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(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de

Universiteit Utrecht op gezag van de Rector Magnificus,

Prof. dr. W.H. Gispen, ingevolge het besluit van het

College voor Promoties in het openbaar te verdedigen

op maandag 14 juni 2004 des namiddags te 16.15 uur

door

Henricus Herman Wensink

geboren op 31 januari 1976 te Lichtenvoorde



Promotor: Prof. dr. H. N. W. Lekkerkerker

Co-promotor: Dr. G. J. Vroege

Beiden verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht

ISBN 90-393-3725-X

Subject headings: colloids/liquid crystals/phase transitions/mixtures.



Aan mijn vader



Cover: M. C. Escher’s “Liberation” c© 2004 The M.C. Escher Company B.V. -Baarn-

Holland. All rights reserved.



This thesis is based on the following publications:

Chapter 2:

H. H. Wensink, G. J. Vroege and H. N. W. Lekkerkerker,

Isotropic-nematic density inversion in a binary mixture of thin and thick hard platelets,

J. Phys. Chem. B 105, 10610 (2001).

Chapter 3:

H. H. Wensink, G. J. Vroege and H. N. W. Lekkerkerker,

Isotropic-nematic phase separation in asymmetric rod-plate mixtures,

J. Chem. Phys. 115, 7319 (2001).

Chapter 4:

H. H. Wensink, G. J. Vroege and H. N. W. Lekkerkerker,

Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures,

Phys. Rev. E 66, 041704 (2002).

Chapter 5:

H. H. Wensink and G. J. Vroege,

Demixing in binary mixtures of anisometric colloids,

J. Phys.; Condens. Matt. 16, S2015 (2004).

Chapter 6:

H. H. Wensink and G. J. Vroege,

Isotropic-nematic phase behaviour of length-polydisperse hard rods,

J. Chem. Phys. 119, 6868 (2003).

Chapter 7:

H. H. Wensink and G. J. Vroege,

Phase equilibria in systems of hard disks with thickness polydispersity,

Phys. Rev. E 65, 031716 (2002).

Chapter 9:

H. H. Wensink and H. N. W. Lekkerkerker,

Sedimentation and multi-phase equilibria in mixtures of platelets and ideal polymer,

Europhys. Lett. 66, 125 (2004).



vi



Contents

Chapter 1. General introduction 1

1.1. Phenomenological background 1

1.1.1. Entropic phase transitions 3

1.1.2. Mixtures 4

1.2. Scope of this thesis 5

1.3. Statistical mechanical background 6

1.3.1. Fluids of hard anisometric particles 6

1.3.2. Mixtures 12

1.3.3. Parsons’ theory 13

1.3.4. Inhomogeneous liquid crystal phases 17

Part I. Binary mixtures of anisometric particles 21

Chapter 2. Isotropic-nematic density inversion in mixtures of thin and thick hard

platelets 23

2.1. Introduction 23

2.2. Onsager formulation 25

2.2.1. Parsons free energy 29

2.3. Isotropic-nematic phase coexistence: density inversion 30

2.4. Nematic-nematic phase coexistence 32

2.5. Discussion 34

Acknowledgement 36

Chapter 3. Asymmetric rod-plate mixtures (I) : Isotropic - uniaxial nematic phase

separation 37

3.1. Introduction 37

3.2. Onsager formulation 38

3.2.1. Parsons rescaling 42

3.3. Phase Diagrams 43

3.4. Discussion 47

Appendix A: Excluded volume integrals 49

Calculation of ρ12 49

Calculation of ρ22 50

Appendix B: Perturbation analysis 52

Chapter 4. Asymmetric rod-plate mixtures (II) : Biaxial versus uniaxial nematic

stability 55

4.1. Introduction 55

4.2. Starting equations 56

4.3. Solution of the stationarity equations 58

4.3.1. Series expansion solution 58

vii



viii Contents

4.3.2. Direct numerical solution 60

4.4. Order parameters 60

4.5. Bifurcation analysis 61

4.5.1. Isotropic-uniaxial nematic bifurcation 61

4.5.2. Uniaxial-biaxial nematic bifurcation 62

4.6. Biaxiality and demixing 64

4.7. Phase Diagrams 64

4.7.1. Scenario I: stable biaxial nematic phase; bicritical point 65

4.7.2. Scenario II: stable biaxial nematic phase; isotropic-biaxial equilibria 65

4.7.3. Scenario III: uniaxial-biaxial demixing 69

4.7.4. Scenario IV: uniaxial-uniaxial demixing 70

4.8. Summary and discussion 71

Appendix: Calculation of the biaxial critical point 72

Chapter 5. Demixing in binary mixtures of anisometric particles 75

5.1. Introduction 75

5.2. Generalized Onsager theory 76

5.2.1. Monodisperse systems 77

5.2.2. Multicomponent systems 78

5.3. Gaussian approximation versus formal approach 79

5.4. Demixing instability 80

5.5. Isotropic-nematic fractionation effects 80

5.6. Demixing of the isotropic and nematic phases 82

5.6.1. Nematic-nematic demixing 82

5.6.2. Isotropic-isotropic demixing 84

5.7. Final remarks 85

Part II. Polydisperse mixtures of anisometric particles 87

Chapter 6. Isotropic-nematic phase behaviour of length-polydisperse hard rods 89

6.1. Introduction 89

6.2. Polydisperse Onsager theory; starting equations 91

6.3. I-N phase coexistence 93

6.3.1. Equilibrium conditions for polydisperse systems 93

6.3.2. The onset of I-N phase separation; cloud and shadow curves 95

6.3.3. Inside the coexistence region 97

6.3.4. Parent distributions 97

6.4. Results for the onset of I-N phase separation 98

6.4.1. Schulz distributions 98

6.4.2. Log-normal distributions 101

6.5. Inside the I-N coexistence region 103

6.6. Summary and discussion 106

Appendix A: Numerical procedure 110

Appendix B: High-cutoff scaling results 110



Contents ix

Appendix C: Local stability of the nematic phase 114

Chapter 7. Isotropic-nematic phase behaviour of length-polydisperse hard platelets117

7.1. Introduction 117

7.2. Moment free energy 118

7.2.1. Parsons rescaling 120

7.3. Consistency equations 121

7.4. Cloud and shadow curves 123

7.5. Inside the coexistence region 125

7.6. Summary and discussion 126

Chapter 8. Smectic versus columnar order in length-polydisperse mixtures of

parallel hard rods 131

8.1. Introduction 131

8.2. Bifurcation analysis 132

8.3. Results 133

8.4. Discussion and outlook 135

Part III. Epilogue 139

Chapter 9. Sedimentation and multi-phase equilibria in mixtures of platelets and

ideal polymer 141

9.1. Introduction 141

9.2. Sedimentation equilibrium: one-component system 142

9.3. Plate-polymer mixtures 144

9.4. Final Remarks 148

Appendix: Mean-field description of the Asakura-Oosawa model 148

Acknowledgement 150

Chapter 10. On the equation of state of a dense columnar liquid crystal 151

10.1. Introduction 151

10.2. Modified Tonks fluid 152

10.3. Cell model 154

10.4. Results and discussion 155

10.5. Concluding remarks 157

Acknowledgement 158

Bibliography 159

Summary 163

Samenvatting voor iedereen 167

Nawoord 173

Curriculum vitae 175



x Contents



1
General introduction

Abstract

In this Chapter we introduce the concept of lyotropic liquid crystals, both from
a practical and statistical mechanical point of view. We also establish the aim
of this thesis in relation to recent experimental work on colloidal mixtures.

1.1. Phenomenological background

Among the states of matter encountered in daily life the gas, liquid and solid states

are probably best known. Common examples ubiquitous in nature are air, water and ice.

From a microscopic point of view the low-density (ideal) gas state can be represented by

a collection of disordered spherical particles diffusing freely through space and colliding

only with the wall of the container. The collisions of the particles with each other are

neglected. The only distinction between a gas and a liquid is the higher density of the

latter. Due to this, the particles do not only collide with the wall but also with each

other thereby leading to strong correlations between the particles’ motions. Despite

their steric hindering, the particles are still allowed to move through the entire volume,

i.e. the liquid is disordered. Contrary to the liquid, a solid is represented by an ordered

arrangement of particles occupying sites in a specific lattice. The only possible motions

which are then allowed are the vibrations of the particles about their lattice positions.

The solid phase is therefore characterized by a long-range order of the particles in all

three directions of the system.

Interesting enough, many materials in practical life are composed of anisometric

(nonspherical) building blocks. For instance, optical displays and switching devices are

usually composed of rod-shaped molecules. Many colloidal dispersions consist of parti-

cles (within the size range 1-1000 nm) with a distinct anisometric shape, such as blood

(containing toroidal red blood cells) or clay (which consists of layer-shaped colloids). All

these systems may display additional states of matter which are intermediate between

the dilute gas and the crystalline solid state at low and high densities, respectively.

These are referred to as liquid crystalline phases. The very existence of these states

is related to the additional orientational degrees of freedom anisometric particles have

compared to spherical ones. From a practical point of view, the term ‘liquid crystal’

indicates that these systems possess some of the characteristics of a disordered liquid,

evidenced by the ease of flow, and of an ordered solid, evidenced for instance by diffrac-

tion of X-rays or light. We will now illustrate some examples of liquid crystalline phases

in detail below. Corresponding graphic impressions of these phases are depicted in Fig.

1.1.

1



2 1. General introduction

Figure 1.1. Schematic representations of the various (liquid crystal) phases
for platelike particles.

The isotropic (I) fluid phase is very similar to the gas and liquid phases for spheri-

cal particles and is characterized by a complete absence of positional and orientational

order. In the nematic (N) phase the orientations of the particles are largely “frozen”

such that the particles point on average in the same direction. Their centres of masses

are however still distributed homogeneously over the entire system volume, i.e. there

is no long-range positional order. At high densities the systems may form inhomoge-

neous liquid crystal states which possess both orientational order and partial long-range

positional order in one or two dimensions of the system. Examples are the smectic-A

(SmA) phase, characterized by a one-dimensional ordering of layers along the preferred

orientational direction whereas in the other two directions, i.e. within each layer, the

system is spatially disordered and therefore behaves like a liquid∗.
In the columnar (C) state, the particles are ordered into a two-dimensional hexagonal

lattice perpendicular to the preferred orientational direction. In the direction along the

∗Unlike the columnar phase, the smectic phase sketched in Fig. 1.1 has not yet been observed in
colloidal systems of platelets, on which we will focus in part of this thesis.
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columns their arrangement is disordered and hence there are no long-range spatial

correlations.

It is well-known from everyday experience that, under certain conditions, matter can

transform from one state to the other by a phase transition. For instance, increasing

the temperature may lead to boiling and evaporation of water or the melting of ice,

nitrogen gas can be liquefied at low temperatures and high pressures. As to the liquid

crystals we discuss here, phase transitions among the different states may be brought

about in two different ways; one by varying the temperature and the other by changing

the concentration of particles in solution. The variety of systems characterized by

the former is qualified as ‘thermotropic’ and consists mainly of systems of anisometric

low molecular weight constituents (and also certain polymers). In this thesis we shall

however restrict ourselves to the latter class of systems; the lyotropic liquid crystals.

These are composed of high-molecular weight colloidal particles, polymers or surfactants

in a solvent such that the formation of these liquid crystals occurs upon increasing the

concentration of the solute particles.

Historically, lyotropic liquid crystals were first recognised in the 1920s by Zocher [1]

who investigated nematic textures in solutions of rodlike inorganic vanadiumpentoxide

(V2O5) particles. Later, similar observations were reported by Langmuir [2] for clay

platelets and Bawden et al. [3, 4] for Tobacco Mosaic Virus (TMV) rods. At present,

there are many other examples of lyotropic liquid crystals to be found in a wide variety

of dispersions of (mainly rodlike) colloidal particles and solutions of stiff polymers (see

e.g. Refs. [5, 6] for an overview). In the last decade much of the experimental effort

in colloid science was focussed on the development and characterization of colloidal

model systems comprising particles with a well-defined size and shape. The effective

interactions between the particles can often be tailored either by chemically altering

the surface of the particles or by changing the solvent conditions through variation

of the ionic strength or the addition of non-adsorbing polymer. As to anisometric

colloids, two important examples of these model systems are the Boehmite (AlOOH)

rods [7,8] and the plate-shaped Gibbsite (Al(OH)3) particles [9]. These particles can be

stabilised for instance by grafting a layer of polymer onto the particle surface [10, 11].

If the particles are subsequently dispersed in a suitable solvent, the polymer layer acts

as a steric stabilizer which gives rise to short-ranged repulsive interactions, closely

resembling so-called hard interactions, i.e. the particles repel each other when they

touch (they are impenetrable) but do not interact otherwise. Owing to their simple

hard-body interactions the sterically stabilized systems are particularly suitable for

studying the influence of particle shape, explored by either changing the intrinsic shape

of the particles or by mixing particles with distinctly different sizes and shapes, on the

liquid crystalline phase behaviour of anisometric colloids [12].

1.1.1. Entropic phase transitions

On the theoretical side, the field of statistical mechanics of lyotropic liquid crystals

was opened up by Lars Onsager in the 1940s. He recognized that the transition from

an isotropic to a nematic state in solutions containing sufficiently anisometric particles
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can be described successfully within a virial expansion of the free energy truncated

after the second virial term, an approach which could not be used to explain the gas-

liquid transition for spherical particles. One of the crucial insights of Onsager was that

the transition can be explained by hard-body repulsions only, thereby dismissing the

widespread notion that attractive forces between particles must be responsible for the

formation of aligned configurations. The theory of Onsager will be described compre-

hensively in Sec. 1.3.

About a decade after Onsager’s work, Alder, Wainwright and others [13, 14] first

showed by means of computer simulations that a similar disorder-order transition, albeit

of the positional degrees of freedom, occurs in a fluid of hard spheres. Subsequent work

by Hoover and Ree [15] established that if the hard-sphere packing fraction exceeds

φ = 0.494 a fluid spontaneously freezes into a crystalline solid phase with a packing

fraction φ = 0.545. Much later, computer simulations by Frenkel et al. revealed the

stability of smectic and columnar liquid crystals which appear upon densifying systems

of respectively hard rods [16] and hard platelets [17,18], without attractive interactions

between the particles. The transitions of matter mentioned here share an important

characteristic; they are driven purely by entropy, i.e. there are no energetic effects

involved. For this reason these ordering phenomena are nowadays often referred to

as entropic phase transitions [19]. The notion that spontaneous ordering of particles

corresponds to an increase of the total entropy may seem counter-intuitive at first

sight, since an increase of order is usually connected to a decrease of entropy. Yet, the

general mechanism behind these transitions can be understood as follows. Although

the particles lose entropy because the density –in terms of orientations or positions– is

no longer uniform, this loss is more than offset by the simultaneous gain of translational

entropy, i.e. the available space per particle increases as the particles align or freeze

into a crystal lattice.

1.1.2. Mixtures

So far we have implicitly assumed that all particles which build up a gas, liquid

(crystal) or solid phase are identical. Many systems in nature are however mixtures

containing a number of different types of particles or molecules. In this respect we

may roughly distinguish between mixtures of chemically distinct moieties on the one

hand and so-called polydisperse mixtures on the other. Examples of the first are blood

(containing red and white blood cells, plasma etcetera), mayonnaise (a mixture of oil

and vinegar) and milk (consisting of dispersed fat globules, casein micelles and whey

proteins). Polydisperse mixtures are characterized by a large (potentially infinite) num-

ber of species –all belonging to a single family of particles– with continuously varying

properties such as particle shape, size or possible surface charge. Common examples

of these are colloidal model systems , where the particles usually have the same basic

shape (e.g. spheres, rods or plates) but a range of radii, lengths, diameters, etcetera. Of

course, in reality many systems share characteristics of both classes; they may comprise

a number of distinct species each with some degree of polydispersity with respect to

one or more properties of the particle family.
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It is not surprising that the phase behaviour of mixtures is richer than that of pure

systems –if only for the additional entropy of mixing– and that mixing different species

may lead to phenomena not encountered in one-component systems. In particular,

depending on the miscibility of the species involved, mixing may sometimes lead to a

destabilization of a homogeneous state causing a phase separation into two or more

phases, each with a different density and/or composition. The associated segregation

of species among the coexisting phases, called fractionation, is inherent to mixtures

and may sometimes give rise to surprising phenomena, as shown in the next Chapter.

Mixing particles with distinctly different sizes or shapes may also cause the formation

of “new” phases whose structures are not observed in pure systems of the constituent

species. For instance, in a two-component (or binary) mixture of rod- and platelike

colloids we may encounter the so-called biaxial nematic phase, in which both particles

types are aligned in mutually perpendicular directions. Similarly, mixing spheres of

two (or more) different sizes may give rise to the formation of various solid states with

intricate lattices structure not encountered in pure solids [20].

1.2. Scope of this thesis

The central aim of this thesis is to theoretically investigate the effects of mixing

particles with different shapes on their liquid crystal phase behaviour. Many of the

studies to be described in the remainder of this thesis have been triggered off by recent

experimental observations in mixtures of colloids with well-controlled shapes and inter-

actions. In particular, we mention the experimental work of Van der Kooij [12] who

investigated a vast number of mixtures which display many interesting phenomena left

open for theoretical interpretation. One of our primary goals in this work is to account

for these experimental observations by constructing simple, yet realistic, models for the

colloidal systems under consideration and by scrutinizing relevant aspects of their phase

behaviour.

The first part of this thesis will be devoted to binary mixtures of anisometric parti-

cles. In Chapter 2 a simple model is proposed that allows to qualitatively explain the

recently observed isotropic-nematic density inversion in polydisperse systems of col-

loidal platelets. In the next two chapters we shall be concerned with mixtures of rods

and platelets and provide a theoretical underpinning for the low-concentration part of

the experimental phase diagram. We also assess the possible stability of the disputed

biaxial nematic phase in experimentally realizable mixtures. In Chapter 5 we conclude

the first part with an overview on demixing transitions within the isotropic and nematic

phases of binary mixtures of particles whose size differs only in one particle dimension.

Previously published results for rodlike particles will be combined with new results for

platelets to compare phase diagram topologies and demixing mechanisms pertaining to

the various mixtures.

In the second part of this thesis we address the more challenging issue of calculat-

ing phase equilibria in polydisperse mixtures of anisometric particles. In Chapter 6 we

present a study of isotropic-nematic phase coexistence in systems of length-polydisperse
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hard rods, focussing in particular on fractionation effects and the possibility of a demix-

ing of the nematic phase. Chapter 7 deals with polydisperse systems of thickness-

polydisperse platelets. The binary model, introduced in Chapter 2, is extended to a

polydisperse one which allows us to provide a more realistic, albeit still qualitative,

description of the experimental observations. In Chapter 8 we provide a preliminary

calculation on the competition between smectic and columnar ordering in systems of

polydisperse hard rods. As a first-order approximation we consider an artificial model

system of perfectly aligned cylinders. The possibilities of extending the approach to-

wards a more realistic one will be discussed.

The contents of Chapter 9 of this thesis differ somewhat from the rest because of

the introduction of an external field. Inspired by recent experimental observations of

a significant sedimentation in dispersions of platelets we illustrate the drastic effect of

gravity on the phase behaviour of colloidal mixtures. As an example we consider a

system of sedimenting platelets mixed with non-sedimenting ideal polymers, as studied

experimentally by Van der Kooij. Also here, the results of the calculations reveal an

improved description of the experimentally observed behaviour.

Finally, in Chapter 10 we present a free-volume theory for a columnar state of hard

platelets by combining the traditional cell model with an appropriate fluid description

which accounts for the rotational freedom of the particles in the (one-dimensional)

direction of the phase. Excellent quantitative agreement is found with recent computer

simulation results.

1.3. Statistical mechanical background

In this section we introduce the statistical mechanical framework of Onsager’s second

virial theory [5,21,22] to describe the thermodynamic properties of a spatially homoge-

neous fluid of hard colloidal rods or platelets. The theory is then modified to account

for higher virial terms by means of a decoupling approximation as devised by Par-

sons [23]. Finally, we introduce a bifurcation analysis to verify the stability of the fluid

with respect to the spatially inhomogeneous liquid crystalline states.

1.3.1. Fluids of hard anisometric particles

We start from an (imperfect) gas of N identical cylindrically symmetric particles in a

volume V . Assuming a pairwise additive interaction potential we can express the total

potential energy UN as a summation over pairs

UN =
∑
i<j

u(rij ; Ωi,Ωj), (1.1)

where rij = rj − ri is the vector connecting the centres of mass of particles i and j; Ωi

and Ωj represent the solid angles describing the orientations of the respective particles

with respect to some space-fixed coordinate system. For hard-core interactions the pair

potential explicitly reads

u(rij; Ωi,Ωj) =


∞ if i and j overlap;

0 otherwise.
(1.2)
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The description can be applied analogously to dispersions of colloidal particles but

the direct pair potential u should then be replaced by the potential of mean force

w(rij; Ωi,Ωj) describing the interaction between the particles i and j dispersed in a

solvent with a fixed chemical potential [24, 25]. This procedure involves a configura-

tional average of the solvent molecules accounting for their mutual interactions and the

interactions with the dispersed particles.

The configurational partition function QN for the system reads

QN =
1

VNN !

∫
drN

∫
dΩN exp

[
−βUN(rN ; ΩN)

]
, (1.3)

with β = 1/kBT and V the (de Broglie) thermal volume, arising from integrations

over the translational and rotational momenta of the anisometric particles. The posi-

tional and orientational degrees of freedom of the particles are collectively denoted by

{rN ; ΩN}. If we assume that there are no a priori restrictions on the particle orienta-

tions we may approximate the angular integrations to arbitrary accuracy by dividing

the orientational phase space, i.e. the surface of a unit sphere, into s arbitrarily small

equal sections with a surface ∆Ω = 4π/s and summing over all possible orientation

distributions {N1, N2, . . . , Ns}, where Nk is the number of particles with its solid angle

Ω in the k-th section centered about Ωk such that
s∑

k=1

Nk = N. (1.4)

The partition function Eq. (1.3) then becomes

QN =
1

VNN !

(
∆Ω

4π

)N N∑
N1=0

. . .
N∑

Ns=0

N !∏s
k=1Nk!

×
∫
drN exp

[
−βUN (rN ;N1, N2, . . . , Ns)

]
, (1.5)

where the summations need to be carried out under the condition of Eq. (1.4). For large

N it is justified to replace the sum by its maximum term [25]. Denoting the set (i.e.

orientation distribution) which maximizes lnQN (and hence QN) by {Ñ1, Ñ2, . . . , Ñs}
we obtain

QN ≈ 1

VNN !

(
∆Ω

4π

)N N !∏s
k=1 Ñk!

∫
drN exp

[
−βUN(rN ; Ñ1, Ñ2, . . . , Ñs)

]
. (1.6)

The partition function can be expressed in a more convenient form after some rearrang-

ing. This yields

QN =
V N

VNN !︸ ︷︷ ︸
Qtrans

N

(
∆Ω

4π

)N N !∏s
k=1 Ñk!︸ ︷︷ ︸

Qorient
N

〈
exp


−∑

i<j

βw(rij; Ñi, Ñj)


〉

{Ñ1,Ñ2,...,Ñs}︸ ︷︷ ︸
Qint

N

, (1.7)

where the brackets denote a (normalized) configurational average over all positional and

orientational coordinates under the condition that the particles obey an orientational

distribution according to the set {Ñ1, Ñ2, . . . , Ñs}. The first terms Qtrans
N and Qorient

N are
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identified as the translational (ideal gas) and orientational contributions, respectively,

whereas the bracketed one accounts for the hard-body interactions between the parti-

cles. The Helmholtz free energy is obtained from the standard relation βF = − lnQN .

Applying this to Qtrans
N gives the common ideal free energy βFid = N [ln(ρV) − 1], with

ρ = N/V the number density. For the orientational part we obtain

βForient = N

{
ln

[
4π

∆Ω

]
+

s∑
k=1

ñk ln ñk

}
, (1.8)

in terms of the number fractions ñk = Ñk/N with
∑s
k=1 ñk = 1. Introducing the nor-

malized orientational distribution function (ODF) f(Ωk) we may write ñk = f(Ωk)∆Ω.

Using this in Eq. (1.8) and taking the limit ∆Ω → 0 for a continuous distribution in Ω

we obtain the following expression for the orientational free energy

βForient

N
=

∫
f(Ω) ln [4πf(Ω)] dΩ. (1.9)

The configurational partition function Qint
N can be approximated systematically by a

virial expansion in terms of the density variable ρ [26]. At low densities it is justified to

make a second virial approximation by taking each of the N(N −1)/2 pair interactions

independent from all others so that

Qint
N =

〈∏
i<j

exp [−βw(rij; Ωi,Ωj)]

〉
f

≈ ∏
i<j

〈exp [−βw(rij; Ωi,Ωj)]〉f

≈ 〈1 + Φ12〉N(N−1)/2
f . (1.10)

The subscript f indicates the condition that the orientational distribution is given by

f(Ω). Furthermore, Φ12 is the Mayer function, defined as

Φ12 ≡ exp [−βw(r12; Ω1,Ω2)] − 1. (1.11)

Applying the hard-core pair potential Eq. (1.2) we see that this function is equal to

-1 if two particles 1 and 2 overlap and zero otherwise. Spatially integrating the Mayer

function yields the so-called pair cluster integral β1:

β1(Ω1,Ω2) ≡ 1

V

∫
dr1dr2Φ(r12; Ω1,Ω2) = −vexcl(Ω1,Ω2), (1.12)

which is equal to minus the excluded volume vexcl of two anisometric particles at fixed

solid angles Ω1 and Ω2. Using this in Eq. (1.10) yields

Qint
N ≈

[
1 − 1

V

∫∫
dΩ1dΩ2f(Ω1)f(Ω2)vexcl(Ω1,Ω2)

]N(N−1)/2

≈ exp
[
−N ρ

2

∫∫
dΩ1dΩ2f(Ω1)f(Ω2)vexcl(Ω1,Ω2)

]
. (1.13)
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Collecting results we obtain the following expression for the free energy of a fluid of

hard anisometric particles in the second virial approximation:

βF

N
=βµ0 + ln [Vρ] − 1 +

∫
f(Ω) ln [4πf(Ω)] dΩ

+
ρ

2

∫∫
dΩdΩ′f(Ω)f(Ω′)vexcl(Ω,Ω

′). (1.14)

with µ0 a reference chemical potential of the dispersed particles depending only on

the solvent conditions. Higher order contributions in the virial expansion of the free

energy –involving clusters of three, four, etcetera particles– can be derived using similar

arguments as in Eq. (1.10) [27]. In the third virial approximation for example we

encounter the triplet cluster integral β2(Ω1,Ω2,Ω3)

β2(Ω1,Ω2,Ω3) ≡ 2

V

∫∫∫
dr1dr2dr3Φ12Φ13Φ23, (1.15)

which is nonzero only if three particles overlap simultaneously. Eq. (1.15) and higher

order cluster integrals are notoriously difficult to calculate because this requires knowl-

edge of the excluded volume of a multi-particle cluster as a function of the orientations

of all particles involved. In practice, other methods are adopted to include higher virial

terms, albeit approximately, such as ‘scaled particle’ [22,28] and density functional the-

ories (see [5,29] for a review). In this thesis we shall often use the so-called decoupling

approximation, to be described in Sec. 1.3.3.

The next step is to minimize the free energy, at a given density ρ, with respect to

the non-conserved orientational degrees of freedom. In practice, there are two different

ways to find this minimum; a formal approach and a trial function method which we

both shall discuss briefly here. The formal way is to apply a functional differentiation

of the free energy with respect to the ODF f(Ω). This yields the stationarity condition:

δ

δf(Ω)

[
βF

N
− λ′

∫
f(Ω)dΩ

]
= 0, (1.16)

where λ′ is a Lagrange multiplier to be determined from the normalization condition

for the ODF:∫
f(Ω)dΩ = 1. (1.17)

Inserting the free energy Eq. (1.14) gives a nonlinear integral equation

ln[4πf(Ω)] = λ− ρ
∫
f(Ω′)vexcl(Ω,Ω

′)dΩ′, (1.18)

with λ = λ′−1. A trivial solution to Eq. (1.18) is the constant f(Ω) = 1/4π describing

an isotropic fluid in which all particle orientations are equally probable. The thermo-

dynamic equilibrium ODF for a nematic state –which will be a peaked function– can

however only be obtained numerically e.g. in terms of a series expansion in Legendre

polynomials [30–32] or by means of a discretization scheme [33]. It is important to re-

alize that for uniaxial particles the ODF satisfies both azimuthal symmetry around the

nematic director and inversion symmetry. The former implies that the ODF depends
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only on the polar angle θ between the particle orientation vector and the nematic direc-

tor†, so that f(Ω) = f(θ). The latter implies the angles θ and π − θ being equivalent,

thus f(θ) = f(π − θ).

To avoid the necessity of solving the nonlinear integral equation Eq. (1.18) one may

choose the trial function approach instead. The ODF f(Ω) in Eq. (1.14) is then replaced

by a fixed functional form depending on one or more variational parameters and the

free energy is subsequently minimized with respect to these parameters. This approach

was first employed by Onsager in his original paper [21] where he used the following

trial form:

fO(cos θ) =
α cosh(α cos θ)

4π sinhα
, (1.19)

in terms of the variational parameter α. Although this trial function gives reasonable

results for the isotropic-nematic phase transition the analysis involved is quite com-

plicated. In this thesis we shall therefore often use the simpler Gaussian trial ODF,

introduced by Odijk [34]:

fG(θ) ∼=


Z exp[−1

2
αθ2] if 0 ≤ θ ≤ π

2

Z exp[−1
2
α(π − θ)2] if π

2
≤ θ ≤ π

(1.20)

The normalization constant Z = Z(α) can be calculated analytically by means of an

asymptotic expansion for large α. Noting that fG(θ) is then a rapidly decaying function

we may expand as follows

Z =
[∫ 2π

0
dφ

∫ π

0
exp

[
−1

2
αθ2

]
sin θdθ

]−1

∼
[
4π

∫ ∞

0
exp

[
−1

2
αθ2

] {
θ − 1

6
θ3 + . . .

}
dθ

]−1

∼ α

4π

(
1 +

1

3α
+ . . .

)
, (1.21)

where the error introduced by extending the θ-integration to infinity is O(e−α). Retain-

ing the leading order term in Eq. (1.21) we see that the Gaussian ODF, unlike fO(cos θ),

does not give the correct isotropic ODF 1/4π in the limit α→ 0, since fG(θ) vanishes in

this limit. Using the Gaussian ODFs we can calculate the typical or root-mean-square

polar angle, which is related to the variational parameter via 〈θ2〉1/2 ∝ α−1/2, showing

that it will be small for large α. We shall use this relation implicitly in Chapter 5 where

an alternative description of the trial function approximation will be presented entirely

in terms of these typical angles.

A benefit of using the Gaussian trial ODF is that it renders the Onsager theory

analytically tractable. The free energy minimization can be carried out entirely ana-

lytically, which reveals that α ∝ ρ2, whereas approximate asymptotic expressions can

be derived for the orientational and excess parts of the free energy Eq. (1.14) [5, 34].

Although the Gaussian ODF is not a solution of the the exact stationarity condition

†An exception to this case is a mixture of uniaxial rods and plates, where the ODF may depend on
the azimuthal angle as well due to a possible biaxial symmetry of the nematic phase. This will become
clear in Chapter 4.
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Eq. (1.16) it does satisfy an exact high-density scaling relation for the ODF, as was

shown by Van Roij [35], owing to the abovementioned quadratic density-dependence of

the variational parameter. This in turn implies that the Gaussian ODF is particularly

suitable for strongly ordered nematic phases. As to mixtures of rods with different

lengths, the Gaussian ODF has so far been successful in explaining the generic features

of the isotropic-nematic phase behaviour such as a fractionation effect, a widening of

biphasic gap [34] and the existence of triphasic and nematic-nematic equilibria [36].

As is clear from Eq. (1.12) the key ingredient in the Onsager theory is the excluded

volume of two particles which depends essentially on the shape of the particles under

consideration. In this thesis we shall model the particles as cylinders with length L

and D; slender rods are then characterized by L/D � 1 whereas thin platelets have

L/D � 1. Henceforth, we will use the ratio of the largest to the shortest dimension of

the particle, the aspect ratio, to quantify the anisometry of the particle. The general

expression for the excluded volume of two different cylinders with lengths L1 and L2

and diameters D1 and D2 at mutual angle γ has been derived in closed form by Onsager

in a remarkable appendix to his paper [21]. The result is

vexcl(L1, D1;L2, D2; γ) =
π

4
D1D2(D1 +D2) |sin γ| + L1L2(D1 +D2) |sin γ|

+ L2

[
π

4
D2

2 +D1D2E(sin γ) +
π

4
D2

1 |cos γ|
]

+ L1

[
π

4
D2

1 +D1D2E(sin γ) +
π

4
D2

2 |cos γ|
]
, (1.22)

with E(x) the complete elliptic integral of the second kind. For sufficiently anisometric

particles characterized by a large aspect ratio, we may neglect the O(LD2)-contributions

arising from the particles’ finite thicknesses‡ and retain only the leading order contri-

bution, given by the first term (in case of thin platelets) or the second one (for slender

rods). To assess the influence of multi-particle correlations Onsager gave some geomet-

ric arguments to estimate the following scaling behaviour of the triplet cluster integral

Eq. (1.15) for isotropically oriented thin rods

β2

β2
1

∼ O
(
D

L
ln
L

D

)
, (1.23)

which clearly vanishes for L/D → ∞. The decrease has been verified by means of

Monte-Carlo simulations on hard spherocylinders by Frenkel [37,38] showing that higher

order virial coefficients can be neglected only if L/D � 100. The situation is much

different for thin platelets for which Onsager estimated

β2

β2
1

∼ O(1), (1.24)

which is also true for spheres. This important result shows that the third and higher

virial terms cannot be neglected for thin platelets (not even in the limit L/D → 0) [18].

‡Strictly, this is only justified if the orientational order in the nematic state is such that the typical
mutual angles 〈〈γ〉〉 are large compared to D/L (rods) or L/D (platelets).
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In the concentrated nematic state the interactions between the aligned particles are

much stronger due to steric hindering. For slender rods Onsager showed that the third

virial coefficient in the aligned state remains vanishingly small only if the typical angle

between the particles 〈〈γ〉〉 is much larger than the so-called internal angle γint ∼ D/L

of the rod. If 〈〈γ〉〉 is of the order D/L the rods are nearly parallel and the triplet

cluster is always finite, as in Eq. (1.24), irrespective of L/D. However, it turns out that

the latter situation is not encountered for thin rods since the ratio of the typical and

internal angles 〈〈γ〉〉/γint can be shown to scale as ∼ L/D, indicating that higher virial

terms vanish in the nematic phase for L/D → ∞ [5]. We can therefore conclude that

Onsager’s second virial theory for the isotropic-nematic transition is an exact theory for

rods in the limit L/D → ∞ whereas only qualitative results can be expected for short

rods (say L/D � 100) and platelike particles.

1.3.2. Mixtures

In this thesis we shall be concerned with mixtures of anisometric particles comprising

either two distinctly different species (binary mixtures) or a large number of particles

with a continuously varying size parameter (polydisperse mixtures). Introducing mole

fractions xj = Nj/N of species j, the free energy of a mixture is given by a simple

generalization of Eq. (1.14):

βF

N
∼ ln[ρV̄ ] − 1 +

∑
j

xj ln xj +
∑
j

xj

∫
fj(Ω) ln [4πfj(Ω)] dΩ

+
ρ

2

∑
j

∑
k

xjxk

∫∫
dΩdΩ′fj(Ω)fk(Ω

′)vjkexcl(Ω,Ω
′), (1.25)

with V̄ =
∏
j Vxj

j . The contribution following the ideal entropy is an entropy of mixing

due to the fact that we are dealing with different species. Although the free energy

for mixtures is easily established, the implications of Eq. (1.25) are quite drastic. In

particular, each species j now has its own ODF which must be normalized according

to
∫
fj(dΩ)dΩ ≡ 1. Formally minimizing the free energy with respect to all ODFs then

gives a coupled set of nonlinear equations:

ln[4πfj(Ω)] = λj − ρ
∑
k

xk

∫
fk(Ω

′)vjkexcl(Ω,Ω
′)dΩ′, (1.26)

which is progressively difficult to solve if the number of components increases. A similar

set of coupled equations, albeit not in integral form, can be obtained from the Gaussian

trial function approximation by inserting fG(αj ; θ) from Eq. (1.20) and minimizing with

respect to all αj . Moreover, in case of a phase coexistence between e.g. an isotropic (I)

and a nematic (N) phase, the conditions for mechanical and chemical equilibria require

equal osmotic pressure Π and chemical potentials µj for all species involved. Hence,

the coexistence equations are

ΠI = ΠN

µIj = µNj for all j, (1.27)
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where we must realise that the composition {xj} may be different in each phase due

to fractionation effects. These considerations indicate that the calculation of phase

transition in mixtures is, in general, a difficult task. For the binary mixtures to be

considered in Part I in this thesis, the equations are still manageable, in particular when

the Gaussian approximation is used. However, for the polydisperse systems treated in

Part II, the situation is usually much worse so that special numerical techniques have

to be devised to solve the coupled minimization equations along with the coexistence

conditions, as we shall see in Chapter 6.

1.3.3. Parsons’ theory

Parsons [23] showed that the orientational degrees of a system of anisometric particles

may be decoupled from the translational ones if the pair correlation function is assumed

to obey a certain scaling form. Before discussing the full details of the approach let us

first state the basic equations needed. We start from the generalized virial equation for

a homogeneous system of monodisperse anisometric particles, which reads [26]:

βΠ = ρ− ρ2

6

∫
d∆r

∫∫
dΩdΩ′f(Ω)f(Ω′) [∆r∇rβw(∆r; Ω,Ω′)] g(∆r; Ω,Ω′; ρ), (1.28)

with Π the osmotic pressure of the fluid. The gradient ∇r acts only on the spatial

coordinate ∆r = r − r′ of the pair interaction w. Eq. (1.28) is difficult to use in

practice because of the unknown pair correlation function g describing the possibility

to find, at a given density ρ, two particles with respective orientations Ω and Ω′ at a

distance ∆r. Using the standard relation

βΠ =

(
∂βF

∂V

)
N,T,f(Ω)

= ρ2

(
∂βF/N

∂ρ

)
N,T,f(Ω)

, (1.29)

and integrating over ρ yields a formal expression for the excess free energy:

βFexcess

N
= − 1

6

∫
d∆r

∫∫
dΩdΩ′f(Ω)f(Ω′)

×
∫ ρ

0
dρ′ [∆r∇rβw(∆r; Ω,Ω′)] g(∆r; Ω,Ω′; ρ′), (1.30)

As before we can approximate this expression by applying a virial expansion up to first

order in the density. In the second virial approximation the pair correlation function is

written as g ≈ exp[−βw] and the integration over ρ becomes trivial. Furthermore, an

integration by parts on the d∆r integral gives

βFexcess

N
= −ρ

2

∫∫
dΩdΩ′f(Ω)f(Ω′)

∫
d∆r (exp [−βw(∆r; Ω,Ω′)] − 1)

= −ρ
2

∫∫
dΩdΩ′f(Ω)f(Ω′)β1(Ω,Ω

′), (1.31)

Clearly, with Eq. (1.12), this expression is equivalent to the Onsager excess free energy

Eq. (1.14), as should be the case.
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To account for spatial correlations at higher densities Parsons suggested the following

scaling Ansatz for the pair correlation function:

g(∆r; Ω,Ω′; ρ) = g

(
∆r

σ(r̂; Ω,Ω′)
; ρ

)
, (1.32)

where σ(r̂; Ω,Ω′) is the (centre-to-centre) distance of nearest approach of two particles

along the unit vector r̂ connecting their centres of mass. Eq. (1.32) basically rep-

resents a mapping of the pair correlation function for anisometric particles onto the

radially symmetric g(∆r/σHS; ρ) for spheres with the sphere diameter σHS replaced by

an orientation-dependent collision diameter σ(r̂; Ω,Ω′). An implication of Eq. (1.32)

is that the contact value of the correlation function g(1; ρ) will be the same regardless

of the particle orientations. The quality of the decoupling approximation is difficult to

assess precisely but it is expected to become worse for higher particle anisometry and

densities. The quantitative value of the approach will be discussed below.

When we apply the Ansatz in Eq. (1.30) the ∆r integral can be split into a positional

and orientational part. Using
∫
d∆r =

∫
dr̂

∫
∆r2d∆r we obtain after some algebra

∫
d∆r

∫ ρ

0
dρ′∆r

∂βw

∂∆r
g

(
∆r

σ(r̂; Ω,Ω′)

)
=

∫ ∞

1
dyy3

∫ ρ

0
dρ′

∂βw

∂y
g(y; ρ′)

∫
σ3(r̂; Ω,Ω′)dr̂

=
∫ ρ

0
dρ′g(1; ρ′)

∫
σ3(r̂; Ω,Ω′)dr̂

= J(ρ)
∫
σ3(r̂; Ω,Ω′)dr̂, (1.33)

with y = ∆r/σ(r̂; Ω,Ω′) the rescaled interparticle distance. Here, we have also used

that ∂βw/∂y = δ(y − 1) for hard-body interactions. The function J(ρ) arises from

integrating the contact value of the pair distribution function g(1; ρ) over the density

ρ. The integration over the unit vector r̂ represents the excluded volume, i.e.

vexcl(Ω,Ω
′) =

1

3

∫
dr̂σ3(r̂; Ω,Ω′) (1.34)

which gives the correct limit vexcl = 4πσ3
HS/3 for hard spheres with σ(r̂; Ω,Ω′) = σHS.

The excess free energy in the decoupling approximation thus becomes

βFP
excess

N
=

1

2
J(ρ)

∫∫
dΩdΩ′f(Ω)f(Ω′)vexcl(Ω,Ω

′), (1.35)

Going back to J(ρ) we may now use the results for a hard-sphere fluid to express it

in explicit form. First of all we notice from the virial equation Eq. (1.28) that the

equation of state for hard spheres is given by

βΠV

N
= 1 − 4φ

∫
dyy3∂βw(y)

∂y
g(y; ρ)

= 1 − 4φg(1; ρ) (1.36)
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with y = ∆r/σHS and φ = ρπσ3
HS/6 the volume fraction. Using the Carnahan-Starling

equation of state [39]

βΠHSV

N
=

1 + φ+ φ2 − φ3

(1 − φ)3
, (1.37)

which represents a very good fit to the simulation data for a hard-sphere fluid up to the

freezing volume fraction φ = 0.494, J(ρ) is obtained by straightforward integration via

J(ρ) =
∫ ρ

0

1

4φ

[
1 − βΠHSV

N

]
dρ′

= ρ
4 − 3φ

4(1 − φ)2
, (1.38)

Gathering results and comparing with Eq. (1.14) we see that the decoupling approx-

imation boils down to a rescaling of the Onsager second-virial free energy according

to
ρ

2
〈〈vexcl(Ω,Ω

′)〉〉f(Ω) → ρ

2
f̃CS 〈〈vexcl(Ω,Ω

′)〉〉f(Ω), (1.39)

with

f̃CS(φ) =
1 − (3/4)φ

(1 − φ)2
. (1.40)

Noting that f̃CS(φ) → 1 for φ going to zero we see that the second virial coefficient

is unaffected by the rescaling, as it should. Alternatively, one might regard Parsons’

approach as a generalization of the Carnahan-Starling excess free energy to anisometric

particles. Considering the Carnahan-Starling excess free energy for hard spheres

βFCS
excess

N
=

4 − 3φ

(1 − φ)2
, (1.41)

obtained by standard integration of Eq. (1.37), the Parsons excess free energy can be

expressed as

βFP
excess

N
=

〈〈vexcl(Ω,Ω
′)〉〉

8v0

βFCS
excess

N
, (1.42)

where the orientation dependent prefactor reduces to 1 for spheres (v0 is the particle

volume). Parsons’ method thus allows us to incorporate many-body effects –albeit in an

average way– while requiring only explicit knowledge of the two-particles interactions

embodied in the excluded volume. For this reason, the method is much easier to

implement than the straightforward option of direct inclusion of higher virial terms

[40, 41]. Extending the approach to binary and polydisperse mixtures does not pose

serious difficulties as we shall see in Chapter 2 and 7. It is important to note that

Parsons’ method does not affect the free energy (and hence the phase behaviour) of

platelets in the limit L/D → 0. The reason for this is that infinitely thin platelets have

a zero volume, according to Eq. (1.22) and hence a zero packing fraction. This in turn

implies that fCS = 1 for all densities.
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Figure 1.2. Isotropic-nematic coexistence volume fractions and osmotic pres-
sure obtained from the Onsager-Parsons free energy compared with simulation
results. (a) Hard spherocylinders. The solid and dotted lines are theoretical
results for the transition densities and the coexistence pressure, respectively.
Squares and circles denote corresponding results from Monte-Carlo simula-
tions [42]. We have plotted the inverse aspect ratio on the horizontal axis.
The pressure is rendered dimensionless using the excluded volume b = π

4 L2D

for thin rods. (b) Same for hard disklike cylinders using simulation results
from [43]. Here, b = D3.

