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Preface

This thesis describes the use of solution Nuclear Magnetic Resonance (NMR) spectroscopy and 

Molecular Dynamics (MD) simulations to study the mechanism of biomolecular recognition with two 

model systems: i) lipid II-binding lantibiotics (lanthionine-containing antibiotics) and ii) the human 

immunodeficiency virus 1 (HIV-1) envelope protein (Env), gp120, and its receptor molecule, CD4. 

The first system concerns a group of unique antimicrobial peptides, which make use of an hitherto 

unknown mechanism of attacking bacteria by targeting the Achilles’ heel of bacteria, the cell wall 

precursor, lipid II. In the light of antibiotic resistance, understanding of this recognition mechanism 

may lead to novel antibiotics. The second system focuses on the initiation step of the HIV-1 viral 

entry wherein the engagement of gp120 and CD4 switches on a cascade of conformational changes 

that are necessary for the membrane fusion between the virus and the host cell. The biological 

contexts of both systems are important to human health and numerous functional studies on both 

systems have been well documented. Yet, because of the underlying dynamics and the intricate 

assembly process of higher order complexes, a detailed structural description is currently lacking in 

both systems. We therefore applied advanced NMR and MD techniques to unravel the structure 

and dynamics of these complexes with the hope to facilitate the development of new antibiotics and 

vaccines for infectious diseases, such as AIDS. As biological functions are manifested by interactions 

at a molecular level, understanding of structural properties of these biomolecules may consolidate 

related biomedical research.
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Chapter 1

Part I. General introduction of biomolecular recognition

Current advances in biological sciences are spurred by two major factors: our growing understanding of 

the nature of the basic elements involved in complex systems and the development of tools that provide 

higher performance. Seemingly recondite and impossibly complex, the physical and chemical nature 

behind the biological systems is, in fact, simple as stated by Linus Pauling and Max Delbrück in the early 

days of biological research when the development of Quantum Physics was at its apex (Pauling and 

Delbrück, 1940):

“It is our opinion that the processes of synthesis and folding of highly complex molecules in the living cell involve, in 
addition to covalent-bond formation, only the intermolecular interactions of van der Waals attraction and repulsion, 
electrostatic interactions, hydrogen-bond formation, etc., which are now rather well understood. These interactions 
are such as to give stability to a system of two molecules with complementary structure in juxtaposition.
... in order to achieve the maximum stability, the two molecules must have complementary surfaces, like die and 
coin, and also a complementary distribution of active group.”

 Biological function is the result of the interplay between two or more biomolecules, from duplication 

of genetic materials to immunogenic response or signal transduction. The effectiveness and correctness 

of the interactions determine the efficiency of these processes. Above all, recognition is the first step and 

is necessary in the cascade of events leading to functions. “Recognition is assembly plus specificity” (Janin, 

1995). Because of the large number of biomolecules and the even larger number of possible interactions 

between them, it is crucial to first collect all the pieces of the puzzle. It is this necessity that initiated the 

exploration of Genomics. Databases of complete genome sequences are now available for many model 

systems, including E. coli, yeast, C. elegans and man. The complete sequence of the genome of an organism 

encrypts all possible products, that is, the genes defined by the open reading frames (ORF), which are 

to be translated into proteins. Like the lexicon of a language, genes are encoded with four types of 

nucleobases, namely adenine (A), thymine (T), guanine (G) and cytosine (C), unlike the many different 

alphabets of complex languages or the Chinese characters. Immediately after genomic sequencing, 

functional mapping of the ORFs takes place. Unless the function of each ORF can be ascribed, a 

genome sequence is nothing but a series of DNA base pairs, just like an alphabet and punctuation, which 

are needed to assemble ideas into words, sentences, paragraphs and chapters (Pollack and Iyer, 2002). 

In short, the functional annotation of proteins is the objective of Functional Genomics. To advance from 

Genomics to Proteomics one requires genome-wide knowledge at different levels from multicelluar 

organism, single cell to single molecule (Tyers and Mann, 2003). However, one should bear in mind that 

the functional annotation can be biased by the choice of technique. Functions identified in vitro may not 

be always present in vivo (Sprinzak et al., 2003). Soon after completion and dissemination of the proteome, 

a complex molecular interaction network of the gene products will be constructed. The complexity of 

this is not only a result of the large number of interacting components but also the response profile in 

which time plays a crucial role. A field in the post-genomic era called Interactomics is now emerging (Ito 

et al., 2001; Bader and Hogue, 2002; Valencia and Pazos, 2002; Li et al., 2004). Ultimately, only when a 

comprehensive understanding of the components and a layout of the whole biological machinery is 

established, can we realise the idea of Reverse Engineering of systems biology (Csete and Doyle, 2002).
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 Along with the multidisciplinary effort on Proteomics, Structural Genomics (or Structural Proteomics) 

has proven to be amongst the most powerful approaches to provide insights into the functionalities of 

biomolecules (Burley et al., 1999; Sali et al., 2003). International efforts have been devoted to set up many 

Structural Genomics Consortia in North America (NIGMS), Japan (RIKEN) and Europe (SPINE)||. The 

idea behind Structural Genomics is simple: to determine as many protein structures in a genome-wide 

manner as possible because of the belief that the universe of compact protein structures is spanned by a 

limited number of basic topology folds, between 1000 and 5000 (Holm and Sander, 1996; Brenner et al., 

1997). Considering cost and efficiency, the search for novel folds is the top priority of most Structural 

Genomics pipelines. This effort requires data mining of genomic databases using bioinformatics. On-line 

servers such as DALI (http://www.ebi.ac.uk/dali/) and SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) 

are designated to categorise protein structures and folds when a new protein structure is determined. 

The significance of the knowledge of three-dimensional (3D) structures of biomolecules is that the 

functions are often conferred by the 3D structures (Branden and Tooze, 1998). As described by Pauling 

and Delbrück, the interaction interface requires complementarity of the two counterparts, not only 

geometrically but chemically; these functional structures, however, are not necessarily present all the 

time. Since the first characterisation of the 3D structure of nucleic acids (Watson and Crick, 1953) and 

proteins (Kendrew et al., 1958; Perutz et al., 1960) we now know that biomolecular structures are not 

static and that very often functionality requires substantial structural rearrangement upon recognition 

and complexation, i.e., induced fit (Graham et al., 2000; Williamson, 2000; Demarest et al., 2002). Also 

important are the intrinsically disordered proteins that exist despite a lack of well-defined 3D structure. 

Intrinsic flexibility, in turn, makes these disordered proteins entropically more favourable (Dunker et al., 

2001; Dyson and Wright, 2002). Folding and binding can be expressed in energetic funnel models, which 

attempt to describe the energetic landscape of conformational space and indicate the pathways toward 

the energetically favourable states (Wolynes et al., 1995; Xu et al., 1997a; Dobson et al., 1998; Tsai et al., 

1998; Tsai et al., 1999; Dinner et al., 2000; Kumar et al., 2000; Vendruscolo et al., 2001; Gruebele, 2002). 

One of the recent trends in Structural Biology is to understand how proteins fold into functional/native 

conformations; what are the causes that make proteins misfold, which can lead to many amyloid diseases, 

e.g. Alzheimer disease? How, if possible, can we divert the folding pathway into the desired ones (Dobson, 

2003)?

 Two proteins that share a high degree of primary sequence homology throughout evolution often 

posses similar folding topology and often similar functions. On the other hand, examples have shown that 

the similarity in 3D fold does not always imply a high primary sequence homology. How to decipher the 

structural information that is encrypted within the primary sequence of proteins is the ongoing Protein 

Folding problem (Dill and Chan, 1997; Fersht and Daggett, 2002; Plotkin and Onuchic, 2002a; Plotkin 

and Onuchic, 2002b). Recent progress in ab initio structure prediction has demonstrated the feasibility 

of predicting the tertiary protein structure from the primary sequence (Baker and Sali, 2001). This has 

become the objective of the Critical Assessment of methods of protein Structure Prediction (CASP) 

(Moult et al., 2003). Homology modelling can be achieved, in general, provided that a homologous 3D 

structure is known with a critical threshold of 30% sequence homology. The reverse problem to Protein 

|| Further information can be found in the following internet sites: NIGMS, http://www.nigms.nih.gov/psi/, RIKEN, http:// 

www.rsgi.riken.go.jp/, SPINE, http://www.spineurope.org/
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Folding is Protein Design: to design an artificial protein or even a new fold from scratch using the de novo 

knowledge-based approaches (Bryson et al., 1995; Harbury et al., 1998; Kuhlman et al., 2003). Likewise, 

when protein structures are available, the next step will be the ab initio prediction of protein-protein 

interactions (Valencia and Pazos, 2002) i.e., Interactomics in structural terms, as carried out in the Critical 

Assessment of PRedicted Interactions (CAPRI) (Janin et al., 2003). New emerging algorithms are trying 

to improve the prediction accuracy and reduce the degree of complexity by using experimental data 

concerning the geometry or the chemistry of the interactions that are readily available in literature, or, 

relatively easy to obtain compared to the time-consuming full structural determination of the complexes 

(Morelli et al., 2000; Dominguez et al., 2003).

 One immediate application of the knowledge of the 3D structure of a biomolecule is structure-

oriented site-directed mutagenesis, which allows to correlate in vitro structural models with in vivo 

bioactivities. Without a 3D model, mutagensis scanning can be extremely lengthy and tedious. The 

interpretation of the observed functionality is also limited to the primary sequence. It is worth noting that 

critical residues in a protein are usually close in space but might be dispersed in the primary sequence. 

Knowledge of the 3D topology thus provides key information to facilitate biochemical manipulation as 

such. Furthermore, when the interaction sites are mapped, those that are disease-related readily become 

the vantage points for the structure-based drug design (SBDD). Structure-activity relationship (SAR) by 

NMR spectroscopy is an approach that uses the structural information about the ligand binding site to 

derive compounds that have high specificity and activity (Shuker et al., 1996). It has now become widely 

used in the pharmaceutical industry for lead screening and rational drug design against potential targets 

instead of random screening of numerous small organic compounds.

Biomolecular interactions

At the time of writing this thesis, the coordinates of about 25000 biomolecular structures have been 

deposited in the Protein Data Bank# (PDB, http://www.rcsb.org/pdb/). The number of binary or higher 

order biomolecular complexes represents only a small fraction (~4%). Nonetheless, the limited number of 

high resolution structures of biomolecular complexes is valuable for systematic surveys of biomolecular 

interaction modes between proteins (Thornton et al., 1993; Mitchell et al., 1994; Janin and Rodier, 1995; 

Jones and Thornton, 1996; Larsen et al., 1998; Lo Conte et al., 1999; Glaser et al., 2001; Chakrabarti and 

Janin, 2002; Nooren and Thornton, 2003; Ofran and Rost, 2003), between protein and nucleic acid 

(Moodie and Thornton, 1993; De Guzman et al., 1998; Jones et al., 1999; Jones et al., 2001; Luscombe et 

al., 2001; Tolstorukov et al., 2004), and between protein and carbohydrate (Taroni et al., 2000). In contrast, 

structural understanding of the recognition of fatty acids is as yet limited to some special cases (Flower, 

1996; Holmquist, 1998; Sinensky, 2000). Throughout the various surveys, a few general measures have 

been used for the analysis of the structures of biomolecular complexes, namely, the size of the complex 

interface, the atomic packing or the density of the structure of the complex. The chemical composition 

at the interface, electrostatic and van der Waals contacts and hydrogen bonding, are also subjected to 

statistics. The interface area B of a complex, also expressed as the buried surface area (BSA), is defined as 

the difference between the sum of the solvent accessible surface (SAS) of the free components (SASfree) 

# PDB is not limited to protein structures. It also contains 3D structures of other types of biomolecules, such as nucleic acids 

and carbohydrates, and their complexes.



5

Biomolecular recognition

and the surface of the complex (SAScplx) (Wodak and Janin, 2003):

(1)BSA � �SAS � SASi
free

i
� � SAScplx

 

 

The contribution of each separate component is roughly equal for a binary complex and therefore the 

complex interface is sometimes quoted in literature as half the loss of SAS, i.e., (ΔSAS)/2 (Jones and 

Thornton, 1996). This, however, cannot account for complexes that consist of more than two components 

and therefore we choose to use the first convention in the following. There seems to be a correlation 

between the interface area and the specific function of biomolecules. For instance, the “standard size” 

protein-protein interfaces, as defined by Wodak and Janin, has an interface area of 1600±400 Å2 and 9±4 

intermolecular hydrogen bonds and the large surface, in turn, suffices to achieve very high stability. For 

protease-inhibitor or antibody-antigen complexes, which require higher specificity, the corresponding 

interface area is larger. Protein-nucleic acid complexes generally have smaller interface area (800±200 

Å2) with 24±6 amino acids and 12 ±3 nucleotides, while the interface area of enzymatic complexes is 

much larger (2200±250 Å2). Throughout these surveys, some important motifs were also identified for 

recognition: arginine is the most commonly used amino acid type for nucleic acid backbone recognition 

and the 2’ hydroxyl group of ribonucleic acid (RNA) plays an important role in the recognition process 

as well (Wodak and Janin, 2003). Depending on the functionalities of various systems, water is present in 

abundance at protein-protein and protein-nucleic acid interface. The bound water molecules often play 

an important role in the specificity of binding. Dehydration at the binding cavity is an important issue for 

the pharmaceutical design of high affinity ligands (Ladbury et al., 1994; Morton and Ladbury, 1996; Tame 

et al., 1996; Schwabe, 1997; Janin, 1999).

 As described in the beginning of this chapter, intermolecular interaction modes are simply dictated 

by the non-bonded interactions (Leckband and Israelachvili, 2001): Coulombic interactions (Honig and 

Nicholls, 1995; Sheinerman et al., 2000) (see review by Laberge, (1998) for a general introduction of the 

electrostatics of proteins), hydrophobic van der Waals interactions (Young et al., 1994; DeLano et al., 2000; 

Pitera and van Gunsteren, 2001) and hydrogen bonding (Borders et al., 1994; Shimoni and Glusker, 1995; 

Xu et al., 1997b; Sarkhel and Desiraju, 2004), whose partial covalent bond nature has, only recently, been 

confirmed experimentally by NMR spectroscopy (Dingley and Grzesiek, 1998; Pervushin et al., 1998; 

Dingley et al., 2001). A detailed description of the atomic structure of biomolecules and their complexes 

become necessary when one aims at dissecting the contribution of different modes of interaction, which 

would otherwise be impossible without structural knowledge. Conversely, structural insight needs to be 

complemented by biochemical assays in order to interpret it in the biological context.

 Knowledge of biomolecular structure rendering possible the dissection of non-bonded contributions 

has facilitated the understanding of how well recognition can be achieved and how stable the structure 

of the complex is in order to determine the affinity between the two counterparts. The affinity (KD) of 

any complex is given by a simple relation KD=koff/kon, which holds for many diffusion limited reactions. 

The on- and off-rates are limited by two distinct mechanism: The rate constant of association (expressed 

as kon) is limited by diffusion (Shoup et al., 1981; Shoup and Szabo, 1982) and can be increased by a 

favourable electrostatic force (Schreiber and Fersht, 1996); the rate constant of dissociation (expressed as 

koff) is determined by the strength of short range interactions, such as hydrophobic interactions, hydrogen 

bonding and salt-bridges. In conjunction with protein engineering, these principles have enabled us to 
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pinpoint the “hot spots” of binding interfaces (Bogan and Thorn, 1998), which serve as a blueprint for 

the rational design of a super-protein (Selzer et al., 2000; Selzer and Schreiber, 2001).

Part II. Lantibiotics and lipid II

Antibiotic resistance and the need for a new magic bullet

The emerging antibiotics-resistance problem, such as that of methicillin-resistant Staphylococcus aureus 

(MRSA), has underlined the urgent need for novel antimicrobial agents for infectious therapy. It has 

been reported that about 70% of bacteria found in hospital are resistant to at least one of the drugs most 

commonly used to treat infection. According to the Centres for Disease Control and Prevention (CDC) 

of the United States of America, the spread of nosocomial drug resistance amongst pathogens is growing 

annually at an alarming rate. Strains with some level of resistance to vancomycin, the last resort of clinical 

antibiotics, vancomycin-intermediate-resistant S. aureus, (VISA) have been reported since 1996 and the 

newly identified highly resistant strain (vancomycin-resistant S. aureus, VRSA) presents a new challenge 

to the battle against infectious pathogens (Hughes, 2003). In the search for future antimicrobial agents, 

a great deal can be learned from nature. Throughout evolution natural defence systems exploit a broad 

range of peptides that possess antimicrobial activities (Zasloff, 2002). Amongst the variety of antimicrobial 

peptides (AMPs), a prospective solution lies in a unique family of peptides called lantibiotics.

 Lantibiotics (lanthionine-containing antibiotics) are an antimicrobial peptide family produced by 

bacteria as defence weapons (Kuipers et al., 1996; Brötz and Sahl, 2000). The post-translationally modified 

lanthionine ring structures and dehydrated amino acids, such as dehydroalanine and dehydrobutyrine, 

which are the residual dehydration products in the ring-making process (Figure 1), are the hallmark of 

lantibiotics (Jack and Jung, 2000). Some additional modifications are also present in the N- and C-termini 

of various family members. To date, about 25 lantibiotics have been identified (Sahl and Bierbaum, 

1998; Guder et al., 2000). They are divided into two subfamilies, types A and B, based on the primary 

sequence, the lanthionine ring structure and, to a lesser extent, the functionality. Type A lantibiotics are 

generally longer than type B lantibiotics. Functionally, some type A lantibiotics can induce membrane 

permeability, disrupting the physiological membrane potential and causing the malfunction of the cell 

compartmentalisation. Type B lantibiotics, on the other hand, interfere with some enzymatic reactions, 

which are critical for the vitality of bacteria. Both type A and B lantibiotics can lead to cell death.

 Novel lantibiotics are usually purified and identified from co-incubation of lantibiotic-producing 

strains and infectious pathogens, from which the presence of antimicrobial agent is indicated by the 

inhibition of pathogen growth. Characterisation of their chemical structure is more complicated than 

of conventional peptides because of the lanthionine linkages and modified amino acids. Solution NMR 

spectroscopy, which is commonly used for the characterisation of the 3D structures of lantibiotics, is an 

alternative tool for the elucidation of the primary sequences and the positions of the lanthionine linkages, 

when conventional fragmentation sequencing by mass spectrometry fails (Gross and Morell, 1970; Chan 

et al., 1989; Mulders et al., 1991; Chan et al., 1992; Kuipers et al., 1992; Sailer et al., 1993; Smith et al., 2000; 

Martin et al., 2004).
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Functional characterisation of lantibiotics is another important issue that is not well established in many 

cases. Over the years, an emerging view of lantibiotics’ mechanistic mode of attacking bacteria involves 

of a common target molecule - the bacterial cell wall precursor, lipid II. Lipid II binding has been 

demonstrated for several lantibiotics, including nisin, one of the first identified (Brötz et al., 1998a; Brötz et 

al., 1998b; Brötz and Sahl, 2000). Nisin is nowadays commonly used in the food industry as a preservative. 

Nonetheless, understanding of the target recognition mechanism, which is essential for lantibiotic-based 

drug design, is limited and thorough structural insight is currently lacking.

Nisin

Nisin is a member of the type A lantibiotics (Figure 2A). It contains five lanthionine rings, namely rings 

A-E, and bears thirteen modified residues out of the thirty-four in total (38%). It is positively charged with 

three lysine residues and the amphipathic nature of nisin provides a potential to interact with the generally 

negatively charged bacterial membrane (Breukink and de Kruijff, 1999). Amongst several homologous 

type A lantibiotics (Figure 2B), nisin is the most extensively studied. It is also the only lantibiotic that is 

commercially used as preservative, known as E234, for cheese, milk products and beer. Nisin has been 

Figure 1. Formation of a lanthionine linkage. A. The L-form serine (R=H) or threonine (R=CH3) is dehydrated 
forming the Z-form substrate for the following thioether formation with the proximal L-form cysteine residue, 
which leads to the lanthionine linkage with the D- (S) and L-form (R) conformations of the sulphur accepting 
and donating residues, respectively. B. Stereochemical structure of the lanthionine linkage. The three and one 
letter codes of the corresponding residue types are shown below. C. Z-form dehydrated amino acids. These 
are the excess dehydration products from the lanthionine formation process when fewer cysteine residues are 
available. D. Additional cyclised C-terminal ring structure that is present in mersacidin and epidermine.

(2S,3S,6R)-3-Methyllanthionine 2,3-Didehydrobutyrine

N C

R OH

O
N C

R

O

N C

SH

O
N C

R

O
N C

S

O
N C

R

O

-H2O

Dehydration

+

Thioether
formation

(L) (Z)

(Z)(D) (L) (L)

N C C

C

O

R1 H

H

R1=H
2,3-Didehydroalanine

Dha (U)

R1 3=CH

Dhb (O)

NH

C
C C

C

NH

S

H

R2 H

H
H H

O O

(S)

(S) (R)

R2=H
(2S,3S,6R)-Lanthionine
Ala-S-Ala (A-S-A)

3R2=CH

Abu-S-Ala (A*-S-A)

NH

C
C NH

S

H

H3C H

H

O

(S)

(S)

(2S,3S,6R)-Decarboxylated-3-Methyllanthionine

a

dcb

A

B C D



8

Chapter 1

discovered in 1928. In 1960, the antimicrobial activity of nisin was first attributed to its capability of 

inducing the leakage of intracellular compounds of Clostridia cells (Ramseier, 1960). Twenty years later, 

other evidence suggested that nisin forms a complex with the lipid-bound peptidoglycan precursor 

and interferes in cell wall synthesis, which might account for its antimicrobial activity (Reisinger et al., 

1980). However, later studies demonstrated that nisin and other type-A lantibiotics exhibit membrane 

permeablisation ability that leads to a rapid efflux of cytosolic content and hence causes a rapid stop 

of biosynthesis and eventually cell death (Ruhr and Sahl, 1985). Since then, the pore-forming activity 

became a preferred mode of action to account for the antimicrobial activity of nisin. This was supported 

by several in vitro biophysical studies, primarily based on membrane vesicle leakage experiments (Breukink 

et al., 1997; Breukink et al., 1998; van Kraaij et al., 1998). The 3D structure of nisin was determined 

in aqueous solution (van de Ven et al., 1991; Lian et al., 1992), sodium docecylsulphate (SDS) and 

dodecylphosphocholine (DPC) micelles - membrane mimicking environments (van den Hooven et al., 

1996a; van den Hooven et al., 1996b). Because of the modified amino acids and the lanthionine linkages, 

nisin possesses no canonical secondary structure element but a number of β-turns in the lanthionine 

rings, which are predefined by the linkages. Efforts have focused on the elucidation the membrane surface 

location and the transmembrane orientation of nisin in order to envision a model for the pore-forming 

activity using a combination of solution and solid state NMR spectroscopy, fluorescence spectroscopy in 

conjunction with mutagenesis and other techniques (Driessen et al., 1995; van den Hooven et al., 1996b; 

Dykes et al., 1998; Lins et al., 1999).

Figure 2. Nisin and other type A lantibiotics. A. Primary structure of nisin. The post-translationally modified 
residues are indicated in grey circles and the lanthionine rings are indicated (-S-) with labels A to E from 
N- to C-termini, accordingly. B. Primary sequence alignment of type A lantibiotics. Nisin and subtilin form 
a subfamily of type A lantibiotics. Another subfamily consists of epidermin, [I1V,I6L]-epidermin, mutacin B-
Ny266 and mutacin 1140 (Guder et al., 2000; Smith et al., 2000) with a cyclised C-terminus (X: 2-aminovinyl-
D-cysteine, AviCys). The universally conserved residues are highlighted in black and the conserved residues 
within the subfamilies are shaded in grey. The lanthionine linkages are indicated above each subfamily.
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 A significant discrepancy exists, however, between the pore-forming activity of nisin in vitro and the 

observed minimal inhibitory concentration (MIC) required for its antimicrobial activity in vivo. Nisin is 

much more active than many non-specific pore-forming peptides in vivo, such as magainin, but it is much 

less active in vitro when tested using model membrane systems. The cause of this puzzle was revealed 

when the peptidoglycan cell wall precursor, lipid II - identified by Reisinger et al. in 1960 as the target of 

nisin - was shown to act as the membrane receptor molecule and to facilitate the pore-forming activity 

of nisin. The incorporation of lipid II provides a specific anchoring point for nisin during membrane 

association and insertion. This targeted mode of action, in turn, lifts the required concentration of pore 

formation from a micromolar (μM) to a nanomolar (nM) range (Breukink et al., 1999). This finding 

united the previously divergent views of the mode of actions of nisin. It also demonstrated a novel mode 

of action that is different from that of vancomycin and hence might be exploited for the development of 

novel antibiotics. The use of lipid II as an auxiliary molecule in the pore-forming activity of nisin is the 

first example of targeted pore formation and this finding has drastically changed the idea of the pore-

forming mechanism of nisin.

Lipid II

The bacterial cell wall is a cross-linked peptidoglycan matrix structure in the extracellular domain (Rogers 

and Perkins, 1968). It plays a central role in the vitality of cells because it is responsible for maintaining the 

shape of cells in resisting high osmotic pressure generated by the highly concentrated cytosolic contents 

and prevents the cell from bursting. Lipid II is the precursor of the monomeric peptidoglycan unit (Figure 

3). The basic building block of the cell wall consists of two amino sugars, N-acetylglucosamine (GlcNAc) 

and N-acetylmuramic acid (MurNAc), and a pentapeptide, often L-Ala-D-γ-Glu-L-Lys-D-Ala-D-Ala, 

which is attached to the carboxyl group of MurNAc (Figure 4A). These subunits are assembled in the 

cytosol on a membrane-anchoring carrier, undecaprenyl phosphate, yielding lipid II (GlcNAc-MurNAc-

pentapeptide-pyrophosphoryl-undecaprenol, see Figure 3; for reviews see (van Heijenoort, 1994; van 

Heijenoort, 2001)). Lipid II is thereafter transported to the extracellular domain and the peptidoglycan is 

detached for polymerisation (Figure 4B).

 The bacterial cell wall has been a major target for many antimicrobial agents (Katz and Caufield, 2003; 

Koch, 2003). More specifically, lipid II is amongst one of the most prominent targets for many antibiotics, 

such as vancomycin-like glycopeptides (Sheldrick et al., 1978; Ge et al., 1999), lipoglycodepsipeptide 

ramonplanin (Cudic et al., 2002; McCafferty et al., 2002; Hu et al., 2003; Montecalvo, 2003) and various 

lantibiotics (Brötz et al., 1997; Brötz et al., 1998a; Brötz et al., 1998b; Hsu et al., 2002; Hsu et al., 2003). 

Interfering with the lipid II synthesis machinery, which involves a series of enzymatic reactions with 

a broad spectrum of Mur enzymes (Figure 4), also has a great potential for novel antibiotics (Lazar 

and Walker, 2002; El Zoeiby et al., 2003). The chemical complexity of lipid II is a major challenge for 

large-scale synthesis, which is required for various research approaches. Recently, a number of synthetic 

protocols have been reported for the production of lipid II and its derivatives (Lo et al., 2001; Schwartz et 

al., 2001; VanNieuwenhze et al., 2001; Ye et al., 2001; VanNieuwenhze et al., 2002; Breukink et al., 2003). 

3D structural studies of lipid II, however, are still limited (Fermandjian et al., 1987; Matter et al., 1997; van 

Asselt et al., 2000; Feher et al., 2003).
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Figure 3. A. Chemical structure and B. 3D model of lipid II. The 3D model is a representative structure taken 
from a five nanosecond MD simulation trajectory of lipid II in a membrane with 128 1-palmitoyl-2-oleoyl-
phosphocholine (POPC) molecules in an explicit water box. The regions of the head groups and the acyl chains 
of the POPC bilayer are indicated.
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Lipid II-mediated pore formation by nisin

After the discovery of the targeting mechanism of nisin, a mutagenesis study revisited the structure-

function relationship of individual amino acids of nisin with respect to lipid II binding affinity and pore 

formation in vitro and the in vivo antimicrobial activities (Wiedemann et al., 2001). It was shown that the 

lipid II binding specificity of nisin is very sensitive to the structural composition and integrity of the 

lanthionine rings as well as to the flexibility at the hinge region that is required for conformational changes. 

For instance, a relatively small change as the introduction of a methyl group in ring A by a [S3T] point 

mutation resulted in a large reduction in the bioactivity. Similar functional disruption was observed when 

a monosulphide linkage was replaced by a disulphide bond with a [T13C] point mutation. In accordance 

with previous studies, the lipid II binding specificity of nisin was attributed to the N-terminal part, i.e., 

rings A-C, while the C-terminal part was found to be responsible for the membrane insertion, which 

is required for pore formation (Breukink et al., 1998). In order to describe the recognition mechanism 

in detail, we have mapped the lipid II binding interface onto the N-terminal part of nisin using NMR 

spectroscopy in SDS micelles (Chapter 2) (Hsu et al., 2002). The most affected part of nisin upon lipid II 

binding coincides with the minimal structural element for residues 1-12,  antagonising full-length nisin’s 

activity of inhibiting bacterial growth, suggesting this fragment as the lipid II binding motif (Chan et al., 

1996).  Additional perturbations in ring C also indicate that ring C is involved in lipid II or membrane 

interaction, without which the activity of nisin is basically abolished (Chan et al., 1996). Upon lipid II 

binding, the C-terminal part of nisin inserts into the membrane bilayer in a perpendicular orientation 

with respect to the membrane surface. Finally, the assembly of the nisin/lipid II complex takes place 

to complete the formation of a metastable pore complex (van Heusden et al., 2002). In this multi-step 

process, the formation of the nisin/lipid II complex reduces the three-dimensional diffusion of nisin into 

two-dimensional lateral diffusion on the membrane surface along with lipid II. Clustering of nisin/lipid 

II complexes occurs prior to the membrane permeabilization. The specific pore structure is assembled 

thereafter. The efficiency of nisin anchoring onto the membrane is an important factor. Reducing the 

number of isoprene repeats to less than four can substantially diminish the pore-forming activity of nisin 

whereas modifying the type of lipid chain from a unsaturated polyprenyl chain to a saturated dolichol 

chain does not affect nisin’s activity (Breukink et al., 2003).

 What is important but remains elusive is the structural detail of the multi-step pore-forming process 

from target recognition to pore assembly. Preliminary data have indicated that the initial recognition of 

nisin and lipid II has a binding stoichiometry of 1:1. This is followed by the binding of another nisin 

molecule to a second association site on lipid II in order to complete pore formation. This hierarchy 

of lipid II binding for nisin is very different from that of another lipid II binding peptide, ramoplanin. 

Ramoplanin by itself exists as a dimer (Lo et al., 2001) and it binds to lipid II with a 2:1 stoichiometry 

without the binding hierarchy of nisin (Hu et al., 2003). A putative interaction mode between ramoplanin 

and lipid II, primarily electrostatic, was proposed based on chemical shift perturbations and a few 

intermolecular nuclear Overhauser effects (NOEs) but the structure of the complex is thus far unavailable 

(Cudic et al., 2002). An important message of these studies is that lipid II has several potential binding sites 

for various types of antimicrobial peptides. Conjecturing from the stoichiometry determined by excimer 

fluorescence spectroscopy*, a rough size estimate of the transient pore complex observed in atomic force 

microscopy (AFM)§ and black lipid membrane study (Wiedemann et al., 2004) in conjunction with an 

MD simulation of lipid II in a model membrane bilayer†, a stable nisin/lipid II pore likely consists of 
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Figure 4. Chemical synthesis pathway of lipid II. A. Conversion of UDP-N-glucosamine to UDP-N-
acetylmuramyl pentapeptide by the sequential action of MurA to MurF enzymes (labelled in black filled circles). 
UDP-GlcNAc, UDP-N-acetylglucosamine; UDP-GlcNAc-EP, UDP-N-acetylglucosamine enolpyruvate; 
UDP-MurNAc, UDP-N-acetylmuramic acid; mDAP, meso-diaminopimelic acid; G+, Gram-positive bacteria; 
G-, Gram-negative bacteria. The difference in peptide composition between G+ and G- is highlighted in grey 
circles. Figure adapted from (El Zoeiby et al., 2003). 
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eight nisin and four lipid II molecules with a pore size of about 2-2.5 nm. However, a higher resolution 

picture is urgently needed to describe the pore complex in details. In Chapter 3 the structural details of 

the initial stage of the pore-forming process, namely the recognition of lipid II by nisin, are addressed. The 

recognition of lipid II is mainly achieved via hydrogen bonding between the backbone of the N-terminal 

part of nisin and the pyrophosphate moiety of lipid II. The pyrophosphate cage, as proposed from the 

solution structure of the nisin/lipid II complex, is probably a common structural motif amongst the lipid 

II-binding type-A lantibiotics. It also provides a very prominent structural template for the development 

of future antibiotics because of the essential role played by the pyrophosphate moiety of lipid II in cell 

wall synthesis.
 

Interactions between mersacidin and lipid II

Mersacidin is an example of type-B lantibiotics (Figure 5), which are generally shorter in primary 

sequence and exhibit compact and globular 3D structures. Mersacidin contains four lanthionine rings 

Figure 4 (continued). B. Attachment of UDP-MurNAc-pentapeptide onto the membrane (grey area) carrier, 
phosphoryl undecaprenyl (C55-P) to the formation of the extracellular peptidoglycan matrix. The pentapeptide 
is shown in five grey circles.
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in only twenty residues. It is highly hydrophobic with only one negatively charged residue, Glu17 

(Bierbaum et al., 1995). High resolution structures of mersacidin were solved in methanol both by 

NMR spectroscopy (Prasch et al., 1997) and X-ray crystallography (Schneider et al., 2000), the latter 

providing the only crystal structure amongst the lantibiotic family to date. Mersacidin shares some degree 

of primary sequence homology with other examples of type-B lantibiotics, actagardine and lacticin A1, 

especially in the conserved consecutive lanthionine rings and the glutamic acid residue (Figure 5). The 

primary sequence conservation also results in structural homology because of the confined ring structure 

(Zimmermann and Jung, 1997; Martin et al., 2004). The conservation of this structural element, and of 

Glu17 in particular, has lead to the hypothesis that it is preserved as a target binding motif. Mersacidin 

recognises lipid II and, in contrast to the pore-forming activity of type-A lantibiotics such as nisin, 

interferes with transglycosylation in cell wall synthesis via complexation to lipid II (Brötz et al., 1995; 

Brötz et al., 1997; Brötz et al., 1998a).

 We have applied NMR spectroscopy to study the interaction between mersacidin and lipid II in 

DPC micelles (Chapter 4) (Hsu et al., 2003). To our surprise initially, the results show large environment-
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dependent conformational changes, which demonstrate the structural variability of mersacidin in spite 

of the seemingly rigid lanthionine structure. In fact, the structural rigidity provided by the lanthionine 

linkages is limited. As is demonstrated in our NMR study, changing the backbone torsion angle at the 

hinge region can effectively modulate the charge distribution in the 3D structure in response to the 

hydrophobicity of the surrounding environment. A functional role for the charged Glu17 and the N-

terminus is proposed, based on their increase in accessibility upon addition of lipid II: lipid II recognition 

is driven by electrostatic interactions. This structure-based hypothesis has been later confirmed by site-

directed mutagenesis (Szekat et al., 2003). Although little is currently known about the structure of 

the mersacidin/lipid II complex, partly due to the weak binding affinity, we have demonstrated that 

mersacidin is able to adapt different conformations that are functionally important.

Use of NMR in the studies of lantibiotics and lipid II interactions

In the past three decades, advances of solution NMR spectroscopy have opened doors for biologists to 

investigate intermolecular interactions in complexes of large biomolecules (Fiaux et al., 2002). The leap in 

the upper limit of NMR-reachable molecular sizes (current record is the complete backbone assignment 

of a protein with 723 residues (Tugarinov et al., 2002)) was made possible by innovative isotopic labelling 

(Gardner and Kay, 1998), NMR methodology (Pervushin et al., 1997; Tjandra and Bax, 1997; Tjandra et 

al., 1997; Riek et al., 1999; Sattler et al., 1999; Pervushin, 2000) and cryo-probe technology. This section, 

however, will be limited to the description of methodologies applied in this thesis.

NMR titration and chemical shift perturbation

A general feature of NMR spectroscopy is that the observed resonance frequencies depend on local 

environments of individual nuclei. The position of resonance frequencies in an NMR spectrum, 

called chemical shift, is very sensitive to the chemical environment. It is frequently used as an indicator 

of interaction in NMR titration experiments to pinpoint the interaction site. In a two-site exchange 

situation, a given nucleus exchanges with rate constant k (expressed in s-1) between two magnetically 

distinct sites, corresponding to the free and bound states, with resonance frequencies separated by a 

chemical shift difference ΔΩ (expressed in Hz). The position and linewidth of the observed signal are 

determined by the relative size of the exchange rate and the chemical shift difference between the two 

states. In a fast exchange regime, k >> ΔΩ, a population weighted signal of the free and bound forms 

can be observed. This is particular useful for deriving the position of the bound form signal by following 

the population weighted signals during the course of a titration (e.g. mersacidin/lipid II interaction in 

Chapter 4). The binding affinity Kd under NMR conditions, assuming a zero order reaction, can also be 

derived from the chemical shift perturbation Δδ as a function of the ligand/protein molar ratio. On the 

other hand, in a slow exchange regime, k << ΔΩ, two distinct resonances are observed, corresponding to 

the free and bound form signals. As the concentration of the interaction partners increases, the free form 

signal decreases and vanishes until the bound form is fully populated (e.g. nisin/lipid II interaction in 

Chapters 2 and 3). Coalescence occurs when the exchange rate is of the same order of the chemical shift 

separation of the two sites k ~ ΔΩ. This case, termed intermediate exchange, leads to line broadening and 

possible peak disappearance in a spectrum because of poor signal-to-noise ratio. Very often, this undesired 

situation can be circumvented by changing sample temperature so that the exchange rate is shifted to a 

fast or slow exchange regime.
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 In nature, biomolecular complexes are often found transiently because of the need for regulation. 

The lack of a stable complex is a common obstacle for structure determination by X-ray crystallography 

and NMR spectroscopy. However, obtaining chemical shift perturbations of transient complexes is rather 

straightforward (Crowley and Ubbink, 2003). After backbone assignment of the 1H-15N heteronuclear 

single quantum coherence (HSQC) spectrum, which provides a finger print of each backbone amide 

group, the interaction site can be immediately identified by monitoring the shift of peak positions. 

Chemical shift perturbations combined with 3D structure of proteins are routinely used in NMR studies 

to map binding sites (Zuiderweg, 2002). The use of this information has been extended to the modelling 

of protein-protein complexes, which was proven to be advantageous compared to purely ab initio docking 

approaches (Palma et al., 2000; Dominguez et al., 2003).    

Temperature coefficient analysis

The chemical shift of a peptide backbone amide proton (HN) is very sensitive to hydrogen bonding, which 

has a direct impact on the electron structure of this proton. The formation of a hydrogen bond with the 

amide proton is usually observed by a large downfield shift in NMR spectra along the proton dimension 

(Baxter and Williamson, 1997; Cierpicki and Otlewski, 2001). The presence of stable hydrogen bonds 

within a biomolecule is commonly inferred from hydrogen-deuterium (H/D) exchange experiments as 

the intramolecular hydrogen bonded amide protons have a lower exchange rate with the bulk solvent 

(Englander and Mayne, 1992; Englander and Krishna, 2001). The presence of a hydrogen bond can 

also be experimentally confirmed by measurement of scalar coupling across the hydrogen bond, which 

is originated from partial covalency (see below). For small peptides, however, the lack of secondary 

and tertiary structure leaves the backbone amide protons unprotected and therefore H/D exchange 

experiments are not useful: all amide protons will be exchanged by deuterium within the dead time 

(in a range of 10-20 minutes) of the experiment. Instead, the temperature coefficient of chemical shifts, 

Δδ/ΔT, can be used to describe the extent of involvement in hydrogen bonding of those amide protons 

in peptides.

