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CHAPTER 1

INTRODUCTION

In this introductory chapter, we will start with an overviewof the research described in
this thesis. After that follows an introduction into X-ray spectroscopy.

1.1 Thesis overview

This thesis deals with the development and physical understanding of X-ray microcalori-
meters with a high energy resolving power based on transition edge sensor thermometers.
An X-ray microcalorimeter of this type is a very small device(∼ 300 µm across) that
measures the energy of a single X-ray photon very accurately(∼ 0.1%). A picture of such
a device is shown in figure 1.1. It consists of an absorber and athermometer. The absorber
converts an absorbed X-ray photon into heat. The temperature increase is measured by
the thermometer. The thermometer is a superconducting-to-normal phase transition edge
sensor (TES). This sensor uses the very steep temperature dependence of the resistance
of a superconductor in its transition from superconductingto normal behaviour to act as a
sensitive temperature to resistance tranducer. The sensoris operated with a constant bias
voltage and the current is read out using a very sensitiveSQUID amplifier. The current
signal from the thermometer after absorption of a photon is apulse as plotted in figure 1.2
(left). The area of this pulse is a measure of the energy of thephoton. Through filtering of
the signal, this energy is determined as accurately as possible from the pulse. When this
is done for a number of pulses, the energies can be sorted intoa histogram. In this way,
an energy spectrum of the radiation is created, as shown in figure 1.2 (right). Thus, the
device can be used as a spectrometer.

The point of this thesis is to show that these devices can attain an energy resolution of
a level that qualifies them for use in an X-ray spectroscopic instrument, superior to many
other energy dispersive techniques. Subsequently, we wishto understand this resolution
and investigate what limits it. In order to do so, we start by establishing the theory behind
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500   mµ

Figure 1.1: Photograph of an X-ray microcalorimeter with a magnification of 1600×.
The vertical lines are electrical wiring. The dark square inthe centre is the absorber
which sits on top of the thermometer. The device is supportedby a membrane (the large
square).
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Figure 1.2: Left : Electrical signal from an X-ray microcalorimeter after the absorption of
a photon. The area of the pulse is a measure of the energy of thephoton.Right: Histogram
of a large number of pulse integrals, calibrated to the energy of the Mn Kα line at 5.9 keV.
The inset shows an enlargement of this line, showing that theline components Kα1 and
Kα2 are resolved. The smooth curve is a fit to the data.
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the transition edge sensor. This includes a model of the noise generated in the device
and a performance prediction based on this model. Then, we investigate what dictates the
design parameters of a TES-based X-ray microcalorimeter. The specifications of a real
application, the NFI2 instrument on theXEUS satellite, are used to design such a sensor.
After that, we briefly discuss what is involved in fabricating and testing this sensor, and
the test results of a few samples are described.

After the functionality of this technique has been established, the focus shifts to un-
derstanding the performance of the device. An important part of this thesis is devoted to
the question of how the device geometry influences the internal thermal fluctuation noise.
This noise component is the result of random movements of energy in the sensor. Using
experiments and computer simulations, we examine how this noise can be manipulated.
Then, a more accurate model of the sensor responsivity is developed to explain a dis-
crepancy in the predicted and the measured energy resolution. Finally, we have a look at
the challenges involved in building a space-borne instrument based on the spectroscopic
technique described here.

In the appendices, an overview is presented of all the devices discussed in the text.
Furthermore, some topics are treated there that do not pertain to new scientific work, but
may be of interest to people involved in detector research: adescription is given of the
signal processing that is involved in creating the spectra,and the details of a numerical
noise simulation are presented. But first, in the remainder of this chapter, we will put the
motivation for this work in an appropiate context and assessthe potential benefits of a
new X-ray spectrometer.

1.2 X-ray spectroscopy

This section deals with the subject of X-ray spectroscopy, since the motivation for the
work described in this thesis is the development of an X-ray spectrometer. First, we will
discuss how X-ray are produced. For the applications of X-ray spectroscopy, the main
focus is on X-ray astronomy, but other fields are also briefly considered. Finally, an
overview is given of the most important spectroscopic techniques.

1.2.1 X-ray generation mechanisms

X-rays are electromagnetic radiation with a photon energy between approximately 0.1
and 100 keV. In order to see what information is contained in this type of radiation, we
need to look at the origin of X-rays. X-rays can be produced inseveral ways, of which
the most important ones are mentioned here.

Transitions of electrons to a lower atomic energy levelcan produce characteristic X-
ray emission, that is X-ray emission with discrete energies, particular to the element
that produces it. The transition occurs when a vacancy in oneof the inner electron
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shells (usually K or L) is filled by an electron from a higher shell. A photon is then
emitted with an energy equal to the difference between the electron levels. The
vacancy in the inner shell may be the result of electron capture by the nucleus, as
takes place in radioactive decay. Alternatively, the electron may have been ejected
from the inner shell by high-energy electrons, photons or heavier particles.

Black body radiation is the thermal radiation as described by Planck’s law. When the
temperature of an object is 107–108 K, it emits X-rays with a continuous, thermal
spectrum.

Bremsstrahlung is the emission of radiation from high-energy electrons that are deceler-
ated by the electrostatic field of an ion or atomic nucleus. Depending on the energy
of the electrons, the emitted radiation lies in the X-ray range. It has a continuous
spectrum that can be either thermal or non-thermal. Thermalbremsstrahlung occurs
when the electrons and ions are in local thermal equilibrium. When the electrons do
not have a Maxwellian energy distribution, it is called non-thermal bremsstrahlung.

Cyclotron radiation is the radiation emitted by high-energy non-relativistic electrons
spiraling in a magnetic field. Their continuous acceleration in the magnetic field
causes radio, optical and X-ray emission. The spectrum consists of characteristic
lines, which depend on the electron velocity and magnetic field strength.

Synchrotron radiation is similar to cyclotron radiation, but the electrons have relativ-
istic velocities. This process can occur in supernova remnants, where the spectrum
is continuous and non-thermal, but also in synchrotron accelerators, where very
narrow X-ray lines can be generated.

Inverse Compton scattering is the process of low-energy photons gaining energy by
scattering from high-energy relativistic electrons. In this way, photons in the X-ray
andγ-ray range are created. It is called ‘inverse’ because energy is transferred from
the electron to the photon instead of the other way around, asis the case in regular
Compton scattering. It produces a continous, non-thermal spectrum.

