CONSTRUCT(∅,∅,0,0)
4. (U,S, t, `) := (∅,∅,0,0)
5. while U 6= V(G)
6. do let (U ′,S′, t ′, `′) = succ(U,S, t, `)
7. for u∈U ′ \U
8. do S(u) := t
9. (U,S, t, `) := (U ′,S′, t ′, `′)
10.
11. Procedure CONSTRUCT(U,S, t, `)
12. if Tab[U,S, t, `] = ∞
13. then if U = V(G)
14. then Tab[U,S, t, `] := `
15. else T := ∞
16. for (U ′,S′, t ′, `′) ∈ Av(U,S, t, `)
17. do CONSTRUCT(U ′,S′, t ′, `′)
18. if Tab[U ′,S′, t ′, `′]< T
19. then T := Tab[U ′,S′, t ′, `′]
20. succ(U,S, t, `) := (U ′,S′, t ′, `′)
21. Tab[U,S, t, `] := T

Figure 7.7. Algorithm DYNAMIC PROGRAMMING

Now we will prove that the schedules constructed by Algorithm DYNAMIC PROGRAMMING

are minimum-tardiness schedules.

Lemma 7.4.3. Let S be the schedule for(G,µ,∞,D0) constructed by AlgorithmDYNAMIC PRO-
GRAMMING. Then S is a minimum-tardiness schedule for(G,µ,∞,D0).

Proof. Let Tab be the table constructed by Algorithm DYNAMIC PROGRAMMING. We can
prove by induction thatTab[U,S, t, `] equalsT(U,S, t, `) for all feasible tuples(U,S, t, `) of
(G,µ,∞,D0). Let (U,S, t, `) be a feasible tuple of(G,µ,∞,D0). Assume by induction that
Tab[U ′,S′, t ′, `′] equalsT(U ′,S′, t ′, `′) for all feasible tuples(U ′,S′, t ′, `′) in Av(U,S, t, `).

97

If U = V(G), thenT(U,S, t, `) = `. In that case,Tab[U,S, t, `] = T(U,S, t, `). So we may as-
sume thatU 6=V(G). ThenT(U,S, t, `) equals min{T(U ′,S′, t ′, `′) | (U ′,S′, t ′, `′)∈Av(U,S, t, `)}.
Algorithm DYNAMIC PROGRAMMING determines an element(U ′,S′, t ′, `′) in Av(U,S, t, `) with
the smallest table entry. HenceTab[U,S, t, `] = T(U,S, t, `). By induction, Tab[U,S, t, `] =
T(U,S, t, `) for all feasible tuples(U,S, t, `) of (G,µ,∞,D0).

In addition, it is not difficult to see that for all feasible tuples(U,S, t, `) of (G,µ,∞,D0), if
U 6= V(G), thensucc(U,S, t, `) ∈ Av(U,S, t, `) andTab[succ(U,S, t, `)] = Tab[U,S, t, `]. Since
Tab[U,S, t, `] equalsT(U,S, t, `) for all feasible tuples(U,S, t, `) of (G,µ,∞,D0), Tab[∅,∅,0,0]
equals the tardiness of a minimum-tardiness schedule for(G,µ,∞,D0).

We inductively construct a sequence of feasible tuples(Ui ,Si , ti , `i) of (G,µ,∞,D0). Let
(U0,S0, t0, `0) = (∅,∅,0,0). If Ui 6= V(G), then let(Ui+1,Si+1, ti+1, `i+1) = succ(Ui ,Si , ti , `i).
Assume(Uk,Sk, tk, `k) is the last feasible tuple that can be constructed this way. ThenUk =V(G).
Then the scheduleSk is the schedule for(G,µ,∞,D0) constructed by Algorithm DYNAMIC PRO-
GRAMMING. Sk has tardiness̀k. BecauseT(Uk,Sk, tk, `k) = `k = T(∅,∅,0,0) andT(∅,∅,0,0)
is the tardiness of a minimum-tardiness schedule for(G,µ,∞,D0), Algorithm DYNAMIC PRO-
GRAMMING constructs a minimum-tardiness schedule for(G,µ,∞,D0).

The time complexity of Algorithm DYNAMIC PROGRAMMING can be determined as follows.
Consider an instance(G,µ,∞,D0), such thatG is a precedence graph of widthw. Like in the anal-
ysis of the time complexity of Algorithm UNIT EXECUTION TIMES DYNAMIC PROGRAMMING,
we will assume thatG is a transitive reduction.

AssumeC1, . . . ,Cw is a chain decomposition ofG, such thatCi = {ci,1, . . . ,ci,ki} for all i ∈
{1, . . . ,w}. From Lemma 7.1.4,C1, . . . ,Cw can be constructed inO(wn2 +e+√n) time.

Algorithm DYNAMIC PROGRAMMING computesT(U,S, t, `) for all feasible tuples(U,S, t, `)
of (G,µ,∞,D0). There is a greedy minimum-tardiness schedule for(G,µ,∞,D0). Hence we
need to consider at mostn2 values oft and at mostn2 values of`. A prefix U of G is a set⋃w

i=1{ci,1, . . . ,ci,bi}, such that 0≤ bi ≤ ki for all i ∈ {1, . . . ,w}. Because the availability of a
feasible tuple with respect to(U,S, t, `) only depends on the starting times of the sinks ofG[U],
S can be represented by a tuple(t1, . . . , tw), such thatti ∈

⋃w
i=1{est(ci,bi), . . . ,est(ci,bi) + n−1}

for all i ∈ {1, . . . ,w}. So a feasible tuple(U,S, t, `) of (G,µ,∞,D0) can be represented by a tuple
(b1, . . . ,bw, t1, . . . , tw, t, `), such that 0≤ bi ≤ ki and ti ∈

⋃w
i=1{est(ci,bi), . . . ,est(ci,bi) + n− 1}

for all i ∈ {1, . . . ,w}, t ∈
⋃

u∈V(G){est(u), . . . ,est(u) + n−1} and` ∈
⋃

u∈V(G){est(u) + µ(u)−
D0(u), . . . ,est(u) +n−1+µ(u)−D0(u)}. So the number of feasible tuples of(G,µ,∞,D0) is at
most

n4
w

∏
i=1

n(ki +1) ≤ nw+4
w

∏
i=1

2ki ≤ 2wnw+4
w

∏
i=1

n
w
≤ n2w+4.

For each feasible tuple(U,S, t, `) of (G,µ,∞,D0), Algorithm DYNAMIC PROGRAMMING de-
termines the setAv(U,S, t, `). An element ofAv(U,S, t, `) corresponds to a subset of the sources
of G[V(G) \U] and an integert ′, such thatest(u) ≤ t ′ ≤ est(u) + n− 1 for some tasku of G.
SinceG is a precedence graph of widthw and the sources of a precedence graph are incom-
parable,Av(U,S, t, `) contains at mostn22w elements. Since the availability of a feasible tuple

98

only depends on the starting times of the sinks and every task ofG has indegree and outde-
gree at mostw, checking whether a feasible tuple(U ′,S′, t, `) of (G,µ,∞,D0) is available with
respect to(U,S) takesO(w2) time. Consequently, Algorithm DYNAMIC PROGRAMMING uses
O(n2w22w) time for each feasible tuple(U,S, t, `) of (G,µ,∞,D0). So the tableTabis constructed
in O(w22wn2w+6) time.

Using table Tab, Algorithm DYNAMIC PROGRAMMING constructs minimum-tardiness
schedule for(G,µ,∞,D0). It is obvious that the construction of the schedule does not take
as much time as the construction of the table. As a result, Algorithm DYNAMIC PROGRAM-
MING constructs a minimum-tardiness for(G,µ,∞,D0) in O(w22wn2w+6) time. Since any fea-
sible schedule for(G,µ,∞,D0) is a feasible schedule for(G,µ,∞,D0) for all m≥ w, we have
proved the following result.

Theorem 7.4.4. There is an algorithm with an O(w22wn2w+6) time complexity that constructs
minimum-tardiness schedules for instances(G,µ,m,D0), such that G is a precedence graph of
width w and m≥ w.

For every fixedw, minimum-tardiness schedules can be constructed in polynomial time.

Theorem 7.4.5. There is an algorithm with an O(n2w+6) time complexity that constructs
minimum-tardiness schedules for instances(G,µ,m,D0), such that G is a precedence graph of
constant width w and m≥ w.

Proof. Obvious from Theorem 7.4.4.

7.5 Concluding remarks

In this chapter, it is proved that minimum-tardiness schedules for precedence graphs of bounded
width can be constructed in polynomial time. It is obvious that the dynamic-programming ap-
proaches presented in this chapter can be generalised in many ways. First of all, both algorithms
can be generalised for scheduling with other objective functions [91]. The same is true for
scheduling subject to{0,1}-communication delays and for scheduling with release dates and
deadlines. Both generalisations do not increase the time complexity.

The dynamic-programming algorithm for scheduling precedence graphs with unit-length
tasks can be generalised in other ways as well. For instance, if a task cannot be executed by every
processor or the communication delays may have length at least two, then there is a minimum-
tardiness schedule whose length is bounded by a polynomial in the number of tasks. Conse-
quently, the dynamic-programming algorithm presented in Section 7.2 can be generalised to a
polynomial-time algorithm for such problems. This is not true for the algorithm presented in Sec-
tion 7.4. This algorithm does not construct minimum-tardiness schedules for precedence graphs
of bounded width in polynomial time if the number of possible starting times in a minimum-
tardiness schedule is not bounded by a polynomial in the number of tasks. So this algorithm
cannot be used for scheduling preallocated tasks. In addition, Sotskov and Shakhlevich [83]
proved that constructing a minimum-length schedule on three processors for a job shop with

99

three jobs is an NP-hard optimisation problem. Hence it is unlikely that there is a polynomial-
time algorithm that constructs minimum-tardiness schedules for precedence graphs of constant
width w with preallocated tasks onm≥ w processors.

100

II Scheduling in the LogP model

101

102

8 The LogP model
Part II is concerned with scheduling in the LogP model. In this chapter, the LogP model is pre-
sented as a scheduling model. In Section 8.1, the communication requirements of the LogP model
are presented. The general problem instances for LogP scheduling are introduced in Section 8.2,
feasible schedules for such instances are presented in Section 8.3. In Section 8.4, previous results
concerning scheduling in the LogP model are presented. An outline of the second part of this
thesis is presented in Section 8.5.

8.1 Communication requirements
The LogP model [21] is a model of a distributed memory computer. It consists of a number
of identical processors connected by a communication network. Each processor has an unlim-
ited amount of local memory. The processors execute a computer program in an asynchronous
manner: one processor can execute a task while another is involved in a communication action.
Communication is modelled by message-passing: data is transferred between the processors by
sending messages through the communication network.

The LogP model captures the characteristics of a real parallel computer using four parame-
ters.

1. Thelatency Lis an upper bound on the time required to send a unit-length message from one
processor to another via the communication network. The latency depends on the diameter
of the network topology.

2. Theoverhead ois the amount of time during which a processor is involved in sending or
receiving a message consisting of one word. During this time, a processor cannot perform
other operations.

3. Thegap gis the minimum length of the delay between the starting times of two consecutive
message transmissions or two consecutive message receptions on the same processor.1

g is
the communicationbandwidthavailable for each processor.

4. P is thenumber of processors.

We will assume thatL, o andg are non-negative integers and thatP∈ {2,3, . . . ,∞}.
In addition, Culler et al. [21] make the following assumptions. The communication network

is assumed to be of finite capacity: at each time at mostdL
ge messages can be in transit from

or to any processor. If a processor attempts to send a message that causes such a bound to be
exceeded, then this processor stalls until the message can be sent without exceeding the bound of
dL

ge messages. Moreover, the time needed to transfer a message from one processor to another
is assumed to be exactlyL time units: any message arrives at its destination processor exactlyL
time units after it has been submitted to the communication network by its source processor.

We will consider acommon data semantics[25]: the children of a tasku all need the complete
result ofu. So the result of the execution of a task needs to be sent at most once to any other
processor even if a processor executes more than one child ofu.

103

The communication between processors in the LogP model works as follows. Consider two
different processorsp1 and p2. Assume processorp1 executes a tasku1 and the processorp2

a child u2 of u1. Then the result of the execution ofu1 must be transferred from processor
p1 to processorp2 beforeu2 can be executed. Assume the result ofu1 is contained in two
messages. Then two messages must be sent from processorp1 to processorp2. Figure 8.1 shows
the communication between processorsp1 and p2. Thesend operationsare represented bys1

ands2; r1 andr2 are thereceive operationscorresponding tos1 ands2, respectively.

u1 s1 s2

r1 r2 u2

L

og

og

Figure 8.1. Communication between two processors in the LogP model

The first message can be sent by processorp1 immediately after the completion ofu1. After
this message has been submitted to the communication network, exactlyL time units are used
to send it to processorp2 through the network. Then it can be received by processorp2. The
second message cannot be sent immediately after the first: there must be a delay of at leastg time
units between the starting times of two consecutive send operations on the same processor. The
second message can be receivedL time units after it has been sent. Note that the starting times
of the receive operations differ at leastg time units. After the second message has been received
by processorp2, u2 can be scheduled.

If another child ofu1 is scheduled afteru2 on processorp2, then no additional communica-
tion is necessary: this child can be executed immediately afteru2. This is due to the fact that the
result ofu1 has already been transferred from processorp1 to processorp2.

Under acommon data semantics[25], the children of a tasku all need the complete result
of u and the result of a task has to be sent to any processor at most once. Under anindependent
data semantics[25], each child of a tasku needs a separate part of the result ofu. Using an
independent data semantics, a separate set of messages has to be sent for every child ofu that
is not scheduled on the same processor asu. Note that if every task has at most one child, then
there is no difference between a common data semantics and an independent data semantics: if
a tasku has exactly one child, then it requires the complete result ofu. In addition, the problem
of scheduling outforests under an independent data semantics is the same as scheduling inforests
(under either an independent data semantics or a common data semantics).

8.2 Problem instances
The general scheduling instances introduced in Chapter 2 have to be extended to obtain LogP
scheduling instances. These instances are extended with the parameters of the LogP model and

104

the sizes of the results of the tasks. Hence we will consider instances(G,µ,c,L,o,g,P), such
that tuple(G,µ,c) describes a computer program and(L,o,g,P) contains the parameters of the
LogP model. In a tuple(G,µ,c,L,o,g,P), G is a precedence graph,µ : V(G)→ ZZ+ is a function
that assigns an execution length to every task ofG andc : V(G)→ IN is a function that specifies
the number of messages needed to send the result of a task ofG to another processor. Because
the result of a sink ofG is not sent to any processor, we will assume thatc(u) equals zero for
all sinksu of G. In the remainder of Part II, we will only consider instances(G,µ,c,L,o,g,P),
such thatc(u) ≥ 1 for every tasku of G that is not a sink ofG. All algorithms presented in
the following chapters can be easily generalised to scheduling instances(G,µ,c,L,o,g,P) with
arbitrary functionsc.

Like for scheduling in the UCT model, some special instances will be considered. If all tasks
have unit length, thenµ will be omitted. In addition, ifc(u) equals one for all tasksu of G with
outdegree at least one, thenc will be left out. So the instance(G,L,o,g,P) corresponds to the
instance(G,µ,c,L,o,g,P), such thatµ(u) = 1 for all tasksu of G andc(u) = 1 for all tasksu of
G with outdegree at least one andc(u) = 0 for all sinksu of G.

8.3 Feasible schedules
In the LogP model, processors communicate by sending messages to each other. For each task
u, messages have to be sent to all processors that execute a child ofu except the processor that
executesu. So the corresponding send and receive operations may be scheduled for all processors
but one. Since we assume a common data semantics, no message needs to be sent to the same
processor twice.

Consider a tasku1 and one of its childrenu2 that are scheduled on different processors.
Assumeu1 is executed on processorp1 and u2 on processorp2 6= p1. Thenc(u1) messages
mu,1, . . . ,mu,c(u) have to be sent from processorp1 to processorp2. Sending messagemu,i to
processorp2 will be represented by thesend operation su,p2,i . This send operation must be
executed on processorp1. The reception of messagemu,i is represented by areceive operation
ru,p2,i that must be executed by processorp2.

We will define two setsS(G,P,c) andR(G,P,c) containing the send and the receive opera-
tions, respectively.S(G,P,c) contains the send operationssu,p,i , such thatu is a task ofG that is
not a sink ofG, p∈ {1, . . . ,P} is a processor andi ∈ {1, . . . ,c(u)} is the index of a message ofu.
The setR(G,P,c) contains the receive operationsru,p,i , such thatu is a task ofG that is not a sink
of G, p∈ {1, . . . ,P} andi ∈ {1, . . . ,c(u)}. LetC(G,P,c) be the union ofS(G,P,c) andR(G,P,c),
the set ofcommunication operations. Each communication operationu in C(G,P,c) haslength
µ(u) = o.

Note that the communication operations have length zero ifo equals zero. Because there
must be a delay of at leastg time units between the starting times of two consecutive send oper-
ations or two consecutive receive operations on the same processor, the presence of zero-length
communication operations is not the same as the absence of communication operations.

A schedulefor an instance(G,µ,c,L,o,g,P) is a pair of functions(σ,π), such thatσ : V(G)∪
C(G,P,c)→ IN ∪{⊥} andπ : V(G)∪C(G,P,c)→ {1, . . . ,P}∪{⊥}. σ assigns a starting time

105

to every element ofV(G)∪C(G,P,c) and π assigns a processor to each operation inV(G)∪
C(G,P,c). The value⊥ denotes the starting time and processor of communication operations
that are not scheduled.

Definition 8.3.1. A schedule(σ,π) for (G,µ,c,L,o,g,P) is calledfeasibleif

1. for all tasksu of G, σ(u) 6=⊥ andπ(u) 6=⊥;

2. for all elementsu1 andu2 of V(G)∪C(G,P,c), if π(u1) = π(u2) 6=⊥, thenσ(u1)+µ(u1)≤
σ(u2) or σ(u2) +µ(u2)≤ σ(u1);

3. for all tasksu1 andu2 of G, if u1≺G u2, thenσ(u1) +µ(u1)≤ σ(u2);

4. for all tasksu1 andu2 of G, if u2 is a child ofu1 andπ(u1) 6= π(u2), then, for alli ≤ c(u1),
π(su1,π(u2),i) = π(u1), π(ru1,π(u2),i) = π(u2), σ(su1,π(u2),i) ≥ σ(u1) + µ(u1), σ(ru1,π(u2),i) =
σ(su1,π(u2),i) +o+L andσ(u2)≥ σ(ru1,π(u2),i) +o;

5. for all send operationss1 ands2 in S(G,P,c), if π(s1) = π(s2) 6=⊥, thenσ(s1) + g≤ σ(s2)
or σ(s2) +g≤ σ(s1);

6. for all receive operationsr1 andr2 in R(G,P,c), if π(r1) = π(r2) 6=⊥, thenσ(r1)+g≤σ(r2)
or σ(r2) +g≤ σ(r1); and

7. for all tasksu of G and all processorsp, if no children ofu are scheduled on processorp or
p = π(u), thenσ(su,p,i) =⊥ andπ(ru,p,i) =⊥.

The first constraint states that all tasks ofG have to be executed. The second and third
correspond to the constraints for feasible communication-free schedules: a processor cannot
execute two tasks at the same time and a task must be scheduled after its predecessors. The
fourth states that messages have to be sent if a task and one of its children are scheduled on
different processors. Moreover, it states that a message must be received exactlyL time units
after it has been submitted to the communication network. The fifth and sixth constraint ensure
that there is a delay of at leastg time units between two consecutive send or receive operations on
the same processor. Note that there need not be a delay between a send operation and a receive
operation on the same processor. The last constraint states that some communication operations
need not be executed.

In the definition of the LogP model [21], processors can send messages to other processors,
unless the number of messages in transit from or to one processor exceedsdL

ge, in which case
the sending processor stalls. The definition of feasible schedules in the LogP model states that
a receive operation must be executed exactlyL time units after the corresponding send oper-
ation has been completed. So each processor can send at most one message ing consecutive
time units and at most one message can be sent to the same processor ing consecutive time
units. Hence the number of messages in transit from or to any processor cannot be larger than
bL+max{o,g}−1

max{o,g} c ≤ dL−1
g e+1≤ dL

ge. So we do not need to consider stalling.

Constructing a schedule for an instance(G,µ,c,L,o,g,P) corresponds to assigning a start-
ing time and a processor to every task ofG and every communication operation inC(G,P,c).
Hence any algorithm that constructs feasible schedules for instances(G,µ,c,L,o,g,P) uses at

106

leastΘ(∑u∈V(G) c(u)) time. If cmax = maxu∈V(G) c(u) is not bounded by a polynomial inn and
logmaxu∈V(G) µ(u), then such an algorithm cannot have a polynomial time complexity.

In a well-structured computer program, the size of a result of a task is not very large. Hence
we may assume thatcmax is not exponentially large. In the rest of Part II, we do not want to
focus on the time needed to schedule the communication operations. Hence we will assume that
cmax is bounded by a constant. However, the time complexity of the algorithms presented in
the remaining chapters of Part II remains polynomial ifcmax is bounded by a polynomial inn
and logmaxu∈V(G) µ(u): the time complexity of the algorithms must be increased byO(ncmax)
to account for the assignment of a starting time and a processor to each communication operation.

This section will be concluded with two examples of feasible schedules. The first is a sched-
ule for the same graph as the one in Sections 2.1 and 3.4.

b1:2,1

c1:2,1 c2:3,1

d1:1,0

a1:1,1 a2:2,1

b2:1,1

Figure 8.2. An instance(G,µ,1,1,1,2)

b2

d1b1

0 1 2 3 4 5 6 7

a1

a2 c2

8 9 10 11 12 13

sa1

ra1 sb2

rb2

sc2

rc2c1

Figure 8.3. A feasible schedule for(G,µ,1,1,1,2)

Example 8.3.2. Consider the instance(G,µ,1,1,1,2) shown in Figure 8.2. Each task ofG is
labelled with its name, its execution length and the number of messages required to send its
result to another processor. The instance(G,µ,1,1,1,2) corresponds to the general scheduling
instance(G,µ,2) shown in Figure 2.1 and the UCT instance(G,µ,2,D) shown in Figure 3.1. A
feasible schedule for(G,µ,1,1,1,2) is shown in Figure 8.3.a1 anda2 are scheduled on different
processors.b2 is a common child ofa1 anda2. So the result ofa1 is sent to the second processor.
This is represented by taskssa1 andra1. Note that there is a delay of one time unit between the
completion time ofsa1 and the starting time ofra1. Sincea1 is the only parent ofb1 andb2 is

107

the only parent ofc2, these tasks can be scheduled without extra communication on the first and
second processor, respectively.c1 is a child ofb1 andb2. Because its parents are scheduled on
different processors, the result ofb2 is sent to the first processor beforec1 is executed. Similarly,
the result ofc2 is sent to the first processor befored1 starts.

The next example shows a schedule for an instance(G,µ,c,L,o,g,P) in whichg exceedso. It
shows that the idle time between consecutive communication operations can be used to execute
tasks.

x:1,3

y1:1,0 y2:1,0 y3:2,0 y5:7,0y4:3,0

Figure 8.4. An instance(G,µ,c,2,1,2,2)

x y1 y2

y3 y4

y5sx,1 sx,2 sx,3

rx,1 rx,2 rx,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.5. A feasible schedule for(G,µ,c,2,1,2,2)

Example 8.3.3. Consider the instance(G,µ,c,2,1,2,2) shown in Figure 8.4. It is not difficult
to see that the schedule shown in Figure 8.5 is a feasible schedule for(G,µ,c,2,1,2,2). Note that
y1 andy2 are scheduled between the send operations on processor 1. No task can be executed
between the receive operations on processor 2, since all three messages are needed to send the
result ofx to another processor. Although two children ofx are executed on the second processor,
only three send and receive operations are executed. This is due to the fact that we assume a
common data semantics: the complete result ofx is sent to the second processor and it has to be
sent to this processor exactly once. Under an independent data semantics, two separate sets of
messages must be sent to the second processor: a set of messages fory3 and one fory4.

Examples 8.3.2 and 8.3.3 show that schedules in the LogP model are very different from
communication-free schedules and from schedules in the UCT model. However, communication-
free scheduling and scheduling in the UCT model can be seen as special cases of scheduling
in the LogP model: if all tasks have unit length or the number of processors is unrestricted,
then any communication-free schedule can be viewed as a schedule in the LogP model with
parametersL = o = g = 0 and any schedule in the UCT model as a schedule in the LogP model
with parametersL = 1 ando = g = 0.

108

A feasible schedule(σ,π) for an instance(G,m,D) in the UCT model can be transformed
into a feasible schedule for the instance(G,c,1,0,0,m) in the LogP model by scheduling the
send and receive operations. For all tasksu of G, all processorsp 6= π(u) that execute a child of
u and alli ∈ {1, . . . ,c(u)}, send operationsu,p,i must be executed at timeσ(u) + 1 on processor
π(u) and receive operationru,p,i at timeσ(u) + 2 on processorp. Sinceg = o = 0, the resulting
schedule is a feasible schedule for(G,c,1,0,0,m). A feasible communication-free schedule for
an instance(G,µ,m), such thatµ(u) = 1 for all tasksu of G, can be transformed into a feasi-
ble schedule for the instance(G,c,0,0,0,m) in the LogP model in a similar way. Moreover,
communication-free schedules for instances(G,µ,∞) can be transformed into feasible sched-
ules for instances(G,µ,c,0,0,0,∞) and schedules in the UCT model for instances(G,µ,∞,D)
into feasible schedules for instances(G,µ,c,1,0,0,∞). Both transformations do not change the
starting time of any tasks, but they may schedule tasks on different processors.