 The temperature coefficient gives the linear dependency of a chemical shift of the amide proton 

with respect to the sample temperature. The idea behind this is the assumption that the hydrogen bond 

length between the amide proton and hydrogen bond acceptor is temperature dependent. On increasing 

the temperature, the hydrogen bond weakens and lengthens as a result of thermal expansion of the system 

(Baxter and Williamson, 1997). The hydrogen bonded amide proton chemical shift moves relatively 

upfield with increasing temperature. The extent of hydrogen bond length increase differs between inter- 

and intramolecular hydrogen bonds. An amide proton that is hydrogen bonded to the bulk water oxygen 

is more sensitive to the temperature change and its temperature coefficient is of the same order as that of 

the water signal. An intramolecular hydrogen bond within a biomolecule, on the other hand, is more inert 

to the thermal expansion and hence its temperature dependency is smaller. However, the temperature 

coefficient is not definitive in indicating the formation of hydrogen bonds (Baxter and Williamson, 1997) 

because it is also sensitive to other effects such as the sequestering from bulk solvent due to hydrophobic 

contacts. Therefore, temperature coefficient analysis is usually used in a comparative manner to monitor 

the degree of protection, not as conclusive evidence of hydrogen bonding, in different environments or 

upon complex formation (cf. Chapters 2 and 3).



17

Use of NMR spectroscopy

Cross-hydrogen bond scalar coupling

Hydrogen bonds play an important role in biomolecular structure and function. They are the determinant 

of protein secondary structure (Pauling and Corey, 1953) and are the origin of base pairing in nucleic 

acids (Corey and Pauling, 1956). The concept of covalency of the hydrogen bond was first appreciated by 

Linus Pauling (Pauling, 1935; Pauling, 1967) but experimental proof only became available in recent years 

(Dingley and Grzesiek, 1998; Pervushin et al., 1998; Isaacs et al., 1999). Detection of a hydrogen bond by 

solution NMR exploits the underlying nature of scalar coupling across the hydrogen bond. Since then, 

various types of hydrogen bonds have been identified in biological systems (Dingley et al., 2001).

 In nisin/lipid II interactions, the pyrophosphate group of lipid II is essential for recognition as 

observed by solid state NMR spectroscopy‡. The advantage of phosphorous detection by NMR is that 
31P nuclei have a natural abundance of 100%, which obviate the need for isotope labelling of lipid II. 

Based on the concept of J-coupling modulated NMR spectroscopy, hydrogen bonds between phosphates 

and peptide amides have been previously observed (Löhr et al., 2000; Mishima et al., 2000). In a nisin/

lipid II complex where the amide nitrogen (15N) and the phosphorous (31P) nuclei are in separate 

molecules, namely nisin and lipid II, a nitrogen to phosphorous scalar coupling can only be established 

across intermolecular hydrogen bonds. We employed the 31P-edited 1H-15N HSQC experiment for the 

detection of intermolecular hydrogen bonds and the result is clearly illustrated in the difference spectrum 

in which only the contribution of the nitrogen to phosphorous scalar coupling is observed (Figure 6). 

This has served as key evidence for the intermolecular interactions between nisin and lipid II.

Pulse field gradient diffusion measurement

Another tool for monitoring the formation of biomolecular complexes in solution is the use of pulse 

field gradient diffusion NMR spectroscopy. This method measures the effective hydrodynamic radius Rh 

of a molecule or complex of interest based on the translational diffusion rate Dtrans using the so-called PG-

SLED experiment (Pulse Gradient Stimulated echo Longitudinal Encode-Decode) (Morris and Johnson, 

1993; Altieri et al., 1995). The translational diffusion rate Dtrans can be derived from the signal decay rate 

as a function of the applied gradient strength. It can also be derived from the relative diffusion rate with 

respect to an internal standard with a known hydrodynamic radius. The translational diffusion rate in turn 

gives the apparent hydrodynamic radius of the molecule Rh by the Stoke-Einstein relation

Dtrans � kBT
6��Rh

(2)

where kB is Boltzmann’s constant, T the absolute temperature and η the solvent viscosity. It is worth 

noting that the assumption of the molecule as a rigid and spherical particle is made in this derivation. 

Nevertheless, this approximation has been successfully tested in several studies in combination with small 

angle X-ray scattering (SAXS) (Jones et al., 1997; Wilkins et al., 1999). We applied this methodology in 

conjunction with 15N relaxation measurements to discern the contribution between complex formation 

and solvent viscosity change during the complex formation between mersacidin and lipid II in the 

presence of DPC micelles. Further details are presented in Chapter 4.

 ‡ Bonev, B., Breukink, E., Swiezewska, E., de Kruijff, B. and Watts, A., submitted.
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Structure determination of complexes by NMR

Biomolecular interactions can be best described when a stable complex is available for structure 

determination by NMR spectroscopy. Intermolecular NOEs provide the key information to describe the 

structure of a bimolecular complex. The NOE is the manifestation of spin dipole-dipole cross relaxation 

(Neuhaus and Williamson, 1989). The NOE intensity (Iij) of an isolated spin pair i and j is inversely 

proportional to the sixth power of the spatial separation between the spin pair

Iij � rij
�6

(3)

where rij the distance between the two nuclei. However, in large systems with many protons close in space, 

like most biomolecules, spin diffusion is involved and hence accurate extraction of distances from NOEs 
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Figure 6. Detection of intermolecular hydrogen bond by NMR. A. Pulse sequence of the 31P-edited constant 
time (CT) 1H-15N HSQC spectroscopy; B. reference spectrum; C. difference spectrum (31P-coupled and 
decoupled) of 15N labelled nisin in complex with 3LII. The thin and thick bars correspond to 90º and 180º 
pulses for individual nuclei. The reference spectrum (the inversion pulse of 31P shown in dashed rectangular 
is synchronised along with the refocusing pulse of 1H during constant time) removes the cross hydrogen bond 
scalar coupling 3JNP during the t1 evolution (CT=120 ms). The difference in peak intensity between the reference 
and coupled spectra implies hydrogen bond modulation during the constant time, shown in c. The amide groups 
of O2 and A*8 of nisin are hydrogen bonded to the pyrophosphate of 3LII (for details see Chapter 3).
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between a large set of atoms requires a relaxation matrix calculation (Bonvin et al., 1991; Bonvin, 1993). 

Typically the distance information contained in homonuclear 1H-1H NOEs is limited to a maximum 

of 5-6 Å, although longer distances up to 8 Å can be derived in a perdeuterated molecule (Koharudin 

et al., 2003). A more serious problem in determining the solution structure of peptides is dynamical 

averaging, which stems from their inherent flexibility. For this reason, the derivation and use of distances 

from observed NOEs requires the consideration of ensemble averaging (Bonvin et al., 1993; Bonvin and 

Brünger, 1995; Bonvin and Brünger, 1996) or time-averaging (Torda et al., 1990; Nanzer et al., 1994).

 One of the time-limiting steps in solution structure determination is the assignment of a large number 

NOEs. Intermolecular NOEs are usually difficult to identify amongst the dominating intramolecular 

NOEs. With the help of isotope labelling, the combination of labelled and unlabelled components of the 

complex permits the extraction of intermolecular NOEs from isotope-filter experiments (Otting and 

Wüthrich, 1989; Slijper et al., 1996). Other approaches such as saturation transfer of magnetisation across 

the complex interface have been proposed (Takahashi et al., 2000). These are useful tools for separating 

the intra- and intermolecular NOEs. Yet, as the molecular size increases, the total number of NOEs 

increases accordingly. Typically a well-defined protein structure yields 15-30 NOEs per residue, i.e., 

>1000 NOEs for a moderate protein domain of about 100 residues. Automated assignment methods for 

NOESY-type spectra have been devised to shorten the labour-intensive process and reduce the potential 

errors originating from biased manual assignment (Nilges et al., 1997; Linge et al., 2001; Herrmann et al., 

2002). Nevertheless, complete assignment of side chain resonance frequencies is required and spectral 

overlap can limit the performance of the assignment. Although the complexity of NOEs is usually not 

a main concern for small peptides, the advantage of automation is at any rate favoured for structure 

determination. Furthermore, several parameters have been developed, such as residual dipolar coupling 

(RDC) (Tjandra and Bax, 1997) and backbone relaxation anisotropy (Tjandra et al., 1997), in order to 

provide long-range order to circumvent the limitation of short-range NOE-based structure calculation. 

These, however, are usually not applicable for small peptides that lack well defined globular structure. 

Perhaps one useful application of these orientational restraints is the use in defining the orientation and 

curvature of a membrane binding peptide. The structure of these peptides can sometimes be affected 

by the interaction with various membrane mimicking environments, such as micelles and bicelles, but 

these changes are difficult to be discerned by NOE-based approaches (Chou et al., 2002). Finally, the 

development of better force fields and refinement protocols in an explicit solvent model also contributes 

to the improvement of the quality of solution structures by NMR (Linge et al., 2003).

Part III. HIV-1 Env gp120 and CD4

HIV and AIDS

The epidemic of Acquired Immune Deficiency Syndrome (AIDS) has become a major challenge 

of modern medicine since the first reported case in 1982. While current treatments are focusing on 

containing the disease, at best, the development of an anti-HIV vaccine is a top priority in laboratory 

research (Baltimore, 2002; Gaschen et al., 2002). AIDS is attributed to the infection of type-1 Human 

Immunodeficiency Virus (HIV-1), which deteriorates the natural defence system against infection. 

According to a report undertaken by the World Health Organisation (WHO, http://www.who.int) in 

December 2003, there are currently more than forty million people living with HIV/AIDS worldwide. 



20

Chapter 1

In the year 2003 alone, five million new cases of HIV infection have been reported and three million 

deaths have been attributed to AIDS. Southern Africa is the worst hit area in the world: 65% of the cases 

occur in this area and 40% of the population of Bostswana and Swaziland is infected. 

 A vaccine, by definition, is a substance put into the body to elicit immune response by which 

pathogen-specific antibodies can be produced to neutralise the pathogen. Thereby the infection can 

be inhibited. To devise an effective vaccine, we need to know the structure of the pathogen - because 

vaccines are structural fragments or mimics of pathogens that are recognised by the immune system 

(Wyatt et al., 1998; Letvin et al., 2002).

 HIV-1 is a type 1 RNA retrovirus, which hijacks the bio-machinery of host cells for its reproduction. 

This requires the delivery of the viral genetic material into the host by direct fusion of the viral and host 

plasma cell membranes so that the viral genome can be integrated in that of the host cell (Figure 7) 

(Eckert and Kim, 2001a; Colman and Lawrence, 2003; Gallo et al., 2003). Two decades of the best efforts 

have yielded a wealth of structural data on HIV-1 proteins (Figure 8) (Turner and Summers, 1999). The 

structural knowledge on HIV-1 viral proteins forms the basis of vaccine design efforts against HIV-1. 

Inhibitors of some important enzymes, such as HIV-1 protease, have been developed from structural 

information (Wlodawer et al., 1989; Prabu-Jeyabalan et al., 2002); some of these inhibitors are now in 

clinical use as drugs (Cameron et al., 1999). In the context of vaccine design, the envelop proteins (Env), 

gp120 and gp41 (Figures 7 and 8), have received the most attention because they are located on the 

surface of the virion and are exposed to immune attack. Furthermore, the recognition of the envelope 

protein gp120 and the human helper T-cell receptor, CD4, is the initial step that triggers subsequent 

co-receptor binding (Davis et al., 1992; Poignard et al., 2001), insertion of the membrane fusion peptide 

of gp41 and finally fusion of the viral and host cell membranes (Melikyan et al., 2000; Gallo et al., 2001; 

Colman and Lawrence, 2003). Thus, a vaccine that can block the initiation process can effectively prevent 

viral entry and therefore inhibit infection (Chan and Kim, 1998; Eckert et al., 1999; Eckert and Kim, 

2001a; Eckert and Kim, 2001b; Root et al., 2001; Barbato et al., 2003).

The envelope glycoprotein of HIV-1

HIV-1 Env is synthesized as a polyprotein (gp160). It folds and trimerizes in the endoplasmic recticulum 

(ER) where ten disulphide bonds are formed and ~30 N-linked glycans are attached (Leonard et al., 1990). 

Env is subsequently cleaved in the Golgi complex into a soluble part, gp120 (SU), and a transmembrane 

part, gp41 (TM) (Moulard and Decroly, 2000) (Figure 8). These subunits are assembled on the virion 

surface in a trimeric spike structure with three gp120 non-covalently attached to a stalk structure 

consisting of three gp41 (Wyatt and Sodroski, 1998). Both gp120 and gp41 are heavily glycosylated, the 

glycans representing a third of the total mass. Correct disulphide bonding and glycosylation are required 

to pass the quality control machinery of the ER and errors in these modifications will lead to retention 

in the ER lumen (Land et al., 2003). The 3D structures of gp120 (Kwong et al., 1998; Kwong et al., 

2000a) and gp41 (Chan et al., 1997; Weissenhorn et al., 1997) were determined by X-ray crystallography. 

The information obtained was, however, limited to the core regions. A large portion of both proteins 

was truncated for crystallisation due to the intrinsic flexibility of several loops and of the termini. Most 

glycans were also absent in the structures. From immunogenic (Sattentau and Moore, 1991; Moore and 

Sodroski, 1996) and thermodynamic studies (Myszka et al., 2000), we know that the structure of gp120 

undergoes a substantial rearrangement upon binding to CD4 and to the co-receptor, primarily CCR5 or 
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CXCR4 (Moore and Binley, 1998; Berger et al., 1999). The structural change in gp120 initiates a more 

dramatic change in gp41 from a metastable, pre-fusogenic state, to an extended coiled-coil, pre-hairpin 

state, in which the N-terminal fusion peptide is inserted into the host cell membrane, and finally to a six-

hairpin bundle, which drives the membrane fusion (Chan and Kim, 1998; Melikyan et al., 2000; Eckert 

and Kim, 2001a). Unfortunately the mechanism of the whole fusion process is still poorly understood. 

We can only intrapolate models based on the structures corresponding to the two end states of the fusion 

process, the gp120/CD4 complex providing the starting structure and the ectodomain of gp41 the end 

state.

 The third hypervariable loop (V3) in gp120 (Figure 8) is another focus in the field of vaccine design 

because it is found to contain the principle neutralising domain (PND) (Gorny et al., 1993). It is also 

crucial for the recruitment of the co-receptor, most likely because of its highly basic nature that confers 

an attraction gradient to the generally acidic co-receptors (Rizzuto et al., 1998). Despite its variable 

sequence composition, a well-conserved region of the V3 loop, GPRG, is found between two antiparallel 
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Figure 7. Life cycle of HIV-1. The first step of viral entry is the engagement of the trimeric envelope proteins 
gp120 and gp41 (indicated in dashed circle) with the receptor CD4 and subsequently the chemokine co-receptor 
CCR5 or CXCR4.
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Figure 8. Genome and encoded proteins of HIV-1. Three reading frames of the viral genome (Top panel) 
encode the viral structural capsid proteins (gag), functional enzymes (pol), envelope proteins (env) and other 
accessory and regulatory proteins: Vpr, Vpu, Vif, Rev and Tar. A schematic viral particle is shown below with 
the corresponding 3D structures. Those whose structures are not available or are only partially available are 
highlighted in black and grey boxes in the corresponding reading frames (Top). The fi gures are generated 
using Pymol with PDB entries of 1TAM (matrix, MA), 1AK4 (N-terminal caspid, CA), 1AFV (C-terminal 
caspid, CA), 1A1T (nucleocaspid, NC, in complex with its recognition RNA element), 1HXW (protease, PR), 
1RTD (reverse transcriptase, RT, in complex with the DNA template), 1KGY (N-terminal and core domains 
of integrase, IN), 1IHV (C-terminal integrase), 1ENV (trimeric ectodomain of gp41, TM, in the post-fusion 
state), 1G9M (core gp120, SU, with the V3 and V4 loop modelled by Swiss-Model (Guex and Peitsch, 1997) and 
the position of the truncated V1/V2 in grey circle), 1CEU (Vpr), 1AUZ (Nef core) and 1ETF (Rev fragment 
in complex with its response RNA element).
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beta strands. Its structure is heterogeneous, forming various types of turn structures. Solution NMR 

studies have shown that the V3 loop in isolation is flexible and with no defined structure (Tolman et al., 

1993; Vranken et al., 1995; Zvi et al., 1995; Catasti et al., 1996). Because of the sequence heterogeneity and 

the structural polymorphism, the monoclonal antibodies (MAbs) that have been elicited against V3 loops 

of various clinical isolates usually lack a general neutralisation capacity. This is presumably because of the 

structural polymorphism of the V3 loop in complex with antibodies as has been demonstrated by NMR 

spectroscopy (Tugarinov et al., 1999; Tugarinov et al., 2000; Sharon et al., 2003) and X-ray crystallography 

(Ghiara et al., 1994; Ghiara et al., 1997; Stanfield et al., 1999). Only recently was an antibody found 

that recognises the backbone of the conserved GPRG region of the V3 loop in an unique triple strand 

configuration, leading to broad neutralisation against HIV-1 (Stanfield et al., 2004).

 Monomeric gp120 is commonly used as a model system for experiments in vitro. In fact, it also 

exists in vivo since shedding of gp120 from the virion surface can occur spontaneously (McKeating et 

al., 1991; Layne et al., 1992) or upon binding of soluble CD4 to Env (Moore et al., 1990; Dimitrov et 

al., 1992). The structural difference between the monomeric and trimeric gp120 most likely provides 

a conformational camouflage for HIV-1 to evade immune neutralisation (Jardetzky, 2002; Kwong et al., 

2002). The importance of the trimeric state of gp120 for efficient membrane fusion has enlightened the 

development of gp120-based vaccines. Nonetheless, many pieces of the puzzle are still missing. What 

does free gp120 look like? How are the three monomeric gp120 molecules organised into a trimeric 

structure? What are the roles of those hypervariable loops that are missing in the solved structures? And 

how do gp120 and gp41 interact and form the heterohexameric spike structure? Some of these issues 

have been addressed by molecular modelling of trimeric gp120 based on the structure of the monomeric 

gp120 (Kwong et al., 2000b), by cooperative binding of two antibodies that separately recognise the 

CD4-binding epitope and the V1-V3 loops (Zwick et al., 2003), and by disulphide bond engineering 

between gp120 and gp41 (Sanders et al., 2000). However, little is understood about the role of dynamics 

in this envelope-mediated membrane fusion process so far.

CD4-mediated HIV-1 viral entry

The modes of membrane fusion of influenza virus, paramyxovirus and HIV-1 belong to type 1 viral 

membrane fusion (Colman and Lawrence, 2003). These viruses use the common spike structure of the 

envelope proteins, all in trimeric form - the haemagglutinin (HA) for influenza virus and the Env for 

HIV-1 - for host cell recognition followed by insertion of the hydrophobic fusion peptides. Membrane 

fusion requires a large conformational change in at least one of the envelope proteins. The fusion of 

influenza virus is triggered by a local pH decrease as it is being internalised by endosome, whereas 

HIV-1 fusion is pH independent and solely mechanical. Furthermore, the kinetics of the fusion process 

conducted by the envelope of HIV-1 is quite slow, with a half time of about 20 minutes to reach 

maximum fusion, as inferred from a study using Simian Immunodeficiency Virus (SIV) (Gallo et al., 

2003). In this regard HIV-1 and influenza virus are very different, as the kinetics of membrane fusion of 

the latter is less than half a minute.

 CD4 is a receptor molecule that is primary presented on the surface of the helper T-cell. It increases 

the cooperative association between a T cell and an antigen-presenting cell by interacting with non-

polymorphic portions of the complex between class II major histocompatibility complex (MHC) and 

T-cell receptor molecules. CD4 is also the target of HIV-1. Its binding to gp120 initiates viral entry 
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into the host cell. CD4 is anchored onto the membrane with four extracellular immunoglobulin-like 

domains, namely D1-D4. Both class II MHC and HIV-1 gp120 bind to the distal D1 domain with the 

critical residue of CD4, Phe43, centred in the interface (Wang et al., 1990; Kwong et al., 1998; Kwong 

et al., 2000a). The association of the viral envelope protein with CD4 is more efficient than that of the 

physiological receptor by more than four orders of magnitude. This strong binding affinity between 

gp120 and CD4 overwhelms the generally weak physiological binding necessary for cellular regulation 

(Wang, 2002). Hence, viral entry can be efficiently achieved without much frustration from competitors. 

The strong viral binding affinity is due to the large buried surface area (BSA) between gp120 and CD4 

(Kwong et al., 1998; Kwong et al., 2000a), which is twice as large as that in the structure of the class II 

HMC and CD4 complex (Wang et al., 1990) (Figure 9).

Conformational change during gp120/CD4 complexation

Recently, a thermodynamic study indicated a large gain in enthalpy (ΔH), accompanied by a large loss in 

entropy (ΔS) upon complex formation. This results in a small net free energy change (ΔG = ΔH -TΔS) 
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479 Å2

CD4 CD4

gp120 class II
MHC

180º 180º

Affinity (M)10-8 2x10-4

Total BSA (Å2)2107 1009

Figure 9. Comparison between buried surface area (BSA) and binding affinity. The atoms in close contact with 
the counterpart (interatomic distance < 5Å) are coloured in black. The phenyl ring of CD4-Phe43 is indicated 
in white lines. The class II MHC consists of two separate chains, coloured in white and grey. The corresponding 
PDB entries of gp120/CD4 and the class II MHC/CD4 complexes are 1G9M and 1JL4, respectively. The BSAs 
were calculated from the crystal structure using NACCESS with a probe radius of 1.4 Å.
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after cancellation of two large contributions (Myszka et al., 2000). The removal of as much as 40% of the 

total sequence, including the large flexible loops V1-V3 and the N- and C-termini of gp120, has little 

effect on the kinetics and thermodynamics of CD4 binding. The entrapment of coordinated water is also 

unlikely to be involved in the loss of entropy (Myszka et al., 2000). Hence, the energetically unfavourable 

entropy loss, indicative of loss of flexibility, i.e., the formation of rigid structures, must occur within the 

core of gp120 and CD4. Based on these observations in conjunction with other biochemical data, it has 

been suggested that an extensive structural rearrangement must occur during the CD4 binding process. A 

generally accepted model is that a four-stranded bridging sheet is formed or stabilised upon complexation, 

pulling the inner and outer domains of gp120 together to form a recessed Phe43 receptive cavity to 

accommodate the hemisphere of the D1 domain of CD4 (Figure 10). These structural rearrangements 

may, in part, account for the observed changes in enthalpy (ΔH) and heat capacity (ΔCp).

MD simulations of gp120 and CD4

To date, the structure of the complex of core gp120, CD4 and the CD4-induced antibody (CD4i) 

constitutes the primary structural information on gp120 (Kwong et al., 1998; Kwong et al., 2000a). A 

number of structural studies limited to the V3 loop fragments and their neutralising antibodies have been 

reported (Ghiara et al., 1994; Ghiara et al., 1997; Stanfield et al., 1999; Tugarinov et al., 1999; Tugarinov 

et al., 2000; Sharon et al., 2003; Stanfield et al., 2004). Little is known, however, about the structure and 

dynamics of gp120 in the free form. We therefore carried out MD simulations in order to access structural 

and dynamical differences between the free form of gp120 and its complex with CD4.

Figure 10. Structure and sub-domains of core gp120. The ribbon presentation (left) and van der Waals surface 
(right) of core gp120 are coloured in light grey, black and dark grey for the inner and outer domains and the 
bridging sheet, respectively. Four residues in gp120 that show hydrophobic contacts with the CD4-Phe43 are 
shown in spheres in the ribbon representation.
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 MD simulations solve Newton’s laws of motion for a system of N interacting particles

mi
� 2ri
� t 2

� Fi , i = 1…N.                                                  (4)

where mi is the mass of particle i , ri its position vector and  Fi the vector describing the forces acting on 

particle i.

 The force F is given by the negative of the derivative of a potential function V(r1, r1,…, rN) 

describing the interactions between particles in the system.

Fi � � V
ri

�
� (5)

Newton’s equations of motions are solved by numerical integration over time steps Δt of typically two to 

four femtoseconds, which leads to the new positions of the particles in the system at time t+Δt, r(t+Δt). 

By repeating this integration process a large number of times (typically several millions) a trajectory 

containing the atom coordinates as a function of time can be generated. Analysis of such a trajectory 

allows to describe the structural and dynamical properties of the system under study.

 The potential energy function, V(r), contains energy terms describing the bonded and non-bonded 

interactions in the system. Bonded interactions typically involve bond stretching, angle bending and 

rotations around bonds (dihedral angles). Additional energy terms, the so-called improper dihedral angles 

energy terms, are also often used to maintain the planarity of particular groups, such as aromatic rings and 

the chirality of some atoms such as the Cα atom of L- and D-form.  

Vbonded �V (b)bond �V (�)angle �V (� )improper �V (�)dihedral

� 1
2
kb b � b0� �2

bond
� � 1

2
k� � ��0� �2

angle
� � 1

2
k� � �� 0� �2

improper
� � k� 1� cos(n� ��)� �

dihedral
� (6)

 The potential energy functions describing bond lengths, bond angles and improper dihedrals are 

usually expressed as harmonic functions with equilibrium or reference values b0, θ0 and ζ0 for ideal bond 

lengths, bond angles and improper angles, respectively. The potential energy terms describing the rotations 

around bonds, the dihedral angle energy terms, are typically expressed as trigonometric functions with 

a periodicity n and a phase shift δ to allow for multiple minima. Energy penalties are derived based on 

these functions with the respective force constants, kb, kθ, kζ and kϕ. 

 The non-bonded energy terms describe the electrostatic and van der Waals interactions between 

atoms. They are usually expressed as Coulombic and Lennard-Jones potential functions, respectively.
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(7)

where rij is the distance between atom i and j, ε0 the dielectric constant, qi and qj the partial charge of 

atoms i and j, respectively, ε the well depth and σ the collision diameter (the separation distance at which 

the Lennard-Jones energy is zero) (Leach, 2001).
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 Several force fields have been developed and parametrized over the years, which are commonly used 

for biomolecular MD simulations, such as GROMOS (van Gunsteren et al., 1996), AMBER (Pearlman 

et al., 1991), CHARMM (MacKerell et al., 1998) and OPLS (Jorgensen and Tirado-Rives, 1988). They 

might differ in their parameters, such as equilibrium values, force constants, partial charges, van der Waals 

parameters, etc., and in the exact functional form of the potential energy function.

 Current MD simulations cannot compute macroscopic properties of a given system based on 

Avogadro’s numbers of atoms. Instead, most classical MD simulations only give access to microscopic 

properties of one or a few solute molecules and its surrounding environment. Periodic boundary 

conditions allow to simulate systems in a fluid-like condition where individual molecules can freely 

diffuse in all directions as they are in fact replicated in a periodic array with a given symmetry. Interactions 

between solute and solvent, such as protein-water interactions, play an important role in defining the 

thermodynamic and structural properties of a solute molecule. It is therefore crucial to properly describe 

solvent effects. All MD simulations described in this thesis have been performed under periodic boundary 

conditions with explicit solvent using the simple particle charge (SPC) water model (Berendsen et al., 

1981).

 In Chapter 5 we describe MD simulations of free gp120, its receptor CD4, and their complex (Hsu 

and Bonvin, 2004). Substantial conformational changes with a concerted loop contraction were observed 

in gp120 upon CD4 binding, accompanied by a substantial displacement of the V3 loop. Translating atom 

positional root-mean-squared fluctuations (RMSF) derived from the MD simulations into temperature 

factors (B-factors), commonly used for the evaluation of structural mobility and disorder in the crystalline 

state, agreement could be reached between simulations and experimental findings. A significant result 

of this study is the description of the differentiated and dynamical modes of interaction between gp120 

and CD4 involving long range electrostatic attractions, hydrogen bonds and short range van der Waals 

contacts. The various interactions are spatially distributed on the complex interface in perfect accordance 

with the “hot spot” model (Clackson and Wells, 1995). The centre of the gp120/CD4 complex interface 

is the hydrophobic “knob-and-socket” CD4-Phe43 binding patch surrounded by a large number of 

residues involved in hydrophilic interactions, hydrogen bonding and salt bridges that holds the two 

molecules together (Figure 11). The same recognition mechanism is utilised by a potent gp120-specific 

IgG antibody, b12: a protruding tryptophan residue in the finger-like H3 loop is likely the CD4-Phe43 

mimic that binds into the receptive cavity in gp120 (Saphire et al., 2001). Modelling of the gp120/b12 

interface suggests a BSA similar to that of gp120/CD4. Not surprisingly, the binding affinity of the 

gp120/b12 complex (in terms of free energy) is similar to that of the gp120-CD4 complex (Kwong et 

al., 2002).

MD analysis beyond the atomic coordinates

Benefiting from the exploding computation power and the continuous improvements in force fields, 

modern biomolecular simulations can reach longer time scales, and larger systems and, more importantly, 

provide a more realistic description of the dynamical and structural properties of interest (van Gunsteren 

and Berendsen, 1990; van Gunsteren et al., 2001; Hansson et al., 2002; Karplus, 2002; Karplus and 

McCammon, 2003). Examples like spontaneous membrane or vesicle formation (Marrink et al., 2001; 

Marrink and Mark, 2003) and atomic description of protein folding pathways (Duan and Kollman, 1998; 

Mayor et al., 2003) have been reported. MD simulations permit us to describe the atomic trajectory 
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of a molecule of interest over time scales ranging from nanoseconds to microseconds. This means that 

the conformations of the system during this time, i.e., the microstates, can be precisely characterised. In 

general terms, the trajectory contains the information needed to derive the classical Hamiltonian H(p,q) 

of generalised coordinates q and their conjugate momenta p. For instance, the Hamiltonian for a classical 

system of N atoms with coordinate r ≡ (r1, r2,…,rN) and momenta p ≡ (p1, p2,…,pN) has the form

H(p,r) � pi
2

2mii

N

� �V (r1,r2,....,rN ) (8)
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Figure 11. “Hot spot” model. A cartoon shows the hot spot for target recognition displayed on the binding 
site with corresponding double free energy change (ΔΔG) upon mutation coloured from light grey to black. 
The representative structures of gp120 and CD4 are shown in van der Waals surface with residues involved in 
hydrophobic and hydrophilic interactions in black and grey, respectively. The residues involved in side chain-
side chain hydrogen bonding are labelled with grey letters; those that are involved in side chain-backbone or 
backbone-backbone hydrogen bonding are labelled with black letters. The labels of the four residues that form 
the receptive CD4-Phe43 binding cavity are boxed.
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where mi is the atomic mass of atom i, and V(r) is the potential energy function describing the interactions 

between atoms. The two terms represent the kinetic and potential energies, respectively. In the canonical 

ensemble with constant number of particles N, constant volume V and temperature T (constant NVT), 

the Helmholtz free energy F is given by

FNVT � �kBT lnZ (9)

where kB is Boltzmann’s constant and Z the partition function. The partition function for a system of N 

identical particles is given by 

Z � 1
(h3NN!)

e�H ( p,r) / kBT�� dpdr
��
����

��
���� (10)

where h is Planck’s constant. It is thus possible, in principle, to derive free energies from simulated 

trajectories provided that sufficient sampling has been achieved and that complete integration for the 

sum of states, i.e., calculation of the partition function Z, is feasible (van Holde et al., 1998). In practice, 

however, achieving a complete sampling over all energy states is difficult for large complex systems because, 

usually, classical MD simulations only sample conformations in local energy minima. They do not 

adequately sample higher energy regions of phase space that make important contributions to the free 

energy. Instead, the calculation of free energy differences between two systems or states is a more feasible 

task because free energy is a state function, which is independent of path. With appropriate choice 

of thermodynamic integration or simply by counting different configurations, the relative free energy 

between two states can be accurately estimated (Leach, 2001). A number of computational methods to 

derive free energies have been developed (Northrup et al., 1982; van Gunsteren and Berendsen, 1987; 

Gerber et al., 1993; Kollman, 1993; van Gunsteren et al., 1993; McCarrick and Kollman, 1994; Simonson 

et al., 2002; van Gunsteren et al., 2002).

 The Gibbs free energy G is often used to describe the chemical potential of biological systems 

instead of the Helmholtz free energy F because most biochemical experiments are conducted at constant 

temperature and constant pressure (Kittel and Kroemer, 1980). The change in Gibbs free energy ΔG 

between states A and B is given by two components: the change in enthalpy ΔH and the change in 

entropy ΔS

                                               
ΔG = ΔH - TΔS = U - PΔV -TΔS                                                 (11)

where U is the energy of the system, P the pressure, V the volume and T the absolute temperature of the 

system. The inherent large fluctuations in the calculation of the enthalpy as well as the requirement of a 

complete conformational sampling in order to obtain the partition function or the number of states of 

the system, make the evaluation of enthalpy and entropy from simulations much more difficult than the 

calculation of free energy differences (Kollman, 1993; Reinhardt et al., 2001). Yet, sometimes an estimate 

of entropic changes of a particular system is highly desirable. For this purpose, Schlitter introduced a 

heuristic formula to derive an upper bound on the entropy based on the mass weighted covariance matrix 

of atom-positional fluctuations (Schlitter, 1993). This approach has been tested on several biomolecular 

systems to derive the configurational entropy Scf and account for the entropic contribution in the folding 

process (Schäfer et al., 2001; Schäfer et al., 2002). 
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 An attempt to derive the configurational entropy of the gp120/CD4 complex based on Schlitter’s 

formula is described in Chapter 6. A new “combined” approach is introduced in which additional 

information on the degree of overlap of various states can be extracted by combining two trajectories 

corresponding to two different states of the system, in this particular case, free gp120 and its complex 

with CD4. The microscopic observations in the MD simulations are in qualitative agreement with the 

macroscopic experimental findings.

 
When simulations meet experiments

Our original aim in simulating HIV-1 gp120 was to provide a rationale for the discovery of an in 

vitro revived mutant of gp120. It has been demonstrated that the nine disulphide bonds in gp120 are 

not equivalent in their contributions to the folding efficiency as well as to the infectivity (van Anken, 

2003). For some disulphide bonds, a cysteine to alanine mutation prohibits gp120 from passing the 

quality control machinery during the secretory pathway. The misfolded proteins are retained within 

the ER leaving no envelope protein available for viral infection. After prolonged incubation of these 

dysfunctional mutants, some viral activity could be restored from an initially dysfunctional C385A/

C418A gp120 mutant. Through in vitro evolution, the virus first replaced the alanine at position 418 by 

a valine (A418V) and subsequently introduced another threonine to isoleucine mutation at position 415 

(T415I). The gp120 revertant C385A/C418V/T415I shows an improvement in its folding efficiency. As 

a result, the infectivity is partially restored as well. Put into the context of biomolecular recognition, the 

questions to be addressed by simulation would then be: How does the revertant mutation of two amino 

acids (A418V/T415I) affect the folding property? How does the ER folding machinery recognise the 

difference between wild type, mutant and revertant?

 Given the size of gp120 and the auxiliary molecules involved in proper folding, such as chaperones 

and disulphide bond isomerases, simulation of the folding process from an extended structure to the native 

fold is beyond the reach of current computational power. We therefore limited ourselves to simulating 

the effects of those mutations on the stability of the native state. Comparison of the simulations of 

wild type gp120, of the dysfunctional C385A/C418A mutant and of the partially functional C385A/

C418V/T415I revertant showed no distinguishable change in global structure and dynamics (Chapter 

7). Yet, to pass through the protein folding quality control in the ER and restore infectivity (Sitia and 

Braakman, 2003), a significant fraction of the conformations must populate the native state (Dinner 

et al., 2000). The threshold set by the quality control system is unknown. In other words, how much 

structural difference can be tolerated and to what extent can a misfolded protein be identified by the 

quality control machinery remains unclear. The revertant gp120 is a particularly intriguing example in 

the sense that the loss of a covalent bond, i.e., a disulphide bond, can be compensated by the introduction 

of two β-branched hydrophobic side chains. In fact, the perturbations introduced by these small changes 

in sequence may be local. An analysis of the local structural integrity in the vicinity of the mutation site 

reveals that the revertant improves the side chain packing that was lost in the mutant and that several 

inter-strand hydrogen bonds become stabilised. The increase in stability of the β-strands in this region 

may be sufficient to lift the revertant across the threshold of the ER quality control while the mutant fails 

to pass. This MD simulation study provides a perspective to assist the rationalisation of the experimental 

observations.
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Abstract

Nisin is an example of type A lantibiotics that contain cyclic lanthionine rings and 

unusual dehydrated amino acids. Amongst the numerous pore-forming antimicrobial 

peptides, type A lantibiotics form an unique family of post-translationally modified 

peptides. Via the recognition of cell wall precursor lipid II nisin has the capacity to 

form pores against Gram-positive bacteria with an extremely high activity in the 

nanomolar (nM) range. Here we report a high resolution NMR spectroscopy study of 

nisin/lipid II interactions in SDS micelles as a model membrane system in order 

to elucidate the mechanism of molecular recognition at residue level. The binding 

to lipid II was studied through 15N-1H HSQC titration, backbone amide proton 

temperature coefficient analysis and heteronuclear 15N{1H}-NOE relaxation dynamics 

experiments. Upon the addition of lipid II significant changes were monitored in 

the N-terminal part of nisin. An extremely low amide proton temperature coefficient 

(Δδ/ΔT) was found for the amide proton of Ala3 (> -0.1 ppb/K) in the complex form. 

This suggests tight hydrogen bonding and/or isolation from the bulk solvent for 

this residue. Large chemical shift perturbations were also observed in the first two 

rings. In contrast, the C-terminal part of nisin was almost unaffected. This part of 

the molecule remains flexible and solvent exposed. Based on our results, a multi-step 

pore forming mechanism is proposed. The N-terminal part of nisin first binds to lipid 

II and a subsequent structural rearrangement takes place. The C-terminal part of 

nisin is possibly responsible for the activation of the pore formation. In light of the 

emerging antibiotic resistance problems, an understanding of the specific recognition 

mechanism of nisin with lipid II at the residue specific level may therefore aid in the 

development of novel antibiotics.

Introduction

Nisin Z is a 34-residue peptide, which is produced by and primarily acts against Gram-positive bacteria. 

It belongs to the type A lantibiotics (lanthionine-containing antibiotics) family (Breukink and de Kruijff, 

1999). The common features of lantibiotics are the unique post-translationally modified amino acids 

dehydroalanine (Dha), dehydrobutyrine (Dhb) and the lanthionine rings that are formed by thioether 

bonds (see Chapter 1). Typical type A lantibiotics are elongated, flexible and amphipathic peptides that 

possess pore forming abilities. In contrast, type B lantibiotics are compact, globular and hydrophobic 

peptides, some of which kill bacteria by blocking cell wall synthesis (Brötz and Sahl, 2000). Nisin Z 

contains three positively charged lysine residues and five intramolecular lanthionine rings, namely rings 

A-E (Figure 1A). Nisin Z differs from its natural variant nisin A only by a single residue at position 27, 

a histidine instead of an asparagine, without change in bacterial activity (Kuipers et al., 1996). In the 

following we will refer to nisin Z simply by nisin unless specific comparisons between nisin A and nisin 

Z are discussed.
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 The pore forming function of nisin has been studied in various model membrane systems in vitro 

by vesicle binding, carboxyflurescein (CF) leakage, potassium ion leakage experiments (for review, see 

(Breukink and de Kruijff, 1999)) and solid state nuclear magnetic resonance (NMR) spectroscopy (Bonev 

et al., 2000). High resolution NMR solution structures of nisin A have been determined in water (van 

de Ven et al., 1991) and in membrane-mimicking environments of dodecylphosphocholine (DPC) and 

sodium dodecylsulphate (SDS) solutions (van den Hooven et al., 1996a). These studies showed a very 

flexible, extended structure, with rather well defined local ring substructures. The orientation of nisin on 

the membrane surface was also studied by fluorescence (Breukink et al., 1998), solution NMR (van den 

Hooven et al., 1996b) and solid-state NMR (Jastimi et al., 1999; Bonev et al., 2000). The amphipathic 

nature of nisin provides a preferential orientation on the membrane interface: both N- and C-terminal 

parts of nisin were found to be involved in membrane binding but the N-terminal part was more deeply 

embedded (van den Hooven et al., 1996b; Breukink et al., 1998). Unlike the highly specific activity (nM 

range) obtained from in vivo studies, the activities of nisin that were previously obtained from in vitro 

experiments were only in the micromolar (μM) range.