The shape of the continuous radiation spectra is determinedby the local production con-
ditions (temperature, energy distribution etc.). The presence of specific elements causes
characteristic emission lines in the spectrum. Also, when the radiation passes through
certain materials, absorption lines are introduced in the spectrum. Therefore, information
about high-energy phenomena in the universe and chemical and elemental abundances in
stars, gas clouds and material samples can be obtained from spectroscopic X-ray meas-
urements.
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1.2.2 Astronomical applications

Astronomical X-ray measurements are an important complement to the observations in
the optical and radio range. Since the 1960’s, a large numberof experiments on balloons,
rockets and satellites have been launched to perform measurements of the X-ray sky.
There are very many interesting phenomena to be studied in the X-ray universe. We
mention a few examples here [1].

First, we will look at phenomena in which collisional ionisation occurs. This is the
production of X-rays through interactions within matter, as encountered in hot cosmic gas
clouds. There is a large amount of X-ray emission from stellar (including solar) coronae.
The spectrum is that of an equilibrium energy distribution with a temperature of about a
106 K or higher. In the corona, there are areas of high activity associated with starspots
(sunspots) and coronal loops. Using high-resolution X-rayspectroscopy, these areas can
be mapped through Doppler imaging. This is done by tracking the movement of emission
lines through the spectrum as a function of time, while the star rotates. In this way,
information can be obtained about the structure of the corona.

The diffuse X-ray background is the X-ray emission coming from all directions that is
not associated with resolved sources. Since it is brighter at low galactic latitudes, a large
part of this radiation is believed to originate from the interstellar medium in our galaxy.
It has the spectrum of an equilibrium energy distribution with a temperature of 106 −
−107 K. Study of this spectrum and of the spatial distribution of the emission provides us
with information about the composition and structure of theinterstellar medium. There is
also a spatially more uniform component which has an extragalactic origin.

The gravity of a cluster of galaxies binds a large cloud of hot(∼108 K) gas to the space
between those galaxies. From observations of the X-ray emission from this gas, the shape
of the gravitational potential in the cluster can be determined. This tells us something
about the mass distribution in the cluster, implying the existence of large quantities of
‘dark matter’. From the shape of the spectral continuum, thetemperature of the gas is
obtained, while the characteristic emission lines indicate the composition and therefore
the origin of the intracluster medium.

An example of non-equilibrium spectra is found in supernovaremnants, see figure
1.3 (left). After a supernova explosion, mass is ejected into the circumstellar environ-
ment, which collides with the interstellar matter surrounding the supernova. This creates
a shockwave travelling outwards, but also a reverse shock travelling inwards. X-ray spec-
tra and images provide information about the structure of the supernova remnant and also
about the properties of the progenitor star.

Next, we will discuss some phenomena that involve photo-ionisation, that is the pro-
duction of X-rays through interaction with photons. A radiation source irradiates matter
around it and creates a photoionized nebula. This occurs in sources powered by mass
accretion. Most of the brightest X-ray stars are binaries: awhite dwarf, neutron star or
black hole and a companion star orbit each other. Mass is transferred from the companion
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Figure 1.3: Left : X-ray spectrum of supernova remnant N 103B taken with the RGS
instrument on XMM-Newton. The most prominent emission lines are indicated. Emission
is clearly present from ionised O, Ne and Mg. From [2].Right: X-ray spectrum of
quasar IRAS 13349+2438, corrected for cosmological redshift, with a fitted model. From
the numerous absorption lines, the column densities of various ions in the line-of-sight
material can be determined. From [3].

and while it falls towards the accreting star, it emits energy in the form of radiation. The
properties of the orbit can be determined from the Doppler shift in the X-ray spectrum as
a function of time. If the compact object has a strong magnetic field, the mass will move
along the field lines towards the magnetic poles. The X-ray emission will then not be uni-
form in all directions but will have a beam-like character. If the magnetic poles are off the
rotation axis, the direction of the X-ray beam will rotate and the object will be observed
as an X-ray pulsar. The rate of change in the pulse period carries information about the
system. Another type of X-ray binary is the X-ray burster. Accreted H on the surface
of the neutron star fuses into He. When the density and temperature of this He reaches
a critical point, a thermonuclear burst may occur. This shows as a sudden increase in
X-ray luminosity that decays back to the original level. Theprocess repeats when enough
new H is accreted. When the accreting object is very massive,the emitted spectrum is
redshifted by gravitation. This redshift can be detected using a high spectral resolution
measurement. Thus, X-ray observations can teach us a lot about the evolution of binary
systems.

A special type of binary system is the cataclysmic variable.This is a white dwarf
showing a nova outburst, which is the result of unstable thermonuclear burning. They
are binary systems with a low-mass star as a companion. Between nova outbursts, the
accretion disc emits soft X-rays. The study of the X-ray spectra helps understand the way
the accretion takes place and what causes the outbursts.

Active galactic nuclei (AGN) are among the most energetic phenomena in the uni-
verse. They are thought to be massive black holes in the centre of galaxies, accreting
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matter from the surrounding interstellar medium and nearbystars. The accretion disc
emits a smooth power-law spectrum of soft X-rays. Fluorescense of the gas surrounding
the X-ray source causes an Fe emission line to be present as well. The absorption lines in
the spectrum are from the interstellar medium in that galaxy, see figure 1.3 (right).

In addition to all this, there is a growing interest in investigating the early universe.
In particular, astrophysicists wonder about the formationof massive black holes and their
evolution in terms of mass and spin. The way black holes evolve can be determined from
the shape of the Fe K emission line. To resolve this line in detail in nearby AGNs requires
high spectral resolution. Furthermore, to be able to detectthis line in the earliest AGNs
at high redshifts ofz > 5, a very large detection area is necessary. But a telescope for this
purpose should also be able to look at brighter objects. Therefore, it must be capable of
a large dynamic range in brightness. And in order to avoid source confusion, the spectral
resolving power needs to be combined with a reasonable angular resolution. This is where
the future observatoriesConstellation-X (NASA) andXEUS (X-ray Early Universe Spec-
troscopy mission,ESA and Japan) come in. With effective collecting areas at 1 keV of
1.5 m2 (Con-X) and 6 m2 (XEUS) and a spectral resolving power of∼ 1500 around 8 keV,
these telescopes should be able to answer questions about the first black holes and dark
matter in small (young) clusters of galaxies. Also, the structure of the intergalactic me-
dium and the evolution of galaxy clusters could be studied. This is an important driver for
the development of a high-efficiency, high-resolution X-ray spectrometer with imaging
capabilities.