The quantitative success of Parsons’ approach has initially been confirmed by Lee [44,

45] for hard rodlike particles. The I −N transition densities calculated for a system of

hard ellipsoidal particles with aspect ratio L/D = 5 were found in close agreement with

results from computer simulations. More extensive comparisons between the Onsager-

Parsons theory and simulations were made by Mc Grother et al. [46] for short hard

spherocylinders (L/D < 5) and by Camp et al. [47] for hard prolate ellipsoids (5 ≤
L/D ≤ 20). In both cases, the transition densities as found from the theory agreed

very well with the simulation results. In a similar study, Camp et al. [48, 49] showed

that Parsons’ approach also worked well for mixtures of rod- and platelike ellipsoids,

showing improved quantitative agreement with computer simulations over the Onsager

theory and the y-expansion approach. The latter method, which is due to Barboy

and Gelbart [50], provides direct inclusion of higher virial terms by a recasting of the

free energy in terms of a new density variable y. The results of Camp and co-workers

motivated us to apply Parsons’ method to the mixtures of rods and plates discussed in

Chapter 3.

Unlike hard rods, no systematic comparative study has been reported so far on the

effect of the Parsons rescaling on the I −N transition in systems of hard platelike par-

ticles. For this reason we have combined in Fig. 1.2 the results for spherocylinders and

platelets. The theoretical calculations were based on the Onsager-Parsons free energy

using a formal minimization procedure [33]. The rods were modeled as spherocylinders

and the platelets were represented by flat cylinders. These are compared with Monte

Carlo simulations results for spherocylinders performed by Bolhuis [42] and cut spheres

by Zhang [43]. The latter are platelike objects obtained by slicing two caps off a sphere
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of diameter D, at two planes parallel to the equatorial plane with equal distance L/2.

Although the shape of a cut sphere is different from a cylindrical disk used in the calcu-

lations, the discrepancy is expected to be marginal for sufficiently anisometric platelets.

The agreement between theory and simulations is surprisingly good for spherocylinders

(as already noted by Lee) but unfortunately quite poor for the platelets. In particular,

Parsons’ approach tends to overestimate both the transition densities and the width

of the coexistence region φN − φI . The coexistence pressure is also predicted much

larger compared to the simulation. As to platelike particles we must therefore conclude

that although Parsons’ approach constitutes a significant improvement over the original

second virial theory (the results of which are not shown here), there is a considerable

lack of quantitative agreement with computer simulations.

1.3.4. Inhomogeneous liquid crystal phases

So far we have restricted ourselves to systems where the particle density is homo-

geneously distributed throughout the system. As already alluded to before, a homo-

geneous nematic fluid may become smectic or columnar at higher densities leading to

modulatory spatial density profiles. Spatial inhomogeneity is also present for example

near an interface separating two coexisting phases with different densities, or it may

be induced by a wall –which gives rise to local structuring of the homogeneous fluid–

or an external gravitational, electromagnetic or flow field leading e.g. to gradients in

the density. All of these cases can be formally described within the framework of den-

sity functional theory (DFT) which was introduced in the field of classical fluids in the

late 1970s to study freezing of hard spheres [51, 52] and the nature of the liquid-gas

interface [53]. Although DFT has been widely and successfully used to describe phase

transitions and other phenomena in systems of spherical particles [54,55], its application

to lyotropic liquid crystals is at present much less developed [5, 29].

In the following we will not describe the formal background of DFT nor shall we

treat the inhomogeneous liquid crystal phases in full. Instead, we merely show how

an instability of the homogeneous nematic phase with respect to these phases can be

established starting from the rescaled second virial approximation explained above.

Introducing the generalized density distribution ρ(r; Ω) the expression for the Onsager-

Parsons free energy for a monodisperse system can be recast into the following density

functional

βF [ρ] =βµ0 +
∫∫

drdΩρ(r; Ω) {ln[Vρ(r; Ω)] − 1}

− f̃CS(φ)
1

2

∫∫
drdΩ

∫∫
dr′dΩ′Φ(∆r; Ω,Ω′)ρ(r; Ω)ρ(r′; Ω′). (1.43)

For a homogeneous fluid we may substitute ρ(r; Ω) = ρf(Ω) which immediately gives

back the original Onsager result Eq. (1.14) (ignoring f̃CS(φ)) as we expect. Formally,
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the second virial approximation represents the simplest density functional one can con-

struct. It corresponds to the direct correlation function c(∆r; Ω,Ω′) [26] being propor-

tional to the Mayer function for all densities, i.e.

c(∆r; Ω,Ω′) ≡ − δ2βFexcess

δρ(r)δρ(r′)
= f̃CS(φ)Φ(∆r; Ω,Ω′). (1.44)

This correlation function has also been tested directly against results from computer

simulations –at least for hard ellipsoids– showing that its quality compares very well

with more complicated density functional approaches [56].

We will now determine the limit of stability of the spatially homogeneous nematic

state by means of a bifurcation analysis. This technique which was introduced in the

field of liquid crystals by Kayser and Raveché [30] and later elaborated by Mulder

[57] in general involves probing the stability of a homogeneous phase with respect to

infinitesimal density perturbations pertaining to “new” inhomogeneous states. The

analysis can also be applied to the stationarity condition Eq. (1.18) to locate the state

point where inhomogeneous (i.e. nematic) solutions for the ODF branch off from the

homogeneous isotropic ODF [30]. This will be done in Chapter 4. For the smectic and

columnar state the following density modulations are proposed

ρ(r; Ω) = ρf(Ω) + δρ(q; Ω) cos(q · r) (smectic)

ρ(r; Ω) = ρf(Ω) + δρ(q; Ω)
3∑
i=1

cos(qi · r) (columnar), (1.45)

which obey the condition of inversion symmetry for the wave vector (i.e. q = −q).

Defining the nematic director n̂ = {0, 0, 1} along in the z-director of the Cartesian

frame, we may write q = qSmA{0, 0, 1} for the smectic phase, resembling the one-

dimensional density modulation along the director. In the columnar state the six-

fold rotational symmetry of the hexagonal lattice perpendicular to the director can

be described by a combination of three wave vectors: q1 = qC{1, 1/
√

3, 0}, q2 =

qC{1,−1/
√

3, 0}, q3 = qC{0, 2/
√

3, 0}. The magnitude of the wave vectors is related via

q = 2π/λ to the typical spacing λ corresponding to the smectic and columnar density

modulations.

Inserting Eq. (1.45) into the free energy and performing a Landau-type expansion

up to quadratic order in the amplitude δρ(q; Ω) we obtain the following condition for

marginal stability of the homogeneous nematic phase:

βδ2F =
∫∫

dΩdΩ′
{
δ(Ω,Ω′)
ρf(Ω)

− ĉ(q; Ω,Ω′)

}
δρ(q; Ω)δρ(q; Ω′) > 0, (1.46)

where the caret denotes a cosine transform of the direct correlation function:

ĉ(q; Ω,Ω′) ≡
∫
d∆r cos(q · ∆r)c(∆r; Ω,Ω′). (1.47)

For the columnar symmetry this leads to superposition of three transforms correspond-

ing to q1,q2 and q3. The amplitude of the perturbation may be factorized according

to δ(q; Ω) = δρ(q)f(1)(Ω) with f(1)(Ω) the new ODF pertaining to the periodic den-

sity fluctuation. If we assume that only spatial density fluctuations are responsible for
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the loss of nematic stability we may set f(1)(Ω) = f(Ω) and the bifurcation condition

(βδ2F = 0) then becomes equivalent to a divergence of the nematic structure function

S(q; ρ):

S−1(q; ρ) =
[
1 −

∫∫
dΩdΩf(Ω)f(Ω′)ĉ(q; Ω,Ω′)

]
= 0. (1.48)

However, the rigorous method of locating the bifurcation point assumes both spatial and

orientational fluctuations. Recasting Eq. (1.46) then gives the following self-consistency

equation for the unknown orientation distribution f(1)(Ω)

f(1)(Ω) = ρf(Ω)
∫
dΩ′f(1)(Ω

′)ĉ(q; Ω,Ω′). (1.49)

The bifurcation from the nematic to smectic or columnar state is given by the smallest

number density ρ∗ (and corresponding ODF f ∗(Ω)) that gives rise to a non-trivial

solution f(1)(Ω) = f ∗
(1)(Ω) of Eq. (1.49).

The key point in the analysis is finding an appropriate expression for the transformed

direct correlation function ĉ(q; Ω,Ω′). Within the rescaled second virial approximation

it is related via Eq. (1.44) to a cosine transform of the excluded volume body of two

anisometric particles:

ĉ(q; Ω,Ω′) = f̃CS(φ)
∫
d∆r cos(q · ∆r)Φ(∆r; Ω,Ω′)

= −f̃CS(φ)
∫
vexcl(Ω,Ω′)

d∆r cos(q · ∆r). (1.50)

Determining this quantity is a non-trivial task since it requires detailed knowledge of

the shape of the excluded-volume body. For spherocylinders an explicit result for the

transform was provided by Van Roij [58]. However, doing a similar calculation for a

cylindrical plate with finite thickness does not seem worthwile due to the complex shape

of its excluded volume body [59].

In Chapter 8 of this thesis we shall treat the much simpler case of parallel hard

cylinders for which the transformed excluded volume can be easily calculated. Moreover,

assuming perfectly aligned particles allows us to extend the present description to a

polydisperse one. We will show that the approach leads to bifurcation equations which

are completely analogous to the ones presented here, the basic distinction being the

fact that the thermodynamic state is now characterized by a length distribution rather

than an ODF. Although the neglect of orientational freedom is a serious approximation

–even in the high-density regime where the particles are strongly aligned– the model

still allows us to make a qualitative assessment of the stability of smectic and columnar

structures in polydisperse systems.
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Binary mixtures of anisometric particles





2
Isotropic-nematic density inversion in

mixtures of thin and thick hard platelets
Abstract

We study the phase behaviour of a binary mixture of thin and thick hard
platelets, using Onsager’s second virial theory for binary mixtures in the Gauss-
ian approximation. Higher virial terms are included indirectly by means of a
rescaling of the free energy (Parsons’ approach). Our calculations provide a
simple explanation for the isotropic-nematic density inversion, as experimen-
tally observed in systems of polydisperse gibbsite platelets by Van der Kooij [60].
In these systems, a nematic upper phase was found to coexist with an isotropic
bottom phase. We confirm the original conjecture of the authors, which states
that the phenomenon originates from a pronounced fractionation in thickness
between the phases, such that the thick platelets are largely expelled from the
nematic phase and preferentially occupy the isotropic phase. Our calculations
show that the inverted state is found in a major part of the I − N coexistence
region. We also locate a nematic-nematic demixing transition for any thickness
ratio L2/L1 > 1. At small ratios, the N −N coexistence region is bounded by a
lower critical point which shifts towards lower osmotic pressures as the thick-
ness ratio is increased. At high ratios (L2/L1 > 3.3), a triphasic coexistence is
encountered at which two nematic phases coexist with an isotropic phase. We
show that the demixing transition is driven by a small O(L/D)-contribution to
the excluded volume entropy.

2.1. Introduction

Contrary to dispersions of colloidal rods, there is little experimental evidence of

the isotropic-to-nematic phase transition in systems of platelike colloids. The first

observations date back to 1938 in aqueous suspensions of clay particles by Langmuir

[2]. However, many later observations in other clay systems have been obscured by

gelation effects. In particular, macroscopic phase separation seems to be inhibited by

the formation of a rigid gel network [61,62]. Recently, a novel model system for platelike

colloids has been developed, consisting of sterically stabilized gibbsite platelets [11].

This system unambiguously shows a macroscopic phase separation into an isotropic and

a birefringent nematic phase. The densities of these phases are in reasonable agreement

with computer simulation results for hard platelets [63, 64].

An important feature of the gibbsite platelets is their polydispersity, i.e. the parti-

cles differ in size and shape. The influence of polydispersity on the phase behaviour of

23
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Figure 2.1. Samples of sterically stabilized gibbsite platelets after I − N

phase separation as observed between crossed polarizers. Volume fraction of
the samples vary from (a) φ = 0.22, (b) φ = 0.24, to (c) φ = 0.25. Picture
taken from [60].

rod- and platelike colloids is an important factor in the interpretation of experimental

results, as already pointed out by Onsager in his original paper [21]. Calculations on bi-

nary mixtures of long and short rods [65] within Onsager’s approach have revealed some

interesting phenomena like the fractionation effect (with the longer rods going prefer-

entially to the nematic phase), a widening of the biphasic gap, a reentrant phenomenon

and the possibility of triphasic and nematic-nematic equilibria [66].

The gibbsite systems, developed by Wierenga et al. [9], display a very broad size

distribution in both diameter and thickness. The polydispersity σ was found to be

approximately 25 % for both diameter and thickness [11]. Until recently, the effect of

polydispersity in the platelets’ thickness was considered to be far less important than

the polydispersity in diameter, since the thickness hardly contributes to the excluded

volume between two platelets and thus cannot have a significant influence on the phase

behaviour. However, a recent experimental study by van der Kooij et al. [60] has

shown that polydispersity in thickness can have considerable implications for the phase

behaviour of platelike colloids.

In these experiments, the phase behaviour of suspensions of gibbsite platelets with

a particularly broad distribution in thickness was investigated [60]. The polydispersity

in thickness, although difficult to determine accurately, was estimated to be about 50

%. The high polydispersity is caused by the presence of a significant number of very

thick platelets, as observed on the transmission electron microscopy (TEM) micrograph

of the gibbsite samples. The suspensions show an I − N phase separation over a wide

range of particle concentrations. However, a remarkable phenomenon was observed;
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in a major part of the coexistence region a nematic upper phase was found to coexist

with an isotropic bottom phase (Fig. 2.1), which implies that the nematic phase has

a lower mass density than the coexisting isotropic phase. Henceforth, we will refer

to this phenomenon as the I − N density inversion. It is argued that this anomalous

behaviour is related to the platelets’ considerable polydispersity in thickness. To explain

the underlying mechanism, two aspects are mentioned by the authors [60]. On the one

hand, the difference between the number densities of the coexisting phases; the total

number density of platelets in the nematic phase will in general be higher than that in

the coexisting isotropic phase and, consequently, the nematic phase will be more dense

than the isotropic phase. On the other hand there is a clear evidence of fractionation in

thickness between the coexisting phases, such that the thick platelets (i.e. the largest

particles) accumulate in the isotropic phase, thereby increasing the mass density of

the isotropic phase relative to that of the nematic phase. The authors conjecture that

an I − N density inversion may occur if the fractionation effect is strong enough to

overcome the difference between the number densities of the coexisting phases.

Our objective in this Chapter is to study the phase behaviour of a simple binary

mixture of thin and thick hard platelets starting from Onsager’s theory. We show that

our calculations indeed account for a significant fractionation effect as well as a density

inversion in the I − N coexistence region, thus confirming the conjecture of van der

Kooij et al.

Within our theoretical approach, we also locate a nematic-nematic demixing tran-

sition. We show that a stable demixing transition occurs irrespective of the thickness

ratio. At high ratios, an associated triphasic equilibrium is found. Recently, a simi-

lar demixing transition was found in binary mixtures of thin and thick rods [67–69],

although only at sufficiently high thickness ratios (� 4). There, even a stable isotropic-

isotropic demixing transition could be located (see also [70]). This issue will be discussed

in Chapter 5.

2.2. Onsager formulation

We consider a binary mixture of hard platelets of species j = 1, 2 with length (thick-

ness) Lj and common diameter D in a macroscopic volume V . For the sake of definite-

ness we denote the thicker platelets by subscript 2, so that the composition variable

x = N2/(N1 +N2) is the mole fraction of the thick platelets. Note that, contrary to a

slender rod, the length-to-diameter ratio L/D of a thin platelet is a small parameter.

A nematic phase in a dilute solution of platelets is characterized by an ODF, fj(θ),

describing the distribution of the polar angle θ between the normal to the platelet of type

j and the nematic director. The ODF must be normalized according to
∫
fj(Ω)dΩ ≡ 1,

with Ω the solid angle of the platelet’s normal vector.

The formation of an isotropic state (with fj constant) or a nematic state (with

fj a peaked distribution) is caused by a competition between orientational entropy

(favouring the isotropic state) and the excluded volume entropy (favouring the nematic

state). Onsager [21] defined the quantity σj as a measure for the (negative of the)
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orientational entropy

σj ≡
∫
fj(θ) ln[4πfj(θ)]dΩ, j = 1, 2, (2.1)

which has its minimum (σj = 0) in the isotropic state, whereas σj > 0 in the nematic

state. In the second virial approximation, the interactions between hard particles are

expressed as an excluded volume entropy depending on the orientation-dependent ex-

cluded volume between two particles. The excluded volume between two platelets (i.e.

circular disks) with thicknesses Lj and Lk as a function of their mutual angle γ is given

by

vjkexcl(γ) =
π

2
D3 sin γ + (Lj + Lk)D

2
{
π

4
+ E(sin γ) +

π

4
|cos γ|

}
+ O(L2D), (2.2)

where E(k) is the complete elliptic integral of the second kind. Note that the leading

order term does not depend on the thickness L so that the O(L/D)-term must be

included to account for different plate thicknesses. In the isotropic phase, the excluded

volume can be readily calculated using the isotropic averages 〈〈sin γ〉〉iso = π/4 and

〈〈E(sin γ)〉〉iso = π2/8 [21]

vjkexcl,iso =
π2

8
D3 + (Lj + Lk)D

2

{
π2

8
+

3π

8

}
+ O(L2D). (2.3)

A measure for the average excluded volume interaction between platelets of type j and

k is given by the average of its angular dependence [21]

ρjk ≡
∫∫

vjkexcl(γ)

v0
excl,iso

fj(θ)fk(θ
′)dΩdΩ′, (2.4)

with v0
excl,iso = D3π2/8, the average excluded volume between two randomly orientated

platelets with zero thickness. Substituting Eq. (2.3) into Eq. (2.4) yields for the

isotropic phase∗

ρiso
jk = 1 +

Lj + Lk
D

(
1 +

3

π

)
+ O(L2/D2). (2.5)

where the second contribution is of the order L/D smaller than the leading order term.

The total Helmholtz free energy (in units kBT per particle) of a binary mixture within

the second virial approximation can now be expressed in terms of σj and ρjk

βF

N
∼cst − 1 + ln c+ (1 − x) ln(1 − x) + x ln x+ (1 − x)σ1 + xσ2

+ c
[
(1 − x)2ρ11 + 2x(1 − x)ρ12 + x2ρ22

]
, (2.6)

∗The definition of ρjk is slightly different from the one originally used by Onsager [21], since we only
retain the leading order term v0

excl.iso in the denominator instead of the full expression Eq. (2.3). This
leads to ρiso

jk = 1 + O(L/D) whereas in [21] ρiso ≡ 1, by definition. Both definitions are equivalent up
to leading order.
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equivalent to Eq. (1.25) for j = 1, 2. Here, c is the total number density of platelets

rendered dimensionless by relating it to v0
excl,iso in the following way

c =
1

2
v0

excl,iso

N

V
=
π2

16
D3N

V
. (2.7)

The last term in Eq. (2.6) can be identified as the (dimensionless) second virial coeffi-

cient B̃2 multiplied by the concentration c. Note that cB̃2 constitutes the excess part

of the free energy which accounts for the interactions between the hard particles. Using

Eq. (2.5), together with the isotropic value, σj ≡ 0, we obtain the following expression

for the free energy in the isotropic phase

βFiso

N
∼cst + (ln c− 1) + (1 − x) ln(1 − x) + x ln x

+ c
{
1 +

(
2 +

6

π

) [
(1 − x)

L1

D
+ x

L2

D

]}
. (2.8)

In the nematic phase, matters are more complicated since the ODF is no longer a

constant but a sharply peaked function. The excluded volume entropy is now given by

ρnem
jk =

4

π

∫∫
|sin γ| fj(θ)fk(θ′)dΩdΩ′

+
2

π

Lj + Lk
D

∫∫ [
3 − 1

2
sin2 γ + |cos γ|

]
fj(θ)fk(θ

′)dΩdΩ′ + O[(L/D)2]. (2.9)

Here, the following asymptotic expansion of the elliptic integral has been used [71]

E(sin γ) =
π

2

{
1 − 1

4
sin2 γ + O(sin4 γ)

}
, (2.10)

valid for small angles γ. Note that this approximation is only justified for strongly

aligned states where the ODF is a sharply peaked function. In the following we will use

Gaussian trial ODFs with variational parameter αj to describe the angular distribution

of the platelets j in the nematic state [34]

fj(θ) ≡



αj

4π
exp[−1

2
αjθ

2] if 0 ≤ θ ≤ π
2

αj

4π
exp[−1

2
αj(π − θ)2] if π

2
≤ θ ≤ π

(2.11)

An advantage of using these trial ODFs is that σj and ρjk become analytically tractable.

Substituting Eq. (2.11) in Eq. (2.1) gives

σj ∼ lnαj − 1, j = 1, 2, (2.12)

for the orientational entropy. For the excluded volume entropy in the nematic phase

we will only retain the leading order terms of its asymptotic expansion for large αj

ρnem
jk ∼

√√√√ 8

π

(
1

αj
+

1

αk

)
+

8

π

Lj + Lk
D

[
1 + O(α−1

j , α−1
k )

]
. (2.13)

Henceforth, we neglect the O(α−1) contribution in the second term, which is justified

for very large values of α. This is a crucial step in our analysis, since the O(L/D)-term

now becomes independent of αj and the shape of fj(θ). The orientation of the platelets
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in the nematic phase is therefore solely determined by the diameter of the platelets,

which is identical for both components. As the plate thickness does not enter into the

free energy anywhere else than via the O(L/D)-term in Eq. (2.13) we can simplify our

calculations considerably by using a single variational parameter, α = αj = αk, which

holds for both components. The above expression then reduces to

ρnem
jk ∼ 4√

πα
+

8

π

Lj + Lk
D

. (2.14)

The thickness contribution to ρnem is now simply the ratio of the excluded volume be-

tween two parallel platelets in the nematic phase, πD2(Lj +Lk), and the excluded vol-

ume v0
excl,iso between two randomly oriented platelets with zero thickness in the isotropic

phase. Note that this contribution remains constant up to order O(γ2) as can easily

be inferred from Eq. (2.9) by expanding the trigonometric functions in the integrand.

Inserting Eq. (2.12) and Eq. (2.14) into the Helmholtz free energy Eq. (2.6) and min-

imizing with respect to α leads to a simple c2-dependence of the Gaussian variational

parameter [5]

α =
4c2

π
, (2.15)

independent of the mole fraction x. Substituting all expressions back into the free

energy Eq. (2.6) yields a simple expression for the free energy in the nematic phase

βFnem

N
∼ cst+ 3 ln c+ ln

4

π
+x lnx+(1−x) ln(1−x)+

16

π
c
[
(1 − x)

L1

D
+ x

L2

D

]
. (2.16)

To locate phase transitions, we must know the osmotic pressure and chemical potential

of both species. These are calculated as standard derivatives of the free energy. In the

nematic phase we obtain for the osmotic pressure (in dimensionless notation)

Π̃nem ≡ −1

2
βv0

excl,iso

(
∂Fnem

∂V

)
N1,N2,T

∼ 3cn +
16

π
c2n

[
(1 − xn)

L1

D
+ xn

L2

D

]
, (2.17)

where the subscripts n refer to the concentration and composition of the nematic phase.

The (dimensionless) chemical potentials follow from

µ̃j,nem ≡ β

(
∂Fnem

∂Nj

)
Nj ,V,T

, j = 1, 2. (2.18)

Expressions for the isotropic phase can be obtained likewise from Eq. (2.8).

We can summarize our results so far by focusing on the excess free energy in the

nematic phase. Judging from Eq. (2.6) we see that the last term (cB̃2) is essentially

given by a double mole fraction average of the following quantity

cρnem
jk ∼ 2 +

8

π
c
Lj + Lk
D

, (2.19)

which is easily obtained by combining Eq. (2.14) and Eq. (2.15). From this we conclude

that the leading order excess free energy, i.e. for platelets with zero thickness, is simply

a constant. The O(L/D)-term gives rise to an additional contribution which is linear in

c. As to the osmotic pressure Eq. (2.17), we see that this leads to a quadratic correction
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term, implying that the pressure of a (dense) nematic state is influenced considerably

by the plate thickness.

We are, in principle, ready to construct the phase diagram by equating the osmotic

pressure and the chemical potentials of the isotropic and nematic phases. In the next

section we show how we can make a quantitative upgrade of the original Onsager the-

ory in order to make plausible comparisons with the experimental results possible. By

means of Parsons’ approach we indirectly account for the effect of many-body interac-

tions which play an important role in systems of platelike particles.

2.2.1. Parsons free energy

Implementing Parsons’ approach to (binary) mixtures can in principle be carried out

in a number of ways. In this thesis we shall use the simplest approach, introduced by

Camp and Allen [48], which consists of replacing the orientation-dependent prefactor

in Eq. (1.42) by 〈〈v̄excl〉〉 /8v̄0 in terms of the following linear combinations:

〈〈v̄excl〉〉 =v0
excl,iso

[
(1 − x)2ρ11 + 2x(1 − x)ρ12 + x2ρ22

]
=v0

excl,isoB̃2,

v̄0 =(1 − x)v0,1 + xv0,2,

φ =(1 − x)φ1 + xφ2, (2.20)

with φ the total volume fraction of particles, related to the dimensionless concentration

and composition via

φ(c, x) =
4

π
c
[
(1 − x)

L1

D
+ x

L2

D

]
. (2.21)

Recalculation of the osmotic pressure and chemical potentials for the isotropic phase

is now straightforward, using the definitions Eq. (2.17) and Eq. (2.18). The resulting

expressions however involve additional derivatives of f̃CS (Eq. (1.40) with respect to c

and x, due to their relation with φ via Eq. (2.21). For the nematic state, minimization

of the free energy with respect to α now yields

α ∼ 4

π
c2f̃ 2

CS(φ). (2.22)

The Onsager-Parsons free energy (denoted by superscript P ) for the nematic phase thus

reads

βF P
nem

N
∼cst + 3 ln c+ ln

4

π
+ x ln x+ (1 − x) ln(1 − x) + 2 ln f̃CS(φ)

+
16

π
cf̃CS(φ)

[
(1 − x)

L1

D
+ x

L2

D

]
. (2.23)

where the additional ln f̃ contribution arises from the orientational entropy Eq. (2.12).

To compare with Eq. (2.17) we explicitly give the Onsager-Parsons osmotic pressure of

the nematic phase

Π̃P
nem ∼ cn +

[
2cn +

16

π
c2nf̃CS

{
(1 − xn)

L1

D
+ xn

L2

D

}] [
1 + cn

∂ ln f̃CS

∂c

]
. (2.24)
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D (nm) L1(nm) L2(nm) D/L1 D/L2

180 20 45 9 4

Table 2.1. Typical dimensions and aspect ratios of the thick and thin
platelets used in the present calculations [72].
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Figure 2.2. Phase diagram in the Π̃ − x plane of a binary mixture of thin
platelets (D/L1 = 9) and thick platelets (D/L2 = 4), calculated from the
Onsager-Parsons free energy. Note the significant degree of fractionation be-
tween the phases.

Note that the linear contribution 3cn is retained but the presence of f̃ and its deriva-

tives leads to a more complicated c -dependence. Similar expressions for the chemical

potentials can be obtained by straightforward derivation.

2.3. Isotropic-nematic phase coexistence: density inversion

We can now construct phase diagrams by imposing the standard conditions of equal

pressure and chemical potentials in the two coexisting phases. However, we are still

left with two important, yet unspecified parameters, namely the typical aspect ratio of

the thin and thick platelets, D/L1 and D/L2 respectively. Since it is our primary aim

to account for the experimentally observed features, we restrict ourselves to a single

combination of aspect ratios, rather than scanning the entire parameter space. We have

chosen a particular combination of dimensions for the platelets under consideration,

shown in Table 2.1. These values should resemble the experimental system, studied

by van der Kooij et al. [60], in a reasonable way. The corresponding phase diagram is

depicted in Fig. 2.2. The diagram clearly reveals a considerable degree of fractionation

between the coexisting phases. The thick platelets are expelled from the nematic phase

and prefer the isotropic phase. Moreover, the strong increase of the equilibrium osmotic
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Figure 2.3. Core volume fraction φcore of the coexisting phases versus xi.
In the area between the vertical lines the phase densities are inverted. On the
right vertical axis, the extent of fractionation (xi − xn) is plotted versus xi.

pressure as a function of mole fraction indicates an upward shift of the I−N transition

densities in a pure system at increasing plate thickness.

When we want to study the possibility of an I − N density inversion, we should

calculate the total mass density of the isotropic and the nematic phases. The mass

density is linearly proportional to the effective core volume fraction of the platelets

φcore =
4

π
c
[
(1 − x)

L1

D

vcore
1

v1
+ x

L2

D

vcore
2

v2

]
, (2.25)

which is related to the fact that, experimentally, the colloidal platelets consist of a

(dense) gibbsite (Al(OH)3) core surrounded by a grafted polymer layer. The density

of the polymer layer is approximately the same as that of solvent in which the platelets

are immersed, so that the layer does not contribute to the total plate density. However,

the polymer layer does contribute to the mutual excluded volume between two platelets.

The dimensions given in Table 2.1 therefore apply to the grafted gibbsite platelets. The

thickness of the polymer layer has been estimated at 4 nm [60] and the ratio of the core

volume vcore to the total volume v of the platelet can be calculated using the values

from Table 2.1, giving vcore
1 /v1 ≈ 0.55 and vcore

2 /v2 ≈ 0.75.

Fig. 2.3 reveals that a density inversion indeed takes place during the I − N phase

separation. Remarkably, the area in which the isotropic and nematic phase densities

are inverted appears to cover a major part of the phase diagram. Only when the overall

mole fraction is close to zero or one, i.e. in case of an almost pure system of either thin

or thick platelets, fractionation is apparently not strong enough to accomplish a density

inversion. In these situations, an isotropic upper phase will be found as in the regular

cases. Equal phase densities are found at coexisting mole fractions (xi, xn) = (0.13,

0.03) and (0.96, 0.79), corresponding to Π̃ = 36.7 and 82.7, respectively.

We can also represent the phase diagram by plotting the core volume fraction versus

the concentration, as shown in Fig. 2.4. Recall that the core volume fraction is directly
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Figure 2.4. (a) Phase diagram in the phase density - concentration (φcore−c)
plane. The outer dilution lines correspond to the pure systems. Thick lines
indicate phase boundaries; thin lines represent tie lines connecting coexisting
phases. The horizontal tie lines (dotted lines) denote equal phase densities. In
the area between the dotted lines the tie lines have negative slopes, indicating
inverted states. (b) Magnification of the biphasic area.

proportional to the mass density of the phases. In this phase diagram, we can draw

dilution lines, i.e. straight lines radiating from the origin, along which the overall

composition x of the parent system remains constant. This representation clearly shows

that the total plate number density in the nematic phase is always higher than that in

the isotropic phase, irrespective of mole fraction (i.e. the slope of the dilution line). The

density inversion therefore cannot be caused by an inversion of coexistence densities and

hence must be driven solely by fractionation effects.

The slope of the tie lines are directly related to the density of the coexisting isotropic

and nematic phases, i.e. a positive slope indicates a regular state (isotropic top and

nematic bottom phase) whereas a negative one corresponds to an inverted state. The

evolution of the tie lines give the impression of a “spiral staircase” with slope signs

changing gradually from positive, to negative and back to positive upon increasing

mole fractions. Finally, we remark from Fig. 2.4 that there is a distinct widening

of the biphasic gap. The widening of the I − N coexistence region is a generally

established feature for bidisperse (and polydisperse) mixtures of anisometric particles,

both in experiment [73–75] and theory [5,34,65] as will become clear in the rest of this

thesis.

2.4. Nematic-nematic phase coexistence

As mentioned earlier in this Chapter, the thickness of the platelets has a consider-

able influence on the osmotic pressure of a nematic phase at high concentrations (see

Eq. (2.17). One may ask whether this can cause the nematic phase of a binary mix-

ture of thin and thick platelets to demix into two nematic phases at sufficiently high

concentrations.
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Figure 2.5. (a) Phase diagram in the Π̃−x plane of a binary mixture of thin
platelets, D/L1 = 13, and thick platelets, D/L2 = 4, (L2/L1 = 3.25). The
nematic-nematic coexisting region is bounded by a lower critical point (cp).
(b) As (a), for D/L1 = 15 and D/L2 = 4, (L2/L1 = 3.75). Full curves denote
stable phase boundaries, while the dotted curve represents a metastable one.
The I − NI − NII triple point is indicated by �.

In this section we study the relation between the thickness bidispersity, quantified

by the thickness ratio L2/L1, and the topology of the phase diagram, in particular

the existence of a nematic-nematic coexistence region. The occurrence of a demixing

transition at a particular osmotic pressure can easily be identified by the presence of

an instability region (or van der Waals-loop) in the chemical potential curve (plotted

versus the mole fraction), for which ∂µj/∂xj < 0.

In case of a nematic-nematic coexistence, there must be two states, denoted by NI

and NII , with different cn and/or xn, having the same osmotic pressure and chemical

potentials. We have investigated this possibility for mixtures with a fixed aspect ratio

D/L2 = 4 for the thick species. This means that we increase the degree of bidispersity

by making the thin platelets thinner while keeping the thickness of the thick platelets

fixed. In Fig. 2.5, the resulting phase diagrams are depicted for two different values of

D/L1.

A remarkable result is that the nematic-nematic transition is always present, irre-

spective of the thickness ratio L2/L1(> 1). Even near monodisperse systems (with

L2/L1 close to 1) exhibit a nematic-nematic demixing transition, albeit at very high

osmotic pressures. In our experimentally considered system (D/L1 = 9, D/L2 = 4) we

locate a nematic-nematic critical point at a coexistence pressure Π̃ = 208. Note that

the nematic phases are probably metastable with respect to inhomogeneous liquid crys-

tal phases (e.g. smectic, columnar etc.) at these pressures. Obviously, increasing the

thickness ratio stabilized the demixing transition in terms of a decrease of the critical

pressure. At L2/L1 ≈ 3.3, the N−N binodals overlap with the I−N coexistence region

which gives rise to a triple coexistence between two nematic phases (NI and NII) and

an isotropic phase I (Fig. 2.5(b)).
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Let us now elaborate on the nematic-nematic demixing transition by trying to gain

more insight in the underlying mechanism. A convenient way to study the mechanism

behind a demixing transition is to construct the Gibbs free energy and investigate the

behaviour of its individual entropic contributions. For the sake of simplicity, we will use

the Onsager free energy Eq. (2.16) here, rather than the elaborate expressions obtained

via Parsons rescaling. The Gibbs free energy (in units kBT per particle) is given by

g(Π̃, x) ≡ βF

N
+ Π̃c−1(Π̃, x). (2.26)

The concentration c(Π̃, x) is obtained by inverting the osmotic pressure in the nematic

state Eq. (2.17), which is simply quadratic in c. The individual entropic contributions

are given by

gmix ∼ (1 − x) ln(1 − x) + x ln x, (2.27)

gor ∼ 2 ln c(Π̃, x) + ln
4

π
+ 1, (2.28)

gex ∼ 2 +
32

π
c(Π̃, x)

[
(1 − x)

L1

D
+ x

L2

D

]
, (2.29)

where the subscripts refer to the mixing, orientational and excluded-volume entropies,

respectively. The subscripts for the nematic phase are left out for notational conve-

nience. The ideal (translational) entropy is omitted here, since it has the same c-

dependence as the orientational part.

It is advantageous to rescale the Gibbs free energy by subtracting the chemical po-

tentials of the pure components, weighed by their mole fractions

g′(Π̃, x) ≡ g(Π̃, x) −
[
(1 − x)µ0

1(Π̃) + xµ0
2(Π̃)

]
. (2.30)

Obviously, the same rescaling procedure can be applied to the individual entropic con-

tributions. The motivation behind the rescaling of g is to uncover the concave/convex

curvature of the free energy by subtracting the dominant linear trend. Fig. 2.6 clearly

shows that the demixing transition originates from a competition between mixing en-

tropy and orientational entropy on the one hand (all favouring the mixed state) and

excluded volume entropy on the other hand (favouring demixing). At sufficiently high

osmotic pressures, the latter contribution becomes dominant and demixing occurs.

2.5. Discussion

Our calculations based on the Gaussian approximation provide us with a fairly sim-

ple interpretation of the isotropic-nematic density inversion, as observed in experi-

mental systems of polydisperse gibbsite platelets. It appears that this phenomenon

indeed originates from a pronounced fractionation with respect to thickness between

the isotropic and the nematic phase, as already suggested by van der Kooij et al. [60].

An isotropic-nematic density inversion can only be accomplished when the fractionation

is strong enough to overrule the difference between the coexistence number densities

of the isotropic and the nematic phase, for which ci < cn, irrespective of the overall

composition.
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Figure 2.6. Rescaled Gibbs free energy g′tot of the nematic phase (in units
kBT per particle) versus mole fraction x of a binary mixture of thin platelets,
D/L1 = 13, and thick platelets, D/L2 = 4, (L2/L1 = 3.25), at coexistence
pressure Π̃ = 140 (dotted curve). The solid curves depict the contributions
from the individual entropies; excluded volume (g′ex), orientation (g′or) and
mixing (g′mix). The local minima in g′tot indicate a demixing transition.

In this respect, we would like to stress the importance of the Parsons’ approach. The

possibility of a density inversion strongly depends on the difference between the isotropic

and nematic coexistence densities, i.e. the width of the coexistence region. It is a known

feature that the Onsager theory overestimates both the coexistence densities and the

width of the coexistence region. The theory predicts a strong first order transition

(∆(ND3/V ) > 1) whereas Monte Carlo simulations only show a weak density jump [18].

It turns out that Parsons’ approach constitutes a significant quantitative improvement

over the original Onsager theory since it both lowers the coexistence densities and

narrows the density gap. It is therefore not surprising that our preliminary calculations

solely based on the Onsager theory, could not establish a density inversion at any

point in the phase diagram; the density jump was simply too large to be overruled by

fractionation and hence an I −N density inversion was not possible.

As pointed out earlier in this Chapter, we intend to compare our results with the

experimental observations obtained by van der Kooij [60]. For this purpose, we have

drawn a particular dilution line in Fig. 2.4 which resembles the experimental obser-

vations in a reasonable way. The “experimental” dilution line corresponds to a mole

fraction x = 0.07. If a dilute system is concentrated along this dilution line, phase

separation starts to occur at an overall volume fraction φ = 0.305. The slope of the

initial tie line is positive, indicating that an isotropic upper phase is formed initially.

At φ = 0.32 the dilution line and the equal density tie line intersect, indicating that

both phases are equally dense at that point. At higher volume fractions, the slope of

the tie lines becomes negative, indicating that the densities of the phases are inverted

and a nematic upper phase will be formed. At φ = 0.351 the system is fully nematic.

The experimental phase boundaries are found to be somewhat lower (φ = 0.18 and
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φ = 0.30) [60]. Equal phase densities are found at a volume fraction of approximately

0.24 (Fig. 2.1(b)).

We finally discuss a peculiar observation in relation with the aforementioned dilu-

tion experiments. Van der Kooij performed an additional fractionation experiment in

which a suspension was brought to a volume fraction φ = 0.29 close to the nematic

phase boundary (φ = 0.30) and left to phase separate. The nematic upper phase was

separated from the isotropic bottom phase and subsequently diluted. A remarkable

observation was that this system did not exhibit a density inversion at any point in

the isotropic-nematic coexistence region. This striking observation however cannot be

explained by the present model. Fig. 2.4 shows that any dilution line close to the

experimental dilution line must cross the horizontal tie line denoting equal phase densi-

ties. This means that, according to our phase diagram, splitting off the nematic phase

from a system close to the nematic phase boundary should always give rise to a density

inversion after dilution. We believe that this particular experimental observation is a

clear manifestation of the polydisperse nature of a colloidal system of gibbsite platelets.

This means that the system essentially comprises infinitely many platelike species with a

continuous variation in thickness (and diameter), rather than a finite number of distinct

species. Although the present binary model captures most of the experimental features

it remains a serious simplification of a real colloidal system. In Chapter 7 we extend

the binary model to a polydisperse one and show that this allows us to qualitatively

account for the observations of the dilution experiment.
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3
Asymmetric rod-plate mixtures (I) :

Isotropic - uniaxial nematic phase separation
Abstract

Recent experiments on mixtures of rodlike and platelike colloidal particles have
uncovered the phase behaviour of strongly asymmetric rod-plate mixtures. In
these mixtures, in which the excluded volume of the platelets is much larger
than that of the rods, an extended isotropic (I) - plate-rich nematic (N−) -
rod-rich nematic (N+) triphasic equilibrium was found. In this Chapter, we
present a theoretical underpinning for the observed phase behaviour starting
from the Onsager-Parsons theory in the Gaussian approximation. We find
good qualitative agreement between our results and the low concentration part
of the experimental phase diagram.

3.1. Introduction

The phase behaviour of mixtures of rodlike and platelike particles is intrinsically

richer than that of rods and platelets separately. Depending on the concentration and

composition, a number of distinctly different nematic liquid crystal phases may be

encountered. First, there are two nematic phases of uniaxial symmetry, characterized

by a single nematic director. For later reference, we distinguish between a rod- and

plate-dominated uniaxial nematic phase and denote them by N+ and N−, respectively.

In addition to these, there is the so-called biaxial nematic phase (B) in which both rods

and plates are orientationally ordered along mutually perpendicular directions. The

stability of the biaxial nematic phase with respect to the uniaxial nematic ones has

been subject to debate in a number of theoretical studies [48, 76–80]. However, until

recently, no experimental studies on mixtures on well-defined hard rod- and platelike

particles had been reported.

The experimental work by van der Kooij et al. [73,74] on mixtures of hard boehmite

rods (L/D ∼= 10) and gibbsite platelets (D/L ∼= 15) shed some light on the phase be-

haviour of asymmetric rod-plate mixtures. These mixtures are characterized by a large

excluded volume difference between the rods and the plates, the excluded volume of

the platelets being much larger than that of the rods. Rather than forming a single (bi-

axial) nematic phase at increasing particle concentrations these systems show a strong

tendency to phase separate into two fractionated nematic phases, one containing pre-

dominantly rods and the other strongly enriched in platelets. The experimental results

37
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Figure 3.1. Generic shape and orientation axes of the rod- and platelike particles.

therefore seem to point towards an instability of the biaxial nematic phase with respect

to demixing into the uniaxial nematic phases in case of strongly asymmetric mixtures.

In this Chapter, we shall attempt to reproduce the isotropic- nematic phase behaviour

of asymmetric rod-plate mixtures as studied experimentally in [74], starting from the

Onsager-Parsons theory. To retain an analytically tractable theory we will use Gaussian

trial ODFs to describe the particle alignment in the different nematic phases. We

consider mixtures of cylindrical rods and platelets with equal aspect ratios and equal

long dimensions, i.e. rod length equal to plate diameter, such that the excluded volume

of the plates is larger than that of the rods. In view of the aforementioned experimental

results, we shall focus on the uniaxial nematic phases, without taking into account

possible biaxiality. The stability of the biaxial phase in these asymmetric mixtures will

be considered in Chapter 4.

3.2. Onsager formulation

We consider a binary mixture of hard rods and hard platelets in a macroscopic volume

V . The particles involved are characterized by four parameters: the length Lr and the

diameter Dr of the rods (with Lr > Dr) and the diameter Dp and length (thickness)

Lp of the platelets (with Dp > Lp). The generic shape of the particles is depicted in

Fig. 3.1. The details of the exact shape of the particles are found to be irrelevant

for the general argument, provided that the particles are sufficiently anisometric, i.e.

Lr/Dr � 1 and Dp/Lp � 1. When considering the symmetry of the uniaxial nematic

phases, we should realize that one species is aligned in a polar fashion, i.e. along

a nematic director (say the z-axis), while the other particles tend to orient their axis

randomly in the xy-plane perpendicular to the director (planar alignment). Throughout

this Chapter, we will use subscript 1 to refer to the former species and subscript 2 to

the latter. The composition variable, defined as x = N2/(N1 +N2), thus represents the
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mole fraction of the species with planar orientations, which will be the platelets in case

of the uniaxial N+ phase and the rods for the N− phase:

Using the considerations above we propose the following expressions for the (nor-

malized) Gaussian trial ODFs which describe the particle orientations in the uniaxial

nematic phases. For particles with polar alignment we write

f1(θ) ≡




α1

4π
exp

[
−1

2
α1θ

2
]

0 ≤ θ ≤ π
2

α1

4π
exp

[
−1

2
α1(π − θ)2

]
π
2
≤ θ ≤ π

, (3.1)

In case of planar alignment the Gaussian ODF reads

f2(θ) ≡
√

α2

(2π)3
exp

[
−1

2
α2

(
π

2
− θ

)2
]

0 ≤ θ ≤ π. (3.2)

Note that f1(θ) is peaked around the nematic director (θ = 0 or θ = π) whereas f2(θ)

attains its maximum value in the plane perpendicular to the nematic director (θ = π/2).