 This discrepancy has recently been solved by the discovery that lipid II (Figure 1B), the membrane-

bound peptidoglycan precursor for cell wall synthesis, is used as a receptor/docking molecule by nisin 
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(Brötz et al., 1998; Breukink et al., 1999). The recognition of lipid II facilitates and enhances the pore 

forming function of nisin in vitro by a factor of 103 in model membrane systems (Breukink et al., 1999; 

Wiedemann et al., 2001). Lipid II is the key element for the synthesis of the protective cell wall for 

bacteria. The undecaprenyl tail of lipid II acts as a carrier, which transports the peptidoglycan subunit 

from the cytoplasm to the extracellular domain. Because of the importance of lipid II in the bacterial 

cell wall synthesis pathway, it is also an unique target for some antibiotics, e.g., vancomycin (Sheldrick et 

al., 1978). The addition of vancomycin inhibits the activity of nisin in the presence of lipid II to some 

extent, but the binding motif of lipid II for nisin is probably different from that of vancomycin (Breukink 

et al., 1999). However, the exact binding mechanism for nisin is still unclear. The discovery of the specific 

and high affinity interaction between nisin and lipid II provides the first known example of targeted 

pore formation. The results suggest that nisin, or derivatives of it, could one day be used as an alternative 

antibiotic to overcome the emerging antibiotic resistance problems. The nisin/lipid II interaction is also 

a useful model system to understand this novel pore forming mechanism and to provide a blueprint for 

further peptide engineering and antibiotics development. The elucidation at a structural level of the 

targeted pore forming mechanism will be the most comprehensive approach.

 Here we present a NMR study of the interaction between nisin and lipid II in SDS micelles as 

a membrane mimicking environment. Various types of high resolution NMR experiments have been 

performed to provide insight into the binding mechanism at residue level. We will show that only the 

N-terminal part of nisin strongly interacts with lipid II whereas the C-terminal part remains unaffected 

by the formation of the complex. These results suggest that the pore forming mechanism is a multi-step 

process in which nisin possesses different functionalities throughout several segments: i) initial recognition 

of the N-terminal part followed by subsequent aggregation and ii) at the later stage, activation of the pore 

formation by the C-terminal part.

Material and methods

Sample preparation
15N-labelled nisin Z was isolated and purified as described (Kuipers et al., 1992) using a 15N-enriched 

growth medium as nitrogen source, and lipid II was prepared as described (Brötz et al., 1997). Nisin was 

dissolved in 500 μL, 10% D2O, 90% H2O with 25 mM sodium phosphate buffer adjusted to pH 6.0, 

resulting in sample concentrations of 1.8 mM for the unlabelled peptide and 1 mM for the 15N-labelled 

peptide. 4% and 2% perdeuterated d25-SDS were added into the unlabeled and 15N-labelled samples, 

respectively, to bring the SDS concentration to approximately 100-fold excess with respect to the peptide 

concentration. Since the 1D NMR spectrum showed no significant changes when the nisin-to-SDS ratio 

was changed from 1:20 to 1:60 (van den Hooven, 1995), further changes were therefore solely due to the 

incorporation of lipid II. This also ensured a ratio of approximately one peptide per micelle in order to 

form a 1:1 complex with lipid II.

NMR Spectroscopy and titration experiments
NMR spectra were recorded on Varian INOVA 750 MHz and 500 MHz spectrometers. 2D NOESY 

(Jeener et al., 1982) with mixing times of 100, 150, and 200 ms and 2D clean-TOCSY (Griesinger et 

al., 1988) with mixing times of 60 and 100 ms were performed for the backbone resonance assignment 
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of nisin in SDS solution with and without the presence of lipid II. All 2D spectra were recorded with 

2048 complex t2 points and 1024 complex t1 points. 3D 15N NOESY-HSQC (Marion et al., 1989b) 

and 15N TOCSY-HSQC with DIPSI-2 spin-lock sequence (Marion et al., 1989a) were recorded with 

mixing times of 100 ms and 60 ms, respectively. For both 3D experiments, the spectra size was set to 

1600*280*144 complex points for the direct 1H dimension and the indirect 1H and 15N dimensions, 

respectively. In the 15N-1H HSQC titration experiments, 25 μL of 3mM lipid II in 2% d25-SDS was added 

successively five times into 400μL of 0.75 mM 15N-labelled nisin. This led to 24% dilution of the nisin 

concentration at the final step and a final molar ratio of nisin to lipid II of 1:1.25. 15N-1H HSQC spectra 

(Kay et al., 1992) were recorded with 1600 complex t2 points and 180 complex t1 points. All spectra 

were recorded at 20 °C with the WATERGATE water suppression protocol (Piotto et al., 1992). Steady-

state heteronuclear 15N{1H}-NOE experiments with and without saturation irradiation during the 3s 

relaxation delay period were recorded on the nisin/lipid II complex at 40 °C as described previously 

(Meunier et al., 2000). The spectra size was the same as in the titration experiments. For amide proton 

temperature coefficient measurements, 15N-1H HSQC spectra were recorded at 10, 20, 30, and 40 °C. 

Additional 2D and 3D NOESY experiments were performed at 40 °C on the nisin/lipid II complex 

after titration. All spectra were processed with the NMRPIPE software package (Delaglio et al., 1995) and 

analyzed with NMRView (Johnson and Blevins, 1994).

Results

Backbone resonance assignments of nisin Z
Although the small sequence difference of nisin Z from its natural variant, nisin A, (H27N) does not 

affect its bacterial activity (Kuipers et al., 1996), its backbone resonances in SDS micelles turned out to be 

rather different. Apparently, the difference in pH (for nisin A pH = 2.1 (Sailer et al., 1993) and 3.5 (van 

den Hooven, 1995); for nisin Z in our current report pH = 6) affects the chemical shifts substantially. This 

is unlikely caused by the single residue variation, H27N, which would probably only induce localised 

chemical shift changes due to the difference in electrostatic interaction. The backbone assignment of nisin 

Z in SDS solution was performed using the standard sequential assignment procedure by combination of 
15N NOESY-HSQC and 15N TOCSY-HSQC spectra. Most residues could be assigned in the free form 

except for the residues flanked by two glycine residues, i.e., Ala15, Leu16, and Met17, in ring C. During 

the course of lipid II titration, many residues showed slow exchange binding patterns, e.g. Ala3. At the 

final step of the titration, a similar sequential assignment approach was attempted; however, only few 

residues were clearly resolved. Most residues showed weak NOE cross-peaks that hampered the complete 

assignment of nisin in the lipid II-bound form. For those residues that did not show significant shift 

upon complexation, mainly in the C-terminal part, the assignments were taken from the free form. These 

assignments were confirmed by the similarity in the spin system patterns in the NOESY spectrum. The 

backbone amide proton NOE connectivity HN(i-1)-HN(i) was initially used for the sequential assignments 

of those residues that showed large chemical shift perturbations. They were then checked by comparison 

of the spin system patterns. Figure 2 shows the assigned HSQC spectrum of nisin in the free and the lipid 

II-bound form. Note that there are still some unassigned residues because of the lack or the low intensity 

of NOE signals.

N-terminal part of nisin is responsible for lipid II recognition 
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Lipid II titration experiments show strong binding affinity
The titration of lipid II to 15N-labelled nisin in the presence of SDS shows that the binding is in the 

slow exchange regime. Several residues undergo large chemical shift perturbation and show typical slow 

exchange sets of peaks corresponding to the free and the bound form. These peaks coexist during the 

titration process until 25% excess of lipid II is added, after which all nisin molecules are in the complex 

form. According to the titration profile, the stoichiometry corresponds to a 1:1 nisin to lipid II complex 

(data not shown). Figure 3 shows the chemical shift changes upon binding as a function of the nisin 

sequence. The largest changes are observed in the first three N-terminal ring systems, especially Ile4, 

Leu6 and Gly10. The chemical shifts of the C-terminal part of nisin, starting from Ala24 up to Lys34, are 

hardly affected upon the addition of lipid II. We were not able to complete the assignment of the HSQC 

spectrum at the last point of the titration study; some peaks disappeared due to line broadening after 50% 

addition of lipid II and some peaks showed overlap. In contrast to the fast exchange process, in which the 
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Figure 2. 15N-1H HSQC titration spectra of 15N-labelled nisin before (black) and after the addition of lipid II 
(grey). The grey cross-peaks correspond to a molar ratio of nisin/lipid II of 1:1.25. Significant chemical shift 
changes are indicated by arrows. The unlabelled cross-peaks could not be assigned due to the lack of signals in 
the TOCSY and NOESY spectra. A*8, K12, A*13, N20, K22 could only be assigned in the free form (See text 
for details).



37

N-terminal part of nisin is responsible for lipid II recognition 

average signals of the bound and the free forms can be easily followed during the titration steps, it was not 

possible to track the chemical shifts in the slow exchange regime. This is particularly the case for Lys12 

and Asn20, for which no suitable cross-peaks close to the original positions could be identified. These 

missing peaks possibly overlap with others or simply disappear due to line broadening. The cause of line 

broadening is most likely due to slow conformational rearrangement of the relative orientations of the 

ring systems. Other residues like Ile4, Leu6, and Gly10 shifted by more than 0.3 ppm downfield along the 
1H dimension (Figure 3A), suggesting that ring A and B are in the vicinity of the nisin/lipid II interface. 

These large downfield shifts are most likely caused by the deshielding effect upon the formation of intra 

or intermolecular hydrogen bonds with lipid II.
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Figure 3. Chemical shift perturbation 
along the sequence of nisin upon the addition 
of lipid II. A. 1H chemical shift perturbations 
are displayed as the difference in chemical 
shift between the free and the bound forms, 
respectively,      ΔδHN  = δHN

nisin – δHN
nisin/lipid II. 

B. 15N chemical shift perturbations ΔδN=δN
nisin 

– δN
nisin/lipid II. C. Absolute chemical shift 

displacements in Hz. The values are calculated 
as [(ΔδHN)2+(ΔδN)2]1/2 from spectra recorded 
at 750 MHz. Dhb2 is labelled with an asterisk 
(*) for the loss of signal after the addition of 
lipid II. Closed circles (l): unassigned residues 
in the absence of lipid II due to spectral 
overlap or ambiguities; Open circles (° ): 
unassigned residues in the complex form.
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Amide proton temperature coefficients and solvent accessibility
Hydrogen bond formation can stabilise the exchangeable backbone amide protons and therefore reduce 

the exchange rate with bulk solvent. The stability can also arise from a reduction of solvent accessibility, 

such as burial into a complex interface. The amide proton temperature coefficient analysis has been 

performed to verify whether the largest chemical shift changes of nisin in the titration experiment are 

indeed due to hydrogen bond formation or due to exclusion from solvent. The temperature dependency of 

amide proton chemical shifts is a simple probe that provides information on the involvement in hydrogen 

bond formation or sequestering from the solvent (Cierpicki and Otlewski, 2001). A low dependency of 

the amide chemical shift on temperature in aqueous environment, i.e., temperature coefficient Δδ/ΔT > 

-2.5 ppb/K is usually indicative of the presence of a stable hydrogen bond. For solvent accessible amide 

protons, which are more sensitive to a temperature change, the slope is generally more negative than 

-5 ppb/K (Ballardin et al., 1978; Graham et al., 1992). We have collected several 15N-1H HSQC spectra 

of nisin/lipid II complex under different temperatures ranging from 10 °C to 40 °C. Figure 4 shows 

the temperature coefficients of nisin and examples of the amide chemical shift changes for some of the 

residues. While the amide proton chemical shift of Ala3 hardly changes upon temperature increase, Ala7 

and Ser29 are much more affected. Based on the above criteria, the stable amide protons with low solvent 

accessibility either via hydrogen bond formation or structurally protected from the solvent exchange 

process are identified for Ala3, Ile4, Dha5, Gly10, Gly14 and Ala19.
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Figure 4. Amide proton temperature coefficients (Δδ/ΔT) of nisin in the complex form. The temperature 
coefficients were obtained by linear fitting of the amide chemical shift δHN as a function of the temperature 
measured at 10 ºC, 20 ºC, 30 ºC, and 40 ºC. The unassigned residues are labelled as described in Figure 3. Inset: 
representative region of 15N-1H HSQC spectra of nisin in the complex. The cross-peaks are coloured in grey 
scale from black (10 ºC) to light grey (40 ºC). The direction of the change of the cross-peak position of each 
residue as a function of temperature is indicated by an arrow. Note that Ala3 is almost unaffected throughout a 
wide temperature range.
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Dynamic properties of nisin/lipid II complex
Unlike most proteins that possess rigid and well-defined globular structures, nisin shows flexibility that 

is functionally important. This creates, however, a major challenge for our current NMR study: the 

dynamics results in an averaging of structural information, which makes characterisation of the complex 

difficult. Steady-state heteronuclear 15N{1H}-NOE experiments have been performed on the nisin/lipid 

II complex to investigate its dynamic properties. The heteronuclear NOE is a very sensitive probe for fast 

backbone motion in the picosecond to nanosecond time scale (Kay et al., 1989; Kay, 1998; Palmer III, 2001). 

It gives a measure of the rigidity of the backbone and is defined as the ratio of peak intensities with and 

without saturation irradiation on the amide protons. Well-defined and rigid structure elements usually 

give positive NOEs close to unity. For the nisin/lipid II complex at 40 °C, negative NOEs were observed 

for Dha33 and Lys34 and either weak or zero NOEs for residues 30-32: an evidence of a highly dynamic 

motion. In contrast, the N-terminal part was relatively rigid showing positive NOEs (data not shown). 

These findings are in agreement with the chemical shift perturbation and amide temperature coefficient 

analysis and confirm that the C-terminal part of the molecule is not involved in the binding of lipid II.

Discussion

In the present report, we have provided a residue specific analysis of nisin/lipid II interactions in a model 

membrane system by solution NMR spectroscopy. Figure 5 summarises the results of the HSQC titration 

experiment and amide proton temperature coefficient analysis. It should be noted that the observed 

chemical shift changes of nisin upon the addition of lipid II could in principle arise from either the 

direct interactions of the affected residues with lipid II or the indirect effect from changes in nisin-SDS 

interactions on forming the complex. The incorporation of lipid II can potentially induce a morphological 

change of SDS micelles and therefore change the mode of interaction between nisin and micellar surface. 

It has been demonstrated that the difference in the surface curvatures of different membrane mimicking 

media, e.g., micelles and bicelles, can induce subtle backbone conformational changes of membrane 

interacting peptides (Chou et al., 2002). These structural differences are clearly reflected by substantial 

changes in the 1H-15N HSQC spectra. In our case, however, no peak shift was observed for nisin during 

the titration process; only the signal population decreases at the free form position and increases at the 

bound form position until all nisin molecules are bound to lipid II. This suggests that lipid II integrates 

into SDS micelles and interacts with nisin in such a way that nisin and lipid II form a specific complex 

in SDS micelles. This does not affect the interaction mode between the remaining nisin molecules and 

the lipid II-free SDS micelles. A previous SDS titration study of nisin in the absence of lipid II has shown 

that the progressive excess of SDS concentration, which could also result in larger micelle size, does 

not change the spectrum of nisin beyond a nisin-to-SDS ratio of 1:20 (van den Hooven, 1995). This 

suggests that the conformation of nisin as reflected in NMR spectra is not sensitive to the morphology 

of SDS micelles. Although hampered by the lack of intermolecular NOE data from the nisin/lipid II 

complex, all data strongly support the idea that the addition of lipid II induces a substantial change in the 

chemical environment of the N-terminal part of nisin, mainly through direct binding. The interaction 

between nisin and SDS micelles is therefore affected as well. The micelle morphology may alter due to 

the insertion of lipid II, although this effect is relatively minor. 
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 Although the intrinsic flexibility of nisin and a higher sample pH value leave some residues unassigned 

in our current study, high pH (> pH 5) is required because the nisin/lipid II complex cannot be formed 

at pH 3-4. A signature circular dichroism (CD) absorption that is indicative of the nisin/lipid II complex 

formation can only be observed in higher pH. The CD spectra of nisin in the presence of lipid II and 

SDS micelles in low pH are similar to those observed without lipid II (data not shown). In the absence of 

lipid II, the CD spectra of nisin in SDS micelles do not change significantly between pH 5 and 8. These 

are also similar to the previously reported CD data of nisin in SDS micelles at lower pH (pH 3-4) in 

spite of their difference in absorption intensities (Dykes et al., 1998). This suggests that the conformation 

of nisin in SDS micelle solution without lipid II is not sensitive to changes in pH. In contrast, the CD 

spectra of nisin are very sensitive to the pH changes in aqueous solution. Differences in the sample pH 

values and the single residue variation between nisin A and Z (H27N) might contribute to the observed 

spectral difference between our current study and those previously observed without the incorporation 

of lipid II. Nevertheless, in the current study we are focused on the effect of lipid II-binding on nisin in 

order to map the lipid II binding site. In addition, a 1:1 nisin to lipid II binding stoichiometry can be 
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Figure 5. N-terminal part of nisin is responsible for lipid II binding. A. The chemical shift perturbations 
after the addition of lipid II to nisin. B. The temperature dependency of nisin in the complex form with nisin. 
The thioether linkages are shown in sticks. The ring systems of nisin are labelled from A to E according to 
the definition in Figure 1A. Backbone Cα atoms are shown in spheres with radii from small (unaffected) to 
large (significantly affected) as indicated on the right. The unassigned residues are coloured in black. The nisin 
coordinates correspond to the representative structure of nisin in the presence of DPC micelles (van den Hooven 
et al., 1996a). These were kindly provided by Dr. H. W. van den Hooven. The figures were generated by 
MOLMOL (Koradi et al., 1996).
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obtained from the lipid II titration experiments in SDS micelles, which is in agreement with proposed 

stoichiometry obtained from the direct binding assay (Breukink et al., 1999).

N-terminal part of nisin is responsible for the first recognition step
The binding to lipid II perturbs mainly the chemical shifts of residues localized in the first two rings, 

A and B. The specific binding process is in the slow exchange regime and some residues show large 

chemical shift changes, for example, Ile4, Leu6 and Gly10 (Figure 2). Other residues show broad lines 

in the free and/or in the complex form, mostly those in ring C and the following hinge region. This 

probably reflects some structural inhomogeneity in this part of the molecule.

 The complex formation also enhances the stability of several backbone amide protons in the N-

terminal part of the structure shown by the temperature coefficient analysis. The extremely small amide 

proton temperature coefficient of Ala3 (> -0.1 ppb/K) suggests that it is highly protected from the 

exchange process with the bulk solvent. The downfield shifting of the amide protons in rings A and B 

along the 1H dimension can be explained by the deshielding effect due to the involvement in a hydrogen 

bond network in the structure of nisin/lipid II complex. For Dha5, although slightly upfield shifted 

upon binding, its amide proton might be already protected prior to the complex formation so that no 

additional stability enhancement is observed. It is therefore reasonable to hypothesise that the first three 

rings, especially rings A and B, form a binding pocket and bind tightly to lipid II. Another aspect in 

this study, compared with the previous reports in aqueous solution, SDS and DPC micelles, is that the 

binding of lipid II reduces the amide proton temperature coefficients of the amide protons of ring A and 

B approximately two fold (those of nisin A in SDS micelles are about –4 to -8 ppb/K throughout the 

sequence except for Dha5 and Ala11(van den Hooven et al., 1996b)). Nevertheless, care should be taken 

in the comparison since our sample pH value is different from the previous study. Despite the difference 

in pH condition, a significant change of the temperature coefficient from about -7 ppb/K to –0.1 ppb/K 

is observed for Ala3 while the C-terminal part of nisin is basically unaffected (generally < -4 ppb/K). This 

suggests that the complex interface is formed by the N-terminal part of nisin and lipid II and therefore 

results in the low solvent accessibility particularly in this part of nisin.

 We also note the excellent correlation amongst the chemical shift perturbation, amide proton 

temperature coefficient analysis and relaxation studies: they all indicate different structural behaviour 

along the sequence of nisin, with the hinge region defining the border between these structural elements. 

The C-terminal part of nisin, starting from ring D and E, does not seem to interact with lipid II. Although 

the backbone geometry of these two intertwined rings is tightly confined by the thioether linkages, the 

corresponding backbone amide protons are still highly solvent accessible and show high mobility. This 

indicates that these two rings are neither buried into the SDS micelles nor are they in complex with lipid 

II. Our observations suggest that only the N-terminal part of nisin is responsible for the recognition of 

lipid II, the C-terminal part being probably more important for the pore formation at a later stage. This 

model is in line with two other studies: i) the N-terminal fragment nisin1-12 can act as an antagonist to 

inhibit the bacterial activities of the full-length nisin (Chan et al., 1996b) and ii) the introduction of a 

positively charged lysine at position 32 (V32K) does not seriously disrupt nisin activity in the presence 

of lipid II (Wiedemann et al., 2001). Recently, Wiedemann and co-workers have performed a series of 

mutagenesis studies, which have pointed out the importance of structure integrity of the lanthionine rings 

A and C and of the flexibility of the hinge region for the lipid II-mediated pore formation (Wiedemann 
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et al., 2001) . From these studies, it has been shown that there exists a high structural selectivity at position 

3 (Ala3) while the preceding position (Dhb2) has more tolerance. Introduction of an extra methyl group 

at position 3 of the prepeptide (S3T) modifies the lanthionine linkage to a 3-methyllanthionine, and this 

substantially reduces its activity (MIC for M. flavus: S3T = 39 nM versus wild type = 3.3 nM); while the 

modification of Dhb2 into other residue types has less effects. In addition, hydrolytic cleavage at Dha5, 

by which the ring A is opened, results in substantial loss of biological activity, whereas the same cleavage 

at Dha33, removing the last two residues, has very little effect (Chan et al., 1989; Chan et al., 1996a).

 As discussed above, the low amide proton temperature coefficients and the localised chemical shift 

perturbations provide the first direct proof that the N-terminal part of nisin is tightly bound to lipid II. 

The stable nisin/lipid II complex is a result of a highly complementary binding interface. Any additional 

chemical modification at the interface would abolish the complementarity and therefore disrupt its 

activity. S3T mutation causes a structural clash because of the extra methyl group in the ring linkage 

position, which makes it difficult for nisin to adopt a suitable geometry for the binding of lipid II. The 

same explanation may also apply to Gly14 and Ala19. These two amide protons show similar patterns of 

chemical shift perturbation and amide proton temperature coefficient during complex formation. This 

suggests that ring C is also involved in the binding process but maybe to a lesser extent. Our NMR results 

above have located the binding interface of nisin, essentially rings A and B, and explained the selectivity 

of residue types obtained from the mutagenesis study, especially for Dhb2 and Ala3 in ring A.

 The involvement of ring C has been studied by other mutagenesis studies. The removal of the C-

terminal fragment, which keeps the first 20 residues of nisin, nisin1-20, increases the minimal inhibitory 

concentration (MIC) values for L. lactis and M. luteus by 115-fold and 50-fold, respectively. A further 

removal of ring C, nisin1-12, results in increases of MIC values for L. lactis and M. luteus by more than 2500-

fold and 200-fold, respectively, with respect to the full-length nisin* (Chan et al., 1989). This suggests that 

ring C is important for nisin’s bacterial growth inhibitory function. Introduction of a charged residue by 

replacing Met17 to a lysine residue (M17K) can reduce the activity of nisin by 50% (Wiedemann et al., 

2001). Furthermore, a single T13C point mutation of the prepeptide, which extends the ring C linkage 

by replacing the thioether bond to a disulphide bond, results in a mutant that is almost inactive in vivo and 

in the liposome CF leakage assay (Wiedemann et al., 2001). These results explain the involvement of ring 

C, in particular Gly14 and Ala19, during the lipid II binding process that is observed in our study.

 It is important to note that the dual dynamic property (stable N-terminus versus flexible C-

terminus) of nisin can be critical for its bacterial activity. The previously proposed wedge model was 

based on results obtained in the absence of lipid II. Most of the rings were found to be involved in the 

membrane binding process (Driessen et al., 1995; Moll et al., 1996). Without lipid II, the electrostatic 

attraction between the positively charged residues of nisin and the negatively charged head groups of 

membranes is dominant. It is therefore no surprise that both termini were found to interact with the 

model membrane systems in the previous studies; the contributions of the three lysine residues are rather 

equivalent. The enhancement of activity observed after the incorporation of lipid II however indicated 

that there must exist another dominating interaction between lipid II and nisin. The functional role of 

the C-terminal part in pore formation is no longer equivalent to that of the N-terminal part. In contrast 

 * The MIC values (μg/ml) against L. latic and M. luteus are 0.08 and 0.07 for full-length nisin1-34, 9.21 and 3.5 for nisin1-20, and 

>200 and 16.5 for nisin1-12, respectively.
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to the recognition role of the N-terminal part, it is more important for the pore formation at a later stage 

(van Heusden et al., 2002).

The hinge region bridges the two dynamic structural elements

In a previous NMR study of nisin A the hinge region was found to be relatively structured forming a 

type II β-turn in the presence of SDS and DPC micelles. This turn is stabilised by backbone hydrogen 

bonds, in particular between Met21 and Abu24 (van den Hooven et al., 1996a). In the case of nisin 

Z in the presence of lipid II, however, high mobility and/or structural inhomogeneity is still present. 

This might be functionally important: shortening of the hinge region by the removal of two residues 

at position 20 and 21, or introduction of proline residues at these positions to enhance rigidity causes a 

severe loss of the pore forming activity (Wiedemann et al., 2001). Reduction of flexibility in the hinge 

region can disable further pore formation by which the translocation of the C-terminal part across the 

membrane is necessary (van Kraaij et al., 1998). Since there exist two very different dynamic motions 

along the structure of nisin, the hinge region therefore plays the transitional role to bridge the two 

termini together. This intermediate motion can also be the reason of the line broadening and the missing 

peaks in this part of the structure, for example, Asn20.

Aggregation of the nisin/lipid II complex after the binding process

Elucidation of the nisin-lipid II complex structure was not possible at this stage due to a dramatic loss of 

cross-peaks in NOESY spectra. After the titration of lipid II into the nisin/SDS solution, slow aggregation 

was observed and the increase of size was such that only the C-terminal part of nisin exhibiting high 

flexibility showed resolvable cross-peaks. Increasing the temperature substantially improved the line widths 

in the HSQC spectra, but the NOESY spectra were still poor even at the elevated temperature of 40 ˚C. 

Not being able to penetrate SDS gel in the standard electrophoresis experiment when nisin is bound to 

lipid II is also a supplementary indication of the formation of a sizeable aggregate (data not shown). This 

suggests that the subsequent aggregation of the nisin/lipid II complex is essential for the pore formation. 

The loss of NOE signals after the complex formation is not only due to the slowing down of the 

molecular tumbling but also to the structural heterogeneity during the aggregation process.

Multi-step lipid II targeted pore formation mechanism

Based on the information in our current study and previously reported mutagenesis results, we propose 

a multi-step model for lipid II-mediated nisin pore formation. The first step involves the recognition 

of the lipid II head group by the N-terminal part of nisin. A tight nisin/lipid II complex is thereby 

formed, anchored into the membrane by the undecaprenyl tail of lipid II. Subsequent conformational 

rearrangement takes place by means of the aggregation of the nisin/lipid II complexes. The minimum 

number of nisin molecules for pore formation is however still unclear. Finally, the insertion of the C-

terminal part of nisin into the membrane completes the pore forming process.

 Here we have observed the first recognition step in the complete mechanism. The mapping of the 

binding interface of nisin has provided insight into the functionality of each amino acid along the nisin 

sequence. The conserved residues amongst the type A lantibiotics might also share similar functionalities. 

We think that the work presented here will benefit to the future studies of this target mediated membrane 

pore formation mechanism and might aid the future development of novel antibiotics.
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The emerging antibiotics-resistance problem such as that caused by methicillin-resistant 

Staphylococcus aureus (MRSA) has underlined the urgent need for novel antimicrobial agents 

for infectious therapy. The family of lantibiotics (lanthionine-containing antibiotics) (Sahl 

and Bierbaum, 1998; Guder et al., 2000) harbours promising candidates to alleviate this 

problem. Nisin, a member of this family, possesses an unique pore-forming activity against 

bacteria. It binds to lipid II, the essential precursor of cell wall synthesis. Thereby the 

membrane permeabilization activity of nisin is increased by three orders of magnitude 

(Breukink et al., 1999). Here we report the solution structure of the complex of nisin and 

lipid II using nuclear magnetic resonance (NMR) spectroscopy. The structure shows that 

the N-terminal part of nisin forms a cage wherein the pyrophosphate moiety of lipid II is 

bound primarily via intermolecular hydrogen bonds between nisin backbone amides and 

the phosphate groups. This cage structure is a novel lipid II binding motif that provides 

a rationale for the conservation of the lanthionine ring structures amongst several lipid 

II-binding lantibiotics. The structure of the pyrophosphate cage offers a template for the 

structure-based design of novel antibiotics.

 The cell wall is essential for the vitality of bacteria as its strong extracellular peptidoglycan matrix 

resists the high osmotic pressure of the cytoplasm. It is well conserved throughout evolution and is 

therefore a prominent target for many antibiotics (for review, see (Koch, 2003)). The monomeric 

peptidoglycan unit, the basic building block of the cell wall, consists of two amino sugars, N-

acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), and a pentapeptide, often L-Ala-

D-γ-Glu-L-Lys-D-Ala-D-Ala, which is attached to the carboxyl group of MurNAc. These subunits 

are assembled in the cytosol on a membrane-anchoring carrier, undecaprenyl phosphate, yielding lipid 

II (GlcNAc-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol, Figure 1A; for review, see (van 

Heijenoort, 1994)). Lipid II is thereafter transported to the extracellular domain for polymerisation of 

the peptidoglycan moiety.

 The essential role of lipid II in cell wall synthesis makes it a target for many antimicrobial peptides 

(Brötz et al., 1998). This includes vancomycin, the clinical antibiotic of last resort (Sheldrick et al., 

1978), and ramoplanin, which is now in phase three clinical trial (McCafferty et al., 2002). We note, 

however, that vancomycin resistance is now emerging (Hughes, 2003). Lipid II is also targeted by nisin, 

a 34-residue post-translationally modified peptide containing five lanthionine rings and three dehydrated 

amino acids (Figure 1B). Lipid II serves not only as an anchoring receptor for nisin but also facilitates 

the “targeted” pore forming activity of nisin thereby lifting nisin’s activity on bilayers to the nanomolar 

range (Breukink et al., 1999). Vancomycin-resistant bacteria with the vanA-type gene cluster evade the 

attack of vancomycin by changing the binding epitope from D-Ala-D-Ala to D-Ala-D-Lac (Hughes, 

2003). In contrast, nisin is still fully active against the vanA-type resistant strain indicating that it binds 

to lipid II in a different way (Breukink et al., 1999). The importance of lipid II in cell wall synthesis 

implicates that any molecule that binds lipid II with high affinity is a potential antibiotic. Therefore, 

understanding of the recognition mechanism between nisin and lipid II at a molecular level could 

ultimately lead to the development of novel antibiotics.
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 The solution structure of the 1:1 complex of nisin and lipid II was determined in dimethyl sulfoxide 

(DMSO) using a lipid II variant (3LII) with a shortened prenyl tail of three isoprene units (Figure 1C 

and Table 1). The interface between nisin and 3LII is defined by 36 intermolecular NOEs between 

residues 1-10 of nisin and MurNAc and the isoprene units of 3LII. In addition, two intermolecular 

hydrogen bonds were experimentally identified and were used as distance restraints (Table 1). These 

involve the amide groups of Dhb2 (dehydrobutyrine) and Abu8 (α-aminobutyric acid) of nisin and 

the pyrophosphate moiety of 3LII, as identified by the presence of the cross hydrogen bond nitrogen-

Table 1. Structural statistics for the nisin/3LII complex*
Distance restraints

Intramolecular 619

Intermolecular 36

Hydrogen bonds 2

Torsion angles

Backbone φ 6

Side chain χ1 7

R.m.s. deviation from experimental restraints

All distance restraints (Å)† 0.049±0.003

All torsional restraints‡ 0.40±0.19

Coordinate precision (Å)||

Nisin

N, Cα, C’ (residues 1-12) 0.25±0.09

Heavy atoms (residues 1-12) 0.49±0.16

N, Cα, C’ (all) 6.23±2.30

Heavy atoms (all) 6.93±2.35

         3LII (all heavy atoms) 2.67±0.73

          Nisin/3LII complex interface¶ 0.56±0.16

CNS intermolecular energies after DMSO refinement (kcal mol-1)§

Total Etotal -151±42

         Van der Waals EvdW -28±5

         Electrostatic Eelec -124±42

Interface buried surface area (Å2)# 842±86

* The statistics is obtained from an ensemble of twenty lowest-energy solution structures of the largest nisin/3LII 
complex structure cluster. The structures were refined in a shell of explicit DMSO solvent model (Linge et al., 
2002). Root mean square (r.m.s.) deviations for bond lengths, bond angles and improper dihedral angles are 
0.00060±0.00002Å, 1.69±0.03º and 1.01±0.04º, respectively.

�  No distance restraint was violated by more than 0.42 Å in any of the final structures.
�  No dihedral angle restraint was violated by more than 5º.
|| Coordinate precision is given as the average pairwise Cartesian coordinate r.m.s. deviations over the ensemble, 

<r.m.s.d.>pairwise.
¶  The interface of the complex is defined as the residues 1-12 of nisin and MurNAc, pyrophosphate moiety and the 

first isoprene unit of 3LII (110 heavy atoms).
§  The non-bonded energies were calculated using OPLS parameters (Jorgensen and Tirado-Rives, 1988) with an 

8.5Å cutoff.
# The buried surface area was calculated with CNS (Brünger et al., 1998) using a 1.4Å water probe radius and 

a 0.005Å precision. It is defined as the solvent accessible surface difference (ΔSAS) when nisin and 3LII were 
subjected to calculation separately (SASnisin and SAS3LII) and as a whole (SASnis/3LII)



Chapter 3

48

AA

BB

CC

pentapeptide

prenyl
chain

Ile1Ile1

Dhb2Dhb2

Ile4Ile4

Dha5Dha5

Leu6Leu6

Pro9Pro9

MurNAcMurNAc

isopreneisoprene

Dhb2Dhb2

Ile4Ile4

Dha5Dha5

Ala3Ala3

Abu8Abu8

PAPA

PBPB

PAPA

PBPB

C

D E

Chapter 3 Figure 1

Ile Dhb Ala
Ile

Dha
Leu

Ala Abu

Pro Gly

Ala Abu

Gly

Ala
Leu

Met

Gly

Ala Asn Met Lys Abu

Ala Abu

Ala Asn

Ala Ser Ile

His

Val

Dha

Lys

Lys

S

S

S S

S

1

5

10

15

20

25 30

A B C D

Ehinge

B

O

O
O

CH2

O

O O

CH2

N

O

O

C

CH3

O

H

HC
N

C

CH3

O

H

O

C O

H3C

P

O

O-

O
P

O

O-O

MurNAcGlcNAc

L-Ala

D-Ala
D-Ala

L-Lys
D-γ-Glupenta-

peptide

prenyl
chain

A

Figure 1. Solution structure of the nisin/3LII complex. A. Chemical structure of 3LII. B. Primary structure of 
nisin. The lanthionine rings, A-E, and the side chain structures of the dehydrated residues (dehydroalanine, Dha 
and dehydrobutyrine, Dhb) are shown. C. Ensemble of the twenty lowest-energy NMR structures superimposed 
on the heavy atoms of the interface of the complex (cf. Table 1). The backbone of nisin (residues 1-19) including 
lanthionine linkages is coloured black. The unstructured C-terminal part is omitted for clarity. The pentapeptide, 
MurNAc, GlcNAc, pyrophosphate moiety and the prenyl chain of 3LII are coloured grey. D. The N-terminal part 
of nisin (residues 1-12 shown in van der Waals surface) encages the pyrophosphate moiety of 3LII. The side chains 
(light grey) of nisin are labelled. The MurNAc, pyrophosphate and the first isoprene unit of 3LII are shown is sticks 
and labelled, respectively. E. Nisin backbone-3LII pyrophosphate intermolecular hydrogen bond network. Hydrogen 
bonds with high occurrence in the ensemble of structures (as defined by LIGPLOT (Wallace et al., 1995), see Table 
2) are indicated by dashed lines and the corresponding residues are labelled (pyrophosphate group in spheres). The 
carbon, oxygen and nitrogen atoms of nisin are coloured light grey, dark grey and black, respectively. A white arrow 
indicates the position of Ala3-Cβ, at which addition of a methyl group can disrupt the bioactivity (see text for details). 
The figures were generated using Pymol (http://www.pymol.org/).



phosphorous (15N-H...O-31P) scalar coupling 3hJNP (see Material and Methods) (dashed box inset, Figure 

2). The nisin/3LII complex is well-defined at the interface with a rather disordered tail (Figure 1C). 

This is supported by the fact that a reduction of the intrinsic flexibility of nisin upon 3LII binding is 

only observed in the N-terminal part, as indicated by the heteronuclear 15N{1H}-NOE data (Figure 3). 

Due to the large number of modified residues, nisin exhibits no canonical secondary structure, but does 

contain type I β-turns in rings B and C and two consecutive type II and II’ β-turns in the intertwined 
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Figure 2. Nisin/3LII complex formation. Overlaid 1H-15N HSQC spectra of the free (black) and 3LII bound nisin 
(grey). Changes in chemical shifts are indicated by cyan lines with corresponding residue labels (U: dehydroalanine; 
O: dehydrobutyrine; A*: α-aminobutyric acid). The amide protons of O2 and A*8 that are hydrogen bonded to 
the pyrophosphate group of 3LII are indicated by dashed circles. Cross sections of the O2 and A*8 signals along 
the 1H dimension in the 31P-edited constant time (CT) 1H-15N HSQC (Löhr et al., 2000; Mishima et al., 2000) are 
shown in the lower right inset (dashed box). The intensities of these hydrogen bonded amides are modulated by the 
cross hydrogen bond scalar coupling to the phosphorous (3hJNP) and are attenuated due to transverse relaxation decay 
during the CT delays (grey). The reference experiment with 31P decoupling during CT delays removes the 3hJNP 
coupling modulation (black). Upper left inset shows the free (black) and nisin bound (grey) 31P NMR spectra of the 
pyrophosphate group in 3LII (Δδ(PA) = -1.91 ppm and Δδ(PB) = -2.62 ppm). Signals A and B correspond to the 
individual phosphates that are attached to the MurNAc moiety and the prenyl chain, respectively.
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rings D and E. In contrast to the extended and flexible structure in the absence of 3LII (not shown), 

upon binding to 3LII, the N-terminus of nisin folds back onto the first two lanthionine rings, A and B, 

forming a cage-like structure. This cage encompasses the pyrophosphate group of 3LII with a buried 

surface area of ca 850 Å2 (Table1). This represents more than a third of the 3LII total solvent accessible 

surface. Except the side chains of Ala3 and Ala7, which are part of the lanthionine ring linkage, all other 

side chains reside at the rim of the binding cleft (Figure 1D). The unique backbone architecture of the 

pyrophosphate cage allows the formation of five intermolecular hydrogen bonds between the backbone 

amides of nisin and the pyrophosphate group (Figure 1E and Table 2). By contrast, another polyprenyl-

pyrophosphate binding molecule, the mammalian farnesyltransferase, coordinates the pyrophosphate 

group solely via hydrogen bonding with conserved side chains (Long et al., 2002). As pre-organisation 

with lanthionine linkages provides a lower entropy loss upon binding, this may be the dominant 

factor in the recognition mechanism of the pyrophosphate group of lipid II.