1.2.3 Other applications

Besides astrophysics, there are other applications that ofX-ray spectroscopy that can
benefit from a high-resolution spectrometer.An important application is X-ray microana-
lysis. Here, a sample is irradiated with an electron beam from a scanning electron mi-
croscope. This produces X-rays which are measured with a spectrometer. The emission
spectrum shows the concentration of the elements that are present. Because the electron
beam is very narrow, extremely precise measurements (∼ 1 nm) are possible. This tech-
nique has a very wide range of applications, from biology andmaterial science to the
semiconductor industry. For the best energy resolution, wavelength-dispersive spectro-
meters have been used up to now. However, they posess a narrowbandwidth and are not
easy to operate. Therefore, an energy-dispersive spectrometer that approaches the energy
resolution of the wavelength-dispersive spectrometer is avery useful development [4].

Another application mentioned here is in the field of metrology. There is no well-
defined standard of low-energy radioactivity. While they decay, radioactive sources such
as55Fe emit X-rays and Auger electrons at a certain rate. With measurements using a
high-efficiency spectrometer, comparisons between activities become possible [5]. Since
a measurement of the total emission (including electrons) is desired, this application is not
limited to X-ray spectroscopy. Nevertheless, it is mentioned here because the detectors
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described in this thesis could be used for this purpose.

1.2.4 X-ray spectrometers

Now that we have an idea of the applications of X-ray spectroscopy, we will take a look
at the available instrumental techniques. The quality of spectrometers is expressed in
terms of their resolving power. This is the ratioE/∆E between the measured energy and
the minimum energy difference that can be discerned at that energy. The number can
also be expressed as an absolute energy resolution, in unitsof eV FWHM (full width at
half maximum). Spectrometers fall into two categories: wavelength-dispersive (WDS)
and energy-dispersive (EDS). For WDS, the resolving power usually increases linearly
with wavelength, while for EDS, it increases either linearly with or with thesquare root
of energy. Therefore, in general, WDS is more suited for low-energy (long-wavelength)
radiation, whereas EDS is better for the high-energy (short-wavelength) end. Moreover,
there are other factors to consider, such as detection efficiency and bandwidth.

WDS instruments convert the wavelength of the radiation into a dispersion angle,
which corresponds to a position on the focal plane. The spectrum is then recorded by a
detector, nowadays usually a CCD. There are three types of dispersive elements used in
WDS: transmission gratings, reflection gratings and Bragg crystals. A transmission grat-
ing spectrometer such as used on the Chandra X-ray observatory has a spectral resolving
power of about 800 at 0.5 keV. For the reflection grating spectrometer on XMM-Newton,
it is around 400, but with a much larger detection area. Because most of the radiation
intensity goes into the zeroeth-order beam which contains no spectral information, the
gratings are not very efficient, just 10–20%. Also, because the focal plane areas for the
different dispersion orders overlap, there is the problem of order confusion. This can be
resolved by using the intrinsic spectral resolution of the CCD.

The Bragg spectrometer uses a crystal that reflects only a specific wavelength which is
dependent on the angle of incidence. This type of spectrometer requires a curved crystal
or a mechanism for rotating the crystal to scan the diffraction angle. Furthermore, a lot
of different crystal types are necessary to get a reasonablebandwidth. Although it has
a potentially very high resolving power (∼ 10,000), the fact that only a small range of
wavelengths can be measured at a time leads to a very low throughput.

WDS has a very good resolving power, but lacks good imaging capability. For that
purpose, we need to turn to EDS. In spectrometers in this category, single photons are
absorbed and their energy is measured [6]. This is done in a variety of ways, but in
general the photon absorption creates a number of ‘signal carriers’, which are counted. A
factor that determines the energy resolution is the amount of energy necessary for creating
a single signal carrier,w. In table 1.1, a number of EDS techniques, discussed below,
are summarised. For a measured energyE, the number of signal carriers isn = E/w.
The variance in this number isσn =

√
Fn, whereF is the Fano factor of the detector.

The Fano factor corrects for the error that is made by the assumption of pure Poisson
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Table 1.1: Some energy-dispersive X-ray spectroscopic techniques and their approximate
signal carrier generation energies.

Detector Signal carrier Preferred application
energyw (eV)

proportional counter 30 large detection area,& 1 m2

scintillator 1000 high energyresponse,& 100 keV
semiconductor 3 imaging spectrophotometry,E/∆E ∼ 40
superconductor 0.003 low energy imaging spectroscopy,E/∆E ∼ 200
microcalorimeter - wide-band imaging spectroscopy,E/∆E ∼ 1500

statistics, and is a property of each detection technique. For instance, for a gas scintillation
proportional counter (see below),F ∼ 0.2. In general, for the energy resolution, we obtain
∆E = 2.35Eσn/n = 2.35

√
wFE.

In gas-filled proportional counters, the X-ray photon ionises an atom in the gas, which
emits a photoelectron. This causes an avalanche of secondary ionisations, resulting in an
electrical pulse with an amplitude proportional to the X-ray energy. The energy resolution
is about 1 keV at 6 keV. By measuring the UV light that is produced in the primary
ionisation, as is done in a gas scintillation proportional counter, the resolution is improved
by a factor of∼ 2–3. These detectors are only used nowadays for specific purposes
requiring large areas and are mentioned here mainly for historical reasons.

X-ray scintillators operate by converting X-ray photons into visible light. This light is
then measured with a photomultiplier tube. For the scintillator crystal material, NaI(Tl) or
CsI(Na) is used. When an X-ray photon is absorbed, an electron is released through the
photoelectric effect. This electron produces secondary electron/hole pairs which cause
the Tl or Na impurities to emit visible light. The measured light pulse is proportional to
the X-ray photon energy. The resolution of this type of spectrometer is∼ 4 keV at 6 keV,
which is not very good, but the advantage is that the bandwidth is very large (& 100 keV).

Semiconductor spectrometers usually consist of a volume ofcooled Si or Ge, to which
an electric field is applied. When the absorption of an X-ray produces electron/hole pairs,
these are separated by the electric field and pulled to the surface contacts. The accumu-
lated charge is proportional to the X-ray energy and can be read out as a current. The
detector is usually turned into a diode to avoid a ‘leakage current’. The energy resolution
of these devices at 6 keV is about 0.14 keV. They form the basisof the charge-coupled
device (CCD), which is basically an array of semiconductor detectors. This technology
has shown great capabilities for imaging work. If it is ensured that in every CCD read-out
cycle there is never more than one X-ray photon absorbed per pixel, the spectral inform-
ation is conserved. The CCD can then be used as an imaging spectrophotometer.

A rather novel type of spectrometer is the superconductive tunnel junction (STJ).
This consists of two superconductive layers separated by a very thin insulator, forming
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a Josephson junction. Absorption of an X-ray creates quasiparticles in the supercon-
ductor. When the quasiparticles tunnel through the insulator, a charge is transferred from
one electrode to the other. This can be read out as a current. The best energy resolution
obtained at low energy with an STJ spectrometer is 2.4 eV at 0.5 keV [7]. It is expec-
ted that this technique will lead to an imaging spectrometerthat approaches the resolving
power of WDS at low photon energies.