Using these forms in Onsager’s definition for the orientational entropy

σj ≡
∫
fj(θ) ln[4πfj(θ)]dΩ, j = 1, 2, (3.3)

and straightforward integration allows us to obtain the following asymptotic expressions

for the orientational entropy in the nematic phases

σ1 ∼ lnα1 − 1,

σ2 ∼1

2

(
lnα2 + ln

2

π
− 1

)
. (3.4)

Recall that, by definition, σj ≡ 0 in the isotropic state. To describe interactions between

hard anisometric particles in the second virial approach we need the excluded volumes

between two platelets (i.e. circular disks), a platelet and a (cylindrical) rod and two

rods as a function of the angle γ between the particles’ axes. These are

vpp
excl(γ) =

π

2
D3
p |sin γ| + O(D2

pLp),

vrp
excl(γ) =

π

4
LrD

2
p |cos γ| + O(LrDpDr),

vrr
excl(γ) =2L2

rDr |sin γ| + O(LrD
2
r). (3.5)

Note that we restrict ourselves to the leading order contributions, which is justified if

the particles are sufficiently anisometric. Using the isotropic averages 〈〈sin γ〉〉iso = π/4

and 〈〈cos γ〉〉iso = 1/2 we obtain the average excluded volume between two randomly

orientated particles in the isotropic phase

vpp
excl,iso =

π2

8
D3
p,

vrp
excl,iso =

π

8
LrD

2
p,

vrr
excl,iso =

π

2
L2
rDr. (3.6)
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The average excluded-volume interaction between two particles is quantified by the

average of its angular dependence

ρjk ≡
∫∫

vjkexcl(γ)

vjkexcl,iso

fj(θ)fk(θ
′)dΩdΩ′, (3.7)

which implies ρjk ≡ 1 for the isotropic phase. Substituting Eq. (3.5) for the nematic

phase we obtain the following excluded-volume integrals corresponding to two rods

or plates oriented either along the director (polar alignment) or perpendicular to the

director (planar alignment)

ρjj =
4

π

∫∫
|sin γ(Ω,Ω′)| fj(θ)fj(θ′)dΩdΩ′, j = 1, 2. (3.8)

Similarly, for a rod and a plate with mutually perpendicular orientations we have

ρ12 = 2
∫ ∫

|cos γ(Ω,Ω′)| f1(θ)f2(θ
′)dΩdΩ′. (3.9)

Unlike the orientational entropy Eq. (3.3), these excluded-volume integrals cannot

be calculated straightforwardly since the integrands depend on the interparticle angle

γ(Ω,Ω′). We can make headway by performing an asymptotic expansion of the integrals

for small angles θ and/or ψ = π/2 − θ′. Clearly, these asymptotic expansions are only

justified if both αj are sufficiently large, i.e. the Gaussian ODFs must be sharply

peaked around their maximum values. For ρ11 the leading order term of the asymptotic

expansion reads

ρ11 ∼ 4√
πα1

+ O(α
−3/2
1 ), (3.10)

which was already found by Odijk [34]. The excluded volume integral for a rod and a

plate with mutual perpendicular orientations ρ12 requires a bit more effort (see Appen-

dix A for a detailed analysis). The result is as follows

ρ12 ∼
√

8

π

(
1

α1
+

1

α2

)
+ O(α

−3/2
1 , α

−3/2
2 ). (3.11)

The leading order term of this expansion is the same as the one obtained for rods with

two different lengths [34]. Finally, the averaged excluded volume between two particles

with planar alignment is given by

ρ22 ∼ ρ22,0 [1 + F(α2)] , (3.12)

Here, the leading order term ρ22,0 is simply the average excluded volume between two

particles j randomly orientated in the xy plane (ψ = ψ′ = 0) relative to v22
excl,iso, i.e.

ρ22,0 = (4/π)
[∫ π

0
dγ

]−1 ∫ π

0
dγ sin γ

=
8

π2
. (3.13)

The α2-depending correction term F is rather difficult to obtain. It reads

F(α2) ∼ 1

α2

(
1

2
lnα2 +K

)
+ O(α−2

2 lnα2), (3.14)
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where K = ln 4 + 1
2
γE − 3

2
and γE ≈ 0.577 Euler’s constant. We will elaborate on its

derivation in Appendix A. It is important to note that F scales as α−1
2 lnα2 whereas

ρ11 and ρ12 both scale as α−1/2. Consequently, F decays much more rapidly than ρ11

and ρ12 and is therefore a small contribution for large α2.

The total Helmholtz free energy F of the rod-plate mixture (in units kBT per particle)

reads

βF

N
�cst + ln c− 1 + (1 − x) ln(1 − x) + x ln x+ (1 − x)σ1 + xσ2

+ c
[
(1 − x)2ρ11 + 2x(1 − x)q12ρ12 + x2q22ρ22

]
, (3.15)

where, c is the total dimensionless number density related to v11
excl,iso via

c =
1

2
v11

excl,iso

N1 +N2

V
=




π
4
L2
rDr

N
V

N+-phase

π2

16
D3
p
N
V

N−-phase

(3.16)

Furthermore, qjk denote the isotropic excluded-volume ratios

q12 = v12
excl,iso/v

11
excl,iso,

q22 = v22
excl,iso/v

11
excl,iso. (3.17)

Obviously, q11 ≡ 1. Using the expressions for σj and ρjk in Eq. (3.15) and minimizing

with respect to α1 and α2 yields

α
1/2
1 =2π−1/2

[
(1 − x) + 21/2xq12h(Q)

]
c, (3.18)

α
1/2
2 =

[
25/2π−1/2(1 − x)q12g(Q) −H(x, α2)

]
c, (3.19)

with the definitions

Q ≡ α2/α1, (3.20)

h(Q) ≡ Q1/2g(Q) ≡
(

Q

Q+ 1

)1/2

, (3.21)

Furthermore, H is the contribution arising from F(α2)

H(x, α2) =
8

π2
xq22α

−1/2
2 [1 − 2K − lnα2] , (3.22)

which again is small for large α2. To simplify matters, we set F (and H) equal to zero

for the moment, so that ρ22 = ρ22,0 = 8/π2. Henceforth, this will be referred to as

the zeroth order problem, denoted by subscripts 0. Within this approximation, it is

possible to combine both minimization equations in order to obtain an expression only

involving the ratio of both αs. Taking the ratio of Eqs. (3.18) and (3.19) gives

Q
1/2
0 =

23/2(1 − x)q12g(Q0)

(1 − x) + 21/2xq12h(Q0)
, (3.23)

which is an implicit equation for Q0(x) only involving the mole fraction x. A similar

equation was obtained by Odijk [34]. Fortunately, Eq. (3.23) can be solved analytically,

unlike the one obtained for bidisperse rods. After rearranging terms, Eq. (3.23) can be
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rewritten as a simple quadratic equation in Q0, which is easily solvable. In practice, it

is convenient to rewrite the excluded volume terms ρjk in terms of Q0, x and c using

the minimization equations Eqs. (3.18), (3.19) and then substitute Q0(x) as found from

Eq. (3.23). The free energy of the uniaxial nematic phase is then written explicitly in

terms of the composition and dimensionless concentration of the phase.

The osmotic pressure and chemical potentials of both species follow from the standard

derivatives of the free energy. The osmotic pressure of the nematic phase reads in

dimensionless notation

Π̃nem ∼ (3 − x)c+
8

π2
q22x

2c2, (3.24)

The chemical potentials are given by

µ̃1,nem ∼ ln c+ ln(1 − x) + σ1 + 2c [(1 − x)ρ11 + xq12ρ12] ,

µ̃2,nem ∼ ln c+ ln x+ σ2 + 2c [(1 − x)q12ρ12 + xq22ρ22] . (3.25)

Similarly, we obtain for the isotropic phase using the isotropic values σj ≡ 0 and ρjk ≡ 1

Π̃i � c+ c2B̃2,i,

µ̃1,i � ln c+ ln(1 − x) + 2c [(1 − x) + xq12] ,

µ̃2,i � ln c+ ln x+ 2c [(1 − x)q12 + xq22] , (3.26)

with B̃2,i = [(1 − x)2 + 2x(1 − x)q12 + x2q22] the dimensionless second virial coefficient

for the isotropic state.

The results obtained thus far apply to the zeroth order problem. When we invoke

Eqs. (3.14) and (3.22), the analysis becomes considerably more complicated since the

implicit equation for the nematic phase becomes dependent on the concentration as

well. Consequently, an analytic solution for Q is no longer possible. To make headway,

we will account for F(α2) in a perturbative way. Since F is only a small contribution,

the “new” quantities αj, σj and ρjk are expected to marginally differ from the ones

obtained from the case F = 0. We may therefore consider F as a perturbation to the

parameters obtained from the zeroth order problem. The perturbation analysis will be

discussed in Appendix B.

3.2.1. Parsons rescaling

It has been mentioned in Chapter 1 that although Onsager’s second virial approxi-

mation works well for sufficiently elongated rods, it does not give quantitative results

for platelike particles. Therefore, in case of rod-plate mixtures, many-body interactions

involving platelets will undoubtedly play a role in the regime where nematic phases ap-

pear. In order to make quantitative progress, we account for the effect of higher virial

terms by means of Parsons’ approach. The general implementation of the approach for

binary mixtures of anisometric particles has been outlined in Sec. 2.2.1 of Chapter 2 so

we will only give the results here and refer the reader to Chapters 1 and 2 for details.
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Applying a rescaling of the free energy according to Eq. (1.42) and minimizing with

respect to αj now yields (for the zeroth order problem, F = 0)

α
1/2
1 =2π−1/2

[
(1 − x) + 21/2xq12h(Q0)

]
cf̃CS(φ),

α
1/2
2 =25/2π−1/2q12(1 − x)g(Q0)cf̃CS(φ), (3.27)

The implicit equation in Q0(= α2/α1) is left unchanged since the concentration depen-

dent part cf̃CS(φ) cancels. The total volume fraction φ of rods and platelets is related

to the dimensionless concentration c and the mole fraction x via

φ(c, x) = 2c

[
(1 − x)

v0,1

v11
ex,iso

+ x
v0,2

v11
ex,iso

]
. (3.28)

Within the Onsager-Parsons approach the osmotic pressure of the nematic phase reads

Π̃P
nem ∼ cn +

[
(2 − xn)cn +

8

π2
c2nx

2
nq22f̃CS

] [
1 +

∂ ln f̃CS

∂ ln cn

]
, (3.29)

and the chemical potentials

µ̃P1,nem =µ̃1,n + 2 ln f̃CS +
[
(2 − xn) + cnf̃CSx

2
nq22

8

π2

]
∂ ln f̃CS

∂(1 − xn)
,

µ̃P2,nem =µ̃2,n + ln f̃CS +
[
(2 − xn) + cnf̃CSx

2
nq22

8

π2

]
∂ ln f̃CS

∂xn
. (3.30)

Recall that these expressions only hold for the zeroth order problem (i.e. ρ22 = ρ22,0).

Using the full expression Eq. (3.12) gives rise to additional terms from the perturba-

tion analysis (see Appendix B). These contributions are omitted here for the sake of

simplicity, but can be obtained after tedious but straightforward derivations. For the

isotropic phase the Onsager-Parsons expressions become

Π̃P
iso = ci + c2i f̃CSB̃2,i

[
1 + ci

∂ ln f̃CS

∂ci

]
, (3.31)

µ̃P1,iso = ln ci + ln(1 − xi) + cif̃CS

[
B̃2,i

∂ ln f̃CS

∂(1 − xi)
+ 2(1 − xi) + 2xiq12

]
,

µ̃P2,iso = ln ci + ln xi + cif̃CS

[
B̃2,i

∂ ln f̃CS

∂xi
+ 2(1 − xi)q12 + 2xiq22

]
. (3.32)

3.3. Phase Diagrams

The coexistence binodals were calculated numerically by equating osmotic pres-

sure and chemical potentials in the coexisting phases. The phase diagrams were con-

structed as follows. The I −N− and I −N+ binodals were computed separately using

(q11, q22) = (qpp, qrr) and (q11, q22) = (qrr, qpp). A triphasic equilibrium is located at

the intersection point (triple pressure) of the two isotropic branches. At this pressure

there is an isotropic phase in coexistence with two uniaxial nematic phases, each with

a different mole fraction and number density. The location of the triple point (in terms

of x and c) is subsequently used as a starting point for the calculation of the N+ −N−
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Figure 3.3. Phase diagram in the φrod −φplate representation corresponding
to Fig. 3.2. Thick lines indicate phase boundaries; thin lines represent tie lines
connecting coexisting phases.

binodals. To give a graphic representation of the results, a Π̃ − x diagram is shown

in Fig. 3.2 and a diagram in terms of volume fractions, obtained via Eq. (3.28), in

Fig. 3.3. The latter may be more convenient from an experimental standpoint. Tie

lines connecting coexisting phases are given by horizontal lines in Fig. 3.2 (due to the

equal osmotic pressures) and by tilted, straight lines in the volume fraction representa-

tion [81]. We can also draw dilution lines along which the overall mole fraction x of the
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parent system remains constant. In Fig. 3.3 these are given by straight lines radiating

from the origin whereas in a Π̃ − x representation the dilution lines run vertically.

To facilitate comparison with experimental results we have matched the dimensions

of the particles under consideration to the average size of the boehmite and gibbsite

particles used in experiment [74]. Accordingly, we have chosen equal aspect ratios for

the rods and platelets, i.e. Lr/Dr = Dp/Lp = 15 and equal long and short dimensions

of the particles, so that Lr = Dp and Dr = Lp. The ratios of the excluded volumes are

then given by

qrr = 1, qrp = 3.75, qpp ≈ 11.78, (3.33)

indicating that the isotropic excluded volume of two platelets is almost 12 times larger

than that of two rods. The mixture is therefore strongly asymmetric.

Several features are notable from Figs. 3.2 and 3.3. First, there is a reentrant

transition at mole fractions xp between 0.44 and 0.58. Experimentally, this would imply

that a dilute sample containing 50% platelets undergoes numerous phase transitions

upon concentration, going from the isotropic state I to I+N−, N−, I+N−, I+N−+N+

and finally N−+N+. A similar reentrant transition was found in binary mixtures of rods

with different lengths [34, 65]. Furthermore, the triphasic equilibrium, represented by

a triple line in the Π̃ − x representation, clearly manifests itself in the volume fraction

representation as a triphasic triangle which covers a fair part of the phase diagram.

Accordingly, a large range of compositions will pass through the three-phase area. It

appears that a very small mole fraction of platelets in the isotropic phase already leads

to a three-phase equilibrium upon increasing the overall concentration.

To verify the effect of the excluded-volume asymmetry on the phase diagram in more

detail we will now investigate the behaviour a less asymmetric mixture, characterized

by smaller excluded-volume ratios. For that, we consider a mixture with aspect ratio

Lr/Dr = Dp/Lp = 50 and size ratio Lr = 2Dp, Dr = 2Lp. So, again, both species are

equally anisometric but the size of the platelets is now reduced to half the size of the

rods. This leads to the following excluded-volume ratios

qrr = 1, qrp ≈ 3.13, qpp ≈ 4.91. (3.34)

Note that qpp is much smaller compared to Eq. (3.33). The corresponding phase

diagrams are shown in Figs. 3.4 and 3.5.

Again, we observe a reentrant transition around xplate = 0.5, albeit less prominent

than in Fig. 3.2. A remarkable difference with Fig. 3.2 however is the presence of an

azeotropic point at xplate = 0.718 in the plate-rich (“tail”) part of the Π̃−x diagram (see

Fig. 3.4(b)). This implies that a mixture containing 71.8 % platelets (with Lr = 2Dp)

does not fractionate during phase separation, i.e. the coexisting I and N− daughter

phases have the same mole fraction as the parent sample.

By recalculating the phase diagram for various ratios Lr/Dp on the interval 1 <

Lr/Dp < 2 one can show that the azeotropic point, which corresponds to a minimum in

Π̃, shifts towards higher mole fractions as the ratio Lr/Dp is lowered. Obviously, noting

its absence in Fig. 3.3, the azeotropic point must leave the scene at some point on



46 3. Isotropic - uniaxial nematic phase separation in rod-plate mixtures

(a) (b)

~�

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

I + N+

I

N-

I + N-

N+ + N-

x
plate

0.5 0.6 0.7 0.8 0.9 1.0
2.8

2.9

3.0

3.1

3.2

3.3

I

I + N-

N-

x
az

x
plate

~� ~�~�

Figure 3.4. (a) Phase diagram calculated from the perturbation analysis in
the Π̃−x plane for Lr/Dr = Dp/Lp = 50. The platelets are half the size of the
rods (Lr = 2Dp and Dr = 2Lp). A reentrant phenomenon near xplate = 0.5 is
evident. (b) Magnification of the tail part of the diagram. Note the azeotropic
point at xaz = 0.718.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.08

0.12

0. 10

0.06

0.04

0.02

0.00

I + N +

I + N +
+ N -

I + N -

N + + N -

N +

N -

I

�
rod

�
plate
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this interval. This, “critical” ratio can be determined by calculating, for instance, the

initial fractionation, which we define as xIp −xNp for xplate infinitesimally close to 1, as a

function of the ratio Lr/Dp. In case of an azeotropic point, the initial fractionation must

be positive since the coexistence pressure decreases upon lowering xplate = 1. In case of

no azeotropic point, the coexistence pressure increases and the initial fractionation is

therefore negative. At the critical ratio the initial fractionation must obviously be zero.

From these considerations we obtain a critical ratio Lr/Dp = 1.54, independent of the

aspect ratio Lr/Dr = Dp/Lp. Therefore, we may expect an azeotropic point if the rods

are sufficiently larger than the platelets, viz. Lr > 1.54Dp.
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Figure 3.6. I−N− binodals for Lr/Dr = Dp/Lp = 18 and Lr = Dp, Dr = Lp
calculated from several approaches; zeroth order approximation (dashed line),
perturbation analysis (dotted line) and full numerical solution (solid line).

3.4. Discussion

We have scrutinized the isotropic-uniaxial nematic phase behaviour of rod-plate mix-

tures with strongly asymmetric excluded volumes (vplate
ex � vrod

ex ) starting from the

Onsager-Parsons free energy. Gaussian ODFs with adjustable parameters αj were used

to describe the distribution of angles in the uniaxial nematic phases. In the present

calculations, we have set up a perturbation analysis to account for the lnα2/α2 - con-

tribution (Eq. (3.14)) in the asymptotic expansion of the excluded volume integral ρ22.

To check the validity of the analysis, we may compare it with a full numerical approach,

in which the minimization equations are solved numerically along with the coexistence

equations. As an example, we have collected some I − N− binodals obtained from

several approaches in Fig. 3.6.

First, agreement between the perturbation analysis and the full numerical solution is

very good. In fact, it remains surprisingly good at low aspect ratios (below 15). At high

ratios (> 20) the curves almost become indistinguishable. A second conclusion is that

the result from the zeroth order approximation (i.e. retaining only the leading order

constant in ρ22) clearly deviates from the other curves. The discrepancy increases for

lower ratios and, crucially, the approximation completely breaks down at approximately

Lr/Dr = 18 giving unphysical binodals. This breakdown is not encountered within the

perturbation analysis or the numerical treatment. Therefore, we conclude that the

second order contribution F to ρ22 is an essential ingredient in our calculations, since it

enables us to calculate the phase behaviour of mixtures with aspect ratios comparable

to that of experimental systems (i.e. Lr/Dr roughly between 10 and 15).

Let us now compare our calculated phase diagram with the experimental one as

constructed in [82] and reproduced in Fig. 3.7. This diagram can be compared directly

with the volume fraction representation in Fig. 3.3. From a qualitative point of view,
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Figure 3.7. Experimental phase diagram for mixtures of colloidal boehmite
rods (Lr/Dr ∼ 10) and gibbsite platelets (Dp/Lp ∼ 15). Picture taken
from [82]. The phase behaviour becomes considerably complicated beyond
the triphasic area due to the presence of additional N − C and N − X transi-
tions.

both diagrams agree very well at low concentrations; the phase behaviour is largely

dominated by coexistence between the isotropic phase and the plate-rich nematic (N−)

phase whereas I − N+ coexistence is only visible in a small area close to the rod

axis. Concomitantly, fractionation seems to be much stronger between the I and N−

phases than between the I and N+ phases, particularly at high osmotic pressures.

Both features are direct manifestations of the asymmetric excluded volumes in these

mixtures. Another striking similarity between both diagrams is a large I − N− − N+

triphasic area covering a significant part of the diagrams. A generic feature that does

not seem to appear in the experimental diagram is the reentrant transition. However, a

detailed investigation of the lower part of the experimental phase diagram is probably

required to detect this phenomenon.

The high concentration part of the experimental phase diagram is essentially different

from the calculated one because other liquid crystal phases –with long-range crystalline

order, such as the columnar (C) phase and the not yet identified rod-rich phase X [74]–

come into play which are not taken into account theoretically. Most importantly, the

theoretically predicted N+ − N− demixing beyond the triphasic area is not observed

experimentally. Its absence is probably caused by additional phase transitions from

nematic to the (spatially inhomogeneous) C and X phases. As a result, the N+ −N−

demixing is disrupted by several multiphase equilibria involving more than three phases,

in particular, the remarkable 5-phase equilibrium (see Fig. 3.7).

These observations are very striking since they are in conflict with Gibbs phase rule,

which states that only bi- and triphasic equilibria can be expected for an effective two-

component system of hard particles. One possible explanation for these phenomena

would be the polydispersity of the colloidal species. Since both species have a fairly

high polydispersity (around 30 %) the resulting mixture effectively contains almost



Appendix A: Excluded volume integrals 49

infinitely many components, which may lead to coexistence between arbitrarily many

phases. A second possibility is the effect of sedimentation. Owing to the particles

considerable buoyant mass, sedimentation is expected to play an important role in these

systems. The presence of multiple phases may therefore be induced by a considerable

concentration gradient inside the test tube. In Chapter 9 of this thesis, we will explicitly

illustrate this notion for mixtures of plates and nonadsorbing ideal polymer.

Appendix A: Excluded volume integrals

In this Appendix, we give approximate analytical results for ρ12 and ρ22 by performing

asymptotic expansions of the integrals.

Calculation of ρ12

Inserting the Gaussian ODFs Eqs. (3.1) and (3.2) into Eq. (3.9) yields

ρ12 =

√√√√ α2
1α2

(2π)3

∫ π/2

−π/2

∫ π/2

−π/2

∫ 2π

0
|cos γ| exp

[
−1

2
(α1θ

2 + α2ψ
2)
]
dφd(cos θ)d(sinψ). (3.35)

Here, θ is the polar angle between the particle axis and the z-axis and ψ = π/2 − θ′ is

the meridional angle between the particle vector and its projection onto the xy plane.

Furthermore, φ is the azimuthal angle between the projections of the particle vectors

onto the xy plane. Recall that the ODFs are sharply peaked around ψ = 0 and θ = 0.

Using the relation

|cos γ| = |cos θ sinψ + sin θ cosψ cosφ| , (3.36)

and expanding the trigonometric functions for small polar and meridional angles, we

can approximate Eq. (3.35)

ρ12 ∼ 4

√√√√ α2
1α2

(2π)3

∫ π/2

0

∫ π/2

0

∫ 2π

0
|ψ + θ cosφ| exp

[
−1

2
(α1θ

2 + α2ψ
2)
]
dφθdθdψ, (3.37)

In order to get rid of the absolute value sign in the integrand we must split the integral

into parts. Noting that

ψ + θ cosφ <0 if θ < ψ

ψ + θ cosφ >0 if ψ < θ and if − φG < φ < φG

ψ + θ cosφ <0 if ψ < θ and if |φ| > φG, (3.38)
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(with cosφG = −ψ/θ) we split Eq. (3.37) into three separate integrals

ρ12 ∼4

√√√√ α2
1α2

(2π)3

{∫ π/2

0

∫ π/2

0

∫ π

−π
(ψ + θ cosφ) exp

[
−1

2
(α1θ

2 + α2ψ
2)
]
dφθdθdψ

− 4
∫ π/2

0

∫ π/2

ψ

∫ π

φG

ψ exp
[
−1

2
(α1θ

2 + α2ψ
2)
]
dφθdθdψ

−4
∫ π/2

0

∫ π/2

ψ

∫ π

φG

θ cosφ exp
[
−1

2
(α1θ

2 + α2ψ
2)
]
dφθdθdψ

}
,

ρ12 ∼4

√√√√ α2
1α2

(2π)3
{I1 + I2 + I3} (3.39)

We can extend the (θ,ψ)-integrations up to infinity since the exponential function is

expected to decay rapidly to zero for large αj . The first integral is then easily calculated

and yields I1 = 2π(α1α2)
−1. For the second one, it is convenient to reverse the order of

integration. Hence, we write

I2 = − 4
∫ π

π/2

∫ π/2

0

∫ −θ cosφ

0
exp

[
−1

2
(α1θ

2 + α2ψ
2)
]
ψdψθdθdφ,

∼− 4
∫ π

π/2

∫ ∞

0
exp

(
−1

2
α1θ

2
)
α−1

2

[
1 − exp

(
−1

2
α2θ

2 cos2 φ
)]
θdθdφ, (3.40)

which can be worked out straightforwardly to give

I2 ∼ 2π

α1α2


( α1

(α1 + α2)

)1/2

− 1


 . (3.41)

For the third integral we use the relation
∫ π
φG
θ cosφdφ = − (θ2 − ψ2)

1/2
to write

I3 = 4
∫ π/2

0

∫ π/2

ψ

√
θ2 − ψ2 exp

[
−1

2
(α1θ

2 + α2ψ
2)
]
θdθdψ, (3.42)

substituting y = 1
2
α1(θ

2 − ψ2) gives

I3 ∼25/2α
3/2
1

∫ π/2

0
exp

[
−1

2
(α1 + α2)ψ

2)
]
dψ

∫ ∞

0
y1/2 exp(−y)dy,

∼2π/
√
α3

1(α1 + α2). (3.43)

Putting all contributions back into Eq. (3.39) yields the following asymptotic result for

ρ12

ρ12 ∼
√

8

π

(
1

α1
+

1

α2

)
+ O

(
α
−3/2
1 , α

−3/2
2

)
, (3.44)

Calculation of ρ22

Inserting the Gaussian ODFs (3.2) into Eq. (3.8) yields

ρ22 =
4

π

α2

(2π)2

∫ π/2

−π/2

∫ π/2

−π/2

∫ 2π

0
|sin γ| exp

[
−α2

2
(ψ2 + ψ′2)

]
dφd(sinψ)d(sinψ′), (3.45)
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which we can approximate, similar to ρ12, as

ρ22 ∼ 16

π

α2

(2π)2

∫ ∞

0

∫ ∞

0
K(ψ, ψ′) exp

[
−α2

2
(ψ2 + ψ′2)

]
dψdψ′. (3.46)

Here, K(ψ, ψ′) is the azimuthally integrated kernel

K(ψ, ψ′) ≡
∫ 2π

0
|sin γ| dφ

=
∫ 2π

0

√
1 − cos2 γdφ, (3.47)

We can expand K around ψ = 0 since the particle vectors, on average, only marginally

deviate from the xy plane. Here, γ is the angle between the two particle vectors u(ψ)

and u′(ψ, φ),

u =


 cosψ

0

sinψ


 , u′ =


 cosψ′ cosφ

cosψ′ sin φ
sinψ′


 .

Taking the square of the inner product of the two vectors and substituting the asymp-

totic expressions (up to second order in ψ) yields

cos2 γ =(cosψ cosψ′ cosφ+ sinψ sinψ′)2

≈
[
(1 − 1

2
ψ2)(1 − 1

2
ψ′2) cosφ+ ψψ′

]2

. (3.48)

Using cylindrical coordinates (ψ = R sinχ and ψ′ = R cosχ) and expanding up to

second order in R gives

cos2 γ = (1 −R2) cos2 φ+ 2R2 cosφ sinχ cosχ + O(R4), (3.49)

and

|sin γ| =
√

1 − cos2 γ

∼
√

1 − (1 − R2) cos2 φ

[
1 +

R2 cosφ sinχ cosχ

1 − (1 −R2) cos2 φ
+ . . .

]
. (3.50)

The kernel K now reads∗

K(R, χ) =
∫ 2π

0

√
1 − (1 − R2) cos2 φdφ+

∫ 2π

0

R2 cosφ sinχ cosχ√
1 − (1 − R2) cos2 φ

dφ+ . . . . (3.51)

The second integral is zero, since the integrand is an odd periodic function. Likewise,

all higher contributions depending on odd powers of cosφ are zero. The first integral

in Eq. (3.51) can be rewritten as a complete elliptic integral of the second kind E(κ)∫ 2π

0

√
1 − (1 − R2) cos2 φdφ = 4

∫ π/2

0

√
1 − κ sin2 φdφ = 4E(κ), (3.52)

∗The higher order terms denoted by . . . involve integrals of type
∫ 2π

0
R4 cos2 φ√

1−(1−R2) cos2 φ
dφ and∫ 2π

0
R4 cos2 φ

[1−(1−R2) cos2 φ]3/2 dφ which can be rewritten in terms of complete elliptic integrals of the second

and third kind [83].
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where κ = 1−R2. This integral can be expanded up to second order around R = 0 [83]

E(κ) =1 +
1

2

[
ln

(
4

R

)
− 1

2

]
R2 +

3

16

[
ln

(
4

R

)
− 13

12

]
R4 + . . . .

=1 +
1

2

[
ln 4 − lnR− 1

2

]
R2 + O(R4). (3.53)

We now have the following expansion for the azimuthally integrated kernel

K(ψ, ψ′) = 4 + 2
[
ln 4 − 1

2
ln(ψ2 + ψ′2) − 1

2

]
(ψ2 + ψ′2) + O(

{
ψ4 lnψ

}
), (3.54)

valid for small ψ and ψ′. Substituting this into Eq. (3.46) gives

ρ22 ∼ 32

π

α2

(2π)2

∫ ∞

0

∫ 2π

0

{
1 +

1

2

[
ln 4 − lnR− 1

2

]}
exp

[
−α2

2
R2

]
RdχdR, (3.55)

in terms of the cylindrical coordinates (χ,R). The integral can be solved straightfor-

wardly

ρ22 ∼ 8

π2

[
1 +

1

2

lnα2

α2
+

ln(2
√

2) + 1
2
γE − 1

α2

]
+ O(α−2

2 lnα2), (3.56)

where γE = 0.5772156649 . . . denotes Euler’s constant. Note that the lnα2/α2 term is

the leading order α2-dependent term in this expansion.

The next step is to work out the higher order integrals contributing to the kernel Eq.

(3.51). It can be shown that these integrals give additional O(α−1
2 ) contributions to

ρ22. After tedious derivations we obtain the following final asymptotic expression for

ρ22

ρ22 ∼ 8

π2

[
1 +

1

2

lnα2

α2
+

ln 4 + 1
2
γE − 3/2

α2

]
+ O(α−2

2 lnα2)

∼ 8

π2
[1 + F(α2)] + O(α−2

2 lnα2), (3.57)

which now contains all contributions up to order O(α−1
2 )

Appendix B: Perturbation analysis

Let α1,0 and α2,0 be the solutions of the minimization equations Eqs. (3.18) and

(3.19) for the zeroth order problem (F = H = 0)

α
1/2
1,0 =2π−1/2

[
(1 − x) + 21/2xq12h(Q0)

]
c,

α
1/2
2,0 =25/2π−1/2q12(1 − x)g(Q0)c. (3.58)

When F is nonzero and H is represented by Eq. (3.22) the solutions will only be

marginally affected, since H is a small contribution. Hence, we can write

α1 =α0
1 + δα1,

α2 =α0
2 + δα2, (3.59)
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where δα1 and δα2 are the perturbations, such that δα1/α
0
1 and δα2/α

0
2 are small

variables. We can linearize Q(= α2/α1) with respect to these perturbation variables

Q =
α0

2 + δα2

α0
1 + δα1

� Q0

[
1 +

δα2

α0
2

− δα1

α0
1

]
, (3.60)

and, accordingly

g(Q) �(1 +Q0)
−1/2

[
1 − 1

2

Q0

Q0 + 1

(
δα2

α0
2

− δα1

α0
1

)]
,

h(Q) �(1 +Q−1
0 )−1/2

[
1 +

1

2

1

Q0 + 1

(
δα2

α0
2

− δα1

α0
1

)]
, (3.61)

Similarly, we get

α
1/2
1 �α1/2

1,0

[
1 +

δα1

2α0
1

]
,

α
1/2
2 �α1/2

2,0

[
1 +

δα2

2α0
2

]
. (3.62)

To find solutions for δα1 and δα2 we substitute the above expressions into the minimiza-

tion equations (with H nonzero). All zeroth order terms cancel out, by construction,

leaving an inhomogeneous set of linear equations in δα1 and δα2

xδα2 = [2(1 − x)(1 +Q0) +Q0x] δα1,

δα2 = − Q0

1 +Q0

[δα2 −Q0δα1] − 2α
1/2
2,0 cH(x, α2,0), (3.63)

where the term involving H is the inhomogeneous term ensuring nonzero solutions

for δα1and δα2. The solutions δα1 and δα2 (not shown here) can be rewritten as

explicit functions of Q0(x), x and c, with the aid of Eq. (3.58). It can be shown that

the perturbations scale with concentration as δαj ∼ Kj(x)c + c ln c, where Kj(x) are

functions of the mole fraction only. Hence, the perturbation F leads to a c ln c correction

(up to leading order) to the c2-dependence of α1,0 and α2,0 (Eq. (3.58)).

The final step is to linearize the expressions σj and ρjk. Substituting Eq. (3.59) in

Eq. (3.4) and expanding up to first order in δα1 and δα2 thus yields for the orientational

entropy

σ1 =σ1,0 + δσ1 = lnα1,0 − 1 +
δα1

α1,0

, (3.64)

σ2 =σ2,0 + δσ2 =
1

2

[
lnα2,0 + ln

2

π
− 1

]
+

δα2

2α2,0

. (3.65)

Similarly, we get for the excluded volume entropy

ρ11 =ρ11,0 + δρ11

=4π−1/2


α−1/2

1,0 − δα1

2α
3/2
1,0


 , (3.66)
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and

ρ12 =ρ12,0 + δρ12

=23/2π−1/2



(

1

α1,0

+
1

α2,0

)1/2

−

h(Q0)δα1

2α
3/2
1,0

+
g(Q0)δα2

2α
3/2
2,0




 . (3.67)

Note that ρ22 Eq. (3.12) remains unchanged, since F already constitutes the direct

perturbation. The leading order terms in Eqs. (3.64), (3.65) and Eqs. (3.66), (3.67) are

given by the expressions for σj and ρjk in Sec. 3.2. After some algebra we obtain the

following corrections (denoted by δ) to the osmotic pressure and chemical potentials of

the nematic phase

δΠ̃n ∼ −c
[
Q0(1 − x)

δα1

α2,0
+

1

2
x
δα2

α2,0

]
+

1

2
cxW(x, c, Q0), (3.68)

δµ̃1,n ∼ x

2(1 − x)

[
Q2

0

δα1

α2,0

− δα2

α2,0

]
−Q0

δα1

α2,0

, (3.69)

δµ̃2,n ∼ −1

2
Q2

0

δα1

α2,0
+ W(x, c, Q0), (3.70)

with

W(x, c, Q0) =
1

4πc

xq22
q2
12(1 − x)2

(1 +Q0) (lnα2,0 + 2K) . (3.71)

These contributions are simply added to the leading order expressions given in Sec. 3.2.

Note that the terms depending on W are the direct perturbations (arising from δρ22).
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Asymmetric rod-plate mixtures (II) : Biaxial

versus uniaxial nematic stability
Abstract

The isotropic-nematic phase behaviour of rod-plate mixtures is studied within
Onsager’s second virial theory using the numerically exact equilibrium orienta-
tional distribution functions for both uniaxial and biaxial nematic phases. We
concentrate on asymmetric mixtures in which the excluded volume between the
plates vPP

ex is larger than that between the rods vRR
ex . Starting from the sym-

metric case (vPP
ex /vRR

ex = 1) and increasing the rod-plate excluded volume ratio
we scrutinize the phase behaviour, in particular focussing on the stability of
the biaxial nematic phase. We observe that, at a certain asymmetry, the char-
acteristic bicritical point is replaced by a two-phase region marking first order
isotropic-biaxial transitions. Increasing the asymmetry even further leads to
several demixing scenarios. First, there is a uniaxial-biaxial (N+ −B) demix-
ing scenario with an associated isotropic-uniaxial-biaxial (I − N+ − B) triple
equilibrium. Second, a uniaxial-uniaxial (N+ − N−) demixing transition oc-
curs in case of strongly asymmetric mixtures indicating that the biaxial nematic
phase may become fully metastable. Since all predicted demixing scenarios lie
in the experimentally accessible regime, there is a possibility of finding biaxial
nematic structures in lyotropic colloidal rod-plate mixtures.

4.1. Introduction

Previous theoretical studies on rod-plate mixtures have mainly focussed on symmet-

ric mixtures, characterized by equal excluded volumes for both species (vPP
excl./v

RR
ex = 1).

The theoretical approaches can roughly be subdivided into two groups. On the one

hand, Onsager-type theories [48, 78–80, 84] were adopted which allow for a continuous

treatment of both the positional and orientational degrees of freedom. On the other

hand, mean-field lattice models [76,85] were used in which the positional and/or orien-

tational coordinates are discretized, such as the Zwanzig theory [86] where the particle

orientations are restricted to lie on one of the Cartesian axes. All theories predict the

same qualitative behaviour for the symmetric case; a stable biaxial nematic phase exists

in between the rod- and plate-dominated uniaxial phases, and meets the isotropic phase

in a bicritical point. The phase diagrams for these mixtures are always symmetric about

mole fraction x = 1/2 (i.e. equal portions of rods and plates) at least within a second

virial approximation.

55
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Van Roij and Mulder [85] showed that the biaxial nematic phase in a mixture of

rectangular rod- and platelike blocks, treated within a Zwanzig second virial theory,

may become unstable with respect to demixing into the uniaxial nematic phases at some

critical rod-plate excluded volume ratio. Computer simulations by Camp et al. [49] on

symmetric mixtures of hard prolate and oblate ellipsoids confirmed that demixing can

occur. Their phase diagrams, which were not symmetric due to the effect of higher order

particle interactions, essentially revealed a two-step demixing scenario where the biaxial

nematic phase demixes into the uniaxial phases upon compression via a transitional

uniaxial nematic-biaxial nematic coexistence region.

Experiments [73] on strongly asymmetric mixtures (vPP
ex /v

RR
ex � 1) using rod- and

plate-shaped colloids confirmed the presence of a demixing transition involving two

fractionated rod- and plate-dominated nematic phases, both probably having a uniaxial

symmetry. In the previous Chapter, it was shown that many features of the experi-

mental phase behaviour could be reproduced satisfactorily within the Onsager-Parsons

theory using Gaussian trial functions to describe the equilibrium particle orientations

in the nematic phases. However, the possibility of biaxial solutions was not explored

there as we focussed solely on the uniaxial nematic symmetries.

In this Chapter, we include the possibility of biaxial nematic ordering in the original

Onsager treatment. The possibility of biaxial solutions is incorporated explicitly by

performing the exact free energy minimization with respect to the orientational degrees

of freedom and solving the resulting integral equations exactly, using numerical schemes.

In this way we obtain the numerically exact orientational distribution functions for the

aligned phases without having to rely on approximations such as using trial forms with

a predescribed form [87], discretized orientation models [76, 85], or the so-called L2-

model [79, 80, 84]. In the latter case, the excluded volumes are represented as a series

expansion in terms of spherical harmonics truncated after the first term, which is only

reliable for very weakly aligned nematic phases.

We assess the effect of the asymmetry, induced by increasing the rod-plate excluded

volume ratio from unity, on the phase behaviour of rod-plate mixtures focussing on

the stability of the biaxial nematic phase. Since our primary goal in this Chapter is

to provide qualitative scenarios for the phase diagrams we shall not apply Parsons’

approach here for the sake of simplicity.

4.2. Starting equations

We start this section with a brief recapitulation of the basic ingredients described in

the previous Chapter. The Helmholtz free energy of a binary mixture in the Onsager

treatment reads

βF

N
= cst + ln c− 1 +

∑
j=1,2

xj [ln xj + σj ] + cB̃2, (4.1)

in terms of the second virial coefficient

B̃2 = x2
1ρ11 + 2x1x2q12ρ12 + x2

2q22ρ22. (4.2)
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Henceforth, x2 = x will be defined as the mole fraction of the platelets and c denotes the

total dimensionless concentration, c = bN/V , with b = πL2
RDR/4 the average excluded

volume between two randomly oriented thin rods. The parameters q12 and q22 in Eq.

(4.2) quantify the excluded volume between two randomly oriented particles (a rod and

a platelet and two platelets, respectively) relative to that between two rods (see Eq.

(3.17)). They can be expressed explicitly in terms of the particle size ratios

q12 =
1

4

(
DP

DR

)2 (
DR

LR

)
, q22 =

π

4

(
DP

DR

)3 (
DR

LR

)2

. (4.3)

These parameters determine the (a)symmetry of the rod-plate mixture. Setting q22
equal to unity renders the free energy symmetric about x = 0.5 in our second virial

approach as we see from Eq. (4.2). Consequently, all phase diagrams must be symmetric

about the dilution line corresponding to equal mole fractions [48, 80, 85]. In our case,

q22 will be larger than unity (i.e. the isotropic excluded volume of the plates is larger

than that of the rods) which implies that the symmetry is lost and all phase diagrams

are asymmetric.

Our final ingredients are σj and ρij , which represent the integrals pertaining to the

orientational and excluded-volume entropy, respectively

σj ≡
∫
fj(Ω) ln[4πfj(Ω)]dΩ, (4.4)

ρjj =
4

π

∫∫
|sin γ(Ω,Ω′)| fj(Ω)fj(Ω

′)dΩdΩ′,

ρ12 = 2
∫∫

|cos γ(Ω,Ω′)| f1(Ω)f2(Ω
′)dΩdΩ′. (4.5)

To allow possible biaxial solutions for the normalized ODFs fj(Ω) = fj(θ, φ) they

must depend on both the polar angle θ between the particle orientation vector and the

nematic director and the azimuthal angle φ describing the orientation of the particle in

the plane perpendicular to that director.

The shape of the thermodynamic equilibrium ODF is obtained by minimizing the

free energy with respect to the orientational degrees of freedom. Formally minimizing

the free energy with respect to fj by means of a functional differentiation under the

constraint of the normalization condition for the ODF yields

δ

δfj(Ω)

{
βF

N
+ λj

[
1 −

∫
fj(Ω)dΩ

]}
= 0, j = 1, 2, (4.6)

where λj are the Lagrange undetermined multipliers which follow from the normaliza-

tion conditions. This results in the following coupled set of Euler-Lagrange equations

λ1 = ln [4πf1(Ω)] +
8c

π
(1 − x)

∫
|sin γ(Ω,Ω′)| f1(Ω

′)dΩ′

+ 4cxq12

∫
|cos γ(Ω,Ω′)| f2(Ω

′)dΩ′, (4.7)
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λ2 = ln [4πf2(Ω)] + 4c(1 − x)q12

∫
|cos γ(Ω,Ω′)| f1(Ω

′)dΩ′

+
8c

π
xq22

∫
|sin γ(Ω,Ω′)| f2(Ω

′)dΩ′. (4.8)

These stationarity conditions constitute the starting expression for the calculations.

Since there is no exact solution to the equations above we must adopt numerical tech-

niques to obtain the equilibrium ODF for the nematic phase at a given x and c. This

will be explained in the next section. Once the minimization problem has been solved,

the compositions and concentrations of the coexisting phases are found in the usual way

by imposing the standard conditions of equal osmotic pressure and chemical potentials.

4.3. Solution of the stationarity equations

4.3.1. Series expansion solution

A systematic way to tackle the integral equations Eq. (4.8) is to expand the kernels

|sin γ| and |cos γ| in terms of Legendre polynomials Pn. Following Refs. [30] and [80]

we write

|sin γ| =
π

4
+

∞∑
n=1

d2nP2n(cos γ),

|cos γ| =
1

2
+

∞∑
n=1

c2nP2n(cos γ), (4.9)

with coefficients [32]

d2n = −π(4n+ 1)(2n− 3)!!(2n− 1)!!

22n+2n!(n + 1)!
,

c2n =
(−1)n+1(4n+ 1)(2n− 3)!!

2n+1(n+ 1)!
. (4.10)

For symmetry reasons only even Legendre polynomials need be retained [48]. To include

the possibility of biaxial symmetry we use the addition theorem of spherical harmonics

to rewrite P2n(cos γ) in terms of a bilinear expansion in P2n(cos θ) and its associated

Legendre functions Pm
2n(cos θ) [71]:

P2n(cos γ) = P2n(cos θ)P2n(cos θ′) + 2
2n∑
m=1

(2n−m)!

(2n+m)!
Pm

2n(cos θ)Pm
2n(cos θ′) cosm(φ− φ′),

(4.11)

Substituting Eqs. (4.9) and (4.11) into the integral equations Eq. (4.8) and some

rearranging leads to

fj(θ, φ) = Z−1
j exp

[ ∞∑
n=1

α
(j)
2nP2n(cos θ)

]
exp

[ ∞∑
n=1

n∑
m=1

knmβ
2m (j)
2n P 2m

2n (cos θ) cos 2mφ

]
,

(4.12)

with knm = 2(2n − 2m)!/(2n + 2m)! and Zj a normalization factor. For symmetry

reasons, only even−m associated Legendre functions need be included and all sinmφ



4.3. Solution of the stationarity equations 59

arising from the addition theorem vanish [48]. The coefficients α
(j)
2n and β

2m (j)
2n are

given by

α
(1)
2n = − 8

π
c(1 − x)d2n 〈P2n〉f1 − 4cxq12c2n 〈P2n〉f2 ,

α
(2)
2n = − 4c(1 − x)q12c2n 〈P2n〉f1 −

8

π
cxq22d2n 〈P2n〉f2 , (4.13)

and

β
2m (1)
2n = − 8

π
c(1 − x)d2n

〈
P 2m

2n cos 2mφ
〉
f1
− 4cxq12c2n

〈
P 2m

2n cos 2mφ
〉
f2
,

β
2m (2)
2n = − 4c(1 − x)q12c2n

〈
P 2m

2n cos 2mφ
〉
f1
− 8

π
cxq22d2n

〈
P 2m

2n cos 2mφ
〉
f2
. (4.14)

The values of these coefficients are found by numerically solving the following coupled

consistency equations

〈P2n〉fj
=

∫
fj(Ω)P2n(cos θ)dΩ, n = 1, 2, . . . , N, (4.15)〈

P 2m
2n cos 2mφ

〉
fj

=
∫
fj(Ω)P 2m

2n (cos θ) cos 2mφdΩ, n,m = 1, 2, . . . , N (m ≤ n).