 The formation of intermolecular hydrogen bonds and close contacts to the highly electronegative 

phosphate moiety induces large chemical shift perturbations in the N-terminal part of nisin, in line with 

those previously observed in the lipid II-containing sodium dodecylsulphate (SDS) micelles (Hsu et 

al., 2002) (Figures 2 and 4). The hydrogen bond formation is responsible for the large downfield shifts 

along the proton dimension for Dhb2 and Abu8 (dashed circles in Figure 2) and the upfield shifts of the 
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Figure 3. 15N{1H} heteronuclear NOEs of nisin in the free (open circles) and complex (filled squares) forms. 
15N{1H} NOE experiment was carried out using the on- or off-resonance proton irradiations during the last three 
seconds of the five-second relaxation delays in an interleaved way to avoid differential heating effect. 15N{1H} NOE 
is given by the ratio of the 1H-saturated (on-resonance) and reference (off-resonance) peak intensities (Isat/Iref). An 
amide group in a structured region will have a value close to unity while an amide group in an unstructured, flexible 
region will have a value close to zero, or even below.
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two phosphorous nuclei (inset, Figure 2). Apart from the two experimentally identified intermolecular 

hydrogen bonds, additional ones are present in the complex structure (Figure 1C), consistent with the 

reduction of the amide proton chemical shift temperature dependency (temperature coefficient) (Hsu et 

al., 2002) upon complex formation (Figure 5). Because the scalar coupling 3hJNP is highly dependent on 

the hydrogen bond geometry (Czernek and Brüschweiler, 2001), some of these couplings may be too 

weak to be observed in our experimental setting.

 The binding mode involving the pyrophosphate moiety as revealed here shows that nisin 

does not target the same motif of lipid II as does vancomycin (Breukink et al., 1999), and possibly 

ramoplanin (McCafferty et al., 2002). It also explains why nisin does not differentiate between lipid 

II and lipid I, which differ in the GlcNAc moiety (Brötz et al., 1998). The chemical shift changes in 

D-Ala-D-Ala and the terminal isoprene units of 3LII upon nisin binding were negligible (Figure 4); 

only a localised perturbation was observed in the β1-4 linkage between MurNAc and GlcNAc. These 

leave the pyrophosphate, MurNAc and the first isoprene in lipid II and the N-terminal part of nisin 

as the determinants for nisin-lipid II recognition. The structure of the complex explains several earlier 

observations. First, extension of the N-terminus, [ITPQ]-nisin, dramatically diminishes the antimicrobial 

activity (Kuipers et al., 1993). Second, the introduction of an extra methyl group at the side chain of 

Ala3, [S3T]-nisin, decreases the lipid II binding affinity of nisin 50-fold (Wiedemann et al., 2001). In 

contrast, similar modifications in the second position, Dhb2, had little effect (Wiedemann et al., 2001). 

Third, [ΔAla5]-nisin, with ring A nicked open by hydrolytic cleavage, is biologically inactive (Chan 

Table 2. Statistics of intermolecular interactions*

Intermolecular hydrogen bonds

nisin 3LII
Donor Acceptor Occurrence (%)† Donor-acceptor distance (Å)

Dhb2 N PA O1 100 2.81±0.03
Ala3 N PA O1 100 3.07±0.08

Ile4 N PA O2 100 2.60±0.03

Dha5 N PA O2 100 2.87±0.12
Abu8 N PB O2 100 3.00±0.09

Non-bonded intermolecular contacts

nisin 3LII Occurrence (%)† Atom pair distance (Å)

Leu6 Cδ1 Isoprene1 C2 55 3.73±0.07
Gly10 Cα Isoprene1 C2 100 3.44±0.13

Gly10 Cα Isoprene1 C3 100 3.48±0.10

Pro9 C Isoprene1 C4 100 3.57±0.14

Pro9 Cβ Isoprene1 C4 100 3.46±0.14

Gly10 Cα Isoprene1 C4 100 3.58±0.14

Abu13 Cγ2 Isoprene1 C4 70 3.68±0.13
Pro9 Cβ Isoprene2 C1 85 3.43±0.08

* The intermolecular hydrogen bonds and non-bonded contacts were analysed by LIGPLOT (Wallace et al., 1995) 
using the default settings. 2.7Å and 3.35Å proton-acceptor and donor-acceptor distance cutoffs, respectively with 
minimum 90º angles (D-H-A, H-A-AA, D-A-AA) for hydrogen bonds; 3.9Å heavy atom pair distance cutoff for 
non-bonded contacts.

† The minimum occurrence cutoff was set to 50% (10 out of 20 structures in the final DMSO refined ensemble).
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et al., 1989).  All these observations can be rationalised when examining the interface of the complex 

structure: i) since side chain of the N-terminal Ile1 is part of the interface (Figure 1C), extension of 

the N-terminus may interfere with the interfacial complimentarity; ii) the additional methyl group in 

[S3T]-nisin occupies the encaging cavity (white arrow, Figure 1E) and therefore hampers the formation 

of intermolecular hydrogen bonds; iii) the ring opening loses the rigidity of the ring structure and hence 

destabilises the intermolecular hydrogen bond between Dha5 and the pyrophosphate moiety.

 Throughout evolution, the lanthionine ring structure of nisin, in particular, rings A and B, are 

well-conserved amongst several lipid II-binding lantibiotics (Sahl and Bierbaum, 1998; Guder et al., 

2000). Efforts in creating more effective antibiotics by changing the side chain compositions of nisin-like 

peptides have only achieved a marginal improvement of bioactivity to date (Liu and Hansen, 1992). This 

can now be understood since binding to lipid II is dictated mainly by the backbone scaffold of the ring 

structures. Using the nisin/3LII complex as a template, we performed homology modelling of several 

related lantibiotics containing conserved lanthionine rings A and B (Figure 6). This reveals that the 

pyrophosphate cage can accommodate a variety of side chain compositions. Apart from the conserved 

positions 3 and 7-11, all observed differences amongst the homologs reside at the circumference of the 

pyrophosphate cage. The occurrence of various amino acid types, both hydrophilic and hydrophobic, 

suggests that the side chain interactions are of minor importance in lipid II binding. Notably, the 

hydrophobic character at position 6 remains preserved. This part interacts with the prenyl chain (Table 

2) and possibly also the membrane bilayer in which lipid II is anchored. This notion of a common motif 
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Figure 5. Temperature coefficients of nisin amide protons (HN) in the free (open bars) and complex (filled bars) 
forms. The temperature coefficients were derived from the temperature dependency of the amide proton chemical 
shifts (Δδ/ΔT) using a linear fitting of individual amide proton resonances obtain from 1H-15N HSQC spectra recorded 
at 290, 295, 300, 305, 310 and 315K. The unit of the chemical shift is given in part per billion (ppb).
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Table 2. Statistics of intermolecular interactions*

Intermolecular hydrogen bonds

nisin 3LII
Donor Acceptor Occurrence (%)† Donor-acceptor distance (Å)

Dhb2 N PA O1 100 2.81±0.03
Ala3 N PA O1 100 3.07±0.08

Ile4 N PA O2 100 2.60±0.03

Dha5 N PA O2 100 2.87±0.12
Abu8 N PB O2 100 3.00±0.09

Non-bonded intermolecular contacts

nisin 3LII Occurrence (%)† Atom pair distance (Å)

Leu6 Cδ1 Isoprene1 C2 55 3.73±0.07
Gly10 Cα Isoprene1 C2 100 3.44±0.13

Gly10 Cα Isoprene1 C3 100 3.48±0.10

Pro9 C Isoprene1 C4 100 3.57±0.14

Pro9 Cβ Isoprene1 C4 100 3.46±0.14

Gly10 Cα Isoprene1 C4 100 3.58±0.14

Abu13 Cγ2 Isoprene1 C4 70 3.68±0.13
Pro9 Cβ Isoprene2 C1 85 3.43±0.08

* The intermolecular hydrogen bonds and non-bonded contacts were analysed by LIGPLOT (Wallace et al., 1995) 
using the default settings. 2.7Å and 3.35Å proton-acceptor and donor-acceptor distance cutoffs, respectively with 
minimum 90º angles (D-H-A, H-A-AA, D-A-AA) for hydrogen bonds; 3.9Å heavy atom pair distance cutoff for 
non-bonded contacts.

† The minimum occurrence cutoff was set to 50% (10 out of 20 structures in the final DMSO refined ensemble).

for lipid II recognition is strengthened by the observation that lipid II is also the target of epidermin 

(Brötz et al., 1998) and mutacin 1140 (unpublished data) (Figure 6B). We therefore propose that the 

pyrophosphate cage is the general lipid II-binding architecture for these lantibiotics.

 The formation of a 1:1 nisin/lipid II complex is the first step towards pore formation. Once nisin is 

anchored onto lipid II on the membrane surface, subsequent conformational changes take place that lead 

to the assembly of a higher order oligomeric complex (Breukink et al., 2003). Pore formation requires a 

transmembrane orientation of nisin involving insertion of its C-terminal part (van Heusden et al., 2002) 

and a flexible hinge region (residues 20-22) (Wiedemann et al., 2001). Perhaps one can conjecture the 

early stage of this multi-step process based on the current nisin/3LII complex structure. The positioning 

of the N-terminal part of nisin with respect to the prenyl chain in the nisin/3LII complex structure may 

already pave the way for subsequent membrane insertion. Assuming that the interface structure of nisin/

3LII complex is preserved in the membrane bilayer we propose a model for the membrane insertion 

of nisin based on the current nisin/3LII complex structure (Figure 7). This shows that initially ring C 

of nisin would readily be embedded into the membrane at a comparable depth as the first few isoprene 

repeats (Figure 7). The modelling demonstrates that nisin is capable of spanning the membrane bilayer 

with the pyrophosphate cage as the anchoring point. However, this requires conformational flexibility 

in the hinge region, which is depicted by the three conformations taken from the ensemble of calculated 

structures (Figure 7). Lack of a flexible hinge by truncation or proline replacement would hamper this 

insertion process, explaining the lack of pore-formation activity of these mutants (Wiedemann et al., 2001).
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Figure 7. Model of the nisin/lipid II complex in a membrane bilayer. The backbone of three representative structures of nisin 
are shown and coloured from black to white from N- to C-termini. Each conformation, taken from the ensemble of nisin/3LII 
complex structures, corresponds to a possible orientation of the C-terminal part of nisin outside, on the surface, or inserted into 
the membrane bilayer, respectively. They are orientated in such a way that the pyrophosphate group of 3LII (spheres) is at the 
same depth as head groups of lipid molecules (dark grey) in a membrane with a thickness of ~40Å.

Figure 6. General binding model of 
lipid II-binding lantibiotics. A. In silico 
mutagenesis was performed to model the 
side chains (see below) of subtilin (black), 
epidermin (dark grey) and mutacin B-
Ny266 (light grey) based on the nisin 
structure (white). The backbone is shown 
in black with the conserved side chains 
in white. Only the fi rst twelve residues 
are shown; 3LII is shown in van der 
Waals surface. The position of the Ala3 
side chain is indicted by a white arrow. 
The structure has the same orientation 
as in Figure 1C. B. Primary sequence 
alignment of type A lantibiotics. Nisin 
and subtilin form a subfamily of type A 
lantibiotics. Another subfamily consists 
of epidermin, [I1V,I6L]-epidermin, 
mutacin B-Ny266 and mutacin 1140 
(Guder et al., 2000; Smith et al., 2000) 
with a cyclised C-terminus (X: 2-
aminovinyl-D-cysteine, AviCys). The 

universally conserved residues are highlighted in black and the conserved residues within the subfamilies are shaded 
in grey. The lanthionine linkages are indicated above each subfamily.
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 In conclusion, this study has revealed a novel lipid II recognition motif for nisin and related 

lantibiotics. The pyrophosphate moiety plays an essential role in the bacterial cell wall synthesis. Its 

chemical entity is the Achilles’ heel of bacteria that cannot be altered or replaced by simple mutations 

as opposed to alteration of the attached pentapeptide that can lead to vancomycin-resistance. Since its 

discovery in 1928, nisin is used as a food preservative and in animal health products, e.g., treatments of 

mastitis. Penicillin, on the other hand, discovered at the same time as nisin, is no longer effective for the 

treatment of hospital-acquired infections, as reported by the World Health Organisation (WHO, http://

www.who.int/). In essence, the structure nisin/3LII complex as described here can provide a basis for 

future antibiotic design.

Materials and Methods

Sample preparation

Uniformly 15N-labelled nisin and unlabelled 3LII were produced as described previously (Hsu et al., 

2002; Breukink et al., 2003). The nisin/3LII complex was prepared by mixing equal molar amounts of 

lyophilised [U-15N]-nisin and 3LII in water followed by centrifugation. The supernatant was removed and 

the insoluble complex pellet was rinsed with water several times. The pellet was lyophilised and dissolved 

in 99.9% perdeuterated d6-DMSO (Cambridge Stable Isotope, Inc.) reaching a final concentration of ca 

1.2 mM. Free [U-15N]-nisin and 3LII samples were prepared by dissolving the lyophilised sample into 

d6-DMSO to reach similar sample concentrations.

NMR spectroscopy

NMR spectra were recorded at 300K on Bruker DRX500, DRX600, DRX750 and DRX900 

spectrometers equipped with a triple resonance or a cryogenic probe (DRX600) for 1H, 15N and 13C 

detection and a multinuclear (DRX500) or a broadband probe (DRX600) for 31P detection. Spectra 

were processed with NMRPipe (Delaglio et al., 1995) and analysed using NMRView (Johnson and 

Blevins, 1994). The 1H and 15N chemical shifts were assigned using standard methods (Cavanagh et 

al., 1996). 13C chemical shifts of the well-resolved peaks were assigned from 1H-13C HSQC and 1H-
13C heteronuclear multiple bond correlation (HMBC) (Cavanagh et al., 1996) recorded with natural 

abundance. The two 31P chemical shifts of the pyrophosphate groups in 3LII were distinguished by 1H-
31P HMBC. The cross hydrogen bond scalar coupling 3hJNP was identified by 31P-edited constant time 

(CT) 1H-15N HSQC (Löhr et al., 2000; Mishima et al., 2000) with and without 31P decoupling during 

the constant time delays of 60, 80, 100 and 120 ms. The assigned chemical shift data sets were deposited 

into the BioMagResBank under accession codes 6144, 6145 and 6146 for free nisin, free 3LII and their 

complex, respectively.

Structure calculation and modelling

Distance restraints were derived from three-dimensional 15N NOESY-HSQC and two-dimensional 

homonuclear 1H-1H NOESY. Intermolecular restraints were obtained from 15N-edited filter experiments 

(Cavanagh et al., 1996). Two experimentally identified intermolecular hydrogen bonds (Dhb2-NH and 

Abu8-NH to pyrophosphate group in 3LII) were introduced in the later stages of the calculations as 

ambiguous distance restraints from the amide groups to any of the oxygen atoms in the pyrophosphate 
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group with bounds of 1.6-2.4Å (H-O) and 2.5-3.3Å (N-O). Backbone φ dihedral angle restraints were 

derived from 3J(HN,Hα) coupling constants determined by three-dimensional HNHA (Cavanagh et 

al., 1996). The side chain rotameric states (χ1) were derived from the intensity-based comparison of 

NOESY/DQF-COSY spectra (Basus, 1989). The experimentally determined distance and dihedral 

restraints (Table 1) were applied in a simulated annealing protocol using CNS (Brünger et al., 1998) 

and HADDOCK (Dominguez et al., 2003) with nisin and 3LII treated as fully flexible for docking. 

The structures were refined using an explicit DMSO solvent model (Linge et al., 2002). Homology 

modelling was achieved using Pymol (http://www.pymol.org/) from the representative nisin/3LII 

complex structure (the closest to the mean). Side chains were mutated in silico followed by manual 

adjustment of the rotamer conformations and subsequent energy minimization. The atomic coordinates 

of the nisin/3LII complex (PDB entry 1UZT) have been deposited in the Protein Data Bank at the 

Macromolecular Structure Database site at the European Bioinformatics Institute, Cambridge, UK.
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Abstract

Mersacidin belongs to the type B lantibiotics (lanthionine-containing antibiotics) that 

contain post-translationally modified amino acids and cyclic ring structures. It targets 

the cell wall precursor lipid II and thereby inhibits cell wall synthesis. In light of 

the emerging antibiotics resistance problem, the understanding of the antibacterial 

activity on a structural basis provides a key to circumvent this issue. Here we present 

solution NMR studies of mersacidin-lipid II interaction in DPC micelles. Distinct 

solution structures of mersacidin were determined in three different states: in a water/

methanol solution and in DPC micelles with and without lipid II. The structures in 

various sample conditions reveal remarkable conformational changes, in which the 

junction between Ala12 and Abu13 effectively serves as the hinge for the opening and 

closure of the ring structures. The DPC micelle-bound form resembles the previously 

determined NMR and X-ray crystal structures of mersacidin in pure methanol, but 

substantially deviates from the other two states in our current report. The structural 

changes delineate the large chemical shift perturbations observed during the course of 

a two-step 15N-1H HSQC titration. They also modulate the surface charges distribution 

of mersacidin suggesting that electrostatics play a central role in the mersacidin-lipid 

II interaction. The observed conformational adaptability of mersacidin might be a 

general feature of lipid II-interacting antibiotics/peptides.

Introduction

Many antimicrobial peptides act against microorganisms through pore formation on the cell membrane. 

The permeability originates in principle from a nonspecific assembly that results in a pore-like structure, 

where the amphipathic nature of the amino acid composition facilitates the clustering process (for 

review, see (Zasloff, 2002)). Apart from this ubiquitous mechanism, some antimicrobial peptides, such as 

ramoplanin, enduramycin and janiemycin and the glycopeptides vancomycin and teicoplanin, use specific 

targets that plays a central role in cell wall synthesis, namely lipid II, to achieve their bioactivity with much 

higher efficiency (Nagarajan, 1993; Brötz et al., 1998b; Cudic et al., 2002). Lipid II also serves as a target 

for the pore forming peptides, nisin and epidermin, which belong to the type A lantibiotic (lanthionine-

containing antibiotic) family (Brötz et al., 1998b; Breukink et al., 1999). Some type B lantibiotics also 

possess functions of targeted cell wall synthesis inhibition; one of the best studied peptide is mersacidin 

(Figure 1A) (Brötz et al., 1997; Brötz et al., 1998a). Although these lipid II-targeting antimicrobial 

peptides share a common binding molecule, the recognition epitopes among these peptides are somewhat 

different: co-incubation of vancomycin or other inhibitors of transglycosylases or transpeptidases with 

mersacidin does not impede its lipid II binding capacity (Brötz et al., 1998a). As the antibiotic resistance 

is becoming more and more severe, the diversity of such a targeting action is of great interest. The 

sophisticated chemical composition of lipid II provides the complexity that can be targeted in various 

ways. It consists of a peptidoglycan headgroup that serves as the building block for the cross-linked cell 

wall matrix and of a pyrophosphate-undecaprenyl lipid tail that functions as the carrier for the transport 

of the peptidoglycan moiety from the cytoplasm to the extracellular domain (Figure 1B). Although 
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the targeted antimicrobial activity of mersacidin is evident, little detail is known, however, about its 

mechanism of recognition and inhibition. 

 Mersacidin is a 20-residue peptide with nine post-translationally modified amino acids and a single 

negatively charged residue, Glu17 (Figure 1A) (for reviews, see (Brötz and Sahl, 2000; Jack and Jung, 

2000)). It contains four ring structures: two separate ones in the N-terminal part and two intertwined 

ones in the C-terminal part. The three-dimensional structure of mersacidin has been solved both by 

solution NMR spectroscopy (Prasch et al., 1997) and X-ray crystallography (Schneider et al., 2000). 

Unlike type A lantibiotics, which are mostly extended and flexible, the structure of mersacidin is globular 

and compact. In both the crystalline and solution states the local ring structures are tightly confined by 

the lanthionine linkages. The overall conformations obtained from the two different methods are similar, 

except for a minor difference in the orientation of the glycine-rich ring (residues 5-11). These structures 

were however both solved in pure methanol due to the poor solubility of mersacidin in aqueous solution, 

and in the absence of lipid II, which is required for its bioactivity. In order to understand this mechanism, 

knowledge of its structure upon binding to lipid II under physiological conditions is crucial. 

 We report here high resolution NMR spectroscopy studies of the interaction between mersacidin 

and its binding target lipid II in DPC micelles, which were used as a membrane mimic. 15N-1H HSQC 

titration experiments provide the residue-specific insight into the interactions with lipid II. The structures 

of mersacidin in various sample environments, namely free in methanol/water solution and DPC bound in 

the absence and presence of lipid II, were determined by NOE-based structure calculations with explicit 

solvent refinements. The effect of binding to DPC micelles and lipid II on the mersacidin dynamics are 

characterised by means of 15N-relaxation together with gradient-edited diffusion experiments. Despite 

the large number of published solution NMR structural and relaxation dynamics studies of membrane 

proteins and peptides (Williams et al., 1996; Opella, 1997; Bader et al., 2001; Neidigh et al., 2001; Opella et 

al., 2001), only a few examples of high-resolution NMR studies of protein/peptide-ligand interactions in 

the presence of membrane-like environments are available to date (Kutateladze and Overduin, 2001; Hsu 

et al., 2002). We will show that the differences in sample environments result in substantial conformational 

changes that modulate charge accessibility. These changes in charge distributions most likely play a crucial 

role in the mechanism of mersacidin bioactivity.

Material and methods

Sample preparation

For the overproduction and purification of 15N-mersacidin, the producer strain Bacillus spec. HIL Y-

85,54728 was inoculated into 10 ml of tryptone soy broth and incubated overnight. The preculture 

served as inoculum for 10 ml of synthetic production medium (Bierbaum et al., 1995) which contained 

50 mM 15NH4Cl (98 %+) (Cambridge Isotope Laboratories. Inc., Cambridge, UK), and 10 mM K2SO4, 

and was incubated at 30°C to an optical density of 0.1 at 600 nm. 0.1 ml of this culture served as 

inoculum for ten 100 ml cultures in the same medium, which were incubated for 72 h at 30°C with 

vigorous agitation in 1 l Erlenmeyer flasks. The culture supernatant was sterilized by filtration and loaded 

onto a 50 ml Serdolit PAD-I column (Serva Electrophoresis GmbH, Heidelberg, Germany), which had 

been washed with methanol and equilibrated with distilled water. The column was washed with 10 bed 

volumes of distilled water and 10 bed volumes of 50 % methanol in 50 mM potassium phosphate, pH 
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7 and the peptide was eluted with 500 ml acetonitrile, 0.1 % trifluoric acid. The antibacterial activity of 

the fractions was checked in a bioassay employing Micrococcus luteus ATCC 4698 as an indicator strain. 

Active fractions were pooled, concentrated by rotary evaporation and precipitated proteins were removed 

by centrifugation. Aliquots of the concentrate were applied to a POROS 20 R2 HPLC column (Applied 

Biosystems, Weiterstadt, Germany) using the following gradient (eluent A: 0.1% trifluoric acid in water, 

eluent B: 0.1% trifluoric acid in acetonitrile): 0 min 5% B, 12 min 30% B, 20 min 40% B, 22 min 100% B, 

at a flow of 5 ml/min. Active fractions were pooled, concentrated by evaporation and rechromatographed 

on the POROS column. After lyophilisation of the active fractions, the peptide was applied to a reversed 

phase HPLC column (RP18) employing the following gradient: 0 min 5% B, 30 min 50% B, 44 min 

67.5% B, 47 min 100% B. The mass of the purified peptide, which eluted at 55% B, was checked by mass 

spectrometry. Lipid II was prepared as described earlier (Brötz et al., 1997).

NMR Spectroscopy for spectral assignments

Due to the solubility problem of mersacidin, freeze-dried mersacidin was first dissolved in perdeuterated 

d3-methanol (Cambridge Isotope Laboratories. Inc., Cambridge, UK) as a 10 mg/ml stock solution. It 

was then diluted with sodium phosphate buffer and dodecylphosphocholine (DPC) solution and water. 

Lipid II was taken from a stock solution (in CHCl3:MeOH = 1:1) and vacuum-dried before mixing. 

Mersacidin-containing DPC solution was then added to dissolve lipid II and the resulting sample solution 

was transferred into a NMR tube for measurements. A short sonication was applied after each mixing 

step to ensure uniform mixing and proper micelle formation. The typical sample concentration was 

2 mM mersacidin in 10 mM sodium phosphate buffer at pH 6.0 with a total volume of 500 μl. The 

sample hence contained 37% methanol and 63% H2O. For structure calculation purposes, 4% (~100 mM) 

perdeuterated d38-DPC (Cambridge Isotope Laboratories. Inc., Cambridge, UK) with or without 2 mM 

lipid II was added to obtain lipid II embedded in DPC micelles and a control sample of DPC micelles 

alone. For simplicity, MeOH/H2O, lipid II and DPCbound are defined here as the three sample conditions 

of free mersacidin in methanol/water mixture and in the DPC micelle solution with and without lipid 

II, respectively.

 All NMR experiments were carried out on Varian UnityPlus 500 and Bruker DRX600 and DRX750 

spectrometers at 293 K. Spectra including 2D NOESY with mixing times of 50, 100, 200 ms, a TOCSY 

with mixing time of 70 ms and a 3D NOESY-HSQC with mixing time of 100 ms were collected to 

obtain complete backbone and side chain proton resonance assignments (Cavanagh et al., 1996). A 2D 

DQF-COSY was recorded to extract the backbone 3JHN-Hα coupling constants in combination with a 

short mixing time (50 ms) NOESY as described earlier (Ludvigsen et al., 1991). Stereospecific assignment 

of side chain methylene groups was achieved based on the intensity correlations of the spin systems 

(Basus, 1989; Nilges et al., 1990; Xu et al., 1992). All spectra were processed using the NMRPipe software 

package (Delaglio et al., 1995) and analysed with NMRView (Johnson and Blevins, 1994) except for 

those of diffusion measurements (see below). The assigned chemical shift data sets of mersacidin in three 

different conditions, MeOH/H2O, DPCbound and Lipid II, were deposited in BioMagResBank (BMRB) 

under accession codes 5581, 5582, and 5580, respectively.

Two-step 15N-1H HSQC titration experiments

For the starting point corresponding to the free mersacidin in 37%/63% MeOH/H2O mixture, 1 μmole 
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of the 15N-labelled mersacidin stock solution in d3-methanol was diluted with 50 μl of 100 mM sodium 

phosphate buffer and water was added to reach a total volume of 450 μl. In the first titration step, 

aliquots of a 40% DPC stock solution with 37% methanol content were successively added resulting 

in DPC concentration of 0.2, 1, 2, 3, 4, 5 and 6%. This is respectively equivalent to a range of ratios of 

mersacidin versus DPC micelles of 20:1 up to 1:1.5, assuming that each DPC micelle consists of 50-55 

monomers (Wymore et al., 1999; Marrink et al., 2000). At the end of the first titration step (DPCbound) 

the total volume was 525 μl resulting in a 16% sample dilution but with identical methanol content. For 

the second titration step, portions of 0.05, 0.25, 0.5, 0.75, 1, 1.25 and 1.5 μmole of vacuum-dried lipid 

II were first prepared in separate containers and then successively dissolved in the sample taken from the 

NMR tube to reach the same concentration ratios as those of the DPC titration steps. The final sample 

(lipid II) therefore contained 1 μmole of 15N-mersacidin, ~1.5 μmole of DPC micelles and 1.5 μmole of 

lipid II. In both titration steps, the chemical shift changes of mersacidin were all saturated by excess of 

DPC micelles and lipid II at a 1:1.25 molar ratio and higher.

15N relaxation experiments for backbone dynamics 
15N longitudinal relaxation times T1 and transverse relaxation times T2 and 15H-1N steady-state NOEs 

of mersacidin were obtained from series of two-dimensional experiments with coherence selection 

achieved by pulse field gradients (PFG) (Farrow et al., 1994). For T1 measurements, seven spectra were 

recorded with relaxation delays T set to 10, 20, 100, 300, 500, 750 and 1000 ms. For the rotating frame 

relaxation times T1ρ, spectra were first obtained using a 15N-spin lock continuous wave radio frequency 

(rf) with a field strength ν1 of 1 kHz for seven relaxation delays T of 20, 50, 70, 100, 120, 200 and 350 

ms. The relaxation times T1 and T1ρ were then derived from a single exponential decay fitting of the 

peak intensities using xcrvfit (http://www.pence.ca/ftp/xcrvfit). The T2 of each residue was subsequently 

derived from the observed relaxation time T1ρ by correcting for the offset Δν of the rf field to the 

resonance by use of the relation 1/T1ρ = (1/T1) cos2θ�+(1/T2) sin
2θ, where θ = tan-1(ν1/ Δν). 15N-1H 

heteronuclear NOEs were determined from the ratio of peak intensities with and without the saturation 

(Ion/Ioff) of the amide protons for 3 sec. All 15N relaxation experiments were carried out on a Varian 

UnityPlus 500 spectrometer at 293 K.

 Since the structure of mersacidin exhibits high flexibility, quantitative analysis of the relaxation data 

in terms of spectral density functions is not applicable (Dayie et al., 1996). Therefore, the relaxation data 

in the three different sample conditions were only compared in a qualitative way. A further simplification 

allows us to estimate the correlation time from the averaged T2 value (Anglister et al., 1993):

                                                          τc ~ 1/(5T2) 
(1)

The overall correlation time can also be expressed as a function of the molecular size and the bulk 

solvent viscosity η. For a spherical molecule of radius a rotating in a liquid of viscosity η, the rotational 

correlation time τc is given by the Stokes relation (Wand et al., 1998):

τc = 4πa3η/3kT = Vη/kT = 1/6Drot                                                                          (2)

where V is the volume of the molecule, k is the Boltzman constant, T is the absolute temperature, and Drot 

is the rotational diffusion constant for a spherical molecule. The molecular radius a is actually the effective 

hydrodynamic radius Rh of the molecule with the hydration shell. The overall correlation time estimated 
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from NMR relaxation measurements can thus be compared with the effective molecular size and sample 

viscosity that are measured from PFG-NMR diffusion experiments.

Pulse field gradient NMR diffusion experiment

The hydrodynamic radius Rh can be calculated from the translational diffusion coefficient Dtrans of the 

particles through another Stokes relation:

                                                     Dtrans = kT/6πηRh (3)

PFG-NMR diffusion measurement with the PG-SLED (Pulse Gradient Stimulated Echo Longitudinal 

Encode-Decode) sequence enables us to obtain Dtrans, which is proportional to the decay rate d of the 

NMR signal attenuation as a function of gradient strength g (Wilkins et al., 1999):

                                              I(g)  = Ioexp[-dg2] (4)

Io is the NMR peak intensity in the absence of gradient pulses and g is the field strength of the bipolar 

gradient pulse pair. Changes in the solvent viscosity η in different sample environments can be monitored 

using the methanol signal as an internal standard, assuming that methanol does not interact with other 

solutes and thus that its hydrodynamic radius Rh is invariable in analogy to the use of dioxan for protein 

folding studies as described earlier (Wilkins et al., 1999). The ratio of the rate constants of methanol 

in different conditions gives the relative change in bulk solvent viscosity η. Knowing this, the relative 

hydrodynamic radii Rh of mersacidin with respect to methanol in different environments can thus be 

extracted. In practice, each diffusion data set consists of a series of 40 1D 1H spectra with an increment 

2.5% of the gradient strength from 2.5 to 100% collected at 750 MHz with a three-axis gradient probe 

(x-axis for bipolar gradient pulse pair and y- and z-axis for residual signal crushing). Data processing was 

performed with Felix from Biosym Technologies (San Diego, CA) and Origin7.0 from OriginLab (North 

Hampton, MA) was used for non-linear fitting to obtain the translational diffusion coefficients Dtrans.

Structure calculation and analysis

All structure calculations were performed with CNS (Brünger et al., 1998) using the ARIA setup and 

protocols (Nilges and Donoghue, 1998). Semi-automated NOE assignment was used to assist the spectral 

assignment (Linge et al., 2001). This was done from a partially assigned NMRView peaklist. The initially 

unassigned cross-peaks were defined as ambiguous distance restraints with a lower weighing factor. The 

calibration of the cross-peak intensities against distances was done automatically at the beginning of 

each iteration. The additional unambiguously assigned cross-peaks were interactively re-examined with 

NMRView and the checked peaklist was then used as the input for the next calculation in an iterating way 

until all cross-peaks were assigned. Each semi-automated assignment step with ARIA consisted of eight 

iterations with successive reduction of the violation tolerance and a final refinement in explicit solvent 

using default ARIA parameters unless otherwise stated. The Parallhdg5.3 force field with the PROLSQ 

parameters was used (Linge et al., 2002). The topologies of dehydroalanine (Dha), aminobutyric acid (D-

Abu), 3-methyllanthionine (MeLan) and the cyclized C-terminus of the S-aminovinyl-methyl-cysteine 

(Tea) were constructed based on alanine, threonine, cysteine and comparison of available databases. Four 

thioether bridges were introduced. Nine backbone φ and four side chain χ1 torsion angle restraints 

obtained from the stereospecific assignments of the methylene groups of the thioester-linked Ala12 and 
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Ala18 and of Leu14, and Glu17, were used in the structure calculations. A torsion angle dynamics (TAD) 

simulated annealing (SA) protocol was performed, initially at 10000 K (8000 steps), followed by a first 

cooling stage to 50 K (50K/step); Cartesian space refinement was used for the second stage cooling from 

2000K to 1000 K in 16000 steps and the subsequent third cooling stage from 1000 K to 50 K in 4000 

steps followed by 200 steps of energy minimisation. The slow cooling process at the second stage ensures a 

better convergence of the calculated structures. 50 structures with the lowest restraint energy were further 

subjected to explicit solvent refinement (OPLS water and DMSO models) as described earlier (Bonvin et 

al., 2001), and 20 of these were kept for clustering and structural analysis. A cluster is defined as a group of 

at least four structures with pairwise backbone (N, Cα and C' of residues 3-4,12-20) positional root mean 

square deviations (RMSD) lower than 0.3 Å. Structures were visualized and analyzed with MOLMOL 

(Koradi et al., 1996). DynDom was used to identify conformational changes and to define domains and 

effective hinge regions of the structures obtained under the three different sample conditions (Feenstra 

et al., 1999).  The coordinates of the three structure ensembles, MeOH/H2O, DPCbound and Lipid II, 

were deposited in the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank 

(PDB) under accession codes 1MQX, 1MQY, and 1MQZ, respectively.

Results

Substantial chemical shift changes indicate a strong dependency of the mersacidin conformation on 
its environment

The assignment of the resonances of mersacidin in various sample environments was achieved by a 

standard multidimensional NMR protocol using the 15N labelled sample (Cavanagh et al., 1996). A two-

step 15N-1H HSQC titration of perdeuterated DPC micelles followed by unlabelled lipid II was then 

used to investigate the interaction of mersacidin and lipid II. The chemical shifts are excellent probes 

for biomolecular interaction studies because of their sensitivity to the changes of surrounding chemical 

environments. They are commonly used for the mapping of ligand binding site in proteins (Zuiderweg, 

2002) and yet, as will be discussed later, the perturbations upon ligand binding can be so large that structural 

rearrangements could govern the chemical shift changes. The first step was used as a control to monitor 

how mersacidin was influenced by the membrane mimic environment. The titration experiments showed 

significant chemical shift perturbations of mersacidin in both titration steps (Figure 2). The addition of 

DPC micelles strongly affects the backbone amide protons of Gly7, Abu13, Abu15 and Glu17 in the 1H 

dimension, mainly upfield shifts, and most of the C-terminal part in the 15N dimension (Figure 3). Along 

the 15N dimension, a downfield shift occurs at Dha16, which is flanked by progressively increased, almost 

symmetric, upfield shifts. Subsequent addition of lipid II gives rise to large downfield shifts for the amide 

protons of Gly7, Abu13 and Glu17 in the 1H dimension; a similar chemical shift perturbation profile is 

observed in the 15N dimensions. The general direction of changes is, however, inverted compared to the 

first DPC micelles titration step. In both steps there are clearly localised structural influences. Unlike 

the strong binding affinity between nisin and lipid II, resulting in slow exchange cross-peak patterns in 

similar titration experiments (Hsu et al., 2002), mersacidin follows a fast exchange profile indicating a 

weaker binding under these conditions. The gradual changes in position can easily be followed during 

the course of both titration processes (Figure 2). Unexpectedly, the addition of DPC micelles seems to 

affect mersacidin more than what its specific target, lipid II, does. The titration data have suggested an 
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interesting interconversion process. For Gly7, Gly8, Ala12, Abu13 and Glu17, the 1H chemical shifts 

first move upfield and then conversely shift downfield. A similar behaviour is monitored along the 15N 

dimension for most residues, e.g. Glu17. Since chemical shifts are closely related to the surrounding 

chemical environment primarily defined by the structure, the direction and displacement of the cross-

peaks suggest that the structure of mersacidin undergoes a substantial change upon the addition of DPC 

micelles and is somehow restored close to its initial conformation, if not identical, upon the subsequent 

addition of lipid II. Yet, it could also be an indication that mersacidin falls off the DPC micelles after the 

addition of lipid II and restores a state similar to the initial condition. 

Binding-induced overall backbone relaxation dynamics changes

To confirm that mersacidin stays bound to the DPC micelles upon titration of lipid II, we performed 
15N relaxation experiments in conjunction with diffusion experiments to examine the dynamics and 

molecular size of the complexes. NMR 15N relaxation experiments have been extensively applied to 

proteins to study the dynamics of protein motions within a wide range of time scales (Palmer III, 1997; 

Figure 2. Representative region of the two-step 15N-1H HSQC titration experiments of DPC micelles and lipid II 
at 293 K, 500 MHz. Starting point, MeOH/H2O: black; the end point after DPC titration, DPCbound and the second 
end point after lipid II titration, lipid II in dark grey. Directions of chemical shift changes are shown in dashed (MeOH/
H2O → DPCbound) and solid lines (DPCbound →  lipid II). The intermediate titration steps (5, 25, 50, 75, 100, 125% of 
mersacidin concentration) are shown in light grey for DPC micelles and lipid II
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Kay, 1998; Palmer III, 2001). Changes in protein structure dynamics upon ligand binding can be extracted 

from the relative differences before and after binding. For example, the rigidification of a flexible loop 

upon ligand binding can be monitored when T2 is shortened and 15N{1H} NOE is increased. It should 

be noted that the relaxation parameters are also closely associated to the molecular weight. In the case of 

binding interactions, the increased molecular weight of the overall complex would predominately affect 

the relaxation parameters of each component globally. This effect can be particularly pronounced when 

a small peptide binds to large micelles (Bader et al., 2001). In our case, the molecular weight of DPC 

micelles is roughly ten times higher than that of mersacidin and lipid II. During the titration process, 

mersacidin binds to DPC micelles and lipid II and hence its apparent molecular weight is considerably 

increased. From the result of the relaxation dynamics analysis in three different states, namely MeOH/

H2O, DPCbound and lipid II, the plateau of the 15N relaxation parameters indeed uniformly increases for 

the 15N{1H} heteronuclear NOEs and longitudinal relaxation times T1 and decreases for the transverse 

relaxation times T2 as a result of large complex formation (Figure 4). These relaxation data also reflect the 

dynamics of the local structures. The similar sequential patterns observed in the various states indicate 

no particular stabilization of local structure upon binding; there still exists local motions. In all states, 

the glycine-rich ring exhibits higher flexibility as indicated by the lower 15N{1H} heteronuclear NOEs 

and longer T2 with respect to the average values. In contrast, the residues that are linked by lanthionine 

linkages, Abu4, Ala12, Abu13, Abu15, Ala18 and Tea20, exhibit higher 15N{1H} heteronuclear NOE and 
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Figure 3. Chemical shift perturbation as a function of the primary sequence of mersacidin upon successive addition 
of DPC micelles (filled bars) and lipid II (open bars). A. 1H chemical shift perturbation (ΔδHN). B. 15N chemical shift 
perturbation (ΔδN). C. Absolute displacements [(ΔδHN)2+(ΔδN)2]1/2 in Hz from HSQC spectra collected at 500 MHz. 
The lanthionine linkages are depicted in lines on the top panel.
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shorter T2 (Figure 4). Overall, the most stable structure elements are the segments that are connected by 

the glycine-rich ring (residues 4-5 and 12-14), their backbone motion being obviously restricted by their 

ring structures.