Another technique involving quasiparticles is the measurement of the change in kin-
etic inductance of a superconductor when an X-ray is absorbed [8]. Using this technique
for X-ray spectroscopy is very tentative at the moment, but it has the potential of being
easily scalable to a large number of elements. This would allow for a high-resolution
imaging spectrometer with a very large number of pixels.

The last type of spectrometer discussed here is the X-ray microcalorimeter. This
technique involves measuring the temperature increase dueto the absorption of an X-
ray photon. There are several ways of performing this temperature measurement: ion-
implanted Si thermistors have proven to work well. Another way is to measure the change
in magnetisation of a paramagnetic material in a small magnetic field [9]. This magnetisa-
tion is very sensitive to temperature changes. A third way isto use the steep temperature-
dependence of the conductivity of a superconductor near itscritical temperature, as does
the transition edge sensor. The development of this technique is the subject of this thesis.
Compared to other EDS devices, this type of sensor has the advantage of a good energy
resolution, a high detection efficiency and a large dynamic range in both energy and in-
tensity. It should also be noted that in principle, it can be applied to any interaction that
creates heat. So, besides electromagnetic radiation, thisdetector type can be used for
detection of neutrinos or exotic dark matter particles, or for mass spectroscopy. The next
chapter will describe the operating principle of this sensor in detail.



CHAPTER 2

TRANSITION EDGE SENSOR

In this chapter, we will discuss some basic physics related to the transition edge sensor,
and define some concepts for later use. We will discuss superconductivity and the phase
transition, and the way that a voltage bias introduces electro-thermal feedback. Then,
we will introduce the noise model and calculate the theoretical energy resolution for a
voltage-biased TES-based detector.

2.1 Superconductivity

In this section, we will not go into the details of superconductivity but just mention some
of the concepts involved. For a detailed treatment we refer to the literature.

Superconductivity, discovered in 1911 by Heike KamerlinghOnnes at Leiden, is the
phenomenon of a conductor losing all its electrical resistance when cooled below a cer-
tain critical temperatureTc. Another important property is that all magnetic field is ex-
pelled from the superconductor when it is cooled belowTc. The superconducting effect
is removed when a magnetic field stronger than the critical field Hc is applied. This crit-
ical field is temperature-dependent. A current through a superconductor will induce a
magnetic field, and so there is also a critical currentIc associated with the critical field.
Currents higher thanIc will drive the superconductor normal.

There are two types of superconductors: elemental superconductors are generally of
type I while alloys are of type II. Unlike type I, type II superconductors exhibit a so-called
mixed state, in which there is a partial flux penetration above a fieldHc1. They go normal
at a fieldHc2 which can be much higher than the critical field of a type I superconductor.
Thin films of elemental superconductor material can behave as type II, due to a mean free
path that is short compared to the London penetration depth.This is the distance from the
surface of a superconductor to the point inside at which the strength of an applied field is
reduced with a factor 1/e.
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Figure 2.1: Sketch of the density of available electron states as a function of energy for
electrons in the conduction band of a normal metal (left) andfor a superconductor (right),
showing the energy gap around the level of the Fermi energyEF .

Superconductivity is based on attractive electron-electron interactions that lead to the
formation of Cooper pairs of electrons which condense into the ground state. This results
in a gap∆ = 3.5kBTc/2 (at T = 0 K) in the excitation energy spectrum of the electrons.
Therefore, electron states of certain energies are not available, as shown schematically in
figure 2.1. The Cooper pairs have a much larger length scale than conduction electrons,
and this prevents the interactions that cause resistivity in normal conductors. This is why
a superconductor exhibits no electrical resistance. The gap size decreases with increasing
temperature and disappears atT = Tc. The material then goes from the superconducting
to the normal phase.

2.2 Phase transition and critical temperature

Now, we will describe some aspects of the phase transition. We will not perform detailed
calculations, but will try to give an order of magnitude for the parameters involved and
show in what way they interact. The transition from the superconducting to the normal
phase takes place within a temperature range of a few mK. The resistance then changes
from zero to a finite value, making a superconductor a very sensitive resistive thermo-
meter. An example of such a transition is shown in figure 2.2. The shape of the transition
depends on the purity of the material and, in the case of thin films, on the applied mag-
netic field. The critical temperature is a property of each superconducting element. For a
desiredTc, a suitable elemental superconductor may not be available.Fortunately, theTc

of a material can be changed by using a combination of elements. When a normal metal
and a superconductor are placed in contact with each other, some Cooper pairs may be
exchanged with quasiparticles from the normal metal, effectively suppressing theTc of
the superconductor (and inducing some superconductivity in the normal metal). This is
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Figure 2.2: Example of the superconducting to normal transition of a Ti/Au bilayer. In
bulk form, Ti has a critical temperatureTc of 0.40 K. By using a bilayer of 18 nm Ti and
30 nm Au, theTc was suppressed to 0.097 K.

called theproximity effect. By changing the film thicknesses of the superconducting and
the normal metal, the strength of this effect can be adjustedand theTc of the bilayer can
be tuned. For the Cooper pairs, a so-called intrinsic coherence length can be defined:

ξ0 =
h̄vF

π∆
(2.1)

≈ 0.18
h̄vF

kBTc
(2.2)

wherevF is the Fermi velocity. For a pure superconductor, there is almost no suppres-
sion of Tc when the thickness exceedsξ0. For thinner films,Tc is suppressed further
with increasing normal metal thickness, until the coherence length of the normal metal is
reached:

ξn =

√

h̄D
2πkBT

(2.3)

whereD = vFnln/3 is the diffusion constant of the normal metal, withvFn its Fermi
velocity andln its electron mean free path [10]. For greater normal metal thicknesses,
Tc stays constant. This is schematically illustrated in figure2.3. In thin films at low
temperature, the mean free pathln will be limited by the film thickness. Therefore, normal
metal films with thicknesses below(h̄vF/(6πkBT ))1/3, will always be thinner than their
coherence length.