8.4 Previous results
Like for many other models of parallel computation, little is known about scheduling in the LogP
model. A few algorithms have been presented that construct schedules in the LogP model for
common computer programs. These programs include sorting [1, 24], broadcast [54] and the
Fast Fourier Transform [20].

In addition, L̈owe and Zimmermann [63, 95] presented an algorithm that constructs schedules
for communication structures of PRAMs on an unrestricted number of processors. The length of
these schedules is at most 1+ 1

γ(G) times the length of a minimum-length schedule, whereγ(G)
is the grain size ofG. Löwe et al. [64] proved the same result for a generalisation of the LogP
model. Moreover, L̈owe and Zimmermann [63] presented an algorithm that constructs schedules
of length at most twice as long as a minimum-length schedule plus the duration of the sequential
communication operations.

Simultaneously to my research on scheduling in the LogP model, Kort and Trystram [55]
studied the problem of scheduling in the LogP model. They presented three algorithms for
scheduling send graphs under an independent data semantics [25]. They proved that ifg equals
o and all sinks or all messages have the same length, then a minimum-length schedule for a send
graph on an unrestricted number of processors can be constructed in polynomial time. Because
scheduling send graphs under an independent data semantics corresponds to scheduling receive
graphs (under a common data semantics), their result also shows that minimum-length schedules
for receive graphs on an unrestricted number of processors can be constructed in polynomial time
if g equalso and all sources have the same execution length or all message lengths are equal. In
addition, Kort and Trystram [55] showed that if all sinks have the same length and this length is
at least max{g,2o+L}, then a minimum-length schedule for a send graph on two processors can
be constructed in linear time.

8.5 Outline of the second part
The remaining chapters of Part II are concerned with the problem of constructing minimum-
length schedules in the LogP model. In the next chapter, we study the problem of scheduling

109

send graphs. It is proved that constructing minimum-length schedules for a send graph on an
unrestricted number of processors is a strongly NP-hard optimisation problem. A polynomial-
time algorithm is presented that constructs schedules for send graphs onP processors that are at
most twice as long as a minimum-length schedule onP processors. In addition, it is shown that
if all task lengths are equal, then a minimum-length schedule for a send graph onP processors
can be constructed in polynomial time.

In Chapter 10, two polynomial-time approximation algorithms for scheduling receive graphs
are presented. The first is a 3-approximation algorithm for scheduling receive graphs on an
unrestricted number of processors. For each constantk∈ ZZ+, the second algorithm can construct
schedules for receive graphs onP processors that are at most 3+ 1

k+1 times as long as minimum-
length schedules onP processors. Moreover, it is proved that if all task lengths are equal, then
a minimum-length schedule for a receive graph on an unrestricted number of processors can be
constructed in polynomial time.

In Chapter 11, two algorithms are presented that decompose inforests into subforests whose
sizes do not differ much. Using the decompositions constructed by the first algorithm, schedules
for d-ary inforests onP processors are constructed that have a length that is at most the sum of
d + 1− d2+d

d+P times the length of a minimum-length schedule onP processors and the duration
of d(P−1)−1 communication actions. The decompositions constructed by the other algorithm
can be used to construct schedules onP processors with a length that is at most the sum of
3− 6

P+2 times the length of a minimum-length schedule onP processors and the duration of
d(d−1)(P−1)−1 communication actions.

110

9 Send graphs
In this chapter, the problem of scheduling send graphs in the LogP model is studied. In Sec-
tion 9.1, it is proved that constructing minimum-length schedules for send graphs on an unre-
stricted number of processors is a strongly NP-hard optimisation problem. A polynomial-time
2-approximation algorithm for scheduling send graphs is presented in Section 9.2. In Section 9.3,
it is shown that if all task lengths are equal, then a minimum-length schedule for a send graph
can be constructed in polynomial time.

9.1 An NP-completeness result
In this section, we study the complexity of constructing minimum-length schedules for send
graphs in the LogP model. If the number of processors is restricted, then it is not difficult to prove
that this optimisation problem is NP-hard. Using a polynomial reduction from 3PARTITION, it
will be shown that constructing minimum-length schedules for send graphs on an unrestricted
number of processors is strongly NP-hard. 3PARTITION is defined as follows [33].

Problem. 3PARTITION

Instance. A setA = {a1, . . . ,a3m} of positive integers and an integerB, such that∑3m
i=1ai = mB

and 1
4B< ai <

1
2B for all i ∈ {1, . . . ,3m}.

Question. Are there pairwise disjoint subsetsA1, . . . ,Am of A, such that∑a∈Aj
a = B for all

j ∈ {1, . . . ,m}?

3PARTITION is a well-known strongly NP-complete decision problem [33]. SEND GRAPH

SCHEDULING is the following decision problem.

Problem. SEND GRAPH SCHEDULING

Instance. An instance(G,µ,L,o,g,∞), such thatG is a send graph and an integerD.
Question. Is there a feasible schedule for(G,µ,L,o,g,∞) of length at mostD?

Lemma 9.1.1 shows the existence of a polynomial reduction from 3PARTITION to SEND

GRAPH SCHEDULING. This reduction shows that SEND GRAPH SCHEDULINGis a strongly NP-
complete decision problem.

Lemma 9.1.1. There is a polynomial reduction from3PARTITION to SEND GRAPH SCHEDUL-
ING.

Proof. Let A = {a1, . . . ,a3m} and B be an instance of 3PARTITION. Construct an instance
(G,µ,L,o,g,∞) of SEND GRAPH SCHEDULINGas follows.G is a send graph with sourcex and
sinksy1, . . . ,y3m andz1, . . . ,zm+2. Let µ(x) = 1, µ(yi) = ai for all i ∈ {1, . . . ,3m}, µ(z1) = 3mB
and µ(zi) = 3mB+ (m+ 2− i)B for all i ∈ {2, . . . ,m+ 2}. Let c(x) = 1, c(yi) = 0 for all
i ∈ {1, . . . ,3m} andc(zi) = 0 for all i ∈ {1, . . . ,m+ 2}. Let L = 0, o = 0 andg = B. In ad-
dition, let D = 4mB+ 1. Now it is proved that there is a collection of pairwise disjoint subsets
A1, . . . ,Am of A, such that∑a∈Aj

a = B for all j ∈ {1, . . . ,m} if and only if there is a feasible
schedule for(G,µ,L,o,g,∞) of length at mostD.

111

(⇒) AssumeA1, . . . ,Am is a collection of pairwise disjoint subsets ofA, such that∑a∈Aj
a = B

for all j ∈ {1, . . . ,m}. ThenA1∪ ·· ·∪Am = A. A schedule(σ,π) for (G,µ,L,o,g,∞) can
be constructed as follows.x starts at time 0 on processor 1. For alli ∈ {2, . . . ,m+2}, send
operationsx,i,1 is executed at time(i−2)B+ 1 on processor 1 and receive operationrx,i,1

at time(i−2)B+1 on processori. Sinkz1 is scheduled at timemB+1 on processor 1 and
sinkzi at time(i−2)B+1 on processori for all i ∈ {2, . . . ,m+2}. For all j ∈ {1, . . . ,m},
defineYj = {yi | ai ∈ Aj}. Then∑y∈Yj

µ(y) = B for all j ∈ {1, . . . ,m}. The tasks ofYj are
scheduled without interruption from time(j−1)B+1 to time jB+1 on processor 1. Then
the sinksy1, . . . ,y3m are scheduled between the send operations on processor 1 and the
sinksz1, . . . ,zm+2 after the communication operations. Hence(σ,π) is a feasible schedule
for (G,µ,L,o,g,∞). Its length equals max1≤i≤m+2(σ(zi) + µ(zi)). z1 is completed at time
σ(z1)+µ(z1) = mB+1+3mB= 4mB+1. For alli ∈ {2, . . . ,m+2}, sinkzi finishes at time
σ(zi) + µ(zi) = (i−2)B+ 1+ 3mB+ (m+ 2− i)B = 4mB+ 1. Hence(σ,π) is a feasible
schedule for(G,µ,L,o,g,∞) of length at mostD.

(⇐) Assume(σ,π) is a feasible schedule for(G,µ,L,o,g,∞) of length at mostD. Thenπ(zi) 6=
π(zj) for all i 6= j. So the tasks ofG are scheduled on at leastm+ 2 processors. Assume
x is scheduled at time 0 on processor 1. There is a sinkzi that is scheduled afterm+ 1
receive operations. This task cannot start until timemg+ 1 = mB+ 1. Sinceµ(zi)≥ 3mB
for all i ∈ {1, . . . ,m+ 2}, we may assume thatzm+2 is scheduled at timemB+ 1. Since it
starts at timemB+1, send operations must be executed at times(i−2)B+1 on processor 1
for all i ∈ {2, . . . ,m+ 2}. We may assume that send operationsx,i,1 is scheduled at time
(i− 2)B+ 1 on processor 1 and receive operationrx,i,1 at the same time on processori.
Hence we may assume thatπ(zm+2) = m+ 2. The remaining sinksz1, . . . ,zm+1 must be
scheduled on processors 1, . . . ,m+ 1. Since the length of the sinksz2, . . . ,zm+1 is larger
than 3mB, z1 must be scheduled on processor 1 at timemB+ 1. Similarly, sinkzi must
be scheduled on processori at time(i−2)B+ 1 for all i ∈ {2, . . . ,m+ 1}. Then all sinks
z1, . . . ,zm+2 finish at time 4mB+ 1. A sink yi cannot be executed on processorj 6= 1
before sinkzj , becausezj is scheduled immediately after receive operationrx, j,1. So sinks
y1, . . . ,y3m are scheduled between the send operations on processor 1. There is a delay
of mB time units between the first and last send operation. Since the sum of the length
of the sinksy1, . . . ,y3m equalsmB, processor 1 is not idle before timeD. No sink yi

can start before a send operation and finish after it. For allj ∈ {2, . . . ,m+ 1}, define
Yj−1 = {yi | (j−2)B+1≤ σ(yi)< (j−1)B+1} andAj−1 = {ai | yi ∈Yj}. Then the sets
Aj are pairwise disjoint and∑a∈Aj

a = ∑y∈Yj
µ(y) = B for all j ∈ {1, . . . ,m}.

Lemma 9.1.1 shows that SEND GRAPH SCHEDULINGis a strongly NP-complete decision
and that constructing minimum-length schedules for send graphs on an unrestricted number of
processors is strongly NP-hard.

Theorem 9.1.2. Constructing minimum-length schedules for instances(G,µ,L,o,g,∞), such
that G is a send graph, is a stronglyNP-hard optimisation problem.

112

The reduction presented in the proof of Lemma 9.1.1 uses the fact thatg may exceedo. Using
a reduction from PARTITION [33], one can also prove that ifo≥ g ando≥ 1, then constructing
a minimum-length schedule for a send graph on an unrestricted number of processors is an NP-
hard optimisation problem. It is not clear whether constructing a minimum-length schedule for a
send graph on an unrestricted number of processors remains NP-hard ifo, g andc(x) are bounded
by a constant. If botho andg equal zero, then a minimum-length schedule for a send graph on
an unrestricted number of processors can be constructed in polynomial time [13].

9.2 A 2-approximation algorithm
In this section, a simple 2-approximation algorithm for scheduling send graphs in the LogP model
is presented. It is obvious that for a minimum-length schedule for an instance(G,µ,c,L,o,g,P),
such thatG is a send graph, the number of processors on which a task ofG is scheduled need not
exceed the number of sinks ofG. For each possible number of processorsm, the algorithm pre-
sented in this section constructs a schedule for(G,µ,c,L,o,g,P) that uses exactlym processors.
It will be proved that the shortest of these schedules is at most twice as long as a minimum-length
schedule for(G,µ,c,L,o,g,P).

Consider an instance(G,µ,c,L,o,g,P), such thatG is a send graph with sourcex and sinks
y1, . . . ,yn. There is a minimum-length schedule for(G,µ,c,L,o,g,P) that uses at most min{n,P}
processors. Letm≤min{n,P} be a positive integer. A feasible schedule for(G,µ,c,L,o,g,P)
will be called anm-processor schedulefor (G,µ,c,L,o,g,P) if there are exactlymprocessors on
which a task ofG is executed. More precisely, a feasible schedule(σ,π) for (G,µ,c,L,o,g,P) is
anm-processor schedule for(G,µ,c,L,o,g,P) if |{π(u) | u∈V(G)}|= m.

Consider an instance(G,µ,c,L,o,g,P), such thatG is a send graph with sourcex and sinks
y1, . . . ,yn. Algorithm SEND GRAPH SCHEDULINGshown in Figure 9.1 constructs anm-processor
schedule for(G,µ,c,L,o,g,P) as follows. The sourcex of G is scheduled at time 0 on processor 1
and a set ofc(x) send and receive operations is scheduled for each of the processors 2, . . . ,m. To
ensure that the constructed schedule is anm-processor schedule, a sink ofG is scheduled after
the last receive operation on each of these processors. The remaining sinks are scheduled by a
straightforward modification of Graham’s List scheduling algorithm [38, 39].

Example 9.2.1. Consider the instance(G,µ,c,2,1,2,∞) shown in Figure 9.2. For this instance,
Algorithm SEND GRAPH SCHEDULINGconstructs the 3-processor schedule shown in Figure 9.3.
x is scheduled on processor 1 at time 0. The result ofx is sent to processors 2 and 3. Sinky1

is scheduled after the last receive operation on processor 2. Similarly,y2 is scheduled after the
last receive operation on processor 3. The other sinks are scheduled after the send operations on
processor 1, aftery1 on processor 2, or aftery2 on processor 3.

Now we will prove that Algorithm SEND GRAPH SCHEDULINGcorrectly constructs feasible
m-processor schedules for send graphs.

Lemma 9.2.2. Let G be a send graph with source x and sinks y1, . . . ,yn. Let m≤ min{n,P}
be a positive integer. Let(σm,πm) be the schedule for(G,µ,c,L,o,g,P) constructed by

113

Algorithm SEND GRAPH SCHEDULING

Input. An instance(G,µ,c,L,o,g,P), such thatG is a send graph with sourcex and sinks
y1, . . . ,yn and a positive integerm≤min{n,P}.

Output. A feasiblem-processor schedule(σm,πm) for (G,µ,c,L,o,g,P).
1. σm(x) := 0
2. πm(x) := 1
3. idle(1) := µ(x)
4. for p := 2 to m
5. do idle(p) := 0
6. for j := 1 to c(x)
7. do σm(sx,p, j) := µ(x)+((p−2)c(x) + j−1)max{o,g}
8. πm(sx,p, j) := 1
9. idle(1) := σm(sx,p, j) +o
10. σm(rx,p, j) := µ(x)+((p−2)c(x) + j−1)max{o,g}+L +o
11. πm(rx,p, j) := p
12. idle(p) := σm(rx,p, j) +o
13. σm(yp−1) := idle(p)
14. πm(yp−1) := p
15. idle(p) := σm(yp−1) +µ(yp−1)
16. for i := m to n
17. do assumeidle(p) = min1≤ j≤midle(j)
18. σm(yi) := idle(p)
19. πm(yi) := p
20. idle(p) := idle(p) +µ(yi)

Figure 9.1. Algorithm SEND GRAPH SCHEDULING

Algorithm SEND GRAPH SCHEDULING. Then (σm,πm) is an m-processor schedule for
(G,µ,c,L,o,g,P).

Proof. x is executed at time 0 on processor 1. It is easy to see that all sinks ofG are sched-
uled afterx. For all processorsp∈ {2, . . . ,m} and all j ∈ {1, . . . ,c(x)}, send operationsx,p, j is
scheduled on processor 1 at timeµ(x) + ((p−2)c(x) + j−1)max{o,g} and the corresponding
receive operationrx,p, j on processorp at timeµ(x)+((p−2)c(x)+ j−1)max{o,g}+o+L. So
the send operations are scheduled afterx and there is a delay of max{o,g} time units between
the starting times of two consecutive send operations or two consecutive receive operations on
the same processor. Moreover, there is a delay of exactlyL time units between the completion
time of a send operation and the starting time of the corresponding receive operation. For all
processorsp∈ {2, . . . ,m}, a sink ofG is scheduled on processorp at the completion time of the
last receive operation on processorp. Clearly, the sinks ofG are scheduled after all communica-
tion operations and no processor executes two tasks at the same time. So(σm,πm) is a feasible
schedule for(G,µ,c,L,o,g,P). Because every processorp∈ {1, . . . ,m} executes at least one task
of G, (σm,πm) is anm-processor schedule for(G,µ,c,L,o,g,P).

114

x:1,2

y1:7,0 y2:3,0 y3:3,0 y5:1,0y4:2,0

Figure 9.2. An instance(G,µ,c,2,1,2,∞)

x s3,1s2,2 s3,2

r2,2r2,1

r3,1

s2,1

r3,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

y1

y2

y3 y4 y5

Figure 9.3. A 3-processor schedule constructed by Algorithm SEND GRAPH SCHEDULING

The time complexity of Algorithm SEND GRAPH SCHEDULINGcan be determined as fol-
lows. Consider an instance(G,µ,c,L,o,g,P), such thatG is a send graph, and a positive integer
m≤min{n,P}. Assigning a starting time and a processor to the source ofG, m−1 sinks ofG
and the communication operations takesO(n) time. If the processors are stored in a balanced
search tree ordered by non-decreasing first idle time, then for each of the remainingn−m+ 1
sinks ofG, O(logm) time is used to determine a starting time and a processor. HenceO(nlogn)
time is used to construct anm-processor schedule for(G,µ,c,L,o,g,P).

Lemma 9.2.3. For all instances(G,µ,c,L,o,g,P), such that G is a send graph and all posi-
tive integers m≤ min{n,P}, Algorithm SEND GRAPH SCHEDULINGconstructs a feasible m-
processor schedule for(G,µ,c,L,o,g,P) in O(nlogn) time.

Now it will be proved that them-processor schedules constructed by Algorithm SEND GRAPH

SCHEDULING are at most twice as long asm-processor schedules of minimum length. LetG
be a send graph with sourcex and sinksy1, . . . ,yn. Let m≤ min{n,P} be a positive integer.
Let (σm,πm) be them-processor schedule for(G,µ,c,L,o,g,P) constructed by Algorithm SEND

GRAPH SCHEDULING. Let `m be the length of(σm,πm) and`∗m the length of a minimum-length
m-processor schedule for(G,µ,c,L,o,g,P). In anym-processor schedule for(G,µ,c,L,o,g,P),
c(x) receive operations have to be executed onm− 1 processors. Hence ifm 6= 1, then every
m-processor schedule for(G,µ,c,L,o,g,P) has length at least

`∗m ≥ µ(x)+((m−1)c(x)−1)max{o,g}+2o+L.

Obviously, every 1-processor schedule for(G,µ,c,L,o,g,P) has length at leastµ(x)+ ∑n
i=1µ(yi)

and if m= 1, then Algorithm SEND GRAPH SCHEDULINGconstructs a schedule of this length.
Hence we will assume thatm≥ 2.

115

Assumey is a sink ofG that finishes at timèm. Theny has been assigned a starting time and
a processor in Lines 13 and 14 or in Lines 18 and 19 of Algorithm SEND GRAPH SCHEDULING.

Case 1. y has been assigned a starting time and a processor in Lines 13 and 14.
Assumeπ(y) = p. Thenp 6= 1 andy is scheduled immediately after receive operationrx,p,c(x).
This receive operation finishes at timeµ(x) + ((p− 1)c(x)− 1)max{o,g}+ 2o+ L ≤ `∗m.
Obviously,µ(y)≤ `∗m. So

` = σm(y) +µ(y)
= (µ(x)+((p−1)c(x)−1)max{o,g}+2o+L) +µ(y)
≤ 2`∗m.

Case 2. y has been assigned a starting time and a processor in Lines 18 and 19.
Assumey is scheduled on processorp. If p = 1, theny is scheduled afterx and the send
operations. Otherwise,y is scheduled after sinkyp−1. If processor 1 is idle at a timet, such
thatµ(x) + ((m−1)c(x)−1)max{o,g}+ o≤ t < σm(y), theny would have been scheduled
at time t on processor 1. Similarly, if a processorp′ ∈ {2, . . . ,m} is idle at a timet, such
thatµ(x)+((p′ −1)c(x)−1)max{o,g}+2o+L +µ(yp′−1)≤ t < σm(y), theny would have
been scheduled at timet on processorp′. Hence processor 1 is busy from timeµ(x) + ((m−
1)c(x)− 1)max{o,g}+ o until time σm(y) and each processorp′ ∈ {2, . . . ,m} from time
µ(x)+((p′ −1)c(x)−1)max{o,g}+2o+L +µ(yp′−1) until time σm(y).
No sink of G can be executed before a receive operation on a processorp ∈ {2, . . . ,m}.
Because the communication operations are executed as early as possible, the idle periods
in (σm,πm) on processors 2, . . . ,m before the first sink cannot be avoided. Hence the only
idle time in (σm,πm) that can be avoided is the idle time between the send operations on
processor 1. As a result,

`∗m ≥ 1
m(mσm(y) +µ(y)− ((m−1)c(x)−1)(max{o,g}−o))

= σm(y) + 1
mµ(y)− 1

m((m−1)c(x)−1)(max{o,g}−o).

In addition,`∗m≥ µ(y) and`∗m≥ µ(x) + ((m−1)c(x)−1)max{o,g}+ 2o+ L, since the last
receive operation on themth processor cannot be completed before this time. Consequently,

`m = σm(y) +µ(y)
≤ `∗m+(1− 1

m)µ(y) + 1
m(((m−1)c(x)−1)(max{o,g}−o))

≤ `∗m+(1− 1
m)`∗m+ 1

m`
∗
m

= 2`∗m.

Consequently,(σm,πm) is at most twice as long as a minimum-lengthm-processor schedule for
(G,µ,c,L,o,g,P).

For each positive integerm≤min{n,P}, Algorithm SEND GRAPH SCHEDULINGis used to
construct anm-processor schedule(σm,πm) for (G,µ,c,L,o,g,P) of length`m. Assume(σk,πk)
is the shortest of these schedules. Let`∗ = min1≤m≤min{n,P} `

∗
m. Assumè ∗ = `∗p. Then`k≤ `p≤

2`∗p = 2`∗. Hence we have proved the following result.

116

Theorem 9.2.4. There is an algorithm with an O(n2 logn) time complexity that constructs fea-
sible schedules for instances(G,µ,c,L,o,g,P), such that G is a send graph, with length at most
2`∗, where`∗ is the length of a minimum-length schedule for(G,µ,c,L,o,g,P).

9.3 A polynomial special case
In Section 9.1, it was shown that constructing minimum-length schedules for send graphs is a
strongly NP-hard optimisation problem. In Section 9.2, a 2-approximation algorithm was pre-
sented. In this section, it will be proved that if all task lengths are equal, then a minimum-length
schedule can be constructed in polynomial time.

Let G be a send graph. Consider an instance(G,µ,c,L,o,g,P), such thatµ(y) = µ for
all sourcesy of G. There is a minimum-length schedule for(G,µ,c,L,o,g,P) that uses at
most min{n,P} processors. A minimum-length schedule for(G,µ,c,L,o,g,P) is constructed
by computing the length of a minimum-lengthm-processor schedule for all positive integersm≤
min{n,P}. These lengths are used to construct a minimum-length schedule for(G,µ,c,L,o,g,P).

Let G be a send graph. Consider an instance(G,µ,c,L,o,g,P), such that all sinksy of G
have execution lengthµ(y) = µ. In anm-processor schedule for(G,µ,c,L,o,g,P), c(x) receive
operations have to be executed onm−1 processors and at least one sink is scheduled after the
last receive operation on each of these processors. HenceCm = (m− 1)c(x) send and receive
operations have to be scheduled. Because the length of a minimum-length 1-processor sched-
ule (G,µ,c,L,o,g,P) equalsµ(x) + nµ, we will only consider the computation of the length of
minimum-lengthm-processor schedules for(G,µ,c,L,o,g,P), wherem≥ 2.

First we will consider anm-processor schedule(σm,0,πm,0) for (G,µ,c,L,o,g,P), in which
the communication operations are executed as early as possible. We may assume thatx is sched-
uled at time 0 on processor 1 and that send operationssx,p,i are executed before send oper-
ationssx,p+1, j for all processorsp ∈ {2, . . . ,m− 1} and all i, j ∈ {1, . . . ,c(x)}. So we may
assume that for all processorsp ∈ {2, . . . ,m} and all i ∈ {1, . . . ,c(x)}, send operationsx,p,i

is scheduled at timeµ(x) + ((p− 2)c(x) + i− 1)max{o,g} and receive operationrx,p,i at time
µ(x)+((p−2)c(x) + i−1)max{o,g}+L +o. Hence the last send operation finishes at time

idlem,0(1) = µ(x)+((m−1)c(x)−1)max{o,g}+o.

Since we may assume that the sinks ofG are scheduled immediately after the last communication
operation on processors 2, . . . ,m, the first sink on processorp∈ {2, . . . ,m} finishes at time

idlem,0(p) = µ(x)+((p−1)c(x)−1)max{o,g}+L +2o+µ.

Now consider a minimum-lengthm-processor schedule(σm,πm) for (G,µ,c,L,o,g,P). We
may assume that the communication operations are scheduled in the same order as in(σm,0,πm,0).
The sinks ofG are scheduled after the communication operations or between the send operations.
There is a delay of at least max{o,g}− o time units between the completion time of a send
operation and the starting time of the next one. Letα(o,g) = max{o,g}−o

µ . If there is a delay of
max{o,g} time units between the starting times of two consecutive send operations, then at most

117

bα(o,g)c sinks can be scheduled between them. If at leastdα(o,g)e sinks are scheduled between
two consecutive send operations, then we may assume that processor 1 is not idle between these
send operations. It is not difficult to see that if more thandα(o,g)e sinks are scheduled between
two consecutive send operations, then one of them can be scheduled at a later time without
increasing the schedule length. Hence we may assume that at mostdα(o,g)e sinks are scheduled
between two consecutive send operations. In addition, we may assume that no sink is scheduled
before the first send operation on processor 1. So the total number of sinks scheduled between
the send operations of processor 1 is at most(Cm−1)dα(o,g)e.