 The increase of effective molecular size and bulk solvent viscosity can both contribute to the global 

change in relaxation parameters (Wand et al., 1998). Therefore, PFG-NMR diffusion experiments 

were used to discriminate between those. In such experiments, the change of solution viscosity can 

be monitored independently by using a separate internal probe, in our case, methanol (see Material 

and Methods) (Wilkins et al., 1999). The addition of DPC micelles and lipid II increased the solvent 

viscosity by 7.4% and 6.7%, respectively. This is significantly less than the 22.9% and 26.1% increases of 

the translational diffusion coefficient ratio of mersacidin and methanol upon addition of DPC micelles 

and subsequently lipid II, respectively (Table 1). This can only be explained by an increase of the effective 

molecular size due to the binding to DPC micelles and lipid II. A good correlation is obtained between 

the overall tumbling rates τc estimated from T2 relaxation and from diffusion experiments (R2 = 0.86). 

This confirms that mersacidin binds DPC micelles and stays bound when lipid II is present, which is at 

the origin of the observed global effect on the relaxation parameters due to the decrease of the overall 

tumbling rate.

Figure 4. 15N relaxation dynamics parameters of mersacidin. A. 15N{1H} heteronuclear NOE. B. Longitudinal 
relaxation time T1. C. Transverse relaxation time T2. Open circles (°): MeOH/H2O; open squares (o): DPCbound; filled 
diamonds (u): lipid II. The standard deviations are shown in bars. The lanthionine linkages are depicted on the top 
panel.
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Solution NMR structures reveal dramatic conformational changes

Figure 5 summarizes the observed proton-proton contacts of mersacidin derived from NOESY spectra 

recorded under different sample conditions. The NOE contact maps show similar patterns in the three 

different conditions with only a few variations, suggesting that the topology of mersacidin does not 

alter much upon changes in the environment. Some long range NOEs are absent in MeOH/H2O, e.g. 

between Phe3 and Glu17, and some variations occur in the glycine-rich ring under all three conditions. 

These small differences in NOE contacts reflect, however, remarkable conformational changes; neglecting 

some of those for structure calculations can substantially alter the relative orientation of the connected 

rings. Figure 6 shows the ensemble of structures obtained from structure calculation based on the NOEs 

derived from the NOESY spectra recorded in different environments. The intertwined ring structure 

Table 1.  Translational diffusion parameters obtained from PFG-NMR experiments

Decay rate constanta MeOH/H2O  DPCbound          Lipid II

dmethanol 15.04 14.00 14.09
dmersacidin 2.04 1.55 1.52

Relative increase of bulk solvent viscosity (%)b

(ηi/ηMeOH/H2O) - 1 0 7.4 6.7

Relative hydrodynamic radius

Rh
mersacidin/Rh

methanol 7.35 9.03 9.27

a. The decay rate constant d is obtained from Gaussian fitting of the attenuated NMR signals as a function of the 
fractional gradient strength g using Equation 4. 

b. The increase of bulk solvent viscosity η can be derived from the observed decay rate constants for methanol and 
is inversely proportional to their ratios (see Material and Methods). 
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Figure 5. NOE contact maps of mersacidin in different sample conditions. Each square corresponds to at least one 
observed NOE between the two corresponding residues in the MeOH/H2O mixture (upper panel in the left), in lipid 
II – containing DPC micelles (upper panel in the right) and in DPC micelles only (both lower panels).
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provides a well-defined backbone structure in the C-terminal part (residue 13-20) in all conditions 

although MeOH/H2O deviates slightly from DPCbound and lipid II. The N-terminus and the glycine-rich 

ring are less defined due to the fact that the glycine repeat is prone to low NOE density as well as local 

flexibility. Two populations of the glycine-rich ring are found after clustering for the lipid II bound form 

(named L2a and L2b). These two clusters have identical backbone conformations except for the glycine 

residues: two distinct ring conformations are observed with their planes flipped by almost 180º with 

respect to each other. Since they both satisfy all distance restraints, they will be both kept for the following 

structural comparisons. 

 Amongst all three conditions, the DPC micelles bound form (DPCbound) is the best defined in terms of 

RMSD of the ensemble and the most favourable in terms of total energy after explicit solvent refinement 

(Table 2). The structures contain no conventional secondary structure element because of their unusual 

post-translationally modified amino acids. In order to evaluate the effect of solvent hydrophobicity onto 

the structure – methanol and DPC are both hydrophobic and this can affect especially the side chain 

packing - two types of solvent models (water: hydrophilic; DMSO: hydrophobic) were used for structure 

refinement. The results show no distinguishable difference both in structure and in energy (data not 

shown). In both cases, the electrostatic energy term is dominant and the DPCbound structures have the 

lowest electrostatic energies. The main structural difference occurs in the relative orientation of the 

glycine-rich ring with respect to the intertwined rings. The addition of DPC micelles induces a large-

amplitude twisting of 162º of those rings with Abu13 and Leu14 as the effective hinge (Figure 7). The 

subsequent addition of lipid II in the presence of DPC micelles induces then an inversed twist (100º for 

L2a and 167º for L2b) that results in a conformation close to the initial state. The hinge region, centred 

at Abu13, experiences a dramatic change in its chemical environment that is reflected in the chemical 

shift changes during the course of the 15N-1H HSQC titrations. The same conformational change directly 

affects the electrostatic energy since the distance between the two sole charged groups (N-terminus and 

Glu17 side chain) is modulated by this twisting motion. This becomes clear when looking at the surface 

electrostatic potential (Figure 8). DPCbound highly resembles the structure that was previously solved in the 

Figure 6. Solution NMR structures of mersacidin in various sample conditions. Only heavy atoms are shown for 
clarity. Backbone and side chains are shown in black and grey, respectively. MeOH/H2O: free mersacidin in methanol/
water mixture; DPCbound: DPC micelle bound form; L2a and L2b: two conformations in the lipid II bound form with 
the only difference in the glycine-rich loop (see text for detail). The structures were fitted on backbone heavy atoms 
within each ensemble and the various ensembles were aligned using the backbone heavy atoms of residues 13-20.
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crystalline state in pure methanol. The N-terminus and Glu17 side chain in MeOH/H2O point towards 

two opposite sides while the two charged groups come close to each other as a result of the twist induced 

by DPC micelles, which obviously lowers the electrostatic energy (Table 2).

 Comparison of the structures of mersacidin with and without lipid II in DPC micelles has revealed 

intriguing conformational changes. While the hydrophobicity of DPC micelles induces the closure of 

Table 2. Structural statistics of mersacidin in different sample environments

Environmentsa

MeOH/H2O DPCbound

Lipid II

L2a L2b

Number of structuresb 12 13 9 8

RMSD (Å) with respect to the average structure of each ensemble (backbone/heavy)

     Residue  3-4, 12-20 0.27±0.08/0.59±0.06 0.23±0.04/0.44±0.06 0.41±0.11/0.69±0.12 0.44±0.14/0.72±0.16

     All 0.90±0.24/0.99±0.15 0.58±0.15/0.64±0.11 0.72±0.11/0.89±0.11 0.79±0.35/0.96±0.27

Number of experimental restraints for structural calculation

     Total NOEs 200 248 241

     Intraresidue NOEs 101 97 111

     Sequential NOEs 59 102 86

      Medium range NOEs 10 16 13

     Long range NOEs 30 33 31

    Dihedral restraintsc 13 13 13

Restraint statisticd

     NOE RMSD (10-2 Å) 3.30±0.28 2.39±0.75 3.67±0.31 3.76±0.24

     Dihedrals RMSD (º) 1.28±0.19 0.71±0.39 0.69±0.21 0.91±0.30

RMSD from idealized covalent geometry

     Bonds (Å) 0.0045±0.0002 0.0036±0.0002 0.0046±0.0003 0.0051±0.0002

     Angles (º) 0.78±0.04 0.56±0.02 0.74±0.03 0.78±0.04

     Impropers (º) 2.1±0.1 1.3±0.1 2.0±0.2 2.2±0.2

     Dihedrals (º) 14.3±0.8 13.2±0.8 14.5±0.8 14.7±0.7

CNS energies after water refinement (kcal/mol)

     Etotal -386±27 -638±15 -434±25 -407±20

           Evdw -83±19 -96±78 -94±10 -96±4

           Eelec -483±13 -642±10 -521±11 -514±7

a. MeOH/H2O: free mersacidin in methanol/water mixture solution; DPCbound: mersacidin in DPC micelles; L2a and 
L2b: two distinct conformations in lipid II bound form obtained with the same structural restraints.

b. The number of structures in each condition is obtained from clustering analysis (see Material and Method).
c. Nine backbone φ angles and four side chain χ1 angles (Ala12, Leu14, Glu17 and Ala18).
d. No structure had violation larger than 0.5 Å for NOE restraints and 5º for dihedral angle restraints. 
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Figure 7. Conformational change analysis using the program DynDom (Feenstra et al., 1999). The first two rings are 
coloured in black for DPCbound and in grey for MeOH/H2O, L2a and L2b. The rotation of the fragments with respect 
to the hinge is indicated by an arrow. The structures were fitted on backbone heavy atoms of residues 13-20.

Figure 8. Conformational changes of mersacidin in response to changes in environments. A. Representative 
structures (closest to average) of each structure ensemble. The Glu17 side chain is shown in thick grey lines. The hinge 
residue Abu13 is shown in dashed lines. The structures were fitted on backbone heavy atoms of residues 13-20 (thick 
black lines). The remaining of the structure is shown in grey. B. Surface electrostatic potential of mersacidin in different 
sample conditions calculated with MOLMOL (Koradi et al., 1996). Positive and negative potentials are indicated in 
dark grey with labels indicating corresponding signs. The structures are in the same orientation as in A. C. 90º rotation 
along the x-axis of the above structures. The charge distributions reveal the increase of charge accessibility after the 
addition of lipid II in the hydrophobic DPC micelles solution. The structure of mersacidin in DPC micelles resembles 
the X-ray structure that was solved in pure methanol.
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its structure, in contrast, the addition of lipid II results in the exposure of the charged groups (Figure 8). 

The exposure of the Glu17 side chain can be quantitatively monitored from the change in its solvent 

accessible surface (SAS) area. The addition of DPC micelles reduces the SAS area from 155 Å2 (MeOH/

H2O) to approximately 55 Å2 (DPCbound) and the addition of lipid II increases again the SAS area to 

about the same value of 155 Å2 (L2a and L2b). The positively charged N-terminus, Ala1, undergoes 

similar changes in SAS area with almost identical values (data not shown). Another significant change 

occurs at Ile19 with a 60% increase in SAS area upon the addition of DPC micelles (from 100 Å2 to 

160 Å2) and a drop to 80 Å2 when lipid II is present. In addition to the dramatic changes in side chain 

packing and charge distribution, the backbone structure is also affected when DPC micelles are added 

to free mersacidin. Notable differences in backbone torsion angles for Abu2, Phe3, Abu4, Ala12, Abu13, 

Leu14 and Abu15 are monitored between the free (MeOH/H2O) and the DPC micelle bound form 

(DPCbound) while subsequent addition of lipid II (L2a and L2b) does not induce much more changes 

(data not shown). These differences are consistent with the observed 15N chemical shift changes, which 

are indicative for backbone conformational changes. Large changes occur in the N- and C-terminal 

parts when DPC micelles are added and much smaller changes are found when lipid II is added (Figure 

3). Even though the opening of the structure increases the electrostatic energy of mersacidin per se, the 

binding interface and in particular the interaction with its counter part, lipid II, must compensate the 

energetic cost of exposing the two charges (Table 2). This suggests that the binding mechanism is based 

on electrostatic interactions.

Discussion

We have shown that the structure of mersacidin can be substantially modulated by sample conditions. The 

structures of type B lantibiotics have long been thought to be compact and rigid given the lanthionine 

ring linkages and their relatively small size in length (Brötz and Sahl, 2000). While the intrinsic flexible 

nature of the glycine-rich ring gives rise to a higher variability in structure as monitored by 15N 

relaxation experiments (Figure 4), which was even observed in the crystal structure (Schneider et al., 

2000), mersacidin was, to our surprise, found to possess a minute hinge region (Ala12 and Abu13) that 

can effectively alter the overall backbone geometry by only localised backbone torsion angle changes. 

Structures obtained from various sample conditions show distinct backbone torsion angle distributions 

in this region. Furthermore, our results have demonstrated that the chemical shift changes of mersacidin 

during the course of titration experiments were basically governed by conformational changes, which 

is rather unusual in the case of protein-protein or protein-ligand interaction studies. This is one of the 

few examples where large chemical shift perturbations primarily originate from conformational changes, 

which makes the conventional binding interface mapping approaches inapplicable (Zuiderweg, 2002). 

Multi-step titrations and structure determination have revealed the flexible nature of mersacidin and 

its adaptation to the environment in terms of its three dimensional structure. Upon binding to lipid 

II, the structural changes directly affect the exposure of the charge groups suggesting that electrostatic 

interactions govern the binding mechanism despite the rather hydrophobic nature of mersacidin.

 As discussed above, changes in the charge distribution of mersacidin likely play a crucial role in the 

mersacidin-lipid II interaction. Due to the lack of intermolecular NOEs, there is no sufficient evidence 

to assess which charge group is mainly responsible for the binding thus far. However, derivatisation studies 



75

Mersacidin conformational changes are a key to lipid II binding

have shown that the methylation of the N-terminus increases the minimal inhibitory concentration 

(MIC) of mersacidin by two fold, and biotinylation makes it inactive. The side chain of Glu17 has been 

proposed to be the lipid II binding motif of mersacidin and a replacement of Glu17 by Ala in mutagenesis 

studies makes it inactive. Inactivation is also achieved by amidation of the carboxyl group of Glu17*. 

These results strongly indicate that the binding requires these charges. Furthermore, the bioactivity is also 

ion dependent: The presence of calcium ions can enhance the activity in vivo whereas magnesium ions 

do not have any effect (not shown). Since lipid II is mostly negatively charged (Figure 1B), it is likely 

that the calcium ion is needed to bridge the Glu17 side chain to other negatively charged groups of lipid 

II, unless it forms a direct salt bridge with the positively charged side chain of Lys3 of lipid II. Should 

the calcium ion indeed provide a bridge between mersacidin and lipid II, this would explain the lack of 

intermolecular NOEs (even with long NOESY mixing times up to 500 ms) due to the increased distance 

between the two, which would exceed a detectable NOE range (>5 Å). Although mersacidin is strongly 

affected during the course of the titration, little chemical shift changes were observed for lipid II, except 

for the amide proton of γ-Glu2 (data not shown), suggesting that the non-exchangeable protons of lipid 

II (Figure 1B) may not be directly involved in binding whereas the abundant exchangeable hydroxyl 

protons and/or the pyrophosphate group could play a more important role. It has also been shown that 

mersacidin can discriminate lipid I from lipid II, indicating that GlcNAc, the only difference between 

these two, contains part of the its recognition motif (Brötz et al., 1998a).

 Proteins in hydrophobic solvent are thought to retain their native structure as a result of kinetic 

trapping, due to stronger intramolecular hydrogen bonding and a more rigid structure in the absence 

of water (Mattos and Ringe, 2001). For small peptides like mersacidin, however, their structures can 

vary remarkably with different environments as have been demonstrated in early studies by Kessler and 

coworkers (Kessler et al., 1992; Kessler et al., 1993). A compact structure of mersacidin was observed in 

the DPC micelle bound form (DPCbound; our study), in pure methanol solution (Prasch et al., 1997) and 

in the crystalline state (Schneider et al., 2000) due to the environmental hydrophobicity that is known 

to facilitate the formation of the intramolecular hydrogen bonds. In the X-ray structure, two hydrogen 

bonds were identified: from the N-terminus and the Gly7 backbone amide to the Glu17 side chain 

(Schneider et al., 2000). This is consistent with our finding that the two oppositely charged groups are 

directed towards each other only in a highly hydrophobic environment in the absence of lipid II. In 

contrast, in the presence of lipid II, the bound form is clearly distinct from the free form structure as has 

been shown in this work. Recently, the significance of flexibility for bioactivity has been highlighted 

in the case of the nisin-lipid II interaction (Breukink et al., 1999): a truncation or rigidification of the 

flexible hinge region substantially abolishes its bioactivity (Wiedemann et al., 2001). Here, mersacidin 

uses its hinge to adjust the exposure of charges when it binds to its “docking molecule”, lipid II. We 

have thus shown in the case of mersacidin that conformational versatility provides a mean to adapt to 

the surrounding environments. It is therefore important, when using static structures of such peptides for 

structure-based peptide engineering, that the sample conditions be carefully considered.

* W. Dückheimer (Hoechst AG,) personal communication. This is later published in Szekat, C., Jack, R.W., 
Skutlarek, D., Farber, H. and Bierbaum, G. (2003) Appl. Environ. Microbiol., 69, 3777-3783.
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 Many enzymatic functions of proteins require conformational changes during substrate binding and 

reaction process. The same is true for the mersacidin-lipid II interaction, as observed when mersacidin 

binds to DPC micelles and lipid II. Similar structural changes have been reported by McCafferty and 

co-workers for ramoplanin (Cudic et al., 2002), a lipoglycodepsipeptide antibiotic, that undergoes a 

flattening of its structure when it binds to a lipid II analog, UDP-MurNAc-peptapeptide. Ramoplanin 

is known to be involved in the inhibition of transglycosylation during the biosynthesis of lipid II. It 

does compete, although not efficiently, with mersacidin for the binding to lipid II (Brötz et al., 1998b). 

Their functionalities are similar in the sense that both peptides recognise specifically parts of lipid II in 

order to block cell wall biosynthesis. Notably, ramoplanin also shares a topological similarity in structure 

with mersacidin and actagardine, another type B lantibiotic, although its has no sequence homology 

with these two lantibiotics (Zimmermann and Jung, 1997; Cudic et al., 2002). From this point of view, 

conformational changes are evidently a common feature of the lipid II-binding peptides. The structural 

insight gained here can, therefore, be extended to the type B lantibiotics actagardine (Zimmermann and 

Jung, 1997) and Ala(0)-actagardine (Vertesy et al., 1999) since they possess a high degree of sequence 

homology (the hinge of Ala12 and Abu13 is also present in actagardine) (Zimmermann and Jung, 1997; 

Brötz and Sahl, 2000), and probably to other lipid II binding peptides, like ramoplanin, as well.
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Abstract

The entry of HIV-1 into a target cell requires gp120 and receptor CD4 as well as co-

receptor CCR5/CXCR4 recognition events associated with conformational changes of 

the involved proteins. The binding of CD4 to gp120 is the initiation step of the whole 

process involving structural rearrangements that are crucial for subsequent pathways. 

Despite the wealth of knowledge about the gp120/CD4 interactions, details of the 

conformational changes occurring at this stage remain elusive. We have performed 

molecular dynamics simulations in explicit solvent based on the gp120/CD4/CD4i 

crystal structure in conjunction with modeled V3 and V4 loops to gain insight into 

the dynamics of the binding process. Three differentiated interaction modes between 

CD4 and gp120 were found, which involve electrostatics, hydrogen bond and van der 

Waals networks. A “binding funnel“ model is proposed based on the dynamical nature 

of the binding interface together with a CD4-attraction gradient centered in gp120 at 

the CD4-Phe43-binding cavity. Distinct dynamical behaviors of free and CD4-bound 

gp120 were monitored, which likely represent the ground and pre-fusogenic states, 

respectively. The transition between these states revealed concerted motions in gp120 

leading to: i) loop contractions around the CD4-Phe43-insertion cavity; ii) stabilization 

of the four-stranded “bridging sheet” structure; and iii) translocation and clustering 

of the V3 loop and the bridging sheet leading to the formation of the co-receptor 

binding site. Our results provide new insight into the dynamic of the underlying 

molecular recognition mechanism that complements the biochemical and structural 

studies.

Introduction

The entry of Human Immunodeficiency Virus type-1 (HIV-1) into a target cell is an extremely intricate 

process (for reviews, see (Chan and Kim, 1998; Wyatt and Sodroski, 1998; Berger et al., 1999; Poignard 

et al., 2001)), which requires the recognition of the host cell receptor CD4 and co-receptors, mainly 

CCR5 and CXCR4, by the viral envelope glycoprotein (Env), consisting of gp120 and gp41. Env is 

organised into trimeric spike structures on the surface of the virion (Kwong et al., 2000b) anchored 

in the membrane by the transmembrane subunit gp41 while gp120 is presented at the surface as the 

frontier for the recognition process. The initiation step involves binding of CD4 to gp120, which induces 

conformational changes in gp120 (Sattentau and Moore, 1991; Thali et al., 1993; Moore and Binley, 1998) 

leading to the exposure and/or formation of antigenic epitopes recognised by the co-receptors (Trkola 

et al., 1996; Wu et al., 1996). Binding to the co-receptors takes place subsequently and gp41 undergoes 

conformational changes that mediate the fusion process by formation of the fusogenic structure bringing 

viral and target cell membranes into close vicinity. This complex mechanism involves a series of structural 

rearrangements in which conformational dynamics plays a crucial role.

 Over the past decades, a large number of crucial elements involved in this system, in particular gp120, 

have been unraveled using a variety of approaches (Rizzuto et al., 1998; Wyatt and Sodroski, 1998). The 

recent determination of the crystallographic structure of the core of gp120 in complex with CD4 and 
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the CD4-induced antibody (CD4i), which recognises the co-receptor binding site, provided tremendous 

structural insights (Kwong et al., 1998; Kwong et al., 2000a). Despite the highly variable sequence of HIV-

1 gp120 throughout evolution, the topology of the core has been retained with some degree of sequence 

diversity (Kwong et al., 1998; Kwong et al., 2000a). It contains several disulphide bridges that buckle 

the flexible hypervariable loops to form knots at the periphery of the rigid core and basically define 

their boundaries.  The heavy glycosylation at the “silent face” and the mobile variable loops together 

provide a shielding umbrella to evade immune system neutralization (Wyatt and Sodroski, 1998). CD4 is 

bound to gp120 predominantly via electrostatic interactions with a large, but mismatched interface. An 

unusually protuberant Phe43 of CD4 inserts into a receptive hole of gp120 (Kwong et al., 1998) making 

up a “knob-and-socket” interaction (Moore and Binley, 1998). Evidence from a thermodynamics study 

has suggested that the binding of CD4 to gp120 induces substantial structural rearrangements primarily 

in the core structure, a truncated form of gp120 that was used in the crystallographic studies where the 

flexible N- and C-termini as well the variable loops, V1-V3, are absent  (Myszka et al., 2000) (see Figure 

1). It is now generally accepted that the gp120/CD4 complex formation leads to the accessibility of 

the co-receptor binding site. The third variable (V3) loop, in particular, plays a central role here since it 

contains not only the principle neutralising determinant (PND) (Rusche et al., 1988) but also the main 

co-receptor determinant (CXCR4 versus CCR5 usage) for HIV-1 at this stage (Berger et al., 1999). 

X-ray crystallographic and Nuclear Magnetic Resonance (NMR) studies of various types of V3 loop 

fragments have shown a high degree of structural heterogeneity (Chandrasekhar et al., 1991; Rini et al., 

LAI 83 EVVLVNVTEN FNMWKNDMVE QMHEDIISLW DQSLKPCVKL TPLCVGAGSC NTSVITQACP 206
HxBc2 83 EVVLVNVTEN FNMWKNDMVE QMHEDIISLW DQSLKPCVKL TPLCVGAGSC NTSVITQACP 206

LAI 207 KVSFEPIPIH YCAPAGFAIL KCNNKTFNGT GPCTNVSTVQ CTHGIRPVVS TQLLLNGSLA 266
HxBc2 207 KVSFEPIPIH YCAPAGFAIL KCNNKTFNGT GPCTNVSTVQ CTHGIRPVVS TQLLLNGSLA 266

LAI 267 EEEVVIRSAN FTDNAKTIIV QLNQSVEINC TRPNNNTRKS IRIQRGPGRA FVTIGKIGNM 326
HxBc2 267 EEEVVIRSVN FTDNAKTIIV QLNTSVEINC T--------- -----GAG-- ---------- 300

LAI 327 RQAHCNISRA KWNATLKQIA SKLREQFGNN KTIIFKQSSG GDPEIVTHSF NCGGEFFYCN 386
HxBc2 330 ---HCNISRA KWNNTLKQIA SKLREQFGNN KTIIFKQSSG GDPEIVTHSF NCGGEFFYCN 386

LAI 387 STQLFNSTWF NSTWSTEGSN NTEGSDTITL PCRIKQFINM WQEVGKAMYA PPISGQIRCS 446
HxBc2 387 STQLFNSTWF N--------- ---GSDTITL PCRIKQIINM WQKVGKAMYA PPISGQIRCS 446

LAI 447 SNITGLLLTR DGGNNNNGSE IFRPGGGDMR DNWRSELYKY KVVKIE 492
HxBc2 447 SNITGLLLTR DGGNSNNESE IFRPGGGDMR DNWRSELYKY KVVKIE 492

β1 α1

α2β13 α3

α4

β14 β15 β16 β17

β18 V4 β19 β20 β21 β22

V5β23 β24 β25α5

β4 β5 β6 β7 β8 β9

V3β10 β11 β12

β2 β3V1/V2 stem

Chapter 5 Figure 1

Figure 1. Primary sequence of the truncated form of LAI strain with the core structure and the V3 loop used in the 
current MD simulation with the numbering system according to the HXBc2 isolate. The secondary structure elements 
are numbered according to the X-ray core structure (PDB entry 1G9M, chain G, Kwong et al., 1998) The truncated 
V3 loop and the disordered V4 loop that are absent in the coordinates of HXBc2 gp120 are indicated by dashes along 
the sequence of HXBc2. The truncated N- and C-termini are omitted for clarity. Black blocks depict differences in 
sequence composition of LAI versus HXBc2 that are present in the simulations.
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1993; Ghiara et al., 1997; Stanfield et al., 1999; Tugarinov et al., 1999; Tugarinov et al., 2000; Sharon et al., 

2003), which may thus provide means for HIV-1 to evade neutralization by the immune system (Stanfield 

et al., 1999). On one hand, biochemical studies have established the outline of the fusion process revealing 

its vast diversity and sophistication; on the other hand, results from the structural studies have provided 

static snapshots of the interaction between gp120 and its interacting partners at atomic resolution. The 

dynamics involved in this mechanism, however, remains elusive.

 We have performed molecular dynamics (MD) simulations to investigate the conformational 

changes in gp120 induced upon complexation of CD4. By comparing the dynamical properties of 

gp120 in the free form and bound to CD4, we will show that CD4 binding substantially reduces the 

dynamical motions of gp120. An extensive intermolecular hydrogen bond network is formed at the 

interface and around the Phe43 binding cavity. We monitored motions around the CD4 binding site 

that are correlated to the V3 loop and trimerization interface, which likely represent the initial steps 

of the subsequent structural rearrangements required for co-receptor binding and gp41 mediated 

membrane fusion.

Material and Methods

Generation of the starting structures

The starting structure of gp120 with the truncated LAI strain sequence (SWISS-PROT accession 

number P03377) was obtained from SWISS-MODEL (Guex and Peitsch, 1997) using structural 

homologs as template (PDB entries 1G9M (Kwong et al., 1998), 1G9N (Kwong et al., 2000a) and 

1GC1 for the gp120 core and 1CE4 for the V3 loop (Vranken et al., 1995)). The particular strain was 

chosen because of ongoing collaborations with experimental groups (I. Braakman, Utrecht University 

and B. Berkhout, University of Amsterdam, personal communication). The primary sequence 

of gp120 of LAI differs from HxBc2 by only six amino acids in the core region (98.1% sequence 

identity, see Figure 1). Core gp120 is defined as the construct present in the crystal structure with the 

truncated V1-V3 and N- and C-termini. The V4 loop (residues 398-409), for which electron density 

is missing in all crystal structures, and the V3 loop, which has been proposed to undergo significant 

rearrangements upon CD4 binding, were modeled onto the g120 core, together with the six core 

mutations of the LAI strain, using the default settings of SWISS-MODEL (Guex and Peitsch, 1997). 

For the V3 loop, a NMR structure (residues 296-331; PDB ID: 1CE4) was taken for docking onto 

the core structure. This modelling and in particular the six point mutations are expected to have 

only minor effect on the overall structure of gp120. For example, the crystal structures of two HIV-1 

variants, HxBc2 (1G9M) and YU2 (1G9N) with a sequence identity of 85.9%, show backbone (N, 

Cα and C’) root-mean-square deviation (RMSD) of only 0.12 nm. The structural variation in core 

gp120 between LAI and HxBc2, which share 98.1% sequence identity, should thus be minimal and 

our starting model for the simulations can be considered accurate. For the simulation of the complex 

form (Cplx), the LAI gp120 model (residues 83-492) was superimposed onto the crystal structure 

of the complex (1G9M) to obtain the relative orientation with respect to the D1 domain of CD4 

(CD4-D1, residues 1-99). Monomeric gp120 (Free-gp120) and CD4-D1 (Free-CD4) taken from the 

structure of the complex were used as starting structures in the free simulations for comparison. 
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The starting conformations of gp120 in the free and complex simulations were thus identical and 

correspond to the CD4-bound form.

Molecular dynamics simulation setup and structural analysis

The GROMACS 3.0 molecular dynamics package (Lindahl et al., 2001) was used with the GROMOS 

43A1 force field (Daura et al., 1998). Starting structures of the free gp120 (Free-gp120), the free CD4 

D1 domain (Free-CD4) and the gp120/CD4 D1 domain complex (Cplx) were individually solvated 

using the simple point charge (SPC) water model (Berendsen et al., 1981) in rectangular periodic 

boxes with a 1.4 nm solute-wall minimum distance. After a first steepest descent energy minimisation 

with positional restraints on the solute, seven, three and ten chloride anions were introduced in Free-

gp120, Free-CD4 and Cplx, respectively, to obtain electro-neutralised systems. The resulting systems 

comprised 89608, 24054 and 95308 atoms for Free-gp120, Free-CD4 and Cplx, respectively. A second 

energy minimisation was then performed, followed by five successive 20 picosecond (ps) MD runs 

with decreasing positional restraints force constants on the solutes (Kposres = 1000, 1000, 100, 10 

and 0 kJ mol-1 nm-2) prior to the 10 nanosecond (ns) production runs. A two femtosecond (fs) time 

step was used for the integration of the equations of motion. Solute, solvent and counter-ions were 

independently coupled to a reference temperature bath at 300K with a coupling constant τT of 0.1 ps 

(Berendsen et al., 1984). The pressure was maintained by weakly coupling the system to an external 

pressure bath at one atmosphere with a coupling constant τP of 0.5 ps. Non-bonded interactions were 

calculated using twin range cutoffs of 0.8 and 1.4 nm. Long range electrostatic interactions beyond 

the cutoff were treated with the generalised reaction field model (Tironi et al., 1995) using a dielectric 

constant of 54. The non-bonded pair list was updated every 10 steps. The LINCS algorithm (Hess et 

al., 1997) was used for bond length constraining in conjunction with dummy atoms for the aromatic 

rings and amino  group in side chains (Feenstra et al., 1999). Owing to the large system sizes ca 2 ns 

were required to reach equilibrium. The analysis was performed therefore on the 2-10 ns segments 

for all systems.

 Equilibrated trajectories (2-10 ns) of free and CD4-bound gp120 were merged for essential 

dynamics analysis (Amadei et al., 1993). After diagonalising the backbone atom (N, Cα and C’) mass-

weighted covariance matrix the primary principle component (the first eigenmode) was extracted and 

identified as the transition mode between the two states. From a projection of the merged trajectory 

along this eigenmode the structures corresponding to the two extremes were obtained.

 The β-turn conformations in the V3 loop were compared with several experimental structures 

of this loop (PDB entries: 1CE4 (Vranken et al., 1995), 1B03 (Tugarinov et al., 1999), 1QNZ 

(Tugarinov et al., 2000), 1AI1 (Ghiara et al., 1997), 1F58 and 2F58 (Stanfield et al., 1999)). For all 

types of β-turns a minimum distance between the Cα(i) and Cα(i+3) of 0.7 nm was required. The 

criteria for backbone torsion φ/ψ angles for type II β-turn are: φ(i+1) = -60º, ψ(i+1) = 120º, φ(i+2) 

= 80º and ψ(i+2) = 0º and those for type VIII β-turn were: φ(i+1) = -60º, ψ(i+1) = -30º, φ(i+2) = 

-120º and ψ(i+2) = 120º, each torsion angle has a ±45º tolerance.
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Results

In order to investigate the conformational changes in gp120 associated with CD4 binding, three molecular 

dynamics (MD) simulations of 10 ns production were performed in explicit solvent for the following 

systems: free gp120 (Free-gp120), the free D1 domain of CD4 (Free-CD4) and the gp120/CD4 D1 

domain complex (Cplx). All systems showed stable trajectories with conserved secondary and tertiary 

structures (Table 1). Stability and equilibration of the systems was monitored by following the RMSD 

values as a function of time (Figure 2). The loop regions in free gp120, namely V1-V5, give rise to larger 

structural deviations than in the complex form (Figure 2 and Table 1). The larger RMSD values of the 

entire gp120 backbone in the free form primarily stem from the re-positioning of the loops near the 

CD4 binding site as can be readily seen by comparing the snapshots of the trajectories of gp120 in the 

free and CD4 bound forms (Figure 3). The snapshots also illustrate that the V3 loop, which started from 

an identical initial configuration in the free and complex simulations, evolves into distinct configurations 

with well-separated spatial distributions in the two simulations. In addition, substantial reduction in the 

amplitude of loop motions, in particular in the V1/V2 stem, can also be observed (this will be discussed 

in detail in the following section). Given the compactness of CD4-D1, its RMSD values from the crystal 

structure are, in both runs, small and constant regardless of the presence of gp120 (see Table 1). Despite the 

different dynamical behaviour of gp120’s flexible loops, which is reflected both in RMSD values and per 

 Table 1. Structural statistics (2-10 ns)

Average backbone RMSDa with respect to the starting structure (nm)

Gp120 

all bb

Gp120 

2º bb

CD4 

all bb

CD4 

2º bb

Gp120+CD4 

all bb

Gp120+CD4

 2º bb

Free 0.42(0.02) 0.16(0.02) 0.10(0.02) 0.08(0.01)
Cplx 0.37(0.02) 0.14(0.01) 0.11(0.01) 0.09(0.01) 0.40(0.02) 0.35(0.02)

Secondary structure elements statisticsb (number of residues)

 β sheet α helix Turn
Gp120 initialc 102 52 17
Free 96(7) 56(3) 12(4)

Cplx 111(7) 50(2) 13(3)

CD4 initialc 41 0 9

Free 47(3) 5(1) 11(3)

Cplx 47(4) 6(2) 12(3)

a. The backbone (bb) positional RMSD values were calculated with respect to the starting structure (based on PDB 
entry 1G9M (Kwong et al., 1998), see Materials and Methods) after superposition on the respective secondary 
structure elements (2º) as defined by DSSP (http://www.sander.ebi.ac.uk/dssp/). The high RMSD values of 
gp120+CD4 in the complex are due to relative motions of the two proteins while separate analysis of the 
individual molecule shows small deviations from the starting crystal structure. The larger deviations of the overall 
backbone in gp120 is due to the high mobility of the V3 loop. Standard deviations are indicated in parentheses.

b. The secondary structure content was calculated with DSSP excluding the modelled V3 and V4 loops.
c. The total numbers of residues of gp120 and CD4 in our simulations are 346 and 99, respectively (cf. Material and 

Methods).
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residue fluctuations, the internal energies of both gp120 and CD4 are not much perturbed upon binding 

(Table 2). Also worth noting is that the energy of binding (Ecomplex – Efree gp120 – Efree CD4) amounts to –130 

kJ/mol (considering only protein-protein and protein-solvent interactions and thus assuming that no 

significant changes are taking place in the bulk solvent and counter ions). This is in fair agreement with 

the change in enthalpy upon complexation of gp120/CD4 (-62±2 kJ/mol at 310K) reported by Doyle 

and co-workers (Myszka et al., 2000).

Substantial reduction of gp120 loop mobility and conformational change upon CD4 binding

A clear difference in mobility is found between the variable loops of gp120, V1-V5, and the conserved 

core region. Binding of CD4 substantially decreases the motions of the loops interacting with CD4, 

especially the V1/V2 stem and the V5 loop. It also induces a remarkable repositioning of the V3 loop that 

remains highly mobile in both states (Figure 3). Analysis of the backbone RMS fluctuations, expressed in 

terms of crystallographic temperature factor (B-factor), as a function of residue sequence for Free-gp120 
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Figure 2. Time evolution of the RMSD from the starting structure during the 10 ns simulations of gp120 and CD4.  
A. Free-gp120; B. gp120 in Cplx; C. Free-CD4; D. CD4-D1 in Cplx. The backbone (N, Cα and C’) RMSD values of 
the secondary structure elements defined in the crystal structures and the complete backbone are shown in solid and 
dashed lines, respectively. The all atom (including hydrogen atoms) RMSD values are shown in grey lines. The RMSD 
values were calculated every 2 ps after superimposition on the backbone of the secondary structure element and are 
plotted as a running average over a 50 ps window.
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Figure 3. Snapshots of the MD simulations. Left: Free gp120; Right: Gp120 in complex with CD4 D1 domain. 
The backbone Cα traces are taken every 200 ps from the MD trajectories between 2-10 ns. The structures are 
superimposed on the secondary structure backbones of gp120. Gp120 is coloured from black at the N-terminus to 
light grey at the C-terminus. CD4-D1 structure ensemble from the Cplx simulation is shown in white. Loops that 
showed significant differences in conformation and/or flexibility are indicated (C3 consists of β15 and α3; C4 consists 
of β20 and β21, which form the four-stranded bridging sheet with β2 and β3 in the V1/V2 stem). Figures were 
generated using Molscript (Kraulis, 1991) and Raster3D (Merritt and Bacon, 1997).

and Cplx (Figure 4) reveals that most of the high-mobility sites (except V3 and V4) coincide with the 

CD4 binding-site. The calculated B-factors of gp120 match well with the crystallographic data with the 

exception of the V1/V2 stem. In CD4, however, they are significantly smaller than the experimental ones. 

Discrepancies in the overall B-factors amplitude are also present between the two crystal structures of free 

CD4, 1CDH (Ryu et al., 1990) and 3CD4 (Wang et al., 1990), where the latter shows similar sequential 

patterns but 30-40% larger overall values. Although a quantitative comparison between the simulated and 

experimental B-factors may not be applicable due to the difference between experimental and simulation 

conditions (Hünenberger et al., 1995), it is apparent that the observed reduction in loop mobility upon 

binding near Phe43 in CD4-D1 is consistent with the experimental findings (Figure 4 inset).

 The sizeable reduction of mobility upon binding is primarily determined by the intermolecular 

contacts in the crystal structure, e.g. the V1/V2 stem, LD and V5 regions as well as the C3 and C4 

regions that contact the protruding CD4-Phe43 (Kwong et al., 1998). The attenuation of the loop 

motions arises, to a large extent, from the formation of many intermolecular hydrogen bonds, most 

of which are also present in the crystal structure (Table 3, Figures 4 and 5). The large loop motions 

in gp120 observed in both the free and complex simulations are consistent with the fact that the 

crystallisation of gp120 was only possible when the variable loops, i.e. V1-V3, were truncated (Figure 

1); the introduction of CD4 was necessary to further stabilise the ternary complex. Despite its shorter 
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loop length, resulting in higher structural restriction, the V4 loop was still disordered and unresolved 

in the crystal structures (Kwong et al., 1998; Kwong et al., 2000a), probably because of its intrinsic 

conformational heterogeneity and remoteness from the CD4 binding interface.