(4.16)

with dΩ = d(cos θ)dφ. Assuming the expansion in Eq. (4.12) to converge after a

finite number of terms, we truncate the series after the Nth term. In case of uniaxial

symmetry, the biaxial coefficients β
2m (j)
2n are zero which means that we only have to

solve the set of 2N consistency equations Eq. (4.15) together with Eqs. (4.12) and

(4.13). In case of biaxial symmetry however, both sets Eqs. (4.15) and (4.16), must be

solved simultaneously, which implies solving N(N +1) equations iteratively. Obviously,

the number of N depends on the degree of alignment of the nematic phase via the mole

fraction and concentration. Following [80] we chose N = 7 as a minimum for weakly

ordered nematic phases and we increased its value up to a maximum N = 12 for higher

concentrations. The numerical integrations were performed using Gaussian quadrature.

The initial trial ODFs were those in the perfectly aligned uniaxial (or biaxial) nematic

phase. The solutions were iterated until the normalization factors Zj had converged to

within 10−6.

Once the consistency equations have been solved, the entropic contributions σj and

ρjk can be calculated from

σj = − ln 4πZj +
N∑
n=1

α
(j)
2n 〈P2n〉fj

+
N∑
n=1

n∑
m=1

knmβ
2m (j)
2n

〈
P 2m

2n cos 2mφ
〉
fj

,

ρjj =1 +
4

π

N∑
n=1

d2n 〈P2n〉2fj
+

N∑
n=1

n∑
m=1

knm
〈
P 2m

2n cos 2mφ
〉2

fj

,

ρ12 =1 + 2
N∑
n=1

c2n 〈P2n〉f1 〈P2n〉f2 +
N∑
n=1

n∑
m=1

knm
〈
P 2m

2n cos 2mφ
〉
f1

〈
P 2m

2n cos 2mφ
〉
f2

.

(4.17)
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4.3.2. Direct numerical solution

The main drawback of the series expansion is that the convergence becomes very

sluggish when the nematic phase is strongly aligned. To obtain reasonable quantitative

results, N should be taken very large (N � 10) in that regime, which makes the

numerical procedure computationally awkward. To make headway, we may consider an

alternative method, due to Herzfeld et al. [33], in which the integral equations Eq. (4.8)

are solved directly by assuming a grid of angles Ω and Ω′. Taking the exponentiated

form of Eq. (4.8) and eliminating the Lagrange multipliers using the normalization

conditions of the ODFs we may rewrite Eq. (4.8) in an iterative form

f
(n+1)
1 (Ω) =

exp
[
− 8c

π (1 − x)
∫ |sin γ(Ω, Ω′)| f (n)

1 (Ω′)dΩ′ − 4cxq12

∫ |cos γ(Ω, Ω′)| f (n)
2 (Ω′)dΩ′

]
∫

dΩ exp
[
− 8c

π (1 − x)
∫ |sin γ(Ω, Ω′)| f (n)

1 (Ω′)dΩ′ − 4cxq12

∫ |cos γ(Ω, Ω′)| f (n)
2 (Ω′)dΩ′

] ,

f
(n+1)
2 (Ω) =

exp
[
−4c(1 − x)q12

∫ |cos γ(Ω, Ω′)| f (n)
1 (Ω′)dΩ′ − 8c

π xq22

∫ |sin γ(Ω, Ω′)| f (n)
2 (Ω′)dΩ′

]
∫

dΩ exp
[
−4c(1 − x)q12

∫ |cos γ(Ω, Ω′)| f (n)
1 (Ω′)dΩ′ − 8c

π xq22

∫ |sinγ(Ω, Ω′)| f (n)
2 (Ω′)dΩ′

] .

(4.18)

The integrations over the solid angles were carried out by Simpson’s quadrature. We

considered intervals of [0, π/2] for the polar angle θ and [0, 2π] for the azimuthal angle

φ. The intervals were discretized into Jθ and Jφ equal parts. For the uniaxial nematic

phases, the integrations over the azimuthal angle vanish so that we need only perform

numerical integrations over the polar angle. Accurate results for highly ordered uniaxial

nematic phases were obtained using Jφ = 1000 and Jθ = 400. Refining the grid size

even further did not lead to significant changes in the ρjk and σj reported here. Initial

guesses for f1(Ω) and f2(Ω) were used to solve the coupled set Eq. (4.18) iteratively. The

solutions were iterated until the convergence criterion max
∣∣∣f (n+1)
j (Ω) − f

(n)
j (Ω)

∣∣∣ < 10−8

was satisfied. Once the equilibrium ODFs were obtained, the entropic contributions σj
and ρjk could be calculated straightforwardly from Eqs. (4.4) and (4.5) using Simpson’s

quadrature.

4.4. Order parameters

In order to identify the isotropic and nematic phases, we introduce uniaxial (Sj) and

biaxial (∆j) order parameters for each component j . Following [80] we define

Sj = 〈P2(cos θ)〉fj
=

1

2

〈
3a2

z − 1
〉
fj

,

∆j =
1

3

〈
P 2

2 (cos θ) cos 2φ
〉
fj

=
〈
a2
x

〉
fj

−
〈
a2
y

〉
fj

, (4.19)

where as is the projection of the particle orientation vector onto the s axis of the

reference frame. The order parameter Sj describes the orientational ordering of the

rods and plates with respect to the z axis whereas ∆j describes the ordering of the

species within the xy plane. For random orientations (isotropic phase) 〈a2
s〉 = 1/3
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(with s = x, y, z), so that all order parameters are zero. In case of uniaxial order, the

biaxial order parameters ∆j are zero because there is no preferred direction in the xy

plane (〈a2
x〉 = 〈a2

y〉). In the biaxial nematic phase all order parameters will generally be

nonzero.

When 0 < Sj ≤ 1, the particle orientation vectors of component j are preferentially

oriented along the z axis (polar alignment) whereas a negative value (−0.5 ≤ Sj < 0)

indicates that the particles lie preferentially in the xy plane (planar alignment). In the

actual calculations we used two types of reference frames; a rod (N+) reference frame

in which the rods point along the z axis and the platelets’ normal vectors lie in the

xy plane and, secondly, a plate (N−) reference frame in which the z axis is oriented

along the preferred direction of the plates’ normal vector in a discotic phase, while the

rod vectors are oriented in the xy plane. Since the N+ phase is characterized by polar

alignment of the rods and planar alignment of the platelets we must have SR > 0 and

SP < 0 (within the rod reference frame). In the N− phase, the situation is reversed so

that SP > 0 and SR < 0 (within the plate reference frame).

4.5. Bifurcation analysis

4.5.1. Isotropic-uniaxial nematic bifurcation

The isotropic ODF fj ≡ 1/4π is a trivial solution to Eq. (4.8) for any concentration

and mole fraction. At higher concentrations however, the forms of the equilibrium

ODFs will contain orientation dependent contributions indicating anisotropic phase

solutions. These solutions will continuously split off from the isotropic branch at the

I − N bifurcation point. To find this point, we may assume that the nematic order

is vanishingly small close to the I − N bifurcation. Retaining only the first Legendre

polynomial in Eqs. (4.9) and (4.12) and linearizing with respect to the coefficient α
(j)
2

gives

fj(θ) =
1

4π

[
1 + α

(j)
2 P2(cos θ)

]
, j = 1, 2. (4.20)

Substituting this into the consistency equations Eq. (4.15) yields 〈P2〉fj
≡ Sj = α

(j)
2 /5.

Consequently, the coefficients (Eq. (4.13)) for the uniaxial nematic phases read

α
(1)
2 =

c

4

[
(1 − x)α

(1)
2 − 2xq12α

(2)
2

]
,

α
(2)
2 =

c

4

[
−2(1 − x)q12α

(1)
2 + xq22α

(2)
2

]
. (4.21)

These equations give (for a given mole fraction x) the bifurcation concentration as the

root of the characteristic equation detM = 0 where

M =

(
1 − c

4
(1 − x) c

2
xq12

c
2
(1 − x)q12 1 − c

4
xq22

)
. (4.22)

The characteristic equation thus reads

1 − c

4
[(1 − x) + xq22] +

(
c

4

)2 [
x(1 − x)(q22 − 4q2

12)
]

= 0. (4.23)
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The concentration at which a bifurcation from the isotropic to a uniaxial nematic phase

can be expected is given by the lowest positive solution of Eq. (4.23).

4.5.2. Uniaxial-biaxial nematic bifurcation

The same analysis described above can be adopted to locate the onset of biaxial order

from a uniaxial reference phase. Assuming the lowest order of biaxiality (m = 1) in Eq.

(4.12) and linearizing with respect to β
2 (j)
2 we may write the biaxial solution close to

the N − B bifurcation point as follows

fj(Ω) =Z−1
j exp

[ ∞∑
n=1

α
(j)
2nP2n(cos θ)

] [
1 +

∞∑
n=1

kn1β
2 (j)
2n P 2

2n(cos θ) cos 2φ

]
,

=fN
j (θ)

[
1 +

∞∑
n=1

kn1β
2 (j)
2n P 2

2n(cos θ) cos 2φ

]
, (4.24)

where fN
j (θ) is the ODF of the uniaxial reference phase. Inserting Eq. (4.24) into Eq.

(4.16) yields〈
P 2

2n cos 2φ
〉
fj

=
∞∑
k=1

β2
2kW

(j)
nk , (4.25)

with

W
(j)
nk =

(2k − 2)!

(2k + 2)!

〈
P 2

2n(cos θ)P 2
2k(cos θ)

〉
fN

j (θ)
,

=
(2k − 2)!

(2k + 2)!

∫ 1

0
P 2

2n(cos θ)P 2
2k(cos θ)fN

j (θ)d (cos θ) .

(4.26)

Inserting Eq. (4.25) into the biaxial coefficients Eq. (4.14) then leads to the following

linear set

β
2 (1)
2n =c

N∑
k=1

[
−8

π
(1 − x)d2nW

(1)
nk

]
β

2 (1)
2k − c

N∑
k=1

[
4xq12c2nW

(2)
nk

]
β

2 (2)
2k ,

β
2 (2)
2n =c

N∑
k=1

[
−4(1 − x)q12c2nW

(1)
nk

]
β

2 (1)
2k − c

N∑
k=1

[
8

π
xq22d2nW

(2)
nk

]
β

2 (2)
2k . (4.27)

When we truncate the series after the N -th term, the characteristic determinant M for

this set is a 2N × 2N matrix. It is convenient to rewrite the matrix M in the form

I − cA, where I is the unit matrix and A is a numerical matrix. The characteristic

equation is then given by

detM = det [I− cA] = det
[
A − c−1I

]
= 0. (4.28)

The bifurcation concentration is found by numerically determining the eigenvalues of

the matrix A. The concentration at which a bifurcation from a uniaxial to a biaxial

symmetry can be expected is given by the inverse of the highest real and positive

eigenvalue of A. Since the parameters W
(j)
nk in A are dependent on the concentration

through the ODFs of the uniaxial nematic reference phase, the bifurcation points must

be calculated self-consistently. The technique is to compute W
(j)
nk (Eq. (4.25)) for a
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Figure 4.1. Schematic
illustration of the
common tangent
construction to
determine phase co-
existence in a binary
rod-plate mixture.
(a) Stable biaxial
nematic phase, the
N+ − N− equilib-
rium is metastable
(dotted lines). (b)
Uniaxial-biaxial
(N+ − B) demixing.
(c) Uniaxial-uniaxial
(N+−N−) demixing.
The biaxial nematic
phase is metastable.
The uniaxial-biaxial
bifurcation points
are indicated by x∗,
all others denote
binodal points. Sta-
ble phase points are
indicated by solid
lines, metastable
ones by dotted lines.

given initial concentration (using either the series expansion method or a numerical

grid, see Sec. 4.3) and then put it into the bifurcation equation Eq. (4.28) and find

the desired root. For that concentration, new parameters W
(j)
nk were calculated and

inserted into Eq. (4.28) to find the new root. This procedure was repeated until the

concentration had converged to within 10−6.
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4.6. Biaxiality and demixing

As already mentioned in the Introduction, the central issue in this Chapter is to

assess the stability of the biaxial nematic phase in relation to the mixture’s asymmetry.

It is important to realize that the biaxial nematic phase may be metastable with respect

to some demixing transition, e.g. a phase separation into two uniaxial nematic phases

(N+ and N−). In this respect, it is instructive to consider the Gibbs free energy, defined

as

βG

N
=
βF

N
+ c−1 (bβΠ) . (4.29)

By plotting the Gibbs free energy as a function of the mole fraction at a constant osmotic

pressure, all stable and metastable phase equilibria can be inferred graphically from the

free energy by performing common tangent constructions. In our approach however we

merely focus on the location of the binodal and bifurcation points rather than explicitly

calculating the Gibbs free energy. In Fig. 4.1, we show that all information concerning

the (meta)stability of the nematic phases can be obtained from the relative location of

these points. In Fig. 4.1, we have sketched three scenarios. A close inspection reveals

that the biaxial phase can only be stable when both uniaxial binodal points are located

in between the uniaxial-biaxial bifurcation points (Fig. 4.1(a)). In the opposite case

(Fig. 4.1(c)), the biaxial nematic phase is metastable with respect to demixing into

the uniaxial nematic phases. In Fig. 4.1(b), we have depicted a possible transitional

scenario in which one bifurcation point (from the N− phase) is located “outside” the

uniaxial binodal points (as in Fig. 4.1(a)) while the other one lies in between. Clearly,

this scenario must give rise to a stable first order uniaxial-biaxial transition (N+ − B

in this case). We will meet this scenario in our actual calculations, but it should

be mentioned that other transitional scenarios are also conceivable, depending on the

exact curvature of the biaxial branch. In particular, one can think of a biaxial-biaxial

demixing scenario which may occur when the B-branch in Fig. 4.1(a) displays a local

maximum. However, since we choose not to calculate the Gibbs free energy of the

biaxial nematic phase, the exact shape of the biaxial branch remains largely unknown.

This means that we cannot completely exclude other scenarios than the ones depicted

in Fig. 4.1 to occur in our systems.

4.7. Phase Diagrams

As mentioned in Sec. 4.2, the input for our phase diagram calculations are the rod-

plate isotropic excluded volume ratios, q12 and q22, given by Eq. (4.3). To facilitate

comparisons with the systems studied in the previous Chapter, we assume that the rods

and plates have equal thickness, so that LP = DR. It is now convenient to rewrite Eq.

(4.3) in terms of the particles’ aspect ratios for rods (L/D)R and plates (D/L)P

q12 =
1

4

(
D

L

)2

P

/(
L

D

)
R
, q22 =

π

4

(
D

L

)3

P

/(
L

D

)2

R
. (4.30)
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Henceforth, we fix the aspect ratio of the rods at (L/D)R = 15, which value matches

the average aspect ratio of the colloidal rods used in experiment [73]. This means

that we use the aspect ratio of the plates to tune the asymmetry of the mixture.

Consequently, from Eq. (4.30) we see that the mixture is symmetric (q22 = 1) if

(D/L)P = (900/π)1/3 ≈ 6.59. Increasing the platelets’ aspect ratio from this value will

make the mixture more and more asymmetric. When (D/L)P = 15 we reach the case

of the strongly asymmetric mixture studied experimentally in [73] and theoretically in

Chapter 3.

4.7.1. Scenario I: stable biaxial nematic phase; bicritical point

In Fig. 4.2 we show the phase diagram for the case (D/L) P = 7 which is slightly

above the symmetric value. We have also constructed a volume fraction representation

in Fig. 4.2(b). The topology of the Π − x diagram is very similar to the symmetric

case [84]: upon compressing the system from the isotropic phase, a first order transition

takes place into a uniaxial phase with the symmetry of the majority component (the

rod-rich N+ phase or the plate-rich N− phase). At higher pressures, continuous (second

order) transitions from the uniaxial to the biaxial phase occur. Note that the uniaxial

demixing binodals, also indicated in Fig. 4.2, are metastable because they lie “inside”

the area marked out by the bifurcation lines. There is a special point, called a bicritical

(or Landau) point where a second order transition occurs from the isotropic to the

biaxial phase. In addition, the uniaxial phase boundaries come together in a sharp

cusp at this point implying that all uniaxial order parameters must go to zero there

(Fig. 4.3). Due to the asymmetry, the bicritical point is now located at lower mole

fractions (x = 0.41) compared to the symmetric case (x = 0.5) whereas the minimum in

the osmotic pressure has shifted to higher mole fractions (x = 0.66). This minimum now

constitutes an azeotropic point marking equal mole fractions of the coexisting phases.

4.7.2. Scenario II: stable biaxial nematic phase; isotropic-biaxial equilibria

Increasing the asymmetry of the mixture leads eventually to a qualitatively different

topology, as we see in Fig. 4.4. In this scenario, the bicritical point has disappeared

which means that all transitions from the isotropic to the nematic phases have become

first order. In particular, we can identify an intermediate two-phase region in which the

isotropic phase coexists with the biaxial phase. The isotropic-biaxial nematic equilibria

were calculated using the direct numerical solution approach, outlined in Sec. 4.3.2.

In order to obtain reasonable quantitative results for the biaxial nematic phase, while

minimizing the computational burden we used a limited grid-size Jθ = Jφ = 40. To

illustrate the evolution of the nematic structures along the isotropic-nematic equilibria,

we have plotted the order parameters in Fig. 4.5.

The biaxial order parameters rise from zero without a jump indicating that the

symmetry of the coexisting nematic phase changes continuously from (rod-rich) uniaxial

to biaxial back to (plate-rich) uniaxial as the mole fraction of plates is increased. The

discontinuous jump around xIplate = 0.075 is artificial due to the fact that we used

different reference frames in the actual calculations. The phase lines were calculated



66 4. Biaxial versus uniaxial nematic stability in rod-plate mixtures

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

11

12

13

14

15

x
az

B

N-

N+

I

x
plate

b��

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

N+

N-

I

B

�
plate

�
rod

Figure 4.2. Scenario I: (a) Phase diagram in the pressure-composition plane
for a slightly asymmetric mixture [(D/L) P = 7]. Thick solid lines indicate
stable phase transitions. The dotted lines represent metastable N+ − N−

binodals. An azeotropic point is present at xaz = 0.66. (b) Same diagram in
the volume fraction representation. Coexisting phases are connected by tilted
tie lines. The dashed line represents the I −N bifurcation curve. The dilution
line drawn corresponds to the azeotropic mole fraction.

Figure 4.3. Scenario I: Evolution of the uniaxial order parameters S at I−N

coexistence as a function of xplate in the nematic phase for the case (D/L)P = 7.
A critical point is located at xplate = 0.41.

starting from either a pure system of rods (x = 0) using the rod reference frame or

a pure system of platelets adopting the plate reference frame. Note that the artificial

switching from one reference frame to the other only affects the order parameters. Of

course, it does not influence the thermodynamic properties of the nematic phases, as

we see from the biaxial binodal in Fig. 4.4 which does not show a discontinuity.

In Fig. 4.6, we present a detailed picture of all phase lines involved for the case

(D/L)P = 9.5. From this graph we clearly see that the uniaxial demixing is metastable
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Figure 4.4. Scenario II: (a) Phase diagram in the pressure-composition plane
for the case (D/L)P = 9.5. The dotted lines mark the osmotic pressures where
the nematic symmetry of the isotropic-nematic equilibria changes continuously
from uniaxial to biaxial. (b) Same diagram in the volume fraction representa-
tion. Coexisting phases are connected by tilted tie lines.
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Figure 4.5. Scenario II: Evolution of the uniaxial (S) and biaxial (∆) or-
der parameters at isotropic-nematic coexistence as a function of xplate in the
isotropic phase for the case (D/L)P = 9.5.

with respect to the biaxial nematic phase (the N+ −N−- binodals run in between the

bifurcation lines). The absence of a bicritical point can also be inferred from this graph;

the uniaxial binodals no longer meet the bifurcation lines in a single (bicritical) point,

located on the I −N bifurcation line, but merge into an azeotropic end point instead.

Note that at this point the mole fractions of the uniaxial nematic phases are the same

but the concentrations are not. Furthermore, the uniaxial order parameters are also

nonzero at this point. Clearly, there must be a critical value for (D/L)P at which the

bicritical point disappears by splitting into a critical point (where the N−B bifurcation
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Figure 4.6. Detailed picture of the phase lines for the case (D/L)P = 9.5.
Dotted lines represent metastable N+ − N− binodals, the dashed curve is the
I − N bifurcation curve. Note that the N − B bifurcation curves coincide
in a metastable critical point (on the I − N bifurcation curve) whereas the
N+−N− binodals meet in an azeotropic end point indicated by the black dot.
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Figure 4.7. Location of the biaxial critical point (dotted line) and the con-
centrations of the coexisting uniaxial phases of the azeotropic end point (solid
lines), connected by vertical tie lines, versus (D/L)P. At (D/L)P � 8 all lines
collapse onto a single curve, describing the location of the bicritical point.

lines meet) and a corresponding azeotropic end point (where the uniaxial binodals

meet) which simultaneously detaches from the isotropic-uniaxial nematic bifurcation

line. In Fig. 4.7, we have plotted the location of these points as a function of the

mixture’s asymmetry. The location of the biaxial critical point can easily be determined

algebraically by combining the I − N and N − B bifurcation equations assuming the

lowest degree of nematic order of the uniaxial reference phase (Appendix). We observe
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Figure 4.8. Scenario III: (a) Phase diagram in the pressure-composition plane
for (D/L)P = 14. Thick solid lines indicate stable phase boundaries. The
N− − B bifurcation curve is indicated by the dotted line. The curves above
the dotted ones are sketched (not calculated) outlining the qualitative phase
behaviour at high densities. (b) Rescaled Gibbs free energy versus xplate for
the same mixture at constant pressure bβΠ = 14.5. Binodal and bifurcation
points are indicated by black and white dots, respectively. The curvature of the
biaxial branch is given qualitatively by the sketched curve. A uniaxial-biaxial
(N+ − B) demixing is evident.

that the concentrations corresponding to the azeotropic end point collapse onto the

curve describing the biaxial critical point at some critical value (D/L)P ≈ 8 which

means that the biaxial critical point and the azeotropic end point have merged into a

bicritical point. We may therefore expect a change of scenario from I to II when the

aspect ratio of the platelets exceeds 8.

4.7.3. Scenario III: uniaxial-biaxial demixing

When the asymmetry is enhanced even further, the phase behaviour of the rod-plate

mixture changes dramatically. In Fig. 4.8, we have depicted the scenario for (D/L)P =

14, which is close to the experimentally accessible case ((D/L)P = (L/D)R = 15)

considered in Chapter 3. An essential difference with the previous scenario is that a

nematic-nematic demixing occurs around bβΠ = 14 at which a rod-dominated uniaxial

nematic N+ phase coexists with a biaxial phase roughly containing equal portions of

each species. Furthermore, there is an associated triple point at which both N+ and B

coexist with an isotropic phase I. Upon compressing the system at higher mole fractions

(x > 0.5) a continuous transition occurs from the plate-dominated N− phase to the

biaxial phase which subsequently demixes by splitting off a fraction of the N+ phase.

Furthermore, a re-entrant phenomenon is present around x = 0.4 where the mixture

displays a rich sequence of phases upon compression. To reduce the computational

costs, we have not explicitly calculated the isotropic-biaxial equilibria for this case but

merely sketched the qualitative topology of the phase diagram at higher pressures.

The justification for the demixing scenario lies in the location of the uniaxial binodals
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relative to the N −B bifurcation lines. In Fig. 4.8(b) we have displayed the Gibbs free

energy at a particular osmotic pressure, in which the binodal and bifurcation points

are depicted explicitly. For the sake of clarity, we have rescaled the Gibbs free energy

by subtracting the linear common tangent to the uniaxial branches. We see that the

N+ −B bifurcation point now has shifted to the right of the N+ binodal point whereas

the N− − B bifurcation is still located “outside” the N− binodal point. As already

alluded to in Sec. 4.6, the only plausible scenario for this case is a demixing into N+

and B, as indicated by the sketched biaxial branch in Fig. 4.8(b). Note that the shape

of this branch also suggests that the stable binodal point for B is located at slightly

lower mole fractions than the metastable one for N−.

To limit computational effort, we have not attempted to find the specific aspect

ratio at which the N+ − B demixing first occurs and a change of scenario from type

II to III will take place. Obviously, from the results presented thus far, we know

that the transition must be somewhere in the range 10 < (D/L)P < 14, which is an

experimentally accessible range.

4.7.4. Scenario IV: uniaxial-uniaxial demixing

Scenario III is not consistent with our previous calculations based upon the Gaussian

trial function approach. In particular, the surmised demixing transition into uniaxial

nematic phases, as observed experimentally and reproduced theoretic ally in Chapter

3 for strongly asymmetric rod-plate mixtures is not found in our numerical analysis of

the Euler-Lagrange equations. Instead, we observe a demixing into a rod-rich uniaxial

nematic phase and a biaxial nematic phase (containing approximately 50 % platelets)

for a mixture of rods and plates with aspect ratios around 15. The question now arises

whether or not a demixing into the uniaxial nematic phases (scenario IV) is recovered

when the aspect ratio of the platelets is increased beyond 15. Considering Fig. 4.8(b),

one can imagine that, upon increasing (D/L)P, the asymmetry may force the N− − B

bifurcation point to shift in between the uniaxial binodal points such that the biaxial

nematic phase becomes completely metastable with respect to a N+ − N− demixing,

according to Fig. 4.1(c). To verify this possibility we have calculated the location of

these points at a fixed osmotic pressure, namely the I −N coexistence pressure for the

pure system (bβΠ = 14.12) which is slightly above the triple pressure. In Fig. 4.9(a) we

have depicted the evolution of the N−-binodal (corresponding to the I−N− equilibria)

and the N− − B bifurcation point as a function of (D/L)P. The intersection point

around (D/L)P = 17 reveals that there must be a scenario IV such that the uniaxial

demixing is indeed recovered, albeit at a plate aspect ratio which is higher than the

one used in Chapter 3. For the sake of completeness, we have depicted the phase

diagram for the case (D/L)P = 18 in Fig. 4.9(b), which calculations were based upon

the Gaussian trial function approach, discussed in the previous Chapter. Note that this

diagram is qualitatively the same as Fig. 3.2 although the N+ and I −N+ coexistence

regions are hardly visible here due to the extremely low mole fractions of the coexisting

I and N+ phases. Comparison with the numerical exact I − N−-binodals shows that

the Gaussian approximation provides increasingly better quantitative results at high
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Figure 4.9. (a) Position of the N− binodal point in terms of xplate (solid)
relative to the N− −B bifurcation point (dotted) at constant pressure bβΠ =
14.12 as a function of (D/L)P. Beyond the intersection (around (D/L)P = 17)
the biaxial nematic phase becomes metastable. (b) Scenario IV: Phase diagram
in the pressure-composition plane for (D/L)P = 18 calculated using Gaussian
trials ODFs. The I − N+ − N− triple line is represented by the horizontal
dotted line. The numerically exact I−N−-binodals are indicated by the dotted
curves.

compressions where the alignment of the particles (in both polar and planar direction)

is particularly strong. Deviations occur at lower osmotic pressure, in particular around

bβΠ = 2, showing that the re-entrant phenomenon is underestimated somewhat by the

Gaussian approximation.

4.8. Summary and discussion

We have investigated the role of the rod-plate excluded volume ratio (vPP
ex /v

RR
ex ) in

the phase behaviour of asymmetric mixtures of cylindrical rods and platelets (for which

vPP
ex > vRR

ex ). The phase diagrams were calculated from an exact numerical analysis of

the Euler-Lagrange equations, obtained from formally minimizing the free energy, such

that no simplifications were made a priori with respect to the ODF. Our particular

interest was focussed on the stability of the biaxial nematic phase in relation to the

mixture’s asymmetry. Starting from the symmetric case we enhanced the asymmetry

of the mixture by varying the platelet aspect ratio in the range 7 < (D/L)P < 18 while

keeping the rod aspect ratio fixed at 15. Considering the role of the biaxial nematic

phase in the overall topology of the phase diagram, we were able to distinguish four

scenarios.

Upon increasing the plate aspect ratio from its symmetric value ((D/L)P = 6.59)

we observe that the characteristic bicritical point is retained initially (scenario I) but

disappears around (D/L)P = 8 and is replaced by a two-phase region marking first

order transitions from the isotropic to the biaxial nematic phase (scenario II). At higher

asymmetries (around (D/L)P = 15) we found a uniaxial-biaxial (N+ − B) demixing
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transition with an associated I − N+ − B triple equilibrium (scenario III). Increasing

the aspect ratio beyond 17 gives a uniaxial-uniaxial (N+ − N−) demixing with an

associated I − N+ − N− triple point (scenario IV). This indicates that the biaxial

nematic phase may become completely metastable in highly asymmetric mixtures. To

limit the computational burden, we have not explicitly calculated the isotropic-biaxial

(I − B) and uniaxial-biaxial (N+ − B) equilibria for scenario III. Therefore, it should

be noted that due to the incertainty in the thermodynamic properties of the biaxial

phase, other scenarios than the ones presented in this Chapter cannot be completely

ruled out. Nevertheless, we believe that our scenarios are sufficiently plausible.

As mentioned several times before, there is experimental evidence of the uniaxial-

uniaxial demixing transition (scenario IV) to occur in mixtures of colloidal rods and

platelets, albeit at a slightly lower plate aspect ratio (of roughly 15). However, no

detailed structure investigation on the nematic phases has been performed in [73] so

that there are no conclusive results available as to whether the demixed nematic phases

are really uniaxial or possibly have some degree of biaxiality. Therefore, considering

our present theoretical predictions, it would be intriguing to verify the possibility of a

uniaxial-biaxial demixing scenario to occur in these experimental systems. Of course,

this would require a thorough reexamination of the experimental systems focussing

on the optical properties of the nematic textures (particularly, for the plate-dominated

nematic phase). Furthermore, our results also suggest that the formation of a biaxial

nematic phase can be promoted experimentally by decreasing the diameter of the col-

loidal platelike colloids, thereby reducing the mixture’s asymmetry. Finally, we remark

that the effect of polydispersity and the influence of multi-particle correlations (both

are not incorporated here) may give rise to qualitatively different scenarios from the

ones predicted by our calculations.

In particular, one may question to what extent the stability of the biaxial nematic

phase is affected by higher order terms in the virial expansion of the free energy. Recent

calculations by Varga et al. [88], based upon a similar approach as ours, indicate that

the stability of the biaxial nematic symmetry depends quite sensitively on the imple-

mentation of Parsons’ approach and on the incorporation of higher order contributions

to the rod-plate excluded volumes in Eq. (3.5) (which correct for the particles’ finite

thicknesses). However, we believe that resolving this issue in an appropriate way re-

quires a systematic direct inclusion of many-body excluded volume terms into the free

energy, rather than indirectly accounting for these via a rescaling of the two-particle

excluded volumes. Since it is next to impossible to carry this out in a theoretical study,

we consider it to be a future challenge for computer simulators and experimentalists to

verify what is really happening in these mixtures.

Appendix: Calculation of the biaxial critical point

Fig. 4.6 shows that the N−B bifurcation curves emanate from the I−N bifurcation

curve at a critical point where the order parameters are necessarily zero. To calculate

this point for a given asymmetry, we may perform a N−B bifurcation analysis starting
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from a weakly ordered uniaxial phase. Assuming the lowest degree of nematic order in

the uniaxial reference phase, we may approximate the uniaxial ODFs by Eq. (4.20).

Substitution into Eq. (4.26) yields for the coefficients W
(j)
11

W
(j)
11 =

1

4!

∫ 1

0

[
P 2

2 (t)
]2 (

1 + α
(j)
2 P2(t)

)
dt, (t = cos θ) ,

=
1

5
− 2

7
Sj , (4.31)

in terms of the uniaxial order parameters Sj = α
(j)
2 /5. Using this together with d2 =

−5π/32 and c2 = 5/8 (from Eq. (4.10)) we obtain, from (Eq. 4.27), the following linear

set

β
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)
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2 ,

β
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(
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7
S1

)
β

2 (1)
2 +

c

4
xq22

(
1 − 10

7
S2

)
β

2 (2)
2 . (4.32)

Setting Sj = 0 in Eq. (4.32) leads to the characteristic equation for the I −N bifurca-

tions Eq. (4.23) implying that the isotropic-biaxial bifurcation concentrations are the

same as the isotropic-uniaxial bifurcation densities, for any mole fraction [79].

Since the bicritical point must be a solution of Eq. (4.23) we may subtract it from

the characteristic equation corresponding to Eq. (4.32) to get the following equation

0 =(1 − x)S1 + xq22S2 +
c

4
x(1 − x)(4q2

12 − q22)
[
S1 + S2 − 10

7
S1S2

]
. (4.33)

Ignoring the O(S2) term and eliminating Sj using the relation

S2 = S1

[
c
2
(1 − x) − 2

]
cxq12

, (4.34)

from Eq. (4.21), we obtain

0 =q22x+
c

4
x(1 − x)

[
4q2

12 − 2(q12 + q22)
]
−

(
c

4

)2

x(1 − x)
[
4q2

12 − q22
]
[2xq12 + (1 − x)] .

(4.35)

Solving this equation together with the I −N bifurcation equation Eq. (4.23) uniquely

determines the biaxial critical point (in terms of x and c) for any given set of param-

eters qjk. The solutions for the symmetric case, discussed in [80], can be recovered by

substituting x = 1/2 and q22 = 1 in Eq. (4.35) to obtain c = 8/(2q12+1) and S1 = −S2.
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5
Demixing in binary mixtures of anisometric

particles
Abstract

In this Chapter we summarize the isotropic and nematic phase behaviour in
binary mixtures of hard rods or plates with different lengths or diameters within
the framework of the Onsager theory. On the basis of Gaussian trial functions
the relative importance of different entropic contributions in the demixing of
the isotropic and nematic phases is explained for various mixtures. The im-
plications of Parsons’ method are discussed in more detail and new results are
given for mixtures of plates differing only in diameter or thickness.

5.1. Introduction

Mixing anisometric particles with different sizes or shapes gives rise to an entropy

of mixing in addition to the common orientational and packing contributions. The

subtle interplay of the three entropic contributions may give rise to a rich phase be-

haviour. Generalizations of Onsager’s theory to binary mixtures have indeed revealed

aspects that are not encountered in the monodisperse cases, such as a fractionation

effect (redistributing the species among the coexisting phases) and reentrant phenom-

ena [69, 87, 89].

The most important characteristic of these mixtures is the possibility of demixing

transitions in both the isotropic and nematic phases. Depending on the concentration

and size ratio of the species, a homogeneous isotropic or nematic phase may split into

two phases with the same uniaxial symmetry but different densities and compositions.

Moreover, the system can display associated triphasic equilibria, involving I −N −N

or I− I−N coexistences. The demixing phenomenon was first encountered in nematic

phases of rods differing only in length [66]. Later on, similar calculations based upon a

generalized Onsager theory [36] revealed that the rod lengths should differ at least by

a factor 3.167 in order to have a demixing of the nematic state.

In the last decade, a number of papers have appeared in which several other binary

mixtures of hard anisometric colloids were studied within the Onsager treatment, in-

cluding mixtures of rods or plates differing only in thickness [69,90], rods differing both

in length and thickness [70,89,91] and rod-plate mixtures [48,79,84,87]. In this Chapter

we summarize existing theoretical work along with new results (mainly for plate-plate

mixtures) to present an overview of the isotropic and nematic phase stability in binary

mixtures of rod- and platelike species. We shall restrict ourselves to binary mixtures

75
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for which only one of the particle dimensions is unequal for both species while the other

is common to all particles. In particular, we focus on the possibility of demixing tran-

sitions within the homogeneous isotropic and nematic phases and provide a theoretical

underpinning for the associated demixing mechanisms.

5.2. Generalized Onsager theory

In this Chapter we present an alternative and concise formulation of the generalized

Onsager theory for mixtures within the trial function approximation. A comprehensive

derivation can be found in Chapter 1.

To treat a multi-component mixture of hard anisometric particles with total number

density ρ and mole fractions xi of species i, we now start from the following expression

for the Helmholtz free energy:

F

NkBT
� cst+ln ρ−1+

∑
i

xi ln xi−
∑
i

xi
∆Sor,i

NkB
+

1

2
ρf̃CS(φ)

∑
i

∑
j

xixj 〈〈vexcl〉〉ij , (5.1)

where ln ρ − 1 is the ideal translational entropy and
∑
i xi ln xi the entropy of mixing.

The last two terms are the orientational entropy and the (packing) entropy related

to the excluded volume. The function f̃CS(φ) = (1 − 3
4
φ)/(1 − φ)2, arising from Par-

sons’ method, partially accounts for the effect of higher virial terms. At vanishing

volume fractions f̃CS(φ) → 1 which gives back the expression for the second-virial ap-

proximation. Triangular brackets indicate (orientational) averages with respect to the

distribution of species indicated by the subscript. In the remainder of this Chapter we

will often implicitly use Gaussian trial functions [34] to describe the sharply peaked

angular distributions of the particles in the nematic state. However, it will suffice to

refer to these in terms of the width of the distribution for particle type i, characterized

by the typical angle θ̃i = 〈θ2〉1/2i with the nematic director. For the orientational en-

tropy the isotropic phase is taken as the reference state. To estimate the orientational

entropy for the nematic phase just consider the number of orientational states acces-

sible to the particles. In the isotropic phase this is proportional to the surface of the

full unit sphere, 4π, whereas in the nematic phase the particles have to remain within

the typical angle θ̃i around 0 or π. For small θ̃i these are just two circular surfaces on

the unit sphere with each an approximate surface of πθ̃2
i , as sketched in Fig. 5.1. This

leads to the following entropy difference ∆Sor

∆Sor,i � NkB [ln(# nematic states ) − ln(# isotropic states)] (5.2)

� NkB
[
ln(2 × πθ̃2

i ) − ln(4π)
]
,

∆Sor,i

NkB
∼ ln(θ̃2

i /2) + 1. (5.3)

The term +1 follows from a full calculation within the Gaussian approximation, in-

troduced in Sec. 1.3.1. Note that for the small widths θ̃i of the distributions we shall

encounter, ∆Sor,i is negative, which ought to be the case going from the random isotropic
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Figure 5.1. Impression of the orientation distribution (indicated by dots) on
the unit sphere in the isotropic state (a) and the nematic state (b). The typical
angle with the nematic director n̂ is indicated by θ̃.

state to the more ordered nematic state. For two thin particles at mutual angle γ, we

may only consider the leading order term for the excluded volume

〈〈vexcl〉〉ij ∼ ṽij 〈〈sin γ〉〉ij , (5.4)

where ṽij = LiLj (Di +Dj) for thin rods while the corresponding expression for platelets

reads ṽij = π
4
DiDj (Di +Dj) in terms of the particle lengths Li and Lj and diameters

Di and Dj . Eq. (5.4) involves a two-particle average of sin γ, which is always π/4 in

the isotropic state, whereas in a highly ordered nematic state it is simply related to the

typical angular widths of the distributions [34]:

〈〈sin γ〉〉ij ∼ 〈〈γ〉〉ij ∼
1

2

√
π (θ̃2

i + θ̃2
j )

1/2. (5.5)

5.2.1. Monodisperse systems

For monodisperse systems all this taken together results in a very simple expression

for the Helmholtz free energy in the isotropic state:

F iso

NkBT
� cst + ln ρ− 1 + (π/8)ṽρf̃CS(φ) � cst′ + ln c− 1 + cf̃CS(φ), (5.6)

in terms of the dimensionless concentration c ≡ (π/8)ṽρ related to the volume fraction

φ via c = lφ (rods) and c = (π/4)lφ (plates). Here, l is the aspect ratio, defined as

the ratio of the largest to the smallest dimension of the particle (i.e. for rods l = L/D,

plates have l = D/L). The corresponding expression for the nematic state is found
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using the same ingredients:

F nem

NkBT
∼ cst′ + ln c− 1 − ln(θ̃2/2) − 1 + cf̃CS(φ)

√
8

π
θ̃, (5.7)

but this expression should still be minimized with respect to the unknown parameter θ̃

giving

θ̃ ∼
√
π

2

1

cf̃CS(φ)
∝ 1

lφf̃CS(φ)
. (5.8)

Here we see that the angular distribution adapts itself such that its width is inversely

proportional to the volume fraction and also inversely proportional to l. If we substi-

tute this form back into Eq. (5.7) and also refer to Eq. (5.1) a remarkable phenom-

enon appears for the interaction term: the excluded volume contribution per particle,
1
2
〈〈vexcl〉〉 ρ, in the nematic state equals the constant value of 2 irrespective of concentra-

tion. This behaviour indicates that the narrowing of the distribution Eq. (5.8) exactly

compensates the increasing probability of meeting other particles with increasing con-

centration. The final result for the free energy in the nematic state is now extremely

simple:

F nem

NkBT
∼ cst′ + 3 ln c

[
+2 ln f̃CS(φ)

]
+ ln

4

π
. (5.9)

Due to the constancy of the excluded volume no linear contribution in c (as was found

in Eq. (5.6)) is obtained. Using the thermodynamic relation Π ≡ −(∂F/∂V )T,N =

kBTρ
2(∂(F/NkBT )/∂ρ)T,N then gives 3 times the ideal (Van ’t Hoff) osmotic pressure

(setting f̃CS(φ) = 1 for the time being):

Πnem

kBT
∼ 3ρ. (5.10)

5.2.2. Multicomponent systems

For a multicomponent system the isotropic free energy is a straightforward extension

of Eq. (5.6), while the ingredients for the nematic state substituted in Eq. (5.1) give

F nem

NkBT
∼cst + ln ρ− 1 +

∑
i

xi ln xi −
∑
i

xi
[
ln(θ̃2

i /2) + 1
]

+
1

2
ρf̃CS(φ)

∑
i

∑
j

xixj ṽij

√
π

2

√
θ̃2
i + θ̃2, (5.11)

where φ =
∑
i φi now represents the total volume fraction. The set of parameters θ̃i

is as yet unknown and has to be determined by simultaneous solution of the following

minimization equations:

−2xi

θ̃i
+ ρf̃CS(φ)xi

∑
j

xj ṽij

√
π

2

θ̃i√
θ̃2
i + θ̃2

j

∼ 0. (5.12)
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Multiplying this equation by θ̃i, summing over i and adding the resulting equation to

the one obtained by interchanging i and j gives

1

2
ρf̃CS(φ)

∑
i

∑
j

xixj ṽij

√
π

2

√
θ̃2
i + θ̃2

j ∼ 2. (5.13)

Comparing this result to Eq. (5.11) we see that it is just the excluded-volume term

within the free energy, so that we can state: the excluded-volume contribution per

particle in the nematic state equals the constant value of 2 irrespective of concentration

or polydispersity [92]. Although solving equations Eq. (5.12) for the set {θ̃i} is only

possible numerically, it can be easily verified that an inverse proportionality to (ρf̃CS(φ))

is retained for every θ̃i [93]. Using this information in Eq. (5.11) reveals the following

structure for the free energy in the nematic state:

F nem

NkBT
∼ cst + 3 ln ρ

[
+2 ln f̃CS(φ)

]
+ F({xi}), (5.14)

where concentration (ρ) and composition ({xi}) dependence are in separate terms.

The former leads again to the quasi-ideal osmotic pressure Eq. (5.10) (considering

that f̃CS(φ) = 1), completely independent of the composition of the nematic state.

The latter also contains a non-trivial contribution originating from the orientational

entropy in Eq. (5.11). Consequently the chemical potentials of species i, obtained from

µi = (∂F/∂Ni)Nj �=i,V,T have a non-trivial composition dependence, which may drive

phase separations as described later.

In Part II of thesis we show how the isotropic-nematic phase equilibria can be calcu-

lated for polydisperse systems of anisometric particles. Rather than containing a distinct

number of particles types, these systems are characterized by a continuous spread in

particle length or diameter. As examples we will consider systems of hard rod- and

platelike cylinders with polydisperse lengths.

5.3. Gaussian approximation versus formal approach

A formal approach to the minimization of the free energy in the nematic state follows

from realizing that there is a continuous spread of angles θi of particle type i with the

director along the interval 0 < θi < π. The orientational averages in the free energy

Eq. (5.1) can be rewritten in terms of continuous orientational distribution functions

(ODFs). Thermodynamically consistent solutions for these functions are obtained by

performing functional differentiations with respect to the ODFs and solving the re-

sulting minimization equations. These equations constitute a coupled set of nonlinear

integral equations which can be solved only by applying appropriate numerical tech-

niques [33]. In the Gaussian approximation implicitly used above it is assumed that

the ODFs obey a prescribed Gaussian form (∼ θ̃−2
i exp[−θ2

i /θ̃
2
i ]) and the free energy

minimization is then carried out by a simple differentiation with respect to the typical

angle θ̃i (See also Sec. 1.3.1.). In this respect, we may recall the inverse proportion-

ality between the typical angle and the Gaussian variational parameter αi for type i,

indicating that small typical angles correspond to large αi.



80 5. Demixing in binary mixtures of anisometric particles

Unlike the formal approach, the Gaussian approximation allows us to obtain explicit

asymptotic expressions for the orientational and packing entropies in the nematic state,

at least for the monodisperse case [5]. Although the Gaussian ODF does not qualify

as an exact thermodynamic equilibrium ODF it shows the correct high-density scaling

behaviour such that the approximation is expected to be satisfactory for strongly aligned

nematic states [94]. As to the binary mixtures to be considered in the following we may

intuitively expect the Gaussian approach to work particularly well for mixtures with

extreme size ratios where the degree of alignment of both species is usually very strong

(due to their size difference).