If dα(o,g)e sinks are scheduled between two consecutive send operationss1 ands2, then the
starting times of these send operations differs exactlyo+dα(o,g)eµ. So compared to the starting
times ofs1 ands2 in (σm,0,πm,0), the starting time ofs2 is increased by

inc(o,g) = dα(o,g)eµ− (max{o,g}−o).

Assumek sinks are scheduled between the send operations on processor 1. We may assume
thatk≤ (Cm−1)dα(o,g)e andk≤ n−m+1. In addition, becausebα(o,g)c sinks can be sched-
uled between any pair of consecutive send operations without increasing the schedule length, we
may assume thatk≥min{n−m+1,(Cm−1)bα(o,g)c}. If k = k0 +(Cm−1)bα(o,g)c for some
non-negative integerk0, thendα(o,g)e sinks have to be scheduled before the lastk0 send oper-
ations andbα(o,g)c before the other send operations except the first. Ifk≤ (Cm−1)bα(o,g)c,
then at mostbα(o,g)c sinks have to be scheduled between any pair of consecutive send opera-
tions on processor 1. Hence the last send operation on processor 1 finishes

incm,k(1) = max{0,k− (Cm−1)bα(o,g)c} inc(o,g)

time units later than in(σm,0,πm,0). Moreover, the completion times of the first sinks on proces-
sors 2, . . . ,m are increased compared to their completion times in(σm,0,πm,0). The send opera-
tionssx,p,i are scheduled before send operationssx,p+1, j for all processorsp∈ {2, . . . ,m−1} and
all i, j ∈ {1, . . . ,c(x)}. Becausedα(o,g)e sinks are scheduled between the lastk0 pairs of con-
secutive send operations on processor 1, the completion times of the first sink on the lastd k0

c(x)e
processors are increased. The completion time of the first sink on processorp ∈ {2, . . . ,m} is
increased by

incm,k(p) = max{0,k− (Cm−1)bα(o,g)c− (m− p)c(x)} inc(o,g),

becausedα(o,g)e sinks are scheduled before the lastk0 = k− (Cm−1)bα(o,g)c send operations
on processor 1 and the(m− p)c(x) send operations scheduled on processor 1 after send operation
sx,p,c(x) does not increase the starting time of the first sink on processorp.

Let `m,k be the minimum length of anm-processor schedule for(G,µ,c,L,o,g,P) in which
k sinks are scheduled between the send operations on processor 1. Then`m,k is the length of
(σm,πm). So we may assume that the last send operation on processor 1 finishes at time

idlem,k(1) = idlem,0(1) + incm,k(1)

118

and that for all processorsp ∈ {2, . . . ,m}, the completion time of the first sink on processorp
equals

idlem,k(p) = idlem,0(p) + incm,k(p).

Note thatidlem,k(m)≥ idlem,k(p) for all processorsp∈ {1, . . . ,m}. Since the remainingn−k
sinks have to be scheduled after the send operations on processor 1 or after the first sink on a
processorp∈ {2, . . . ,m}, `m,k is the smallest integer̀, such that

` ≥ idlem,k(m) and
m

∑
p=1

⌊
`− idlem,k(p)

µ

⌋
≥ n−k.

Define

`m,k,0 = min{` ∈ Q | `≥ idlem,k(m)∧
m

∑
p=1

`− idlem,k(p)
µ

≥ n−k}.

Then`m,k,0 ≤ `m,k < `m,k,0 +µ. `m,k,0 can be computed inO(m) time:

`m,k,0 = max{idlem,k(m),
1
m

((n−k)µ+
m

∑
p=1

idlem,k(p))}.

If `m,k,0 = idlem,k(m), then`m,k,0 = `m,k = idlem,k(m). So we will assume that`m,k,0 6= idlem,k(m).
Then

`m,k = min{` ∈ ZZ |
m

∑
p=1

⌊
`− idlem,k(p)

µ

⌋
=

m

∑
p=1

`m,k,0− idlem,k(p)
µ

}.

Since`m,k,0 6= idlem,k(m), ∑m
p=1

`m,k,0−idlem,k(p)
µ ∈ IN . Define

D =
m

∑
p=1

`m,k,0− idlem,k(p)
µ

−
m

∑
p=1

⌊
`m,k,0− idlem,k(p)

µ

⌋
.

Note thatD ∈ IN andD≤m. Assume that for all processorsp∈ {1, . . . ,m},

`m,k,0− idlem,k(p) = qpµ+ r p,

such that 0≤ r p < µ. Then`m,k− `m,k,0 equals the smallestd ∈ Q, such that̀ m,k,0 + d ∈ ZZ and
for at leastD processorsp, r p + d ≥ µ. Then`m,k can be computed as follows. Select theDth

element in the list of processors ordered by non-increasingr p-values. Assume theDth processor
in this list is processorp0. Then

`m,k =
⌈
`m,k,0 +µ− r p0

⌉
.

Selecting theDth processor takesO(m) time [18], so`m,k can be computed inO(m) time.

119

Let `∗m = mink `m,k and`∗ = min1≤m≤min{n,P} `
∗
m. Then`∗m is the length of a minimum-length

m-processor schedule for(G,µ,c,L,o,g,P) and`∗ the length of a minimum-length schedule for
(G,µ,c,L,o,g,P). For each positive integerm≤min{n,P}, `∗m can be computed inO(n2) time,
becausec(x) is bounded by a constant. So`∗ can computed inO(n3) time. If `∗ equals`m,k,
thenmandk can be used to construct a minimum-length schedule in linear time. Hence we have
proved the following result.

Theorem 9.3.1. There is an algorithm with an O(n3) time complexity that constructs minimum-
length schedules for instances(G,µ,c,L,o,g,P), such that G is a send graph and there is a
positive integer µ, such that µ(y) = µ for all sinks y of G.

If max{o,g}− o is divisible by µ (for instance, ifg ≤ o or if µ = 1), then the length of
a minimum-length schedule for(G,µ,c,L,o,g,P) can be computed more efficiently. Assume
max{o,g}−o is divisible byµ. Thenα(o,g) ∈ IN . So we may assume that in a minimum-length
m-processor schedule for(G,µ,c,L,o,g,P), exactlykm = min{n,(Cm− 1)α(o,g)} sinks of G
are scheduled between the send operations on processor 1. Obviously,incm,km(p) = 0 for all
processorsp∈ {1, . . . ,m}. So in a minimum-lengthm-processor schedule for(G,µ,c,L,o,g,P),
the last send operation on processor 1 finishes at time

idlem,km(1) = idlem,0(1) = µ(x)+((m−1)c(x)−1)max{o,g}+o.

The completion time of the first sink on processorp∈ {2, . . . ,m} equals

idlem,km(p) = idlem,0(p) = µ(x)+((p−1)c(x)−1)max{o,g}+L +2o+µ.

Moreover,̀ ∗m is the smallest integer̀, such that

` ≥ idlem,km(m) and
m

∑
p=1

⌊
`− idlem,km(p)

µ

⌋
≥ n−km.

`∗m can be computed inO(n) time. Hencè ∗ = min1≤m≤min{n,P} `
∗
m can be computed inO(n2)

time. Given the number of processorsm, such that̀ ∗ = `∗m, a minimum-length schedule for
(G,µ,c,L,o,g,P) can be constructed in linear time. So we have proved the following result.

Theorem 9.3.2. There is an algorithm with an O(n2) time complexity that constructs minimum-
length schedules for instances(G,µ,c,L,o,g,P), such that G is a send graph and there is a
positive integer µ, such that µ(y) = µ for all sinks y of G andmax{o,g}−o is divisible by µ.

9.4 Concluding remarks
In this chapter, two polynomial-time algorithms were presented that construct schedules for send
graphs in the LogP model. Both algorithms use the knowledge of the order in which the send
operations have to be scheduled in a minimum-lengthm-processor schedule. For more general
classes of outforests, it is not obvious what the communication structure of minimum-length
schedules looks like. Hence even for instances(G,L,o,g,P), such thatG is an outtree of height

120

three, it is not known whether a minimum-length schedule can be constructed in polynomial
time.

Some results concerning scheduling in the UCT model can be generalised for scheduling
in the LogP model. Because the UCT model can be viewed as the LogP model with parameters
L = 1 ando= g= 0, the NP-completeness proof of Lenstra et al. [61] also shows that constructing
minimum-length schedules for instances(G,1,0,0,P), such thatG is an outtree, is an NP-hard
optimisation problem.

Some algorithms for scheduling subject to communication delays can be generalised for
scheduling in the LogP model. Chrétienne [12] presented an algorithm that constructs minimum-
length schedules for outforests on an unrestricted number of processors subject to small commu-
nication delays. It is not difficult to transform the schedules constructed by this algorithm into
feasible LogP schedules by introducing the communication operations. The resulting algorithm
constructs minimum-length schedules for instances(G,µ,L,0,g,∞), such thatG is a binary out-
forest andL ≤ µ(u) for all tasksu of G, and for instances(G,µ,L,0,0,∞), such thatG is an
outforest andL≤ µ(u) for all tasksu of G.

Munier [71] presented another algorithm that can be generalised for scheduling in the LogP
model by introducing the communication operations. The generalised algorithm constructs
schedules for instances(G,µ,c,L,0,0,∞), such thatG is an outforest, that are at most 2− 1

L+1
times as long as a minimum-length schedule for(G,µ,c,L,0,0,∞). Moreover, a more involved
generalisation constructs schedules for instances(G,µ,L,o,g,∞), such thatG is a d-ary out-
forest, that are at most 2+ (d + 1)max{o,g} times as long as a minimum-length schedule for
(G,µ,L,o,g,∞). Munier [71] also presented an algorithm that can be generalised to an algorithm
that constructs schedules for instances(G,c,L,0,0,P), such thatG is an outforest. The length of
the schedules constructed by this generalised algorithm are at most 1+ (1+ 1

P)(2− 1
L+1) times

as long as minimum-length schedules for(G,c,L,0,0,P).

Another possible generalisation is scheduling with a different kind of communication. The
communication in the schedules constructed by the algorithms presented in this chapter works
as follows: if the result of a tasku scheduled on processorp is needed by tasks scheduled on
processorsp1 andp2, then processorp must send the result ofu to processorsp1 andp2. How-
ever, the result ofu could also be sent from processorp1 to processorp2. If such communication
is allowed, then a schedule constructed by Algorithm SEND GRAPH SCHEDULINGshould start
with a minimum-length schedule for ac(x)-item broadcast operation. Ifc(x) equals one, then
such a schedule can be constructed in polynomial time [20, 54]. So if broadcast communication
is allowed and only one message is needed to send the result of the source to another proces-
sor, then schedules for send graphs that are at most twice as long as minimum-length schedules
can be constructed in polynomial time. Ifc(x) is at least two, then it is difficult to construct a
minimum-length broadcast schedule. In that case, it is not easy to construct schedules that are at
most twice as long as minimum-length schedules.

121

122

10 Receive graphs
In this chapter, we will consider the problem of scheduling receive graphs in the LogP model.
Note that this problem is equivalent to the problem of scheduling send graphs under an indepen-
dent data semantics. Like in Chapter 9, the structure of minimum-length schedules will be used
to construct good schedules for receive graphs.

In Section 10.1, it is shown that constructing minimum-length schedules for receive graphs
on an unrestricted number of processors is a strongly NP-hard optimisation problem. This is
proved using a polynomial reduction similar to the one presented in the proof of Lemma 9.1.1.

In Section 10.2, two polynomial-time approximation algorithms are presented. Both algo-
rithms assume thatg does not exceedo. The first approximation algorithm constructs schedules
for receive graphs on an unrestricted number of processors that are at most three times as long
as a minimum-length schedule on an unrestricted number of processors. In Section 10.2.2, it is
shown that a schedule onP processors that is at most 3+ 1

k+1 times as long as a minimum-length
schedule onP processors can be constructed in polynomial time for all constantk∈ ZZ+.

In Section 10.3, it is shown that if all task lengths are equal, then a minimum-length schedule
for a receive graph on an unrestricted number of processors can be constructed in polynomial
time. This is an improvement over the result of Kort and Trystram [55] who proved that a
minimum-length schedule for a receive graph on an unrestricted number of processors can be
constructed in polynomial time ifg does not exceedo and all sources have the same execution
length.

10.1 An NP-completeness result
In Chapter 9, it was proved that constructing minimum-length schedules for send graphs on an
unrestricted number of processors is a strongly NP-hard optimisation problem. This was proved
using the polynomial reduction from 3PARTITION presented in the proof of Lemma 9.1.1. Let
(G,µ,L,o,g,∞) be the instance constructed by this reduction for an instance of 3PARTITION. The
send graphG containsm+ 2 large tasks that must be scheduled on different processors. These
are the only tasks that are scheduled after the communication operations in a minimum-length
schedule for(G,µ,L,o,g,∞).

By reversing all arcs in send graphG, we obtain a receive graphG′. In a minimum-length
schedule for(G′,µ,L,o,g,∞), the large tasks are the only ones that are scheduled before the com-
munication operations. Hence the reversal of the minimum-length schedule for the send graph
can be viewed as a minimum-length schedule for the receive graph. Thus a similar reduction as
the one presented in the proof Lemma 9.1.1 can be used to prove that constructing minimum-
length schedules for receive graphs on an unrestricted number of processors is a strongly NP-hard
optimisation problem.

Theorem 10.1.1. Constructing minimum length schedules for instances(G,µ,L,o,g,∞), such
that G is a receive graph, is a stronglyNP-hard optimisation problem.

Theorem 10.1.1 shows that it is unlikely that a minimum-length schedule for an instance

123

(G,µ,c,L,o,g,∞), such thatG is a receive graph andg> o, can be constructed in polynomial
time. It is unknown whether minimum-length schedules on an unrestricted number of processors
can be constructed in polynomial time ifg does not exceedo. Kort and Trystram [55] proved that
if g≤ o and all tasks have the same length, then a minimum-length schedule for a receive graph
can be constructed in polynomial time.

10.2 Two approximation algorithms
In this section, two polynomial-time approximation algorithms for scheduling receive graphs in
the LogP model are presented. The first is presented in Section 10.2.1. It constructs schedules
for receive graphs on an unrestricted number of processors. The length of these schedules are at
most three times as long as a minimum-length schedule on an unrestricted number of processors.
The algorithm presented in Section 10.2.2 constructs schedules for receive graphs on a restricted
number of processors. It is shown that for each constantk ∈ ZZ+, a schedule onP processors
that is at most 3+ 1

k+1 times as long as a minimum-length schedule onP processors can be
constructed in polynomial time.

Both algorithms divide the set of sources of a receive graph into two sets. LetG be a re-
ceive graph. Consider an instance(G,µ,c,L,o,g,P). A sourcey of G is calledcommunication
intensiveif µ(y) ≤ c(y)o. Otherwise, it is calledcomputation intensive. Hence a sourcey of
G is communication intensive if the total duration of the send operations needed to send the
result ofy to another processor exceeds the execution length ofy. The sets of communication-
intensive and computation-intensive sources will be used to compute lower bounds on the length
of minimum-length schedules for receive graphs.

10.2.1 An unrestricted number of processors
In this section, an approximation algorithm for scheduling receive graphs on an unrestricted
number of processors is presented. For this algorithm, we will assume thatg does not exceedo.
The algorithm constructs schedules for receive graphs on an unrestricted number of processors
that are at most three times as long as a minimum-length schedule on an unrestricted number of
processors. The algorithm is similar to the 3-approximation algorithm of Hollerman et al. [46]
for scheduling send and receive graphs in a model of parallel computation that resembles the
LogP model.

We start by proving some properties of minimum-length schedules for receive graphs on an
unrestricted number of processors. The next lemma shows that if a source of a receive graphG is
not scheduled on the same processor as the sink ofG, then the receive operations corresponding
to this source may be scheduled after the sources ofG that are scheduled on the same processor
as the sink ofG. This result is not true ifg exceedso. If g exceedso, then some sources ofG
may have to be scheduled between the receive operations in a minimum-length schedule forG
on an unrestricted number of processors.

Lemma 10.2.1. Let G be a receive graph with sink x and sources y1, . . . ,yn. If g≤ o, then there
is a minimum-length schedule(σ,π) for (G,µ,c,L,o,g,∞), such that for all sources yi and yj of
G, if π(yi) = π(x) andπ(yj) 6= π(x), thenσ(yi)< σ(ryj ,π(x),k) for all k ≤ c(yj).

124

Proof. Assumeg ≤ o. Let (σ,π) be a minimum-length schedule for(G,µ,c,L,o,g,∞). We
may assume thatx is scheduled on processor 1. Letyi andyj be two sources ofG. Assume
π(yi) = 1 andπ(yj) 6= 1. Assumeσ(yi) > σ(ryj ,1,k) for somek≤ c(yj). We may assume that
σ(yi) = σ(ryj ,1,k)+o. Thenyi can be scheduled at timeσ(ryj ,1,k), ryj ,1,k at timeσ(ryj ,1,k)+µ(yi)
andsyj ,1,k at timeσ(ryj ,1,k)+µ(yi)−o−L without violating the feasibility of(σ,π) or increasing
its length. By repeating this step, a minimum-length schedule(σ,π) for (G,µ,c,L,o,g,∞) is
constructed in which no source ofG is scheduled after a receive operation on processorπ(x).

Lemma 10.2.2 proves that in a minimum-length schedule for a a receive graphG on an
unrestricted number of processors, all processors that do not execute the sink ofG need to execute
at most one task. Unlike Lemma 10.2.1, this result is true for scheduling with arbitraryo andg.

Lemma 10.2.2. Let G be a receive graph with sink x and sources y1, . . . ,yn. There is a minimum-
length schedule(σ,π) for (G,µ,c,L,o,g,∞), such that for all processors p6= π(x), at most one
source of G is executed on processor p.

Proof. Let (σ,π) be a minimum-length schedule for(G,µ,c,L,o,g,∞). We may assume thatx is
scheduled on processor 1. Assume two sourcesyi andyj of G are scheduled on processorp 6= 1.
Let processorp′ be a processor on which no task ofG is executed. Thenyj can be scheduled
on processorp′ at timeσ(yj) and send operationsyj ,1,k on the same processor at timeσ(syj ,1,k)
for all k≤ c(yj). This does not violate the feasibility of(σ,π) nor does it increase its length. By
repeating this step, we obtain a minimum-length schedule(σ,π) for (G,µ,c,L,o,g,∞), such that
at most one source ofG is executed on processorp for all processorsp 6= π(x).

The following lemma shows that there is a minimum-length schedule for a receive graphG
on an unrestricted number of processors, in which the receive operations corresponding to the
sources ofG with a small execution length are scheduled before the receive operations corre-
sponding to the sources ofG with a large execution length.

Lemma 10.2.3. Let G be a receive graph with sink x and sources y1, . . . ,yn. There is a minimum-
length schedule(σ,π) for (G,µ,c,L,o,g,∞), such that for all sources yi and yj of G, if µ(yi) <
µ(yj) andπ(yi),π(yj) 6= π(x), thenσ(ryi ,π(x),ki

)< σ(ryj ,π(x),kj
) for all ki ≤ c(yi) and kj ≤ c(yj).

Proof. Let (σ,π) be a minimum-length schedule for(G,µ,c,L,o,g,∞). We may assume thatx
is scheduled on processor 1. From Lemma 10.2.2, we may assume that all processorsp 6= 1
execute at most one task ofG. Let yi and yj be two sources ofG that are not scheduled on
processor 1. Assumeµ(yi) < µ(yj) andσ(yi) = σ(yj) = 0. Receive operationsryi ,1,k can start
at timeµ(yi) + L + o on processor 1, receive operationsryj ,1,k at timeµ(yj) + L + o. Assume
σ(ryj ,1,kj) < σ(ryi ,1,ki) for someki ≤ c(yi) and kj ≤ c(yj). Then ryj ,1,kj can be scheduled at
timeσ(ryi ,1,ki) andryi ,1,ki at timeσ(ryj ,1,kj). In addition, send operationssyi ,1,ki andsyj ,1,kj can be
scheduledL+o time units before receive operationsryi ,1,ki andryj ,1,kj , respectively. This does not
violate the feasibility of(σ,π) or increase its length, because all receive operations have lengtho.
By repeating this step, we obtain a minimum-length schedule(σ,π) for (G,µ,c,L,o,g,P), such
that for all sourcesyi andyj of G, if π(yi),π(yj) 6= π(x) andµ(yi)< µ(yj), then receive operation
ryi ,π(x),ki

is scheduled before receive operationryj ,π(x),kj
for all ki ≤ c(yi) andkj ≤ c(yj).

125

Lemma 10.2.4 shows that in a minimum-length schedule for a receive graphG on an unre-
stricted number of processors, all communication-intensive sources ofG may be scheduled on
the same processor as the sink ofG.

Lemma 10.2.4. Let G be a receive graph with sink x and sources y1, . . . ,yn. If g≤ o, then there
is a minimum-length schedule(σ,π) for (G,µ,c,L,o,g,∞), such that for all sources yi of G, if
µ(yi)≤ c(yi)o, thenπ(yi) = π(x).

Proof. Assumeg≤ o. Let (σ,π) be a minimum-length schedule for(G,µ,c,L,o,g,∞). We may
assume thatx is executed on processor 1. From Lemmas 10.2.1 and 10.2.3, we may assume that
the sources on processor 1 are scheduled before the receive operations of the sources scheduled
on another processor and that for each sourceyi of G, if yi is not scheduled on processor 1,
then the receive operationsryi ,1, j are scheduled on processor 1 without interruption. Assume
yi is a source ofG, such thatµ(yi) ≤ c(yi)o andπ(yi) 6= 1. We may assume thatσ(ryi ,1,1) <
· · · < σ(ryi ,1,c(yi)). Thenryi ,1,c(yi) finishes at timeσ(ryi ,1,1) + c(yi)o≥ σ(ryi ,1,1) + µ(yi). Then
yi can be scheduled at timeσ(ryi ,1,1) on processor 1 without increasing the length of(σ,π) or
violating its feasibility. By repeating this step, we obtain a minimum-length schedule(σ,π) for
(G,µ,c,L,o,g,∞), such that for all sourcesyi of G, if µ(yi) ≤ c(yi)o, thenyi is scheduled on
processorπ(x).

The next lemma proves that it can be determined in polynomial time whether the schedule
for a receive graphG in which all tasks ofG are scheduled on the same processor is a minimum-
length schedule forG on an unrestricted number of processors.

Lemma 10.2.5. Let G be a receive graph with sink x and sources y1, . . . ,yn. If g ≤ o, then
a schedule for(G,µ,c,L,o,g,∞) of length µ(x) + ∑n

i=1µ(yi) is a minimum-length schedule for
(G,µ,c,L,o,g,∞) if and only if for all sources yi of G, if µ(yi)> c(yi)o, then∑n

j=1µ(yj)≤ (c(yi)+
1)o+L +µ(yi).

Proof. Assumeg≤ o. We will prove that a minimum-length schedule for(G,µ,c,L,o,g,P) has
lengthµ(x)+∑n

i=1µ(yi) if and only if for all computation-intensive sourcesyi of G, ∑n
j=1µ(yj)≤

(c(yi) +1)o+L +µ(yi).

(⇒) Assume a minimum-length schedule for(G,µ,c,L,o,g,∞) has lengthµ(x) + ∑n
i=1µ(yi).

Let yi be a source ofG. Assumeµ(yi) > c(yi)o. It will be proved by contradiction that
∑n

j=1µ(yj)≤ (c(yi)+1)o+L+µ(yi). Suppose∑n
j=1µ(yj)> (c(yi)+1)o+L+µ(yi). Then

construct a schedule(σ,π) for (G,µ,c,L,o,g,∞) as follows. Tasksy1, . . . ,yi−1,yi+1, . . . ,yn

are scheduled without interruption on processor 1 from time 0 onward.yi is scheduled on
processor 2 at time 0. For allk≤ c(yi), receive operationryi ,1,k is scheduled on processor 1
at time max{∑ j 6=i µ(yj),µ(yi) + o+ L}+ (k−1)o. For allk≤ c(yi), send operationsyi ,1,k

is scheduled on processor 2 at timeσ(ryi ,1,k)− L− o. x is scheduled immediately after
ryi ,1,c(yi) on processor 1. Then(σ,π) is a feasible schedule for(G,µ,c,L,o,g,∞) of length

µ(x) +max{µ(yi)+(c(yi) +1)o+L,∑
j 6=i

µ(yj) +c(yi)o} < µ(x) +
n

∑
j=1

µ(yj).

126

Contradiction.

(⇐) Assume for all sourcesyi of G, if µ(yi) > c(yi)o, then∑n
j=1µ(yj) ≤ (c(yi) + 1)o+ L +

µ(yi). Let (σ,π) be a minimum-length schedule for(G,µ,c,L,o,g,∞). Since there is a
schedule for(G,µ,c,L,o,g,∞) of lengthµ(x) + ∑n

i=1µ(yi), the length of(σ,π) is at most
µ(x) + ∑n

i=1µ(yi). It is proved by contradiction that(σ,π) has lengthµ(x) + ∑n
i=1µ(yi).