Intermolecular hydrogen bond network and Phe43 cavity

The increase in rigidity observed in the complex originates primarily from the formation of intermolecular 

hydrogen bonds. Although many of them are already present in the crystal structure, some are only 

formed during the molecular dynamics simulation. Our simulation allows, in addition, to assess the 

dynamical nature of these critical interactions. This can be done by analysing their occurrence throughout 

the trajectory. Many long-lived intermolecular hydrogen bonds bridge the tips of the mobile loops of 

gp120 interacting with CD4 and a hemisphere of CD4-D1 (Figure 5). This hydrogen bond network 

nicely encloses the docking cavity of Phe43, which is the key element for the binding mechanism. A 

Table 2. Statistics of non-bonded energiesa (2-10 ns)

Coulomb’s electrostatic energy (kJ/mol)

Free gp120 Gp120 internal -38262 (363)
Gp120-solvent -30428 (674)

Total -68690 (766)

Free CD4 CD4 internal  -12298 (314)
CD4-solvent  -11761 (497)

Total -24059 (588)

Gp120/CD4 complex Gp120 internal -37923 (416)
Gp120-solvent -29930 (699)

CD4 internal -12765 (289)

CD4-solvent -11295 (503)
CD4-gp120 -1030 (177)

Total -92943 (1015)

Lennard-Jones (van der Waals) energy (kJ/mol)

Free gp120 Gp120 internal -12430 (115)
Gp120-solvent -2795 (144)

Total -15225 (184)

Free CD4 CD4 internal -3406 (51)
CD4-solvent -671 (78)

Total -4077 (93)

Gp120/CD4 complex Gp120 internal -12276 (103)
Gp120-solvent -2635 (137)

CD4 internal -3395 (50)

CD4-solvent -477 (25)
CD4-gp120 -452 (76)

Total -19235 (196)

a. The non-bonded energies were calculated with the GROMOS96 force field (Daura et al., 1998) using a twin 
range cutoff of 0.8 and 1.4 nm with a reaction field correction (see Material and Methods). The energies are the 
sum of short- (SR) and long range (LR) terms; 1-4 terms were not included. Standard deviations are indicated in 
parentheses.
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large number of side chain-side chain or side chain-backbone hydrogen bonds cover a large area of 

the complex interface in a non-specific manner. For instance, the side chain hydroxyl group of S42 in 

CD4 is able to form several hydrogen bonds by hopping amongst various backbone hydrogen bond 

acceptors in gp120 that are in its close proximity (Table 3). In addition, there are a few stable backbone-

backbone hydrogen bonds in the vicinity of the Phe43 cavity (Table 3) involving residues of gp120 (S365, 

G366, G367 and D368) that are well conserved amongst various HIV-1 strains. The importance of these 

residues has been highlighted by structure-based mutagenic studies in which mutations of S365, G366 

and D368 in gp120 diminished the affinity of the CD4-binding site specific antibody b12 (Saphire et 

al., 2001). Overall, the residues involved in these intermolecular hydrogen bonds gave rise to an average 

intermolecular Coulomb’s electrostatic energy of –624±124 kJ/mol, accounting for 61% of the total 

intermolecular Coulomb’s electrostatic energy (Table 2).

 These observations allow us to propose a functional role for the hydrogen bond network: the non-

specific, loose, flexible and wide-spread hydrogen bonds and salt-bridges and the specific, tight, rigid and 

confined ones generate an affinity gradient that drives the insertion of the Phe43 phenyl ring into its 

binding cavity in gp120. Once inserted, it is locked in its “knob-and-socket” geometry by the specific 

hydrogen bond network in the proximity of the binding pocket. The hydrophobic contacts between 

the CD4 Phe43 side chain and the gp120 cavity then provide the short-range stabilising factor. These 

Chapter 5 Figure 4

Figure 4. Comparison of gp120 Cα atoms temperature factors (B-factors) calculated from the RMS fluctuations in 
the 2-10 ns simulations of Free-gp120 (dashed lines) and Cplx (solid lines). The B-factors for CD4-D1 are shown in 
insets at a different scale. Experimental B-factors taken from the ternary gp120/CD4/CD4i crystal structure (PDB 
entry 1G9M, Kwong et al., 1998) are shown in grey area.  The B-factors of CD4-D1 in the free form (light grey area 
overlaid onto the complex one) are taken from the free CD4 structure (PDB entry 3CD4)(Wang et al., 1990). They are 
comparable to the B-factors in the complex except for the Phe43 binding site  Note that the V3 loop was truncated 
and the electron density of the V4 loop was missing. Residues forming stable intermolecular hydrogen bonds in the 
complex form are indicated with open circles along the horizontal axes (for definitions, see Table 3).
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Table 3. Intermolecular hydrogen bond and salt bridge statisticsa (2-10 ns)

Intermolecular hydrogen bond

CD4 Gp120 Occurrence (%)
Backbone - backbone

F43 N G473 O 11.5

L44 O D368 N 67.8

K46 N S365 O 14.2
K46 N G366 O 15.7

Side chain – backbone

K35 Nζ A281 O 15.9

S42 Oγ Q428 O 69.9

S42 Oγ E429 O 61.5

S42 Oγ E429 N 31.2

L44 N D368 Oδ 92.6

D53 Oδ2 G367 N 11.1

R59 Nη1 E429 O 45.9

R59 Nη1 V430 O 55.2

Q64 Nε2 C126 O 92.4

Q64 Nε2 V127 O 18.0

Q64 Nε2 A129 b O 29.3
N66 Nδ2 A129b O 25.8

Side chain – side chain

K22 Nζ E429 Cδ 77.8

Q25 Nε2 D474 Oδ 93.8

K29 Nζ N280 Oδ 83.6

R59 Nε D368 Oδ 80.7

Q64 Nε2 S131 Oγ 15.2

E87 Cδ K97 Nζ 61.1
D88 Cγ K97 Nζ 14.8

 

a. Intermolecular hydrogen bonds and salt bridges (side chain-side chain hydrogen bonds) occurring for more than 
10% during the 2-10 ns period are listed. A hydrogen bond is considered to exist when the donor-hydrogen-
acceptor angle is larger than 120º and the donor-acceptor distance is smaller than 0.28 nm.

b. A129 is one of the linker residues GAG that were used in the crystal construct (1G9M) to replace the V1/V2 loops 
(128-194) (Kwong et al., 1998).

contacts are extremely well maintained during the simulation bearing very small structural variations 

(Table 4); translation and rotation of the phenyl ring with respect to the cavity were limited within 0.2 

nm and 60º, respectively (data not shown).

CD4 binding induced bridging sheet stabilisation

The so-called “bridging sheet” is a four-stranded β-sheet that consists of β2 and β3 in the V1/V2 stem 

and β20 and β21 in the C3 region. It interposes between the inner and outer domains of gp120 and 

is thought to be flexible and disordered in the absence of CD4. Recent thermodynamic studies on 

the binding of gp120 and CD4 have demonstrated unprecedented large entropy changes, which were 
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Figure 5. Mapping of the intermolecular hydrogen bond network onto the intermolecular contact interfaces. Left 
panel: The contact van der Waals surfaces of gp120 and CD4-D1. Heavy atoms of gp120 and CD4-D1 that have 
intermolecular distances within 0.5 nm in the starting structure are coloured dark grey. The side chain of CD4-Phe43 
is shown in light grey and as sticks in gp120 to indicate the binding cavity. Right panel: Residues involved in 
intermolecular hydrogen bonds. The types of hydrogen bonding is colour-coded as: light grey: side chain-side chain 
hydrogen bond; dark grey: side chain-side chain and/or side chain-backbone hydrogen bond; black: backbone-backbone 
and/or side chain-backbone hydrogen bonds (for details, see Table 3). Residues that form the receptive CD4-Phe43 
cavity (E370, N425, W427 and G473) are outlined with dashed lines. Note that several residues that do not have 
intermolecular contacts in the starting structure form intermolecular hydrogen bonds during the molecular dynamics 
simulations (gp120: K97, V127 and A129; CD4: K22, D53 and E87). The figures were generated using MolMol (Koradi 
et al., 1996).
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proposed to be possibly accounted for by a stabilisation of the bridging sheet and a restriction of the 

interdomain motions upon CD4 binding. Detailed structural and dynamical information is, however, still 

lacking.

 The conformational changes of the bridging sheet upon removal of CD4 were monitored in silico 

by RMSD matrix analysis (Figure 6 lower right panel). The bridging sheet undergoes a series of transient 

structural changes with a major one at about 8 ns, after which it adopts a conformation somewhat similar 

to the ones in the 4.5-5.5 ns segment. The same analysis on the simulation of the complex showed little 

change throughout the 10 ns simulation (Figure 6 upper left panel). Several interstrand backbone hydrogen 

bonds between the antiparallel β2 and β21 that delimit the inner and outer domains of gp120 also show 

different hydrogen-acceptor distance distribution in the two simulations: While the total numbers of 

the interstrand backbone hydrogen bonds throughout the simulations are the same, for Free-gp120, the 

hydrogen bond length distribution peaks at 0.188 nm with a half width of 0.048 nm whereas for Cplx it 

peaks at 0.182 nm with a narrower half width of 0.035 nm. The shorter hydrogen bond distances in the 

complex are indicative of an increased stability of the bridging sheet upon CD4 binding while it remains 

flexible otherwise. This is consistent with the model proposed in the thermodynamic studies mentioned 

previously.

Conformational changes and polymorphism of the V3 loop upon CD4 binding

The V3 loop has been targeted as a prominent candidate to tackle the viral fusion problem. Based on 

structural (Kwong et al., 1998), mutagenic (Rizzuto et al., 1998) and antigenic analyses (Wyatt et al., 

1998), co-receptor binding was proposed to require the V3 loop in concert with the bridging sheet. 

These form the co-receptor binding site that is created only upon CD4 binding. A large panel of 

monoclonal antibodies (MAbs) based on V3 loop fragments has been elicited against several primary 

isolates from different HIV-1 clades (subtypes) (Gorny et al., 1993; Nyambi et al., 1998; Gorny et al., 

2002). Several V3 loop-derived peptides have also been devised to inhibit viral entry into target cell in 

Table 4. Statistics of CD4 Phe43-gp120 cavity native contacts (%)a (2-10 ns)

Residue Atom Occurrence

E370 Cγ 100.0
E370 Cδ 99.5

N425 Cβ 94.1

N425 C 94.1

N425 O 99.0

W427 N 99.1

W427 Cα 100.0

W427 Cβ 83.2

G473 Cα 99.2

G473 C 98.9
G473 O 100.0

a. Eleven heavy atoms of gp120 have interatomic distances with any atom of the CD4 Phe43 side chain within 0.35 
nm in the crystal structure (1G9M, Kwong et al., 1998) A native contact during the simulation is considered to 
exist if the distance between the listed atoms and the centre of the Phe43 phenyl ring is less than 0.6 nm.
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a co-receptor-specific manner (Sakaida et al., 1998; Verrier et al., 1999; Basmaciogullari et al., 2002). 

Successful vaccine design has however been hindered by the underlying structural polymorphism of 

the V3 loop. The well-conserved region, GPGR, can indeed adopt various type of β-turns and is 

found in various configurations when bound to different MAbs (Rini et al., 1993; Ghiara et al., 1994; 

Ghiara et al., 1997; Stanfield et al., 1999; Tugarinov et al., 1999; Tugarinov et al., 2000; Sharon et al., 

2003). Note that previous structural studies were only performed on V3 loop fragments and little is 

thus known about its conformation when attached to the core structure. We therefore investigated 

the dynamics and conformation of the V3 loop both in free gp120 and in the CD4-bound form.

 As mentioned above the V3 loop is highly mobile and occupies an ample space in the vicinity of 

the co-receptor binding site. Different localisations in the free and CD4-bound states can be clearly 

distinguished in the corresponding trajectories (Figure 3). Relocation of the V3 loop, upon CD4 

binding, towards the basal part of the bridging sheet agrees with the model proposed by Sodroski 

and co-workers based on their mutagenesis study on the co-receptor CCR5 binding (Rizzuto et al., 

1998). In their comprehensive study, the removal of the V3 loop (residues 298-329) was found to 

abolish the co-receptor CCR5 binding completely. Many residues (K121, T123, K207, L317, E381, 

F383, I420, K421, Q422, P438, R440 and G441) were also identified to result in more than 90% 

loss in CCR5 binding when mutated. Comparing the solvent accessible surface area (SAS) of these 

residues in the free and complex simulations reveals an increase of SAS in the complex form only for 

I420 (15%) and Q422 (31%) while a small decrease is observed for R440 (8%). Other residues are 
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Figure 6. Pair-wise backbone RMSD matrix of the bridging sheet in the free (lower right panel) and the complex 
form (upper left panel). The four β-strands are defined as β2: 109-113; β3: 198-202; β20: 423-427; β21: 430-434. 
Each dot represents a positional RMSD between two conformations taken from the respective trajectories indicated 
on the axes and is colour-coded accordingly to the scale shown on the right. The RMSD values were calculated on 
backbone atoms of the bridging sheet (β2, β3, β20 and β21) after superimposition on the backbone atoms of β2 and 
β3. Conformations were taken every 10 ps. An equilibrated conformational sampling period is found when an off-
diagonal region shows a continuous low RMSD (white to light grey).
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either unaffected or buried in both the free and complex forms by the V3 loop. The changes in SAS 

of the above three residues amount, however, to a gain of ca 1.10 nm2, which may be an indication of 

the proposed exposure of the binding site. The clustering of the V3 loop and the bridging sheet can 

also be inferred from the lowering of the electrostatic Coulomb�s energy between the V3 loop as a 

whole (residues 298-329) and the subset of residues that are important for CCR5 binding: -438±60 

kJ/mol in the complex form versus -345±101 kJ/mol in the free form. The abundant basic residues of 

the V3 loop (six arginines and two lysines, see Figure 1) are thought to facilitate the recruitment of 

the generally acidic chemokine co-receptor subsequent to the binding of CD4 (Dragic et al., 1998; 

Farzan et al., 1998; Rabut et al., 1998). They generate a positive electrostatic potential that occupies 

an enormous space centred at the basal region of the V3 loop. Moving from the free to the complex 

form relocates the positive potential toward the co-receptor binding site while neglecting the V3 loop 

drastically reduces this positive electrostatic potential (Figure 7)

 Structurally, the V3 loop shows a high propensity of β-hairpin formation in our simulations 

but the position of the turn is poorly defined (Figure 8). The conserved GPGR sequence shows 

several transient β-turns, including type II and type VIII β-turns in the two simulations. Other tight 

turns were found at RGPR, QRGP and IQRG, as a result of one to three residue upstream shifts. 

Comparison with the available GPGR structures (see Material and Methods) gives backbone RMSD 
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Figure 7. Electrostatic potential surface of gp120. A. Free gp120. B Gp120 in complex with CD4-D1. CD4-D1 
is labelled and is shown in van der Waals surface. C. Gp120 in the complex form without CD4-D1 and the V3 loop. 
The core structure of gp120 is identical to that in B and CD4-D1 and the V3 loop were manually removed from 
the complex structure. The light and dark grey meshes correspond to electrostatic potentials of –2 and +2 kT/e, 
respectively. Negative electrostatic potentials are primarily present at the CD4 binding site of gp120. They were 
calculated using GRASP (Nicholls et al., 1991) with protein and solvent dielectric constants of 2 and 80, respectively. 
The ionic strength was set to zero. The structures are taken from the snapshots at 6 ns both in the free and complex 
trajectories, which represent the most populated configuration of the V3 loop based on RMSD matrix analysis. The 
CD4 and CCR5 binding sites are indicated by solid and dashed arrows, respectively.
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values between 0.2 and 0.6 nm with the various antibody-bound structures irrespective of the effect 

of CD4 complexation (data not shown).

Essential dynamics analysis reveals concerted loop motions in gp120 upon CD4 binding

The complexity of molecular motions observed in MD simulations can be simplified by essential dynamics 

analysis (Amadei et al., 1993), whereby sets of essential and correlated motions are extracted. Such an 

analysis allows distinguishing high frequency local motions, which are restrained and harmonic in nature 

and contain less structural information, from “essential”, large amplitude global motions. In order to focus 

on the motions associated with CD4 binding such an analysis was performed on merged trajectories 

from the free and complex forms of gp120 and of CD4-D1. Two distinct distributions along the first 
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Figure 8. Secondary structure evolutions of the V3 loop (residues 297-330) as a function of the simulation time. 
Secondary structure elements are coded as following: Coil (-), β-sheet or β-bridge (#), bend (=), turn (+) and α- or 
310-helix (0). Each block corresponds to a time step of 100 ps. The position of the conserved residues, GPGR, is 
indicated at the right end of each diagram.
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eigenvector, i.e., with the largest eigenvalue, can be found, which correspond to the well separated free 

and complex states of gp120 (Figure 9A & B). Already the second eigenvector of the two trajectories 

shows overlap in positional fl uctuation displacement suggesting similar motions between the two states. 

Narrow Gaussian displacement distributions appear after the fi rst few eigenvectors suggesting restrained 

harmonic motions common to the two states. Projections of the two extremes of the fi rst eigenvector 

along the merged trajectory on the average structure illustrate the major difference between the two 

states (Figure 9C). Note that the intrapolation between the two extremes does not represent the transition 

pathway but merely highlights the structural differences. 

Figure 9. CD4 binding-induced conformational changes of gp120 extracted via essential dynamics analysis. A. 
Projections of the total atomic fl uctuations of the merged trajectory (free: 0-8 ns and complex: 8-16 ns) along the 
selected eigenvectors. The eigenvectors are numbered with respect to the amplitude of displacement in descending 
order. B. Histograms of the distributions of the displacement of each eigenvector. Distinct distribution can only be 
found in the fi rst eigenvector. Note that the scale is different for the 50th eigenvector (bottom row). C. Projections 
of the two extremes of the fi rst eigenvector along the merged trajectory onto the average structure. The linear 
intrapolation between the two extremes is coloured from light grey (free) to black (complex) with white colour in 
the midst of the two to highlight the primary structural differences between the two states. The C3 and C4 regions 
of gp120 that are part of the Phe43 cavity show signifi cant closure of their lid upon CD4 binding. The V3 loop shows 
the largest conformational change. The view from the back side of the structure after 180º rotation (bottom) reveals 
propagated structural perturbations at the interior of gp120, involving β17, which is adjacent to the Phe43 cavity as 
well as the two β-strands, β12 and β13 that connect the V3 loop.
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 In gp120, a correlated loop-contraction primarily around the CD4 binding site is revealed with, 

in particular, a pronounced closure of the lids of the Phe43 cavity (Figure 9C). This correlated motion 

increases the curvature of the CD4 binding site leading to a gain in interfacial complementarity. The 

concerted contraction involves primarily the V1/V2 stem, V5 and, to a less extent, the C3 and C4 regions. 

These finger-like structures, in particular the V1/V2 stem and V5, are in a much more open and relaxed 

state in the free form. The most prominent transition occurred in the V3 loop, which is driven by CD4 

binding towards the basal region of the bridging sheet. In contrast to the substantial conformational 

changes in gp120 no major structural transition upon binding was identified for CD4-D1 suggesting 

that the principle modes of motion are not affected by complexation and that only their amplitudes are 

reduced.

Discussion

We have shown by MD simulations that CD4 binding reduces the mobility of various loops of gp120 

around the binding site and induces conformational changes that effectively lead to the wrapping up of a 

hemisphere of CD4-D1. While substantial changes occur in gp120, in CD4-D1, only the Phe43 containing 

loop showed a slight reduction of mobility upon complexation. The intermolecular interactions can be 

categorised into three levels: non-specific side chain-side chain or side chain-backbone hydrogen bonds 

(or salt-bridges), specific backbone-backbone hydrogen bonds and hydrophobic contacts between both 

partners resulting in the insertion of CD4 Phe43 into the receptive cavity in gp120. The large-amplitude 

motions of the V1/V2 stem and V3 and V4 loops may provide a shielding umbrella that masks the CD4 

binding site in the monomeric form of gp120 as proposed by Kwong et al. based on their thermodynamic 

finding (Kwong et al., 2002). The observed entropy loss upon binding of CD4 to gp120 (Myszka et 

al., 2000; Kwong et al., 2002) is a clear indication of a reduction of flexibility and is in line with our 

observations. When CD4 is attracted into the vicinity of the binding site, the mobility of the V1/V2 stem, 

V5 loop and LD reduces. The extensive intermolecular hydrogen bond formation and van der Waals 

contacts at the gp120/CD4 interface result in the closure of C3 and C4 regions leading to the formation 

of the required Phe43 binding cavity. They also reduce the overall mobility in the regions involved in the 

intermolecular contacts between both partners.

 The formation of the extensive intermolecular hydrogen bonds as well as the stabilisation of the 

bridging sheet may account for the experimentally observed entropic loss (Myszka et al., 2000; Kwong et 

al., 2002), which is compensated by a gain in enthalpy through the intermolecular interactions described 

here. In contrast, the V3 loop remains flexible after its relocation induced by the binding of CD4 and 

no entropy cost is thus paid for this process. These observations are in agreement with the experimental 

findings that the main entropic changes occur within the core structure of gp120 (Myszka et al., 2000).

 One can summarise the above observations into a "binding funnel" model where dynamics and 

different interaction modes are coupled leading to efficient recognition and specific affinity (Tsai et al., 

1999). During the search of receptor CD4, gp120 is constantly subject to immune system attack. A defined 

binding pocket based on rigid body docking would require exhausting geometry search while antibodies 

neutralisation via structural epitope recognition is also taking place. Gp120 devised, therefore, a multi-

level binding mechanism as such that the conformation with the specific binding cavity is embedded in 

an ensemble of less selective conformations facilitating target search: i) the charged residues located in the 



95

CD4 binding-induced conformational changes in HIV-1 gp120

highly mobile loops generate long range electrostatic attraction that guide CD4 to its binding interface 

consisting of a non-specific hydrogen bond network bearing less structural selectivity and energetic 

trapping; ii) the loose side chain-side chain hydrogen bonding that confines gp120 and CD4 into close 

proximity leads to the formation of specific backbone-backbone hydrogen bonds and subtle changes in 

the loops around CD4 lead to the closure of the lid of the receptive cavity; iii) while the specific hydrogen 

bonds are formed, the Phe43 phenyl ring plugs into its binding cavity. Only one molecule that perfectly 

matches with the last two steps, CD4, will be able to accomplish the structural rearrangements that weld 

the complex structure together, thereby completing the first stage of the fusion process: the gp120/CD4 

recognition. It should be noted that we did not simulate the binding process and therefore no kinetic or 

free energy data could be obtained from the current study. Therefore, our “binding funnel” model cannot 

be interpreted in term of a free energy surface of binding; it only presents a geometrical and chronological 

view of the binding process.

 The ability of anti-CD4-binding-site MAbs to neutralise HIV-1 has been associated with their 

affinity for the trimeric envelope virion structure, rather than monomeric gp120 (Poignard et al., 

2001). Recent thermodynamics study also suggests that the monomeric gp120 may act as decoys 

to the immune system (Kwong et al., 2002). Most antibodies but b12 and 4KG5 are in fact elicited 

against the flexible monomeric gp120 with suboptimal angle of approach to the CD4 binding site 

such that they are sterically hindered by the interaction between the variable loops in gp120 (Zwick 

et al., 2003). The ability to bind oligomeric gp120 is in fact the determinant to neutralise the virus 

(Roben et al., 1994; Sattentau and Moore, 1995). On the one hand, the interpretation of our observed 

conformational changes is confounded by the limited knowledge about the trimeric state of gp120, 

the monomeric gp120 crystal structure being the only structural template available to date. On the 

other hand, CD4 is the unique element for the initiation of the CD4-dependent viral entry pathway. 

The formation of the gp120/CD4 complex is apparently the common ground for recognition, 

regardless of the oligomeric state. This actually demonstrates the remarkable plasticity of gp120 

where the quaternary constraint imposed by the trimerisation of the envelope proteins may well 

be generated via the binding to CD4 alone, assuming that the structure of the monomeric gp120/

CD4 complex resembles that in the oligomeric state. Although not presented here, we do observe 

correlated motions upon CD4 binding on the “back-side” of gp120, which has been proposed to 

be involved in the trimerisation process, either directly or more likely via interactions with the 

transmembrane trimerisation domain gp41. Under the assumption of an unique gp120/CD4 complex 

structure, the gp120/CD4/CD4i crystal structure has provided invaluable information about the 

gp120/CD4 interface, which has led to a large number of structural and biochemical studies such as 

structural mapping by monoclonal antibodies (Saphire et al., 2001; Xiang et al., 2002). Yet, it still 

lacks the dynamical information regarding the conformational changes occurring in gp120 upon CD4 

binding, the limiting factor to the subsequent viral entry process. Some intermolecular hydrogen 

bonds, mostly mobile side chain-side chain hydrogen bonding (Figure 5), were only identified in our 

simulation. The geometry and rigidity of the well-defined CD4-Phe43 cavity, which is composed 

of some mobile residues in the C3 and C4 regions, is only induced upon CD4-binding (Figure 

3). Furthermore, formation of the complementary gp120/CD4 interface requires correlated loop 

contractions as revealed by essential dynamics analysis. This process also leads to a stabilisation of the 

bridging sheet while the two β-hairpins forming it (the V1/V2 stem and C3) are somewhat parted 
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in the free form. Correlated motions at the putative trimerisation interface are also observed. We 

can only speculate that the perturbation at the trimerization interface, propagated from the gp120/

CD4 interface, may trigger the release of tension stored within the coiled-coil structure of gp41 as 

proposed in the “spring-loaded” model (Eckert and Kim, 2001).

Conclusion

Our simulations of free and CD4-bound gp120 represent two distinct states, namely the relaxed 

ground state and the contracted, excited or pre-fusogenic state of gp120, respectively. Large amplitude 

loop motions in gp120 are attenuated and show concerted contraction upon CD4 binding. The 

associated entropic cost is compensated by the wealth of intermolecular interactions at the CD4 

interface ranging from non-specific to specific hydrogen bonds and hydrophobic contacts around and 

at the Phe43 binding cavity, in agreement with the large enthalpy/entropy compensation measured 

experimentally. This differentiated mode of interaction from long range electrostatic attraction via 

non-specific and specific short-range interactions, in combination with the dynamical nature of the 

system, allowed us to propose a binding funnel model for the gp120/CD4 interaction. In addition, 

the complexation also drives clustering of the V3 loop and the bridging sheet that generates a highly 

positive electrostatic attraction gradient for subsequent co-receptor binding. In line with the proposed 

model deduced from the mutagenesis mapping of the co-receptor binding site (Rizzuto et al., 1998), 

our results provide a plausible explanation for the functional relationship between the V3 loop and 

CD4-binding and the otherwise inefficient CD4-independent entry pathway (reviewed by (Berger 

et al., (1999)). We have here demonstrated the sophisticated plasticity of gp120, from a rigid core to a 

floppy exterior shielding that provides recognition specificity without compromising the capacity to 

evade attack from the immune system.
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Abstract

The HIV-1 gp120/CD4 interaction shows an unprecedented large entropy/enthalpy 

compensation with the capacity to fine-tune recognition over a broad range of affinity. 

The intermolecular interaction involves stable hydrophobic contacts with a unique 

protruding CD4-Phe43 structure surrounded by an intermolecular hydrogen bond 

network that covers the hemisphere of the CD4 D1 domain. We have applied a heuristic 

formula based on the covariance matrix of atom-positional fluctuations to assess the 

configurational entropy of the gp120/CD4 complex at different levels. The system 

was dissected into various subsets of atoms to evaluate the entropic contributions 

of different functional elements. By combining the trajectories of the free and 

complex forms, further insight about the conformational sampling was extracted. 

Despite the limited sampling time of ten nanoseconds, the theoretically derived 

changes in configurational entropy are in fair agreement with the experimentally 

determined data. The simultaneous evaluation of different interaction modes through 

a decomposition approach is only feasible with the knowledge of the atomic trajectory 

of the system. Given sufficient sampling of conformational space, the configurational 

entropy analysis presented here shall potentially provide accurate estimations of 

thermodynamic properties of  biomolecules.

Introduction

Conformational changes are central to the viral entry of Human Immunodeficiency Virus type-1 (HIV-1), 

which is initiated by the mutual recognition of the HIV-1 envelope protein (Env) gp120 and the cellular 

receptor CD4 (Olshevsky et al., 1990; Sattentau and Moore, 1991). This is followed by the binding of the 

chemokine co-receptor to gp120 (Trkola et al., 1996; Wu et al., 1996; Rizzuto et al., 1998; Berger et al., 

1999) and the extension or stretching of the coiled coil gp41, leading to the insertion of the membrane 

fusion peptide into the host membrane, which induces fusion of the viral and host membranes (Chan and 

Kim, 1998). Specific recognition of CD4 by gp120 is evidently the linchpin of the CD4-mediated viral 

infection pathway. Recent extensive biochemical and biophysical studies have provided ample evidence 

of a substantial structural rearrangement during the gp120-CD4 recognition process (Wyatt and Sodroski, 

1998). Large enthalpic and entropic changes upon binding were observed experimentally (Myszka et al., 

2000; Kwong et al., 2002). The free energy of binding, however, is small due to a remarkable entropy/

enthalpy compensation.  This means that the affinity of gp120 for CD4 and CD4-induced monoclonal 

antibodies (CD4MAb), is relatively small and can be fine-tuned by small variations in those two rather 

large contributions. The gp120/CD4 interaction is predominantly determined by the core of gp120: 

removal of the hypervariable loops corresponding to nearly 40% of the total sequence shows indeed little 

effect on the thermodynamic properties of binding (Myszka et al., 2000).

 Comprehensive structural insight is, however, limited by the intrinsic flexibility of the system. The 

structure of the ternary complex of the core of gp120, CD4 and a CD4-induced antibody is the only 

available atomic information to date (Kwong et al., 1998; Kwong et al., 2000). This truncated form of 
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gp120 - core gp120 - does not compromise much the biophysical and biological properties compared 

to the full-length wild type (wt) (Pollard et al., 1992; Wyatt et al., 1993; Myszka et al., 2000; Kwong et 

al., 2002). It provides a suitable structural template for molecular dynamics (MD) studies allowing a 

significant reduction in the size for the simulation system as compared to full-length gp120. Using MD 

simulations we have identified concerted loop motion around the CD4 binding site in gp120 upon 

binding (Hsu and Bonvin, 2004).  

 The enthalpic change upon gp120/CD4 complex formation, calculated as the difference in protein-

protein plus protein-solvent potential energy between the simulations of the complex and of the separate 

proteins (-130 kJ mol-1 at 300K), is of the same order of magnitude as the experimentally determined 

value (-62 kJ mol-1 at 310K) (Myszka et al., 2000). Encouraged by the qualitative agreement between the 

theoretical and experimental binding enthalpies, we aimed at extracting the binding entropy from our 

simulations and at gaining insight into CD4 binding-induced conformational changes in gp120 that are 

related to entropy changes.

 The estimation of configurational entropy from molecular dynamics trajectories was first proposed 

by Karplus and Kushick using a quasi-harmonic method (Karplus and Kushick, 1981). The difference in 

configurational entropy between two molecular conformations a and b can be estimated as ΔS = kB/2 

ln(detσa/detσb), where σa  and σb are the covariance matrices of atomic positional fluctuations of the 

two conformers and kB is Boltzmann’s constant. The method was formulated in terms of internal (non-

Cartesian) coordinates, which made it less easily applicable. This approach was extended and applied 

to various biomolecular systems (Di Nola et al., 1984; Edholm and Berendsen, 1984; Levy et al., 1984). 

A decade later, Schlitter introduced a heuristic formula, based on Cartesian coordinates, to compute 

an upper bound to the absolute entropy of a molecule from a simulation trajectory (Schlitter, 1993). 

Calculation of the absolute molecular entropy would require a complete translational and rotational 

sampling. This is not yet reachable for proteins with the current computation time scale of nanoseconds. 

Instead, an assessment of the configurational entropy can be obtained from a MD trajectory based on the 

covariance matrix σ of the Cartesian atom-positional fluctuations after elimination of translational and 

overall rotational motion by atom-positional least-squares fitting of molecular trajectory structures onto 

each other. This method was successfully tested for biomolecular simulations of peptide folding (Schäfer 

et al., 2000; Schäfer et al., 2001) and applied to simulations of protein molten globule states (Schäfer et al., 

2002). Recently Andricioaei and Karplus revised the quasi-harmonic approach to allow for the use of 

Cartesian coordinates (Andricioaei and Karplus, 2001).

 One advantage of approaches based on the covariance matrix of atomic fluctuation is the possibility 

to compute this quantity for different subsets of atoms or degrees of freedom. One can for example resolve 

the entropic contributions of hydrophilic and hydrophobic residues to protein-protein binding, which is 

experimentally impossible. It should be noted though that entropies originating from different degrees 

of freedom need not be additive and that a decomposition will neglect correlation of motions along 

different degrees of freedom. Such analysis nonetheless enables us in the current study to estimate the 

entropic contribution of subsets of atoms or degrees of freedom of interest down to residue and atomic 

levels. Comparison of the configurational entropies of gp120 and the CD4 D1 domain (denoted CD4 

for simplicity in the following) in the free and bound states suggests that the formation of intermolecular 

hydrogen bonds and hydrophobic contacts contributes most to the entropy changes. In line with previous 

postulates based on thermodynamic data (Myszka et al., 2000; Kwong et al., 2002; Xiang et al., 2002), the 
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conformational rearrangement in the “bridging sheet” of gp120 upon CD4 binding is accompanied by 

a significant loss of entropy. The large-amplitude relocalisation of the V3 loop of gp120 upon binding is, 

however, free from any substantial entropic cost.

Methods

Three simulations of 10 ns at 300K, 1 atm, were carried out for three different systems in explicit solvent: 

free HIV-1 gp120 with the truncated LAI strain sequence (SWISS-PROT accession number P03377; 

346 residues and 29047 water molecules), free CD4 (99 residues of the D1 domain and 7768 water 

molecules) and their complex (445 residues and 30242 water molecules). Core gp120 is defined as the 

construct present in the crystal structure with the truncated V1-V3 loops and N- and C-termini. The V4 

loop (398-409), for which electron density is missing in all crystal structures, and the V3 loop, which has 

been proposed to undergo significant rearrangements upon CD4 binding, were modelled onto the gp120 

core, together with the six core mutations of the LAI strain (98.1% sequence identity with HxBc2, PDB 

entry number 1G9M) (for details see Chapter 5; Hsu and Bonvin 2004). 

 The GROMACS programme package (Lindahl et al., 2001) was used for the MD simulations with 

the GROMOS96 43A1 force field (van Gunsteren et al., 1996; Daura et al., 1998) and the simple point 

charge (SPC) water model (Berendsen et al., 1981) with rectangular periodic boxes with a 1.4 nm solute-

wall minimum distance. Non-bonded interactions were calculated using twin range cutoffs of 0.8 and 1.4 

nm. Long range electrostatic interactions beyond the cutoff were treated with a generalised reaction field 

model (Tironi et al., 1995) using a dielectric constant of 54. For further simulation details we refer to (Hsu 

and Bonvin, 2004). Owing to the large system sizes ca 2 ns was required to reach equilibrium. The entropy 

analysis was therefore performed on the last 8 ns of each simulation, using molecular configurations that 

are 2 ps apart.

 Schlitter’s formula was used for the configurational entropy calculation, which yields an upper 

bound to the true entropy Strue,

��
Strue � S � 1

2
kB lndet 1� kBTe

2

2 M�
��

��
��

��

��
�� (1)

where kB is Boltzmann’s constant, T the absolute temperature, e Euler’s number,   the Plank’s constant 

divided by 2π, M the mass matrix that holds on the diagonal the masses belonging to the atomic Cartesian 

degrees of freedom, and σ the covariance matrix of atom-positional fluctuations. The elements of σ are 

given by

                                                             σij = <(xi-<xi>)(xj-<xj>)>   (2)

where xi are the Cartesian coordinates after least-squares superposition of the trajectory configurations 

with respect to a particular subset of atoms. Although the choice of this set of atoms will determine which 

motions are excluded as translational and rotational ones, and so will influence the calculated internal 

configurational entropy, it has little effect for relative comparisons. 

 Two sets of atoms were used in the superposition of molecular configurations: (i) The backbone 

atoms (N, Cα and C’) of the most stable structural elements of both proteins, the first α-helix of gp120 

(residues 17-31) and part of the β-sheet of CD4 consisting of residues 26-30 and 82-86 (see Figure 1). 
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The set of atoms is indicated by the code 2nd. (ii) The backbone (N, Cα and C’) atoms of individual 

residues were used for superposition of trajectory configurations when calculating the entropy per residue 

(code: fir).

 The covariance matrix and thus the configurational entropy was calculated for three different sets 

of atoms (see Table 1): (i) The gp120 molecule without the V3 loop and the CD4 molecule, both using 

all atoms (code: all) or using only backbone (N, Cα and C’) atoms (code: bb), see Figure 4. (ii) Segments 

or regions that are directly involved in intermolecular interactions or that are indirectly affected upon 

binding; residue F43 of CD4 (code: F43) and the residues of gp120 forming a cavity to hold F43 

(code: F43cav); residues of gp120 that form intermolecular hydrogen bonds (code: interHb) and their 

counterparts in CD4 (code: interHb), see Figure 5; the bridging sheet (code: bridge) and the V3 loop (code: 

V3) of gp120, see Figure 6. Detailed lists of residues are given in Table 1. (iii) The atoms of each residue 

(code: res), see Figure 7.

Table 1. Code definitions of atom sets used for configurational entropy calculations

Set code Molecule Residue number # of 
atoms

all gp120 83-296, 331-492 3101

CD4 1-99 1021

bb gp120 83-296, 331-492 936

CD4 1-99 297

F43 CD4 F43 17

F43cav gp120 E370, N425, W427, G473 47

interHb gp120 K97, C126, V127, A129, S131, N280, A281, S365, G366, G367, D368, Q42, 
E429, V430, G473, D474 130

CD4 K22, Q25, K29, K35, S42, F43, L44, K46, D53, R59, Q64, N66, E87, D88 166

bridge gp120 120-124, 198-202, 422-426, 431-435 198

V3 gp120 297-330 359
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Figure 1. Structure of the gp120/CD4 complex. Gp120 (core) and CD4 (D1 domain) are coloured dark and light 
grey, respectively. CD4-F43 is shown in white spheres to indicate the position of the binding cavity.  The four β-strands 
of the bridging sheet that link the inner and outer domains are indicated. The secondary structure elements that are 
used for superposition prior to the configurational entropy calculation are coloured black (for CD4 β-strands, β3: 
residues 26-30 and β8: residues 82-86; for gp120, α helix 1: residues 17-31). The structure corresponds to a simulated 
configuration taken at 6 ns, representative of the most populated V3 conformation (grey backbone Cα trace). The 
figure was generated using Molscript (Kraulis, 1991).
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We use the following notation for the entropy of a set (all, bb) of atoms of a molecule (gp120, CD4, 

complex) calculated from a trajectory (free-gp120, free-CD4, complex) after superposition of the trajectory 

structures onto the first structure based on fitting a particular set of atoms (2nd, fir),

Smol,set
fit (traj)

 (3)

The entropy difference between the bound (b) and free ( f ) states of CD4 is then

 (4)�SCD4,all
2nd ,b� f �� SCD4,all

2nd (complex) � SCD4,all
2nd (CD4)

and likewise for gp120 instead of CD4.

 In order to assess the degree of overlap between the configurational spaces sampled in two 

simulations, one may append one trajectory to the other trajectory and compute the development of the 

configurational entropy S with time, see Figure 2. Denoting the trajectories by I and II we then obtain 

 

(5)Smol,set
fit (traj I, traj II)

or alternatively

 (6)Smol,set
fit (traj II, traj I)

depending on the sequence of appending.

 Configurational entropy analysis of appended or combined trajectories can provide insight into the 

relative size and overlap of the conformational space sampled by a pair of single trajectories. For a molecule 

existing in two different states but with similar atom-positional fluctuations, similar configurational 

entropies are expected for the two states. Little information can be extracted by comparing the entropy of 

the two states. By combining the trajectories of these states, however, more information can be obtained. 