5.4. Demixing instability

When considering binary mixtures, it is always important to verify the thermody-

namic stability of the isotropic and nematic phases against a possible demixing into

two phases with the same symmetry. A convenient thermodynamic variable to ana-

lyze the local stability of a homogeneous phase with respect to infinitesimal fluctua-

tions in the density and composition (at constant osmotic pressure) is the Gibbs free

energy βG/N which can be obtained from the free energy by a Laplace transform:

G/N = F/N + ρ−1Π. The condition for local stability then follows from the second

derivative of the Gibbs free energy with respect to the mole fraction [67, 95](
∂2g̃

∂x2

)
T,Π

> 0, (5.15)

at constant temperature T and osmotic pressure Π. In practice, it is usually more

convenient to rewrite this explicitly in terms of derivatives of the Helmholtz free energy

with respect to density and composition(
∂2f̃

∂x2

)
T,ρ

− ρ

(
∂2f̃

∂x∂ρ

)2 [
2
∂f̃

∂ρ
+ ρ

∂2f̃

∂ρ2

]−1

T,x

> 0, (5.16)

where g̃ = G/NkBT and f̃ = F/NkBT denote intensive free energies. The limit of

stability of the mixed state is given by (∂2g̃/∂x2)T,Π = 0. The solutions ρs(x) of this

equation represent the socalled spinodal curve. The corresponding spinodal pressure Πs

can be obtained by inserting ρ = ρs(x) into the osmotic pressure. The critical point

(Π∗, x∗) of the demixing transition is then obtained from the condition dΠs(x)/dx = 0.

Corresponding demixing binodals can be calculated by requiring equal osmotic pressure

and chemical potentials of both components in the demixed phases. This can be done

either entirely numerically or by means of a (graphical) common tangent procedure as

shown in Sec. 4.6.

5.5. Isotropic-nematic fractionation effects

For the sake of clarity let us now define the following binary mixtures. R-I: rods

with different lengths (L) but equal thickness (D), R-II: rods with different diameters

but equal length, and likewise for the platelets, P-I: platelets with equal thickness (L)
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Figure 5.2. Phase diagrams in terms of osmotic pressure Π̃ =
(1/2) 〈〈vexcl〉〉iso11 Π/kBT plotted versus the mole fraction of the largest species
x = x2, obtained from the Onsager-Parsons free energy. (a) Case P-I: mixture
of platelets with equal thickness but different diameters (L1 = L2, l1 = 10,
l2 = 20). The dotted line represents an I −NI −NII triple line. (b) Case P-II:
binary mixture of thin and thick hard platelets with equal diameter (D1 = D2,
l1 = 9, l2 = 4).

differing in diameter (D) and P-II: platelets with equal diameter but different thickness.

To investigate the behaviour of the latter we need to include the next order (thickness

dependent) contribution to the excluded volume of two platelets Eq. (5.4). The reason

for this is that the plate’s thickness does not enter into the leading order contribution

of the excluded volume, cf. Eq. (2.2), so that retaining the leading term only does not

allow to discriminate between plates differing only in thickness.

In Fig. 5.2 we show two phase diagrams which are representative for binary mixtures

of platelets differing in thickness or diameter (i.e. cases P-I and P-II ). From the

osmotic pressure representations we can immediately infer a strong repartitioning of the

species among the coexisting isotropic and nematic phases, i.e. the different phases are

markedly enriched in either the large or the small species. However, the two scenarios

depicted in Fig. 5.2 are quite distinct. For mixture P-I the largest species appear to

preferentially occupy the nematic phase whereas in the other case the large platelets

accumulate in the isotropic phase. Fractionation in binary mixtures of rods (both R-I

and R-II) occurs in a way similar to that of plates with different diameters (P-I) as

sketched in Fig. 5.2(a) with a preference of the longer/thicker rods for the nematic

phase [65, 69].

The anomalous fractionation behaviour of platelet mixture P-II may lead to an in-

version of densities of the isotropic and nematic phases involving an isotropic lower

phase in coexistence with a nematic upper phase, as shown explicitly in Chapter 2.

This behaviour can also be inferred from Fig. 5.2(b). Although the isotropic phase

always has a lower number density than the nematic phase, its mass density, which also

depends upon the average particle size in the phase, may become higher than that of
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the nematic phase due to fractionation, the biggest particles migrating into the isotropic

phase.

5.6. Demixing of the isotropic and nematic phases

5.6.1. Nematic-nematic demixing

As we can see from the phase diagrams depicted in Fig. 5.2, a homogeneous nematic

system may under certain conditions demix into two nematic phases with the same

uniaxial nematic symmetry but with different number densities and compositions. For

all four mixtures considered in this Chapter, this demixing transition can occur if the

corresponding length or thickness ratio exceeds some threshold value. However, the

interplay of the different entropic contributions involved can lead to distinctly different

demixing mechanisms for these mixtures.

Judging from the structure of the nematic free energy Eq. (5.11), it is obvious

that the demixing must be driven by a competition between mixing, orientation and

packing (i.e. excluded-volume) entropy. However, since the latter contribution is a

constant independent of the composition for all cases (except for the plates with bidis-

perse thickness, P-II) it is clear that the excluded-volume effect plays no role and that

the demixing involves a balance between mixing and orientational entropy. In case of

rods with length bidispersity (R-I) the orientational entropy of the short rods favours

demixing because of the strong alignment the long rods impose on the short ones in

the mixed nematic phase [36]. Demixing occurs when the gain of orientational entropy

outweighs the simultaneous loss of mixing entropy. A similar scenario applies to the

other mixtures R-II and P-I, while case P-II is an exception because there the demixing

is essentially driven by a competition between mixing and the excess packing entropy

due to the plates’ thickness (rather than their orientational entropy, as shown explicitly

in Chapter 2).

The underlying mechanism may also have important implications for the topology

of the nematic-nematic coexistence region. In particular, if the packing entropy is

irrelevant all binodals can be shown to be completely independent of concentration and

osmotic pressure∗. This is easily understood by considering the Gibbs free energy of the

nematic phase. Applying the appropriate Laplace transform of Eq. (5.14) and using

the osmotic pressure Eq. (5.10) gives

g̃nem(Π, x) ∼ cst + 3 ln(Π/3) + F(x, q). (5.17)

Since the first terms are trivial contributions independent of the mole fraction, it is

clear that the last contribution is solely responsible for the demixing and that the

presence of an instability is only determined by the size ratio q. This means that the

demixing binodals do not depend upon the concentration or the osmotic pressure of the

nematic phase. Consequently, in a Π − x representation, all binodals must be straight

vertical lines [36]. The threshold value for q above which an instability occurs was

∗Formally, this conclusion is only valid within the Gaussian trial function Ansatz we implicitly use
here.
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found at q = 3.167 for rods of type R-I [36] whereas the platelets of type P-I demix at

considerably lower size ratios q > 1.753. Based on similar calculations, Hemmer [91]

found that for the case R-II a diameter ratio larger than 4.258 is required.

As mentioned already, mixtures of thin and thick platelets (P-II) are governed by a

different demixing scenario. There, the excluded-volume contribution (more precisely,

the thickness-dependent correction term) is responsible for the demixing. The packing

contribution of the Gibbs free energy (which favours demixing) for the case P-II reads

g̃nem
excl = 2 + 8φ = 2 +

32

π
c(Π, x)

∑
i=1,2

xi
Li
D
, (5.18)

where the concentration c(Π, x) follows from inverting the equation of state Eq. (2.17).

Due to its concentration dependence the latter term in Eq. (5.18) will always outweigh

the mixing contribution at sufficiently high pressures, irrespective of the size ratio.

Therefore, there is no threshold value in these mixtures and demixing occurs at any

size ratio. However, in order for the critical pressure to attain physically acceptable

values it is required that the thickness ratio is larger than 3 [90].

To assess the effect of Parsons rescaling on the shape of the demixing binodals we may

analyze its additional contribution to the Gibbs free energy Eq. (5.17). The osmotic

pressure of the nematic state within the Parsons’ approach becomes

Πnem

kBT
∼ c

[
3 + 2

∂ ln f̃CS(φ(x, c))

∂ lnφ(x, c)

]
. (5.19)

Inverting the pressure now yields a non-trivial mole-fraction dependence of the concen-

tration c(Π, x) (compared to a simple c(Π) = Π/3 for the case f̃CS(φ) = 1). This implies

that all binodals become implicitly dependent upon the osmotic pressure so that they

no longer form straight lines in a Π− x phase representation, as we see in Fig. 5.2. As

to the Gibbs free energy, the trivial second term in Eq. (5.17) should now be replaced

by the following non-trivial contribution

g̃P(Π, x) ∼ 3 ln c [Π(x)] + 2 ln f̃CS(x, c [Π(x)]). (5.20)

To verify whether this contribution stabilizes or destabilizes the homogeneous nematic

state we must know the sign of its second order derivative with respect to the mole

fraction. This calculation can only be done in a numerical way since it is not possible

to invert the osmotic pressure Eq. (5.19) analytically. It turns out that (∂2g̃P/∂x2)

is generally positive indicating that the correction due to the Parson rescaling always

favours the mixed state. Consequently the critical values mentioned above need to be

adapted slightly due to the rescaling. An interesting manifestation of the stabilizing

effect of the Parson approach is the possibility of the demixing binodals closing off at

a lower critical point. This would give a scenario similar to the one shown in Fig.

5.2(b) for the case P-II; although the size ratio is larger than the threshold value the

nematic-nematic two-phase region only opens up when the pressure exceeds a certain

value. Note that this scenario is not encountered without Parsons rescaling since the

binodals then run vertically and therefore cannot meet in a critical point. At higher size
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ratios, the critical point shifts to lower values of the pressures and the nematic-nematic

demixing region eventually overlaps with the isotropic-nematic region. This gives rise

to an isotropic-nematic-nematic triple equilibrium, comparable to the scenario shown

in Fig. 5.2(a).

Calculations based upon the formal approach reveal the possibility of an upper crit-

ical or consolute point which marks the closing of the nematic-nematic region at high

pressures and the reentrance of the homogeneous nematic state. These have been found

in mixtures of rods with different lengths (R-I) [96] (albeit in an extremely small q in-

terval at low size ratios) and in mixtures of thin and thick hard rods (R-II) [69]. The

fact that this phenomenon is not observed in the Gaussian approach is probably related

to the fact that the ODFs are not represented by their true equilibrium form. However,

in both cases the consolute points are found to disappear at higher size ratios such that

the high-q scenarios obtained within the formal approach are consistent with the ones

sketched for the Gaussian approximation in Fig. 5.2.

5.6.2. Isotropic-isotropic demixing

Contrary to the nematic phase, a demixing of the isotropic phase is less common.

So far, such an instability was only found in binary mixtures of thin and thick rods

(R-II) [67, 69, 70]. However, by extending the simple spinodal analysis from [67] it can

be easily verified that a similar demixing may take place in mixtures of platelets, both

for P-I and P-II. Consider the free energy in the isotropic state

f̃ iso ∼ cst + ln ρ− 1 +
∑
i=1,2

xi ln xi +
1

2
ρf̃CS(φ)Biso

2 , (5.21)

with Biso
2 the excluded-volume dependent second virial coefficient:

Biso
2 =

π

4

(
(1 − x)2ṽ11 + 2x(1 − x)ṽ12 + x2ṽ22

)
. (5.22)

Inserting this into Eq. (5.16) (setting f̃CS(φ) = 1 for simplicity) and some rearrange-

ments lead to the following stability condition [67]:

1 + ρ
π

4
((1 − x)ṽ11 + xṽ22) −

(
ρ
π

4

)2

x(1 − x)∆ > 0. (5.23)

To arrive at Eq. (5.23) it is implicitly used that the system also fulfills the criterion

for mechanical stability
(
∂2f̃/∂v2

)
x
> 0, where v = 1/ρ [95]. A demixing instability

is only possible if ∆ ≡ ṽ2
12 − ṽ11ṽ22 > 0 since only then the condition Eq. (5.23) is no

longer satisfied for all ρ > 0. Substituting corresponding expressions for ṽij (including

the thickness dependent contribution for the case P-II) yields ∆ > 0 for all cases except

for R-I, for which ∆ = 0. Hence, an isotropic-isotropic demixing may in principle be

expected in all mixtures, except in binary systems of rods differing only in length.

Explicit results can be obtained by calculating spinodal curves (and its corresponding

critical point) from Eq. (5.16) as a function of the size ratio. To illustrate this we have

plotted in Fig. 5.3 the evolution of the isotropic-isotropic critical point for the binary

plate mixtures P-I and P-II. Physical solutions are found for size ratios q = D2/D1 >

1.95 (P-I) and q = L2/L1 > 1.42 (P-II). However, considering the high osmotic pressures
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Figure 5.3. Locus of the isotropic-isotropic critical point, in terms of the
critical pressure Π̃∗ and mole fraction x∗ (inset), for binary plate mixtures P-I
(solid curve, q = D2/D1) and P-II (dotted curve, q = L2/L1). Results are
based on the Onsager-Parsons free energy using l1 = L/D1 = L1/D = 0.05.

at low size ratios it is evident that the isotropic state (and therefore its demixing) will

initially be metastable with respect to a transition to the nematic state. In order

to estimate the minimum size ratio required for having stable demixing transitions we

should compare the critical pressure in Fig. 5.3 with the maximum coexistence pressure

pertaining to the isotropic-nematic transition. From this we obtain that q > 7.4 for P-I

and q > 2.85 for P-II. Note that these values represent lower bounds to the metastable-

stable transition and the exact transitions generally occur at higher size ratios. For

the case R-II, the transition was predicted at q > 8 [69]. The fact that a demixing of

the isotropic phase requires a considerably larger size ratio than the nematic phase is

not surprising because the orientation entropy, which usually favours demixing, is not

present in the isotropic state. Consequently, the demixing must be solely accomplished

by excluded-volume effects, in particular the unfavourable excluded volumes between

unlike particles, as we can infer from the condition ∆ > 0. We remark that the phase

behaviour of platelets (P-I and P-II) can be surprisingly rich, with a possibility of both

N−N and I−I two phase equilibria and their associated I−NI−NII and II−III−N
triple equilibria, without having to go to extreme size ratios.

5.7. Final remarks

In this Chapter we have not treated the possibility of phase transitions from the

nematic state to high-density liquid crystal symmetries with (partial) positional order,

such as smectic and columnar phases. Since these phases are expected to appear in the

high-pressure regime of the phase diagram, instabilities of the nematic state towards

smectic/columnar ordering may interrupt the topology of the nematic-nematic demixing

regimes in Fig. 5.2. So far such instabilities have only been analyzed theoretically for a
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perfectly aligned nematic state of short and long rods (R-I) and thick and thin rods (R-

II) [67]. There it was found that under certain conditions the demixing of the nematic

phase is indeed pre-empted by transitions to smectic or columnar states. In Chapter 8

the stability of these liquid crystal states in polydisperse systems will be discussed by

means of an analysis of the approximate model of perfectly aligned hard cylinders.
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6
Isotropic-nematic phase behaviour of

length-polydisperse hard rods
Abstract

The isotropic-nematic phase behaviour of length-polydisperse hard rods with ar-
bitrary length distributions is obtained from a numerical treatment of the poly-
disperse Onsager formalism in the Gaussian approximation. We determine
the onset of isotropic-nematic phase separation, coming from a dilute isotropic
phase and a dense nematic phase, focusing on parent systems whose lengths
can be described by either a Schulz or a “fat-tailed” log-normal distribution with
appropriate lower and upper cutoff lengths. In both cases, very strong fraction-
ation effects are observed for parent polydispersities larger than roughly 50 %.
In these regimes, the isotropic and nematic phases are completely dominated
by respectively the shortest and the longest rods in the system. Moreover, for
the log-normal case, we predict triphasic isotropic-nematic-nematic equilibria
to occur above a certain threshold polydispersity. By investigating the proper-
ties of the coexisting phases across the coexistence region for a particular set
of cutoff lengths we show that the region of stable triphasic equilibria does not
extend up to very large parent polydispersities but closes off at a consolute point
located not far above the threshold polydispersity. The experimental relevance
of the phenomenon is discussed.

6.1. Introduction

An important characteristic of systems of (anisometric) colloidal particles is their

inherent polydispersity, i.e. the particles may differ in size and shape [7, 9]. The issue

of polydispersity and its effect on the interpretation of experimental results has already

been addressed by Onsager in his original paper [21]. Later on, extensions of the Onsager

theory allowing for phase diagram calculations for bidisperse [34, 36, 65, 66, 69, 94] and

tridisperse systems [97] of hard rods as well as binary mixtures of hard platelets [90]

revealed a rich variety in behaviour, most notably a widening of the coexistence region,

a fractionation effect (i.e. segregation of the species among the coexisting phases),

a reentrant phenomenon and, most interestingly, the possibility of a demixing of the

nematic phase which may give rise to isotropic-nematic-nematic triphasic equilibria.

So far, very few theoretical attempts have been made to study the isotropic-nematic

phase behaviour of truly polydisperse systems, i.e. systems characterized by a continu-

ous distribution in particle size. These studies however involve serious limitations such

as discretizing the particle orientation vectors along the three Cartesian axes [98, 99]

89
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–the so-called restricted-orientation or Zwanzig model [86]– or using perturbation the-

ory to account for very narrow distributions in rod length [100, 101]. An important

shortcoming of the restricted orientation models is that the orientational entropy is in-

correctly described since the particles are not allowed to sample the entire orientational

phase space. A concomitant effect is the overestimation of the probability of in-plane (or

parallel) particle configurations which are relatively improbable in case of continuous

orientations [102]. Very recently, it was shown that confining the orientational degrees

of freedom may even give rise to spurious phase transitions which bear no physical jus-

tification [103]. All these considerations together confirm that the restricted-orientation

models are inadequate for studying real liquid crystals. The perturbation theories based

on the Onsager theory –which allows for continuously varying orientations– have been

shown to qualitatively predict some generic features for polydisperse systems such as a

broadening of the coexistence area and a fractionation effect, with the longest rod going

preferentially into the nematic phase. However, other interesting phenomena which are

expected to occur at much higher polydispersities –in particular polydispersity-induced

nematic-nematic demixing transitions– cannot be studied appropriately within these

approximations and therefore remain elusive.

Solving the phase equilibrium conditions for systems with arbitrary size distributions

is by no means trivial and requires considerable numerical effort. In particular, the

presence of almost infinitely many components in a polydisperse system requires an

equally large number of coexistence conditions to be solved simultaneously which obvi-

ously is a formidable task [104]. Recently, a number of studies have appeared in which

the polydisperse Onsager model, albeit in simplified form, was subjected to a numerical

treatment. Speranza and Sollich [105,106] investigated the so-called P2-approximation

which consists of truncating an expansion of the orientation-dependent excluded-volume

term (in terms of even Legendre polynomials P2n) after the first nontrivial term P2.

A remarkable outcome of these calculations is that triphasic isotropic-nematic-nematic

equilibria are predicted for unimodal rod length distributions with sufficiently fat tails

(e.g. log-normal distributions). These equilibria occur in a small interval of polydis-

persities of the parent system. However, the simplified nematic ODF pertaining to the

“P2-model” is only valid for the description of very weakly aligned nematic phases.

The behaviour predicted from this model should therefore be considered with some

care, particularly in those regions where the fractionation effect is strong and the phase

behaviour is dominated by the effect of the longest rods in the system. The presence

of very long rods in a nematic state may force the entire system into a strongly aligned

nematic configuration, so that a more appropriate form for the nematic ODF is required

in these cases.

In our approach, we use the Gaussian trial ODF approach to calculate the isotropic-

nematic phase behaviour of hard rod systems which can be described by either a Schulz

or a log-normal length distribution with arbitrary polydispersities. The benefit of us-

ing the Gaussian Ansatz is twofold. First, all necessary integrals for the monodisperse

Onsager model are analytically tractable so that only numerical integrations over the
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length distributions need to be considered for the polydisperse case. Second, the Gauss-

ian ODF allows for a qualitatively better description of highly ordered nematic states

compared to the P2-approximation which makes it a suitable tool for describing poly-

disperse systems, particularly the ones with a “fat-tailed” length distribution. While

work on this subject was still in progress, Speranza and Sollich reported a numerical

analysis of the exact Onsager model [107], i.e. using the numerically exact ODF. Also

there, triphasic equilibria were predicted for both Schulz-type parent distributions and

“fat-tailed” log-normal forms. However, due to the numerical complexity of the prob-

lem only the onset of nematic ordering from an isotropic reference phase was considered

there so that no information could be obtained about the properties of the isotropic and

nematic phases across the coexistence region. Consequently, no conclusive insight could

be gained as to whether the triphasic equilibria constitute a significant part of the phase

diagram. Within the Gaussian approximation it is possible to access the coexistence

region with only limited additional numerical effort. An important consequence is that

it enables us to gain insight in the extent of the isotropic-nematic-nematic stability

region. Although we cannot calculate the binodal curves for these equilibria (which

locate the precise onset), we are able to localize possible spinodal points for the coexist-

ing nematic phase across the two-phase region, which indicate a local instability of the

nematic phase. In that case, there must be an interval along the coexistence trajectory

where a demixing of the nematic phase occurs and isotropic-nematic-nematic triphasic

equilibria appear.

6.2. Polydisperse Onsager theory; starting equations

Let us consider a system of hard rodlike cylinders with equal diameters D but dif-

ferent lengths L, in a macroscopic volume V . To characterize the rod lengths in our

polydisperse system we introduce the relative rod length l = L/L0 (with L0 some ref-

erence rod length) which is assumed to be a continuous variable. We may then take

the limit L0/D → ∞ (infinitely thin rods) at constant values for the relative lengths

l. Generalizing the original Onsager formalism to polydisperse systems leads to the

following expression for the total Helmholtz free energy density f (in units kBT ≡ β−1)

f ≡ bβF

V
∼

∫
c(l)[ln c(l) − 1]dl +

∫
c(l)ω(l)dl +

∫ ∫
c(l)c(l′)ll′ρ(l, l′)dldl′. (6.1)

All irrelevant contributions linear in c arising from the standard chemical potentials of

the particles are omitted since they only depend on the solvent chemical potential and

the temperature. The concentrations c are rendered dimensionless by relating them to

the orientationally averaged excluded volume per particle between two reference rods,

b = πDL2
0/4, via c(l) = bN(l)/V where N(l)dl is the number of particles with relative

length between l and l+dl. The density distribution over lengths c(l) can be decomposed

according to c(l) = c0p(l), with p(l) the normalized length distribution (
∫
dlp(l) ≡ 1)

and c0 the total dimensionless rod concentration.

The free energy Eq. (6.1) consists of several entropic contributions. The first term

represents the exact ideal free energy of the polydisperse system. The second term
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contains the parameter ω as a measure for (the negative) of the orientational entropy [21]

ω(l) ≡
∫
ψ(l,Ω) ln[4πψ(l,Ω)]dΩ, (6.2)

where ψ(l,Ω) is the normalized ODF for species l describing the distribution of the

particles’ solid angle Ω. In the isotropic state, all orientations are equally probable so

that ψiso is simply a constant (1/4π) independent of l. In the nematic state, however, the

ODFs are peaked functions (generally different for each species l), due to the fact that

the rods are aligned along a nematic director. Note that ω (and hence the orientational

free energy) attains its minimum (ω = 0) in the isotropic state, whereas ω > 0 in the

nematic state.

The last term in Eq. (6.1) describes the excess free energy which accounts for the

particle interactions. A measure for the average excluded-volume interaction between

rods of relative length l and l′ is given by the following angular average

ρ(l, l′) ≡ 4

π

∫ ∫
|sin γ(Ω,Ω′)|ψ(l,Ω)ψ(l′,Ω′)dΩdΩ′. (6.3)

Using the isotropic average 〈〈|sin γ(Ω,Ω′)|〉〉 = π/4 we obtain ρ(l, l′) ≡ 1 for the isotropic

state. This indicates that the excluded volume (or packing) free energy is indeed max-

imal in the isotropic phase but decreases as soon as the rods align to form a nematic

phase.

We shall use Gaussian trial ODFs with variational parameter α(l) to describe the an-

gular distribution of rods with relative length l in the nematic state [34]. The Gaussian

Ansatz consists of supposing

ψ(l, θ) ≡




α(l)
4π

exp[−1
2
α(l)θ2] 0 ≤ θ ≤ π

2

α(l)
4π

exp[−1
2
α(l)(π − θ)2] π

2
≤ θ ≤ π

, (6.4)

where α is now a function of l. Note that, due to the uniaxial symmetry of the nematic

phase, the ODF only depends upon the polar angle θ between the particle orientation

vector and the nematic director. Inserting Eq. (6.4) in Eq. (6.2) and straightforward

integration yields for the orientational entropy

ω(l) ∼ lnα(l) − 1. (6.5)

For the excluded volume entropy in the nematic phase ρnem(l, l′) only the leading order

term of its asymptotic expansion for large α will be retained

ρnem(l, l′) ∼
√√√√ 8

π

(
1

α(l)
+

1

α(l′)

)
+ O

[
α−3/2(l), α−3/2(l′)

]
. (6.6)

Substituting Eqs. (6.5) and (6.6) into Eq. (6.1) and minimizing the free energy den-

sity with respect to the non-conserved orientational degrees of freedom by means of a

functional differentiation gives

δf

δα(l)
∼ c(l)

α(l)
−

(
8

π

)1/2 lc(l)

2α2(l)

∫
l′c(l′)

(
1

α(l)
+

1

α(l′)

)−1/2

dl′. (6.7)
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Applying the stationarity condition δf/δα(l) ≡ 0 and some rearranging leads to the

following self-consistency equation

α̃(l) = 2l2



∫
l′p(N)(l′)

[
1 +

α̃(l)

α̃(l′)

]−1/2

dl′



2

, (6.8)

Here, we have factorized the Gaussian variational parameter function α(l) into a concen-

tration-dependent term and a contribution α̃(l) only related, via Eq. (6.8), to the

normalized length distribution in the nematic phase p(N)(l). Hence we write

α(l) = α̃(l)
4c20
π
. (6.9)

showing that for all l the variational parameter α depends quadratically on c0 just as

in the monodisperse case [5]. An approximate analytical solution to Eq. (6.8) valid for

infinitely narrow distributions (denoted by subscript δ) can be obtained by substituting

a delta function p(N)(l) = δ(l − 1) which gives [100]

α̃δ(l) =
1

2

(√
8l2 + 1 − 1

)
. (6.10)

This result may be interpreted as a measure for the nematic alignment of a single

rod with relative length l added to a nematic bulk system of monodisperse rods with

reference length L0. Eq. (6.10) shows that α̃δ(l) and hence the order parameter S,

defined as [5]

S(l) ≡
∫
P2(cos θ)ψ(l, θ)d(cos θ) ∼ 1 − 3

α(l)
, (6.11)

are in general increasing functions of the relative rod length, i.e. α̃δ(l) ∝ l for large l, as

we might have anticipated. Moreover, α̃δ(0) = 0 which means that there is no ordering

for rods of zero length, as formally must be the case. However, it should be pointed

out that rods with lengths close to zero must be excluded from our model because the

normalization factors for the Gaussian ODFs in Eq. (6.4) do not allow for a correct

description of isotropically distributed or weakly aligned species in the nematic state.

For consistency reasons we must therefore introduce a lower limit (lmin > 0) in all length

distributions.

6.3. I-N phase coexistence

6.3.1. Equilibrium conditions for polydisperse systems

The conditions for phase equilibrium are that the coexisting isotropic and nematic

phases must have equal chemical potential µ(l) for all relative rod lengths l, as well

as equal osmotic pressure Π. The chemical potential can be derived by functional

differentiation of the free energy with respect to the length distribution c(l)

βµ(l) =
δf

δc(l)
. (6.12)
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Using Eqs. (6.5) and (6.6) together with the isotropic values ω ≡ 0 and ρ ≡ 1 we obtain

βµiso(l) = ln c(I)(l) + 2lc
(I)
1

βµnem(l) = ln c(N)(l) + ln
[
4

π
(c

(N)
0 )2α̃(l)

]
− 1 + µ̃(N)

ex (l), (6.13)

where c1 denotes the first moment density following from the definition

ck = c0mk =
∫
dllkc(l), k = 0, 1, 2, . . . (6.14)

Here, mk denotes the k-th moment of the (normalized) distribution. The excess chem-

ical potential for the nematic phase µ̃(N)
ex (l) is given by

µ̃(N)
ex (l) = 23/2l

∫
dl′p(N)(l′)l′

(
1

α̃(l)
+

1

α̃(l′)

)1/2

. (6.15)

independent of the concentration of the nematic phase. Similar to Eq. (6.8) we can

straightforwardly obtain an analytical solution for µ̃(N)
ex (l) valid for near monodisperse

distributions by substituting p(N)(l) = δ(l− 1). This yields the following scaling result

µ̃
(N)
ex,δ(l) ∝ l

√
1

α̃δ(l)
+ 1. (6.16)

Using Eq. (6.10) it then follows that µ̃(N)
ex (l) ∝ l, for very large l, which is an exact

scaling result. In the limit l → lmax the excess chemical potential is the reversible work

required to insert a very long rod in a perfectly aligned configuration of reference rods

(the inserted rod being parallel to the other rods). This quantity, which is simply the

work required to create a (macroscopic) cavity of the scaled particle against the pressure

exerted by the fluid, increases linearly with the volume (and hence the length) of the

inserted rod. The osmotic pressure can be written in terms of the chemical potential

and the free energy via

bβΠ ≡ −f + β
∫
dlc(l)µ(l), (6.17)

which immediately yields for the isotropic phase

bβΠiso ∼ c
(I)
0 + (c

(I)
1 )2. (6.18)

For the nematic phase this formally gives

bβΠnem ∼ c
(N)
0 + f (N)

ex . (6.19)

However, this result can be simplified considerably by noting that the volume fraction

of the average excluded volume (per particle) in the nematic phase is a constant, as

shown in Sec. 5.2.2 of the previous Chapter. We thus have

N
〈〈vexcl〉〉l,l′

V
∼ c

(N)
0 〈〈ll′ρ(l, l′)〉〉l,l′ = 2. (6.20)

The brackets denote averages over the normalized length distribution. This result,

which is due to Odijk [92], generally holds for both monodisperse and polydisperse
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systems, independent of their composition. From the free energy Eq. (6.1) it then

follows that f (N)
ex = 2c

(N)
0 so that the osmotic pressure of the nematic phase reduces to

bβΠnem ∼ 3c
(N)
0 , (6.21)

like for a monodisperse system [5]. We can now state the conditions for the coexistence

between the isotropic and nematic daughter phases into which a parent phase (hence-

forth denoted with superscript 0) with length distribution c(0)(l) is assumed to have

split [98]. From Eq. (6.13), equality of chemical potentials of both phases is obeyed

exactly if the distributions in the phases have the following form

c(a)(l) = W (l) exp[ξ(a)(l)], a = I,N (6.22)

where W (l) ≡ exp[βµ(l)] must be a function common to both phases, since µ(I)(l) =

µ(N)(l) = µ(l). The functions ξ(a)(l) are given by

ξ(I)(l) = − 2lc
(I)
1

ξ(N)(l) =
(
1 − ln

4

π

)
− 2 ln c

(N)
0 − ln α̃(l) − µ̃(N)

ex (l). (6.23)

Furthermore, conservation of matter requires

c(0)(l) = (1 − γ)c(I)(l) + γc(N)(l), (6.24)

where γ denotes the fraction of the system volume occupied by the nematic phase.

Using this, we can express W (l) in terms of the parent distribution c(0)(l) giving

c(a)(l) = c(0)(l)
exp[ξ(a)(l)]

(1 − γ) exp[ξ(I)(l)] + γ exp[ξ(N)(l)]
. (6.25)

These functions represent the equilibrium rod length distributions for the coexisting

phases. The phase equilibria can now, in principle, be obtained by solving a set of self-

consistency equations for the moment densities of both phases and for the functions

α̃(l) and µ̃(N)
ex (l) pertaining to the nematic phase. These equations will be worked out

below for a specific situation, namely the onset of isotropic-nematic phase separation.

6.3.2. The onset of I-N phase separation; cloud and shadow curves

In this section we aim at locating the onset of isotropic-nematic phase separation in-

dicated by so-called cloud and shadow points [98,104]. A cloud point marks the density

where the parent phase has split off an infinitesimal amount of a new coexisting phase,

called the shadow phase. Accordingly, at the isotropic cloud point only an infinitesi-

mal amount of nematic phase (shadow phase) has emerged and so the distribution of

the isotropic phase is only negligibly perturbed away from the parent. Hence, for the

isotropic cloud point we may set γ = 0 in Eq. (6.25) so that,

c(I)(l) = c(0)(l), (6.26)

implying that the distribution in the isotropic phase at the cloud point is equal to the

parent distribution, hence c
(I)
k = c

(0)
k with k = 0, 1. The (normalized) rod distribution
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in the nematic shadow phase (with density c
(N)
0 ) is now given by

p(N)(l) =
c(0)(l)

c
(N)
0

exp
[
ξ(N)(l) − ξ(I)(l)

]

=KN
p(0)(l)

α̃(l)
exp

[
2c

(0)
1 l − µ̃(N)

ex (l)
]
, (6.27)

where KN = πec
(0)
0 /4(c

(N)
0 )3 and p(0)(l) the normalized parent distribution. Note that

Eq. (6.27) is an implicit expression for p(N)(l) because it still depends on the unknown

functions for the variational parameter α̃(l) and the excess chemical potential µ̃(N)
ex (l)

for each species in the nematic shadow phase. Explicit solutions for these functions

can be obtained by substituting Eq. (6.27) into Eqs. (6.8) and (6.15) and numerically

solving the resulting self-consistency equations.

The concentrations of the isotropic cloud phase and the coexisting nematic shadow

are found by imposing the normalization condition for the distribution in the nematic

shadow phase,∫
p(N)(l) ≡ 1, (6.28)

and the condition of equal osmotic pressure

3c
(N)
0 = c

(0)
0 + (c

(0)
1 )2. (6.29)

Note that the ratio between the zeroth and first moment densities on the right-hand

side of Eq. (6.29) is fixed by the parent distribution. Using the condition of equal

pressure to eliminate e.g. c
(N)
0 , we may conveniently combine Eqs. (6.28) and (6.29)

into one self-consistency equation for the concentration of the isotropic cloud point,

which we can solve in an iterative fashion. However, since α̃(l) and µ̃(N)
ex (l) also depend

on c
(0)
0 (via p(N)(l), Eq. (6.27)) this equation has to be solved along with the coupled

set of self-consistency equations, Eqs. (6.8) and (6.15), so that we end up with a set of

three coupled nonlinear equations. Obviously, solving this set is not a trivial task but

requires some numerical effort. For this reason we have devoted an Appendix A to this

issue where we describe some details of the numerical procedures adopted in this study.

We can now perform a similar analysis to obtain expressions for the nematic cloud

point and the associated isotropic shadow point, which locate the onset of I −N equi-

librium coming from a dense nematic parent phase. Since the latter now coexists with

an infinitesimal amount of an isotropic shadow phase we may set γ = 1 in Eq. (6.25) so

that c(N)(l) = c(0)(l) and c
(N)
0 = c

(0)
0 . The (normalized) rod distribution in the isotropic

shadow phase (with density c
(I)
0 ) is then given by

p(I)(l) =
c(0)(l)

c
(I)
0

exp
[
ξ(I)(l) − ξ(N)(l)

]

= KIp
(0)(l)α̃(l) exp

[
−2c

(I)
1 l + µ̃(N)

ex (l)
]
, (6.30)

where KI = 4(c
(0)
0 )3/πec

(I)
0 . Since the functions α̃(l) and µ̃(N)

ex (l) correspond to the

nematic parent phase we may substitute p(N)(l) = p(0)(l) in Eqs. (6.8) and (6.15).
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Consequently, as the normalized parent distributions p(0)(l) have a predescribed form

and do not depend on any concentration, the coupled self-consistency equations need

to be solved only once for a given p(0)(l). The forms of the parent distributions will be

specified in Sec. 6.3.4.

Once the solutions for α̃(l) and µ̃(N)
ex (l) have been obtained, the concentrations of the

nematic cloud and shadow point can be calculated by requiring self-consistency for the

zeroth moment (normalization condition) and the first moment of the isotropic shadow

distribution∫
p(I)(l) = 1,

∫
lp(I)(l) = m

(I)
1 =

c
(I)
1

c
(I)
0

. (6.31)

Similar to the previous case, we can rewrite these two conditions together with the

equality of osmotic pressure Eq. (6.29) into a set of consistency relations from which

the densities of the nematic cloud and isotropic shadow phases (viz. c
(0)
0 , c

(I)
0 and c

(I)
1 )

can be obtained numerically (see also Appendix A).

6.3.3. Inside the coexistence region

We will now focus on the coexistence region between the isotropic and nematic cloud

points, where both phases coexist in noninfinitesimal amounts, i.e. 0 < γ < 1. Accord-

ing to Eq. (6.25), the equilibrium length distributions in the coexisting phases are then

given by

c(I)(l) =
c(0)(l)

γ exp
{
∆ξ[α̃(l), µ̃

(N)
ex (l)]

}
+ (1 − γ)

,

c(N)(l) =
c(0)(l)

(1 − γ) exp
{
−∆ξ[α̃(l), µ̃

(N)
ex (l)]

}
+ γ

. (6.32)

with ∆ξ(l) = ξ(N)(l)−ξ(I)(l), given by Eq. (6.23). Note that both distributions are now

different from the parental one. Solving the coexistence problem is done in a similar

way to the one described previously for the isotropic cloud and shadow points. From

an experimental point of view, we are only interested in results located on so-called

physical dilution lines along which the overall system number density (c
(0)
0 ) is changed

(e.g. by adding or evaporating solvent) while the overall composition of the species

(p(0)(l)) remains fixed. The parent distributions will be specified below.

6.3.4. Parent distributions

The numerical method described in the previous sections allows us to calculate the

isotropic-nematic phase diagram for in principle arbitrary parent distributions. In our

study we specify two types of distributions. The first one is the Schulz distribution

which has the form

p(0)(l) = Nlz exp[−(z + 1)l], (6.33)



98 6. Isotropic-nematic phase behaviour of length-polydisperse hard rods

with normalization factor N . In order to exclude rods with potentially zero length we

truncate the distribution at some lower cutoff length lmin. Henceforth we fix lmin = 0.01.

For calculational purposes (see Appendix A) we must also have some finite cutoff length

lmax at large l. Of course, introducing cutoff lengths is also reasonable from a physical

standpoint. The first and second moment (defined as mk =
〈
lk
〉
, k = 1, 2) of the

Schulz distribution are m1 = 1 and m2 = (z + 2)/(z + 1) only for the unbounded case.

However, in case of finite cutoff lengths the moments will deviate from these values.

Although the corrections are generally small, in particular for large lmax, they cannot

be neglected. Therefore, we choose to calculate all relevant moments of the parent

distribution numerically via mk =
∫ lmax

lmin
lkp(0)dl. The polydispersity σ is defined as

σ2 =
〈l2〉
〈l〉2 − 1, (6.34)

and would yield σ2 = (1 + z)−1 for the unbounded Schulz distribution.

The second distribution we consider is the log-normal one. The “fat-tailed” log-

normal distribution decays much slower at large l than the Schulz one and therefore

possesses a significantly larger contribution of long rods. The log-normal distribution

reads

p(0)(l) = Nl−1 exp


−

(
ln l − µ

2w2

)2

 . (6.35)

For the unbounded distribution, w is directly related to the polydispersity via w2 =

ln(1 + σ2) and the parameter µ is chosen such that m1 = 1, giving µ = −w/2. The

second moment is then given by m2 = 1 + σ2. Also here, truncation of the distribution

at some values lmin and lmax leads to deviations for which we correct numerically.

6.4. Results for the onset of I-N phase separation

6.4.1. Schulz distributions

In Figs. 6.1 to 6.3 we have depicted the results for a Schulz parent distribution

with cutoff lengths lmin = 0.01 and lmax = 100. The curves describing the densities

of the cloud and shadow phases are shown in Fig. 6.1. A striking broadening of the

coexistence gap can be detected, mainly due to a dramatic increase of the concentration

of the nematic cloud phase. In Fig. 6.1(b) we see that the volume fraction of the nematic

cloud phase increases by several orders of magnitude at σ > 0.5. Although the nematic

shadow curve crosses the corresponding isotropic cloud curve at σ ≈ 0.5 in Fig. 6.1(a),

the volume fraction (and hence the mass density) of the nematic shadow remains higher

than that of the isotropic cloud phase throughout the phase diagram as we see in Fig.

6.1(b). Fig. 6.2(a) shows the extent of fractionation, i.e. the repartitioning of the long

and short rods, among the coexisting phases at the onset of phase separation. A marked

feature is the rapid increase of the average length in the nematic shadow around some

“transitional” polydispersity σt � 0.5. This indicates that the nematic phase becomes

preferably populated by the longest rods in the system. Note that there is a similar



6.4. Results for the onset of I-N phase separation 99

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

c
0

�

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

10log(�L
0
/D)

�

(a) (b)

Figure 6.1. (a) Concentrations of the isotropic and nematic cloud phases
(solid lines) and the corresponding shadow phases (dotted lines) plotted against
(on the vertical axis) the polydispersity σ of a Schulz parent with lmin =
0.01 and lmax = 100. The isotropic cloud curve is the one with the lowest
concentration. In the monodisperse limit (σ = 0) the isotropic cloud point
meets the shadow of the nematic cloud point and vice versa. The thin solid
lines are the limiting curves for lmax → ∞, given by Eq. (6.43) in Appendix B.
(b) Logarithm of the scaled volume fraction φL0/D plotted versus the parent
polydispersity σ on the vertical axis. Note the dramatic increase of the volume
fraction of the nematic cloud phase.

(a) (b)

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0
0.0

0.3

0.6

0.9

m
1

(ISO)/m
1

�

m
1

s/m
1

�

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

�
s
/�

�
N

I

Figure 6.2. (a) Average length 〈l〉 = ms
1 in the isotropic and nematic shadow

phases relative to the average length m1 in the cloud phase plotted against (on
the vertical axis) the polydispersity σ of a Schulz parent with lmin = 0.01
and lmax = 100. The inset shows the relative average length in the isotropic
shadow phase (corresponding to the nematic cloud point). (b) Polydispersity
of the isotropic and nematic shadow phases σs (relative to the parental one
σ) plotted against σ. Note the kinks in the isotropic and nematic branches
around σ ≈ 0.65 and 0.5, respectively.
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Figure 6.3. Normalized length distributions in the nematic shadow phases
p(N)(l) for various parent polydispersities σ of the same Schulz parent as in
the previous figures.

effect in the isotropic shadow phase around σt � 0.7 where the shortest rods completely

dominate the isotropic shadow phase at higher polydispersities. The same effects are

reflected somewhat clearer in Fig. 6.2(b) showing the evolution of the polydispersity of

the shadow phases. At σ = σt, the polydispersity of the shadow phases show a kink.

The strong decrease at higher σ is due to the effect that the shadow phases become

more and more enriched in either the longest or the shortest rods in the distribution.

The dramatic change of the composition across the σ-range is shown explicitly in Fig.

6.3 where we have depicted the normalized length distributions in the nematic shadow

phase for various σ. A similar picture is obtained for the distributions in the isotropic

shadow phase (not shown here) but with the peak of the distribution shifting rapidly

towards the lower cutoff length lmin = 0.01.

In summary, we can state that there are two fractionation regimes for the onset of

phase separation. First, at low polydispersities (σ < σt) moderate fractionation is ob-

served and the shadow phases are mainly populated by rods with slightly higher (or

lower) than average length. Second, at higher polydispersity (σ > σt) strong fractiona-

tion occurs such that the shadow phases are completely dominated by the longest (or

shortest) rods in the distribution. In a small interval around σ = σt the location of the

peak of the length distribution shifts rapidly, upon increasing σ, from a value slightly

different from one (pertaining to the low-σ regime) to a value close to the the cutoff

length (corresponding to the high-σ regime).

So far, we have only discussed the results for a single set of cutoff lengths. Although

the results for different cutoff lengths can be significantly different, particularly in the

“cutoff-dependent” regime σ > σt [106], the global phase behaviour remains qualita-

tively the same. Therefore we conclude that the aforementioned fractionation scenario

generally holds for any Schulz parent with sufficiently extreme cutoff lengths ( lmin � 1

and lmax � 1). An interesting limiting case however is the behaviour for Schulz parents

with infinitely large cutoff lengths. For this specific case, we could obtain simple scaling
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Figure 6.4. (a) Concentrations of the isotropic and nematic cloud phases
(solid lines) and the corresponding shadow phases (dotted lines) plotted against
(on the vertical axis) the polydispersity σ of a log-normal parent distribution
with the same lower cutoff length lmin = 0.01 but two different higher cutoff
lengths, lmax = 10 and 100. The isotropic cloud curve is the one with the lowest
concentration. The nematic cloud curve and the associated isotropic shadow
curve are insensitive to the value of lmax on this scale and therefore the results
for lmax = 10 and 100 overlap. At the kink in the isotropic cloud curve the
isotropic cloud phase coexists with two nematic phases differing in composition.
(b) Logarithm of the scaled volume fraction φL0/D plotted versus the parent
polydispersity σ on the vertical axis. The main graph shows the results for the
isotropic cloud and the nematic shadow phase, the inset for the nematic cloud
and its isotropic shadow phase.

relations which describe the global behaviour of the nematic shadow in the limit of an

unbounded Schulz parent, i.e. lmax → ∞. The scaling analysis, worked out briefly in

Appendix B, is closely related to a more elaborate analysis presented in Ref. [107] for

the exact Onsager model. In particular, we show in Appendix B that the Gaussian

Ansatz must yield the exact high-cutoff scaling relations. The reason for this is that

our high-cutoff scaling form for p(N)(l) (for the nematic shadow phase) is completely

analogous to the exact scaling result.