Suppose the length of(σ,π) is less thanµ(x)+∑n
i=1µ(yi). Then at least one sourceyi of G

is not scheduled on the same processor asx. From Lemma 10.2.4, we may assume that all
communication-intensive sourcesyi of G are scheduled on processorπ(x). Hence we may
assume thatµ(yi)> c(yi)o. So(σ,π) has length at least

µ(yi)+(c(yi) +1)o+L +µ(x) ≥ µ(x) +
n

∑
i=1

µ(yi).

Contradiction.

The properties of minimum-length schedules proved in the preceding lemmas will be used to
compute upper bounds on the length of the schedules constructed by Algorithm UNRESTRICTED

RECEIVE GRAPH SCHEDULING. Consider an instance(G,µ,c,L,o,g,∞), such thatG is a receive
graph andg ≤ o. AssumeG has sinkx and sourcesy1, . . . ,yn. Algorithm UNRESTRICTED

RECEIVE GRAPH SCHEDULINGconstructs a schedule(σ,π) for (G,µ,c,L,o,g,∞) as follows.
The communication-intensive sources ofG and its sinkx are scheduled on processor 1. All
computation-intensive sources ofGare scheduled on a separate processor. The receive operations
are scheduled after the sources on processor 1, such that ifµ(yi) < µ(yj) andyi andyj are not
scheduled on processor 1, then receive operationsryi ,1,ki are executed before receive operations
ryj ,1,kj . Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGis presented in Figure 10.1.

Example 10.2.6. Consider the instance(G,µ,c,1,2,2,∞) shown in Figure 10.2. Algorithm UN-
RESTRICTED RECEIVE GRAPH SCHEDULINGconstructs a schedule for(G,µ,c,1,2,2,∞) as fol-
lows. The setY1 = {y1,y2,y3} contains the communication-intensive sources ofG. These tasks
are scheduled on processor 1 from time 0 onward. The other tasks are scheduled on a separate
processor. Since the execution length ofy4 is smaller than that ofy5, the communication op-
erations ofy4 are executed before those ofy5. Sink x is scheduled on processor 1 after the last
receive operation. So Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGconstructs the
schedule for(G,µ,c,1,2,2,∞) shown in Figure 10.3.

Now we will prove that Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGcor-
rectly constructs feasible schedules for receive graphs on an unrestricted number of processors.

Lemma 10.2.7. Let G be a receive graph. Let(σ,π) be the schedule for(G,µ,c,L,o,g,∞)
constructed by AlgorithmUNRESTRICTED RECEIVE GRAPH SCHEDULING. If g≤ o, then(σ,π)
is a feasible schedule for(G,µ,c,L,o,g,∞).

127

Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING

Input. An instance(G,µ,c,L,o,g,∞), such thatg≤ o andG is a receive graph with sinkx and
sourcesy1, . . . ,yn, such thatµ(y1)≤ ·· · ≤ µ(yn).

Output. A feasible schedule(σ,π) for (G,µ,c,L,o,g,∞).
1. idle(1) := 0
2. p := 1
3. for i := 1 to n
4. do if µ(yi)≤ c(yi)o
5. then σ(yi) := idle(1)
6. π(yi) := 1
7. idle(1) := idle(1) +µ(yi)
8. else p := p+1
9. σ(yi) := 0
10. π(yi) := p
11. for i := 2 to p
12. do let y be the sink ofG executed on processori
13. for j := 1 to c(y)
14. do σ(ry,1, j) := max{idle(1),µ(y) +L + jo}
15. π(ry,1, j) := 1
16. σ(sy,1, j) := σ(ry,1, j)−L−o
17. π(ry,1, j) := i
18. idle(1) := σ(ry,1, j) +o
19. σ(x) := idle(1)
20. π(x) := 1

Figure 10.1. Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING

Proof. Assumeg≤ o. Let (σ,π) be the schedule for(G,µ,c,L,o,g,∞) constructed by Algo-
rithm UNRESTRICTED RECEIVE GRAPH SCHEDULING. Obviously, processor 1 does not execute
two tasks or communication operations at the same time. For all sinksy of G, such thatπ(y) 6= 1,
and all j ∈ {1, . . . ,c(y)}, send operationsy,i, j starts after the completion time ofy. Because all
processorsp 6= 1 execute at most one task, no processor executes two tasks or communication
operations at the same time. Sinceg≤ o and no two communication operations are executed
on the same processor at the same time, there is a delay of at leastg time units between two
consecutive send or receive operations on the same processor. In addition, the receive operations
are scheduledL + o time units after the corresponding send operations. So(σ,π) is a feasible
schedule for(G,µ,c,L,o,g,∞).

The time complexity of Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGcan be
determined as follows. LetG be a receive graph. Sorting the sources ofG by non-decreasing
execution length takesO(nlogn) time. Clearly, assigning a starting time and a processor to the
tasks ofG and the communication operations takesO(n) time. It is easy to see that the remaining
operations takeO(n) time.

128

y1:1,3 y2:2,1 y3:3,2 y5:7,2

x:1,0

y4:3,1

Figure 10.2. An instance(G,µ,c,1,2,2,∞)

xy1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sy4,1,1

sy5,1,1 sy5,1,2

ry4,1,1 ry5,1,1 ry5,1,2

y5

y4

y2 y3

Figure 10.3. A feasible schedule for(G,µ,c,1,2,2,∞)

Lemma 10.2.8. For all instances(G,µ,c,L,o,g,∞), such that G is a receive graph and g≤ o,
Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGconstructs a feasible schedule for
(G,µ,c,L,o,g,∞) in O(nlogn) time.

Now we will prove that Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGis a 3-
approximation algorithm. LetG be a receive graph with sinkx and sourcesy1, . . . ,yn, such that
µ(y1)≤ ·· · ≤ µ(yn). Assumeg≤ o. Let (σ,π) be the schedule for(G,µ,c,L,o,g,∞) constructed
by Algorithm UNRESTRICTED RECEIVE GRAPH SCHEDULING. Let yi1, . . . ,yik be the sources
of G that are not scheduled on processor 1. Thenµ(yi j) > c(yi j)o for all j ≤ k. We will assume
that i1 ≤ ·· · ≤ ik. Let yik+1, . . . ,yin be the sources ofG scheduled on processor 1, such that
ik+1≤ ·· · ≤ in.

Thenx is scheduled immediately after receive operationryik
,1,c(yik

). If processor 1 is not idle
before timeσ(x), then(σ,π) has length

n

∑
j=k+1

µ(yi j) +
k

∑
j=1

c(yi j)o+µ(x).

Otherwise, there is aj ∈ {1, . . . ,k}, such that receive operationryi j ,1,1
starts at timeµ(yi j) +

L + o and processor 1 executes receive operationsryil
,1,i , such thatl ≥ j andi ≤ c(yil), without

interruption from timeµ(yil) +L +o until time σ(x). In this case,(σ,π) has length

µ(yi j) +
k

∑
l= j

c(yil)o+L +o+µ(x).

129

Let ` the length of(σ,π). Then

` ≤ µ(x) +max{
k

∑
j=1

c(yi j)o+
n

∑
j=k+1

µ(yi j), max
1≤ j≤k

(µ(yi j) +
k

∑
l= j

c(yil)o+L +o)}.

Let `∗ be the length of a minimum-length schedule for(G,µ,c,L,o,g,∞). Clearly,`∗ ≥µ(x)+
µ(y) for all sourcesy of G. In addition, for each sourceyi of G, eitheryi itself or c(yi) receive
operations are scheduled on the same processor asx in a feasible schedule for(G,µ,c,L,o,g,∞).
Hence

`∗ ≥ µ(x) +
n

∑
i=1

min{µ(yi),c(yi)o}.

Consequently,

` ≤ µ(x) +max{∑k
j=1c(yi j)o+ ∑n

j=k+1 µ(yi j),max1≤ j≤k(µ(yi j) + ∑k
l= j c(yil)o+L +o)}

≤ max{`∗, `∗+ `∗+L +o}
= 2`∗+L +o.

If the length of a minimum-length schedule for(G,µ,c,L,o,g,∞) equalsµ(x) + ∑n
j=1µ(yj), then

this can be checked in linear time using Lemma 10.2.5. In that case, we can construct a minimum-
length schedule for(G,µ,c,L,o,g,∞) by scheduling all tasks on one processor. Otherwise, in a
minimum-length schedule for(G,µ,c,L,o,g,∞), there is a sink that is scheduled on a different
processor thanx. Hence`∗ ≥ µ(x) + 2o+ L and` ≤ 2`∗+ L + o≤ 3`∗. Hence we have proved
the following result.

Theorem 10.2.9. There is an algorithm with an O(nlogn) time complexity that constructs fea-
sible schedules for instances(G,µ,c,L,o,g,∞), such that G is a receive graph and g≤ o, with
length at most3`∗, where`∗ is the length of a minimum-length schedule for(G,µ,c,L,o,g,∞).

Note that ifL ando are bounded by a constant, then Algorithm UNRESTRICTED RECEIVE

GRAPH SCHEDULINGis an approximation algorithm with asymptotic approximation ratio two.

10.2.2 A restricted number of processors
In this section, an approximation algorithm is presented that constructs schedules for receive
graphs on a restricted number of processors. Consider an instance(G,µ,c,L,o,g,P), such thatG
is a receive graph,g≤ o andP 6= ∞. Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING

constructs a schedule for(G,µ,c,L,o,g,P). Like Algorithm UNRESTRICTED RECEIVE GRAPH

SCHEDULING, the communication-intensive sources ofG will be scheduled on the same pro-
cessor as its sink, the other sources ofG can be scheduled on any processor. A schedule for
(G,µ,c,L,o,g,P) is constructed by extending a feasible schedule for the subgraph ofG induced
by the set of computation-intensive sources ofG. Algorithm RESTRICTED RECEIVE GRAPH

SCHEDULINGis presented in Figure 10.4.

130

Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING

Input. An instance(G,µ,c,L,o,g,P), such thatg≤ o, P 6= ∞ andG is a receive graph with sink
x and sourcesy1, . . . ,yn.

Output. A feasible schedule(σ,π) for (G,µ,c,L,o,g,P).
1. Y1 := {yi | µ(yi)≤ c(yi)o}
2. Y2 := {yi | µ(yi)> c(yi)o}
3. let(σ,π) be a feasible schedule for(G[Y2],µ,c,L,o,g,P)
4. for p := 1 to P
5. do idle(p) := max{σ(y) +µ(y) | y∈Y2∧π(y) = p}
6. Y2,p := {y∈Y2 | π(y) = p}
7. assumeidle(1)≤ ·· · ≤ idle(P)
8. for y∈Y1

9. do σ(y) := idle(1)
10. idle(1) := idle(1) +µ(y)
11. for p := 2 to P
12. do for y∈Y2,p

13. do for j := 1 to c(y)
14. do σ(ry,1, j) := max{idle(1), idle(p) +L + jo}
15. π(ry,1, j) := 1
16. σ(sy,1, j) := σ(ry,1, j)−L−o
17. π(sy,1, j) := p
18. idle(1) := σ(ry,1, j) +o
19. idle(p) := σ(sy,1, j) +o
20. σ(x) := idle(1)
21. π(x) := 1

Figure 10.4. Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING

Example 10.2.10. Consider the instance(G,µ,c,1,2,2,2) shown in Figure 10.5. Apart from the
number of processors, this instance equals the one shown in Figure 10.2. The setY1 = {y1,y2,y3}
contains the communication-intensive sources ofG. These tasks are scheduled on processor 1.
Assume Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGstarts with a schedule in which
y4 starts at time 0 on processor 1 andy5 at time 0 on processor 2. Theny1, y2 and y3 are
scheduled on the same processor asy4, because the execution length ofy4 is smaller than that of
y5. Receive operationsry5,1,i are scheduled aftery3 on processor 2.x is executed after the last
receive operation on processor 1. So Algorithm RESTRICTED RECEIVE GRAPH SCHEDULING

constructs the schedule for(G,µ,c,1,2,2,2) shown in Figure 10.6.

Now we will prove that Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGcorrectly
constructs feasible schedules for receive graphs on a restricted number of processors.

Lemma 10.2.11. Let G be a receive graph. Let(σ,π) be the schedule for(G,µ,c,L,o,g,P)
constructed by AlgorithmRESTRICTED RECEIVE GRAPH SCHEDULING. If g≤ o, then(σ,π) is
a feasible schedule for(G,µ,c,L,o,g,P).

131

y1:1,3 y2:2,1 y3:3,2 y5:7,2

x:1,0

y4:3,1

Figure 10.5. An instance(G,µ,c,1,2,2,2)

xy1 y2 y3

y5

y4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sy5,1,1 sy5,1,2

ry5,1,1 ry5,1,2

Figure 10.6. A feasible schedule for(G,µ,c,1,2,2,2)

Proof. Assumeg≤ o andG has sinkx and sourcesy1, . . . ,yn. DefineY1 = {yi | µ(yi) ≤ c(yi)o}
andY2 = {yi | µ(yi) > c(yi)o}. Let (σ0,π0) be a feasible schedule for(G[Y2],µ,c,L,o,g,P).
Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGextends(σ0,π0) to a schedule(σ,π)
for (G,µ,c,L,o,g,P). It is obvious that no processor executes two tasks at the same time. It is
easy to see that there is a delay of exactlyL time units between the completion time of a send
operation and the starting time of the corresponding receive operation. Becauseg≤ o and all
receive operations are scheduled on processor 1, there is a delay of at leastg time units between
a pair of consecutive send and receive operations on the same processor. So(σ,π) is a feasible
schedule for(G,µ,c,L,o,g,P).

The time complexity of Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGcan be
determined as follows. LetG be a receive graph with sinkx and sourcesy1, . . . ,yn. Let
Y1 = {yi | µ(yi) ≤ c(yi)o} andY2 = {yi | µ(yi) > c(yi)o}. Y1 andY2 can be computed inO(n)
time. Let (σ0,π0) be a feasible schedule for(G[Y2],µ,c,L,o,g,P). Sorting the processors by
non-decreasing maximum completion time takesO(PlogP) time. Assigning a starting time and
a processor to every task ofY1 takesO(n) time. It is easy to see that the starting times and
processors for the communication operations can be assigned in linear time as well. So Algo-
rithm UNRESTRICTED RECEIVE GRAPH SCHEDULINGusesO(nlogn) time apart from the time
needed to construct(σ0,π0).

Lemma 10.2.12. For all instances(G,µ,c,L,o,g,P), such that G is a receive graph and g≤ o,
if a feasible schedule for n incomparable tasks can be constructed in O(T(n)) time, then
Algorithm RESTRICTED RECEIVE GRAPH SCHEDULINGconstructs a feasible schedule for
(G,µ,c,L,o,g,P) in O(T(n) +nlogn) time.

Consider an instance(G,µ,c,L,o,g,P), such thatg≤ o andG is a receive graph with sink
x and sourcesy1, . . . ,yn. DefineY1 = {yi | µ(yi) ≤ c(yi)o} andY2 = {yi | µ(yi) > c(yi)o}. Let

132

(σ0,π0) be a feasible schedule for(G[Y2],µ,c,L,o,g,P). Assume Algorithm RESTRICTED RE-
CEIVE GRAPH SCHEDULINGextends(σ0,π0) to a feasible schedule(σ,π) for (G,µ,c,L,o,g,P).
Let `∗ be the length of a minimum-length schedule for(G,µ,c,L,o,g,P) and ` the length of
(σ,π). Because any schedule on a restricted number of processors can be viewed as a schedule
on an unrestricted number of processors,

`∗ ≥ µ(x) +
n

∑
i=1

min{µ(yi),c(yi)o} = µ(x) + ∑
y∈Y1

µ(y) + ∑
y∈Y2

c(y)o.

In addition,`∗ ≥ µ(x) + 1
P ∑n

i=1µ(yi). If the schedule in which all tasks are scheduled on one
processor is not of minimum length, then`∗ ≥ µ(x) +L +2o.

Let y∗ be a source ofY2 with a maximum completion time. Then its completion time equals
the length of(σ0,π0). It is possible that every task inY1 is scheduled aftery∗. Hence

` ≤ σ(y∗) +µ(y∗) + ∑
y∈Y1

µ(y) + ∑
y∈Y2:π(y)6=1

c(y)o+L +o+µ(x).

Assume`0 is the length of(σ0,π0) and`∗0 is the length of a minimum-length schedule for
(G[Y2],µ,c,L,o,g,P). Clearly,`∗0 < `∗. Assumè 0≤ ρ`∗0. Then

` ≤ σ(y∗) +µ(y∗) + ∑y∈Y1
µ(y) + ∑y∈Y2:π(y)6=1c(y)o+L +o+µ(x)

≤ ρ`∗0 + `∗+L +o

≤ (ρ +1)`∗+L +o.

So if `∗ > µ(x) + ∑n
i=1µ(yi), then` ≤ (ρ + 2)`∗. If the schedule in which all tasks are executed

on one processor is of minimum length, then its length is at most`. If (σ,π) is longer than
µ(x)+∑n

i=1µ(yi), then replace(σ,π) by the schedule in which all tasks are executed by the same
processor. Then this schedule is at mostρ + 2 times as long as a minimum-length schedule for
(G,µ,c,L,o,g,P).

Note that if L and o are bounded by a constant, then Algorithm RESTRICTED RECEIVE

GRAPH SCHEDULINGis an approximation algorithm with asymptotic approximation ratioρ+1.

There are many algorithms for scheduling incomparable tasks onP identical processors. Us-
ing Graham’s List scheduling algorithm [38, 39], we obtain an algorithm that constructs sched-
ules onP processors that are at most 4− 2

P times as long as a minimum-length schedule onP
processors [92].

By using different algorithms, we obtain better approximation bounds. Coffman et al. [14]
presented Algorithm MULTIFIT . k iterations of this algorithm construct schedules onP proces-
sors that are at most13

11 + 2−k time as long as a minimum-length schedule onP processors [94].
k iterations of Algorithm MULTIFIT takeO(nlogn+ knlogP) time. Hence we have proved the
following result.

Theorem 10.2.13. For all constant k∈ ZZ+, there is an algorithm with an O(nlogn) time com-
plexity that constructs feasible schedules for instances(G,µ,c,L,o,g,P), such that G is a receive
graph and g≤ o, with length at most(35

11 + 2−k)`∗, where`∗ is the length of a minimum-length
schedule for(G,µ,c,L,o,g,P).

133

Hochbaum and Shmoys [45] presented a polynomial approximation scheme for scheduling
incomparable tasks on identical processors. For eachk∈ ZZ+, a schedule onP processors that is
at most 1+ 1

k+1 times as long as the length of a minimum-length schedule onP processors can

be constructed inO(((k+ 1)n)(k+1) log(k+1)) time using this approximation scheme [62]. Hence
we have proved the following result.

Theorem 10.2.14. For all constant k∈ ZZ+, there is an algorithm with an O(n(k+1) log(k+1)) time
complexity that constructs feasible schedules for instances(G,µ,c,L,o,g,P), such that G is a
receive graph and g≤ o, with length at most(3+ 1

k+1)`∗, where`∗ is the length of a minimum-
length schedule for(G,µ,c,L,o,g,P).

10.3 A polynomial special case
In Section 10.2, two approximation algorithms for scheduling receive graphs were presented.
Constructing minimum-length schedules for receive graphs on an unrestricted number of proces-
sors is a strongly NP-hard optimisation problem. Kort and Trystram showed that ifg does not
exceedo and all sources of a receive graph have the same execution length, then a minimum-
length schedule for this receive graph on an unrestricted number of processors can be constructed
in polynomial time. In this section, this result is improved: it is proved that if all sources have the
same execution length, then a minimum-length schedule on an unrestricted number of processors
can be constructed in polynomial time even ifg exceedso.

Consider an instance(G,µ,c,L,o,g,∞), such thatG is a receive graph with sinkx and
sourcesy1, . . . ,yn. Assumeµ(y1) = · · · = µ(yn) = µ. There is a minimum-length schedule
for (G,µ,c,L,o,g,∞) in which the tasks and the communication operations are scheduled on
at mostn processors. From Lemma 10.2.2, we may assume that all processors, expect that
one that executesx, execute at most one source ofG. To obtain a minimum-length schedule
for (G,µ,c,L,o,g,∞), the sourcesy with minimum c(y) should be scheduled on another pro-
cessor thanx. Assumec(y1) ≤ ·· · ≤ c(yn). In a minimum-lengthm-processor schedule for
(G,µ,c,L,o,g,∞), x is scheduled on processor 1,yi on processori + 1 for all i ≤m−1 and the
remaining sources ofG on processor 1. Sourcesy1, . . . ,ym−1 are completed at timeµ. Then
Cm = ∑m−1

i=1 c(yi) receive operations have to be scheduled on processor 1.
The sinksy1, . . . ,yn have to be scheduled before the first receive operation or between the

receive operations on processor 1. There is a delay of least max{o,g}− o time units between
two consecutive receive operations on processor 1. Letα(o,g) = max{o,g}−o

µ . Because there is
a delay of at least max{o,g}−o time units between a pair of consecutive receive operations, at
leastbα(o,g)c sources can be scheduled between a pair of consecutive receive operations. If at
leastdα(o,g)e sources are scheduled between two consecutive receive operations, then we may
assume that processor 1 is not idle between these receive operations. We may assume that at
mostdα(o,g)e sources are scheduled between two consecutive receive operations: if more than
dα(o,g)e sources are scheduled between two consecutive receive operations, then the first of
these receive operations can be scheduled at a later time without increasing the schedule length.

The length of anm-processor schedule depends on the number of sources executed between
the receive operations. Letk be this number. We may assume thatk≤ (Cm−1)dα(o,g)e andk≤

134

n−m+ 1. Let `m,k be the minimum length of anm-processor schedule for(G,µ,c,L,o,g,P) in
whichk sources are scheduled between the receive operations. In such anm-processor schedule,
the first receive operation can start at time

max{(n−k− (m−1))µ,µ+L +o}.

If dα(o,g)e sources are scheduled between two consecutive receive operations, then the starting
times of these receive operations differdα(o,g)eµ+o. This is

inc(o,g) = dα(o,g)eµ− (max{o,g}−o)

more than when the receive operations are scheduled with as little delay as possible. So each
time dα(o,g)e sources are scheduled between two consecutive receive operations, the starting
time ofx increases byinc(o,g).

Hencè m,k equals

max{(n−k− (m−1))µ,µ+L +o}+(Cm−1)max{o,g}+o+ incm,k(o,g) +µ(x),

whereincm,k(o,g) = max{0,k− (Cm−1)bα(o,g)c}inc(o,g).

Let `∗m = mink `m,k. Then`∗m is the length of a minimum-lengthm-processor schedule for
(G,µ,c,L,o,g,P). Sincec(yi) is bounded by a constant for all sourcesyi of G, `∗m can be com-
puted inO(n) time. The length̀ ∗ of a minimum-length schedule for(G,µ,c,L,o,g,P) equals
min1≤m≤n`

∗
m. This can be computed inO(n2) time. If `∗ = `m,k, thenm andk can be used to

construct a schedule of length`∗ in linear time. Hence we have proved the following result.

Theorem 10.3.1. There is an algorithm with an O(n2) time complexity that constructs minimum-
length schedules for instances(G,µ,c,L,o,g,∞), such that G is a receive graph and there is a
positive integer µ, such that µ(y) = µ for all sources y of G.

If max{o,g}−o is divisible byµ, then a minimum-length schedule for(G,µ,c,L,o,g,∞) can
be constructed more efficiently. LetG be a receive graph with sinkx and sourcesy1, . . . ,yn, such
thatc(y1)≤ ·· · ≤ c(yn). Assume max{o,g}−o is divisible byµ. Then we may assume that in a
minimum-lengthm-processor schedule for(G,µ,c,L,o,g,∞), exactlykm = min{n−m+1,(Cm−
1)α(o,g)} sources ofG are scheduled between the receive operations on processor 1 and that the
remaining sources are scheduled before the first receive operation. Becauseincm,km(o,g) equals
zero, the length of such a schedule equals

max{(n−km− (m−1))µ,µ+L +o}+(Cm−1)max{o,g}+o+µ(x).

The values̀ m,km can be computed in linear time, because we assumed thatc(yi) is bounded
by a constant for all sourcesyi of G. Let `∗ = min1≤m≤n`m,km. Assumè ∗ = `m,km. Usingm,
a schedule for(G,µ,c,L,o,g,∞) of length`∗ can be constructed inO(n) time. Becausec(yi) is
bounded by a constant for all sourcesyi of G, sorting the sources ofG by non-decreasing message
lengths tasksO(n) time. Hence we have proved the following result.

135

Theorem 10.3.2. There is an algorithm with an O(n) time complexity that constructs minimum-
length schedules for instances(G,µ,c,L,o,g,∞), such that G is a receive graph and there is a
positive integer µ, such that µ(y) = µ for all sources y of G andmax{o,g}−o is divisible by µ.

Both Theorem 10.3.1 and 10.3.2 improve a result of Kort and Trystram [55], who presented
an algorithm that constructs minimum-length schedules for receive graphs with sources of equal
length inO(n2) time if g does not exceedo.

10.4 Concluding remarks
The problem of scheduling send and receive graphs in the LogP model was studied in Chapters 9
and 10, respectively. Although send and receive graphs can be transformed into each other by
reversing the arcs, scheduling send graphs is less complicated than scheduling receive graphs.
This is due to the fact that we consider a common data semantics. For receive graphs, there is
no difference between a common data semantics and an independent data semantics. For send
graphs, there is a difference. Scheduling send graphs under an independent semantics is the same
as scheduling receive graphs: messages have to be sent for all sinks that are not scheduled on the
same processor as the source. Scheduling send graphs under a common data semantics is less
complicated, because at most one set of messages has to be sent to any processor.