One can distinguish three cases (Figure 2):

A. A stepwise increase in configurational entropy after appending a second trajectory that has no 

or a small overlap in conformational space with the first trajectory (Figure 2A);

B. A rather smooth continuation of the configurational entropy build-up profile without 

observable change or perturbation after appending a second trajectory that has a large 

conformational overlap with the first one (Figure 2B);

C. A decrease in conformational entropy after appending a second trajectory that samples a much 

smaller conformational space than the first one and is contained in the conformational space 

of the first trajectory (Figure 2C).

These three situations, denoted cases A, B and C, will be used in the Result sections. Analysis of combined 

trajectories can yield information about the difference in the conformational spaces visited by the two 

trajectories, e.g., of bound and unbound states, whereas analysis of the single trajectories only provides 

information about the extent of the respective conformational spaces, and not about their degree of 

overlap.
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 The coverage of the conformational space of the second trajectory segment with respect to the first 

segment of a combined trajectory can be quantitatively measured by the difference between S at the end 

of the second segment of the combined trajectory build-up curve and S at the end of the first segment. 

For example, the coverage of the free trajectory with respect to the complex trajectory is

�Smol,set
fit ,c � f �� Smol,set

fit (complex, mol) � Smol,set
fit (complex)  (7)

and the coverage of the complex trajectory with respect to the free trajectory is

∆Smol,set
fit , f +c == Smol,set

fit (mol, complex) − Smol,set
fit (mol )�� . (8)

Results

Configurational entropy of gp120 and CD4

The configurational entropy of various sets of atoms of the free gp120 and CD4 molecules and their 

complex are shown in Figures 4-6. Unlike other structural parameters such as the atom-positional root-

mean-square deviations (RMSD) of the trajectory structures from the starting structure, which seem to 

reach equilibrium after 2ns for CD4 and 4 ns for gp120 (Figure 3), only the backbone configurational 

entropy starts to level off after ca 4ns (Figures 4A and B); the all atom values are still in the build-up 

phase throughout the 8 ns trajectories (Figures 4C and D). Entropy values obtained from the different 

Figure 2. Schematic of three possible results of the configurational entropy analysis of the combined trajectory of 
two simulations I and II: A the two trajectories I and II sample different regions of conformational space, B the two 
trajectories I and II sample largely overlapping regions of conformational space and C the two trajectories overlap 
but one (II) only samples a small subspace of the conformational space of the other (I). For an explanation we refer to 
the Method section. Top: Configurational entropy build-up curves as a function of the length of the combined MD 
trajectory. The solid line corresponds to the configurational entropy of the I+II combined trajectory and the dashed 
line corresponds to the entropy obtained from the reversely combined trajectory, II+I, where I and II indicate the 
single trajectories. The conformational space sampling of the trajectories in the two combinations (I+II and II+I) is 
indicated in the lower panels.
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simulations are given in Table 2. Unexpectedly, the configurational entropies of both backbone and all 

atoms of gp120 (Figures 4A and C) in the complex form (dashed lines till 8 ns) towards the 8 ns time 

point are slightly higher ( �Sgp120,bb
2nd ,b� f = 0.3 kJ K-1mol-1 and �Sgp120,all

2nd ,b� f = 0.7 kJ K-1mol-1) than those in 

the free form (solid lines till 8 ns). This increase, however, only amounts to less than 2% of the respective 

absolute value. The difference obtained from appending the free and complex trajectories ( �Sgp120
2nd , f �c

and �Sgp120
2nd ,c� f , see Equations 8 and 7) are much larger (2.0 and 1.7 kJ K-1mol-1 for the backbone atoms 

and 11.1 and 10.4 kJ K-1mol-1 for all atoms).

Table 2. Comparisons of the all-atom and intra-residue configurational entropy (kJ  K-1 mol-1) and their relative 
difference (%) for the molecules gp120 and CD4a

Molecule (mol) gp120 CD4

Fitting atom set (fit) 2nd fir 2nd fir
Entropy of atom set (set) all b res c d all b resc d

Configurational entropies from single trajectories

Smol,set
fit ( free) 49.4 84.3 71 22.4 29.8 33

Smol,set
fit (complex) 50.1 85.6 71 21.6 29.4 36

�Smol,set
fit ,b� f 0.7 1.3 -0.8 -0.4

Configurational entropies from combined trajectories

Smol,set
fit ( free,complex) 60.5 92.6 53 23.9 31.1 30

�Smol,set
, f �cfir

11.1 8.3 1.5 1.3

∆Smol,set
fit ,c + f 10.4 7.0 2.3 1.7 

a. The various quantities are defined in the Methods section, Equations 1-8.
b. All atom configurational entropies.
c. Sum of the intra-residue configurational entropies.
d. Relative differences calculated as [ Smol,res

fir (traj) - Smol,all
2nd (traj) ]/ Smol,all

2nd (traj) .

 Due to the large number of atoms of gp120 the conformational sampling is not yet complete within 

the 8 ns simulation. The crossing over of the complex and free build-up curves at around 6 ns (Figures 

4A and C) is due to a levelling off of the curve for the free form, which suggests that convergence is near 

for the free molecule. Appending the free and complex trajectories of CD4 gives rise to a small stepwise 

increase of the entropy build-up of the backbone atoms (Figure 4B at 8ns), regardless of the order of 

appending. This suggests that two slightly different conformational spaces are sampled in the free and 

complex forms of the molecule representing a situation of case A (Figure 2A). For the all atom analysis of 

CD4 (Figure 4D), on the other hand, a smooth continuation at 8 ns of the configurational entropy build-

up is observed when the complex trajectory is appended to the free one (solid line) while a stepwise 

increase is visible when the trajectories are appended in the reverse order (dashed line). This illustrates 

case B (Figure 2B) where a subspace of the conformational space of the free molecule is sampled in the 

complex state.
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Configurational entropy of interacting elements and CD4 binding-induced conformational changes in gp120

The gp120/CD4 interface involves of two major interaction modes: (i) the unique “knob-and-socket” 

hydrophobic interaction between CD4-F43 (17 atoms) and the gp120 receptive cavity, including E370, 

N425, W427 and G473 (47 atoms); (ii) the stable intermolecular hydrogen bond network (166 and 130 

atoms for CD4 and gp120, respectively; for details see Table 1). These intermolecular contacts restrict the 

mobility of the involved residues and, in turn, their configurational entropy. In the combined trajectory 

analysis (Figure 5), the entropy build-up curves show a substantial jump at the appending point when 

the trajectory of the free form is appended to that of the complex form (dashed line), indicating that the 

free molecule samples conformational space not visited in the complex simulation (case A; Figure 2A). 

Note that while the configurational entropy of the whole system is still in the early stage of equilibration 

(Figure 4), the entropy of most of the structural elements involved in the gp120/CD4 interface starts to 

level off after 4 ns as a result of their smaller number of atoms.
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Figure 3. Atom-positional (backbone atoms, N, Cα and C’) root-mean-square deviation (RMSD) of trajectory 
structures from the respective starting structure of CD4-D1 domain and gp120 (without the V3 loop) in the free and 
complex forms. A & B CD4 in the free and complex forms, respectively. C & D Gp120 in the free and complex forms, 
respectively. The RMSD values of the structural elements subjected to the least-squares superposition of backbone 
atoms are shown in thick solid lines (see Figure 1) and those of the backbone atoms (C’, Cα and C’) of all residues are 
shown in thin solid lines. The RMSD values of the inner and outer domains of gp120 are shown in grey and dashed 
lines, respectively. The RMSD values were smoothed for clarity using a 0.1 ns averaging window.
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 The loss of entropy stemming from the rigidifi cation of the residues in gp120 forming stable 

hydrophobic contacts to CD4-F43 ( �Sgp120,F 43cav
2nd ,b� f  = –0.12 kJ K-1 mol-1; see Figure 5A) is of the same 

size as the corresponding loss of entropy in CD4-F43 ( �SCD4,F 43
2nd ,b� f  = –0.13 kJ K-1 mol-1; see Figure 5B). 

Appending the complex trajectory of gp120 to the free one gives rise to a small increase ( �SCD4,F 43
2nd , f �c

= 0.03 kJ K-1 mol-1) indicating that the complex form samples slightly different parts of conformational 

space  (Figure 5A). Interestingly, for CD4-F43, the corresponding value is negative, -0.01 kJ K-1 mol-1 

(solid line in Figure 5B). This would only occur when the averaged atom-positional fl uctuations, i.e., the 

determinant of the covariance matrix, are reduced due to the addition of the second trajectory segment 

(case C, Figure 2C). In other words, the second MD trajectory segment covers a small subspace of the 

conformational space sampled by the fi rst segment and hence reduces the overall size of the elements of 

the covariance matrix σ through averaging over the combined trajectories. As an illustration of this, the 

root-mean-square fl uctuations (RMSF) of the phenyl ring of CD4 Phe43 after least-squares fi tting on 
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Figure 4. Confi gurational entropy of gp120 and CD4-D1 domain. A & C Backbone and all atoms of gp120 
excluding the V3 loop. B & D Backbone and all atoms of CD4. The build-up curves of the free+complex combined 
trajectory is shown in solid lines and the ones of the complex+free combined trajectory in dashed lines. The numbers 
of atoms used for the calculations are indicated between parentheses at the lower right of each panel. All covariance 
matrices were generated after positional least-squares fi tting of backbone atoms of the β sheet of CD4 and of α helix 
1 of gp120, respectively (see Figure 1). The confi gurational entropy build-up was calculated every 0.5 ns except for 
the all atom analysis of gp120 (1 ns/step). The confi gurational entropy difference between the free and complex 
forms 2nd,b-f�Smol,set  (Equation 4) is indicated at the midpoint of the curves (8 ns). The confi gurational entropy gains after 
combining trajectories, 2nd,f+c�Smol,setset  and 2nd,c+f�Smol,set , Equations 8 and 7, are calculated by subtracting the midpoint values 
indicated by the horizontal lines from the end point values  (see Methods).
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all heavy atoms of CD4 decreases from 0.30±0.07 nm in the free form to 0.08±0.01 nm in the complex 

form. Moreover, all Phe43 side-chain conformations in the complex are contained within the ensemble 

of conformations of the free form.

 In addition to the changes directly related to the intermolecular contact, CD4 binding also induces 

conformational changes away from the binding interface that are crucial for the subsequent events of 

viral entry into the host cell. It is generally accepted from thermodynamic and biochemical data that the 

β sheet of gp120 that bridges the inner and outer domain of the gp120 core, the “bridging sheet”, is only 

fully formed and stabilised upon complexation with CD4 (Figure 1) and that this stabilisation contributes 

a sizeable entropic loss and/or enthalpic gain (Jardetzky, 2002; Kwong et al., 2002; Xiang et al., 2002). 

Concomitantly, the third hypervariable loop (V3) undergoes a rearrangement to a somewhat different 

conformation leading to accessibility of the epitope for co-receptor binding. Our previous MD study 

revealed that lid closure motions upon CD4 binding are accompanied by concerted structural changes 
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Figure 5. Configurational entropy of the structural elements involved in gp120/CD4 intermolecular interactions. A 
Receptive cavity of gp120 formed by residues that have hydrophobic contacts with CD4-F43. B CD4-F43. C & D 
Residues of gp120 and CD4 that are involved in a stable intermolecular hydrogen bond network. The configurational 
entropy build-up was calculated every 0.1 ns because of the fast equilibration within 1 ns. See for further explanations 
the legend of Figure 4. 
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leading to a substantial increase of rigidity of the bridging sheet and a large-amplitude translocation of 

the V3 loop (Chapter 5; Hsu and Bonvin, 2004). The corresponding changes in entropy are shown in 

Figure 6. The bridging sheet shows a clear entropy difference between the free and complex forms of 

gp120 with a loss of entropy of -0.23 kJ K-1 mol-1. Not only is its flexibility reduced, but its configuration 

is also altered. This can be concluded from the subsequent change after appending the trajectories of 

the complex and of the free form to each other, which is consistent with the previously defined case 

A (Figure 2A). The entropy of the V3 loop in the CD4-bound form initially builds up slower than in 

the free form but crosses the latter curve in the last 1.5 ns resulting in a final increase of 0.24 kJ K-1 

mol-1 (Figure 6B). In addition, the V3 loop shows an increase in entropy when the two trajectories are 

combined, irrespective of the order of appending. These observations suggest that the V3 loop undergoes 

major changes in conformation and/or localisation upon CD4 binding, while its intrinsic flexibility 

persists, or even possibly increases.

Configurational entropy changes per residue

Changes in conformational entropy upon binding can also be calculated per residue. For this, the atom-

positional least-squares fitting of trajectory structures was performed using backbone atoms (N, Cα and 

C’) of the individual residues to exclude from the entropy contributions of collective motions of larger 

structural segments. The intra-residue conformational entropy obtained in this way provides, therefore, 

only information about side chain motions. The intra-residue configurational entropy per residue was 

calculated using Equation 1 and then normalised by dividing it by the number of atoms of each residue. 

Intra-residue entropy differences between the free and complex forms �Smol,all
fir,b� f  (Equation 4) are plotted 

as a function of residue number in Figure 7.

 On average, CD4 shows an intra-residue entropy decrease of –0.5 kJ K-1 mol-1 per atom whereas 

gp120 shows an unexpected increase of 0.3 kJ K-1 mol-1. Most of the residues of CD4 and gp120 that 

are involved in the intermolecular hydrogen bond network (filled bars in Figure 7) show reductions in 

intra-residue configurational entropy upon complexation, except for K22 and D53 in CD4, and C126, 

S365 and E429 in gp120. The unexpected entropy increase of these five residues is probably due to their 

Figure 6. Configurational entropy of the structural elements in gp120 that experience conformational changes 
upon CD4 binding. A The bridging sheet. B The V3 loop (see Figure 1). The configurational entropy build-up was 
calculated every 0.5 ns. See for further explanations the legend of Figure 4.
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intrinsic flexibility that is reflected in their large B-factors in the crystal structure (Kwong et al., 1998). In 

addition, our previous MD analysis of the intermolecular hydrogen bonding shows that all these residues, 

but CD4-K22, form only marginally stable intermolecular hydrogen bonds. Despite its high occurrence 

(78%), the salt bridge between CD4-K22(Nζ) and gp120-E429(Cδ) located at the edge of the interface 

of the molecular complex might be subject to less structural limitations than those in the centre of the 

interface. Furthermore, the relatively long side chains of both residues might also tolerate a higher degree 

of flexibility despite the presence of a salt bridge.
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Figure 7. Differences in intra-residue configurational entropy in J K-1 mol-1 between complex and free MD simulations 
as a function of residue number. The intra-residue configurational entropies were calculated after positional least-
squares fitting of backbone atoms of the respective residues. Top row: CD4-D1 domain. The sequence numbering of 
gp120 follows the HxBc2 construct with an arrow indicating the missing V1/V2 loop (residues 128-194). Residues 
involved in the stable intermolecular hydrogen bond network are shown in filled bars. CD4-F43 is highlighted with 
an asterisk. Residues not involved in stable intermolecular hydrogen bonds that exhibit entropy changes larger than 
two times the standard deviation from the average value are highlighted with the following symbols indicative of 
their minimum intermolecular distance d: open circle (d<0.5 nm), filled circle (0.5 nm < d < 1 nm), triangle (1 
nm < d < 2 nm) and cross (d > 2 nm). The intermolecular distance is defined as the minimum interatomic distance 
from any atom of the residue of interest to any atom of the other molecule in the structure taken at 6 ns, which is 
well-equilibrated and is representative of the most populated V3 conformation (see Figure 1). Regions in gp120 and 
CD4 that are involved in intermolecular contacts are shaded in dark grey. The modelled V3 and V4 loops in gp120 are 
shaded in light grey.
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 In line with the previous analysis of the functional elements, CD4-F43 shows a large intra-residue 

entropy reduction upon complexation (Figure 7) due to the steric restriction imposed by the receptive 

cavity of gp120. The neighbouring residue Q40, which lies at the centre of the complex interface, shows 

the largest reduction amongst all residues  (top row in Figure 7). Although less confined than CD4-F43, 

it is in close contact (less than 0.5 nm inter-atomic distance) with T283, G473 and D474 of gp120, of 

which the latter two were found to form intermolecular hydrogen bonds with F43 and Q25 of CD4, 

respectively (Hsu and Bonvin, 2004). In gp120, regions that show concerted lid closure motions upon 

CD4 binding, namely LD, C3, C4 and V5, display substantial intra-residue entropy reductions upon 

complexation especially for those residues that are involved in intermolecular hydrogen bonding (Figure 

7). Note that the outer half of the bridging sheet (β3 and β4) and the tip of the hairpin structure of the V3 

loop (residues 297-330) do not exhibit significant entropy changes, most likely due to the lack of direct 

contact with CD4. This illustrates that changes in conformation do not necessarily involve a change in 

entropy or extent of motion.

 In addition to the residues that are directly involved in intermolecular contacts or are in close 

proximity to the intermolecular interface, there are a few residues in gp120 that show large intra-residue 

entropy changes upon complexation (see Figure 7). Some residues show positive intra-residue entropy 

change upon complexation. Several are located in the putative trimerisation interface, S243, C378 and 

I439, and two of them, V255 and L260, are located in the β-turn that connects the inner and outer 

domains of gp120. This indicates that the intermolecular interactions between gp120 and CD4, while 

decreasing the intra-residue entropy of residues in direct contact, can induce intra-residue entropy changes 

at the inter-domain interface within the gp120 monomer and at the putative trimeric gp120 interface.

Discussion

Sufficient conformational sampling is a prerequisite for a reliable estimation of the conformational 

entropy. The required simulation time is correlated to the size of the system, i.e., the number of atoms 

taken into account in the calculation. For a moderate system size such as the entire CD4-D1 domain with 

1021 atoms, convergence of conformational entropy of both the free and bound states is only observed 

in the later stage of the 8 ns trajectory segments. Nevertheless, the stabilising effect of complexation on 

backbone and side chains can be unambiguously identified when comparing the build-up curves of 

the two states (Figures 4B and D). It is, however, not obvious to explain the slight, unexpected gain in 

entropy upon complexation for gp120 (Figure 4A). The conformational sampling requires more time 

than for CD4. When considering all protein atoms, the number of atoms in gp120 becomes too large to 

obtain sufficient sampling in the time scale of our simulation (10ns); the build-up curves have not yet 

converged (Figure 4C). In contrast to the compact CD4, gp120 undergoes a number of significant loop 

contractions and translocations upon CD4 binding, which occur on a more extended time scale than the 

high frequency local fluctuations. Complete sampling of these movements would require much longer 

simulations.

 The conformational entropy change of gp120/CD4 complexation qualitatively agrees with the 

experimental value despite the fact that the contribution from bulk solvent was neglected in our analysis. 

Assessment of the complete system was not yet feasible due to insufficient sampling, especially for gp120. 

Nevertheless, by considering functionally important sets of atoms, a localised instead of global analysis 
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provided insights into the entropic contribution of various degrees of freedom. The intermolecular-

hydrogen bond network and the insertion of CD4-F43 into its receptive cavity seem to predominantly 

determine the large entropy loss upon complexation. The bridging sheet of gp120 also plays a key role 

in the entropy change, as has been proposed experimentally (Myszka et al., 2000; Xiang et al., 2002). 

While, in some cases, conventional structural parameters such as atom-positional fluctuations may fail to 

identify thermodynamic differences between two states, the conformational entropy analysis of combined 

trajectories can provide a complementary way of evaluating spatial distributions and their statistical 

weight. This is essentially equivalent to the clustering approach, which was previously proposed to assess 

equilibration and convergence of biomolecules simulations (Smith et al., 2002). With the rapid advance in 

computing power and methodology, we are hopeful that a thorough description of the thermodynamics 

of such complex systems can be ultimately achieved via computer simulations and will meet experimental 

data in the near future.
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Abstract

Protein folding is studied at several levels. First, the formation of secondary structure elements 

such as α-helices and β-sheets can be investigated. Second, the acquisition of tertiary structure 

and disulphide bonds during oxidative folding in the endoplasmic reticulum (ER) in vivo can 

be studied. Third, one can analyze the results of a completed folding process as a protein is 

secreted or expressed at the cell surface, the ultimate test being the analysis of function. The 

correlates of these different levels of protein folding are mostly unclear. We generated an HIV-

1 gp120 variant through virus evolution that is functional despite the lack of the disulphide 

bond at the base of the V4 domain that is otherwise required for virus replication and gp120 

activity. Biochemical and computational analyses indicate that virus replication is restored 

through the improvement of local hydrogen bonding and stabilisation of a local β-sheet fold. 

This study provides proof that a critically important disulphide bond can be functionally 

replaced by an alternative protein structure motif. It also provides evidence for the proposal 

that local protein stability is an important factor in escape from ER quality control during 

protein biosynthesis. Furthermore, our data indicate that β-sheet preference is a determinant 

in directing protein stability and protein folding in vivo and that β-sheet rules deduced from 

experiments with small model proteins also hold for the intricate chaperone-assisted folding 

of a complicated glycoprotein such as gp120.

Introduction

The HIV-1 envelope glycoprotein complex (Env) mediates viral attachment and entry in susceptible cells. 

The surface subunit (SU; gp120) sequentially binds the CD4 receptor and either CCR5 or CXCR4 

as a coreceptor (Wyatt and Sodroski, 1998; Poignard et al., 2001). Subsequent conformational changes 

result in fusion of viral and cellular membranes, mediated by the transmembrane glycoprotein (TM; 

gp41) (Eckert and Kim, 2001; Gallo et al., 2003). Env is synthesised as a gp160 precursor protein, which 

is cotranslationally translocated into the endoplasmic reticulum (ER). Here, Env acquires carbohydrate 

chains and disulphide bonds, it folds, trimerises and looses its leader peptide (Land et al., 2003). Like 

folding of any other glycoprotein, gp160 folding is assisted by molecular chaperones. Gp160 transiently 

associates with the ER resident chaperones BiP, calnexin and calreticulin (Earl et al., 1991; Otteken et al., 

1996; Knarr et al., 1999). Subsequently, gp160 is transported to the Golgi complex where it is cleaved into 

gp120 and gp41, which stay associated non-covalently (Stein and Engleman, 1990; Moulard and Decroly, 

2000). In addition, part of the ~30 carbohydrates are modified here (Leonard et al., 1990).

 Most proteins have the intrinsic capacity to acquire their unique 3D structure in a spontaneous and 

autonomous manner, depending only on the amino acid sequence and a native environment (Jaenicke, 

1999). It was assumed that folding rules based on in vitro folding experiments with small model proteins 

could be applied to the description of protein folding in living cells. However, complicated proteins need 

assistance from chaperones to fold properly and there is no direct evidence that these simple folding rules 

also apply to chaperone–assisted protein folding in the ER.
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We have previously studied the role of individual disulphide bonds in oxidative Env folding. Five out of 

ten disulphide bonds were dispensable for folding. Surprisingly, two were also largely dispensable for Env 

function and viral replication. The remaining five disulphide bonds were required for proper oxidative 

folding of Env in the ER. The advantage of using Env over other models for glycoprotein folding is 

that HIV-1 provides the possibility for protein evolution when a mutant protein is tested in replication 

competent HIV-1. We used virus-driven protein evolution to further characterise the significance and 

role of specific disulphide bonds. In the current study, we describe an escape variant of an Env mutant 

lacking the conserved disulphide bond at the base of the V4 domain. This disulphide bond excludes 

the V4 loop from the gp120 core and is required for proper oxidative folding of wt gp120 and virus 

replication. In the evolved variant, the role of the disulphide bond during folding is replaced by increased 

local hydrogen bonding within a β-sheet fold, which results in an escape from ER quality control and 

restored virus replication.

Materials and Methods

Cloning

The pRS1, pcDNA3-Env-gp120 and pLAI plasmids containing the appropriate mutations in the env 

gene were generated as described previously (van Anken, 2003). PCR-generated gp120 sequences from 

evolved viruses (see below) were cloned into the pRS1 shuttle vector using the BsaB1 and Nhe1 sites 

and subsequently cloned into the pLAI infectious molecular clone (Peden et al., 1991) as SalI-BamHI 

fragments. NotI-XhoI fragments were subcloned into the pcDNA3 expression vector for use in folding 

experiments. Numbering of individual amino acids is based on the sequence of HXB2 gp160.

Cells and transfections

HeLa cells (ATCC) and HT1080 cells were cultured in MEM (Life technologies) supplemented with 10% 

FCS (Hybond), penicillin (100 U/ml), streptomycin (100 µg/ml). Peripheral blood mononuclear cells 

(PBMCs) were isolated from buffy coats from healthy individuals by Ficoll-Isopaque density centrifugation. 

PBMCs were cultured for three days in RPMI medium (Life Technologies Ltd., Paisley, UK) supplemented 

with 10% FCS, penicillin (100 U/ml), streptomycin (100 µg/ml) and phytohemagglutinin (PHA; 5 µg/

ml) and subsequently cultured without PHA, but with IL-2 (100 U/ml). SupT1 cells were cultured in 

RPMI medium supplemented with 10% FCS, penicillin and streptomycin. LuSIV cells were cultured in 

RPMI medium supplemented with 10% FCS, penicillin, streptomycin and hygromycin B (Roos et al., 

2000). C33A cervix carcinoma cells were maintained in DMEM (Life Technologies), supplemented with 

10% FCS, penicillin and streptomycin, as previously described (Sanders et al., 2002a). SupT1 and C33A 

cells were transfected with pLAI by electroporation and Ca3(PO4)2 precipitation, respectively, as described 

previously (Das et al., 1999).

Viruses and infections

Virus stocks were produced by transfecting C33A cells with the appropriate pLAI constructs. The virus 

containing supernatant was harvested 3 days post-transfection, filtered and stored at -80°C and the virus 

concentration was quantitated by capsid CA-p24 ELISA as described previously (Jeeninga et al., 2000). 

These values were used to normalise the amount of virus in subsequent infection experiments. Infection 



experiments were performed as follows. 50x103 SupT1 T cells or PBMCs were infected with 20 or 500 

ng CA-p24, respectively, of C33A-produced HIV-1LAI per well in a 24-well plate, and virus spread was 

measured for 14 days using CA-p24 ELISA. 

Virus evolution

For evolution experiments, SupT1 cells were transfected with 10 μg pLAI constructs by electroporation, 

and virus cultures were inspected regularly for the emergence of revertant viruses by CA-p24 ELISA and/

or the appearance of syncytia. At regular intervals, cells and filtered supernatant were stored at -80°C and 

virus was quantitated by CA-p24 ELISA. When a revertant virus was identified, DNA was extracted from 

infected cells (Das et al., 1997) and proviral gp120 sequences were PCR-amplified with primers A (5’-

GCTCCATGGCTTAGGGCAACATATATCTATG-3’) and B (5’-GTCTCGAGATGCTGCTCC-3’) 

and sequenced.

Virus entry, infectivity and neutralisation 

LuSIV cells, stably transfected with an LTR-luciferase construct (Roos et al., 2000), were infected with 

200 ng CA-p24/300x103 cells/ml in a 48 well plate. Cells were maintained in the presence of 200 nM 

saquinavir to prevent additional rounds of virus replication. Luciferase activity was measured after 48 hrs. 

Neutralisation experiments were performed similarly, but virus was preincubated for 30 min at room 

temperature, with the appropriate concentration of either monoclonal antibody 2G12 (Trkola et al., 1996; 

Sanders et al., 2002b; Scanlan et al., 2002; Calarese et al., 2003) or IgG1b12 (Burton et al., 1994; Saphire et 

al., 2001). The 50% tissue culture infectious dose (TCID50) was determined by endpoint dilution.  

Quantitation of gp120 in cell, virion and supernatant fractions

C33A cells were transfected with 40 μg pLAI per T75 flask. Medium was refreshed at day one post-

transfection. The culture supernatant was harvested at 3 days post-transfection, centrifuged and passed 

through a 0.45 μm filter to remove residual cells and debris. Cells were resuspended in 1.0 ml lysis 

buffer (50mM Tris (pH 7.4) 10mM EDTA, 100mM NaCl, 1% SDS). Virus particles were pelleted by 

ultracentrifugation (100.000 g for 45 min at 4°C) and resuspended in 0.5 ml lysis buffer. The virus free 

supernatant, containing gp120 shedded from the cell and virion surface, was concentrated using Amicon 

centrifugal filter units (Millipore, Bedford, MA) and SDS was added to a 1% end concentration. 

 Gp120 in cell, virion and supernatant fractions was measured as described previously (Moore and 

Ho, 1993; Sanders et al., 2002b), with minor modifications. ELISA plates were coated overnight with 

sheep antibody D7324 (10 µg/ml; Aalto Bioreagents, Ratharnham, Dublin, Ireland), directed to the 

gp120 C5 region, in 0.1 M NaHCO3. After blocking with 2% milk in Tris-buffered saline (TBS) for 30 

min, gp120 was captured by incubation for 2 hr at room temperature. Recombinant HIV-1LAI gp120 

(Progenics Pharmaceuticals, Inc. Tarrytown, NY) was used as a reference. Unbound gp120 was washed 

away with TBS and purified serum Ig from an HIV-1 positive individual (HIVIg) was added for 1.5 hr in 

2% milk, 20% sheep serum (SS), 0.5% Tween-20. HIVIg binding was detected with alkaline phosphatase 

conjugated goat anti-human Fc (1:10000, Jackson Immunoresearch, West Grove, PA) in 2% milk, 20 % 

SS, 0.5% Tween-20. Detection of alkaline phosphatase activity was performed using AMPAK reagents 

(DAKO, Carpinteria, CA). The measured gp120 contents in cells, virus and supernatant were normalised 

for CA-p24.

Summary
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Env folding

For folding assays, mutant gp120 was expressed using a recombinant Vaccinia virus vector system (van 

Anken, 2003). Folding of gp120 mutants was analyzed by pulse-chase labelling and immunoprecipition 

with anti-Env sera as described (Land et al., 2003; van Anken, 2003). Formation of disulphide bonds was 

assayed by SDS-PAGE mobility changes of deglycosylated, alkylated, non-reduced samples. Reduced 

samples were used to follow signal sequence cleavage.

Molecular dynamics simulations

The starting structures were generated with SWISS-MODEL (Guex and Peitsch, 1997) using modelling 

templates as structural analogs (PDB entries 1G9M, 1GC1 for the HXB2 isolate  (Kwong et al., 1998; 

Kwong et al., 2000) and 1G9N for the YU2 isolate (Kwong et al., 2000). The flexible N- and C-termini 

and the hypervariable V1, V2 and V3 loops, which are missing in the crystal structures, were not included 

to limit the sise of the simulations. The missing V4 loop was modellled by SWISS-MODEL. In addition 

to the wild-type sequence of HXB2 (wt), point mutations were introduced in silico by modifying the 

input primary sequences for model generations. Four variants were used in this study: the inactive mutant: 

C385A/C418A; the active revertant: C385A C418V T415I; the corresponding core sequence of LAI 

isolate; and the HXB2 core sequence with all cysteine residues replaced by alanines.

 The GROMACS 3.0 molecular dynamics package (Lindahl et al., 2001) was used with the 

GROMOS 43A1 force field (Daura et al., 1998). Starting structures were individually solvated using the 

simple point charge (SPC) water model (Berendsen et al., 1981) in periodic cubic boxes with a 1.4 nm 

solute-wall minimum distance. After a first steepest descent energy minimisation with positional restraints 

on the solute, chloride ions were introduced in all three systems to obtain an electro-neutralised system. 

The resulting systems are comprised of 317 amino acids and about 30,500 water molecules that give a 

total number of about 93,900 atoms. A second energy minimisation was then performed, followed by 

five successive 20 ps MD runs with decreasing positional restraint force constants on the solutes (Kposres = 

1000, 1000, 100, 10 and 0 kJ mol-1 nm-2) prior to the production runs.

 The simulations were run for a period of 10 nanoseconds (ns) at 300K and one atm for all variants 

except for the core LAI gp120 (5 ns). Short 1 ns simulations at 400K and 1atm were performed starting 

from different time points of the 300K simulations (1, 1.5 and 2 ns) for all variants to assess their 

thermostability. Furthermore, 10 ns simulation at 400K and 1 atm were carried out for the wt, mutant 

and revertant core gp120s starting from configurations taken at 2 ns of the 300K simulations. For all 

simulations, solute, solvent and counterions were independently coupled to a reference temperature 

bath. The pressure was maintained by weakly coupling the system to an external pressure bath at one 

atmosphere (Berendsen et al., 1984). Non-bonded interactions were calculated using twin range cutoffs of 

0.8 and 1.4 nm. Long range electrostatic interactions beyond the cutoff were treated with the generalised 

reaction field model (Tironi et al., 1995) using a dielectric constant of 54. A four femtoseconds (fs) 

integration time step was used for the integration of the equations of motions. The LINCS algorithm 

(Hess et al., 1997) was used for bond length constraining in conjunction with dummy atoms for the 

aromatic rings and amino group in side chains (Feenstra et al., 1999). The simulations required about 50 

hours per nanosecond in parallel on four 1.3 GHz AMD CPUs.

β-sheet stabilisation can substitute a disulphide bond in HIV-1 gp120
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Results

Evolution of gp120 lacking the conserved disulphide bond at the base of the V4

In our previous work we found that five out of ten absolutely conserved disulphide bonds are essential 

for the oxidative folding of the HIV-1 Env protein. However, for some mutants that were folding 

incompetent we could still observe a minimal but reproducible infectivity when placed in a replicating 

virus, although not sufficient to cause a spreading infection (van Anken, 2003)†. One of these mutants 

was the C385A/C418A double mutant, lacking the disulphide bond at the base of the V4 variable loop 

(Figure 1A). This virus appeared to be a good candidate for protein evolution studies, with the aim of 

identifying and investigating escape routes that result in restoration of gp120 folding and virus replication. 

After prolonged culturing (80 days) on SupT1 T cells, we identified a replicating virus in a culture of the 

C385A/C418A mutant virus. Proviral env sequences were PCR-amplified and sequenced. Population 

sequencing revealed two reversions: a first-site pseudoreversion A418V and a second-site reversion at a 

nearby residue: T415I (Figure 1B). Thus, the wt cysteine at position 418 is not restored, which may be 

caused by the design of the mutant alanine codon, which requires at least two point mutation to become 

a cysteine codon. This combined with the fact that the original C385A substitution was still present 

implies that the disulphide bond at the base of the V4 is not restored. Sequencing of individual env clones 

revealed several with only the T415I reversion, implying that this mutation appeared first during the 

course of evolution (Figure 1). For simplicity we will hereafter refer to the respective variants as mutant 

(C385A/C418A), intermediate revertant (C385A/C418A T415I) and revertant (C385A C418V T415I). 

To establish whether the identified substitutions accounted for the revertant phenotype, the relevant 

env fragments were subcloned into a molecular clone of HIV-1LAI. Virus stocks were produced by DNA 

transfection of non-susceptible C33A cells. SupT1 T cells were infected with wt, mutant and revertant 

viruses and virus spread was monitored by CA-p24 ELISA (Figure 2A). The C385A/C418A mutant 

virus did not cause a spreading infection (van Anken, 2003). The intermediate revertant (C385A/C418A 

T415I) replicated poorly, and revertant  (C385A C418V T415I) showed greatly improved replication, 

although it was still somewhat impaired compared to the wt virus. Similar results were obtained in 

primary cells, indicating that the revertant phenotype is not specific for the SupT1 T cell line that was 

used for the evolution experiment (Figure 2B). The differences in viral replication could not be attributed 

to differences in virus production, since the virus production, which is essentially Env-independent, was 

similar for wt, mutant and revertant viruses (Figure 2C). Infectivity measurements (TCID50; fig. 2D) and 

single cycle viral entry experiments (Figure 2E) further corroborated the replication results and firmly 

established that Env-mediated entry of the revertant virus was restored. We did measure a minor increase 

in infectivity and no increased entry for the intermediate revertant (Figure 2D and E), but the replication 

advantage is obvious (Figure 2A and B). The combined results indicate that a two-step evolution process 

took place upon removal of the V4 base disulphide bond, and both reversions at and near residue 418 

contribute to the final revertant phenotype.

†  Van Anken, E., Sanders, R.W., Liscaljet, M., de Kok, M., Tilleman, S., Holopainen, K., Dankers, M., Dierdorp, M., Busser, E., 

Berkhout, B. and Braakman, I., unpublished data
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The T415I and A418V reversions restore gp120 incorporation into virus particles  

To study the effect of the various substitutions on the expression of Env in cells and on the surface of 

virus particles, we analyzed the gp120 content of cells and viruses using a gp120 ELISA. C33A cells were 

transiently transfected with the respective molecular clones. Cells were harvested after 48 hr and the virus 

fraction was purified from the culture supernatant by ultracentrifugation, which allowed us not only to 

determine the gp120 content of viruses, but also how much gp120 is shed into the supernatant from the 
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Figure 1. Local reversion in HIV-1 gp120. A. Schematic of gp120 with the five conserved domains (C1-C5 and 
five variable domains (V1-V5). The location of the V4 base disulphide bond is indicated (grey sphere). Figure 
is adapted from (Leonard et al., 1990). Sites for N-linked glycosylation are given. B. Sequences of the V4 loop 
and flanking regions of wt, mutant and revertant viruses. No mutations were found outside this region. The 
original mutations are indicated with grey boxes, the reversion with black boxes. N-linked glycosylation sites 
are indicated by (^^^).
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cellular and viral surfaces. For the wild-type construct, ~14% of the total amount of gp120 was present 

in the cell fraction, ~21% in the virus fraction, and ~65% in the supernatant, indicating considerable 

shedding of the LAI gp120 molecules from cells and/or viruses (van Anken, 2003). The corresponding 
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Chapter 7 Figure 2

Figure 2. Restoration of viral infectivity and replication. A. 300x103 SupT1 T cells were infected with 20 ng 
CA-p24 and virus spread was measured for 20 days. B. 100x103 PBMCs were infected with 50 ng of the respective 
molecular clones and virus spread was monitored for 10 days. C. Virus stocks were produced by transfection of 
C33A cells and the amount of virus was quantitated using ELISA. D. The infectivities (TCID50) were measured 
by endpoint dilution. The exact TCID50 values of the respective mutants per μg CA-p24 are as follows: 162658 
(wt); 1900 (mutant); 2083 (intermediate revertant) and 36745 (revertant). E. 300x103 LuSIV cells were infected 
with 200 ng CA-p24 in the presence of 200 nM Saquinavir. Viral entry into cells was quantified by measuring 
luciferase activity 48 hours after infection.
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numbers for the viral CA-p24 protein are ~17% in cells, ~58% in the virus, and ~25% in the supernatant. 

We determined the gp120/CA-p24 ratio’s in the respective fractions for mutant and revertant viruses and 

compared these to the wt gp120/CA-p24 ratio’s that were arbitrarily set at 1 (Figure 3). The C385A/

C418A mutant accumulated gp120 in the cell fraction, but virtually no gp120 was incorporated into 

virus particles or shed into the medium (~4% gp120 incorporation into virions compared to wt). This 

result is consistent with the severe folding defect measured for this mutant (see below and (van Anken, 

2003)). The revertant significantly increased gp120 incorporation into virions (~51% of wt). Strikingly, 

the revertant did hardly shed gp120 in the culture medium, suggesting that it has stabilised the gp120-

gp41 interaction (~4% of wt shedding). 

The T415I and A418V reversions slightly improve gp120 folding  

The poor replication capacity of the mutant Env could be explained by its low folding efficiency in the 

ER (van Anken, 2003). Apparently too few correctly folded Env molecules could leave the ER and be 

incorporated onto virus particles. The increased incorporation into virus particles of the revertant Env 

suggests that the evolutionary repair of virus replication did occur through increased folding competence 

of the revertant. We therefore analyzed oxidative folding of the revertant gp120 in comparison with 

wt and mutant gp120 by pulse-chase analysis (Figure 4). wt gp120 progressed with time via a ‘smear’ 

of partially oxidised folding intermediates (ITs) to a fully oxidised native form (NT) in nonreduced 

gels (Figure 4, upper left panel). Concomitantly, the signal peptide was removed from gp120 (Reduced 

uncleaved (Ru) vs Reduced cleaved (Rc) with time (Figure 4, lower left panel), as reported previously 

(van Anken, 2003). In contrast, mutant gp120 failed to display detectable amounts of NT even after 4 hrs 

of chase (Figure 4, upper middle panel) and the signal peptide was cleaved only from a minority of mutant 

gp120 molecules (Figure 4, lower middle panel), as we had observed previously (van Anken, 2003). In case 

of the revertant a faint NT-like band appeared at later chase periods (Figure 4, upper right panel, indicated 

by an arrowhead). Also, the revertant displayed slightly more signal peptide cleavage in comparison to the 

mutant periods (Figure 3, lower right panel, indicated by an arrowhead). Altogether, this indicates that 

the revertant phenotype correlates with slightly increased folding competence of gp120, although folding 

kinetics are far from restored to wt levels.
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Figure 3. Restoration of Env incorporation into virions. gp120 content in cell, virus and supernatant fractions of 
virus producing cells. gp120 and CA-p24 contents were measured by ELISA. The gp120 amounts were standardised 
for CA-p24 input and the gp120 contents of mutants in the respective fractions are given as percentages of the wt 
gp120 contents (arbitrarily set at 1).