These coherence lengths give an upper limit as to the required thicknesses for the
desired suppression ofTc. In practice however, there appears to be quite a large margin



22 Chapter 2. Transition edge sensor

Tc0

Tc1

b
ila

ye
rT

c

dn1 ξn

normal metal thickness
ds1 ξ0

superconductor thickness

Figure 2.3: Schematic illustration of the influence of the proximity effect on the critical
temperature of a superconductor/normal metal-bilayer.Tc0 is theTc of the bulk super-
conductor. The curves in the left part correspond to different superconductor thicknesses,
which are indicated in the right part. For instance, for a given superconductor thickness
ds1 in the right part, one finds the corresponding curve by following the dotted line up-
wards and then left into the left part. Then, for a certain normal metal thicknessdn1, the
bilayerTc can be read off from this curve and is found to beTc1. The curve on the right
describes theTc of a bilayer with the normal metal layer thicker than its coherence length,
as a funcion of the superconductor thickness. Adapted from [10].
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in these thicknesses, and precise tuning is somewhat of a matter of trial and error. From
the figure, it is clear that there are many combinations of thicknesses possible for a single
Tc. The desiredTc is reached most easily by first adjusting the normal metal thickness to
the desired resistivity and then varying the superconductor thickness. An important factor
is also the quality of the interface between the layers, and this depends strongly on the
deposition conditions. In principle it is possible to predict theTc of a bilayer [11], but in
practice the value will vary from one fabrication setup to another. For a reproducibleTc,
a clean interface between the layers is very important.

The choice of materials will be very much dictated by practical considerations, such as
available equipment and materials. The materials should bechemically stable. The nor-
mal metal is preferably a noble metal, so as to avoid degradation through oxidation. At the
National Institute for Space Research (SRON), we have used bilayers of Ti (Tc = 0.40 K)
and Au for a targetTc of 0.10 K. For 50 nm of Au, the normal metal coherence length is
0.53µm, so the film has a thickness of about 10% of this value. The intrinsic coherence
length for Ti is 5.9 µm, and the thickness needs to be well below that for the desired
suppression ofTc. In this case, 14 nm of Ti has resulted in aTc of 0.10 K. Other groups
use bilayers with Mo, which has aTc of 0.92 K; the group at the National Institute of
Standards and Technology (NIST) uses 60 nm Mo/200 nm Cu whilethe group atNASA’s
Goddard Space Flight Center (GSFC) uses 50 nm Mo/270 nm Au foraTc of 0.10 K. This
Tc is chosen as low as possible to minimise noise, but such that the thermometer can be
operated in the limit of extreme electro-thermal feedback using practical cooling. This
will be explained in the next section.

2.3 Voltage bias and electro-thermal feedback

Before we explore the use of the TES thermometer further, we need to consider the prin-
ciple of bolometric detection. ‘Bolometric’ refers to the measurement of radiation. We
distinguish between the bolometer, which measures radiation flux (e.g. infrared) and the
microcalorimeter, which measures the energy of individualradiation quanta (e.g. X-rays).
In a conventional bolometer or microcalorimeter, an absorber with heat capacityC is kept
at a certain temperatureT0 by means of a connection to a heat bath by a thermal conduct-
anceG, as shown in figure 2.4. The behaviour of the temperatureT (t) after an energyE
is absorbed is described by the power balance equation

C
dT (t)

dt
+ G(T (t)−T0) = Eδ (t), (2.4)

which has the solution

T (t) = T0 +
E
C

e−t/τ ϑ(t) (2.5)

whereτ ≡ C/G is the thermal time constant of the system andϑ(t) the Heaviside step
function. The temperature excursion is proportional to theincident energy and can be
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Figure 2.4: Schematic illustration of a conventional microcalorimeter. The absorberC is
weakly coupled with a thermal conductanceG to the bath, which is at a temperatureT0.
After an event of energyE, the microcalorimeter temperatureT behaves as shown in the
graph on the right.

measured by a sensitive thermometer.
Although the transition edge thermometer is very sensitive, it has a very limited dy-

namic range. Operated as a current-biased bolometer, as described in e.g. [12], it requires
a very well-controlled bath temperature. This limitation can be overcome by using voltage
bias and a bath temperature well belowTc [13]. Joule heating (P = V 2/R) in the TES is
used to raise the temperature toTc, bringing the TES into its transition. With the operating
temperature significantly above the bath temperature, the power flowing through the heat
link to the bath is described by

P = K(T n −T n
b ), (2.6)

with Tb the temperature of the bath,K a material and geometry dependent parameter and
n the power law exponent of the dominant mechanism responsible for the heat transport
between thermometer and bath. For the heat transport to takeplace through phonon con-
duction, a value forn between 3 and 4 is expected, depending on whether specular or
diffuse scattering occurs at the boundaries of the heat linkmaterial. For electron conduc-
tion in metals, the value is 2 and a heat link dominated by electron-phonon coupling has
5.

The power balance equation in the case of voltage bias, with the Joule heating term
included, becomes:

C
dT (t)

dt
+ K (T n(t)−T n

b )− V 2

R(T (t))
= Eδ (t), (2.7)

where the resistance functionR(T ) describes the shape of the transition under bias con-
ditions. In order to solve this equation analytically, we have to linearise it using these
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first-order approximations:

K (T n(t)−Tn
b ) ≈ P0 + G(T (t)−T0) (2.8)

V 2

R(T (t))
≈ P0−

P0α
T0

(T (t)−T0) (2.9)

with

G ≡ dP
dT

= nKT n−1 (2.10)

the dynamic thermal conductance and

α ≡ T
R

dR
dT

(2.11)

a dimensionless characterisation of the steepness of the transition. In the first-order ap-
proximations above, the time-independent quantitiesP0 andT0 are theequilibrium values
of power flowing to the bath and TES temperature, respectively. Using the approxima-
tions, we can write down the linearised equation:

C
dT (t)

dt
+ G

(

1+
P0α
GT0

)

(T (t)−T0) = Eδ (t). (2.12)

The solution is

T (t) = T0 +
E
C

e−t/τeffϑ(t), (2.13)

with the effective time constant

τeff =
C

G(1+ L0)
. (2.14)

Here we have used the abbreviation

L0 ≡ P0α
GT0

(2.15)

=
α
n

(

1−
(

Tb

T0

)n)

. (2.16)

The numberL0 is called the ‘loop gain’. In the limit of extreme electro-thermal feedback
(T0 � Tb), we can approximate it byL0 ≈ α/n. The time constantτeff is shortened,
compared to the intrinsic time constantτ, by a factor 1+L0 by means ofnegative electro-
thermal feedback (ETF). This is the mechanism that drives the thermometer back to the
same set point in the transition: A rise in temperature leadsto an increase in resistance.
This in turn decreases the current, which results in a decrease in Joule power. Because
there is less power flowing into the thermometer, it cools down, compensating for the



26 Chapter 2. Transition edge sensor

- - -

�

6
-t t

V

∆P 1
G

1
1+i2π f τ

∆R −I
R

dR
dT

∆T ∆I

Figure 2.5: Schematic of the mechanism of negative electro-thermal feedback. In the
boxes, the transfer functions between the various quantities are given. The thermal con-
ductance forms a low-pass system with a time constant ofτ = C/G. Therefore, the trans-
fer function from power to temperature is frequency-dependent.

original temperature rise. In this way, any temperature excursion is regulated back to the
operating point by a change in Joule heating. This has the added advantage that the pulse
decay time is shortened, allowing a higher count rate. A schematic of the feedback loop is
shown in figure 2.5. The feedback diagram is very useful for understanding the response
of the TES. For any feedback loop with a forward gain ofA and a feedback gain ofB,
the total gain of the circuit isA/(1− AB). In this way, the response of such a circuit
can be easily calculated without having to solve differential equations. This principle is
employed in the next section.