Like for scheduling send graphs, there are a lot of possible generalisations. Ifg≥ o, then we
can prove properties of minimum-length schedules similar to those proved in Section 10.2.1.
However, these results do not allow us to prove that Algorithms UNRESTRICTED RECEIVE

GRAPH SCHEDULINGand RESTRICTED RECEIVE GRAPH SCHEDULINGare approximation al-
gorithms with a constant approximation ratio for scheduling with arbitraryo andg. This is due to
the fact that the number of communication operations that must be scheduled in anm-processor
schedule for a receive graph depends on the processor assignment. Because the number of com-
munication operations in anm-processor schedule for a send graph is independent of the proces-
sor assignment, we were able to present a 2-approximation algorithm for scheduling send graphs
with arbitraryo andg.

It is unknown whether minimum-length schedules on a restricted number of processors can be
constructed in polynomial time if all sources have the same execution length. Kort and Trystram
proved that if all sources have the same execution length and this length exceeds max{g,2o+L},
then a minimum-length schedule on two processors can be constructed in polynomial time. They
also proved that ifc(y) is the same for all sourcesy of a receive graph, then a minimum-length
schedule for this receive graph on an unrestricted number of processors can be constructed in
polynomial time.

Like for send graphs, the structure of minimum-length schedules for more general inforests
is far more complicated than that of minimum-length schedules for receive graphs. Hence it
is difficult to construct approximation algorithms with a constant approximation ratio for more
general inforests. In Chapter 11, two algorithms are presented for scheduling general inforests
in the LogP model.

136

11 Decomposition algorithms
In this chapter, two approximation algorithms are presented for scheduling intrees in the LogP
model. The basis of these algorithms are two algorithms that decompose intrees into a number
of subforests whose sizes do not differ much. Using such decompositions, communication-free
schedules are constructed. These are transformed into feasible schedules by introducing the
communication operations.

The decompositions of an intree are defined in Section 11.1. The algorithm presented in
Section 11.2 uses these decompositions to construct communication-free schedules. In Sec-
tion 11.3, two algorithms are presented that construct decompositions ofd-ary intrees and of
arbitrary intrees, respectively. Using these decompositions, the algorithm presented in Sec-
tion 11.2 constructs communication-free schedules onP processors ford-ary intrees that are at
mostd+1− d2+d

d+P times as long as a minimum-length communication-free schedule onP proces-
sors. For arbitrary intrees, the communication-free schedules onP processors constructed using
the decompositions of the second algorithm are at most 3− 6

P+2 times as long as a minimum-
length communication-free schedule onP processors.

The constructed communication-free schedules are transformed into feasible schedules by
introducing the communication operations. For both types of decompositions, the number of
communication operations that must be introduced is independent of the number of tasks. The
length of the schedules for ad-ary intree constructed using the first decomposition algorithm are
increased by the total duration of at mostd(P− 1) communication actions. The length of the
schedules constructed using the second decomposition algorithm increases by the total duration
of at mostd(d−1)(P−1)−1 communication actions.

Hence the schedules constructed using the decompositions constructed by the first decompo-
sition algorithm have a large computation part and a small communication part and the schedules
constructed using the decompositions constructed by the second decomposition algorithm have
a small computation part and a large communication part.

11.1 Decompositions of intrees
In this section, the decompositions of an intree will be defined. A decomposition of an intree is
a collection of disjoint subforests whose roots have the same child.

Definition 11.1.1. Let G be an intree. Adecompositionof G is a non-empty sequence of sub-
forests(G1, . . . ,Gk) of G, such that

1. V(G1)∪·· ·∪V(Gk) = V(G);

2. for all i 6= j, V(Gi)∩V(Gj) =∅;

3. for all i ∈ {1, . . . ,k}, the roots ofGi all have the same child inG; and

4. for all i ∈ {1, . . . ,k}, no task ofGi has a predecessor inGi+1, . . . ,Gk.

A sequence of instances((G1,µ,c,L,o,g,P), . . . ,(Gk,µ,c,L,o,g,P)) will be called adecomposi-
tion of the instance(G,µ,c,L,o,g,P) if (G1, . . . ,Gk) is a decomposition ofG.

137

The fact that all roots of a subforest in a decomposition of an intree have the same parent will
play an important role in the analysis of the algorithms presented in this chapter.

Let G be an intree. Let((G1,µ,c,L,o,g,P), . . . ,(Gk,µ,c,L,o,g,P)) be a decomposition of
(G,µ,c,L,o,g,P). We will use a shorthand notation:(G1, . . . ,Gk) is said to be a decomposition
of (G,µ,c,L,o,g,P). Each forestGi will be calleddecomposition forest. If a forestGi has only
one root, it will also be called adecomposition tree.

a1:1,1 a2:1,1 a3:1,1 a4:1,1 a5:1,1 a6:1,1 a7:1,1 a8:1,1

b1:1,1 b2:1,1 b3:1,1 b4:1,1 b5:1,1 b6:1,1

c1:1,1 c2:1,1 c3:1,1 c4:1,1 c5:1,1

d1:1,0

G1

G3

G2

Figure 11.1. A decomposition(G1,G2,G3) of an instance(G,L,o,g,P)

Example 11.1.2. Let G be the intree shown in Figure 11.1. A decomposition(G1,G2,G3) of G
is shown as well. The roots ofG1 are the tasksb1, b2 andb3. These are all parents ofc2. G2 and
G3 have only one root. It is obvious that no successor of a task ofG1 is a task ofG2 or G3 and
that a task ofG2 has no predecessor inG3.

Let G be an intree and let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P). Since a task
of Gi has no predecessors inGi+1, . . . ,Gk and the root ofG is a successor of all other tasks ofG,
Gk must be an intree whose root is the root ofG.

Observation 11.1.3. Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of G. Then Gk is
an intree and its root is the root of G.

Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P). We will divide
each decomposition forestGi into two parts. For eachi ∈ {1, . . . ,k}, the setA(Gi) contains all
tasks ofGi that have a predecessor outsideGi andB(Gi) is the set of tasks ofGi do not have a

138

predecessor outsideGi . More precisely,

A(Gi) = {u∈V(Gi) | PredG(u)\V(Gi) 6=∅}

and

B(Gi) = {u∈V(Gi) | PredG(u)⊆V(Gi)}.

Note thatA(Gi) does not contain any sources ofG and that every task inA(Gi) has a predecessor
outsideB(Gi). Let A(G1, . . . ,Gk) be the subforest ofG induced byA(G1)∪·· ·∪A(Gk). It is not
difficult to see that ifA(G1, . . . ,Gk) is not the empty precedence graph, thenA(G1, . . . ,Gk) is a
subtree ofG with the same root asG. Moreover, ifk≥ 2, thenA(G1, . . . ,Gk) cannot be the empty
precedence graph. In addition, it is easy to see that the tasks in a setB(Gi) are incomparable with
tasks in a setB(Gj) for all j 6= i.

Example 11.1.4. Let G be the intree shown in Figure 11.1. Let(G1,G2,G3) be the decom-
position of (G,L,o,g,P) shown in Figure 11.1. Since no task ofG1 has a predecessor out-
side G1, A(G1) = ∅ and B(G1) = {a1,a2,a3,a4,a5,b1,b2,b3}. Similarly, A(G2) = ∅ and
B(G2) = {a6,a7,a8,b5,b6,c5}. Tasksc2 andd1 of G3 have a predecessor outsideG3: c2 is a
successor of all tasks ofG1 and d2 of all tasks ofG1 and G2. HenceA(G3) = {c2,d1} and
B(G3) = {b4,c1,c3,c4}. SoA(G1, . . . ,Gk) is the intree with tasksc2 andd1 and an arc fromc2

to d1.

Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P). The num-
ber of roots ofGi is denoted by #Gi . The following lemma will be used to bound the num-
ber of communication operations that must be introduced in a communication-free schedule for
(G,µ,c,L,o,g,P).

Lemma 11.1.5. Let G be a d-ary intree. If(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P)
into k≥ 2 subforests, then

∑
u∈V(A(G1,...,Gk))

(|PredG,0(u)|−1) ≤ d(#G1 + · · ·+#Gk−1)−1.

Proof. Assume(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P) into k≥ 2 subforests. Let
U be the union ofV(A(G1, . . . ,Gk)) and the set of parents of the tasks ofA(G1, . . . ,Gk). Let u be
a task inU . If |PredG[U],0(u)| ≥ 1, thenu is a task ofA(G1, . . . ,Gk). SinceG[U] is an intree, the
number of arcs ofG[U] equals|U |−1. Hence

∑u∈V(A(G1,...,Gk))(|PredG,0(u)|−1) = ∑u∈V(A(G1,...,Gk))(|PredG[U],0(u)|−1)
= ∑u∈U |PredG[U],0(u)|− |V(A(G1, . . . ,Gk))|
= |U |−1−|V(A(G1, . . . ,Gk))|
= |U \V(A(G1, . . . ,Gk))|−1.

The tasks inU \V(A(G1, . . . ,Gk)) do not have a predecessor outside their subforests, but their
children inA(G1, . . . ,Gk) do. These children have a parent that is a root of a decomposition

139

forest. The root ofG is also the root ofGk and cannot be an element ofU \V(A(G1, . . . ,Gk)).
So the number of tasks ofA(G1, . . . ,Gk) with a parent outsideA(G1, . . . ,Gk) is at most #G1 +
· · ·+#Gk−1. Every task ofG has indegree at mostd. SoU \V(A(G1, . . . ,Gk)) contains at most
d(#G1 + · · ·+ #Gk−1) tasks. Hence∑u∈V(A(G1,...,Gk))(|PredG,0(u)|−1)≤ d(#G1 + · · ·+ #Gk−
1)−1.

Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P). For all
i ∈ {1, . . . ,k}, let ri,1, . . . , ri,#Gi be the roots ofGi . Define an intreeD(G1, . . . ,Gk) as follows.
V(D(G1, . . . ,Gk)) =

⋃k
i=1{ri,1, . . . , ri,#Gi} andD(G1, . . . ,Gk) contains an arc formri1, j1 to ri2, j2

if there is a path inG from ri1, j1 to ri2, j2 that does not contain another task inV(D(G1, . . . ,Gk)).
If D(G1, . . . ,Gk) contains an arc fromri1, j1 to ri2, j2, thenri2, j2 is called adecomposition childof
ri1, j1 andri1, j1 adecomposition parentof ri2, j2.

Example 11.1.6. Let G be the intree shown in Figure 11.1. Let(G1,G2,G3) be the decompo-
sition of (G,L,o,g,P) shown in Figure 11.1.G1 has rootsb1, b2 andb3; c5 is the only root of
G2 andG3 has rootd1. HenceD(G1, . . . ,Gk) contains tasksb1, b2, b3, c5 andd1. Moreover, it
contains arcs(b1,d1), (b2,d1), (b3,d1) and(c5,d1).

11.2 Scheduling decomposition forests
The decompositions defined in Section 11.1 will be used to construct communication-free sched-
ules for instances(G,µ,c,L,o,g,P), such thatG is an intree andP 6= ∞. The communication
operations are introduced in these communication-free schedules for every pair of tasksu1 and
u2, such thatu1 is a parent ofu2 andu1 andu2 are scheduled on different processors. Such a
pair of tasks will be called acommunicating pairand the number of communicating pairs will
be called thecommunication requirementof the communication-free schedule.

Hu [49] proved that a minimum-length communication-free schedule for an inforest with
unit-length tasks onP processors can be constructed in polynomial time. Kunde [57] showed that
critical path scheduling constructs communication-free schedules for inforests with arbitrary task
lengths onP processors that are at most 2− 2

P+1 times as long as a minimum-length schedule.
Unfortunately, the communication requirements of the schedules constructed by the algorithms
of Kunde and Hu may be as high as(1− 1

d)n+ 1
d for d-ary intrees. As a result, introducing

communication operations in such schedules will greatly increase the length of the schedule.
Using a decomposition of an intree, we will construct communication-free schedules that are

longer than those constructed by critical path scheduling, but have only a small communication
requirement. Algorithm DECOMPOSITION FOREST SCHEDULINGpresented in Figure 11.2 uses
a decomposition of an intree to construct a communication-free schedule. LetG be an intree and
let (G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P) into k≤ P subforests. Algorithm DE-
COMPOSITION FOREST SCHEDULINGworks as follows. For eachi ∈ {1, . . . ,k}, the tasks in
B(Gi) are scheduled without interruption from time 0 onward on processori. The tasks inA(Gi)
are scheduled on one of the processors 1, . . . , i−1 not before the maximum completion time of a
task inB(Gi).

140

Algorithm DECOMPOSITION FOREST SCHEDULING

Input. An instance(G,µ,c,L,o,g,P), such thatG is an intree and a decomposition(G1, . . . ,Gk)
of (G,µ,c,L,o,g,P) consisting ofk≤ P decomposition forests.

Output. A feasible communication-free schedule(σ,π) for (G,µ,c,L,o,g,P).
1. for i := 1 to k
2. do idle(i) := 0
3. U := B(Gi)
4. while U 6=∅
5. do let u be a source ofG[U]
6. σ(u) := idle(i)
7. π(u) := i
8. idle(i) := idle(i) +µ(u)
9. U := U \{u}
10. last(i) := idle(i)
11. U := A(Gi)
12. while U 6=∅
13. do let u be a source ofG[U]
14. letv 6∈ B(Gi) be a parent ofu with maximum completion time
15. σ(u) := max{idle(π(v)), last(i)}
16. π(u) := π(v)
17. idle(π(v)) := σ(u) +µ(u)
18. U := U \{u}

Figure 11.2. Algorithm DECOMPOSITION FOREST SCHEDULING

0 1 2 3 4 5 6 7 8 9 10

a1 a2 a3 a4 a5

a6 a7 a8

b1 b2 b3

b4

b5 b6

c1

c2

c3 c4

c5

d1

Figure 11.3. A schedule built by Algorithm DECOMPOSITION FOREST SCHEDULING

Example 11.2.1. Let (G,L,o,g,3) be the instance shown in Figure 11.1. Consider its decom-
position(G1,G2,G3) that is also shown in Figure 11.1. Algorithm DECOMPOSITION FOREST

SCHEDULING constructs a communication-free schedule for(G,L,o,g,3) as follows. The tasks
in B(G1) = {a1,a2,a3,a4,a5,b1,b2,b3} are scheduled on processor 1 from time 0 onward. Sim-
ilarly, the tasks inB(G2) = {a6,a7,a8,b5,b6,c5} are scheduled on processor 2 from time 0 on-
ward. B(G3) contains tasksb4, c1, c3 andc4; these are scheduled on processor 3 from time 0
onward. A(G3) contains tasksc2 andd1. b3 is the parent ofc2 outsideB(G3) with the largest
completion time. Soc2 is scheduled on processor 1 afterb3. Becausec2 is the parent ofd1 with
the largest completion time andd1 is not an element ofB(G3), d1 is scheduled on processor 1

141

afterc2. The resulting schedule is shown in Figure 11.3. It has communication requirement 4,
because(c1,d1), (c3,d1), (c4,d1) and(c5,d1) are communication pairs.

Now we will prove that Algorithm DECOMPOSITION FOREST SCHEDULINGcorrectly con-
structs feasible communication-free schedules.

Lemma 11.2.2. Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P)
into k≤ P subforests. Let(σ,π) be the schedule for(G1, . . . ,Gk) constructed by AlgorithmDE-
COMPOSITION FOREST SCHEDULING. Then(σ,π) is a feasible communication-free schedule
for (G,µ,c,L,o,g,P).

Proof. Let u be a task ofG. Assumeu is a task ofGi . First we will assume thatu is an element of
B(Gi). Thenu is scheduled on processori and obviously, no other task is scheduled at the same
time on this processor. Moreover, because the order in which the tasks ofB(Gi) are executed is a
topological order ofG[B(Gi)], u is scheduled after its predecessors. Second we will assume that
u is an element ofA(Gi). Thenu has a parent outsideB(Gi). Sou is scheduled after one of its
parentsv outsideB(Gi) on processorπ(v). Clearly, processorπ(v) does not execute another task
at the same time. Sinceu does not start before the completion time of the last task inB(Gi), u
is scheduled after its predecessors. Hence(σ,π) is a feasible communication-free schedule for
(G,µ,c,L,o,g,P).

The time complexity of Algorithm DECOMPOSITION FOREST SCHEDULINGcan be deter-
mined as follows. LetG be an intree and let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P)
into k≤ P subforests. Leti ∈ {1, . . . ,k}. The tasks inB(Gi) can be scheduled using a topological
order ofG[B(Gi)]. Such an order can be constructed inO(|B(Gi)|) time [18]. Using a topological
order ofG[B(Gi)], the tasks inB(Gi) can be scheduled inO(|B(Gi)|) time. The tasks inA(Gi) can
be scheduled using a topological order ofG[A(Gi)]. Letube a task inA(Gi). The parents ofu out-
sideB(Gi) can be found inO(|PredG,0(u)|+ |B(Gi)|) time. Then determining a parent ofu out-
sideB(Gi) with the largest completion time requiresO(|PredG,0(u)|) time. So assigning a start-
ing time and a processor to every task inA(Gi) takesO(∑u∈A(Gi) |PredG,0(u)|+ |A(Gi)||B(Gi)|)
time. Since the setsA(Gi) and B(Gi) are all disjoint, Algorithm DECOMPOSITION FOREST

SCHEDULINGconstructs a feasible communication-free schedule inO(n2) time.

Lemma 11.2.3. For all instances(G,µ,c,L,o,g,P), such that G is an intree, and all decompo-
sitions(G1, . . . ,Gk) of (G,µ,c,L,o,g,P) into at most P decomposition forests, AlgorithmDE-
COMPOSITION FOREST SCHEDULINGconstructs a feasible communication-free schedule for
(G,µ,c,L,o,g,P) in O(n2) time.

The following lemma gives an important property of the communication-free schedules con-
structed by Algorithm DECOMPOSITION FOREST SCHEDULING. This result will be used to
construct upper bounds on the length of a communication-free schedule constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULING.

Lemma 11.2.4. Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P),
such that k≤P. Let(σ,π) be the communication-free schedule for(G,µ,c,L,o,g,P) constructed

142

by AlgorithmDECOMPOSITION FOREST SCHEDULING. Then for all i∈ {1, . . . ,k}, all roots r of
Gi and all tasks u of G, if u6∈V(Gi), π(u) = π(r) andσ(u)> σ(r), then r≺G u.

Proof. We will prove by induction that for alli ∈ {1, . . . ,k}, for all rootsri of Gi and all tasks
u of G, if u is not a task ofGi , π(u) = π(ri) andσ(u) > σ(ri), thenri ≺G u. Let i ∈ {1, . . . ,k}.
Assume by induction that for allj ≤ i−1, for all rootsr j of Gj and all tasksu of G, if u 6∈V(Gj),
π(u) = π(r j) andσ(u)> σ(r j), thenr j ≺G u. Let ri be a root ofGi . We will prove by induction
that for all tasksu of G, if u 6∈V(Gi), π(u) = π(ri) andσ(u) > σ(ri), thenri ≺G u. Let u be a
task ofG. Assume by induction that for all predecessorsv of u, if v 6∈V(Gi), π(v) = π(ri) and
σ(v)> σ(ri), thenri ≺G v. Assumeu is not a task ofGi , π(u) = π(ri) andσ(u)> σ(ri). Thenu
must be a task in a setA(Gi′) for somei′ ≥ i +1. Hence a parentv of u is scheduled on processor
π(r).

Case 1. v is a task ofGi .
Becauseu is not a task ofGi andv is a parent ofu, v must be a root ofGi . Because all roots
of Gi have the same child,ri is a predecessor ofu.

Case 2. v is not a task ofGi .

Case 2.1. σ(v)> σ(ri).
By induction,v is a successor ofri . Henceu is a successor ofri .

Case 2.2. σ(v)≤ σ(ri).
Since (σ,π) is a feasible communication-free schedule for(G,µ,c,L,o,g,P), σ(v) <
σ(ri). Hencev must be a task of a decomposition forestGj ′ , such thatj ′ < i. Becauseu
is not a task ofGj ′ , v must be a root ofGj ′ . By induction,ri is a successor ofv. Because
G is an inforest, all successors ofv are comparable. Becauseu is scheduled afterri , u is
a successor ofri .

Next we will compute an upper bound on the length of the communication-free schedules
constructed by Algorithm DECOMPOSITION FOREST SCHEDULING. Let G be an intree and let
(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P) into at mostP decomposition forests. Let
(σ,π) be the communication-free schedule for(G,µ,c,L,o,g,P) constructed by Algorithm DE-
COMPOSITION FOREST SCHEDULINGusing(G1, . . . ,Gk). Assume decomposition forestGi has
rootsri,1, . . . , ri,#Gi . LetC(ri, j) be the completion time ofri, j .

Consider a rootri, j of Gi . From Lemma 11.2.4, all tasks scheduled afterri, j on processor
π(ri, j) are either tasks ofGi or successors ofri, j . Let ri1, j1 andri2, j2 be roots of decompositions
forestsGi1 andGi2. If ri1, j1 andri2, j2 are both decomposition parents ofri, j andi1 6= i2, thenri1, j1
andri2, j2 are incomparable and must be scheduled on different processors.

Consider a rootri, j of decomposition forestGi . Since(σ,π) is a communication-free schedule
and all decomposition parents ofri, j are scheduled on different processors, there is a decompo-
sition parentri′, j ′ of ri, j , such that the path from the child ofri′, j ′ to ri, j is scheduled without
interruption. The first task of such a path starts either at the completion time ofri′, j ′ or at the

143

maximum completion time of a task inB(Gi). Let p(u,v) denote the unique path from the child
of u to v if it exists. Then for alli ≤ k and j ≤ #Gi ,

C(ri, j) ≤ maxri′ , j′∈PredD(G1,...,Gk),0(ri, j)(max{µ(B(Gi)),C(Gi′)}+µ(p(ri′, j ′ , ri, j)))

≤ max{µ(Gi),maxri′, j′∈PredD(G1,...,Gk),0(ri, j)(C(Gi′) +µ(p(ri′, j ′ , ri, j)))}.

We can prove by induction that for alli ≤ k and all j ∈ {1, . . . ,#Gi},

C(ri, j) ≤ max{µ(Gi), max
ri′, j′∈PredD(G1,...,Gk)(ri, j)

(µ(Gi′) +µ(p(ri′, j ′ , ri, j)))}.

Sincerk,1 is the root ofG, the length of(σ,π) is at most

max{µ(Gk), max
1≤i<k

(µ(Gi) +µ(p(ri,1, rk,1)))}.

Finally, we will compute an upper bound on the communication requirement of the sched-
ules constructed by Algorithm DECOMPOSITION FOREST SCHEDULING. Let G be an intree
and (G1, . . . ,Gk) a decomposition of(G,µ,c,L,o,g,P) into k ≤ P decomposition forests. Let
(σ,π) be the communication-free schedule for(G,µ,c,L,o,g,P) constructed by Algorithm DE-
COMPOSITION FOREST SCHEDULINGusing(G1, . . . ,Gk). Let v be a task ofG. If a parent of
v is not scheduled on the same processor asv, thenv must be a task ofA(G1, . . . ,Gk). Any
task of A(G1, . . . ,Gk) is scheduled on the same processor as one of its parents. So at most
|PredG,0(v)| − 1 parents ofv are executed on a different processor. From Lemma 11.1.5, the
communication requirement of(σ,π) is at most

∑
u∈V(A(G1,...,Gk))

(|PredG,0(u)|−1) ≤ d(#G1 + · · ·+#Gk−1)−1.

Hence we have proved the following result.

Lemma 11.2.5. For all instances(G,µ,c,L,o,g,P), such that G is an intree, and all decom-
positions(G1, . . . ,Gk) of (G,µ,c,L,o,g,P) consisting of at most P decomposition forests, Algo-
rithm DECOMPOSITION FOREST SCHEDULINGconstructs a communication-free schedule for
(G,µ,c,L,o,g,P) with length at mostmax{µ(Gk),max1≤i<k(µ(Gi) + µ(p(ri,1, rk,1)))} and com-
munication requirement at most d(#G1 + · · ·+#Gk−1)−1 in O(n2) time.

Now we will shown how to introduce the communication operations in the communication-
free schedules constructed by Algorithm DECOMPOSITION FOREST SCHEDULING. Let G be
an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P) into at mostP decom-
position forests. Consider the communication-free schedule(σ,π) for (G,µ,c,L,o,g,P) con-
structed by Algorithm DECOMPOSITION FOREST SCHEDULING. A feasible schedule(σc,πc)
for (G,µ,c,L,o,g,P) can be constructed by introducing communication operations between
all communicating pairs. This is done as follows. Assume(u1,u2) is a communicating
pair. Let U = {u ∈ V(G) | σ(u) ≥ σ(u2)}. Increase the starting time of all tasks inU
by (c(u1)− 1)max{o,g}+ L + 2o. For all i ≤ c(u1), schedule send operationsu1,π(u2),i at

144

time σ(u2) + (i − 1)max{o,g} on processorπ(u1) and receive operationru1,π(u2),i at time
σ(u2) + (i− 1)max{o,g}+ L + o on processorπ(u2). If these communication operations are
introduced for all communicating pairs, then the length of(σc,πc) is at most the sum of the
length of(σ,π) and(d(#G1 + · · ·+ #Gk−1)−1)(L + o+ cmaxmax{o,g}). It is easy to see that
the introduction of these communication operations takesO(n2) time. Hence we have proved the
following result.

Theorem 11.2.6. For all instances(G,µ,c,L,o,g,P), such that G is an intree, and all decompo-
sitions(G1, . . . ,Gk) of (G,µ,c,L,o,g,P) into at most P decomposition forests, a feasible sched-
ule for (G,µ,c,L,o,g,P) of length at mostmax{µ(Gk),max1≤i<k(µ(Gi) + µ(p(ri,1, rk,1)))}+
(d(#G1 + · · ·+#Gk−1)−1)(L +o+cmaxmax{o,g}) can be constructed in O(n2) time.