Finally, we remark that we do not observe a real jump in the shadow curves (and a

kink in the associated cloud curves), as found in Ref. [107]. The presence of a jump in

the shadow curve indicates that, at some point, the isotropic cloud phase coexists with

two different nematic shadow phases and that a region of stable triphasic equilibria

develops. Therefore we conclude that, within the Gaussian Ansatz, the Schulz form

does not give rise to a three-phase separation, at least up to lmax = 100.

6.4.2. Log-normal distributions

The results for the log-normal case are presented in Figs. 6.4 and 6.5. The cloud

and shadow curves shown in these figures correspond to log-normal parent distributions

with the same lower cutoff length lmin = 0.01 but two different higher cutoffs lmax = 10
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Figure 6.5. Average length ms
1 in the shadow phases relative to the parental

one m1 for log-normal parent distributions with cutoff lengths lmax = 10 and
100 as a function of the parent polydispersity σ. The inset shows the relative
average length in the isotropic shadow phase (corresponding to the nematic
cloud point). Also here, the results for lmax = 10 and 100 overlap.

and 100. We see that the phase behaviour is globally the same as for the Schulz

case. There is a generic broadening of the biphasic region (Fig. 6.4(b)) and a very

pronounced fractionation effect, particularly among the isotropic cloud and nematic

shadow phases, as visible in Fig. 6.5. At low polydispersities the distribution in the

nematic shadow phase is very similar to the parent distribution (albeit with a higher

average length). At higher polydispersities, however, we enter a regime characterized

by extreme fractionation, i.e. the nematic shadow phase is dominated by the longest

rods in the distribution. Remarkably, we do not see a similar transition in the isotropic

shadow phase in Fig. 6.5, as we did in the Schulz case. This implies that fractionation

from the nematic cloud phase is much weaker for log-normal distributions than for

Schulz ones.

A crucial difference with the previous results is that the transition between the

regimes occurs discontinuously. At the transition polydispersities σt the isotropic cloud

curves show a kink and the associated nematic shadow curves exhibit a jump. Precisely

at the kink, the isotropic cloud phase coexists with two different nematic phases, one

containing mostly rods with slightly higher than average length (denoted by NI) while

the second one (NII) is dominated by the longest rods in the distribution. Therefore,

this special point indicates the presence of a stability region for I −NI −NII triphasic

equilibria for log-normal distributions. In Fig. 6.5 we see that the position of the kink

(in terms of σt) rapidly shifts to lower polydispersities as lmax increases. From this, we

anticipate that the triphasic equilibrium must set in at almost zero polydispersity (near

monodisperse systems) for very large cutoff lengths.

Like for the Schulz case, we can obtain information about the global phase behaviour

for parent distributions at infinite cutoff lengths lmax from the high-cutoff scaling results,
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shown in Appendix B. The most important outcome is that the concentrations of the

isotropic cloud and nematic shadow phases go to zero for large cutoff length rather

than approaching asymptotic forms such as in the Schulz case. Furthermore, it is

shown explicitly that fractionation between the isotropic cloud and nematic shadow

phases is stronger than for the Schulz case.

So far, we have only looked at the onset of phase equilibrium by analyzing the prop-

erties of the cloud and shadow phases. The next step is to explore the coexistence

region in more detail. An intriguing issue is to verify the region of stability for the

isotropic-nematic-nematic triphasic region for the log-normal case. This will be dealt

with in the next section, where we discuss the phase diagram for a log-normal parent

with cutoff length lmax = 10 in more detail.

6.5. Inside the I-N coexistence region

Across the coexistence region the equilibrium length distributions of the coexist-

ing phases, which originate from a parent phase with a prescribed distribution p(0)(l),

change continuously as the overall density of the parent c
(0)
0 is changed. In the actual

calculations however it is more convenient to impose the fraction γ occupied by the ne-

matic phase rather than c
(0)
0 and calculate the corresponding densities self-consistently.

In Figs. 6.6 and 6.7 we show the properties of the coexisting isotropic and nematic

phases for a log-normal parent distribution with polydispersities σ = 0.4 and σ = 0.3,

respectively. Fig. 6.6(a) shows that the average length in the nematic daughter phase

decreases rapidly in the regime c
(0)
0 � 3 whereas only weak changes are notable at higher

c
(0)
0 . Furthermore, we see that the volume occupied by the nematic phase is extremely

small in the former regime. The same feature is observed in the volume fraction rep-

resentation in Fig. 6.6(b). In particular, the non-monotonicity of the nematic branch

is reflected somewhat clearer here. The fact that the isotropic branch runs extremely

close to the dilution line for c
(0)
0 < 3 indicates that the fraction of nematic phase formed

must indeed be very small. The rather exotic oscillations in the behaviour of the poly-

dispersities of the daughter phases in Fig. 6.6(c) reflect a dramatic change of shape of

the length distribution in the nematic phase in the first part (γ < 10−2) of the dilution

trajectory as shown in Fig. 6.6(d). Note that the distribution of the nematic shadow

phase is in fact bimodal, with a small peak around l = 1 and a much larger one at

l = lmax. When the overall density is increased the second peak shifts to lower values

of l and eventually coincides with the first peak. When the overall density has reached

about c
(0)
0 = 4 (corresponding to a nematic phase volume fraction of about 10 %) the

distribution of the nematic phase resembles the parental one, albeit with a slightly

higher average length. The phase behaviour scenario sketched above is qualitatively

similar to the one reported in Ref. [106] for the P2-model.

In Fig. 6.7(a) we have plotted the evolution of the average length for a parent with

polydispersity σ = 0.3. A peculiar behaviour is observed, which is also reflected in

Fig. 6.7(b) where the coexistence pressure is plotted versus γ. Clearly, there is a region

where the pressure decreases as a function of γ which suggests an instability (or van der
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Figure 6.6. (a) Average rod length md
1 in the coexisting daughter phases

(solid lines) plotted versus the concentration c
(0)
0 of the parent across the coex-

istence region for a log-normal parent with lmin = 0.01 and lmax = 10 at fixed
polydispersity σ = 0.4. The curve for which md

1 > 1 is the nematic branch.
The dotted line corresponds to m1 = 1 for the parent phase. The inset shows
the (logarithm of the) fraction γ of the system volume occupied by the ne-
matic phase. Note that the amount of nematic phase is extremely small in
the region c

(0)
0 < 3. (b) Evolution of the scaled volume fraction φL0/D in the

coexisting daughter phases across the coexistence region for the same parent.
The nematic branch is the one with the highest volume fraction. The dilution
line is indicated by the dotted line. (c) Relative polydispersity σd/σ of the
coexisting daughter phases across the coexistence region for the same parent.
By definition, the dilution line (dotted) is given by σd/σ = 1. (d) Plot of the
normalized length distributions of the nematic phase across the coexistence
region corresponding to the positions A through E in (c).

Waals) loop indicating a possible demixing of the nematic phase. In Appendix C we

show that the local extrema in the osmotic pressure in Fig. 6.7(b) can be connected to

spinodal points for the nematic phase which indicate that the coexisting nematic phase

indeed becomes locally (and hence also globally) unstable. In the region between the



6.5. Inside the I-N coexistence region 105

(a) (b)

2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

3.12 3.20 3.28

1.6

2.0

2.4

.
.

c
0

(0)

m
1

N

c
0

(0)

m
1

N

-6 -5 -4 -3 -2 -1 0
12.0

12.5

13.0

13.5

14.0

14.5

15.0

.
.

10log �

b��

Figure 6.7. (a) Average rod length md
1 in the nematic phase across the coexis-

tence region for a log-normal parent with σ = 0.3 and cutoff lengths lmin = 0.01
and lmax = 10. The inset shows a hysteresis loop indicating a local instability
of the nematic phase. (b) Coexistence pressure across the coexistence region
for the same parent. In the region where δ(bβΠ)/δγ < 0 the nematic phase is
locally unstable with respect to a nematic-nematic demixing.

stationary points (δ(bβΠ)/δγ = 0), the coexistence between the isotropic and a single

nematic phase also becomes unstable such that a triphasic isotropic-nematic-nematic

(I −NI −NII) demixing occurs.

It should be stressed that the actual onset of the three-phase separation is marked

by binodal points which we have not located in this study, except for the kink at σt. In

general, binodal points are located at a lower concentration than the spinodal points

so that the demixing usually occurs well before the point where the system becomes

locally unstable. This becomes clear in Fig. 6.8 where we show the details of the phase

diagram in the vicinity of the kink including the spinodal curves (in terms of c
(N)
0 ) for the

coexisting nematic phase. At the kink σt = 0.264 the three-phase separation sets in right

at the isotropic cloud point but the spinodal points are located at higher concentrations.

An important feature in Fig. 6.8 is the presence of an upper consolute (or critical) point

at σ = 0.373 ± 0.001 where the spinodal curves meet. This means that the region of

stable triphasic equilibria does not extend up to large parent polydispersities but closes

off at the consolute point.

Another remarkable observation is that the spinodal curves have a lower consolute

point σ = 0.24 ± 0.005, located below the kink. This means that the three-phase

region does not set in at the kink (σ = σt) as one may naively assume, but at a

somewhat smaller parental polydispersity. Consequently, the phase behaviour we can

infer from Fig. 6.8 becomes rather exotic. Several scenarios can be distinguished. At low

polydispersities (up to the lower consolute point) there is a common isotropic-nematic

phase separation involving a moderately fractionated NI-phase. When the parental σ

crosses the lower consolute point the coexisting NI-phase demixes at some point on

the dilution trajectory (called the onset density) and a second nematic NII emerges.
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Figure 6.8. Phase diagram for log-normal parent distribution with cutoff
lengths lmin = 0.01 and lmax = 10. The thick curves delimit the spinodal insta-
bility region for the coexisting nematic phase (in terms of the concentration of
the nematic phase c

(N)
0 ). The region is bounded by a lower (σ = 0.24± 0.005)

and an upper (σ = 0.373 ± 0.001) consolute point.

There will be a small density interval where all three phases coexist, but NII eventually

disappears and a regular biphasic I − NI is recovered. As we approach the kink, the

onset density shifts towards the isotropic cloud curve. At the kink, two infinitesimal

fractions of the two nematic phases are formed right at the cloud point. At σ > σt
a different scenario is encountered; a strongly fractionated NII-phase (containing the

longest rods) is split off first at the isotropic cloud point. At higher concentrations

(when I and NII coexist in finite amounts) a second nematic phase (NI) is formed and

an I−NI−NII triphasic equilibrium develops. Upon slightly further concentrating the

system, the NII-phase eventually disappears and regular I −NI biphasic equilibria are

recovered. Finally, at parent polydispersities above the upper consolute point σ > 0.373

the behaviour of the pressure as a function of γ does not show any stationary points (cf.

Fig. 6.6(a)) so that we may assume that the isotropic-nematic equilibria remain stable

throughout the region. Upon concentrating the isotropic phase a strongly fractionated

nematic phase (reminiscent of the NII phase) is formed initially but the composition of

this phase evolves gradually towards a NI-type nematic as the biphasic region is crossed.

6.6. Summary and discussion

We have numerically investigated Onsager’s second virial theory for polydisperse

hard rods within the Gaussian Ansatz. The onset of isotropic-nematic phase sepa-

ration is obtained from the cloud and shadow curves, which delimit the coexistence

region. Within the same numerical framework, we could also explore the properties

of the coexisting phases across the coexistence region. In this work, we focussed on
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systems of polydisperse hard rods whose lengths can be described by a Schulz or a log-

normal distribution. The basic difference between these two forms is that the fat-tailed

log-normal one contains a significantly higher fraction of longer rods. For numerical

and consistency purposes we truncated the distributions at both ends at sufficiently

low and high cutoff lengths. Using truncated distributions is also justifiable from an

experimental point of view. For parent distributions of the Schulz type the phase dia-

gram contains two fractionation regimes. First, at low parent polydispersities moderate

fractionation occurs and the average rod lengths in the isotropic and nematic shadow

phases are not much different from the average length in the parental cloud phase. Sec-

ond, at higher parental σ fractionation effects are extremely strong and the isotropic

and nematic shadow phases are completely dominated by respectively the longest and

the shortest rods present in the system.

For the exact Onsager model, Speranza and Sollich [107] very recently predicted a

kink in the isotropic cloud curve (and a jump in the corresponding nematic shadow

curve) for Schulz parents with cutoff lengths lmax > 50. The presence of this kink

indicates a region of stable isotropic-nematic-nematic triphasic equilibria. Here we do

not find any indication for such a three-phase separation for Schulz parents at least up

to lmax = 100. The discrepancy may be due to the Gaussian Ansatz, which implies that

the ODFs are not represented by their correct equilibrium forms. Moreover, the Schulz

form might be a borderline case since its tail is too modest to induce a strong demixing

but too “fat” to suppress it completely so that the presence of a kink in the isotropic

cloud curve depends quite sensitively on the precise representation of the ODF.

Although the Gaussian ODF is not a solution of the exact stationarity condition for

the ODF, it does satisfy the exact high-density scaling relation [35]. This means that the

properties of highly ordered nematic states are described very well by the Gaussian form.

In fact, the description becomes exact for infinitely aligned states. A manifestation of

this is the osmotic pressure for the nematic phase, Eq. (6.21), which is the exact high-

density result [35]. Consequently, for our polydisperse systems, we expect the Gaussian

Ansatz to work increasingly well both for highly concentrated nematic phases and ones

that are dominated by the longest rods. In both cases, the nematic alignment of all

species is expected to be very pronounced such that the use of the scaling ODF (for

all l) is justified. To verify this notion, we have plotted the variational parameter as

a function of length, for both the nematic shadow phase and the nematic cloud phase

corresponding to a Schulz parent in Fig. 6.9. Since the Gaussian ODF is expected to be

the least correct for the shortest rods (which show the weakest alignment), we focus on

the interval l < 1. In order for the results to be self-consistent, the alignment must be

strong enough and the variational parameter must therefore be sufficiently large (say
10 logα > 1) for all lengths. Fig. 6.9(a) shows that this is not entirely the case; in the

regime of low fractionation the shortest rods (with l � 0.4) are not sufficiently aligned

by the longer rods so that the Gaussian description fails here. In the regime σ > 0.5,

which is physically the most interesting one, the ordering of the short rods is much

higher due to the presence of very long rods in the nematic shadow phase, and the
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Figure 6.9. Behaviour of the Gaussian variational parameter α(l) for the
shortest rods of a Schulz parent with lmin = 0.01 and lmax = 100 (see also
Fig. 6.1(a)). (a) Results for the nematic shadow phase at various σ. (b) Same
for the nematic cloud phase. For comparison the result for the monodisperse
system (α = 33.4) [5] is indicated by the dotted line.

Gaussian Ansatz is fully justified. Similar for the nematic cloud phase in Fig. 6.9(b)

we see that the shortest rods are not well represented by the Gaussian ODF at low σ

but much better at σ > σt where the variational parameter increases several orders of

magnitude due to a dramatic increase of the concentration of the nematic cloud phase

(see also Fig. 6.1(b)). Obviously, for any rod length significantly larger than lmin the

Gaussian ODF works very well because α generally becomes extremely large for any σ.

Therefore we conclude that given the fact that the composition of the nematic phases is

dominated by the longest rods, particularly in the physically relevant cutoff-dependent

regimes, the Gaussian approximation is an appropriate tool in our study.

We now turn to the log-normal case. The fractionation scenario we observe there is

qualitatively the same as the one for the Schulz case; weak fractionation occurs at low

σ where the distributions in the shadow phases are reminiscent of the parental one, but

dramatic segregation effects take place above some threshold σ, particularly between

the isotropic cloud and the nematic shadow phase. A crucial difference with the results

for the Schulz case however is that the transition between the two fractionation regions

shows a discontinuity at σ = σt. At this point, the isotropic cloud curve shows a kink

which corresponds to a jump in the nematic shadow phase. The jump indicates that

an isotropic cloud phase must coexist with two different shadow phases, one containing

mostly rods of slightly higher than average length (the NI-phase) and the other one

predominantly containing very long rods (the NII-phase). For log-normal distributions

with a moderate cutoff-length lmax = 10 we found that the kink is located at a fairly

low polydispersity σt = 0.264. This value will decrease for larger cutoff lengths and

eventually go to zero when lmax approaches infinity. This indicates that adding a very

small fraction of long rods to a weakly polydisperse system of much shorter rods can

already induce a three-phase demixing. A similar effect is observed in binary mixtures

of long and short hard rods with sufficiently large length ratios [36].
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For the case lmax = 10 we could infer a spinodal instability of the nematic phase

from analyzing the phase properties along the coexistence region, in particular the

evolution of the coexistence pressure. The determination of the spinodal points has

not been performed rigorously but merely indirectly by locating the stationary points

in the osmotic pressure (see Appendix C for a discussion). The result of this analysis

is that the triphasic area does not extend up to very large parent polydispersities but

terminates at a consolute point located at σ = 0.373±0.001.A remarkable feature is that

the spinodal boundaries have a lower consolute point located below the kink, namely at

σ = 0.24 ± 0.005, indicating that the isotropic-nematic-nematic triphasic region does

not open up precisely at the kink but at a slightly lower parental polydispersity.

We have not been able to determine the corresponding binodal points, which mark the

actual onset of three-phase separation from the isotropic-nematic biphasic equilibria.

Considering the results for the approximate Onsager P2-model, as numerically analyzed

by Speranza and Sollich [106], we expect these triphasic equilibria to be limited to a very

small density interval across the coexistence region, which makes it very hard to observe

the phenomenon in experiment. Another problem is that the fraction of the system

volume occupied by the nematic phases is predicted to be at the most 0.1 %, so that it

will be very difficult to distinguish (or even detect) the two different nematics. Therefore

we must conclude that, although the log-normal distribution contains sufficient long

rods to induce a demixing of the nematic phase, the (mole) fraction of these rods is too

small to give rise to an observable fraction of the demixed nematic phases.

Experimentally, phenomena such as a broadening of the biphasic region and a frac-

tionation effect have been observed unequivocally in a number of experimental stud-

ies [108–111]. Observations of triphasic isotropic-nematic-nematic equilibria were how-

ever only reported for systems whose length distributions appear to be more or less

bimodal rather than unimodal. These bimodal shapes were either accomplished delib-

erately by mixing species with different lengths, as done by Itou [111] with semiflexible

schyzophyllan rods or caused by the presence of large aggregates as found by Kajiwara

et al. [112] in systems of rigid imogolite rods. Buining et al. [110] observed the for-

mation of second nematic phase in systems of polymer-coated (hard) boehmite rods,

albeit a long time after the two-phase isotropic-nematic phase separation had finished.

Also there, the triphasic demixing is probably due to the presence of a small number of

very long rods or aggregates present in the system causing the length distribution to be

(slightly) bimodal [113]. The experimental results therefore seem to indicate that hav-

ing a three-phase separation with observable fractions of all phases requires some degree

of bimodality (with a sufficiently large length ratio between the short and long species)

in the parental length distribution. Hence, an intriguing issue left open for future in-

vestigation is the question how the triphasic phenomenon predicted for the log-normal

distributions changes for a parent distribution with a slightly bimodal shape (e.g. with

a small second peak just below lmax). In particular, a bimodal distribution may give

rise to enhanced fractionation behaviour and more pronounced triphasic equilibria than

predicted for the unimodal log-normal form.
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Appendix A: Numerical procedure

The self-consistency equations for α̃(l) and µ̃(N)
ex (l), Eqs. (6.8) and (6.15), were solved

using a numerical grid of lengths. The iterative scheme we used is analogous to the

one described by Herzfeld et al. [33] for computing the numerically exact equilibrium

ODF of the monodisperse Onsager model. The l−interval [lmin, lmax] was discretized

into N (not necessarily equal) parts. The mesh size must be chosen very carefully,

particularly for large lmax, because the distributions become considerably peaked at

low polydispersities. Therefore, for parent polydispersities lower than approximately

σ = 0.25 we chose to divide the integration interval into three regimes. The interval

[1−8σ2, 1+8σ2] in the vicinity of the peak, where the distribution changes rapidly, was

discretized into 3
5
N equal parts, and the intervals [lmin, 1−8σ2] and [1+8σ2, lmax], where

the distribution is generally much smoother, were both discretized into 1
5
N equal parts.

For parent polydispersities larger than σ = 0.25 the entire interval was discretized

into N equal parts. It proved to be sufficient to use N = 150 in order to obtain

quantitatively reliable results. However, for the calculation of the full phase split (Sec.

6.3.3) a smaller mesh size (N = 50) was used to limit the computational burden.

Increasing the number of mesh points led to only marginally different results in this

case while the calculation time increased dramatically. For small polydispersities we

used Eqs. (6.10) and (6.16) as initial guesses and the successive iteration was performed

until the following convergence criteria were satisfied:

max
n=1,...N

|α̃(ln+1) − α̃(ln)| < 10−6,

max
n=1,...N

∣∣∣µ̃(N)
ex (ln+1) − µ̃(N)

ex (ln)
∣∣∣ < 10−6. (6.36)

After each iteration step 10% of the new solution had to be added to 90 % of the

previous one for the next iteration step to ensure the convergence of the method.

The iteration algorithm we figured out to calculate the phase equilibria can be de-

scribed as follows. First, the corresponding equilibrium forms for α̃(l) and µ̃(N)
ex (l) were

calculated for a given set of starting concentrations. These results were then put into

the self-consistency equations for the cloud and shadow concentrations to obtain new

values. These equations were obtained by recasting the self-consistency conditions for

the moments (e.g. Eq. (6.28)) in an iterative form such that the concentrations could

be calculated by a simple fixed-point iteration. Finally, for the new concentrations,

corresponding forms for α̃(l) and µ̃(N)
ex (l) were computed and substituted again into the

self-consistency equations. This procedure was repeated until all concentrations had

converged to within 10−5. To ensure convergence of this iteration loop a damping per-

centage of 80 % was used, which means that only 20 % of the change was retained at

each iteration step.

Appendix B: High-cutoff scaling results

In this Appendix we focus on the properties of the nematic shadow phase in the

cutoff-dependent regime (σ > σt) for systems with infinite cutoff lengths. For the exact
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Onsager model, Speranza and Sollich [107] made a detailed analysis of these properties

based upon the high-density (and high-cutoff) scaling forms of the exact nematic ODF.

Here, we will not reproduce the analysis but merely show that the scaling form for the

length distribution in the nematic shadow phase in the limit lmax → ∞ is analogous to

the one obtained in Ref. [107]. Consequently, all scaling properties which follow from

the Gaussian approximation must be exactly the same as the ones derived from the

exact high-cutoff scaling results.

The first step is to solve the coupled set of consistency equations, Eqs. ( 6.8) and

(6.15). In order to obtain analytic solutions for these nonlinear integral equations we

exploit the fact that the nematic shadow phase is completely dominated by the longest

rods in the system at σ > σt. When the cutoff length increases, the length distribution

in the nematic shadow will be more and more peaked at l = lmax. In the limit of infinite

lmax it is therefore justified to use the Ansatz p(N)(l) = δ(l − lmax) which suggests an

effectively monodisperse nematic shadow phase only containing the longest rods in the

system. Substituting the delta-function in Eqs. (6.8) and (6.15) allows us to obtain

asymptotic forms for the Gaussian variational parameter α̃(l) and the excess chemical

potential µ̃(N)
ex (l) of the nematic shadow phase. These expressions now read

α̃(l) = l4maxF(l/lmax), (6.37)

µ̃(N)
ex (l) =

l

lmax
23/2

√
1 + F−1(l/lmax), (6.38)

where F is given by

F(l/lmax) =
1

2



√√√√1 + 8

(
l

lmax

)2

− 1


 . (6.39)

Note that F(l/lmax) always has a value between zero and unity. A close inspection

reveals that the variational parameter α̃(l) scales as α̃(l) ∝ l4max whereas the excess

chemical potential µ̃Nex(l) remains of the order O(1) for all lengths. Using this in Eq.

(6.27) we can write down a scaling expression for the length distribution in the nematic

shadow phase, which in its general form reads

p(N)(l) = cst
c
(0)
0

(c
(N)
0 )3

l−4
maxp

(0)(l) exp
[
2c

(0)
1 l −W(l/lmax)

]
, (6.40)

where W is a contribution of the order O(1):

W(l/lmax) = lnF(l/lmax) + µ̃(N)
ex (l/lmax). (6.41)

which attains its maximum W = 4 for l = lmax. The scaling solution Eq. (6.40) is

completely analogous to the one found in Ref. [107], the only differences being the

exact form of W(l/lmax) and the constant cst. However, since these contributions are

both subleading in the limit lmax → ∞ they are irrelevant for the rest of the analysis

and hence do not influence the scaling results. The similarity between the exact high-

density scaling analysis and the Gaussian approximation is also confirmed by the fact
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that both theories predict the same scaling result for the nematic osmotic pressure,

namely bβΠ = 3c
(N)
0 .

For the sake of completeness, let us now briefly outline the basic results of the high-

cutoff scaling analysis. For a comprehensive treatment of this subject the reader is

referred to Ref. [107]. For a Schulz parent, we may use Eq. (6.33) in Eq. (6.40) to

obtain

p(N)(l) = KN l
−4
maxl

z exp [εl −W(l/lmax)] , (6.42)

where ε = 2c
(0)
1 − (z + 1) and z = σ−2 − 1. For very large l the exponent exp[εl]

will be the dominating contribution. At σ > σt, the nematic shadow is supposed to

be dominated by the longest rods and the distribution p(N)(l) should therefore be an

increasing function of length. This requires ε to be positive and yields the condition

c
(0)
0 > 1

2
(z + 1). Since the concentration of the cloud phase appears to decrease with

increasing lmax this then implies that the isotropic cloud curve (and hence the nematic

shadow curve) has a finite lower bound for large cutoff lengths. The limiting solutions,

for which ε = 0, therefore read

c
(0)
0 =

1

2σ2
,

c
(N)
0 =

1

6σ2

(
1 +

1

2σ2

)
, (6.43)

using Eq. (6.29) and setting c
(0)
1 = c

(0)
0 for a Schulz parent (Sec. 6.3.4). These results are

plotted in Fig. 6.1(a). To be consistent, let us now look for a solution for the transition

polydispersity σt above which the nematic shadow phase for a Schulz distributed parent

is completely dominated by the longest rods. We start with the concentration of the

nematic shadow phase which is proportional to the integral over the normalized length

distribution, i.e c
(N)
0 ∝ ∫

p(N)(l)dl. From Eq. (6.42) we thus obtain

c
(N)
0 ∝ l−4

max

∫ lmax

0
lz exp [εl −W(l/lmax)] dl. (6.44)

For the sake of convenience we have set lmin equal to zero. Since the integrand is

dominated by the exponent exp[εl] for large l we may approximate the integral by

bringing all slowly varying contributions in front of the integral sign and evaluating

them at l = lmax, which gives

c
(N)
0 ∝l−4

max |lz exp[−W(l/lmax)]|l=lmax

∫ lmax

0
dl exp[εl]

c
(N)
0 ∝lz−3

max

exp[εlmax]

εlmax
. (6.45)

The next step is to recast the latter equation into a scaling relation for ε. Taking the

logarithm on both sides of Eq. (6.45) gives

ε ∝ (3 − z)
ln lmax

lmax
+

ln εlmax

lmax
+ O(l−1

max). (6.46)

From the known limits εlmax → ∞ and ε ↓ 0 for lmax → ∞ we can deduce that εlmax

must increase more slowly than linearly with lmax. Consequently, the second and third
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terms in Eq. (6.46) are both subleading contributions so that we retain up to leading

order

ε ∝ (3 − z)
ln lmax

lmax
, (6.47)

which shows that εlmax indeed increases logarithmically rather than linearly as we al-

ready anticipated. However, in order to make this result fully self-consistent it is also

required that z < 3 (and correspondingly σ > 0.5) since ε must be positive. This means

that σ = 0.5 is a lower bound for the cutoff-dependent regime in the limit lmax → ∞. In

other words, the transition from the low fractionation regime to the regime where the

nematic shadow is completely dominated by the longest rods occurs exactly at σt = 0.5

for Schulz parents with infinitely high cutoff lengths.

We now turn to the average length in the nematic shadow phase which is related

to the first moment density c
(N)
1 ∝ ∫

lp(N)(l)dl. Analogously to Eq. (6.45) it follows

that c
(N)
1 ∝ lz−2

max exp[εlmax]/εlmax and that the average length hence scales as 〈l〉 ≡
c
(N)
1 /c

(N)
0 ∝ lmax. Since the distribution in the nematic shadow phase is dominated by

exp[εl] we expect that only rods whose lengths are of the order O(1/ε) smaller than

lmax contribute to the average length. We can therefore write

〈l〉 = lmax

[
1 −O

(
1

εlmax

)]
, (6.48)

and from Eq. (6.47)

〈l〉 = lmax

[
1 −O

(
1

ln lmax

)]
. (6.49)

This result shows that the average length in the nematic shadow phase in principle

diverges for lmax → ∞ but the logarithmic correction causes the actual 〈l〉 to be signif-

icantly lower than lmax.

A similar treatment can be given for a log-normal parent distribution. However, the

analysis for the log-normal case is even more involved and we will only present the basic

results and refer to [107] for details. First, the concentration of the isotropic cloud phase

appears to have the following lmax-dependence

c
(0)
0 =

ln2 lmax

4 ln(1 + σ2)lmax
+ O

(
ln lmax

lmax

)
, (6.50)

which is crucially different from the Schulz case because the concentration of the cloud

and shadow phases now go to zero rather than approaching boundary values as in the

Schulz case. Second, the average length can be shown to behave as

〈l〉 = lmax

[
1 −O

(
1

ln2 lmax

)]
. (6.51)

Similar to the Schulz distribution, the average length scales as 〈l〉 ∝ lmax but the

correction term is now considerably smaller which implies that the fractionation effect

is much more pronounced for log-normal distributions at σ > σt, as we already noticed

by comparing Figs. 6.2(a) and 6.5.
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Appendix C: Local stability of the nematic phase

In this Appendix we show that the anomalous behaviour of the coexistence pressure

in Fig. 6.7(b) can be related to a local instability of the coexisting nematic phase. In

particular, we show that the local extrema in the pressure curve correspond to spinodal

points which indicate that the nematic phase becomes locally (and hence also globally)

unstable across the coexistence region.

In general, a system is locally stable with respect to infinitesimal density fluctuations

(c(l) → c(l) + δc(l)) if the following stability criterion is satisfied:

δ2f ≡
∫
dl

∫
dl′

δ2f

δc(l)δc(l′)
δc(l′)δc(l) > 0. (6.52)

If δ2f < 0 the free energy has negative curvature directions indicating local instability.

With the aid of Eq. (6.12), we see that δ2f vanishes if

∫
dl′
δβµ(l)

δc(l′)
δc(l′) = 0, (6.53)

which is the spinodal criterion generalized for polydisperse systems [114]. At a spinodal

point there is an incipient instability direction δc(l) along which the chemical potential

functional does not change.

Let us now focus on the evolution of the length distribution of the nematic phase

(in coexistence with an isotropic phase) across the coexistence region and denote this

distribution by c∗(l). The shape of c∗(l) depends uniquely on the nematic fraction γ,

so that the curves in Fig. 6.7 represent trajectories parametrized by γ. To verify the

local stability of the nematic phase for a parent with a given polydispersity we have

numerically probed small nematic density fluctuations (caused by a small increase ∆γ)

along the dilution trajectory and calculated the corresponding curvature δ2f ∗ from Eq.

(6.52). In order to obtain sufficiently small density variations with adequate precision

we enhanced the accuracy of the iteration schemes outlined in Appendix A by several

orders of magnitude. The results are shown in Fig. 6.10. Clearly, the nematic phase

does not remain locally stable throughout the coexistence region, as indicated by the

behaviour of δ2f ∗. Moreover, we see that the spinodal points (δ2f ∗ = 0), which confine

the region of instability, coincide with the stationary points in the pressure as a function

of log γ.

The relation between the spinodal points and the local extrema in the pressure can

easily be established explicitly. Consider an infinitesimal change of the coexistence

pressure δ(bβΠ)∗ corresponding to an infinitesimal displacement δc∗(l) on the trajectory

in Fig. 6.10. The pressure change can be written as

δ(bβΠ)∗ =
∫
dl′

δ(bβΠ)

δc(l′)

∣∣∣∣∣
c∗(l′)

δc∗(l′). (6.54)

We wish to express the pressure change in terms of the (change of the) chemical potential

functional. Using the Gibbs-Duhem relation which, generalized to polydisperse systems,
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Figure 6.10. Coexistence pressure and normalized free energy curvature
δ2f/∆γ of the nematic phase across the coexistence region plotted versus
the (logarithm of the) system volume occupied by the nematic phase for a
log-normal parent with lmin = 0.01, lmax = 10 and polydispersity σ = 0.32.

can be written in terms of functional derivatives

δ(bβΠ)

δc(l′)
=

∫
dlc(l)

δβµ(l)

δc(l′)
, (6.55)

the pressure change Eq. (6.54) along the trajectory becomes

δ(bβΠ)∗ =
∫
dlc∗(l)

∫
dl′

δβµ(l)

δc(l′)

∣∣∣∣∣
c∗(l′)

δc∗(l′). (6.56)

If the system is at a spinodal point (with δ∗c(l) the instability direction), Eq. (6.53)

holds and the pressure change must therefore vanish. Hence the local extrema in the co-

existing pressure (δ(bβΠ)∗ = 0) coincide with spinodal points indicating local instability

of the coexisting nematic phase with respect to a small density fluctuation δc∗(l) along

the trajectory in Fig. 6.10. Although we established the aforementioned relation (at

least numerically) only for a single dilution trajectory (viz. σ = 0.32) we assume that it

holds for any local extrema in the pressure as a function of γ. Moreover, we stress that

our attention is restricted to density fluctuations along the dilution trajectory. This

means that we can not exclude the possibility of other spinodal points being present

on the dilution trajectory which may have an “off-trajectory” instability direction (i.e.

other than δ∗c(l)). Resolving this issue however would require verification of infinitely

many possible density deviations at each point on the trajectory, which clearly is an

impossible task. We emphasize that our aim is not to obtain the exact spinodal (or

binodal) boundaries associated with the three-phase equilibria but to provide global

evidence of a demixing instability of the nematic phase.
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7
Isotropic-nematic phase behaviour of

length-polydisperse hard platelets
Abstract

We extend the binary model for thin and thick hard disks, described in Chapter
2, to a polydisperse one allowing for arbitrary polydispersity in thickness (i.e.
the length of a flat cylinder). Strong fractionation effects are observed, with
the thicker disks found preferentially in the isotropic phase. Due to this effect,
the system may undergo an I − N density inversion as observed explicitly in
experiment. We also encounter a divergence of the I − N coexistence region
for Schulz-distributed parents with polydispersities larger than 46 %. An impli-
cation of this phenomenon is that the system cannot become fully nematic at
high densities but will continue to split off a small fraction of a dilute isotropic
phase predominantly containing very thick species.

7.1. Introduction

Recently, a novel model system for polydisperse disks has been developed consisting

of sterically stabilized gibbsite platelets [11]. The particles are evidently polydisperse

since the platelets strongly differ in both diameter and thickness. The polydispersity

for each of the dimensions was estimated at 25 %. Quite unexpectedly, the phase

behaviour of these platelike particles appeared to be more significantly affected by

their polydispersity in thickness than by their polydispersity in diameter. While the

fractionation in diameter between the isotropic and nematic phases was found to be

rather weak [60,63], strong experimental evidence was found for a pronounced thickness

fractionation in these systems [60]. The latter effect has led to a surprising phenomenon:

the densities of the isotropic and nematic phases may invert upon concentrating a dilute

sample in a test tube, indicating that an isotropic bottom phase coexists with a nematic

upper phase [60]. This anomalous behaviour, referred to as the I−N density inversion,

can in principle be explained by the fractionation in thickness between the phases with

the thicker platelets accumulating in the isotropic phase. The fractionation effect thus

reduces the difference in mass densities between the coexisting phases. Consequently, an

inversion occurs when the fractionation effect is strong enough to overrule the difference

in thermodynamic number densities of the phases. In Chapter 2, we have verified the

possibility of a density inversion in simple binary mixtures of thin and thick hard

platelets with common diameter and showed that the inverted state is indeed found in

a broad range of plate compositions.

117
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In this Chapter, we extend our binary model (within the Onsager treatment) to a

polydisperse one in which we allow for a continuous distribution in thicknesses. As in

Chapter 2, we upgrade Onsager’s original second virial approximation quantitatively

by applying a rescaling of the second virial term according to Parsons’ theory [23]. This

approach allows us to incorporate higher virial terms into the free energy, albeit ap-

proximately, while requiring only specific knowledge of the two-body excluded volumes.

To keep our model analytically tractable, we use Gaussian trial ODFs. In Chapter 2 it

is shown that, with the Gaussian Ansatz, we may neglect the effect of the thickness on

the equilibrium orientations of the platelets implying that the orientations are solely

determined by their diameter, which is the same for all species. As a result, the distri-

bution of orientations in the nematic phase can be characterized by a single ODF which

holds for all species. This approach, referred to as the decoupling approximation, allows

us to analytically minimize the free energy with respect to the orientational degrees of

freedom and leads to an excess free energy obeying a simple moment structure, i.e. it

only depends on the first two moments of the thickness distribution [114]. Applying the

coexistence conditions for polydisperse systems then leads to a set of simple consistency

equations which we can solve without having to perform numerical integrations over

the length distributions.

7.2. Moment free energy

The theoretical description of the present system is largely analogous to the one given

in the previous Chapter. Therefore, we shall only present the relevant expressions and

refer the reader to Chapters 6 and 2 for details. Let us consider a system of hard disks

with common diameter D but polydisperse thickness –such that there is a continuous

distribution of lengths L– in a macroscopic volume V . We define, l = L/L0 as the

relative thickness with respect to some reference length L0.

The free energy of the system is given by Eq. (6.1) in terms of of the normalized

thickness distribution c(l) = bN(l)/V , with b = π2D3/16 the excluded volume of two

infinitely thin disks. Moreover, c0 =
∫
c(l)dl is the total dimensionless concentration of

platelets. While the orientational part of the free energy is the same as the one derived

in Sec 6.2 –again using Gaussian ODFs given by Eq. (6.4)– the excluded-volume part,

however, is essentially different from the previous one. This is related to the thickness

correction to the excluded volume of two platelike cylinders at mutual angle γ. Recall

that (Eq. (2.2))

vexcl(γ) =
π

2
D3 sin γ + (l + l′)L0D

2
{
π

4
+ E(sin γ) +

π

4
|cos γ|

}
+ O(L2

0D), (7.1)

involving the complete elliptic integral of the second kind E(k). Consequently, the

excluded volume integrals, defined as

ρ(l, l′) ≡ (2b)−1
∫ ∫

vexcl(γ)ψ(θ, l)ψ(θ′, l′)dΩdΩ′ (7.2)



7.2. Moment free energy 119

have more intricate appearances. For the nematic phase we have

ρnem(l, l′) =
4

π

∫ ∫
|sin γ|ψ(l, θ)ψ(l′, θ′)dΩdΩ′

+
2

π

L0

D
(l + l′)

∫ ∫ [
3 − 1

2
sin2 γ + |cos γ|

]
ψ(l, θ)ψ(l′, θ′)dΩdΩ′ + O[(L0/D)2].

(7.3)

Inserting the Gaussian ODFs and performing an asymptotic expansion for large α yields

up to leading order

ρnem(l, l′) ∼
√

8

π
(α−1(l) + α−1(l′)) +

8

π

L0

D
(l + l′)

[
1 + O(α−1(l), α−1(l′))

]
. (7.4)

Ignoring the O(α−1) term is crucial since it leads to α(l) being decoupled from the thick-

ness distribution, as explained in Chapter 2. A formal justification of this decoupling

approximation will be given below. For the isotropic phase we have

ρiso(l, l
′) = 1 +

L0

D
(l + l′)

(
1 +

3

π

)
+ O(L2

0/D
2), (7.5)

which diverges from Onsager’s original description –where ρiso ≡ 1– because of the

slightly different definition for ρ(l, l′) used here. Note that the expressions above are

straightforward generalizations of Eqs. (2.13) and (2.5) in Chapter 2. Putting these

results back into the free energy density Eq. (6.1) gives for the isotropic phase

fiso ≡ bβF

V
∼

∫
c(l)[ln c(l) − 1]dl + c20 +

(
2 +

6

π

)
L0

D
c0c1, (7.6)

where ck ≡ ∫
c(l)lkdl define the (ordinary) moment densities (in terms of the weight

function lk) [114].

Inserting the entropic contributions Eqs. (6.5) and (7.4) into the free energy and

performing a functional differentiation with respect to α(l) yields for the nematic phase

δf

δα(l)
∼ c(l)

α(l)
−

√
8

π

c(l)

α2(l)

∫
c(l′)

(
1

α(l)
+

1

α(l′)

)−1/2

dl′. (7.7)

Applying the stationarity condition δf/δα(l) = 0 gives after some rearrangements

α1/2(l) ∼
√

8

π

∫
c(l′)

[1 + α(l)/α(l′)]1/2
dl′. (7.8)

Obviously, a similar expression is obtained for α(l′). It is convenient to combine both

expressions using the ratio Q(l, l′) ≡ α(l)/α(l′) to obtain

Q1/2(l, l′) ∼
∫

c̃(l′′)

[1 +Q(l, l′′)]1/2
dl′′

/∫
c̃(l′′′)

[1 +Q(l′, l′′′)]1/2
dl′′′, (7.9)

which is an implicit equation for Q(l, l′). Note that Q only depends on the normalized

distributions c̃(l) ≡ c(l)/c0 and not on the overall concentration c0 of the nematic phase.
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One readily concludes that Q(l, l′) = Q(1, 1) = 1 is a solution of Eq. (7.9). Using this

in Eq. (7.8) the stationarity condition within the decoupling approximation becomes

α ∼


√

8

π

∫
c(l′)
21/2

dl′

2

,

α ∼4c20
π
, (7.10)

which is the same result as for the monodisperse system [5]. The physical interpretation

of the decoupling approximation is that the orientation of the platelets is solely deter-

mined by the diameter –which is identical for all particles– and not by their thickness.

Consequently, the orientational degrees of freedom are decoupled from the degrees of

freedom which determine the shape of the thickness distribution. Using these results

in Eq. (6.1) gives the following explicit expression for the free energy in the nematic

phase

fnem ∼
(
ln

4

π
+ 1

)
c0 +

∫
c(l)[ln c(l) − 1]dl + 2c0 ln c0 +

16

π

L0

D
c0c1. (7.11)

7.2.1. Parsons rescaling

Like in Chapter 2 we apply Parsons’ approach to correct for many-body correlations

(see also Sec. 1.3.3). For a monodisperse system the rescaled Parsons free energy

(denoted by P) reads

bβF ex
P

V
=

(1 − 3
4
φ)

(1 − φ)2
c20ρ, (7.12)

with ρ ≡ ρ(1, 1). Generalizing the above expression for a polydisperse system leads to

bβF ex
P

V
=

(1 − 3
4
φ)

(1 − φ)2

∫ ∫
c(l)c(l′)ρ(l, l′)dldl′

=f̃CS(φ)
bβF ex

O

V
, (7.13)

where bβF ex
O /V is the excess free energy in the second virial approach, given by the last

term in Eq. (6.1). Furthermore, φ is the total volume fraction of platelets, related to

the thickness distribution c(l) via

φ =
4

π

L0

D

∫
c(l)ldl =

4

π

L0

D
c1. (7.14)

Replacing the last term in Eq. (6.1) by Eq. (7.13) gives

fP
iso ∼

∫
c(l)[ln c(l) − 1]dl + f̃CS(φ)

[
c20 +

(
2 +

6

π

)
L0

D
c0c1

]
. (7.15)

The stationarity condition pertaining to the nematic state Eq. (7.10) becomes α ∼
(4/π)

[
c0f̃CS(φ)

]2
resulting in the Onsager-Parsons free energy for the nematic state

fP
nem ∼

(
ln

4

π
+ 1

)
c0 +

∫
c(l)[ln c(l)− 1]dl+2c0 ln

[
c0f̃CS(φ)

]
+ f̃CS(φ)

16

π

L0

D
c0c1. (7.16)
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Comparing both expressions above we see that the excess free energy of the isotropic

and nematic states obey simple moment structures since they depend on a finite number

of moments of the thickness density distribution c(l) [114]. In fact only the zeroth and

first moment densities are relevant∗. Owing to their simple structure, the analysis of the

isotropic-nematic coexistence equations will be considerably easier here than in Chapter

6, as we shall see later. Note that the present description stands in great contrast to the

one formulated in the previous Chapter, where the free energy could not be expressed

in closed form due to the analytically intractable self-consistency equation given by Eq.

(6.8).