122

Chapter 7

The revertant gp120 on virions is antigenically similar to wt Env

It is clear that the two local amino acid substitutions in the revertant improved gp120 folding, expression 

and virus incorporation compared to the original mutant. However, the question remained how these 

mutations could compensate for the lack of a disulphide bond that is absolutely conserved amongst natural 

HIV-1 isolates. To investigate whether the global fold of revertant gp120 was distinct from that of wt 

gp120, we performed neutralisation experiments using the 2G12 monoclonal antibody (Figure 5). 2G12 

recognises a conformational carbohydrate epitope on the outer domain of gp120, and its epitope includes 

the carbohydrates that are attached to the asparagines at positions 332 and 392 in close proximity to the 

V4 base (Trkola et al., 1996; Sanders et al., 2002b; Scanlan et al., 2002; Calarese et al., 2003). In addition, the 

glycans attached to N295, N386 and N448 contribute directly or indirectly to the proper presentation 

of the 2G12 epitope. The glycan at position 386 is immediately adjacent to the 385-418 disulphide 

bond, and N392 is located only a few residues further downstream. Local structural alterations caused 

by the absence of the disulphide bond, with the additional amino acid changes causing the phenotypic 

reversion, could perturb the composition and/or orientation of these carbohydrates and thereby affect 

2G12 binding and neutralisation. The monoclonal antibody IgG1b12, which binds to an conformational 

epitope that overlaps with the CD4 binding site was also included in the experiment (Burton et al., 1994; 

Saphire et al., 2001). Neutralisation experiments show that both the wt and revertant virus are inhibited 

by 2G12 and IgG1b12 with comparable IC50 values (Figure 5). The mutant virus could not be analyzed in 

wt mutant revertant

Chapter 7 Figure 4

Figure 4. Partial restoration of gp120 folding. Hela cells were infected with VVT7 and transfected with plasmids 
encoding wt (left panels), mutant (middle panels) or revertant (right panels) gp120. Cells were pulse labelled for 
2 min and chased for the indicated times. Cells were lysed and gp120 proteins were immunoprecipitated from 
lysates. Immunoprecipitates were deglycosylated and analyzed by nonreducing (upper panels) or reducing (lower 
panels) 7.5% SDS PAGE. Folding intermediates (ITs), the native form (NT), the reduced uncleaved (Ru) and 
cleaved (Rc) forms of gp120 are indicated.
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this assay because it does not replicate. These results indicate that wt and revertant gp120 molecules that 

reach the virus particle are not dramatically different in their conformation. Therefore, the restoration of 

replication capacity can be attributed to an increased yield of correctly folded Env species.

Molecular dynamics simulations show no apparent effect on the global structure of gp120

To analyze in further detail the effects of the substitutions on gp120 structure and stability, we performed 

molecular dynamics simulations. Simulations performed at 300K revealed a remarkable stability of both 

wt and all variants of gp120 (results not shown). Increasing the temperature to 400K only enhanced 

local fluctuations, mainly in loop regions, e.g., the V1/V2, V4 and V5 loops, without significant changes in 

energy or secondary structure. Even the removal of all disulphide bonds by alanine substitution did not 

lead to global unfolding or loss of secondary or tertiary structure, suggesting that the disulphide bonds 

do not play an important role in maintaining gp120 structure once it is folded (simulations performed at 

elevated temperature (400K) for 10 ns; results not shown). A complete sampling of the unfolding pathway 

for such a large system is beyond the reach of the current computational power. Instead, we will focus on 

the further description of the equilibrium state of each variant. Note that the core sequences of HXB2, 

present in the crystal structures, and LAI, used in our virus and folding experiments, differ by six amino 

acids, which are all remote from the mutation sites of interest. Comparison of the first 5 ns simulations of 

the HXB2 and LAI model structures revealed no significant difference (results not shown). We therefore 

used the HXB2 structure as wt reference and introduced point mutations in silico in order to minimise 

changes of structural variables so that the calculation of pre-equilibrating period can be reduced.

 Atom positional root-mean-square deviation (RMSD) analysis of wt, mutant and revertant gp120s 

indicates that a 2 to 4 ns equilibration period is required for all backbone atoms to reach equilibrium. 

The four β-strands (β-13: 299-305, β-16/ β-17: 373-386 and β-19:412-422) around the mutation sites 

stabilised much faster with very little RMSD fluctuation (<0.1 nm). Therefore, to ensure the proper 
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Figure 5. Neutralisation of wt and revertant viruses by monoclonal antibodies IgG1b12 and 2G12. Viral entry 
(as assayed in Figure 2D) was measured in the presence of varying concentrations of IgG1b12 and 2G12. 
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sampling of the equilibrium states only the last 5 ns of all simulations were used for the analysis. A 

comparison of the three variants by RMSD matrix analysis also indicates that the overall backbone 

of the mutant core deviates slightly from wt and revertants with a maximum RMSD of 0.4 nm. The 

conformation of the four-stranded β-sheet that constitutes the region of interest in mutant and revertant 

gp120s is nevertheless very similar with only minor positional deviations from the wt (RMSD < 0.2 

nm) (Figure 6). The presence of the white-to-light grey off-diagonal regions indicates sampling of similar 

regions of conformational space amongst these variants. Thus, no significant differences in the global 

structures were seen.

The T415I and A418V reversions increase local backbone-backbone hydrogen bonding

Since no differences in the overall structures were seen, analysis at residual or atomic level may provide 

more insights into the effect of these mutations. The amino acids at positions 385, 415 and 418 are 

located in a four-stranded antiparallel β-sheet (Figure 7). Central in this β-sheet is strand β-19 with 

an unusual proline (P417) that causes the strand to bend. The N-terminal part of β-19 (β-19a) forms 

a double-stranded antiparallel β-sheet with β-13, but downstream of the unusual residue P417, β-19b 

interacts with β-17 to form a triple-stranded β-sheet also involving β-16. In the wt protein, C385 in β-17 
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Figure 6. Pair-wise backbone RMSD matrix of wt, mutant (C385A/C418A) and revertant (C385A C418V 
T415I) gp120. Each section represents a 10 ns simulation at 300K. Each dot represents a positional root-mean-
square deviation (RMSD) between two conformations taken from the respective trajectories indicated on the 
axes, and is coded in grey scale according to the scale shown on the right. The conformations are taken every 10 
ps. The upper left panel shows the backbone RMSD fitted on the backbone atoms (N, C and Cα) of the secondary 
structure elements of the starting structure as identified by DSSP (Kabsch and Sander, 1983). The lower right 
panel shows the backbone RMSD of the β-sheet that includes β-strands β-13 (residues 299-305), β-16 and �β-17 
(residues 373-386), and β-19 (residues 412-422), fitted on the backbone atoms (N, C and Cα) of these residues. 
An equilibrated conformational sampling period is found when an off-diagonal region shows a continuous low 
RMSD values (white to light grey).
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and C418 in β-19 are covalently linked by the disulphide bond, conferring stability to the β-sheet that 

comprises the V4 base region. Inspection of the β-sheet propensities of the side chains of the revertant 

amino acids, revealed that both T415I and A418V increase the β-sheet propensity (Figure 7B) (Chou and 

Fasman, 1974; Levitt, 1978). The overall β-sheet propensity of β-19 increases from 1.11 for the mutant 

to 1.14 and 1.21 for the intermediate and final revertants, compared to 1.09 for the wt β-19, although 

it should be noted that the contribution of a disulphide bond is not taken into account for the wt β-19.  

Interestingly, the two reversions are on either side of the β-sheet destabilising residue P417.
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Figure 7. Hydrogen bond network in the vicinity of mutation sites. A. Schematic representation of the β-sheet 
fold of β-strands β-13, β-16, β-17 and β-19. The interstrand hydrogen bonds residues 385, 415 and 418 are 
indicated (see also Figure 7D and Table 1). B. β-sheet propensities of residues in β-19 including these of mutant 
and revertant residues, according to Levitt (1978). The composite β-sheet propensity (Pβ) of β-19 is also given 
Chou and Fasman (1974). C. Ribbon representation of the starting structure of core gp120 for simulation studies. 
The border between the inner and outer domains of gp120 is indicated with a dashed line. Mutation sites of 
C385, C418 and T415 are indicated in black, dark- and light grey spheres. The missing V4 loop is modelled by 
SWISS-MODEL. Detailed structure of the boxed region is shown on the right with the observed backbone-
backbone hydrogen bonds around the mutation sites. Inter- and intrastrand backbone-backbone hydrogen bonds 
are displayed in light- and dark grey dashed-lines, respectively. Alphabetic labels correspond to the identities 
listed in Table 1. Glycan structure of the N-glycosylation at N386 is taken and modified from PDB entry 1H3U 
(Krapp et al., 2003).
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 The formation of interresidue backbone hydrogen bonds is the determinant for secondary structure 

(Kabsch and Sander, 1983) and is therefore important for protein folding. A loss or a reduction in the 

presence of specific hydrogen bonds can lead to a deficiency in protein folding. A detailed molecular 

dynamics investigation into the hydrogen bond network in the vicinity of the mutation sites revealed 

an intriguing compensation effect. Four interstrand hydrogen bonds that are stable in wt gp120, are lost 

in the mutant, but are partially or fully restored in revertant (hydrogen bonds B, C, D and H in Table 1 

and fig. 7C). In contrast, hydrogen bonds E and I, which are virtually absent in the wt, but present in the 

mutant are destabilised in the revertant. These particular hydrogen bonds may have a disadvantageous 

effect on the topology of the β-sheet. Some hydrogen donors and acceptors switch from interstrand 

bonding to intrastrand bonding (for example see hydrogen bond I and J in Table 1 and fig. 7C). Finally, 

in line with the experimental data, comparison of the overall average occurrence of the eleven hydrogen 

bonds that are in close proximity to the mutation sites indicates that wt gives the highest stability to this 

particular hydrogen bond network (66.2%), with partial restoration in revertant (52.5%) compared to the 

mutant (45.8%). The restoration of hydrogen bonding in the revertant is even more significant when one 

considers the absence of the disulphide bond that fixes these interactions in the wt protein. 

The T415I and A418V reversions improve local interstrand side chain packing 

In addition to the backbone hydrogen bonding that defines the secondary structure of protein folds, the 

side chain packing is also an important stabilising factor. The electrostatic interactions amongst side chains 

provide a long range attracting gradient and therefore might be crucial for protein folding during the 

search of the native fold. An overlay of snapshots of selected hydrophilic residues around the mutation site 

during molecular dynamics simulations shows a remarkable well-defined side chain packing in the wt 

Table 1. Statistics of hydrogen bond occurrence in the vicinity of the mutation and reversion sites.

Backbone-backbone 
hydrogen bond

Hydrogen bond occurrence (%) during 5-10 ns
wt mutant revertant

A C385e(O)-H374(N) 86.8 90.2 99.6
B C385e(N)-H374(O) 97.4 0.0 34.1

C Y384(O)-R419(N) 90.6 10.2 85.6

Da C418e(N)-G329(O) 94.0 0.2 34.3

Eb P417(O)-N386(N) 6.6 94.4 35.5

Fd C331(O)-L416(N) 14.4 0.2 0.2
G C331(N)-L416(N) 92.6 98.0 86.2

Hc I414(O)-I333(N) 61.9 0.2 97.6
I I414(N)-I333(O) 0.2 96.2 4.4

Jd I414(N)-N412(O) 96.4 17.0 0.2
Kc,d I414(O)-L416(N) 86.8 97.2 99.4

Overall average 66.2 45.8 52.5

a G329 is the first linker residue for the truncated V3 loop 
b N-glycosylation at N386 was not taken into account during simulation 
c hydrogen bonds that are located directly proximal to residue 415 (see figure 7) 
d intrastrand backbone hydrogen bonds. A hydrogen bond is considered to exist when the donor-hydrogen-acceptor 

angle is larger than 135º and the donor-acceptor distance is smaller than 0.25 nm.
e Cysteines in the wt protein, but not in the mutant or in revertant proteins
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protein, except for R419, which exhibits a main cluster close to N386 with the remaining being poorly 

defined (Figure 8). Using the same criteria as for the backbone hydrogen bond network, interstrand side 

chain hydrogen bond are found for S375(Oγ)-Y384(Oη) (29.7% in 5-10 ns trajectory) and N386(Nδ2)-

R419(Nη) (25.0%) despite the intrinsic flexibility of R419. Note that the side chain hydrogen bonding 

geometry of S375(Oγ)-S375(Hγ)-Y384(Oη) is surprisingly well-defined despite the intrinsic mobility of 

serine and tyrosine side chains. The geometry of S375 and Y384 becomes clearly disordered in the mutant 

and no cluster can be found in R419 that is in contact with N386. The overall geometry of the side chain 

organisation is slightly different and, as a consequence, both side chain hydrogen bonds are absent in the 

mutant. The side chain packing is substantially restored in the revertant, particularly for S375 and Y384. 

However, the gain in structural integrity is not sufficient to restore the hydrogen bonds that are present 

in the wt protein. Nevertheless, these results illustrate that the reversions contribute to an improvement 

of local side chain packing. 

 The analysis of backbone-backbone and side chain interactions illustrate that the effects of the 

mutations and reversions at positions 385, 415 and 418 are regional. Besides local effects on the interactions 

between strands β-17 and β-19 that are normally linked by the disulphide bond, there are also effects on 

interactions between β-17 and β-16 (e.g. S375-Y384; H374-C385A) and between β-19 and β-13 (e.g. 

I333-I414; L416-C331; G329-C418A). Thus, the mutations and reversions affect all four strands of the 

antiparallel β-sheet. 
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Figure 8. Snapshots of selected hydrophilic residues around the mutation sites, that can potentially form 
interstrand hydrogen bonds. The structures are sampled every 100 ps during the 5-10 ns trajectories. All structures 
are fitted on the backbone atoms of these residues. Oxygen, nitrogen and carbon atoms are coloured in black, 

dark- and light grey, respectively. 
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Discussion

We describe an HIV-1 gp120 variant that emerged through virus evolution and that is functional despite 

the lack of the disulphide bond at the base of the V4 domain, which is otherwise required for virus 

replication and gp120 activity. Virological, biochemical and computational analyses suggest that virus 

replication is restored through improvement of a local β-sheet fold. This study provides evidence that 

a critically important disulphide bond can be functionally replaced by an alternative protein structure 

motif. It also provides evidence for the proposal that local protein stability is an important factor in escape 

from ER quality control during protein biosynthesis.

 Our data are surprisingly well in accordance with both theoretical β-sheet propensities (Figure 7B) 

(Chou and Fasman, 1974; Levitt, 1978) and β-sheet preferences as established in small model proteins 

(Kim and Berg, 1993; Minor and Kim, 1994a; Smith et al., 1994). The first reversion (T415I) slightly 

increases the β-sheet preference and viral replication is slightly improved. The second A418V reversion 

has a considerable effect on both β-sheet preference and viral replication. The generalised rules on β-

sheet preference apply to β-19 since it is a central strand and not an edge strand (Minor and Kim, 1994b) 

(Figure 7). The counterbalancing effect of the reversions on the presence of the β-sheet disfavouring 

P417 is presumably only possible because β-19 is not an edge strand (Santiveri et al., 2003). Thus, β-sheet 

preference is a major determinant in directing protein folding and protein stability and our data point 

out that the simple rules deduced from experiments with small model proteins also hold for the intricate 

folding of a complicated glycoprotein such as gp120 in living cells.

 The increase of hydrogen bonding might in part be a result of the increase of van der Waals 

interactions where T415I is flanked by I414 and L416 with several hydrophobic residues in the opposite 

strand, β-13. A recent study suggested that a hydrophobic core is the stabilising factor for a �β-stranded 

Betanova peptide (Colombo et al., 2002). Kumagai and co-workers also showed that threonine-to-

isoleucine mutation at position 29 does not change the structure of α-lactalbumin but has a significant 

positive effect on its thermostability due to the increase of hydrophobic side chain packing and hydrogen 

bonding (Horii et al., 2001). We also did not find significant overall structural perturbation when mutations 

were introduced in silico in the native state of gp120. 

 The local restoration of a folding defect of a disulphide bond mutant provides new insights on the 

relevance of disulphide bonds for folding in the ER and on the discrimination between immature and 

correctly folded client proteins by ER quality control. The well-characterised calnexin/calreticulin cycle 

plays a role in oxidative folding in the ER and ER quality control of virtually all glycoproteins (Trombetta 

and Helenius, 1998; Ellgaard et al., 1999; Ellgaard and Helenius, 2003). Calnexin and calreticulin are lectins 

that recognise monoglucosylated carbohydrate moieties on glycoproteins. They associate with Erp57, an 

ER resident thiol-oxidoreductase that forms transient disulphide bonds with glycoproteins bound to 

calnexin or calreticulin and mediates isomerisation of disulphide bonds (Molinari and Helenius, 1999). 

Glucosidase II hydrolyses glucose from monoglucosylated carbohydrates on folding glycoproteins, which 

results in glycoprotein release from calnexin and calreticulin. An other important player in the calnexin/

calreticulin cycle and in ER quality control is UDP-glucose:glycoprotein glucosyltransferase (UGGT), 

which recognises improperly folded domains on folding glycoproteins and reglucosylates carbohydrates 

in the misfolded region so that it can reassociate with calnexin or calreticulin for another attempt to 

properly fold the domain. The determinants for recognition of improperly folded glycoprotein domains 
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by UGGT are not completely clear (Sousa and Parodi, 1995; Sousa and Parodi, 1996; Fernandez et al., 

1998; Trombetta and Helenius, 1998; Ritter and Helenius, 2000; Caramelo et al., 2003). UGGT recognises 

only the improperly folded parts of the protein, and it does not recognise random coil. Although the 

carbohydrate is important for tagging the protein to be recognised by calnexin or calreticulin, it is 

not involved in the recognition of misfolding. It has been suggested that UGGT recognises exposed 

hydrophobic patches, instable domains or mobile groups.

 In gp120 lacking the 385/418 disulphide bond, local strengthening of non-covalent interactions 

stabilises a local β-sheet fold. The reversions do not alter the local β-sheet structure, but increase the 

stability of the β-sheet and thereby the correct fold or a quasi-correct fold. UGGT does not recognise the 

protein anymore as being improperly folded and the protein is allowed to leave the ER. Although other 

molecular chaperones, such as BiP, play a role in the recognition of misfolding, no BiP binding sites were 

detected in the V4 region (Knarr et al., 1999).

 When UGGT senses misfolding, it tags the protein for reentering the calnexin/calreticulin pathway 

by reglucosylation of a local carbohydrate. The obvious candidate for marking the misfolded V4 base 

region is the glycan attached to N386, immediately neighboring the 385/418 disulphide bond in the wt 

protein. We have observed an alternative escape route in a similar evolution experiment with a C418A 

single mutant virus. In that particular case, the increase in viral replication and escape from ER quality 

control involved the elimination of the 386 glycan (results not shown). Thus, these studies may represent 

two different pathways for ER quality control escape: increase of local stability of protein structure or 

elimination of a nearby carbohydrate.

 The number of revertant gp120 molecules that reached a native state was still modest compared 

to wt. Since only native gp120 can exit the ER, also limited amounts of revertant Env could reach the 

cell surface to be incorporated into virions. Nevertheless, incorporation reached levels that were close to 

wt. Apparently, the few Env molecules that did reach the cell surface were sufficient to produce virions 

with a normal Env content. This suggests that other factors are limiting in the intricate virion assembly 

process. This also suggests that in wt only a fraction of Env is incorporated. We note that the increase in 

replication capacity could be correlated directly with an increase of gp120 incorporation into virions, 

suggesting that the reversions cause the escape from ER quality control, but that they do not contribute 

to improvement of subsequent Env functions per se (e.g. (co)receptor binding, membrane fusion).

This study indicates that the 385-418 disulphide bond is not specifically required for gp120 folding, 

i.e. it can be compensated for by alternative means of protein stabilisation. There is a precedent for 

this phenomenon. Single chain antibody fragments (scFv) could be generated by molecular evolution, 

in which disulphide bonds were replaced by, for example, a salt bridge (Proba et al., 1998). We have 

observed another escape route in a C418A single mutant, also lacking the V4 base. In addition, we 

have generated various escape variants from HIV-1 lacking the 54-74 disulphide bond in the C1 

region of gp120 (Sanders, 2004)*. Restoration of the original disulphide bonds was never seen in 

these escape variants. Taken together with our earlier studies in which we showed that five out of 

ten disulphide bonds were not essential for ER folding, we can now conclude that seven out of ten 

disulphide bonds are not absolutely and specifically required for oxidative folding of gp120. Five 

* Sanders, R.W., Busser, E., Dankers, M.M. Lu, M. and Berkhout, B., unpublished data
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disulphide bonds can be replaced without penalty on folding, two can be replaced by other stabilising 

mechanisms. Whether the formation of specific native or non-native disulphide bonds plays a role 

in directing protein folding is unclear (Weissman and Kim, 1992; Cemazar et al., 2003), but if such 

a mechanism is required for oxidative folding of Env, our work clearly indicates that most of the 

cysteines in Env are not involved. An exception might be formed by the cysteines in the C2-V3 

region, which are absolutely required for folding. This region might act as an initiator or director for 

Env folding.

 Of note is that the exemplary short term evolution experiments that we performed never resulted 

in an Env that folded as efficiently as wt and a virus that replicated at wt levels. It would be of interest 

to prolong the evolution of the revertant virus presented here, to see whether it can in fact reach wt 

levels of folding without the 385-418 disulphide bond. It is possible that, although not essential for 

Env folding per se, it increases the chances of efficient folding.

 The question remains why the V4 base disulphide bond is absolutely conserved in vivo. One 

reason could be that the best alternative for this disulphide bond, such as a stabilised β-sheet, may 

never completely compensate for the lack of the disulphide bond and restore wt levels of replication. 

Prolonged evolution experiments with the revertant virus described here, might also answer this 

question. The loss of the disulphide bond may also be prevented because the virus would have to 

go through an intermediate with a free cysteine, which is usually disadvantageous because it may 

interfere with the formation of the correct disulphide bonds (van Anken, 2003). Alternatively, it 

is possible that this disulphide bond has a more distinct function in vivo, for example in immune 

evasion. It may play a role in positioning of the V4 domain so that it can optimally exert its function 

as antigenic shield, or it could be involved in maintaining an optimally loose gp120-gp41, resulting 

in shedding and the presence of immunological decoy gp120. This study underlines the evolutionary 

potential of HIV-1 not only because of its high mutation rate but also because of the structural 

plasticity of its proteins.
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Summary

Antibiotic-resistant super-bugs and HIV-caused AIDS have imposed major challenges to modern 

medicine. Choices for infectious disease treatments are gradually depleting because antibiotics are often 

mis- or overused. A vaccine that can effectively inhibit HIV-1 infection, which causes tens of millions 

of AIDS-related casualties annually, is thus far unavailable. Scientific efforts are devoted to tackle these 

life-threatening diseases from various angles. In this thesis, we choose to approach the problems from a 

molecular point of view using NMR spectroscopy and MD simulations.

 Most vital cellular functions are achieved by a structured ensemble of biomolecules, i.e., a biomolecular 

complex. The assembly process of such complexes requires specific recognition, conferred by the physical 

and chemical complementarity of the counterparts, which is dictated by the 3D structures. In the first 

part of Chapter 1, current progress in structural studies on biomolecules is briefly reviewed and potential 

pharmaceutical and biomedical applications are discussed. The growing number of 3D structures of 

biomolecular complexes enables systematic analysis of the different interaction modes and of the structural 

motifs that are utilised for specific recognition. The second and third parts then focus on the two main 

themes of this thesis: lantibiotics-lipid II and HIV-1 gp120-CD4 interactions, respectively. The common 

feature of these two systems is that both lipid II and CD4 are membrane associated receptor molecules.

 Nisin is a peptide antibiotic, which kills bacteria by membrane pore formation facilitated by binding 

to the bacterial cell wall precursor lipid II. Chapter 2 describes the mapping of the lipid II binding site 

on nisin by means of NMR titration experiments using lipid II-containing SDS micelles. Under these 

NMR conditions nisin binds to lipid II in a 1:1 stoichiometry. Furthermore, the strong binding affinity 

between nisin and lipid II is confirmed by the slow exchange NMR titration profile. Formation of the 

nisin/lipid II complex induces large chemical shift perturbations localised in the N-terminal part of 

nisin. In conjunction with the analysis of the chemical shift temperature dependency, a detailed picture 

emerges: only the N-terminal part of nisin, primarily the first two rings A and B, is involved in lipid 

II recognition. The hinge region and the C-terminal part of nisin are responsible for the subsequent 

membrane insertion and the assembly process leading to pore formation, as derived from fluorescence 

spectroscopy data and other biophysical methods. 

 Structure elucidation of this complex, however, was prohibited by formation of large aggregates of 

the interacting molecules within several days. The increase in molecular size and structural heterogeneity 

caused strong line broadening in the NMR spectra. This obstacle was alleviated by using a short prenyl 

chain variant of lipid II (3LII) and a stable and soluble nisin/3LII complex could be obtained (Chapter 

3). Despite differences in sample conditions, the chemical shift perturbations observed in nisin upon lipid 

II binding are qualitatively the same in DMSO as those observed in SDS micelles, indicating a specific and  

unique mode of interaction between nisin and lipid II. Moreover, the improved sample condition enabled 

the detection of intermolecular hydrogen bonds from the measurement of cross hydrogen bond amide to 

phosphate scalar coupling. Based on the solution structure of the nisin/3LII complex and 3D homology 

modelling of several other lipid II-binding lantibiotics a pyrophosphate cage model is proposed. This model 

explains the residue conservation amongst lipid II-binding lantibiotics. This first high-resolution structure 

of a lantibiotic in complex with lipid II enables us to rationalise the different binding modes amongst 

various lipid II binding antibiotics, including vancomycin and ramoplanin.
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 Mersacidin is an example of type B lantibiotics and it interferes with the bacterial cell wall synthesis 

by binding to lipid II. Chapter 4 describes conformational changes of mersacidin monitored by NMR 

in relation with non-specific DPC micelles binding and specific lipid II binding. Because of the weak 

binding between mersacidin and lipid II, as observed by the fast exchange profile in the NMR titration 

experiment, the structural characterisation was limited to describing the effect of the environment on 

the 3D structure of mersacidin. An important result is that the observed chemical shift perturbations are 

predominantly governed by conformational changes in the hinge region of mersacidin, which in turn 

modulate the distribution of surface charges. The observed modulation of charge accessibility has led 

to the conclusion that electrostatic interactions play a key role in mersacidin-lipid II recognition. This 

hypothesis has been confirmed later by mutagenesis studies.

 Dynamics is essential for the viral entry of HIV-1 into a host cell. Recognition of the T-cell receptor 

CD4 by the HIV-1 envelope glycoprotein gp120 triggers a series of conformational rearrangements, 

which are required for the fusion of the viral and host cell membranes. Chapter 5 describes MD 

simulations of HIV-1 gp120, CD4 and their complex in order to assess the structural and dynamical 

differences between free and bound states. Concerted motions upon CD4 binding are identified in 

gp120 not only at the binding interface but also at the putative gp120 trimerisation interface. Analysis 

of the modes of interactions between gp120 and CD4 allow us to introduce the concept of a geometrical 

binding funnel in order to describe the observed spatial distribution of interactions. The specificity of the 

monitored interactions is anti-correlated with the dynamics of the residues involved. The translocation of 

the V3 loop upon CD4 binding generates an electrostatic attraction gradient, which may contribute to 

the subsequent co-receptor binding.

 The analysis of the MD simulations continues in Chapter 6 where calculations of configurational 

entropy are used in order to assess changes upon complexation in various entropy components of gp120 

and CD4. We exploit the possibility to compute the configurational entropy of subsets of atoms in the 

system by dissecting contributions originating from different modes of interactions and various segments 

of the molecules. In addition, a combined trajectory analysis is introduced from which new information 

can be extracted by appending two separate simulation trajectories. Changes in entropy after combination 

can provide new insight regarding the extent of overlap of the separate trajectories.

 Finally, Chapter 7 describes results of MD simulations that were performed to complement various 

biochemical assays and rationalise the observed restoration of folding efficiency and thus viral infectivity 

of a revertant gp120. It has been demonstrated that removal of a disulphide bond at the base of the V4 

domain of gp120 by cysteine to alanine mutations can disrupt HIV-1’s viral replication and gp120 activity. 

Through viral evolution, however, a revived revertant gp120 was identified in which two β-branched 

amino acids were introduced by spontaneous mutation at and near the mutated disulphide bond site. 

Comparison of MD simulations of the functional wild-type gp120, the dysfunctional mutant and the 

partially functional revertant suggests that a localised increase in stability of the interstrand hydrogen 

bond network observed in the revertant with respect to the mutant is very likely to be the cause of 

the restoration of function. An increase in local β-sheet stability/propensity might facilitate gp120 to 

overcome a currently unknown threshold in the ER folding quality control machinery. The experimental 

data obtained via cell biological folding assays and virological infectivity assays are in qualitative agreement 

with the computational data, in spite of the very different time scales that are probed by each technique, 
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from picoseconds to nanoseconds for MD simulations, from minutes to hours for folding assays and from 

days to weeks for infectivity and replication assays.
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Samenvatting

Resistente bacteriestammen en AIDS, veroorzaakt door HIV besmetting, leggen een enorme druk op 

de moderne geneeskunde. De mogelijkheden om infecties te bestrijden worden  steeds kleiner omdat 

antibiotica te vaak of verkeerd worden gebruikt. Een vaccin dat effectief een infectie met HIV-1 zou 

kunnen voorkomen is tot op heden niet beschikbaar. Hierdoor sterven tientallen miljoenen mensen 

wereldwijd aan AIDS-gerelateerde aandoeningen. Wetenschappers werken vanuit verschillende 

invalshoeken om deze levensbedreigende verschijnselen een halt toe te roepen. In dit proefschrift hebben 

we gekozen om naar bovenstaande problemen te kijken vanuit een moleculaire oogpunt met behulp van 

NMR-spectroscopie en MD-simulaties.

 De meeste vitale celfuncties worden gecontroleerd door een gestructureerd ensemble van 

biomoleculen, het zogenoemde biomoleculaire complex. Het proces van assemblage berust op specifieke 

herkenning, beschreven door de zowel fysische als chemische complementariteit, welke opgesloten ligt 

in de driedimensionale  (3D) structuur van de partners. In het eerste gedeelte van Hoofdstuk 1 wordt 

een kort overzicht gegeven van de huidige stand van zaken in structuurstudies van biomoleculen en 

worden hun potentiële farmaceutische en biomedische toepassingen besproken. Het groeiend aantal 3D 

structuren van biomoleculaire complexen maakt een systematische analyse mogelijk van de verschillende 

interactie vormen en van de structurele motieven die gebruikt worden voor specifieke herkenning. 

Het tweede en derde gedeelte van Hoofdstuk 1 richt zich op de twee voornaamste thema’s van dit 

proefschrift: lantibiotica-lipide II en HIV-1 gp120-CD4 interacties. Het gemeenschappelijke kenmerk 

van deze twee systemen is dat zowel lipide II als CD4 membraangebonden receptormoleculen zijn.

 Nisine is een antibiotisch peptide, dat bacteriën doodt door poriën te vormen in de membraan. 

Het wordt daarbij geholpen door een precursor van de bacteriële celwandsynthese, lipide II. Hoofdstuk 

2 brengt die gedeelten van nisine in kaart waar lipide II aan bindt. Deze informatie is verkregen door 

middel van NMR-titratie-experimenten met SDS-micellen die lipide II bevatten. Nisine bindt lipide 

II in een 1:1 stoichiometrie onder deze NMR-condities. De sterke bindingsaffiniteit tussen nisine en 

lipide II wordt bevestigd door het langzame uitwisselingspatroon in de NMR-titratie-experimenten . De 

vorming van het nisine-lipide II complex zorgt voor grote veranderingen in de chemishe verschuivingen 

in het N-terminale gedeelte van nisine, in overeenkomst met de analyse van de temperatuursafhankelijkhe

id van de chemishe verschuivingen. Dit leidt tot het volgende gedetailleerd beeld: slechts het N-terminale 

gedeelte van nisine, voornamelijk de eerste twee ringen A en B, is betrokken bij de herkenning van lipide 

II. Fluorescentie-spectroscopie en andere biofysische methoden hebben uitgewezen dat het schanierpunt 

en het C-terminale gedeelte van nisine belangrijk zijn voor de daaropvolgende membraaninsertie en 

complexvorming die leiden tot het ontstaan van gaten in de membraan.

 Structuuropheldering van dit complex bleek echter niet mogelijk omdat binnen een aantal dagen 

de moleculen samenklonterden tot aggregaten. De toenemende grootte van het complex en de 

verscheidenheid aan structuren in het monster veroorzaakten sterke lijnverbreding in de NMR-spectra. 

Dit probleem werd opgelost door een kortere variant van lipide II (een prenyl keten; 3LII) te gebruiken 

waardoor een stabiel en oplosbaar nisine-3LII complex verkregen werd in DMSO (Hoofdstuk 3). 

Ondanks de verschillende samenstellingen van de monsters werd ook bij de titratie van dit complex 

in DMSO kwalitatief dezelfde veranderingen in de chemishe verschuivingen waargenomen als in de 

SDS micellen, hetgeen wijst op een unieke en specifieke interactie tussen nisine en lipide II. Bovendien 
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konden door de verbeterde condities, intermoleculaire waterstofbruggen gedetecteerd worden door de 

scalaire waterstofbrug-kruiskoppeling van de amide naar de fosfaatgroep te meten. Op basis van de 3D 

structuur van het nisine-3LII complex en 3D homologie-modellering van verschillende andere lipide 

II-bindende lantibiotica stellen wij een pyrofosfaatkooimodel voor. Dit model verklaart het evolutionaire 

behoud van verscheidene residuen in lipide II-bindende lantibiotica. Deze eerste hogeresolutiestructuur 

van een lantibioticum-lipide II complex maakt het mogelijk het bindingspatroon van verschillende 

andere lipid-II bindende antibiotica, waaronder vancomycine en ramoplanine, te rationalizeren.

 Mersacidine is een voorbeeld van een type B lantibioticum. Het verstoort de bacteriële celwandsynthese 

door aan lipide II te binden. Hoofdstuk 4 beschrijft de conformationele veranderingen van mersacidine 

door a-specifieke binding aan DPC micellen en specifieke lipide II binding, bestudeerd met behulp 

van NMR-spectroscopie. Door de zwakke binding van mersacidine aan lipide II, zoals waargenomen 

door het snelle uitwisselingspatroon in de NMR-titratie-experimenten, blijft de karakterisering van de 

structuur van het complex beperkt tot het beschrijven van het effect van de directe omgeving op de 3D 

structuur van mersacidine. Een belangrijk resultaat is dat de veranderingen in de chemishe verschuivingen 

voornamelijk het gevolg zijn van conformationele veranderingen in een onverwacht scharnierpunt van 

mersacidine, en daarbij de ladingsverdeling aan het oppervlak moduleert. Deze modulatie in beschikbare 

lading heeft tot de conclusie geleid dat elektrostatische interacties een sleutelrol vervullen voor de 

herkenning van mersacidine en lipide II. Deze hypothese is later bevestigd door mutagenese-onderzoek.

 Dynamica speelt een essentiële rol bij het viraal binnen dringen van HIV-1 in de gastcel. De 

herkenning van een T-cel receptor CD4 door het HIV-1 envelop glyco-eiwit gp120 zet een cascade 

van conformationele veranderingen in gang, welke nodig zijn voor de samensmelting van de virale- en 

gastcelmembranen. Hoofdstuk 5 beschrijft MD simulaties van HIV-1 gp120, CD4 en hun complex 

zodat de structurele en dynamische verschillen tussen de vrije en gebonden vormen bestudeerd kunnen 

worden. Samenhangende bewegingen door binding van CD4 aan gp120 zijn niet alleen waargenomen 

aan het bindingsoppervlak maar ook aan die kant van gp120 waarvan aangenomen wordt dat deze 

betrokken is bij trimerisatie. De analyse van de interacties tussen gp120 en CD4 bracht ons tot het 

concept van de geometrische bindingstrechter om de waargenomen ruimtelijke, structurele verdeling van 

interacties te kunnen beschrijven. De specificiteit van de waargenomen interacties is niet gecorreleerd 

aan de dynamiek van de betrokken residuen. De verplaatsing van de V3-lus als gevolg van de binding 

aan CD4 zorgt voor een elektrostatische aantrekkingsgradiënt, welke zou kunnen bijdragen aan de 

subsequente binding van de co-receptor.

 De analyse van de MD-simulaties wordt voortgezet in Hoofdstuk 6. Hier worden berekeningen aan 

de configuratie-entropie gebruikt om veranderingen in de verschillende entropiecomponenten van gp120 

en CD4 vast te leggen wanneer zij een complex vormen. Er is gebruik gemaakt van de mogelijkheid 

om de configuratie-entropie van atoom-subgroepen in het systeem te berekenen door de bijdragen te 

ontleden die afkomstig zijn van verschillende interactievormen en van verschillende segmenten van 

de moleculen. Bovendien hebben we een gecombineerde trajectorie-analyse geïntroduceerd waaruit 

nieuwe informatie kan worden onttrokken door twee aparte trajectoriën samen te voegen. Verschillen in 

de entropie na de samenvoeging kunnen nieuwe inzichten geven in de mate van overeenstemming van 

de afzonderlijke trajectoriën. 

 Tenslotte worden in Hoofdstuk 7 MD-simulaties beschreven die uitgevoerd werden om verscheidene 

biochemische studies aan te vullen en om het waargenomen herstel in de vouwingseffectiviteit en dus 
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de virale besmettelijkheid van een functionele variant van gp120 te verklaren. Er is aangetoond dat 

verwijdering van de disulfide binding aan de basis van het V4-domein van gp120, door een cysteïne te 

muteren naar een alanine, leidt tot verhindering van de virale replicatie van HIV-1 en tot afname van de 

activiteit van gp120. Echter, door virale evolutie is een functionele variant van gp120 ontdekt met twee 

beta-vertakte aminozuren op en dichtbij de plaats van de gemuteerde disulfide-binding. Vergelijking 

van MD-simulaties van het functionele wildtype gp120, een niet-functionele mutant en de gedeeltelijk 

functionele variant suggereert dat een gelocaliseerde toename in stabiliteit van het waterstofbrugnetwerk 

tussen de beta-strengen in de functionele variant ten opzichte van de mutant hoogstwaarschijnlijk de 

oorzaak van het herstel in activiteit is. Een toename in stabiliteit of vormingswaarschijnlijkheid van 

een lokale beta-sheet zou gp120 in staat kunnen stellen een tot op heden onbekende drempel in het 

ER-vouwingscontroleapparaat te overkomen. De experimentele data die verkregen zijn op basis van 

biologische vouwingsstudies aan de cel en virale infectiestudies geven kwalitatief hetzelfde beeld als de in 

silico-data, ondanks de zeer verschillende tijdschalen die bestudeerd kunnen worden met de verschillende 

methoden; van pico- tot nanoseconden bij MD-simulaties, tot minuten/uren bij vouwingsstudies en zelfs 

dagen tot weken bij infectie- en replicatiestudies.
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