11.3 Constructing decompositions of intrees
In this section, two algorithms are presented for constructing decompositions of intrees that
are to be used by Algorithm DECOMPOSITION FOREST SCHEDULINGfor the construction of
communication-free schedules. Both algorithms construct decompositions for a special class
of instances, calledβ-restricted instances. Such instances will be defined in Section 11.3.1.
In addition, it is shown how decompositions ofβ-restricted instances can be used to construct
schedules for arbitrary instances.

The first decomposition algorithm is presented in Section 11.3.2. This algorithm constructs
decompositions ofd-ary intrees. The second decomposition algorithm, that is presented in Sec-
tion 11.3.3, constructs decompositions of arbitrary intrees. Both algorithms decompose an intree
into a sequence of subforests whose sizes do not differ much.

11.3.1 β-restricted instances
Let G be an intree. Consider an instance(G,µ,c,L,o,g,P). If the lengths of the tasks ofG can
be arbitrarily large, then it is impossible to construct decompositions of(G,µ,c,L,o,g,P) into a
small number of decomposition forests whose total execution lengths do not differ much. Hence
we will construct instances in which the maximum task length is bounded. Such instances will
be calledβ-restricted and are defined as follows.

Definition 11.3.1. Let β be a positive integer. An instance(G,µ,c,L,o,g,P) is called β-
restrictedif for all tasksu of G,

1. µ(u)≤ β; and

2. if |PredG,0(u)| ≥ 2, thenµ(u) = 1.

We will show that any instance(G,µ,c,L,o,g,P), such thatG is an intree, can be transformed
into aβ-restricted instance(Gβ,µβ,cβ,L,o,g,P) and that the schedules for(Gβ,µβ,cβ,L,o,g,P)
constructed by Algorithm DECOMPOSITION FOREST SCHEDULINGusing a decomposition of
(Gβ,µβ,cβ,L,o,g,P) can be transformed into feasible schedules for(G,µ,c,L,o,g,P) without in-
creasing the schedule length. The choice ofβ will be delayed until the analysis of the schedules
constructed by Algorithm DECOMPOSITION FOREST SCHEDULINGusing the decompositions of

145

β-restricted instances.

The following observation is used for the construction of decompositions ofβ-restricted in-
stances(G,µ,c,L,o,g,P).

Observation 11.3.2. Let β be a positive integer. Let(G,µ,c,L,o,g,P) be a β-restricted in-
stance. Let U be a set of tasks of G. Then(G[U],µ,c,L,o,g,P) is a β-restricted instance.

β-restricted instances can be constructed as follows. Letβ be a positive integer. Consider
an instance(G,µ,c,L,o,g,P). If (G,µ,c,L,o,g,P) is not β-restricted, then aβ-restricted in-
stance(Gβ,µβ,cβ,L,o,g,P) can be constructed as follows. Letu be a task ofG. Assume
µ(u) = k1β+k2+1, such that 0≤ k2≤ β−1. If k2 = 0, then letku = k1. Otherwise, letku = k1+1.
Then u is replaced by a chain ofku + 1 taskszu,0,zu,1, . . . ,zu,ku, such thatzu,0 ≺G,0 zu,1 ≺G,0

· · · ≺G,0 zu,ku, µβ(zu,0) = 1, µβ(zu,1) = · · ·= µβ(zu,ku−1) = β andµβ(zu,ku) = µ(u)−1− (ku−1)β.
In addition, letcβ(zu,0) = · · ·= cβ(zu,ku−1) = 1 andcβ(zu,ku) = c(u). Then(Gβ,µβ,cβ,L,o,g,P)
is aβ-restricted instance. It is not difficult to see thatGβ contains at most(µ(G)

β + 2)n tasks and

at most(µ(G)
β +1)n+earcs.

The following lemma is used to transform a schedule for aβ-restricted instance into a sched-
ule for the corresponding original instance.

Lemma 11.3.3. Let G be an intree. Let(G1, . . . ,Gk) be a decomposition of(G,µ,c,L,o,g,P)
consisting of at most P decomposition forests. Let(σ,π) be the communication-free schedule
for (G,µ,c,L,o,g,P) constructed by AlgorithmDECOMPOSITION FOREST SCHEDULINGusing
(G1, . . . ,Gk). Let u1 and u2 be two tasks of G. If u1 is the only parent of u2 and u2 is the only
child of u1, thenπ(u1) = π(u2).

Proof. Assumeu1 is the only parent ofu2 andu2 is the only child ofu1. Assumeu2 is a task of
Gi .

Case 1. u2 is an element ofA(Gi).
Thenu2 is scheduled on the same processor as one of its parents. Becauseu1 is the only
parent ofu2, π(u1) = π(u2).

Case 2. u2 is an element ofB(Gi).
Thenu2 has no predecessors outsideGi . Henceu1 is a task ofGi . Because every predecessor
of u1 is a predecessor ofu2, u1 is an element ofB(Gi). Soπ(u1) = π(u2).

Let G be an intree. Consider an instance(G,µ,c,L,o,g,P). Let (G1, . . . ,Gk) be a decomposi-
tion of theβ-restricted instance(Gβ,µβ,cβ,L,o,g,P) consisting ofk≤ P decomposition forests.
Let (σβ,πβ) be the communication-free schedule for(Gβ,µβ,cβ,L,o,g,P) constructed by Al-
gorithm DECOMPOSITION FOREST SCHEDULINGusing (G1, . . . ,Gk). Let u be a task ofG.
Lemma 11.3.3 shows all subtaskszu,i of u are scheduled on the same processor.

146

It is not difficult to reschedule the tasks on each processor, such that the subtaskzu,i+1 is
scheduled immediately afterzu,i for all tasksu of G and all i ∈ {0, . . . ,ku− 1}. Let (σ,π) be
the schedule for(Gβ,µβ,cβ,L,o,g,P) in which all subtasks of the same task ofG are scheduled
without interruption on one processor. It is not difficult to see that the length and communication
requirement of(σ,π) do not differ from those of(σβ,πβ). The schedule(σ,π) can be transformed
into a feasible communication-free schedule for(G,µ,c,L,o,g,P): u can be scheduled at time
σ(zu,0) on processorπ(zu,0). Let (σ′,π′) be the resulting schedule for(G,µ,c,L,o,g,P). The
length of(σ′,π′) equals that of(σβ,πβ). Moreover, because no task is scheduled on a different
processor, the communication requirement of(σ′,π′) equals that of(σβ,πβ).

It is not difficult to see that(σ′,π′) can be constructed from(σβ,πβ) in O(|V(Gβ)|) time.
Hence we have proved the following result.

Lemma 11.3.4. Let G be an intree. Let(σβ,πβ) be the communication-free schedule for the
β-restricted instance(Gβ,µβ,cβ,L,o,g,P) constructed by AlgorithmDECOMPOSITION FOREST

SCHEDULINGusing a decomposition(G1, . . . ,Gk) of (Gβ,µβ,cβ,L,o,g,P) into k≤ P subforests.
Then a feasible communication-free schedule for(G,µ,c,L,o,g,P) with the same length and

communication requirement as(σβ,πβ) can be constructed in O(µ(G)
β n) time.

Lemma 11.3.4 shows that we only need to construct decompositions ofβ-restricted instances.

11.3.2 Constructing decompositions of d-ary intrees
In this section, an algorithm is presented that constructs decompositions ofd-ary intrees. LetG
be ad-ary intree. Let(G,µ,c,L,o,g,P) be aβ-restricted instance. The next lemma allows the
decomposition of(G,µ,c,L,o,g,P) into intrees whose sizes do not differ much. Letu be a task
of G. The subgraph ofG induced by a tasku and its predecessors is an intree with rootu. This
intree is denoted byTG(u). SoTG(u) = G[PredG(u)∪{u}]. The following lemma is similar to a
lemma of Kosaraju [56] that considers the number of leafs of binary trees.

Lemma 11.3.5. Let G be a d-ary intree. Let(G,µ,c,L,o,g,P) be aβ-restricted instance. If
µ(G)≥ β, then G contains a task u, such thatβ≤ µ(TG(u))≤ d(β−1) +1.

Proof. It will be proved by induction that for alld-ary intreesG, if (G,µ,c,L,o,g,P) is β-
restricted andµ(G)≥ β, thenG contains a tasku, such thatβ≤ µ(TG(u))≤ d(β−1) +1. LetG
be ad-ary intree. Letr be the root ofG. If G contains exactly one task, thenµ(TG(r)) = β. So
we may assume thatG containsn≥ 2 tasks. Assume by induction that for alld-ary intreesG′

with at mostn−1 tasks, if(G′,µ′,c′,L′,o′,g′,P′) is β-restricted andµ(G′)≥ β, thenG′ contains
a tasku, such thatβ ≤ µ′(TG′(u)) ≤ d(β−1) + 1. Assume(G,µ,c,L,o,g,P) is β-restricted and
β≤ µ(G).

Case 1. r has indegree one.
Let u be the parent ofr. If µ(TG(u))≤ β−1, thenβ≤ µ(TG(r))≤ µ(r)+µ(TG(u))≤ 2β−1≤
d(β− 1) + 1. Otherwise, by induction,TG(u) contains a taskv, such thatβ ≤ µ(TG(v)) ≤
d(β−1) +1.

147

Case 2. r has indegree at least two.
Then r has length one. Ifµ(TG(u)) ≤ β− 1 for all parentsu of r, thenβ ≤ µ(TG(u)) ≤
d(β− 1) + 1. Otherwise,r has a parentu, such thatµ(TG(u)) ≥ β. By induction,TG(u)
contains a taskv, such thatβ≤ µ(TG(v))≤ d(β−1) +1.

By repeatedly applying this result, one can construct a decomposition of aβ-restricted in-
stance(G,µ,c,L,o,g,P), such thatG is ad-ary intree. This is done by Algorithmd-ARY INTREE

DECOMPOSITIONshown in Figure 11.4. Algorithmd-ARY INTREE DECOMPOSITIONexecutes
at mostP− 1 steps. In each step, it determines a subtree ofG and removes the tasks of this
subforest fromG.

Algorithm d-ARY INTREE DECOMPOSITION

Input. A β-restricted instance(G,µ,c,L,o,g,P), such thatG is ad-ary intree andP 6= ∞.
Output. A decomposition(G1, . . . ,Gk) of (G,µ,c,L,o,g,P), such thatk≤ P, for all i ≤ k−1,

β≤ µ(Gi)≤ d(β−1) +1 and ifk< P, thenµ(Gk)≤ d(β−1) +1.
1. i := 1
2. while µ(G)> d(β−1) +1 and i < P
3. do let ui be a task ofG, such thatβ≤ µ(TG(ui))≤ d(β−1) +1
4. Gi := TG(ui)
5. G := G[V(G)\V(Gi)]
6. i := i +1
7. Gi := G

Figure 11.4. Algorithm d-ARY INTREE DECOMPOSITION

Example 11.3.6. Let (G,L,o,g,3) be the instance shown in Figure 11.5 and its decomposition
(G1,G2,G3) that is also shown in Figure 11.5.(G1,G2,G3) is constructed by Algorithmd-ARY

INTREE DECOMPOSITIONusingβ = 3. G1 contains seven tasks,G2 contains six tasks andG3

contains the remaining three tasks.

Now we will prove that Algorithmd-ARY INTREE DECOMPOSITIONcorrectly constructs
decompositions of intrees.

Lemma 11.3.7. Let (G,µ,c,L,o,g,P) be aβ-restricted instance, such that G is a d-ary intree
and P6= ∞. Let(G1, . . . ,Gk) be the sequence of subforests of G constructed by Algorithm d-ARY

INTREE DECOMPOSITION. Then(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P), k≤P, for
all i ≤ k−1, β≤ µ(Gi)≤ d(β−1) +1 and if k< P, then µ(Gk)≤ d(β−1) +1.

Proof. Algorithm d-ARY INTREE DECOMPOSITIONexecutesk−1≤ P−1 steps. Before each
stepi, G contains at leastd(β−1) + 2 task. Then Algorithmd-ARY INTREE DECOMPOSITION

chooses a taskui , such thatβ ≤ µ(TG(ui)) ≤ d(β−1) + 1. From Lemma 11.3.5, there is such
a task. ThenGi equalsTG(ui) and the tasks ofGi are removed fromG. So for all i ≤ k− 1,

148

a1:1,1 a2:1,1 a3:1,1 a4:1,1 a5:1,1 a6:1,1

b1:1,1 b2:1,1 b3:1,1 b4:1,1 b5:1,1 b6:1,1

c1:1,1 c2:1,1 c3:1,1

d1:1,0

G1

G3

G2

Figure 11.5. A decomposition constructed by Algorithmd-ARY INTREE DECOMPOSITION

β ≤ µ(Gi) ≤ d(β−1) + 1. After k−1 steps, the remaining tasks ofG form decomposition tree
Gk. Obviously, ifk≤ P−1, thenµ(Gk) ≤ d(β−1) + 1. Otherwise, Algorithmd-ARY INTREE

DECOMPOSITIONwould have executed another step. Because the tasks of decomposition forest
Gi are removed after stepi, the subforestsGi are pairwise disjoint and a task inGi cannot have a
predecessor inGi+1, . . . ,Gk. So(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P).

The time complexity of Algorithmd-ARY INTREE DECOMPOSITIONcan be determined as
follows. Let(G,µ,c,L,o,g,P) be aβ-restricted instance, such thatG is ad-ary intree andP 6= ∞.
For each tasku of G, computeµ(TG(u)). These values can be computed inO(n) time for all
tasks. By traversing the tasks ofG as described in the proof of Lemma 11.3.5, a tasku of G, such
thatβ ≤ µ(TG(u)) ≤ d(β−1) + 1 can be determined inO(n) time. Then the subtreeTG(u) can
be removed by subtractingµ(TG(u)) from µ(TG(v)) for all successorsv of u. This takes linear
time for each subforest, soO(nP) time in total. Using the roots of the decomposition forests, the
decomposition forests itself can be constructed inO(n) time by traversing the tasks ofG from its
root to the sources.

Lemma 11.3.8. For all β-restricted instances(G,µ,c,L,o,g,P), such that G is a d-ary in-
tree and P6= ∞, Algorithm d-ARY INTREE DECOMPOSITION constructs a decomposition
(G1, . . . ,Gk) of (G,µ,c,L,o,g,P), such that k≤ P, for all i ≤ k−1, β ≤ µ(Gi) ≤ d(β−1) + 1
and if k< P, then µ(Gk)≤ d(β−1) +1, in O(nP) time.

Now we will compute upper bounds on the lengths of the schedules constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULINGusing the decompositions constructed by Al-
gorithm d-ARY INTREE DECOMPOSITION. Consider aβ-restricted instance(G,µ,c,L,o,g,P),

149

such thatG is a d-ary intree andP 6= ∞. Assume(G1, . . . ,Gk) is the decomposition of
(G,µ,c,L,o,g,P) constructed by Algorithmd-ARY INTREE DECOMPOSITION. Let (σ,π) be
the communication-free schedule for(G,µ,c,L,o,g,P) constructed by Algorithm DECOMPOSI-
TION FOREST SCHEDULINGusing decomposition(G1, . . . ,Gk). Let ` be the length of(σ,π) and
`∗ the length of a minimum-length communication-free schedule for(G,µ,c,L,o,g,P). Assume
ri is the root ofGi . Then for alli ≤ k,

`∗ ≥ 1
P

µ(Gi) +µ(p(ri, rk)) and `∗ ≥ µ(G)
P

.

From Lemma 11.2.5,(σ,π) has length at most max{µ(Gk),max1≤ j<k(µ(Gj)+µ(p(r j , rk)))}
and communication requirement at mostd(#Gi + · · ·+ #Gk− 1)− 1 = d(k− 1)− 1. We will
consider two cases.

Case 1. k< P, or k = P andµ(Gk)≤max1≤ j<k(µ(Gj) +µ(p(r j , rk))).
In that case,

` ≤ max1≤ j<k(µ(Gj) +µ(p(r j , rk)))
≤ max1≤ j<k(`∗+(1− 1

P)µ(Gj))
≤ `∗+(1− 1

P)dβ
≤ `∗+(1− 1

P)dβ P
µ(G)`

∗

= (1+d(P−1) β
µ(G))`∗.

Case 2. k = P andµ(Gk)>max1≤ j<k(µ(Gj) +µ(p(r j , rk))).
Then

` ≤ µ(Gk)
≤ µ(G)− (P−1)β
≤ P

µ(G) (µ(G)− (P−1)β)`∗

= (P−P(P−1) β
µ(G))`∗.

Hence the length of(σ,π) is at most

max{1+d(P−1)
β

µ(G)
,P−P(P−1)

β
µ(G)

}`∗.

This bound is as small as possible if 1+ (dP− 1) β
µ(G) equalsP−P(P− 1) β

µ(G) . In that case,

β = µ(G)
d+P . Then

` ≤ (P− P2−P
d+P

)`∗ = (1+
d(P−1)

d+P
)`∗ = (d+1− d2 +d

d+P
)`∗.

From Lemma 11.2.5, the communication requirement of(σ,π) is at mostd(#G1+ · · ·+#Gk−
1)−1. Since all decompositions forestsGi are intrees andk≤P, the communication requirement
is at mostd(P−1)−1. Hence we have proved the following lemma.

150

Lemma 11.3.9. There is an algorithm with an O(nP) time complexity that constructs feasible

schedules forµ(G)
d+P-restricted instances(G,µ,c,L,o,g,P), such that G is a d-ary intree and P6= ∞,

with length at most(d + 1− d2+d
d+P)`∗+ (d(P−1)−1)(L + o+ cmaxmax{o,g}), where`∗ is the

length of a minimum-length schedule for(G,µ,c,L,o,g,P).

In Section 11.3.1, it was shown how a schedule for aβ-restricted instance can be transformed
into a schedule for an arbitrary instance. If we chooseβ = µ(G)

d+P , then the number of tasks inGβ
is at most(d+P+2)n. Using Lemma 11.3.9, we obtain the following result.

Theorem 11.3.10. There is an algorithm with an O((d+ P)n2) time complexity that constructs
feasible schedules for instances(G,µ,c,L,o,g,P), such that G is a d-ary intree and P6= ∞, with

length at most(d+1− d2+d
d+P)`∗+(d(P−1)−1)(L+o+cmaxmax{o,g}), where`∗ is the length

of a minimum-length schedule for(G,µ,c,L,o,g,P).

Proof. Obvious from Lemmas 11.3.9 and 11.3.4.

11.3.3 Constructing decompositions of arbitrary intrees

In this section, we will construct different decompositions of intrees. These decompositions
consist of inforests that are smaller than those constructed by Algorithmd-ARY INTREE DE-
COMPOSITION and consist of more than one tree. The decomposition algorithm can also be
used for inforests by assuming that all roots have the same (dummy) parent. The basis of the
decomposition algorithm is the following lemma.

Lemma 11.3.11. Let G be an intree. Let(G,µ,c,L,o,g,P) be aβ-restricted instance. If µ(G)≥
β, then G contains a collection of tasks u1, . . . ,uk, such thatβ≤ µ(TG(u1))+ · · ·+µ(TG(uk))≤ 2β
and if k≥ 2, then u1, . . . ,uk have the same child v and v has at least k+1 parents.

Proof. It will be proved by induction that for all intreesG, if (G,µ,c,L,o,g,P) is β-restricted
andµ(G) ≥ β, thenG contains a collection of tasksu1, . . . ,uk, such thatβ ≤ µ(TG(u1)) + · · ·+
µ(TG(uk))≤ 2β and ifk≥ 2, thenu1, . . . ,uk have the same childv andv has at leastk+1 parents.
Let G be an intree. Letr be the root ofG. If G contains exactly one task, thenµ(TG(r)) = β.
So we may assume thatG containsn≥ 2 tasks. Assume by induction that for all intreesG′ with
at mostn− 1 tasks, if(G′,µ′,c′,L′,o′,g′,P′) is β-restricted andµ(G′) ≥ β, thenG′ contains a
collection of tasksu1, . . . ,uk, such thatβ ≤ µ′(TG′(u1)) + · · ·+ µ′(TG′(uk)) ≤ 2β and if k ≥ 2,
thenu1, . . . ,uk have the same childv andv has at leastk+ 1 parents. Assume(G,µ,c,L,o,g,P)
is β-restricted andµ(G)≥ β.

Case 1. r has indegree one.
Let u be the parent ofr. If µ(TG(u))≤ β−1, thenβ≤ µ(TG(r))≤ µ(r)+µ(TG(u))≤ 2β−1.
Otherwise,µ(TG(u)) ≥ β and, by induction,TG(u) contains a collection of tasksv1, . . . ,vk

with the same childw, such thatβ ≤ µ(TG(v1)) + · · ·+ µ(TG(vk)) ≤ 2β and if k≥ 2, thenw
has at leastk+1 parents.

151

Case 2. r has indegree at least two.
Thenr has length one. Ifµ(TG(r)) ≤ 2β, thenβ ≤ µ(TG(r)) ≤ 2β. So we may assume that
µ(TG(r))≥ 2β +1. Letu1, . . . ,um be the parents ofr. Assumeµ(TG(u1))≥ ·· · ≥ µ(TG(um)).
If µ(TG(u1)) ≥ β, then, by induction,TG(u1) contains a collection of tasksv1, . . . ,vk, such
thatβ≤ µ(TG(v1))+ · · ·+µ(TG(vk))≤ 2β and ifk≥ 2, thenv1, . . . ,vk have the same childw
andw has at leastk+ 1 parents. So we will assume thatµ(TG(u1)) ≤ β−1. We know that
µ(TG(u1)) + · · ·+ µ(TG(um)) = µ(TG(r))−1≥ 2β. Let k be the smallest integer, such that
µ(TG(u1)) + · · ·+ µ(TG(uk)) ≥ β. Thenk≤ m− 1 andβ ≤ µ(TG(u1)) + · · ·+ µ(TG(uk)) ≤
β−1+µ(TG(uk))≤ 2β−2.

Like Algorithm d-ARY INTREE DECOMPOSITION, Algorithm INTREE DECOMPOSITION

shown in Figure 11.6 constructs decompositions of arbitrary intrees by repeatedly removing a
subforest.

Algorithm INTREE DECOMPOSITION

Input. A β-restricted instance(G,µ,c,L,o,g,P), such thatG is an intree andP 6= ∞.
Output. A decomposition(G1, . . . ,Gk) of (G,µ,c,L,o,g,P), such thatk≤ P, for all i ≤ k−1,

β≤ µ(Gi)≤ 2β and ifk< P, thenµ(Gk)≤ 2β.
1. i := 1
2. while µ(G)> 2β and i < P
3. do let ui,1, . . . ,ui,ni be tasks ofG with the same child andβ≤ ∑ni

j=1µ(TG(ui, j))≤ 2β
4. Gi := G[V(TG(ui,1))∪·· ·∪V(TG(ui,ni))]
5. G := G[V(G)\V(Gi)]
6. i := i +1
7. Gi := G

Figure 11.6. Algorithm INTREE DECOMPOSITION

Example 11.3.12. Consider the instance(G,L,o,g,3) shown in Figure 11.7 and its decomposi-
tion (G1,G2,G3) that is also shown in Figure 11.7. This is the same instance as the one shown in
Figure 11.5.(G1,G2,G3) is constructed by Algorithm INTREE DECOMPOSITIONusingβ = 3.
Decomposition treesG1 andG3 contain five tasks,G2 contains the other six tasks. The sizes of
these decomposition forests differ less than those of the decomposition forests of the decompo-
sition constructed by Algorithmd-ARY INTREE DECOMPOSITIONshown in Figure 11.5.

Now we will prove that Algorithm INTREE DECOMPOSITIONcorrectly constructs decompo-
sitions of intrees.

Lemma 11.3.13. Let (G,µ,c,L,o,g,P) be aβ-restricted instance, such that G is an intree and
P 6= ∞. Let (G1, . . . ,Gk) be the sequence of subforests of G constructed by AlgorithmINTREE

DECOMPOSITION. Then(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P), k≤ P, for all
i ≤ k−1, β≤ µ(Gi)≤ 2β and if k< P, then µ(Gk)≤ 2β.

152

a1:1,1 a2:1,1 a3:1,1 a4:1,1 a5:1,1 a6:1,1

b1:1,1 b2:1,1 b3:1,1 b4:1,1 b5:1,1 b6:1,1

c1:1,1 c2:1,1 c3:1,1

d1:1,0

G1

G3

G2

Figure 11.7. A decomposition constructed by Algorithm INTREE DECOMPOSITION

Proof. Algorithm INTREE DECOMPOSITIONexecutesk−1≤ P−1 steps. Before each stepi, G
contains at least 2β + 1 tasks. Then Algorithm INTREE DECOMPOSITIONchooses a number of
tasksui,1, . . . ,ui,ni with the same child, such thatβ≤ µ(TG(ui,1))+ · · ·+µ(TG(ui,ni))≤ 2β. From
Lemma 11.3.11, there is such a collection of tasks. ThenGi equals the subgraph ofG induced
by the tasksui,1, . . . ,ui,ni and their predecessors. Henceβ ≤ µ(Gi) ≤ 2β for all i ≤ k. The tasks
of Gi are removed fromG. After k−1 steps, the remaining tasks form decomposition treeGk.
If k ≤ P− 1, thenµ(Gk) ≤ 2β. Otherwise, Algorithm INTREE DECOMPOSITIONwould have
executed another step. Because the tasks of decomposition forestGi are removed after stepi, the
subforestsGi are pairwise disjoint and a task inGi cannot have a predecessor inGi+1, . . . ,Gk. So
(G1, . . . ,Gk) is a decomposition of(G,µ,c,L,o,g,P).