But before we go on, we will elaborate on the transition steepness parameterα. The
TES resistance is a function of both temperature and current. The steepness of the resist-
ance curve with respect to temperature∂R/∂T can be measured using a small constant
current while sweeping the temperature, as shown in figure 2.6 on the left. Conversely,
the steepness with respect to current∂R/∂ I can be measured with the device well coupled
to a constant temperature bath while sweeping the current. From these derivatives we can
calculateαT ≡ (T/R)(∂R/∂T ) andαI ≡ (I/R)(∂R/∂ I).

Under bias conditions with a weak coupling to the bath, therewill be a mixed situ-
ation: because of Joule heating, increasing the bias voltage will increase the temperature
but also decrease the current. The system will move at an angle through theT -I-plane
across the curve describing the transition, as shown in figure 2.6. On the right, the move-
ment of the system throughT -I-R space is shown for a change in the bias voltage. From
the I(V )-curve that is measured in this way, anR(T )-curve can be calculated. This data
can be used to determine theα ≡ (T/R)(∆R/∆T) under bias conditions at each set point,
which will be smaller thanαT measured at low, constant current. The change in resistance
due to a change in temperature and current is given by

∆R =
R
T

αT ∆T +
R
I

αI∆I. (2.17)
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Figure 2.6: Left : The superconductive (S) and normal (N) regions of the transition edge
thermometer in the plane of current and temperature. The dashed lines indicate anR(T )-
measurement at constant current and anR(I)-measurement at constant temperature. The
slanted arrow indicates the direction of movement through the transition under voltage
bias conditions.Right: Cartoon of the resistance as a function of temperature and current.
The curve indicates the position of the bias point as a function of bias voltage. The current
component of the curve is very much exaggerated; in reality the typical bias current is
much smaller than the critical current of the device.
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Figure 2.7: Simplified version of the circuit diagram for operating a TES under voltage
bias with current readout. A more complete version is given in figure 4.2. Here, a constant
currentIb and a shunt resistorRs are used to apply a constant voltage over the TES. The
output is the currentI through the TES.

If we substitute∆I = (−I/R)∆R and do some rearrangement, we find the relation

T ∆R
R∆T

=
αT

1+ αI
. (2.18)

The left-hand side is the definition of our ‘effective’α under bias conditions. It is this
effectiveα that should be substituted into the loop gain expression (2.16). Since this
α is the one we can measure under bias conditions, we do not haveto worry about the
individual αT andαI . This will be slightly different when the voltage bias cannot be
assumed to be ideal (see for instance [14]), but it remains a good approximation.

2.4 Noise model

Now that the principle of ETF has been explained, we can look at how it influences the
noise and responsivity in the system. At the same time, we will extend the feedback
diagram from the previous section to include a non-ideal voltage bias. Also, the noise
sources that are predicted by theory are incorporated into the diagram. This will enable
us to calculate the effect of the noise at the output of the system.

In practice, the voltage bias is implemented as a constant bias currentIb with a small
shunt resistorRs and the TES in parallel, as shown in figure 2.7. This scheme hasan
effect on the transfer functions from resistance to currentand from current to power.
These become:

dI
dR

=
−V

R(R + Rs)
(2.19)
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Figure 2.8: Feedback diagram for signal conversion from input power tooutput current
by a voltage-biased TES, with noise sources. Indicated at the top are spectral noise density
values for phonon noise from the heat link to the bath (δPph), Johnson noise from the TES
itself (δVjo) and Johnson noise from the shunt resistor (δVsh). The shunt noise enters the
diagram in two locations to compensate for the fact that the shunt is not part of the thermal
circuit. The advantage of this type of feedback diagram is that it is appropiate for many
types of noise sources that enter the diagram in a natural way. After [15].

dP
dI

=
R−Rs

R
V (2.20)

In figure 2.8, the extended feedback diagram is shown, with the most important noise
sources included. These are:

Phonon noiseoriginating from the thermal fluctuations over the heat linkto the bath.
The spectral noise density is given by

δPph =
√

4γkBT 2G, (2.21)

with
γ ≈ n

2n +1
, (2.22)

a factor of∼ 0.5. This factor accounts for the fact that there is a temperature gradi-
ent over this heat link [16]. Because of the gradient, the magnitude of the noise is
based on a temperature that lies betweenTb andT . Phonon noise enters the system
at the same location as the signal, at the input of the feedback diagram.

Johnson noiseoriginating from random transport of charge over the TES resistor. The
spectral noise density is

δVjo =
√

4kBTR. (2.23)
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This noise component is first converted to current and then enters the feedback
circuit at the output.

Shunt noise, that is Johnson noise from fluctuations over the shunt resistor. The spectral
noise density is

δVsh =
√

4kBTsRs, (2.24)

with Ts the temperature of the shunt resistor, which is preferably at the bath tem-
perature. This noise component enters the feedback circuitat the same location as
Johnson noise from the TES. However, the shunt resistor is not part of the thermal
circuit, so the power dissipated in that resistor by the Johnson noise should not be
included in the feedback system. To correct the diagram for this, the dissipated
power is subtracted from the thermal noise by means of an extra branch.

At the output, with the feedback taken into account, these three noise components will be
observed as

iph( f ) =
√

4γkBT 2G
αI
GT

R
R + Rs

1
1+ β L0

1
√

1+4π2 f 2τ2
eff

(2.25)

ijo( f ) =

√
4kBT R

R + Rs

1
1+ β L0

√

1+4π2 f 2τ2

1+4π2 f 2τ2
eff

(2.26)

ish( f ) =

√
4kBTsRs

R + Rs

1
1+ β L0

√

(1−L0)2 +4π2 f 2τ2

1+4π2 f 2τ2
eff

(2.27)

with

β =
R−Rs

R + Rs
(2.28)

and
τeff =

τ
1+ β L0

. (2.29)

From the diagram, the total small-signal responsivityS ≡ |∆I/∆P| is found to be

S( f ) =
αI
GT

R
R + Rs

1
1+ β L0

1
√

1+4π2τ2
eff f 2

. (2.30)

It should be noted that this expression is only valid for small signals. In section 6.5.2,
a procedure for calculating the large-signal responsivityis presented. Using expression
(2.30), the noise components can be transformed back to the input and the noise equivalent
power (NEP≡ inoise/S) can be calculated:

NEPph =
√

4γkBT 2G (2.31)
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NEPjo( f ) =
√

4kBT R
GT
Vα
√

1+4π2 f 2τ2 (2.32)

NEPsh( f ) =
√

4kBTsRs
GT
Vα

√

(1−L0)2 +4π2 f 2τ2 (2.33)

The total NEP is simply the square root of these components added quadratically.