7.3. Consistency equations

The chemical potentials of the isotropic and nematic states are given by the functional

derivative of the free energy density with respect to c(l). Within the second virial

approximation we obtain

βµiso(l) = ln c(l) + 2c0 +
(
2 +

6

π

)
L0

D
(c0l + c1),

βµnem(l) = ln c(l) + 2 ln c0 +
16

π

L0

D
(c0l + c1) +

(
ln

4

π
+ 3

)
. (7.17)

The osmotic pressure can be written in terms of the chemical potential and the free

energy via bβΠ ≡ −f + β
∫
dlc(l)µ(l) which yields

bβΠiso ∼ c0 + c20 +
(
2 +

6

π

)
L0

D
c0c1,

bβΠnem ∼ 3c0 +
16

π

L0

D
c0c1. (7.18)

Similar but more complicated expressions can be derived straightforwardly from the

Onsager-Parsons free energy, Eqs. (7.15) and (7.16). Imposing equality of chemical

potentials leads to the following equilibrium thickness distributions

c(a)(l) = W (l) exp[ξ(a)(l)], a = I,N, (7.19)

with arguments

ξ(I)(l) = −
(
2 +

6

π

)
L0

D
(c

(I)
0 l + c

(I)
1 ) − 2c

(I)
0 ,

ξ(N)(l) = −16

π

L0

D
(c

(N)
0 l + c

(N)
1 ) − 2c

(N)
0 ln c

(N)
0 −

(
ln

4

π
+ 3

)
. (7.20)

The function W (l) ≡ exp[βµ(l)] must be common to both phases. Exploiting conserva-

tion of matter c(0)(l) = γc(I)(l)+(1−γ)c(N)(l) –with γ denoting the fraction of isotropic

phase– we may reexpress W (l) in terms of a fixed parent distribution c(0)(l) describing

the thickness distribution in the homogeneous system, i.e.

c(a)(l) = c(0)(l)
exp[ξ(a)(l)]

γ exp[ξ(I)(l)] + (1 − γ) exp[ξ(N)(l)]
, a = I,N. (7.21)

∗It can be shown that the formal (i.e. exact) polydisperse Onsager free energy depends on an infinite
set of moment densities with complicated weight functions [107].
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The moment densities (c0 and c1) involved in Eqs. (7.18) and (7.20) are obtained by

integrations over these distributions

c
(a)
0 =

∫
c(a)(l)dl and c

(a)
1 =

∫
lc(a)(l)dl, a = I,N. (7.22)

To specify the parent distribution c(0)(l) we assume that the thicknesses are distributed

along a Schulz distribution

c(0)(l) = c
(0)
0

(1 + z)1+z

Γ(1 + z)
lz exp[−(z + 1)l], (7.23)

which is normalized according to
∫
c(0)(l)dl = c

(0)
0 , with c

(0)
0 the overall particle con-

centration in the parent phase and has an average thickness m
(0)
1 ≡ c

(0)
1 /c

(0)
0 = 1. The

latter implies that we may identify the ratio D/L0 involving the reference length as the

mean aspect ratio of the platelets. The polydispersity (defined as the relative standard

deviation σ) is related to the parameter z via

σ ≡
(

[m1]
−2

∫
l2
c(0)(l)

c0
dl − 1

)1/2

= (1 + z)−1/2. (7.24)

We are now ready to investigate the coexistence between the isotropic and nematic

phase in our polydisperse model. Before discussing the full coexistence problem, we

will first derive simple expressions for the cloud and shadow curves which locate the

onset of phase separation. For the isotropic cloud point we may set γ = 1 in Eq. (7.21)

so that

c(I)(l) = c(0)(l),

c(N)(l) = c(0)(l) exp[ξ(N)(l) − ξ(I)(l)]. (7.25)

Substituting this into Eq. (7.22) gives c
(I)
0 = c

(I)
1 = c

(0)
0 showing that the isotropic phase

is identified as the parent. The moment densities for the associated nematic shadow

are then given by

c
(N)
0 =c

(0)
0

(1 + z)1+z

Γ(1 + z)
exp [∆ξ′′]

∫
lz exp [(∆ξ′ − (z + 1)) l] dl,

c
(N)
1 =c

(0)
0

(1 + z)1+z

Γ(1 + z)
exp [∆ξ′′]

∫
lz+1 exp [(∆ξ′ − (z + 1)) l] dl, (7.26)

where we have rewritten ξ(N)(l) − ξ(I)(l) by splitting it into parts, according to

ξ(N)(l) − ξ(I)(l) ≡ ∆ξ′l + ∆ξ′′. (7.27)

Note that ∆ξ′and ∆ξ′′ are both independent of l. The integrals can be worked out

straightforwardly to obtain the following coupled set of consistency equations

c
(N)
0 =c

(0)
0 exp [∆ξ′′]

(
z + 1

(z + 1) − ∆ξ′

)z+1

,

c
(N)
1 =c

(0)
0 exp [∆ξ′′]

(
z + 1

(z + 1) − ∆ξ′

)z+2

. (7.28)
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Figure 7.1. Isotropic and nematic cloud curves (solid) and the corresponding
shadow curves (dotted) showing the concentrations of the coexisting phases c0

as a function of the parent polydispersity σ. At σ = 0, the isotropic cloud
point meets the shadow of the nematic cloud point and vice versa, as it should.

The same analysis can be done for the nematic cloud and shadow curves by setting

γ = 0 so that the nematic phase is identified as the parent phase, i.e. c
(N)
0 = c

(N)
1 = c

(0)
0 .

The densities of the shadow phase (c
(I)
0 and c

(I)
1 ) are given by similar equations as Eq.

(7.28). To track down the cloud and shadow curves we must solve the coupled set under

the condition of equal osmotic pressures Πiso = Πnem.

In the coexistence region, which is bounded by the isotropic and nematic cloud points,

both phases coexist in finite amounts, implying 0 < γ < 1. From an experimental stand-

point, the results must be restricted to lie on a physical dilution-line along which the

shape of the parent distribution, c(0)(l)/c
(0)
0 , is kept fixed while the overall parent con-

centration c
(0)
0 is subject to variation. To calculate the evolution of the densities inside

the coexistence region we have to solve the four integral equations Eq. (7.22) along with

the condition of equal osmotic pressures. For a given polydispersity of the parent, there

appear six variables in these equations –the five density variables c
(I)
0 , c

(I)
1 , c

(N)
0 , c

(N)
1 , c

(0)
0

plus γ– implying that one variable can be freely chosen. Numerically, rather than

changing the overall parent density c
(0)
0 , it has proven to be more convenient to con-

struct a scheme in which γ is varied between 0 and 1 and the corresponding densities

are calculated self-consistently [98].

7.4. Cloud and shadow curves

The results for the cloud and shadow curves are shown in Figs. 7.1 to 7.3. These

curves are calculated from the Onsager-Parsons free energy, Eqs. (7.15) and (7.16). In

all calculations we used D/L0 = 7.7, which value is in close agreement with the average

aspect ratio of the gibbsite platelets used in experiment [60]. From Fig. 7.1 we see

that the coexistence region broadens significantly when the polydispersity of the parent
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Figure 7.2. Average platelet thickness m1 in the isotropic and nematic
shadow phases as a function of the parent polydispersity σ. Note that both
cloud curves are identical to the parent and therefore have m1 = m

(0)
1 = 1.

Figure 7.3. Isotropic and nematic cloud curves (solid) and the correspond-
ing shadow curves (dotted) in terms of the core volume fractions φcore of the
coexisting phases as a function of the parent polydispersity σ. The horizontal
lines denote the points where the cloud and shadow phases have equal mass
densities. Above the “threshold” value σ = 0.267 (indicated by the lower hori-
zontal line) the inverted state will be found throughout the coexistence region.
In the small interval between the two horizontal lines (0.267 < σ < 0.284) a
density inversion occurs inside the coexistence region.

becomes higher, in particular, at σ > 0.4. A notable feature is the divergence of the two-

phase region at σ > 0.46 indicating that the concentration of the nematic cloud shifts

to infinity while the concentration of the corresponding shadow rapidly moves to zero.

This divergent behaviour is not observed for the isotropic cloud and shadow phases.
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Although the concentration of the isotropic shadow increases rapidly with increasing

polydispersity, it remains finite even at σ � 0.5. In Fig. 7.2 we show the average

thickness of the platelets in the isotropic and nematic phases. A strong fractionation

effect is observed, with the thicker platelets going preferentially into the isotropic phase.

At high polydispersities (σ > 0.4) the effect becomes very pronounced since the average

thickness in the isotropic phase may rise up to twice that in the nematic phase. Again

we observe a divergence in the isotropic shadow phase at σ > 0.46 indicating that the

average plate thickness rapidly shifts to infinity.

To verify the possibility of a density inversion, we have to calculate the mass density of

the phases. In Chapter 2, rather than calculating the mass density itself, we considered

the core volume fraction φcore of the platelets to be a more convenient density variable.

It is easy to show that φcore is linearly proportional to the mass density of the gibbsite

platelets used in experiment [60]. The core volume fraction can be calculated from

φcore =
π

4

N

V
D2

∫
c(l)(L− 2δ)dl

=
4

π

L0

D
c1 − 8

π
c0
δ

D
, (7.29)

where δ/D is the thickness of the stabilizing polymer layer grafted onto the gibbsite

platelets relative to the average diameter of the platelets. From the experimental results

we estimate δ/D = 4/180 [60]. The resulting plot is shown in Fig. 7.3. We indeed

observe an inverted state (i.e. the isotropic phase being more dense than the nematic

phase) at polydispersities roughly above 30 %. This implies that, at these polydisper-

sities, the fractionation effect is strong enough to overcome the difference in number

densities between the coexisting phases. In particular, we can identify a small interval

0.267 < σ < 0.284 where a density inversion takes places inside the two-phase region,

in accordance with the experimental observations†. In these cases, the normal state will

be found at the beginning of the coexistence region (close to the isotropic cloud point)

but an inverted state will be found near the nematic cloud point. Clearly, there must

be a point 0 < γ < 1 somewhere in the two-phase region where a density inversion

takes place. To find this point, we have to resort to the full coexistence problem.

7.5. Inside the coexistence region

In Fig. 7.4 we show the evolution of the densities and average thicknesses across the

coexistence region for a fixed polydispersity of the parent phase. As expected, both

the densities and the averages m1 vary smoothly between the isotropic and nematic

cloud points which delimit the two-phase coexistence region. We see that the average

†The results in this Chapter only hold for Schulz-distributed parents within the Onsager-Parsons
formulation. Different results might be obtained when adopting a different quantitative upgrade for
the original second virial theory or a different parent distribution. However, our objective in this
Chapter is to present a general framework allowing for arbitrary adaptations to be made with respect
to these matters. A discussion of the effect of Parsons’ approach on the isotropic-nematic transition
densities can be found in Sec 2.5.
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Figure 7.4. (a) Average thickness m1 in the coexisting phases as a function
of the concentration of the parent phase c

(0)
0 for σ = 0.27. The isotropic and

nematic cloud points, which delimit the coexistence region, are located at the
points where the curves meet the dilution line m

(0)
1 = 1 (dotted line). (b)

Evolution of the concentrations of the coexisting phases across the two-phase
region for the same polydispersity. The dotted line represents the dilution line
c0 = c

(0)
0 .

thickness is always higher in the isotropic phase than in the nematic phase, as we expect

from Fig. 7.2. A more detailed picture of the fractionation effect can be found in Fig.

7.5 where we have depicted the thickness distributions in the coexisting phases.

In Fig. 7.6 we have plotted the variation of the core volume fractions for a parent with

σ = 0.27 as the coexistence region is crossed. According to Fig. 7.3, this parent should

undergo a density inversion somewhere inside the coexistence region. Fig. 7.6 shows

that there is indeed an inversion, albeit very close to the nematic cloud point in this

case. The inversion occurs at a parent volume fraction φ = 0.461 which corresponds

to γ = 0.073. So the inversion takes place when the volume occupied by the isotropic

phase has decreased to about 7 % of the total system volume. Finally, in Fig. 7.7,

we show the polydispersities of the daughter phases inside the coexistence region for

the same parent as in Fig. 7.6. At coexistence, both daughter phases have a lower

polydispersity than the parent phase due to the fractionation effect. However, the

deviations are very small (∆σ < 0.006) for this particular parent polydispersity. Note

that the polydispersities of the daughter phases reach their minimum around γ = 0.5

i.e. when the isotropic and nematic phases coexist in approximately equal amounts.

7.6. Summary and discussion

We have studied I −N phase equilibria in the Onsager-Parsons model for hard disks

allowing for polydispersity in thickness. The onset of phase separation is analyzed

by calculating the cloud and shadow curves –which delimit the two-phase coexistence

region– as a function of the polydispersity of the parent system. A significant broadening

of the coexistence region is observed for moderately high polydispersities (σ < 0.3). We
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Figure 7.5. Normalized thickness distribution c̃(l) ≡ c(l)/c(0)
0 in the isotropic

and nematic phases at polydispersity σ = 0.27 for various γ. Upper dashed
curve (bold): distribution in the nematic shadow at the isotropic cloud point
(γ = 1). Lower dotted curve: distribution in the isotropic shadow at the ne-
matic cloud point (γ = 0). The corresponding distributions in the cloud phases
are given by the parental one (bold solid curve). The intermediate curves repre-
sent, from top to bottom, the distributions of the coexisting isotropic (dotted)
and nematic (dashed) phases for γ = 0.75, 0.5 and γ = 0.25, respectively. The
inset shows the ratio of the thickness distributions to that of the parent.
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Figure 7.6. Ratio of the core volume fraction of the isotropic and nematic
phases relative to the parental one for σ = 0.27 plotted versus the volume
fraction of platelets φ in the parent phase. The dotted line represents the
dilution line (φcore/φ

(0)
core = 1). The intersection at φ = 0.461 indicates the

onset of a density inversion.

also see a strong fractionation effect with the thick species preferentially occupying the

isotropic phase. Although the biphasic widening and fractionation effect are generic

properties observed in many polydisperse systems [5, 104], it is rather surprising that
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Figure 7.7. Evolution of the polydispersities σd of the coexisting isotropic
and nematic daughter phases across the coexistence region for a parent with
σ = 0.27 plotted versus the fraction γ of the system volume occupied by the
isotropic phase. The solid horizontal line indicates the “threshold” polydis-
persity σ = 0.267 (see also Fig. 7.3). A parent phase with a polydispersity
below this value will not exhibit a density inversion during phase separation.

these effects occur so strongly in mixtures of disks which only differ in thickness. Eq.

(7.1) shows that the plate thickness only marginally contributes to the excluded volume,

provided that the inverse aspect ratios L0/D are small parameters. Hence, one might

have anticipated that the effect of thickness on the phase behaviour of disks is unlikely

to be significant.

Even more striking is the infinite broadening of the coexistence region at polydisper-

sities σ > 0.46 due to a divergence of the nematic cloud and shadow curves (see Figs.

7.1 and 7.2). This phenomenon can be interpreted as follows. When a dilute parent

phase with σ > 0.46 is concentrated it starts to phase separate at the isotropic cloud

point, initially splitting off an infinitesimal amount of nematic phase (the shadow).

The fraction of nematic phase increases upon further concentrating the parent sample.

However, as we see from Fig. 7.1, the parent will never reach the associated nematic

cloud point. Regardless of the concentration of the parent phase, the system always

splits off a tiny fraction of an (increasingly dilute) isotropic phase which, according to

Fig. 7.2, will accommodate increasingly thicker platelets. This means that the sys-

tem never becomes fully nematic, irrespective of the concentration of the parent. The

question now arises whether this is a realistic picture. It may be possible that the

anomalous behaviour stems from the fact that the thickness distribution adopted here

is unbounded, meaning that there is a nonzero probability of finding species with very

large (potentially infinite) thicknesses for which the inverse aspect ratio is no longer a

small parameter. Therefore, different results might be obtained by introducing a finite

cutoff value lmax � 1 which might be more realistic from an experimental point of view.
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In Chapter 2 we made a theoretical investigation of the experimentally observed

I−N density inversion by considering a simple binary mixture of platelets with differing

thickness. Although the density inversion could readily be accounted for within this

model, we were not able to explain another peculiar observation encountered in the

experimental work [60]. As part of their experimental survey, Van der Kooij et al.

performed an additional fractionation experiment in which a suspension was brought

to a volume fraction (φ = 0.29) close to the nematic cloud point (φ = 0.30) and left

to phase separate. The nematic upper phase was separated from the isotropic bottom

phase and subsequently diluted. A remarkable observation was that this system did

not exhibit a density inversion at any point in the isotropic-nematic coexistence region.

This striking observation could however not be explained, for fundamental reasons, on

the basis of the binary model for these systems, as discussed in Chapter 2.

In the present study we have extended our binary model to a polydisperse one, mean-

ing that we allow for a continuous distribution in thickness instead of just two different

species. We may now consider the polydispersities of the coexisting isotropic and ne-

matic daughter phases for a given parent distribution. In Fig. 7.7 these results are

plotted for a parent with σ = 0.27. As noted in the previous paragraph, the daughter

phases have σ < 0.27 which is a direct consequence of the fractionation in thickness

during phase separation. In this figure we also indicated the “threshold” polydisper-

sity (see Fig. 7.3) below which the fractionation effect is too weak to accomplish an

inversion of densities. So any daughter phase with a polydispersity below the threshold

will probably not show an I −N density inversion if this phase were to be isolated and

subsequently diluted or concentrated (as the new parent phase). Despite the fact that

the distributions in the daughter phases no longer exactly obey the Schulz form, the

deviations will generally be very small close to the isotropic and nematic cloud points.

Since the polydispersity of the parent may be chosen arbitrarily, we can make a rea-

sonable account for the experimental observations by picking a parent polydispersity

which is just above the “threshold” as indicated in Fig. 7.7. In that case, the poly-

dispersities of the daughter phases will cross the threshold close to the nematic cloud

point (i.e. when the system is almost fully nematic). Subsequent isolation and dilution

of the near-Schulz nematic parent would then give a phase separation into an isotropic

phase which is less dense than the nematic phase and hence the density inversion has

disappeared.

An issue which is not addressed in this Chapter is the possibility of a demixing

transition in the nematic phase. For binary mixtures of thin and thick platelets a

stable demixing transition of the nematic phase could readily be established in Sec.

2.4. It was shown there that the transition occurs for any thickness ratio provided that

the osmotic pressure is sufficiently high. In the present study, we have not found any

indication for a such demixing instability, at least for the Schulz parents considered

here.
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Smectic versus columnar order in

length-polydisperse mixtures of parallel hard

rods
Abstract

By means of a bifurcation analysis within the Onsager-Parsons formalism we
study the stability of the nematic phase with respect to the spatially inhomoge-
neous smectic and columnar liquid crystal states in systems of perfectly aligned
hard rodlike cylinders with arbitrary length polydispersity. It appears that poly-
dispersity suppresses the smectic phase in favour of columnar ordering. At high
polydispersities, the nematic to smectic transition, as found in monodisperse
systems, is preempted by a transition from the nematic to a columnar state.
Our predictions are in qualitative accordance with recent simulation results for
freely rotating polydisperse rods.

8.1. Introduction

In the previous two Chapters we have extensively studied the implications of (length)

polydispersity on the isotropic-nematic transition of cylindrical rods and plates. How-

ever, the possible stability of inhomogeneous liquid crystals in these mixtures was not

considered there. Since the pioneering simulation studies of Frenkel et al. [16, 18] it

is known that a nematic phase of hard anisometric particles becomes unstable with

respect to a smectic (in case of rods) or a columnar phase (platelets) if the packing

fraction exceeds a certain value. Theoretically, the stability of the smectic phase in sys-

tems of hard spherocylinders (i.e. rods) has been studied extensively within a number

of density functional approximations [100,115–120] while in some cases the stability of

a crystalline solid state at high densities was also included in the framework [121–123].

For parallel cylinders, Mulder [115] showed that the simplest density functional i.e.

a second virial approximation already suffices to establish an instability of a nematic

phase against a smectic density modulation. The alternative possibility, a transition

from a nematic to a columnar phase was shown to be metastable with respect to the

nematic-smectic transition, at least for the parallel cylinders considered there.

Similar calculations for freely rotating hard spherocylinders within more elaborate

DFT frameworks revealed the same behaviour indicating that the smectic order is not

destroyed by the rotations of the rods [116, 117]. However, the nature of the nematic-

smectic transition –in terms of a continuous or first order phase transition– did not

131
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follow unambiguously from these theories. Later, computer simulations for freely rotat-

ing short [42,46] and infinitely thin hard rods [124] revealed that the transition from a

nematic to a smectic phase is in fact first order over the entire range of aspect ratios.

As to mixtures of rods, efforts have mainly been focussed on binary mixtures of

long and short parallel rods [67, 125, 126] or length-polydisperse mixtures of parallel

rods treated within a second-virial perturbation theory, valid for infinitely narrow size

distributions [100]. It is our aim in this Chapter to qualitatively assess the effect of

polydispersity on the nematic to smectic/columnar bifurcations by considering systems

of parallel cylinders with arbitrarily broad length distributions described within a simple

Onsager-Parsons density functional. As such, the model presented in this Chapter can

be regarded as an extension of Sluckin’s approach [100] in which both the effects of multi-

particle correlations and (full) polydispersity are taken into account in a qualitative

manner. The results from our approximate description will be compared with recent

simulations by Bates and Frenkel [127] and elaborate DFT calculations by Bohle et

al. [128], both aimed at polydisperse mixtures of freely rotating thin rods.

8.2. Bifurcation analysis

The general background of the bifurcation analysis to probe possible instabilities

of the homogeneous nematic state towards inhomogeneous phases has been outlined

in Sec. 1.3.4. The description there was aimed at monodisperse systems of freely

rotating anisometric particles. In this Chapter we shall however focus on cylinders

that are perfectly aligned along a nematic director n̂ so that the ODF formally reads

f(Ω) = δ(Ω − n̂). Moreover the lengths of the cylinders are assumed to be distributed

continuously according to some fixed normalized length distribution x(l), with l = L/L0

the relative length of the cylinder with respect to the average length L0. For these

systems, we consider the following smectic density modulations∗

ρ(r; l) = ρx(l) + δρ(q; l) cos(q · r)
= ρx(l) + δρ(q)x(1)(l) cos(q · r), (8.1)

where x(1)(l) is a “new” length distribution reflecting the possibility that infinitesi-

mal fluctuations in the length distribution, i.e. small fractionation effects, may also

contribute to the loss of nematic instability. The natural thermodynamic variable to

consider in this respect is the (intensive) grand canonical potential ω = Ω/V (per unit

volume). Generalized to polydisperse system the grand potential is given by

βω[ρ(r; l);µ(l)] = βfint[ρ(r; l)] − ρ
∫
βµ(l)x(l)dl, (8.2)

where the (intensive) Helmholtz free energy density fint = F/V can be expressed ana-

logously to Eq. (1.43) in terms of the generalized density ρ(r; l). Note that Eq. (8.2)

formally implies that the system must be kept in osmotic equilibrium with a reservoir

at fixed values µ(l) of the chemical potentials.

∗Similar to Eq. (1.45), the modulations for the columnar state are represented by a superposition of
three cosines reflecting the (two-dimensional) hexagonal order.
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Similar to the description in Sec. 1.3.4, the condition for marginal stability of the

homogeneous nematic phase is obtained by inserting the perturbations Eq. (8.1) into

the grand potential and performing an expansion up to second order in the amplitude

δ(q). The bifurcation condition (βδ2ω = 0) then leads to the following self-consistency

equation for the length distribution x(1)(l):

x(1)(l) = ρx(l)
∫
dl′x(1)(l

′)ĉ(q; l, l′), (8.3)

analogous to Eq. (1.49). A close inspection of the latter reveals that the condition in

fact represents an eigenvalue problem in terms of the eigenfunctions x(1)(l).

If we assume that the length distribution does not change at the transition we may

substitute x(1)(l) = x(l) which gives the divergence criterium for the structure function,

similar to Eq. (1.48):

S(q; ρ) =
[
1 − ρ

∫∫
dldl′x(l)x(l′)ĉ(q; l, l′)

]−1

. (8.4)

Contrary to systems of freely rotating particles, the cosine-transformed correlation func-

tion ĉ(q; l, l′) for parallel cylinders, represented within the rescaled second virial approx-

imation by

ĉ(q; l, l′) = −f̃CS(φ)
∫
vexcl(l,l′)

d∆r cos(q · ∆r), (8.5)

can easily be calculated in closed form for an aligned fluid since the excluded volume

body is a perfect cylinder. The result for two parallel cylinders with lengths lL0, l
′L0

and diameter D explicitly reads [115]:

ĉ(Q‖, Q⊥; l, l′) = −πL0D
2f̃CS(φ)j0

(
Q‖

l + l′

2

)
J1(Q⊥)

1
2
Q⊥

, (8.6)

where jn(x) = sin x/x denotes a spherical Bessel function and Jn(x) a standard one

[129]. Moreover, Q‖ = 2πL0/λSmA and Q⊥ = 2πD/λC represent the dimensionless

wave numbers for the smectic and columnar density waves, directed parallel and per-

pendicular to the symmetry axes of the cylinders, respectively. Following Chapter 6 we

will use a truncated log-normal form (Eq. (6.35)) with appropriate lower and higher

cutoff lengths, lmin and lmax, to specify the distribution of particle lengths x(l) in the

nematic state.

8.3. Results

In Fig. 8.1. we have collected the results of the bifurcation analysis for a log-

normal distribution with appropriate cutoff lengths. The bifurcation from a nematic

to smectic or columnar phase at a given polydispersity is given by the lowest density

(and corresponding wave-vectors) which gives rise to physical solutions of Eq. (8.4) and

Eq. (8.3). Examples of the eigenfunctions x(l) pertaining to the latter condition are

depicted in Fig. 8.2. For the sake of clarity we have plotted its relative contribution

compared to the normalized length distribution x(l).
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Figure 8.1. (a) Bifurcation diagram in terms of volume fractions φ∗ for
parallel hard cylinders with a log-normal length distribution (cutoff lengths,
lmin = 0.1 and lmax = 50) obtained from the Onsager-Parsons free energy. Dot-
ted curves represent solutions of Eq. (8.4) whereas solid ones are the results of
the exact bifurcation equation given by Eq. (8.3). The dashed curve is analo-
gous to Sluckin’s [100] result within the pure second-virial approximation using
the condition Eq. (8.4). In that case the nematic-columnar bifurcation is lo-
cated beyond the volume fraction of closest packing φcp = π/2

√
3 ≈ 0.9069. (b)

Smectic layer spacing λ∗
SmA relative to the average rod length L0 corresponding

to the nematic-smectic bifurcation curves in (a). The two-dimensional hexag-
onal spacing at the N-C bifurcation is insensitive to σ (for both conditions)
and remains at a constant value λ∗

C/D = 1.223.

First of all, from Fig. 8.1(a) we note the drastic effect of Parsons’ rescaling which

brings about a major downward shift of the bifurcation densities, leading to more

realistic results. In particular, for σ = 0 we observe that the metastable nematic-

columnar bifurcation which occurs beyond the volume fraction of closest packing within

the second virial approximation, is now located in the physical regime. At higher

polydispersities the bifurcation to the smectic phase is postponed to higher φ whereas

the transition to the columnar state is completely unaffected according to the structure

factor condition Eq. (8.4) or only marginally stabilized as predicted from the self-

consistent method Eq. (8.3). This is a manifestation of the fact that the cylinder

length and diameter represent completely independent length scales. Note that a similar

indifference would be observed for the nematic-smectic bifurcation in case of diameter

polydispersity.

The fact that Eq. (8.3) leads to systematically lower bifurcation densities compared

to Eq. (8.4) is due to the additional composition fluctuations which are not allowed by

the socalled constrained eutectic condition of Eq. (8.4) [130]. A more surprising discrep-

ancy however is the trend of the smectic layer spacing in Fig. 8.1(b). Although both

conditions predict an initial grow of the layer spacing upon increasing σ, the structure

factor condition yields an unexpected and rather unphysical decrease of the spacing at
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Figure 8.2. Relative eigenfunctions x(1)(l)−x(l) corresponding to the N-SmA
bifurcation for the same system as in Fig. 8.1. at two different parent poly-
dispersities.

higher polydispersities. This behaviour does not follow from the self-consistent con-

dition which predicts an increase up to some terminal polydispersity at σ = 0.623.

Beyond this point the wave-vector which minimizes the bifurcation density has jumped

to zero, which formally corresponds to a macroscopic density modulation no longer

reflecting a genuine smectic symmetry. We thus expect the smectic order to be en-

tirely destroyed above the terminal value. However, we also see that the smectic phase

becomes metastable with respect to a N-C transition considerably below the terminal

value; at σ > 0.434 the nematic-smectic bifurcation is pre-empted by a transition from

the nematic to a columnar state. This mechanism is essentially different from the one

reported by Sluckin. Based on analytical results (which are reproduced by the dashed

curve in Fig. 8.1(a)) it was argued that the destruction of the smectic phase occurs at

the terminal polydispersity where φ∗ reaches its close packing value, i.e. at σ � 0.3.

The length distributions depicted in Fig. 8.2 suggest that there must be a strong

coupling between fluctuations in the spatial density and the length distribution. The

system shows a clear propensity to expel particles with below-average lengths from

the emerging smectic phases whereas rods of average (or slightly higher than average)

length are favoured. The coupling between composition and density fluctuations is

probably responsible for the unphysical results obtained from the constrained eutectic

bifurcation condition Eq. (8.4).

8.4. Discussion and outlook

Results from Monte Carlo simulations by Bates and Frenkel [127] and DFT calcula-

tions by Bohle et al. [128] for freely rotating polydisperse rods reveal a scenario which is

similar to ours; there is a crossover from a smectic to a columnar state upon increasing

length polydispersity. Quantitatively, these crossovers were predicted around σ � 0.25
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(DFT) and σ � 0.18 (simulations) which is about half the value found in this study.

A comparable phenomenon was found in binary mixtures of short and long parallel

hard cylinders at certain intermediate mole fractions [67]. These results imply that

the columnar phase becomes a thermodynamically stable high-density phase in highly

polydisperse systems of rods.

The key issue which prevents our description from being quantitatively reliable is the

neglect of orientations. Although one might argue that the rods are almost perfectly

aligned at high packing fractions, it turns out that the orientational free energy remains

an essential ingredient in the regime where smectic or columnar phases appear. We can

illustrate this notion by comparing the nematic-smectic bifurcation for infinitely thin

parallel rods, shown in Fig. 8.1(a) at σ = 0, to the one obtained for freely rotating

rods. The latter is calculated within Onsager-Parsons theory using the self-consistent

condition, given by Eq. (1.49). The required transformed Mayer function, Eq. (1.50),

for a freely rotating infinitely thin rod is obtained from an explicit analysis for sphero-

cylinders by Van Roij [58]. This yields φ∗ = 0.4037 with corresponding dimensionless

smectic spacing λ∗/L = 1.293 in close agreement with the simulation result φ∗ = 0.418

from Bolhuis and Frenkel [42]. Comparing this with the present results φ∗ = 0.338 and

λ∗/L = 1.398 we conclude that introducing orientational freedom causes a significant

upward shift of the bifurcation density while simultaneously giving a smaller value for

the layer spacing. These findings were in fact already reported by Poniewierski [120]

using a similar asymptotic analysis. Moreover, allowing for orientational degrees of

freedom leads to a first-order nematic-smectic transition –compared to a continuous

transition for the aligned fluid†– irrespective of the aspect ratio [124]. In this case, the

bifurcation analysis is no longer an appropriate tool to locate the onset of the phase

transition since the amplitudes of the smectic density waves then suddenly jump to

finite values (rather than raising continuously from zero) at the onset of the transition.

Another deficiency of the parallel-cylinder model is that it does not discriminate

between a slender rodlike and a thin platelike cylinder, as the results are completely

independent of the aspect ratio. Formally, the results presented here should therefore

also apply to thin parallel disks. However, the model does not give a realistic description

of plate systems since these do not exhibit a nematic-smectic transition but a first order

nematic-columnar one at all aspect ratios [18, 131].

Extending the present approach to polydisperse mixtures of freely rotating rods poses

serious technical difficulties. Although progress has been made for the nematic-smectic

bifurcation for polydisperse thin rods by performing an asymptotic expansion of the

orientationally averaged correlation function (i.e. the transformed excluded-volume

body) using Gaussian trial ODFs [59], a similar expansion for the columnar symmetry

however could not be performed analytically.

†The effect of polydispersity on the nature of the nematic-smectic and nematic-columnar transitions
could in principle be verified by considering higher-order bifurcation equations emerging from a Landau-
type expansion of the free energy [115]. We shall leave this issue untouched in this Chapter.
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As to platelets the situation is even more cumbersome, as already noted in the Chap-

ter 1. The reason for this is that the excluded-volume body of a thin disk is an intricate

and hence difficult to parametrize geometrical object, in particular, when the mutual

angles between two platelets is comparable to the internal angle L/D and edge-edge

correlations start to play a role. These near-parallel configurations must be described

properly since they are largely responsible for driving a nematic phase into a columnar

structure.
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9
Sedimentation and multi-phase equilibria in

mixtures of platelets and ideal polymer
Abstract

The role of gravity in the phase behaviour of mixtures of hard colloidal plates
without and with non-adsorbing ideal polymer is explored. By analyzing the
(macroscopic) osmotic equilibrium conditions we show that sedimentation of
the colloidal platelets is significant on a height-range of even a centimeter.
Gravity enables the system to explore a large density range within the height of
a test tube which may give rise to the simultaneous presence of multiple phases.
As to plate-polymer mixtures it is shown that sedimentation may lead to a
coexistence of four phases including an isotropic gas and liquid phase, nematic
and columnar phase. The phenomenon has been observed experimentally in
systems of colloidal gibbsite platelets mixed with PDMS-polymer.

9.1. Introduction

It is well known that adding non-adsorbing polymer to a colloidal dispersion induces

an attractive depletion potential of mean force between the colloidal particles. For col-

loidal spheres, the attractive potential has been shown to give rise to a phase separation

in a colloid-poor “gas” and colloid-rich “liquid” or “solid” phase at sufficiently high con-

centrations of the colloid and the polymer [132–136]. Compared to colloidal spheres the

behaviour of dispersions of rod- and platelike colloids mixed with polymer is richer due

to their possibility to form liquid crystal phases, i.e. nematic (N), smectic (SmA) and

columnar (C). Recent experiments on mixtures of colloidal gibbsite platelets and non-

adsorbing polymer have uncovered the phase behaviour of plate-polymer mixtures [75].

A manifestation of the rich phase behaviour of these mixtures is the observation of a

four-phase equilibrium involving both isotropic gas and liquid phases along with ne-

matic and columnar states. The appearance of this multi-phase coexistence seems to

conflict with the phase rule of Gibbs which states that the number of coexisting phases

is limited to three for an athermal binary mixture. One of the possible explanations

conjectured by the authors [75] is that the observation might be due to the polydisper-

sity in particle size since the presence of many components (i.e. platelets with different

diameters and thicknesses) in principle allows for a coexistence of arbitrarily many

phases.

Another possibility to reconcile the experimental results with Gibbs’ phase rule is

by accounting for an external gravitational field. Sedimentation of particles leads to a

141
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density gradient which facilitates the formation of multiple phases in a vessel of sufficient

height. In this Chapter we scrutinize the effect of sedimentation in systems of colloidal

platelets with and without added polymer from a simple osmotic equilibrium treatment.

We will first consider a one-component system of colloidal platelets and then study the

influence of the polymer-induced depletion attraction using a mean-field free-volume

theory [137,138].

9.2. Sedimentation equilibrium: one-component system

Let us consider a vessel containing colloidal particles (platelets) in osmotic equilib-

rium with a dispersing solvent with a chemical potential µ0 subject to a gravitational

field along the z-direction of the vessel. We assume that the concentration profile of the

colloids is sufficiently smooth so that the system is locally in a homogeneous equilibrium

state between z and z + dz. This is usually the case if the particles are not too large

and heavy and if the dispersion is not too close to a critical point. The (macroscopic)

condition for sedimentation equilibrium reads

−
(
∂Π

∂ρ

)
T,µ0

dρ

dz
= m∗gρ (9.1)

in terms of the osmotic compressibility (∂ρ/∂Π)T,µ0
of the dispersion and the buoyant

mass m∗ of the colloidal particle (g is the gravitational acceleration). The concentration

profile ρ(z) of the colloids can be obtained from Eq. (9.1) if the osmotic pressure as a

function of ρ, i.e. the equation of state (EOS), is known.

In the present study we will encounter phase-separated samples which contain a

number of coexisting phases. Since these phases are generally described by different

equations of state it is convenient to treat each daughter phase i separately and assign

a phase height Hi to each of them. Recasting Eq. (9.1) in dimensionless form by

introducing the height parameter ζ = z/H(i) (with 0 < ζ < 1) and dimensionless plate

concentration ci = ρiD
3 (with D the plate diameter) corresponding to phase i yields

− 1

ci(ζ)

dci(ζ)

dζ

(
∂(βΠiD

3)

∂ci(ζ)

)
T,µ0

= H̃i (9.2)

with β = 1/kBT and H̃i = Hi/ξ the height of phase i rendered dimensionless by

relating it to the gravitational length ξ = kBT/m
∗g which is on the order of 10−3 m for

the colloidal dispersions of gibbsite platelets we consider here.

The average concentration c0,i in phase i follows from∫ 1

0
ci(ζ)dζ =

∫ ct,i

cb,i

c′i(ζ)
dζ

dc′i
dc′i = c0,i (9.3)

where ct,i and cb,i denote the concentrations at the top and the bottom of the phase,

respectively. The average concentration c0 of the sample then follows from a simple

linear combination c0 =
∑
i c0,iH̃i/H̃ with H̃ =

∑
i H̃i the dimensionless sample height.

Note that in an experimental situation these concentrations are to be determined from

a given average sample concentration c0. In order to solve Eq. (9.2) for colloidal platelets
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Figure 9.1. (a) Phase diagram for colloidal platelets with L/D = 0.05 in
a gravitational field. Plotted is the reduced sample height H̃ = H/ξ versus
the overall plate volume fraction φ0. The three-phase region opens up at
H = 11.15ξ. (b) Concentration profile of a sample with overall volume fraction
φ0 = 0.157 and vessel height H = 30ξ (corresponding to the open dot in (a)).
Plotted is the relative height z/H versus φ. The I − N and N − C phase
boundaries are indicated by the horizontal dotted lines.

we must known the EOS Πi(ci) for the different liquid crystal states (viz. isotropic (I),

nematic (N) and columnar (C)) encountered upon densifying these systems. As a

quantitative input we use fits to the EOS obtained from Monte-Carlo simulations of

hard platelets performed by Zhang et al. [43]. A polynomial of the K-th order was used

as a fitting function so that βΠiD
3 =

∑K
n=1 an,ic

n
i , with i = I,N, C. The coefficients

an,i pertaining to state i can be found in Ref. [43]. The polynomial form of the EOS

allows for a simple analytic solution of the concentration profile from Eq. (9.2) in the

different phases.

The effect of gravity on the phase behaviour of the colloidal platelets is presented

in Fig. 9.1. The curves represent so-called cloud curves which indicate the minimum

sample height (and associated overall volume fraction) needed to induce the formation of

an infinitesimal amount of a new phase at the top and/or the bottom of the vessel due to

sedimentation of the particles. On the horizontal axis we find the coexistence densities

for the I−N and N −C transitions at zero gravity, which would correspond to a vessel

with zero height. Fig. 9.1(a) shows that a vessel height of about 10 gravitational lengths

already leads to significant changes in the phase diagram. A large three-phase isotropic-

nematic-columnar region is encountered which opens up at the state point indicated by

the black dot. At the associated volume fraction (φ0 = 0.291) the system is fully nematic

at short sample heights but as soon as the height exceeds 11.15 gravitational lengths two

additional fractions of an isotropic and columnar phase are split off simultaneously at

the top and bottom of the sample, respectively. To compare with actual sample heights

we use the following expression for the gravitation length, ξ = kBT/(gvplateρ
∗
plate) with

vplate = π
4
LD2 the colloid volume. Using experimental data for the colloidal gibbsite

platelets dispersed in toluene (plate dimensions D = 180 nm, L = 12 nm and buoyant
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density ρ∗plate = 1.5 103 kg/m3) we obtain ξ = 0.9 mm. This means that the three-

phase isotropic-nematic-columnar equilibria in Fig. 9.1 may be expected in samples

larger than a centimeter, which is comparable to the typical height of a test tube. Fig.

9.1(b) shows an example of a concentration profile one may encounter experimentally

in a sample with overall plate volume fraction of 15.7 % and height of 2.7 cm. The

scenario is that the system initially phase separates into equal portions of an isotropic

and nematic phase. At a later stage, a columnar fraction will be formed at the bottom

of the vessel due to slow sedimentation of the platelets. At sedimentation equilibrium,

the I, N and C phases respectively occupy 58, 39 and 3 % of the system volume.

9.3. Plate-polymer mixtures

We now turn to systems of colloidal platelets (component “1”) mixed with non-

adsorbing ideal polymers (denoted by “p”) in a solvent. The gravitational length of

the polymer is much larger than that of the colloidal particles (ξp >> ξ1) due to its

negligible buoyant mass. We may therefore assume that there is no external force acting

on the polymer coil and that the chemical potential of the polymer can be considered

constant throughout the system. The mixture can thus be treated as an effective one-

component system of colloidal platelets in a gravitational field and the osmotic pressure

balance now reads analogously to Eq. (9.1)

−
(
∂Π

∂ρ1

)
T,µ0,µp

dρ1

dz
= m∗

1gρ1, (9.4)

at constant µp. Similar to Eq. (9.2) we can rewrite this equilibrium condition in

dimensionless form. Substituting the EOS for a colloid-polymer mixture from a free-

volume treatment of the Asakura-Osawa model (see Appendix) yields the following

differential equation describing the colloid density profile c1,i(ζ) in the daughter phase

i

− 1

c1,i(ζ)

dc1,i(ζ)

dζ




∂(βΠ

(0)
i D3)

∂c1,i



T,µ0,µ2

− zpD
3

(
d2αi
dc21,i

)
c1,i(ζ)


 = H̃i, (9.5)

which must be solved along with the auxiliary condition for the overall concentration

Eq. (9.3). Comparing with Eq. (9.2) we see that the terms between square brackets

now represent an effective (inverse) osmotic compressibility. The first contribution is

the inverse compressibility of the one-component plate system whereas the second term

accounts for the effective depletion attraction between the platelets due to the presence

of the polymer. The strength of the depletion attraction can be varied by changing

the fugacity zp of the polymer, related to the chemical potential via zp = exp[βµp]/V .

Note that the result for a one-component system (Eq. (9.2)) is recovered for zp = 0,

as it should. The effective compressibility also depends on the fraction of free volume

αi available to the polymer in the liquid crystal state i. Explicit expressions for αi
are given in the Appendix. It is easily verified that d2αi/dc

2
1,i is generally positive for

all states i = I,N, C implying that the effective osmotic compressibility is larger than
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Figure 9.2. Phase diagram of a plate-polymer mixture with L/D = 0.05 and
q = 0.355 in the fugacity - volume fraction plane, reproduced from Ref. [43].
On the vertical axis, the region of stable isotropic gas-liquid (I1−I2) equilibria
is confined between a lower critical point at zpD

3 = 19.233 (dotted line) and
the I1 − I2 − N triple line at zpD

3 = 24.454 (lower dashed line). The upper
dashed line at zpD

3 = 104 represents the I1 − N − C triple line.

that of a pure system of plates due to the attractive depletion forces, as we intuitively

expect.

In Fig. 9.2 we have depicted a phase diagram for the zero-gravity case reproduced

from Ref. [43]. The values for the plate aspect ratio and the polymer to plate size

ratio q = 2Rg/D (with Rg the polymer radius of gyration) are chosen such as to match

the experimental values for the gibbsite-PDMS mixtures studied by Van der Kooij et

al. [75]. The volume fractions in the coexisting phases can be deduced from tie lines

given by horizontal lines in this representation. At low reservoir fugacity the phase

behaviour of the mixture differs only marginally from that of the pure system. At

zpD
3 > 19.233 the isotropic phase becomes unstable with respect to a demixing into

an isotropic gas phase (I1) and a liquid phase (I2). The gas phase is poor in colloid

but rich in polymer, vice versa for the liquid phase. The nematic-columnar transition

is virtually unaffected by the presence of the polymer up to the I1 −N − C triple line

located at zpD
3 = 104. At higher fugacities the depletion attraction is strong enough

to induce a transition from an isotropic gas (I1) to a columnar solid (C) phase, without

the intervention of a nematic phase.

In Fig. 9.3 we have depicted a phase representation, analogous to Fig. 9.1, of the

same mixture in a gravitational field at fixed reservoir fugacity zpD
3 = 20. Also here,

we see that sedimentation leads to remarkably rich phase behaviour; several multi-

phase equilibria appear that are not present in the zero-gravity case in Fig. 9.2. Most

notably, a four-phase region opens up at H/ξ = 11.70 which, recalling that ξ = 0.9 mm,

is again about a centimeter. An equilibrium involving isotropic gas, liquid, nematic and

columnar phases has also been observed in the gibbsite-PDMS mixtures [75]. We stress
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Figure 9.3. Phase diagram of the same mixture as in Fig. 9.2 in a gravita-
tional field at (constant) fugacity zpD

3 = 20. Plotted is the relative sample
height H̃ = H/ξ versus the overall plate volume fraction. The four-phase
region opens up at H = 11.70ξ (black dot).

Figure 9.4. Same as Fig. 9.3 in a reservoir fugacity - volume fraction repre-
sentation at fixed vessel height H = 1.5 cm (H/ξ = 16.67).

that the experimental observation of four distinct phases in a tube of a few centimeters

is related in a fortuitous way to the platelets’ size (and hence their gravitational length).

If the platelets were much larger, they would rather have formed a dense, quasi-uniform

sediment at the bottom of the tube. If they were smaller, gravity might not have been

strong enough to enforce a four-phase sedimentation equilibrium.

From an experimental standpoint it is more appropriate to fix the total sample height

rather than the reservoir fugacity. In Fig. 9.4 we show a representation in terms of the

fugacity versus the overall volume fraction at fixed sample height H = 1.5 cm, which

is the typical length of the test tubes used in experiment [75]. Unlike Fig. 9.2 this

representation does not provide information about the composition of the coexisting
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Figure 9.5. Phase diagram corresponding to Fig. 9.4 in terms of the overall
polymer concentration φpol

0 in the system (plotted on a logarithmic scale) versus
φ0. The monophasic region for the columnar phase is not visible on this scale
due to extremely low polymer concentrations.

phases, it merely indicates which phases can be expected in a sample with a fixed

height and a given overall density and reservoir fugacity. Comparing with Fig. 9.2 we

see that the four-phase region in Fig. 9.4 must be confined within the range 19.233 <

zpD
3 < 24.454 since only there both stable I1 − I2 and N − C two-phase equilibria

occur at low and high densities, respectively.