The time complexity of Algorithm INTREE DECOMPOSITIONcan be determined as follows.
Let G be an intree. Consider aβ-restricted instance(G,µ,c,L,o,g,P), such thatP 6= ∞. For each
tasku of G, computeµ(TG(u)). These values can be computed inO(n) time for all tasks ofG. By
traversing the tasks ofG as described in the proof of Lemma 11.3.11, a number of tasksu1, . . . ,um

with the same child, such thatβ≤ µ(TG(u1))+ · · ·+µ(TG(um))≤ 2β can be chosen inO(n) time.
Then the subtreesTG(u1), . . . ,TG(un) can be removed by subtractingµ(TG(u1))+ · · ·+µ(TG(um))
from µ(TG(v)) for all successorsv of u. Since the tasksu1, . . . ,um have the same successors, this
takes linear time for each subforest, soO(nP) time in total. Using the roots of the decomposition
forests, the decomposition forests itself can be constructed inO(n) time by traversing the tasks
of G from its root to the sources.

Lemma 11.3.14. Let (G,µ,c,L,o,g,P) be aβ-restricted instance, such that G is an intree and

153

P 6= ∞. Then AlgorithmINTREE DECOMPOSITIONconstructs a decomposition(G1, . . . ,Gk) of
(G,µ,c,L,o,g,P), such that k≤P, for all i≤ k−1, β≤ µ(Gi)≤ 2β and if k<P, then µ(Gk)≤ 2β,
in O(nP) time.

Now we will prove an upper bound on the length of the schedules constructed by Algo-
rithm DECOMPOSITION FOREST SCHEDULINGusing the decompositions constructed by Algo-
rithm INTREE DECOMPOSITION. Let (G,µ,c,L,o,g,P) be aβ-restricted instance, such thatG is
an intree andP 6= ∞. Let (G1, . . . ,Gk) be the decomposition of(G,µ,c,L,o,g,P) constructed by
Algorithm INTREE DECOMPOSITION. Using this decomposition, Algorithm DECOMPOSITION

FOREST SCHEDULINGconstructs a communication-free schedule(σ,π) for (G,µ,c,L,o,g,P).
From Lemma 11.2.5, its length̀ is at most max{µ(Gk),max1≤i<k(µ(Gi) + µ(p(ri,1, rk,1)))},
whereri, j is the the root of thej th subtree ofGi .

Let `∗ be the length of a minimum-length schedule for(G,µ,c,L,o,g,P). Obviously, for all
i ≤ k,

`∗ ≥ 1
P

µ(Gi) +µ(p(ri,1, rk,1)) and `∗ ≥ µ(G)
P

.

The length of(σ,π) equals the completion time ofrk,1, sincerk,1 is the root ofG. Two cases need
to be taken into account.

Case 1. k< P, or k = P andµ(Gk)≤max1≤ j<k(µ(Gj) +µ(p(r j,1, rk,1))).
Then

` ≤ max1≤ j<k(µ(Gj) +µ(p(r j,1, rk,1)))
≤ max1≤ j<k(`∗+(1− 1

P)µ(Gj))
≤ `∗+2(1− 1

P)β
≤ `∗+2(1− 1

P)β P
µ(G)`

∗

= (1+2(P−1) β
µ(G))`∗.

Case 2. k = P andµ(Gk)>max1≤ j<k(µ(Gj) +µ(p(r j,1, rk,1))).
In that case,

` ≤ µ(Gk)
≤ µ(G)− (P−1)β
≤ P

µ(G) (µ(G)− (P−1)β)`∗

= (P−P(P−1) β
µ(G))`∗.

Hence the length of(σ,π) is at most

max{1+2(P−1)
β

µ(G)
,P−P(P−1)

β
µ(G)

}`∗.

154

This bound is as small as possible if 1+ (2P− 1) β
µ(G) equalsP−P(P− 1) β

µ(G) . In that case,

β = µ(G)
P+2 and

` ≤ (1+2
P−1
P+2

)`∗ = (3− 6
P+2

)`∗.

From Lemma 11.2.5, the communication requirement of(σ,π) is at mostd(#G1 + · · ·+
#Gk−1)−1. Each decomposition forest consists of a collection of trees whose roots have the
same parent. From Lemma 11.3.11, if a decomposition forest consists of more than one tree,
then we may assume that the child of the roots of these trees has another parent. In addition,
decomposition forestGk consists of one tree. Hence the number of roots of the decomposition
forests is at most max{d− 1,1}(P− 1) + 1 = (d− 1)(P− 1) + 1, whered is the maximum
indegree inG.

Moreover, ifG is an inforest instead of an intree, then a dummy root can be added. This
dummy root is the child of the roots ofG. For the constructed intree, a schedule can be con-
structed. By removing the dummy root, we obtain a feasible schedule for(G,µ,c,L,o,g,P). The
indegree of the dummy root need not be taken into account. So we have proved the following
lemma.

Lemma 11.3.15. There is an algorithm with an O(nP) time complexity that constructs feasible

schedules forµ(G)
P+2 -restricted instances(G,µ,c,L,o,g,P), such that G is a d-ary intree and P6= ∞,

with length at most(3− 6
P+2)`∗+(d(d−1)(P−1)−1)(L+o+cmaxmax{o,g}), where`∗ is the

length of a minimum-length schedule for(G,µ,c,L,o,g,P).

Using the transformation of schedules forβ-restricted instances into schedules for arbitrary
instances, we can prove the following result.

Theorem 11.3.16. There is an algorithm with an O((d+ P)n2) time complexity that constructs
feasible schedules for instances(G,µ,c,L,o,g,P), such that G is a d-ary intree and P6= ∞, with
length at most(3− 6

P+2)`∗ + (d(d− 1)(P− 1)− 1)(L + o+ cmaxmax{o,g}), where`∗ is the
length of a minimum-length schedule for(G,µ,c,L,o,g,P).

Proof. Obvious from Lemmas 11.3.15 and 11.3.4.

11.4 Concluding remarks
In Sections 11.3.2 and 11.3.3, two algorithms were presented that construct decompositions of
d-ary intrees with arbitrary task lengths. The schedules constructed by Algorithm DECOM-
POSITION FOREST SCHEDULINGusing the decompositions constructed by Algorithmsd-ARY

INTREE DECOMPOSITIONand INTREE DECOMPOSITIONconsist of two parts: a computation
part that depends on the execution lengths of the tasks and the precedence constraints and that is
independent of the communication requirements, and a communication part that depends on the
communication requirements and that is independent of the execution lengths of the tasks and
the precedence constraints.

155

A decomposition of ad-ary intree constructed by Algorithmd-ARY INTREE DECOMPOSI-
TION is a sequence of intrees. The size of the largest decomposition tree of such a decomposition
can bed times as large as the size of the smallest one. Hence the schedules constructed using the
decompositions of Algorithmd-ARY INTREE DECOMPOSITIONhave a large computation part.
Moreover, because the total number of roots of the decomposition forests of a decomposition
constructed by Algorithmd-ARY INTREE DECOMPOSITIONis small, the communication part of
these schedules is small.

A decomposition of ad-ary intree constructed by Algorithm INTREE DECOMPOSITIONcon-
sists of inforests with at mostd−1 roots. The size of the largest decomposition forest of such
a decomposition can be at most twice as large as the size of the smallest one. As a result, the
computation part of the schedules constructed using the decompositions of Algorithm INTREE

DECOMPOSITIONis small. However, because the number of roots of these decomposition forests
of a decomposition constructed by Algorithm INTREE DECOMPOSITIONcan be large, the com-
munication part of these schedules may be large.

Hence the schedules constructed using the decompositions of Algorithmsd-ARY INTREE DE-
COMPOSITIONand INTREE DECOMPOSITIONgive a trade-off between computation and com-
munication.

The decompositions constructed by Algorithmsd-ARY INTREE DECOMPOSITIONand IN-
TREE DECOMPOSITIONare used to construct communication-free schedules in which subse-
quently the communication operations are introduced. By using different kinds of communica-
tion, these decompositions can be used to construct schedules in any model of parallel compu-
tation. Using the decompositions constructed by Algorithmd-ARY INTREE DECOMPOSITION,
schedules onP processors ford-ary intrees can be constructed whose length is at most the sum
of d+1− d2+d

d+P times the length of a minimum-length schedule onP processors and the duration
of d(P− 1)− 1 communication actions. Similarly, the decompositions constructed by Algo-
rithm INTREE DECOMPOSITIONcan be used to construct schedules onP processors of length at
most the sum of 3− 6

P+2 times the length of a minimum-length schedule onP processors and the
duration ofd(d−1)(P−1)−1 communication actions.

156

Conclusion

157

158

12 Conclusion
In this thesis, we studied the complexity of scheduling in two models of parallel computation:
the UCT model and the LogP model. In this chapter, we give an overview of the results presented
in this thesis and some related problems that remain open. Section 12.1 is concerned with the
results presented in Part I, Section 12.2 with those presented in Part II. In Section 12.3, we
compare the complexity of scheduling in the UCT model and the LogP model.

12.1 Scheduling in the UCT model

In Part I, we studied the complexity of constructing minimum-tardiness schedules in the UCT
model. In Chapters 4, 5 and 6, we presented several polynomial-time algorithms with the same
structure: first these algorithms modify the deadlines and second they apply a list scheduling
algorithm that uses the modified deadlines. In Chapter 4, consistent deadlines were computed
by considering the set of successors of each task. These consistent deadlines are used by a list
scheduling algorithm to construct a schedule. The resulting algorithm is proved to be an approxi-
mation algorithm with asymptotic approximation ratio max{2,3− 3

m} for scheduling precedence
graphs with unit-length tasks and non-positive deadlines onmprocessors and a 2-approximation
algorithm for scheduling precedence graphs with arbitrary task lengths and non-positive dead-
lines on an unrestricted number of processors. Moreover, the algorithm was shown to be an
approximation algorithm with asymptotic approximation ratio 2− 2

m for scheduling outforests
with unit-length tasks and non-positive deadlines onm processors. The algorithm constructs
minimum-tardiness schedules for outforests with arbitrary task lengths on an unrestricted num-
ber of processors and for outforests with unit-length tasks on two processors.

The least urgent parent property was introduced in Chapter 5. The least urgent parent property
was used to construct an approximation algorithm for scheduling inforests. Using a transforma-
tion of inforests with consistent deadlines into inforests with the least urgent parent property, a
polynomial-time algorithm for scheduling inforests was presented. This algorithm was shown to
be a 2-approximation algorithm for scheduling inforests with unit-length tasks and non-positive
deadlines onm processors. Moreover, it was proved that minimum-tardiness schedules can be
constructed in polynomial time for chain-like task systems with unit-length tasks onm proces-
sors and for precedence graphs with the least urgent parent property and arbitrary task lengths on
an unrestricted number of processors.

The deadline modification part of the algorithms presented in Chapter 6 considers pairs of
tasks instead of individual tasks. It computes pairwise consistent deadlines that may be smaller
than the consistent deadlines computed in Chapter 4. The pairwise consistent deadlines are
used by a list scheduling algorithm. This approach is used by both algorithms that were pre-
sented in Chapter 6. The first algorithm constructs minimum-tardiness schedules for precedence
graphs of width two with unit-length tasks on two processors in polynomial time; the second is a
polynomial-time algorithm that constructs minimum-tardiness schedules for interval orders with
unit-length tasks onm processors.

In Chapter 7, two dynamic-programming algorithms were presented. Both algorithms con-

159

struct minimum-tardiness schedules for precedence graphs of bounded width in polynomial time.
The first constructs minimum-tardiness schedules for precedence graphs of constant widthw with
unit-length tasks onmprocessors. For precedence graphs of constant widthw with arbitrary task
lengths, the second algorithm constructs minimum-tardiness schedules onm≥ w processors. In
addition, we proved that for precedence graphs of widthw with arbitrary task lengths, construct-
ing minimum-tardiness schedules onm≤ w−1 processors is an NP-hard optimisation problem.

Many generalisations of the problems studied in Part I remain open. For example, most
algorithms presented in Chapters 4, 5 and 6 are approximation algorithms with a constant ap-
proximation ratio for scheduling precedence graphs with unit-length tasks on a restricted number
of processors. It would be interesting to determine approximation ratios of similar algorithms for
scheduling with arbitrary task lengths or with tasks with execution lengths taken from a restricted
set of execution lengths.

The algorithm presented in Chapter 4 for scheduling precedence graphs with unit-length
tasks and non-positive deadlines onmprocessors is an approximation algorithm with asymptotic
approximation ratio max{2,3− 3

m}. It would be interesting to know whether this algorithm has
an asymptotic approximation ratio that is smaller than 2 for scheduling on two processors and
whether there are polynomial-time approximation algorithms with better approximation ratios.

In Chapter 5, a 2-approximation algorithm for scheduling inforests was presented. This algo-
rithm uses a transformation of inforests with consistent deadlines to inforests with the least urgent
parent property to construct schedules for arbitrary inforests. The algorithm has a constant ap-
proximation ratio, because good schedules can be constructed for inforests with the least urgent
parent property and because inforests with consistent deadlines can be transformed into inforests
with the least urgent parent property without greatly increasing the deadlines. A generalisation
could be extending this approach to a larger class of precedence graphs.

In Chapter 6, we considered pairs of tasks to compute smaller deadlines that are met in all in-
time schedules. These pairwise consistent deadlines were used to construct minimum-tardiness
schedules for precedence graphs of width two on two processors and for interval orders onm
processors. If larger sets of tasks are taken into account, then we might be able to compute even
smaller deadlines. It would be interesting to determine whether there are classes of precedence
graphs for which the consistent deadlines computed by considering larger sets of tasks can be
used to construct minimum-tardiness schedules.

12.2 Scheduling in the LogP model
In Part II, the problem of constructing minimum-length schedules in the LogP model was stud-
ied. In Chapter 9, we studied the problem of scheduling send graphs in the LogP model. Con-
structing minimum-length schedules for a send graph on an unrestricted number of processors
was shown to be a strongly NP-hard optimisation problem. We presented a polynomial-time
2-approximation algorithm for scheduling send graphs onP processors. Moreover, we showed
that if all sinks of a send graph have the same execution length, then a minimum-length schedule
for this send graph onP processors can be constructed in polynomial time.

In Chapter 10, two polynomial-time approximation algorithms for scheduling receive graphs

160

were presented. The first is a 3-approximation algorithm that constructs schedules for receive
graphs on an unrestricted number of processors. For each constantk∈ ZZ+, the second algorithm
constructs schedules for receive graphs onP processors that are at most 3+ 1

k+1 times as long
as minimum-length schedules onP processors. Moreover, we proved that if the execution length
of the sources of a receive graph are all equal, then a minimum-length schedule for this receive
graph on an unrestricted number of processors can be constructed in polynomial time.

In Chapter 11, two polynomial-time algorithms were presented that use decompositions to
construct schedules for inforests. The first constructs schedules ford-ary intrees onP processors
that have a length that is at most the sum ofd + 1− d2+d

d+P times the length of a minimum-length
schedule onP processors and the duration ofd(P−1)−1 communication actions. The second
algorithm constructs schedules ford-ary inforests onP processors with a length that is at most
the sum of 3− 6

P+2 times the length of a minimum-length schedule onP processors and the du-
ration ofd(d−1)(P−1)−1 communication actions.

Because scheduling in the LogP model is a new field of research, many open problems re-
main. In Chapters 9 and 10, we considered very simple precedence graphs (send and receive
graphs). Even for these precedence graphs, constructing minimum-length schedules was proved
to be strongly NP-hard. It would be interesting to determine special cases for which these prob-
lems become solvable in polynomial time. For instance, it is unknown whether minimum-length
schedules for send or receive graphs with a constant number of different execution lengths can
be constructed in polynomial time. Another generalisation is focusing on a special choice of the
LogP parameters (for instance, scheduling with gap zero).

Another interesting open problem is finding polynomial-time approximation algorithms with
better approximation ratios than those of the algorithms presented in Chapters 9 and 10. In par-
ticular, there should be algorithms with better approximation ratios than those of the algorithms
for scheduling receive graphs presented in Chapter 10.

In Chapters 9 and 10, it was shown that if the tasks of a send graph or a receive graph have the
same execution length, then a minimum-length schedule can be constructed in polynomial time.
An interesting generalisation of these results would be considering the problem of scheduling
more general precedence graphs with tasks of equal length. Classes of precedence graphs that
resemble send or receive graphs are inforests (outforests) of height three in which the root is
the only task with indegree (outdegree) greater than one, and precedence graphs of height two
with a constant number of sources (sinks) and an arbitrary number of sinks (sources). For such
classes of precedence graphs, it would be interesting to construct approximation algorithms with
a constant approximation ratio.

12.3 A comparison of the UCT model and the LogP model
As shown in Chapters 3 and 8, there is a great difference between the UCT model and the LogP
model. The UCT model is a model of parallel computation in which communication is repre-
sented by delays with a small fixed duration. The LogP model characterises the communication
in a parallel computer by latencies, overheads and gaps. In this section, we consider the effects
of these types of communication on the complexity of multiprocessor scheduling.

161

The UCT model captures one aspect of communication in a parallel computer: a communica-
tion latency that models the time needed to send a message through the communication network.
In a schedule in the UCT model the result of a task is available on all processors one time unit
after its completion time. So the result of a task becomes available at the same time on all pro-
cessors (except the sending processor). No processor is involved in the transfer of data. This
makes it easy to construct good schedules in the UCT model: for small precedence graphs, near-
optimal schedules can be constructed by hand. In addition, the simplicity of the UCT model
allows the computation of good lower bounds on the length (or tardiness) of minimum-length
(or minimum-tardiness) schedules. The lower bounds can be used to prove strong approximation
ratios for algorithms for scheduling in the UCT model. As a result, there are many approximation
algorithms for scheduling in the UCT model with a constant approximation ratio.

The LogP model is a more complicated model of parallel computation that captures several
aspects of communication in a parallel computer by four parameters: latencyL, overheado, gap
g and number of processorsP. The existence of communication operations makes scheduling in
the LogP model a very complicated problem. In a schedule in the LogP model the result of a
task does not become available on all processors automatically: the processors have to execute
communication operations to send and receive data. The data does not become available on all
processors at the same time, because a result has to be sent to each processor separately and
there is a minimum delay between consecutive communication operations on the same proces-
sor. Deciding to which processors a result must be sent is one of the difficulties in scheduling
in the LogP model. A second difficulty is due to the gaps between consecutive communication
operations on the same processor. If the length of the gaps exceeds that of the overheads (in
other words, ifg exceedso), then a processor is available for the execution of tasks between two
consecutive send or receive operations. Executing tasks between two consecutive send or receive
operations may increase or decrease the schedule length. Hence choosing tasks to be scheduled
between a pair of consecutive communication operations is another difficulty in scheduling in the
LogP model. These communication-related difficulties make scheduling in the LogP model very
complicated: even for small precedence graphs, it is difficult to construct near-optimal sched-
ules by hand. Moreover, since it is not clear which communication operations must be executed
in a minimum-length schedule and whether tasks should be scheduled between communication
operations, most lower bounds of the length of schedules in LogP model are far below the ac-
tual length of minimum-length schedules. As a result, all known approximation algorithms for
scheduling in the LogP model either have a parameter-dependent approximation ratio, or a con-
stant approximation ratio for a very restricted class of precedence graphs.

The results show that the effect of the communication requirements is very different for the
complexity of scheduling in the UCT model and scheduling in the LogP model. For simple
precedence graphs, one can easily construct near-optimal schedules in the UCT model, but it is
difficult to construct such schedules in the LogP model. Hence the complexity of scheduling
in the UCT model mainly depends on the precedence constraints, whereas the complexity of
scheduling in the LogP model is mainly determined by the existence of communication opera-
tions and the length of the overheads and the gaps (parameterso andg).

162

Bibliography
[1] M. Adler, J.W. Byers and R.M. Karp. Parallel sorting with limited bandwidth. InProceed-

ings of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
129–136, 1995.

[2] A. Aggarwal, A.K. Chandra and M. Snir. On communication latency in PRAM computa-
tions. InProceedings of the 1989 ACM Symposium on Parallel Algorithms and Architec-
tures, pages 11–21, 1989.

[3] A. Aggarwal, A.K. Chandra and M. Snir. Communication complexity of PRAMs.Theo-
retical Computer Science, 71(1):3–28, March 1990.

[4] H.H. Ali and H. El-Rewini. An optimal algorithm for scheduling interval ordered tasks with
communication onn processors.Journal of Computer and System Sciences, 51(2):301–306,
October 1995.

[5] H. Alt, N. Blum, K. Mehlhorn and M. Paul. Computing a maximum cardinality matching
in a bipartite graph in timeO(n1.5

√
m/ logn). Information Processing Letters, 37(4):237–

240, February 1991.
[6] E. Bampis, J.-C. K̈onig and D. Trystram. Optimal parallel execution of complete binary

trees and grids into most popular interconnection networks.Theoretical Computer Science,
147(1–2):1–18, August 1995.

[7] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the Postal model
for message-passing systems.Mathematical Systems Theory, 27(5):431–452, Septem-
ber/October 1994.

[8] M. Bartusch, R.H. M̈ohring and F.J. Radermacher.m-machine unit time scheduling: a
report on ongoing research. Preprint 192/1988, Fachbereich Mathematik, Technische Uni-
versiẗat Berlin, Berlin, Germany, 1988.

[9] H.L. Bodlaender and M.R. Fellows. W[2]-hardness of precedence constrainedk-processor
scheduling.Operations Research Letters, 18(2):93–97, September 1995.

[10] R.P. Brent. The parallel evaluation of arithmetic expressions.Journal of the ACM,
21(2):201–206, April 1974.

[11] P. Brucker, M.R. Garey and D.S. Johnson. Scheduling equal-length tasks under treelike
precedence constraints to minimize maximum lateness.Mathematics of Operations Re-
search, 2(3):275–284, August 1977.

[12] P. Chŕetienne. A polynomial algorithm to optimally schedule tasks on a virtual distributed
system under tree-like precedence constraints.European Journal of Operational Research,
43:225–230, 1989.

[13] P. Chŕetienne and C. Picouleau. Scheduling with communication delays: a survey. In
P. Chŕetienne, E.G. Coffman, Jr., J.K. Lenstra and Z. Liu, editors,Scheduling Theory and
its Applications, Chapter 4, pages 65–90. John Wiley & Sons, Chichester, United Kingdom,
1995.

[14] E.G. Coffman, Jr., M.R. Garey and D.S. Johnson. An application of bin-packing to multi-
processor scheduling.SIAM Journal on Computing, 7(1):1–17, February 1978.

163

[15] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model. In
Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
169–178, 1989.

[16] R. Cole and O. Zajicek. The expected advantage of asynchrony.Journal of Computer and
System Sciences, 51(2):286–300, October 1995.

[17] D. Coppersmith and S. Winograd. Matrix multiplication via algorithmic progressions.Jour-
nal of Symbolic Computation, 9(3):251–280, March 1990.

[18] T.H. Cormen, C.E. Leiserson and R.L. Rivest.Introduction to Algorithms. The MIT Press,
Cambridge MA, United States, 1990.

[19] M. Cosnard and A. Ferreira. On the real power of loosely coupled parallel architectures.
Parallel Processing Letters, 1(2):103–111, 1991.

[20] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian and
T. von Eicken. LogP: Towards a realistic model of parallel computation. InProceedings of
the Fourth ACM-SIGPLAN Symposium on Principles and Practice of Parallel Processing,
pages 1–12, 1993.

[21] D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E. Schauser, R. Subramo-
nian and T. von Eicken. LogP: A practical model of parallel computation.Communications
of the ACM, 39(11):78–85, November 1996.

[22] R.P. Dilworth. A decomposition theorem for partially ordered sets.Annals of Mathematics,
51(1):161–166, January 1950.

[23] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and completeness I: Basic
results.SIAM Journal on Computing, 24(4):873–921, August 1995.

[24] A.C. Dusseau, D.E. Culler, K.E. Schauser and R.P. Martin. Fast parallel sorting under
LogP: Experience with the CM-5.IEEE Transactions on Parallel and Distributed Systems,
7(8):791–805, August 1996.

[25] L. Finta and Z. Liu. Scheduling of parallel programs in single-bus multiprocessor systems.
Rapport de recherche 2302, Institut National de Recherche en Informatique et en Automa-
tique, Sophia-Antipolis, France, May 1994.

[26] L. Finta and Z. Liu. Complexity of task graph scheduling with fixed communication ca-
pacity. Rapport de recherche 2959, Institut National de Recherche en Informatique et en
Automatique, Sophia-Antipolis, France, August 1996.

[27] L. Finta, Z. Liu, I. Milis and E. Bampis. Scheduling UET-UCT series-parallel graphs on
two processors.Theoretical Computer Science, 162(2):323–340, August 1996.

[28] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. InProceedings of the
Tenth Annual ACM Symposium on Theory of Computing, pages 114–118, 1978.

[29] D.R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets.
Proceedings of the AMS, 7:701–702, 1956.

[30] H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, April 1985.

[31] M.R. Garey and D.S. Johnson. Scheduling tasks with nonuniform deadlines on two proces-
sors.Journal of the ACM, 23(6):461–467, July 1976.

164

[32] M.R. Garey and D.S. Johnson. Two-processor scheduling with start-times and deadlines.
SIAM Journal on Computing, 6(3):416–426, September 1977.

[33] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York NY, United States, 1979.

[34] P.B. Gibbons. A more practical PRAM model. InProceedings of the 1989 ACM Symposium
on Parallel Algorithms and Architectures, pages 158–168, 1989.