2.5 Energy resolution prediction

Using the NEP calculated in the previous section, we can find an expression for the theor-
etical energy resolution. To do so, we look at the signal transformed back to the input, that
is as a power. When we look at the signal in the frequency domain, we assume that the
amplitude in each frequency bin is an independent estimate of the original photon energy
[12]. The best way to reconstruct this energy is to take a weighted average (integral) over
all these frequency bins. The uncertainty in determining the power at a certain frequency
is given by the NEP. Therefore, the weighting factor at frequency f is 1/NEP2( f ). The
weighted average is given by

Ew =

∫ ∞
0 Pin( f )/NEP2( f )d f
∫ ∞

0 1/NEP2( f )d f
, (2.34)

wherePin( f ) is the input signal in the (single-sided) frequency domain.The RMS uncer-
tainty in the weighted average is given by

√

〈∆E2
w〉 =

√

1
∫ ∞

0 1/NEP2( f )d f
. (2.35)

We would like to know how accurate we can determine the original photon energyE. To
get that number, we need to scale

√

〈∆E2
w〉 with a factorE/Ew, so we need to evaluate

(2.34). The input signal is modelled as aδ -pulse in the time domain:Pin(t) = Eδ (t). Its
Fourier transform isE, but because we work in the single-sided frequency domain (which
means we only use positive frequencies), we must use the expression

Pin( f ) = 2E. (2.36)

From (2.34), we see thatE/Ew = 1/2. Therefore, we can write for the FWHM uncertainty
in the original energyE:

∆E = 2.35
1

√

∫ ∞
0

4d f
NEP2( f )

(2.37)

In practice, the weighted integral should be accomplished by some sort of filtering. In
appendix B we will describe our filter implementation.
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Substituting for the NEP the quadratic sum of the theoretical expressions of the noise
sources from the previous section and applying the approximation for extreme electro-
thermal feedback (n ≈ P/GT ), we may write

∆Etheor= 2.35ξ
√

kBT 2C (2.38)

with

ξ =
2
α

4
√

(γnα2 + α2)q +(n2−α2)q2 (2.39)

≈ 2
α

4
√

γnα2 + n2 (2.40)

and

q = 1+
TsRs

TR
, (2.41)

a factor very close to 1. Note that the parameterβ is not present in this expression; the res-
olution is independent of the quality of the bias voltage. Equation (2.38) is an upper limit
for the energy resolving power obtainable with a voltage biased TES-based bolometer or
microcalorimeter. It is clear that there is a strong dependence on operating temperature,
heat capacity and thermometer sensitivity, so those are thequantities to optimise.



CHAPTER 3

TES-BASED X-RAY

MICROCALORIMETER

In this chapter, we will look at the parameters involved in designing an actual TES-based
X-ray microcalorimeter. We will describe the requirementsfor the absorber and the coup-
ling to the bath. Following the specifications for the NFI2 instrument on theXEUS satellite
[17], we will determine some relevant parameters.

The basic properties we should aim for in a practical sensor are as follows:

• large filling factor;

• high efficiency;

• high count rate capability;

• good energy resolution (low noise).

These properties will be explained below.

Large filling factor For imaging purposes, in which case a large number of detector
elements are used side by side, it is desirable to have as small a gap as possible between
the detectors. In other words: a high filling factor. TheXEUS specifications quote a
number of at least 95%. For this reason, we would like the absorbing area to cover the
whole of the detector size, with no parts like wiring sticking out.

High efficiency Since the intended applications include sources of low brightness, a
high absorbing efficiency is important. Also, a high efficiency of the absorber reduces the
effect of confusion of the spectrum due to unintentional absorption in other parts of the
sensor. TheXEUS specification is an absorption efficiency of at least 90% at 6 keV, as
would be provided e.g. by 5µm Bi, as shown in figure 3.1 [18].

33
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Figure 3.1: Absorption of 5µm Bi as a function of X-ray energy. From data in [18].

High count rate capability Although count rate is not a big issue for the intended
application, less pile-up can be benficial to the resolution. For theXEUS specification of
100 counts per second per pixel, a pulse fall time of∼ 100µs is appropiate.

Good energy resolution In order to resolve weak, narrow spectral lines to a good
line/continuum ratio, energy resolution is very important. The XEUS specification lists
2 eV FWHM at 1 keV and 5 eV at 7 keV. In a well-designed sensor andread-out system,
the main limitation for the energy resolution is intrinsic noise. To get the best signal-to-
noise ratio, the ideal design should have a highα, a low operating temperature and a low
heat capacity.

3.1 Absorber and heat capacity

The function of the absorber is to convert the energy of an absorbed photon into heat. This
heat then spreads out and raises the temperature of the absorber, which is measured by the
thermometer. The choice of absorber materials and dimensions determine the absorption
efficiency, detection area and dynamic range of the sensor and also the energy resolution,
as we shall see. The absorption probability of X-ray photonsin a material is given by

A = 1− e−nµad (3.1)

with n the number of atoms per unit volume,µa the linear atomic photoabsorption cross-
section andd the thickness. These parameters can be found in [18] for manyelements
and energies. For a few metals and a photon energy of 6 keV, they are copied in table 3.1.

Since the energy resolution deteriorates with increasing heat capacity, a material that
combines high X-ray absorption efficiency with low heat capacity is best. The specific
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Table 3.1: Parameters of importance for absorber material selectionfor some metals:
absorption cross-section, atomic concentration, specificheat and the figure of merit for
absorber material selection. (S) means superconductor, (N) means normal metal. From
[18] and [19].

Element µa @ 6 keV n cV @ 0.1 K nµa/cV

(10−24m2) (1028/m3) (J/K/m3) (10−21K m2/J)

Mo (S) 5.3 6.4 0.0023 15
Ti (S) 3.6 5.7 0.0025 8.2
Ta (S) 10 5.6 0.013 4.3
Sn (S) 13 2.9 0.012 3.3
Nb (S) 4.8 5.6 0.0086 3.1
Bi (N) 17 2.8 0.037 1.3
Al (S) 0.49 6.0 0.0025 1.2
Pb (S) 16 3.3 0.092 0.59
Au (N) 14 5.9 7.1 0.012
Ag (N) 8.2 5.9 6.3 0.0076
Cu (N) 1.2 8.5 9.8 0.0010

heat of normal metals at temperatures below 1 K is dominated by the electronic specific
heat, given by

cel
V =

nγT
NA

, (3.2)

whereNA is Avogadro’s number andγ is the Sommerfeld parameter, a characteristic of
the material, in J/K2/mol [19].