In Fig. 9.5 we have depicted the same phase diagram in terms of the overall volume

fractions of polymer and colloid in the system. The polymer volume fraction in phase i is

obtained straightforwardly from φpol
i = (π/6)q3zpD

3〈α〉i where 〈α〉i is the average free-

volume fraction in phase i. This diagram is probably more appealing from a practical

point of view than the previous ones since it directly shows which phases can be expected

when polymer and platelets are mixed at known concentrations. Clearly, the four-

phase region extends over a considerable region of polymer and colloid concentrations

showing that a four-phase equilibrium may be expected in a broad range of plate-

polymer compositions.

In conclusion, we state that gravity enables the colloidal platelets to scan a large

density range within the range of a few centimeters. Since mixtures of plates and

ideal polymer display a number of phase transitions within a relatively small range of

concentrations, sedimentation may thus lead to the presence of multiple phases in a

test tube. It is important to note that the maximum number of phases that can appear

simultaneously in the tube is governed solely by the effective interactions between the

colloids. In the present system these interactions are tuned directly by the polymer

chemical potential in the reservoir. Gravity can therefore only induce the formation of

those phases that are allowed at a particular interaction strength, as becomes evident

from comparing Fig. 9.3 to Fig. 9.2.
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9.4. Final Remarks

The theoretical results obtained thus far prompt us to reconsider experimental obser-

vations in other colloidal mixtures. For instance, mixtures of hard rod- with platelike

colloids also display rich phase behaviour with a possibility of even five coexisting

phases [82]. The five-phase coexistence involves (from top to bottom) an isotropic,

rod-rich nematic (N+), X-phase (its symmetry has not been identified yet), plate-rich

nematic (N−) and a columnar phase. Also in these mixtures, the polydispersity in

particle size (both plate-diameter and rod-length) is appreciable. Although the phase

behaviour is certainly influenced by polydispersity the effect of gravity should not be

neglected. Given the present results one may question to what extent these multi-phase

equilibria are induced by an external gravitational field acting on the particles. This

issue will be deferred to future investigation. However, we can already point out that

both components will generally be subject to the gravitational field in these mixtures

so that the effective one-component approach, described in Sec. 9.3, cannot be applied

for binary mixtures of colloids. Consequently, the chemical potentials of the species are

coupled and therefore cannot be varied independently (as we could do for µp in this

study) [139]. Clearly, the coupling leads to more complicated equilibrium conditions

than the ones formulated here.

Appendix: Mean-field description of the Asakura-Oosawa

model

To study the thermodynamic properties of colloid-polymer mixtures it is advanta-

geous to consider a so-called semi-grand canonical ensemble comprising a system of N

colloidal particles in osmotic equilibrium with a reservoir containing polymer solution at

fixed chemical potential for the polymer µp and the solvent µ0 [137,140]. In the deriva-

tions below we shall ignore the “background” solvent for notational convenience. Note

that, unlike the colloids, the polymer coils are allowed to exchange between the system

and the reservoir. In the Asakura-Oosawa model [141–143] the interactions between

the colloids Ucc are considered hard whereas the polymers are modeled as penetrable

hard spheres. The latter implies that the polymers have no interaction with each other

(Upp = 0) but a hard-body interaction with the colloids. Therefore, Ucp = ∞ if any

polymer sphere overlaps with a colloid and Ucp = 0 otherwise. Let us denote the po-

sitions and orientations of the N colloidal platelets collectively by {rN ,ΩN} and the

positions of the M polymers by {rM}. The semi-grand canonical partition function Ξ

of the system can be written as [144]

Ξ(N, V, T, µp) =
1

N !VNc
∞∑

M=0

1

M !Λ3M
p

∫
drNdΩNdrM

× exp
[
−βµpM − βUcc(r

N ,ΩN) − βUcp(r
N ,ΩN , rM)

]
, (9.6)

where Λ3
p and Vc represent the thermal volumes of the polymer sphere and the platelet,

obtained by performing integrations over the kinetic degrees of freedom for the polymer
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and (both translational and orientational ones) for the platelet. We may now carry out

the integrations over the polymer degrees of freedom for a fixed colloidal configuration

{rN ,ΩM}. The outcome of this integration is simply the free volume in which a polymer

sphere does not overlap with any colloid, i.e∫
drM exp

[
−βUcp(rN ,ΩN , rM)

]
=

(∫
dr1 exp

[
−βUcp(rN ,ΩN , rM)

])M
=

[
Vfree(r

N ,ΩN)
]M

. (9.7)

Using this in Eq. (9.6) we can express the semi-grand canonical partition function in

a more convenient form after some rearrangements. Introducing the polymer fugacity

zp = exp [βµp] /Λ
3
p we may write

Ξ(N, V, T, µp) =
1

N !VNc
∫
drNdΩN exp

[
−βUcc(rN ,ΩN)

] ∞∑
M=0

1

M !

[
zpVfree(r

N ,ΩN)
]M

=
1

N !VNc
∫
drNdΩN exp

[
−βWcc(r

N ,ΩN)
]
, (9.8)

where Wcc is the potential of mean force between the platelets accounting for the de-

pletion effect of the polymer:

βWcc(r
N ,ΩN) = βUcc(r

N ,ΩN) − zpVfree(r
N ,ΩN). (9.9)

We will now apply a mean-field approximation to this exact result by replacing the

configurationally dependent free volume with a mean free volume, averaged over all

colloidal configurations of a pure system of platelets [137]. Introducing the configura-

tionally averaged free-volume fraction α we thus substitute Vfree(r
N ,ΩN) = αV so that

Eq. (9.8) becomes

Ξ(N, V, T, zp) = Q(0)
c (N, V, T ) exp [zpαV ] , (9.10)

in terms of the canonical partition function Q(0)
c (N, V, T ) for a pure system of hard

platelets. The semi-grand canonical potential of the mixture now follows from βΩ =

− ln Ξ so that

βΩ(N, V, T, zp) = βF (0)(N, V, T, zp = 0) − zpαV, (9.11)

with F (0) the reference (Helmholtz) free energy of the colloidal system without polymer.

Note that zp is equal to the reservoir polymer concentration ρp = Np/V for an ideal

polymer. The average number of polymers in the system 〈Np〉 follows from the stan-

dard derivative 〈Np〉 = −zp (∂βΩ/∂zp)N,V,T . Combining this with Eq. (9.11) we can

establish the straightforward relation, 〈Np〉/V = ρpα, stating that the average polymer

concentration in the system 〈Np〉/V is simply the reservoir polymer concentration times

the free-volume fraction.

The osmotic pressure of the colloid-polymer mixture follows from Eq. (9.11) using

the standard derivative Π = − (∂Ω/∂V )N,T,µp
:

Π̃ = Π̃(0) + zpD
3

[
α− ρ

dα

dρ

]
, (9.12)
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in terms of the dimensionless pressure Π̃(0) ≡ βΠ(0)D3 of the reference platelet system.

An expression for the free-volume fraction α can be obtained from scaled particle theory

[145, 146]. Zhang et al. [138] derived expressions for cut spheres with diameter D and

thickness L. The general expression for the free volume reads

α = (1 − φ) exp
[
−

(
Ay +By2 + CΠ̃(0)

)]
, (9.13)

with y ≡ φ/(1 − φ) and φ the plate volume fraction. The expression still depends on

the pressure Π(0) of the reference cut sphere system, for which no analytical expression

is available yet. Specific expressions αi for the different liquid crystal states i can

be obtained by inserting the corresponding EOS Π̃
(0)
i from the simulation fits. The

coefficients are given by

A =
q (1 + 2l − l2) + q2

[
2l +

(
π
2
− arcsin l

)]√
1 − l2

(l − l3/3)
,

B =
q2 (1 + 2l − l2)

2

2 (l − l3/3)2 , C = πq3/6, (9.14)

with l = L/D the inverse plate aspect ratio and q = 2Rg/D the size ratio of the ideal

spherical polymer and the platelet. The volume fraction follows from

φ =
π

4
ρD3

(
l − l3/3

)
. (9.15)
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On the equation of state of a dense

columnar liquid crystal
Abstract

We present an accurate description of a columnar liquid crystal of hard disks
at high packing fractions using an improved free-volume theory. We find that
the orientational entropy plays a crucial role and leads to a different high-
density scaling pressure compared to the traditional cell model. Our predic-
tions are quantitatively tested against recent Monte-Carlo simulations on hard
cut spheres showing that the pressures agree within 1% at packing fractions
φ > 0.8. The inter- and intracolumnar spacings are found to match the simu-
lations within 1% over the entire columnar stability range.

10.1. Introduction

The lyotropic columnar liquid crystal state, characterized by a two-dimensional hexag-

onal stacking of columns each with a liquidlike internal structure, has received consid-

erable attention in recent years both in experiment [147, 148] and computer simula-

tions [18,43]. The recently developed systems of polymer-grafted polydisperse gibbsite

colloids are known to show a first order phase transition from the homogeneous nematic

state to an inhomogeneous columnar phase upon densification [148]. The columnar sig-

nature of the latter is evidenced by its bright Bragg-reflections for visible light and it

has also been confirmed on a more rigorous basis using Small-Angle X-ray Scattering

(SAXS). Future efforts can, for instance, be put into purifying these systems (to reduce

its polydispersity) and manipulating the columnar texture by means of a magnetic field,

both aimed at making high-quality single-domain columnar structures, which may serve

as candidates for the production of e.g. colloidal photonic crystals [149, 150].

Recent simulation work by Zhang et al. has led to accurate numerical results for the

various thermodynamic properties of the columnar state, e.g. pressure, chemical poten-

tial and the free-volume fraction (see Chapter 9), which pose a challenge for theoretical

interpretation. In this Chapter we shall consider a simple but accurate description for

a columnar state inspired by cell theory, which was first applied to spatially ordered

liquid crystals by Taylor, Hentschke and Herzfeld [151,152]. To describe the properties

in the positionally ordered dimensions the particles are assumed to be confined within

discrete compartments according to the classical free-volume approach [153, 154]. For

the columnar phase, these compartments are represented by hexagonal tubular cells

which form a close-packed structure. In the non-correlated version of the cell model

151
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the disks may take any position within the cell but they may not share the cell with

another particle or penetrate an adjacent one. The cell model will be combined with an

appropriate description of the one-dimensional fluid behaviour of the disks inside the

columnar cells, which we will discuss first.

10.2. Modified Tonks fluid

We start from the traditional Tonks model [155] applied to a one-dimensional fluid of

N hard disks with diameter D and thickness L whose centres of mass can move freely

on a line with length �. Since the disks are allowed to rotate freely around their centres

of mass, the effective excluded thickness L̃i,j between two adjacent disks i and j is an

orientation-dependent quantity, i.e. L̃i,j(Ωi,Ωj) > L, in terms of the solid angle Ω. We

assign xk to the position of particle k on the line and fix the first and last particle at

x1 = 0 and xN = �, respectively. The configurational integral for this system in the

macroscopic limit L/�→ 0 is then formally written as

QN =
1

VNN !
Qor
N

〈(
�− L̃tot(Ω1, . . . ,ΩN)

)N〉
f(Ω)

, (10.1)

with V the thermal volume pertaining to the translational and orientational kinetic

degrees of freedom. The brackets denote an orientational average according to some

unknown orientation distribution function (ODF) f(Ω) which is normalized according

to
∫
f(Ω)dΩ ≡ 1. Note that QN is proportional to an N -dimensional free volume with

L̃tot the total occupied length for a given orientational configuration, expressed in terms

of the following sum

L̃tot(Ω1, . . . ,ΩN ) =
N∑
k=1

L̃k,k+1(Ωk,Ωk+1). (10.2)

Eq. (10.1) is difficult to analyze rigorously so we shall approximate it as follows

QN � �N

VNN !
Qor
N

(
1 − 1

�

〈
L̃tot(Ω1, . . . ,ΩN )

〉
f(Ω)

)N
, (10.3)

which is assumed to be justified for the strongly aligned orientational configurations we

expect in a concentrated columnar state. Further simplification in this respect can be

achieved by neglecting the azimuthal dependency of the excluded length between two

adjacent disks. To this end we shall consider an effective thickness of the disks, which is

determined solely by the polar deflection angle. For small angles this quantity is given

by

L̃eff = L
[
1 +

1

2

D

L
|θ| + O(θ2)

]
, (10.4)

up to leading order in θ. To account for the azimuthal correlations we have included

the prefactor ‘1/2’ in Eq. (10.4). In this way we partially correct for the fact that

the excluded length between two disks at fixed polar angles becomes minimal when



10.2. Modified Tonks fluid 153

the azimuthal orientations are the same. The orientationally averaged total occupied

length is now approximated by the following mean-field expression〈
L̃tot

〉
f(Ω)

� N
〈
L̃eff

〉
f(θ)

. (10.5)

where the ODF obeys common uniaxial symmetry and depends only on the polar angle

θ. The configurational integral then simply becomes

QN =
�N

VNN !
Qor
N

(
1 − ρ

[
1 +

D

2L
〈|θ|〉f(θ)

])N
, (10.6)

in terms of the linear density ρ = NL/�. The orientational configurational integral Qor
N

reads (cf. Eq. (1.9))

Qor
N = exp

[
−N 〈ln[4πf(θ)]〉f(θ)

]
. (10.7)

and the total Helmholtz free energy βF = − lnQN of the modified Tonks fluid is given

by a superposition of the ideal, orientational and configurational entropic contributions:

βFfluid

N
= ln[ρV] +

∫
f(θ) ln[4πf(θ)]dΩ − ln

[
1 − ρ

(
1 +

D

2L

∫
f(θ)|θ|dΩ

)]
, (10.8)

with β = 1/kBT . The thermodynamic equilibrium ODF can be obtained by a functional

minimization of the free energy with respect to the orientational distribution under

the normalization restriction. After some algebra we arrive at the following closed

expression for the normalized ODF:

f(θ) =
α2

4π
exp[−α|θ|], (10.9)

where α depends on the density and the disk aspect ratio D/L via

α =
3

2

D

L

(
ρ

1 − ρ

)
, (10.10)

Since α � 1 for sufficiently anisometric disks (D/L � 1) the ODF is sharply peaked

around θ = 0, as we expect. The divergence of α at close packing (ρ = 1) indicates

that the disks are forced to orient parallel to the director in this limit. Inserting Eq.

(10.9) and straightforward integration yields an explicit free energy in terms of the

density ρ. Taking the standard derivative with respect to the density then gives the

(dimensionless) pressure βPL of the one-dimensional fluid:

βPL =
3ρ

1 − ρ
, (10.11)

which is exactly three times the original Tonks pressure. This result implies that the

orientational confinement of the disks inside the columns gives rise to an additional

entropic contribution 2ρ/(1 − ρ) to the total pressure. Note that the derivation of

Eq. (10.11) closely resembles the origin of the quasi-ideal pressure of the nematic state

βP ∼ 3N/V within the asymptotic (Gaussian) analysis described in Sec. 5.2, although

both have a different physical basis.
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10.3. Cell model

The description of the columnar phase in the two positionally ordered dimensions is

analogous to that of a two-dimensional (hexagonally) ordered configuration of N disks.

According to the non-correlated version of the cell model the configurational integral

of the N particle-system can be approximated by [156]

Qcell
N =

∫
drN exp[βU(rN )]

�
(∫

dr exp

[
−β

2
unn

cell(r)

])N
, (10.12)

where unn
cell(r) is the potential energy between the particle and its nearest neighbours.

For hard interactions the second phase space integral is simply the (2-D) free volume

of the particle in the cell. Assuming that the nearest neighbours constitute a perfect

hexagonal cage, the free volume is given by Vfree =
√

3(∆c−D)2/2 with ∆c the nearest

neighbour distance. The configurational integral then becomes (ignoring all irrelevant

contributions)

Qcell
N � (Vfree)

N ∝
(
1 − ∆̄−1

c

)2N
, (10.13)

in terms of the dimensionless spacing ∆̄c = ∆c/D. Applying the condition of single-

occupancy (i.e. one array of disks per column) we can use ∆̄c to relate the linear density

ρ to the three-dimensional volume fraction via

ρ = φ∗∆̄2
c , (10.14)

with φ∗ = φ/φcp the volume fraction normalized to its close-packing value φcp = π/2
√

3.

The total excess Helmholtz free energy of the columnar state is obtained by adding

the cell contribution to the Tonks excess free energy. Omitting all constant terms we

arrive at

βF ex
tot

N
∼ −2 ln

[
ρ

1 − ρ

]
− ln [1 − ρ] − 2 ln

[
1 − ∆̄−1

c

]
, (10.15)

representing the orientational, ‘Tonks’ and cell contributions, respectively. Inserting

Eq. (10.14) and minimizing∗ the free energy with respect to the cell spacing ∆̄c yields

a third-order consistency equation with complicated solutions. Expanding the physical

solution near close-packing in terms of 1 − φ∗ up to leading order yields

∆̄c = 1 +
1

5
(1 − φ∗) + O[(1 − φ∗)2]. (10.16)

Inserting the exact expression into the free energy Eq. (10.15) and taking the appro-

priate derivative gives a similar expansion for the total dimensionless pressure P̃ =

βPv0/φcp (with v0 the disk volume), i.e.

P̃ =
5

1 − φ∗ + 6.4 + 1.128(1 − φ∗) + O[(1 − φ∗)2], (10.17)

∗By definition, the ideal free energy (∼ ln ρ) does not depend on the cell spacing and therefore drops
out of the free energy minimization.
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Figure 10.1. (a) Equations of state for the columnar phase. The solid
curve is the prediction from the present cell model, the dashed curve fol-
lows from the traditional cell pressure, Eq. (10.18). The symbols correspond
to the simulation data from Zhang et al. [43] for D/L = 10 (crosses) and
D/L = 20 (triangles). The inset shows the pressure in the dilute regime near
the columnar-nematic transition at φ∗ ≈ 0.48. (b) Dimensionless chemical po-
tential βµ̃ = βµ− ln [v0/Vφcp] from simulations (dotted curves) and cell-theory
(solid curves). The prediction from the traditional cell model, indicated by the
dashed curve, is independent of D/L.

indicating that the high-density scaling pressure, i.e. the leading order contribution, is

essentially different from the classical cell prediction 3/(1 − φ∗) for hard spheres [157].

The latter result is completely analogous to our result for perfectly aligned disks and

can be reproduced directly from Eq. (10.15) by omitting the orientational contribution

given by the first term. The “traditional” cell pressure is given by

P̃ ≡ φ∗

1 − (φ∗)1/3
=

3

1 − φ∗ + 4 + O(1 − φ∗). (10.18)

10.4. Results and discussion

In Fig. 10.1(a) we have plotted the abovementioned cell equations of state, i.e. Eq.

(10.18) and the closed-form analogue of Eq. (10.17) which we do not show here, along

with ones obtained from Monte-Carlo simulations on cut-spheres by Zhang et al. [43],

as discussed in the previous Chapter. The quantitative agreement between the present

cell description and the simulations significantly improves upon densification. Above

φ∗ ≈ 0.8 the agreement is found to be smaller than 1%. Obviously, the discrepancy is

much larger in the dilute regime (φ∗ < 0.6) where the cell model, at least the simplest

version considered here, is no longer quantitatively reliable.

The chemical potentials are depicted in Fig. 10.1(b). These are readily obtained

from the absolute free energy and pressure of the cell model via the Legendre transform

µ = (F + PV )/N and by means of a Gibbs-Duhem integration of the pressure fits

obtained from the simulation data [43]. Again, close agreement is found between both.
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Figure 10.2. Normalized inter- and intracolumnar spacings, ∆c/D and ∆n/L

respectively, as a function of φ∗. Solid lines are theoretical predictions, the sym-
bols follow from simulations for D/L = 10 (crosses) and D/L = 20 (triangles).
The dotted curve follows from the traditional cell model and denotes both
spacings.

The values at melting are found to differ only by 0.3kBT and 0.6kBT for D/L = 20

and D/L = 10 respectively, indicating that the cell prediction is indeed surprisingly

accurate throughout the φ∗-range. The “splitting” of the curves for both aspect ratios

is simply due to the orientational entropy (second term in Eq. (10.8)):

βFor

N
= 2 lnα− 2, (10.19)

which depends explicitly on D/L via Eq. (10.10) and therefore gives rise to a different

intercept at the melting volume fraction.

Let us now focus on the spacings between the columns ∆̄c and the average disk

spacing inside the columns ∆̄n ≡ ∆n/L. The latter is given by

∆̄n ≡ ρ−1 = 1 +
3

5
(1 − φ∗) + O[(1 − φ∗)2], (10.20)

Comparing with Eq. (10.16) we see that the relative intracolumnar distance between the

disks grows faster than the intercolumnar spacing between the columns, i.e. the expan-

sion of the columnar structure is highly anisometric. This behaviour is quite different

from the classical model for which ∆̄n ≡ ∆̄c = φ∗−1/3 indicating an isometric expan-

sion upon lowering φ∗. In Fig. 10.2 the predicted spacings, given by the closed-form

analogues of Eqs. (10.16) and (10.20), are compared with simulation results. Unlike

the pressure, the prediction for the columnar spacings remains surprisingly accurate

even in the regime close to the columnar-nematic transition. Quantitatively, theory

and simulation are found to agree within 1% over the entire columnar stability range.
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Figure 10.3. Average polar angle relative to the internal angle (θint ∼ L/D)
plotted versus φ∗ (solid curve). The dotted line shows the asymptotic result
given by Eq. (10.21).

To assess the degree of orientational order in the dense columnar state we consider

the ratio of the average polar angle 〈|θ|〉 to the internal angle θint ∼ L/D. The leading

order contribution of this ratio near close packing is given by (cf. Eq. (10.10))

〈|θ|〉
θint

� D

L

(
2

α

)
∼ 4

5
(1 − φ∗), (10.21)

showing that the disks are only marginally perturbed away from their parallel orien-

tations since the average “off-parallel” deflection angle does not exceed the internal

angle of the disk. The full result, depicted in Fig. 10.3, shows rather surprisingly that

this situation remains up to volume fractions close to the columnar-nematic transition,

located around φ∗ ≈ 0.48. This indicates that the orientational freedom of the disks

is extremely small throughout the entire columnar stability regime. We conclude that

the dominance of near-parallel configurations also gives an a posteriori justification for

the mean-field asymptotic analysis presented here.

10.5. Concluding remarks

The present model constitutes a significant improvement over the traditional one

which appears to be far from accurate even in the regime near close packing. Contrary

to the case of a hard-sphere crystal [157] the traditional cell model clearly does not

work accurately for a columnar liquid crystal. Future work on the model could be

aimed at refining the present description in the regime close to the melting transition

by introducing more advanced cell theories which include e.g. cooperative motion of the

columns [158]. The fact that the simulation pressures in Fig. 10.1(a) remain insensitive

to the aspect-ratio throughout the entire columnar stability range is surprising and
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supports the notion that the columnar phase is dominated by cell-behaviour up to the

melting transition, albeit in more sophisticated fashion than we described here.
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Summary

Mixing colloidal particles differing in size or shape may lead to enriched phase behaviour

involving aspects that are not encountered in pure systems. Examples are repartitioning

of the species among the coexisting phases, referred to as fractionation, re-entrant phase

transitions and demixing transitions which may give rise to multi-phase coexistence.

Recent experimental work on polydisperse mixtures of colloidal platelets as well as

binary systems of rod- and platelike colloids and platelets and polymer have revealed

many intriguing phenomena left open for theoretical considerations. The objective of

this thesis is to theoretically account for the experimentally observed features starting

from simple Onsager-type descriptions generalized to binary and polydisperse mixtures.

In Chapter 2 we provide a theoretical underpinning for the recently observed inversion

of isotropic and nematic mass densities in polydisperse systems of hard platelets by

investigating fractionation behaviour in simple binary mixtures of thin and thick hard

platelets with equal diameter. It turns out that the phenomenon is a direct consequence

of anomalous thickness fractionation such that the thickest i.e. heaviest species are

expelled to the isotropic phase. Owing to the accumulation of the heavier particles in

the isotropic phase its mass density may become higher than that of the nematic phase.

We also find a stable nematic-nematic demixing transition in these mixtures as a result

of a competition between entropy of mixing and the excess excluded-volume entropy

pertaining to the platelets’ finite thicknesses. The underlying demixing mechanism

is compared in Chapter 5 with those found in related binary mixtures reported in

literature. There we also establish a demixing of the isotropic phase in systems of

platelets with either diameter of thickness bidispersity, provided that the size ratio

exceeds some critical value.

Chapters 3 and 4 are devoted to the isotropic-nematic (I-N) phase behaviour of asym-

metric rod-plate mixtures characterized by highly dissimilar excluded volumes of two

rods and two platelets, the latter being the largest. These mixtures are representative

of the experimental boehmite rod - gibbsite plate mixtures studied in experiment. Fo-

cussing first on uniaxial nematic phases, characterized by a single axis of alignment, we

show by means of approximate Gaussian nematic orientation distributions that many

features of the low-density part of the experimental phase diagram can be reproduced

semi-quantitatively. In particular, a large isotropic-nematic-nematic triphasic region

and a dominating appearance of the plate-rich uniaxial nematic phase are found, in

accordance with experimental results. Next, within a formal approach to Onsager’s

second-virial theory, we consider the stability of the biaxial phase in these asymmetric

mixtures. In this particular liquid crystal state the azimuthal symmetry of the uniaxial

nematic states is broken since the rods and plates are aligned along two mutually per-

pendicular axes. Starting from the symmetric case and increasing the mixture’s asym-

metry gradually we find that the biaxial phase remains stable up to surprisingly high

asymmetries. For highly asymmetric mixtures resembling the experimentally studied

mixtures we find a scenario involving an isotropic - uniaxial nematic - biaxial nematic
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triphasic equilibrium. These results open up the possibility of finding biaxial nematic

textures in the aforementioned boehmite-gibbsite mixtures, which remains to be verified

in future experiments.

In the next two chapters the challenging issue of calculating I-N phase equilibria in

polydisperse systems are dealt with. First, in Chapter 6 we present a numerical study

of these equilibria in systems of length-polydisperse hard rods described with Gauss-

ian trial orientational distribution functions. Very pronounced fractionation effects are

observed with the longest rods preferentially occupying the nematic phase and the short-

est ones the isotropic phase. If the overall unimodal length distribution is sufficiently

“fat-tailed” a spinodal instability of the nematic phase was established implying pos-

sible triphasic I-N-N equilibria, albeit in a marginally small interval along the dilution

trajectory. By explicitly tracking down the spinodal curves we could reveal that the

fractionation scenario in systems of polydisperse hard rods is surprisingly complicated.

To justify the use of the Gaussian trial function approximation for these systems we

show that the approach predicts the correct asymptotic behaviour for distributions with

infinite cutoff lengths, compared to exact Onsager theory. In Chapter 7 we give a similar

treatment for platelets with length (i.e. thickness) polydispersity. An important differ-

ence with the description in the previous Chapter is that this model, being an extension

of the binary model from Chapter 2, gives a tractable moment structure for the excess

free energy which poses less computational difficulties. We find that the I-N density

inversion mentioned above is retained in polydisperse systems in a small window around

a polydispersity of 27 %, in good agreement with the value found for the polydisperse

gibbsite platelets. The generalized polydisperse model also allows for a correct descrip-

tion of the fractionation properties of the coexisting isotropic and nematic phases along

the dilution trajectory compared to experimental results. These aspects of the phase

behaviour could not be explained from the binary model for fundamental reasons.

Having focussed on the spatially homogeneous isotropic and nematic phases thus

far, in Chapter 8 we briefly assess the stability of a polydisperse nematic phase with

respect to the inhomogeneous smectic and columnar states. By means of a bifurcation

analysis applied to a simple artificial system of parallel cylindric rods we indicate that

the nematic-smectic transition, as found in monodisperse systems, is postponed upon

increasing polydispersity in favour of the columnar phase. At high polydispersities a

transition from the nematic to the smectic phase is pre-empted by a nematic-columnar

transition, indicating that sufficient length polydispersity may give a thermodynami-

cally stable columnar phase for colloidal rods. We also show that composition fluc-

tuations play a crucial role at higher polydispersities. Allowing the size distribution

to “fluctuate” at the bifurcation gives a qualitatively different outcome compared to

the so-called ‘constrained eutectic’ approach in which case a fixed size distribution is

assumed.

The aim of Chapter 9 is to illustrate the drastic influence of gravity on the phase be-

haviour of colloidal mixtures. In experiment, mixtures involving gibbsite platelets may

build up a considerable concentration gradient inside a test tube due to sedimentation.
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For mixtures of platelets and non-adsorbing polymer we show that sedimentation en-

ables the formation of a four-phase equilibrium involving both isotropic gas and liquid

phases, a nematic and a columnar phase, as observed in experimental plate-polymer

mixtures.

Finally, in Chapter 10 we set up an improved free-volume theory for a columnar phase

of hard platelets at high packing fractions. We combine the traditional cell model with

an appropriate fluid description in the (one-dimensional) direction of the phase while

accounting for the rotational freedom of the particles in a mean-field way. Excellent

quantitative agreement with simulation results is found for the pressure, chemical po-

tential and the inter- and intracolumnar spacings along the entire columnar stability

range.
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Samenvatting voor iedereen

Collöıdale systemen bestaan uit zeer kleine deeltjes met een afmeting kleiner dan

éénduizendste millimeter. Een vloeistof waarin zulke deeltjes onophoudelijk rondzwe-

ven wordt een collöıdale dispersie of suspensie genoemd. Vele natuurlijke en alledaagse

stoffen zoals bloed, melk, inkt en verf zijn in feite collöıdale dispersies. Een belangrijke

fysische eigenschap van deze systemen is hun zogenaamde fasegedrag. Deze beschrijft

de stabiliteit van de verschillende verschijningsvormen van een dispersie onder bepaalde

omstandigheden zoals temperatuur of deeltjesconcentratie. Een bekende uiting van het

fasegedrag van een dispersie is bijvoorbeeld het schiften van melk of mayonnaise, waarbij

twee vloeistoflagen met duidelijk verschillende eigenschappen ontstaan uit een homo-

gene vloeistof. Het begrijpen en verklaren van het fasegedrag van collöıdale dispersies is

niet alleen belangrijk voor de toegepaste collöıdwetenschap, denk bijvoorbeeld aan het

verbeteren van de houdbaarheid van melkproducten, maar ook voor de fundamentele

natuurwetenschap omdat het gedrag van colloidale systemen in zekere zin analoog is aan

dat van niet-collöıdale, oftewel moleculaire systemen. De fenomenologie van collöıdale

systemen is daarom representatief voor een zeer breed scala aan materievormen.

Een aspect dat een cruciale rol speelt in het fasegedrag van collöıdale dispersies is de

interactie tussen de collöıden. Deze interactie wordt bepaald door de manier waarop de

deeltjes elkaar afstoten of aantrekken doordat ze bijvoorbeeld elektrisch geladen kun-

nen zijn. Een ander belangrijk aspect dat hiermee samenhangt en centraal staat in

dit proefschrift, is de vorm van de deeltjes. Vele collöıdale systemen, bijvoorbeeld klei

of bloed, bestaan namelijk niet uit simpele bolletjes maar uit plaat- of staafvormige

deeltjes. Deze systemen hebben de bijzondere eigenschap dat ze zogenaamde vloeibare

kristallen kunnen vormen. Deze verschijningsvormen van de materie, die we aantreffen

in bijvoorbeeld digitale displays, worden gekarakteriseerd door structuren waarin de

deeltjes min of meer in dezelfde richting wijzen (ze zijn orientationeel geordend) ter-

wijl ze geen vaste positie in de ruimte innemen zoals in een normale kristallijne stof,

denk bijvoorbeeld aan ijs. Uiterlijk zullen deze stoffen dus nog steeds het karakter van

een vloeistof hebben, vandaar de naam. In Figuur 1.1 op pagina 2 staat een schema-

tische weergave van de verschillende (vloeibaar-kristallijne) structuren die we kunnen

tegenkomen in dispersies van collöıdale damschijfjes. Belangrijk hierbij is dat de sta-

biliteit van de vloeibare kristallen volledig bepaald worden door de concentratie van de

collöıden in de vloeistof waarin ze rondbewegen. In de isotrope fase (I), stabiel bij lage

deeltjesconcentraties, zijn de plaatjes volledig willekeurig georiënteerd. Als we de totale

deeltjesconcentratie geleidelijk verhogen zal op een zeker punt fasescheiding (schifting)

optreden waarbij het onderste gedeelte van bijvoorbeeld een buisje met dispersie in-

genomen wordt door een nematische fase (N), waarin de schijfjes zijn opgelijnd langs

een bepaalde voorkeursrichting. De nematisch fase heeft een iets hogere concentratie

dan de isotrope fase en zal hierdoor zwaarder zijn. Merk op dat zowel de isotrope

als de nematische fase positioneel ongeordend zijn doordat de deeltjes zich vrij kunnen

verplaatsen over het gehele systeemvolume.
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Bij nog hogere totaalconcentraties kunnen meer ingewikkelde vloeibaar-kristallijne

strukturen ontstaan met een hogere ordeningsgraad dan de nematische fase. Deze wor-

den in het bijzonder gekarakteriseerd door positionele of kristallijne ordening, langs één

of twee richtingen van het systeem. De smectische fase (SmA) wordt gekarakteriseerd

door een lagenstructuur zodanig dat de plaatjes wanordelijk kunnen bewegen in de laag

maar niet of nauwelijk van de ene naar de andere laag kunnen gaan. Welbeschouwd

kan deze structuur dus worden opgevat als een kristal in één richting. In de columnaire

fase (C) zijn de plaatjes gerangschikt in regelmatige verticale kolommen waarlangs ze

wanordelijk op en neer kunnen bewegen. Aangezien de plaatjes zich niet of nauwelijks

kunnen verplaatsen van de ene naar de andere kolom is de columnaire fase kristallijn

in de twee horizontale richtingen. In het laatste hoofdstuk van dit proefschrift laten

we zien dat de columnaire fase heel goed beschreven kan worden met een zogenaamd

‘cel-model’. In dit eenvoudige model nemen we aan dat de deeltjes zijn opgesloten in

celkolommen waarbinnen ze vrij op en neer kunnen bewegen maar waaruit ze niet “zij-

waarts” kunnen ontsnappen, met andere woorden ze kunnen niet van de ene naar de

andere cel gaan. Het blijkt dat vele eigenschappen van de columnaire fase, zoals de druk

uitgeoefend door de deeltjes op een wand en de gemiddelde afstand tussen de schijf-

jes, voorspeld door ons simpele model verbluffend goed overeenkomen met de “exacte”

resultaten verkregen uit nauwkeurige maar ingewikkelde computerberekeningen.

Een belangrijke eigenschap van vele collöıdale systemen is dat ze zijn opgebouwd uit

deeltjes met een verschillende vorm en grootte, bijvoorbeeld grote en kleine bolletjes of

(klei)plaatjes met verschillende dikten en diameters. Het zijn dus veelal mengsels van

twee of meer verschillende deeltjestypen. De theoretische beschrijving van vloeibaar-

kristallijne fase-overgangen in deze mengsels is het centrale thema van dit proefschrift.

De beschrijving en analyse van het fasegedrag van mengsels is lastiger dan voor zuivere

systemen, vooral wanneer er veel meer dan twee soorten deeltjes bij betrokken zijn. In

dit laatste geval spreken we van polydisperse systemen. Desalniettemin zijn deze com-

plexe mengsels het bestuderen meer dan waard omdat ze interessant en rijk fasegedrag

kunnen vertonen, zoals ook uit experimenteel werk aan collöıdale modelsystemen van

plaatjes of staafjes blijkt.

In het eerste deel van het proefschrift beperken we ons tot “simpele” binaire mengsels

bestaande uit twee deeltjesvormen. In hoofdstuk 2 laten we zien dat het mengen van

dikke en dunne schijfjes aanleiding geeft tot aanzienlijke vorm-segregatie bij het I-N

fasescheiden. Hiermee wordt bedoeld dat het ene type deeltje (in dit geval de dikke

schijfjes) zich ophopen in de isotrope fase terwijl het ander type (de dunne schijfjes)

de voorkeur geeft aan de nematische fase. Onder bepaalde omstandigheden kan dit

effect leiden tot een merkwaardige dichtheidsinversie waarbij de isotrope fase zwaarder

wordt dan de nematische fase, ondanks de lagere deeltjesconcentratie in de isotrope

fase. Experimenteel manifesteert dit verschijnsel zich in het omklappen van de onder-

en bovenfasen in een buisje met een collöıdale plaatjesdispersie zoals in Figuur 2.1 op

pagina 24 is te zien (hierbij is de donkere laag de isotrope en de lichte de nematische

fase).
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In de volgende twee hoofdstukken bekijken we het rijke fasegedrag van mengsels van

plaatjes en staafjes. Karakteristiek voor deze mengsels is dat door het grote vormverschil

van de deeltjestypen verschillende nematische fasen gevormd kunnen worden, zoals

geschetst in de figuur. De onderlinge stabiliteit van deze nematische fasen hangt van

vele factoren af waaronder de lengte tot diameter verhouding van de deeltjes en de

verhouding tussen het aantal plaatjes en het aantal staafjes. Als de staafjes in de

meerderheid zijn zal de nematische structuur eruit zien zoals geschetst voor de N+ fase;

de staafjes zijn opgelijnd langs de pijl en de plaatjes liggen er willekeurig georiënteerd

tussen (ze hebben dus geen voorkeursrichting in het vlak loodrecht op de pijl). In

mengsels gedomineerd door plaatjes vinden we een soortgelijke structuur aangegeven

met N− waarin de plaatjes sterk zijn opgelijnd langs een voorkeursas (zie pijl) met de

staafjes willekeurig georiënteerd ertussen. In de biaxiale (B) fase zijn zowel de plaatjes

als de staafjes opgelijnd langs twee onderling loodrechte assen. Het bestaan van de

biaxiale fase is het meest interessante (en wetenschappelijk omstreden) aspect van deze

mengsels. Deze structuur is namelijk nog nooit waargenomen in collöıdale systemen.

Recent experimenteel onderzoek aan mengsels van plaatjes en staafjes met ongeveer

dezelfde afmetingen (zoals in de figuur) lijkt te hebben aangetoond dat de biaxiale

fase niet stabiel is en dat het mengsel zich liever opdeelt in de twee uniaxiale, dat wil

zeggen enkel-assige, nematische fasen, N+ en N−. In hoofdstuk 4 laten we zien dat de

biaxiale fase vanuit een theoretisch standpunt, tegen de experimentele verwachtingen

in, toch verrassend stabiel is in deze mengsels en dat de mogelijkheid om deze exotische

vloeibaar-kristallijne structuur in echte collöıdale mengsels waar te nemen niet moet

worden uitgevlakt. Verder experimenteel onderzoek zal dit moeten uitwijzen.



170 Samenvatting voor iedereen

In het tweede gedeelte van dit proefschrift breiden we de theoretische beschrijving uit

naar polydisperse systemen, en wel naar afzonderlijke systemen van staaf- en plaatvor-

mige cilindertjes met (schier oneindig) veel verschillende lengtes of diktes. In hoofdstuk

6 staan de volgende twee vragen centraal. (1): Hoe zullen de korte en lange staafjes in

een polydispers systeem zich verdelen over de isotrope en nematische fasen, met andere

woorden hoe ziet het vorm-segregatiegedrag eruit? en (2): Kan lengtepolydispersiteit

(lees: een continue variatie in staaflengten) leiden tot twee of meerdere nematische fasen

met verschillende samenstelling? Het opsplitsen van de nematische fase in tweeën is tot

nu toe alleen experimenteel (en theoretisch) waargenomen in binaire mengsels van korte

en lange collöıdale staafjes maar nog niet in de (meer gebruikelijke) gevallen waarin de

staafjes een continue lengteverdeling hebben.

Het antwoord op de eerste vraag luidt dat lengtesegregatie een sterke invloed heeft op

de isotroop-nematische fase-overgang. Het blijkt dat de allerkortste staafjes zich in hoge

mate ophoopt in de isotrope fase terwijl de allerlangste liever in de nematische fase gaan

zitten. Dit effect wordt des te sterker naarmate de variatie aan staaflengtes groter wordt.

Dit laatste kan bijvoorbeeld worden bewerkstelligd door de lengteverhouding tussen het

kortste en het langste staafje aanwezig in het systeem te verhogen. Het antwoord op

de tweede vraag is positief. Het blijkt dat indien de lengtevariatie voldoende groot is,

de nematische fase zich inderdaad opsplitst in tweeën. Hierbij zal de ene fase vrijwel

uitsluitend de allerlangste staafjes bevatten terwijl de andere hoofdzakelijk bestaat uit

staafjes met een gemiddelde lengte. Helaas laten de berekeningen ook zien dat het

waarschijnlijk erg moeilijk zal zijn om dit exotisch verschijnsel experimenteel waar te

nemen omdat er slechts een zeer geringe en dus nauwelijks waarneembare hoeveelheid

van de tweede “lange-staven nemaat” gevormd zal worden.

In hoofdstuk 7 geven we een soortgelijke analyse van schijfjes met variërende dikte.

We beperken ons hier tot aspecten met betrekking tot vorm-segregatie. De vraag is of we

de experimenteel waargenomen isotroop-nematische dichtheidsinversie zoals besproken

in hoofdstuk 2 voor een simpel systeem van dikke en dunne plaatjes, ook tegenkomen

bij plaatjes met een continu variërende dikte. Deze polydisperse beschrijving staat

dichter bij de experimentele situatie omdat de collöıdale deeltjes zelden in twee soorten

(bijvoorbeeld dikke en dunne) zijn onder te verdelen maar eerder uit een veelheid aan

verschillende deeltjesvormen bestaan. Het blijkt dat de dichtheidinversie inderdaad

gehandhaafd blijft in polydisperse systemen en dus niet een artefact is van de simpele

“binaire” aanpak in hoofdstuk 2. Uit de berekeningen volgt bovendien dat de minimale

diktespreiding die nodig is om een inversie tot stand te brengen goed overeenkomt met

de experimenteel gevonden waarde.

In hoofdstuk 8 bespreken we de stabiliteit van de smectische en columnaire fasen in

systemen van staafjes met lengtepolydispersiteit. In Figuur 1.1 op pagina 2 staan deze

fasen geschetst voor plaatvormige cilindertjes, maar de structuren voor staafjessystemen

zijn hieraan volledig analoog. Beschouwen we een zuiver nematisch, d.w.z. opgelijnd,

systeem van staafjes dan geldt dat de eerstvolgende stabiele structuur bij toenemende
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concentratie de smectische fase is†. Introduceren we verschillende staaflengten dan is

het evident dat de staafjes minder goed in de lagen van een smectische fase zullen

passen vergeleken met een zuiver systeem van even lange staven. De columnaire struc-

tuur daarentegen zal relatief ongevoelig zijn voor een spreiding in lengte omdat de

pakkingsefficiëntie hierbij grotendeels bepaald wordt door de staafdikte en deze is im-

mers voor alle deeltjes gelijk. De verwachting is dan ook dat de smectische fase in sterke

mate gedestabiliseerd wordt door lengtepolydispersiteit ten opzichte van de columnaire

fase. Bij een voldoende grote lengtespreiding zou de smectische fase weleens volledig

van het toneel kunnen verdwijnen om plaats te maken voor de columnaire fase. In het

verleden is aangetoond dat dit vermoeden inderdaad correct is voor binaire mengsels

van korte en lange staafjes. De vraag is natuurlijk of dit ook geldt voor polydisperse

mengsels. In hoofdstuk 8 laten we zien dat hetzelfde scenario opgaat voor polydisperse

systemen; bij een voldoende grote lengtespreiding zal de columnaire fase de eerstvol-

gende stabiele fase zijn na de nematische fase. We laten tevens zien dat vorm-segregatie

effecten een belangrijke rol spelen bij de overgang van de nematische naar de smectisch

fase. Net als bij de isotroop-nemaat overgang zullen de lange staven de voorkeur geven

aan de meer geordende fase, in dit geval dus de smectische fase.

In hoofdstuk 9 bekijken we de invloed van zwaartekracht op het fasegedrag van

collöıdale mengsels. Uit experimenteel werk is gebleken dat collöıdale plaatjes een

sterke neiging hebben om naar de bodem van het buisje te zakken doordat de plaatjes

aanzienlijk zwaarder zijn dan het oplosmiddel waarin ze rondzweven. Het gevolg is dat

de concentratie onderin de buis hoger zal zijn dan bovenin zodat er sprake is van een

concentratiegradiënt. Aan de hand van mengsels van plaatjes en polymeren‡ illustreren

we dat deze gradiënt een drastische invloed heeft op het fasegedrag. Een bijzondere

manifestatie van het effect van zwaartekracht in deze mengsels is dat een vierfaseneven-

wicht gevormd kan worden. Dit houdt in dat er een schifting plaatsvindt waarbij vier

afzonderlijke lagen met elk een aparte structuur ontstaan, te weten een polymeerrijke

isotrope fase, een polymeerarme isotrope fase, een nematische en een columnaire fase.

Een soortgelijk vierfasenevenwicht is ook experimenteel waargenomen.

†Voor plaatjes is dit de columnaire fase. We beperken ons in hoofdstuk 8 echter tot staafjes. Bovendien
beschouwen we een eenvoudig systeem van perfect opgelijnde staafvormige cilindertjes.
‡Dit zijn flexibele, ketenvormige moleculen. In een geschikt oplosmiddel nemen deze lange ketens
de gedaante aan van “zachte”, bolvormige kluwens met ongeveer dezelfde omvang als een collöıdaal
deeltje.
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