[35] P.B. Gibbons, Y. Matias and V. Ramachandran. The QRQW PRAM: Accounting for con-
tention in parallel algorithms. InProceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 638–648, 1994.

[36] P.B. Gibbons, Y. Matias and V. Ramachandran. Efficient low-contention parallel algo-
rithms. Journal of Computer and System Sciences, 53(3):417–442, December 1996.

[37] A. Goraľćıkova and V. Koubek. A reduct-and-closure algorithm for graphs. In J. Bečvá̌r,
editor,Proceedings of the 8th Conference on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, volume 74, pages 301–307. Springer-Verlag,
Berlin, Germany, 1979.

[38] R.L. Graham. Bounds for certain multiprocessing anomalies.Bell System Technical Jour-
nal, 45:1563–1581, 1966.

[39] R.L. Graham. Bounds on multiprocessing timing anomalies.SIAM Journal on Applied
Mathematics, 17(2):416–429, March 1969.

[40] F. Guinand. Ordonnancement avec communications pour architectures multiprocesseurs
dans divers mod̀eles d’ex́ecution. Thèse de doctorat, Institut National Polytechnique de
Grenoble, Grenoble, France, June 1995.

[41] F. Guinand, C. Rapine and D. Trystram. Worst case analysis of Lawler’s algorithm for
scheduling trees with communication delays.IEEE Transactions on Parallel and Dis-
tributed Systems, 8(10):1085–1086, October 1997.

[42] F. Guinand and D. Trystram. Optimal scheduling of UECT trees on two processors. Rap-
port APACHE 3, Laboratoire de Modélisation et Calcul, Institute d’Informatique et de
Mathématiques Appliqúees de Grenoble, Grenoble, France, November 1993.

[43] L.A. Hall and D.B. Shmoys. Approximation schemes for constrained scheduling problems.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages
134–139, 1989.

[44] C. Hanen and A. Munier. Performances d’algorithmes de liste en presence de delais de
communication unitaires. Unpublished manuscript, 1995.

[45] D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results.Journal of the ACM, 34(1):144–162, January
1987.

[46] L. Hollerman, T.-S. Hsu, D.R. Lopez and K. Vertanen. Scheduling problems in a practical
allocation model.Journal of Combinatorial Optimization, 1(2):129–149, 1997.

[47] J.A. Hoogeveen, J.K. Lenstra and B. Veltman. Three, four, five, six, or the complexity of
scheduling with communication delays.Operations Research Letters, 16:129–137, 1994.

[48] J.E. Hopcroft and R.M. Karp. An5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, December 1973.

165

[49] T.C. Hu. Parallel sequencing and assembly line problems.Operations Research, 9(6):841–
848, 1961.

[50] G. Isaak. Scheduling rooted forests with communication delays.Order, 11:309–316, 1994.
[51] B.H.H. Juurlink.Computational Models for Parallel Computers. PhD thesis, Leiden Uni-

versity, Leiden, the Netherlands, 1997.
[52] K. Kalpakis and Y. Yesha. On the power of the linear array architecture for performing tree-

structured computations.Journal of Computer and System Sciences, 50(1):1–10, February
1995.

[53] K. Kalpakis and Y. Yesha. Scheduling tree dags on parallel architectures.Algorithmica,
15:373–396, 1996.

[54] R.M. Karp, A. Sahay, E.E. Santos and K.E. Schauser. Optimal broadcast and summation in
the LogP model. InProceedings of the 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 142–153, 1993.

[55] I. Kort and D. Trystram. Some results on scheduling trees of height one under logp. Un-
published manuscript, 1997.

[56] S.R. Kosaraju. Parallel evaluation of division-free arithmetic expressions. InProceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 231–239, 1986.

[57] M. Kunde. Nonpreemptive LP-scheduling on homogeneous multiprocessor systems.SIAM
Journal on Computing, 10(1):151–173, February 1981.

[58] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan. Minimizing maximum lateness on
one machine: computational experience and some applications.Statistica Neerlandica,
30:25–41, 1976.

[59] E.L. Lawler. Scheduling trees on multiprocessors with unit communication delays. Unpub-
lished manuscript, 1993.

[60] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. In S.C. Graves, A.H.G. Rinnooy Kan and P.H.
Zipkin, editors,Handbooks in Operations Research and Management Science, volume 4,
Chapter 9, pages 445–522. Elsevier Science Publishers, Amsterdam, the Netherlands, 1993.

[61] J.K. Lenstra, M. Veldhorst and B. Veltman. The complexity of scheduling trees with com-
munication delays.Journal of Algorithms, 20(1):157–173, January 1996.

[62] J.Y-T. Leung. Bin packing with restricted piece sizes.Information Processing Letters,
31:145–149, 1989.

[63] W. Löwe and W. Zimmermann. Upper time bounds for executing PRAM-programs on the
LogP-machine. InProceedings of the 9th ACM International Conference on Supercomput-
ing, pages 41–50, 1995.

[64] W. Löwe, W. Zimmermann and J. Eisenbiegler. On linear schedules for task graphs for
generalized LogP-machines. In C. Lengauer, M. Griebl and S. Gorlatch, editors,Proceed-
ings of the Third Euro-Par Conference, Lecture Notes in Computer Science, volume 1300,
pages 895–904. Springer-Verlag, Berlin, Germany, 1997.

[65] C. Martel and A. Raghunathan. Asynchronous PRAMs with memory latency.Journal of
Parallel and Distributed Computing, 23(1):10–26, October 1994.

166

[66] G. McMahon and M. Florian. On scheduling with ready times and due dates to minimize
maximum lateness.Operations Research, 23(3):475–482, May–June 1975.

[67] R.H. Möhring. Computationally tractable classes of ordered sets. In I. Rival, editor,Al-
gorithms and Order, pages 105–194. Kluwer Academic Publishers, Dordrecht, the Nether-
lands, 1989.

[68] R.H. Möhring and M.W. Scḧaffter. Approximation algorithms for scheduling series-parallel
orders subject to unit time communication delays. Preprint 483/1995, Fachbereich Mathe-
matik, Technische Universität Berlin, Berlin, Germany, December 1995.

[69] R.H. Möhring and M.W. Scḧaffter. Approximation algorithms for scheduling series-parallel
orders subject to unit time communication delays. Unpublished manuscript, December
1995.

[70] R.H. Möhring, M.W. Scḧaffter and A.S. Schulz. Scheduling jobs with communication
delays: Using infeasible solutions for approximation. In J. Diaz and M. Serra, editors,
Proceedings of the Fourth Annual European Symposium on Algorithms, Lecture Notes in
Computer Science, volume 1136, pages 76–90. Springer-Verlag, Berlin, Germany, 1996.

[71] A. Munier. Approximation algorithms for scheduling trees with general communication
delays. To appear inParallel Computing, 1996.

[72] A. Munier and C. Hanen. An approximation algorithm for scheduling unitary tasks onm
processors with communication delays. Rapport LITP 95/12, Institut Blaise Pascal, Uni-
versit́e Pierre et Marie Curie, Paris, France, February 1995.

[73] A. Munier and J.-C. K̈onig. A heuristic for a scheduling problem with communication
delays.Operations Research, 45(1):145–147, January–February 1997.

[74] I. Munro and M. Paterson. Optimal algorithms for parallel polynomial evaluation.Journal
of Computer and System Sciences, 7:189–198, 1973.

[75] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis of
parallel algorithms.SIAM Journal on Computing, 19(2):322–328, April 1990.

[76] C.H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks.SIAM Journal
on Computing, 8(3):405–409, August 1979.

[77] C. Picouleau.Etude de Probl̀emes d’Optimisation dans les Systèmes Distribúes. Thèse de
doctorat, Universit́e Pierre et Marie Curie, Paris, France, 1992.

[78] C. Picouleau. UET-UCT scheduling on 2 processors with constrained communications.
Rapport LITP 96/13, Institut Blaise Pascal, Université Pierre et Marie Curie, Paris, France,
March 1996.

[79] V.J. Rayward-Smith. UET scheduling with unit interprocessor communication delays.Dis-
crete Applied Mathematics, 18(1):55–71, January 1987.

[80] R. Saad. Scheduling with communication delays.Journal of Combinatorial Mathematics
and Combinatorial Computing, 18:214–224, 1995.

[81] M.W. Scḧaffter. Scheduling Jobs with Communication Delays: Complexity Results and
Approximation Algorithms. Dissertation, Technische Universität Berlin, Berlin, Germany,
November 1996.

[82] M. Snir. On parallel searching.SIAM Journal on Computing, 14(3):688–708, August 1985.

167

[83] Yu.N. Sotskov and N.V. Shakhlevich. NP-hardness of shop-scheduling problems with three
jobs. Discrete Applied Mathematics, 59(3):237–266, May 1995.

[84] H. Stadtherr. Scheduling interval orders with communication delays in parallel. Unpub-
lished manuscript, 1997.

[85] L.G. Valiant. A bridging model for parallel computation.Communications of the ACM,
33(8):103–111, August 1990.

[86] T.A. Varvarigou, V.P. Roychowdhury, T. Kailath and E. Lawler. Scheduling in and out
forests in the presence of communication delays.IEEE Transactions on Parallel and Dis-
tributed Systems, 7(10):1065–1074, October 1996.

[87] B. Veltman.Multiprocessor scheduling with communication delays. PhD thesis, Eindhoven
University of Technology, Eindhoven, the Netherlands, 1993.

[88] J. Verriet. Scheduling UET, UCT dags with release dates and deadlines. Technical re-
port UU-CS-1995-31, Department of Computer Science, Utrecht University, Utrecht, the
Netherlands, September 1995.

[89] J. Verriet. Scheduling interval ordered tasks with non-uniform deadlines. In T. Asano,
Y. Igarashi, H. Nagamochi, S. Miyano and S. Suri, editors,Proceedings of the 7th Inter-
national Symposium on Algorithms and Computation, Lecture Notes in Computer Science,
volume 1178, pages 366–375. Springer-Verlag, Berlin, Germany, 1996.

[90] J. Verriet. Scheduling interval orders with release dates and deadlines. Technical report UU-
CS-1996-12, Department of Computer Science, Utrecht University, Utrecht, the Nether-
lands, March 1996.

[91] J. Verriet. The complexity of scheduling graphs of bounded width subject to non-zero com-
munication delays. Technical report UU-CS-1997-01, Department of Computer Science,
Utrecht University, Utrecht, the Netherlands, January 1997.

[92] J. Verriet. Scheduling tree-structured programs in the LogP model. Technical report UU-
CS-1997-18, Department of Computer Science, Utrecht University, Utrecht, the Nether-
lands, June 1997.

[93] J. Verriet. Scheduling interval-ordered tasks with non-uniform deadlines subject to non-
zero communication delays. To appear inParallel Computing, 1998.

[94] M. Yue. On the exact upper bound for the multifit processor scheduling algorithm.Annals
of Operations Research, 24(1–4):233–259, October 1990.

[95] W. Zimmermann and W. L̈owe. An approach to machine-independent parallel program-
ming. In B. Buchberger and J. Volkert, editors,Proceedings of the Third Joint Conference
on Vector and Parallel Processing, Lecture Notes in Computer Science, volume 854, pages
277–288. Springer-Verlag, Berlin, Germany, 1994.

168

Acknowledgements
Throughout the nearly four years during which I was working as a research assistant, Marinus
Veldhorst was my supervisor. I want to thank him for introducing me to the field of multiproces-
sor scheduling. Moreover, I thank him for many valuable discussions and for carefully reading
all papers I have written including this thesis.

I thank Jan van Leeuwen for reading an earlier version of this thesis and suggesting many
improvements. I also want to thank Iskander Kort, Peter van Rossum and Markus Schäffter
for proofreading earlier versions of parts of this thesis. The discussions with Markus has been
especially helpful to improve the presentation of the results.

I wish to thank the members of the review committee, Hans Bodlaender, Peter Hilbers, Jan
Karel Lenstra, Denis Trystram and Harry Wijshoff, for reviewing this thesis and their useful
comments.

169

170

Samenvatting
Multiprocessor schedulinghoudt zich bezig met de planning van de uitvoering van computer-
programma’s op een parallelle computer. Eencomputerprogrammakan worden gezien als een
collectie instructies die gegroepeerd zijn intaken. Een parallelle computer is een computer met
meerdereprocessorendie verbonden zijn door eencommunicatie-netwerk. Elke processor kan
taken van een computerprogramma uitvoeren.

Tijdens de uitvoering van een computerprogramma op een parallelle computer wordt elke
taakéén maal uitgevoerd. In het algemeen kunnen de taken van een computerprogramma niet
in een willekeurige volgorde worden uitgevoerd: het resultaat van een taak kan nodig zijn
om een andere taak uit te voeren. Zulke taken wordendata-afhankelijkgenoemd. De data-
afhankelijkheden definiëren de structuur van het computerprogramma: als taaku2 het resultaat
van taaku1 nodig heeft, dan kanu2 pas worden uitgevoerd nadatu1 is voltooid. Als er geen
data-afhankelijkheid bestaat tussen twee taken, dan kunnen ze in willekeurige volgorde of tege-
lijkertijd worden uitgevoerd.

Als twee data-afhankelijke takenu1 enu2 op verschillende processoren worden uitgevoerd,
dan moet het resultaat vanu1 naar de processor dieu2 uitvoert worden overgebracht. Dit transport
van informatie wordtcommunicatiegenoemd. Het resultaat vanu1 kan naar een andere processor
worden overgebracht door het sturen van berichten door het communicatie-netwerk.

Eenschedulegeeft voor elke taak aan welke processor hem uitvoert en op welk tijdstip. Het
doel van multiprocessor scheduling is het construeren van eenschedulevan zo kort mogelijke
duur, rekening houdend met de communicatie veroorzaakt door de data-afhankelijkheden tussen
de taken. De duur van een schedule wordt in grote mate bepaald door de hoeveelheid communi-
catie in het schedule: de duur van een schedule kan toenemen doordat een processor lange tijd
geen taken kan uitvoeren, omdat hij staat te wachten op het resultaat van een taak die op een
andere processor wordt uitgevoerd.

Omdat de wijze waarop processoren van parallelle computers communiceren verschilt per
computer, is het uiterst moeilijk om op efficiënte wijze goede schedules te construeren voor een
computerprogramma op een parallelle computer. Daarom wordt in het algemeen een model van
een parallelle computer gebruikt in plaats een echte parallelle computer. Zo’n model wordt een
parallel berekeningsmodelgenoemd. In een parallel berekeningsmodel kan men zich concen-
treren op die aspecten van communicatie die een grote invloed hebben op de kwaliteit van een
schedule. Dit geeft de mogelijkheid deze aspecten beter te begrijpen.

In dit proefschrift worden twee parallelle berekeningsmodellen beschouwd: het UCT model
en het LogP model. Het UCT model richt zich op het bestuderen vanéén aspect van commu-
nicatie: een tijdvertraging die nodig is om resultaten tussen processoren te transporteren. Het
LogP model is een model dat meerdere aspecten van communicatie in acht neemt: door middel
van een geschikt gekozen invulling van zijn parametersL, o, g en P kan het LogP model de
communicatie in vele parallelle computers modelleren.

Communicatie in het UCT model werkt als volgt. Als taaku2 het resultaat van taaku1 nodig
heeft en deze taken zijn op verschillende processoren uitgevoerd, dan moet er een vertraging van
tenminsteéén tijdstap zijn tussen de tijd waaropu1 wordt voltooid en de tijd waaropu2 start.

171

Deze vertraging is nodig om het resultaat vanu1 naar de processor dieu2 uitvoert te sturen. Als
u1 en u2 op dezelfde processor worden uitgevoerd, dan is het resultaat vanu1 al op de juiste
processor beschikbaar en is er geen vertraging nodig. In dat geval kanu2 direct nau1 worden
uitgevoerd.

Communicatie in het LogP model is veel ingewikkelder. Beschouw wederom twee data-
afhankelijke takenu1 en u2 die op verschillende processoren worden uitgevoerd. Neem aan
dat het resultaat vanu1 moet worden getransporteerd naar de processor dieu2 uitvoert. In vele
gevallen kan het transporteren van het resultaat van een taak niet metéén bericht, maar zijn
meerdere berichten nodig. Deze moeten naar de processor dieu2 uitvoert worden gestuurd. Het
versturen vańeén bericht kosto tijdstappen op de processor dieu1 uitvoert; het ontvangen ervan
kosto tijdstappen op de processor dieu2 uitvoert. Daarnaast kan elke processor ten hoogsteéén
bericht versturen of ontvangen in elkeg opeenvolgende tijdstappen en is er een vertraging van
preciesL tijdstappen tussen het versturen en het ontvangen van een bericht.

In het eerste deel van dit proefschrift (hoofdstukken 3, 4, 5, 6 en 7) worden algoritmen be-
schreven die op efficiënte wijze schedules in het UCT model construeren. In hoofdstuk 4 wordt
een algoritme beschreven dat goede schedules construeert voor willekeurige computerprogram-
ma’s. Voor computerprogramma’s met eenoutforest-structuurconstrueert dit algoritme optimale
schedules. In hoofdstuk 5 beschrijven we algoritmen die goede schedules construeren voor com-
puterprogramma’s met eeninforest-structuur. De algoritmen die worden beschreven in hoofd-
stukken 6 en 7 construeren optimale schedules voor computerprogramma’s waarin het maximum
aantal paarsgewijs data-onafhankelijke taken klein is en voor computerprogramma’s met eenin-
terval order-structuur.

Het tweede deel van dit proefschrift (hoofdstukken 8, 9, 10 en 11) houdt zich bezig met
scheduling in het LogP model. In hoofdstukken 9 en 10 bewijzen we dat het construeren van
optimale schedules voor computerprogramma’s met een zeer eenvoudige boomstructuur (send
graph-structuurof receive graph-structuur) waarschijnlijk niet op efficïente wijze mogelijk is.
In deze hoofdstukken worden efficiënte algoritmen beschreven die goede (maar niet noodzake-
lijk optimale) schedules construeren voor computerprogramma’s met een dergelijke structuur.
In hoofdstuk 11 worden decompositie-algoritmen gebruikt om op efficiënte wijze schedules te
construeren voor computerprogramma’s met een algemeneboomstructuur.

Het blijkt dat optimale schedules in het UCT model op efficiënte wijze kunnen worden ge-
construeerd als de structuur van de computerprogramma’s eenvoudig is (bijvoorbeeld computer-
programma’s met een boomstructuur). De eenvoudige aard van de communicatie in het UCT
model maakt dit mogelijk. Vandaar dat de complexiteit van scheduling in het UCT model met
name bepaald wordt door de structuur van de computerprogramma’s. Daarentegen maakt de
communicatie het moeilijk om goede schedules in het LogP model te construeren, zelfs als de
structuur van de computerprogramma’s zeer eenvoudig is (bijvoorbeeld computerprogramma’s
met een send graph-structuur). Hieruit blijkt dat de complexiteit van scheduling in het LogP
model in grote mate wordt bepaald door de ingewikkelde vorm van communicatie in dit model.

172

Curriculum vitae
Jacobus Hendrikus Verriet

3 oktober 1970
Geboren te Ubbergen

augustus 1983 - juni 1989
Voorbereidend Wetenschappelijk Onderwijs aan het Canisius College-Mater Dei te Nijmegen
Diploma behaald op 8 juni 1989

september 1989 - augustus 1994
Studie Informatica aan de Katholieke Universiteit Nijmegen
Propedeutisch diploma (cum laude) behaald op 31 augustus 1990
Doctoraal diploma (cum laude) behaald op 26 augustus 1994

september 1994 - augustus 1998
Assistent in Opleiding bij de Vakgroep Informatica van Universiteit Utrecht

173

174

Index
Symbols

[] .10
β-restricted instance . 145
≺G . 9
≺G,0 . 10
ρ-approximation algorithm 12
{0,1}-communication delays . . 48, 60, 82, 99
3PARTITION . 111, 123

A
anti-chain . 10
approximation algorithm 12

asymptotic approximation ratio of 12
arc . 9
assignment of processors 11, 106
assignment of starting times 11, 105

feasible . 19
asymptotic approximation ratio 12
available feasible tuple 87, 96
available set of sources 87, 95
available task . 21, 22

B
bandwidth . 103

C
chain . 10
CHAIN DECOMPOSITION. 85
chain decomposition. .83
chain-like task system 13, 58
child . 9
common data semantics 103, 104, 108
communicating pair . 140
communication delays 17
communication operation 4, 105

length of . 105
communication requirement140
communication-free schedule 11

communication requirement of 140
communication-intensive source 124
comparable tasks . 10

completion time. .11
computation-intensive source.124
consistent instance . 27

D
d-ary inforest . 13
d-ary intree . 13
d-ARY INTREE DECOMPOSITION.148
d-ary outforest . 13
d-ary outtree .13
D0-consistent instance 27
data dependency . 9
data-dependent tasks. .5
DEADLINE MODIFICATION 30
decomposition . 137, 138
decomposition child . 140
decomposition forest 138
DECOMPOSITION FOREST SCHEDULING141
decomposition parent 140
decomposition tree . 138
delivery time . 22
delivery-completion time 22
directed acyclic graph. .9
directed graph . 9

arc of . 9
node of . 9

distributed memory computer4
distributed memory model 7
DYNAMIC PROGRAMMING 97

E
execution length . 10

F
feasible assignment of starting times 19
feasible communication-free schedule 11
feasible schedule.3, 18, 21, 106
feasible tuple . 87, 96

available .87, 96

G
gap . 103

175

general scheduling instance 10
greedy schedule . 93

H
height . 9, 10, 14

I
idle processor . 11
idle time slot .21
ilst-list . 79
in-time schedule . 22, 62
in-time task .18
incomparable tasks . 10
indegree. .10
independent data semantics 104, 108
induced subgraph . 10
inforest13, 55–60, 137–156

d-ary . 13
leaf of . 13
root of . 13
subforest of . 13
subtree of. 13

interval order.14, 71–75, 79–82
INTERVAL ORDER DEADLINE MODIFICA-
TION .74
interval order lst-list . 79
interval-ordered tasks . 14
intree . 13

d-ary . 13
decomposition of . 137

INTREE DECOMPOSITION. 152

L
latency . 103
lateness . 22
latest starting time list 37
leaf . 13
least urgent parent . 49
LEAST URGENT PARENT LIST SCHEDULING

. 52
least urgent parent property 49
length . 9, 11, 105
LIST SCHEDULING. .34

list scheduling . 34
LogP model . 103
lst-list . 37
lup-available task . 52

M
m-processor schedule.113, 117, 134
makespan . 5, 11
minimum-lateness schedule 22
minimum-length schedule11
minimum-tardiness schedule 22
model of parallel computation 6
multiprocessor scheduling 3–5

N
node . 9
non-uniform deadlines 17

O
objective function . 3, 12
outdegree . 10
outforest. .13, 43–48

d-ary . 13
leaf of . 13
root of . 13
subforest of . 13
subtree of . 13

outtree . 13
d-ary . 13

overhead . 103

P
pairwise consistent instance 63
pairwiseD0-consistent instance 63
PAIRWISE DEADLINE MODIFICATION 68
pairwise deadlines. .61
pairwise stronglyD0-consistent instance . . . 63
parent . 10
partial schedule . 86
PARTITION . 91
path .9

length of . 9
precedence graph. .9

anti-chain in . 10

176

chain decomposition of 83
chain in . 10
height of . 9, 10, 14
induced subgraph of10
path in . 9
prefix of . 10
sink of . 9
source of . 9
subgraph of . 10
task of . 9
topological order of 10
transitive closure of 10
transitive reduction of 10
width of . 10

predecessor . 9
PredG . 9
PredG,0 . 10
prefix . 10
priority list . 34
PROCESSOR ASSIGNMENT COMPUTATION20

R
read operation . 4
ready task . 21
receive graph 14, 123–136
receive operation 4, 104, 105
release dates 48, 60, 82, 99
RESTRICTED RECEIVE GRAPH SCHEDULING

. 131
root . 13

S
schedule . 3, 11, 18, 105

communication-free 11
feasible . 3, 18, 21, 106
feasible communication-free 11
greedy . 93
in-time . 22, 62
lateness of . 22
length of . 11
m-processor 113, 117, 134
makespan of .11
minimum-lateness . 22

minimum-length . 11
minimum-tardiness 22
partial . 86
tardiness of .22

scheduling instance 18, 105
decomposition of137, 138

send graph . 13, 111–121
SEND GRAPH SCHEDULING. 111, 114
send operation 4, 104, 105
shared memory computer 4
shared memory model . 6
sink . 9
source. .9

communication-intensive 124
computation-intensive 124

starting time . 11
stronglyD0-consistent instance 27
subforest . 13
subgraph . 10

induced 10
subtree . 13
successor . 9
SuccG . 9
SuccG,0 . 10

T
tardiness . 18, 22
tardy task . 18
task .4, 9

available .21, 22
child of . 9
completion time of . 11
execution length of . 10
in-time. .18
indegree of . 10
lateness of . 22
least urgent parent of 49
lup-available . 52
outdegree of . 10
parent of . 10
predecessor of . 9
ready . 21
starting time of . 11

177

successor of . 9
tardiness of . 18, 22
tardy . 18

task length . 10
time slot. .21

idle . 21
topological order . 10
transitive closure . 10
transitive reduction . 10
transport operation . 4
tree-like task system 13–14

U
UCT model .17
Unit Communication Times model 17
UNIT EXECUTION TIMES DYNAMIC PRO-
GRAMMING . 89
unit-length communication delays 17
UNRESTRICTED RECEIVE GRAPH SCHEDUL-
ING . 128

W
width . 10
WIDTH3ON2 . 91
write operation . 4

178