For superconductors below theirTc, the specific heat is dominated by the phonon
specific heat. This is given by the DebyeT 3 law:

cph
V =

12π4

5
nkB

(

T
Θ

)3

(3.3)

whereΘ is the Debye temperature which can also be found in [19]. For afew metals, data
for electron (in the case of normal metals) and phonon heat capacity (for superconductors)
are given in table 3.1. To make the trade-off between absorption efficiency and specific
heat, we can define a figure of merit:

lim
d→0

A
dcV

=
nµa

cV
(3.4)

Values for this figure of merit are given in table 3.1 (higher is better). Based on the figure
of merit, we see that superconducting absorbers might be a good choice. However, in a
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superconductor, part of the energy of an absorbed photon is used to break up Cooper pairs,
creating quasiparticles. These need to recombine to produce phonons which can enter the
thermometer. The time needed for this recombination may be very long due to trapping
of the quasiparticles in the superconductor. The effect of this on the pulse shape is not
well known. For reasons of simplicity, it might be preferable to stick to normal metals. Of
these, the semi-metal Bi is the best. However, Bi has a low thermal conductivity. For fast
thermalisation of the photon energy, a high thermal conductivity of the absorber material
is also important. Therefore, a combination with a normal metal like Au, Ag or Cu is
preferable. Thanks to the low specific heat of Bi there is someroom left for a normal
metal.

Given a requirement for absorption efficiency and a choice for the material or mater-
ials, the minimum thickness is fixed. The remaining free parameter then is the absorber
areaD. Bigger is nicer of course, but increases the heat capacity.There is a clear trade-off
between detection area and energy resolution.

A last important item to consider is the dynamic energy rangeof the detector. The
maximum photon energyEmax of the radiation to be measured and the allowable temper-
ature change∆Tmax are directly related to the heat capacity:

C =
Emax

∆Tmax
(3.5)

If the operating range∆Rmax should remain within 10%–90% of the normal resistanceRn,
the temperature range of the thermometer becomes

∆Tmax =
〈T 〉∆Rmax

〈R〉α (3.6)

= 1.6
Tc

α
(3.7)

with the average values〈T 〉 = Tc and〈R〉 = 0.5Rn. So, for a given dynamic range, we
have for the minimum heat capacity.

C = 0.63
αEmax

Tc
. (3.8)

Since the energy resolution depends on the heat capacity, there is also a clear trade-off
between dynamic range and resolution of the sensor.

In this discussion, we have not yet included the heat capacity of the TES. Although it
is generally small compared to the absorber heat capacity, it adds to the total heat capacity:

C = DdcV +CTES (3.9)

We could now imagine a surface of equal heat capacity in a three-dimensional parameter
space with the dimensions of absorption efficiency, detection area and dynamic range
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(A-D-Emax space). This surface is described by the equation

D
− ln(1−A)

nµa
cV +CTES= 0.63

αEmax

Tc
. (3.10)

The parameters can now be optimised through an interative process. The most practical
approach is to start by fixing two parameters to preferred values and computing the third.
Next, adjustments can be made to one or both of the input parameters until the specifica-
tions are reached.

3.2 Cooling and thermal conductance

After the heat capacity, another important design parameter is the coupling to the bath. In
this section, we will derive upper and lower limits for the conductance of the heat link.
The suitable magnitude of the cooling power and therefore the thermal conductance to
the bath is dictated by the specified effective pulse fall time constantτeff. Due to electro-
thermal feedback, the dynamic thermal conductance to the bath in the case of ideal voltage
bias (β = 1) is given by

G =
C

τeff(1+ L0)
(3.11)

≈ C
τeff(1+ α/n)

. (3.12)

So, given a maximum pulse fall time constant, we have with (3.12) an expression for
the minimum thermal conductance. Since the resolution is independent ofG, it might
seem advantageous to use a higher value in order to get fasterpulses. However, the need
for electro-thermal stability imposes an upper limit to theallowable thermal conductiv-
ity [20]. In addition to the pulse fall time, there is anothertime constant in the system:
the electrical time constantτelec = L/R, with R the resistance andL the induction in the
circuit. The ratio of these time constants determines the stability of the system. The condi-
tion for stability can be found by looking at a pole/zero diagram of the circuit impedance,
as sketched in figure 3.2. The zeroes in the complex impedancedescribe a circular track
in the complex plane. When they are located in the left half ofthe complex plane, os-
cillations caused by instabilities in the system are damped. In order to attain this, the
(effective) thermal time constant and the electrical time constant should not be too close
together. For the system to be critically damped, we have

τeff

τelec
= 5.8. (3.13)

For a sub-critically damped system, it is [21]

τeff

τelec
= 3.7. (3.14)
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Figure 3.2: Sketch of the position in the complex plane of the zeroes of the impedance
Z(σ + iω) of the TES bias circuit for different values ofτeff/τelec. The dashed lines
indicate the boundary of the area in which oscillations in the system are sub-critically
damped. After [21].

We use the latter case, which is the lower limit for theτeff/τelec ratio for stable operation
of the circuit. The inductanceL is determined by the inductance of the wiring and other
components, such as aSQUID input coil, and is considered given. The upper limit for the
thermal conductance is now given by

G <
CR

3.7L(1+ α/n)
(3.15)

Thus, for a given set of parametersn, α, C, τeff, R andL the range of allowable values
of G is fixed. The thermal conductance is often provided by a silicon nitride membrane
onto which the microcalorimeter is positioned. TheG can then be tuned by varying the
thickness, shape and size of the membrane. For a circular membrane with thickness
d, radiusrm, thermal conductivityκ and the microcalorimeter in the centre, the radial
temperature gradient at a distancer from the centre is given by

dT (r)
dr

=
−P

2πrdκ
. (3.16)

Assuming as a boundary condition thatT (rm) = Tb, the solution for the temperature de-
pendence is

T (r) =
−P ln(r/rm)

2πdκ
+ Tb. (3.17)

The singularity atr = 0 can be solved by realising that the temperature around the centre
is kept constant by the presence of the microcalorimeter, upto its radiusrµ . At that point
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r = rµ we have

P =
−2πdκ

ln(rµ/rm)
(T −Tb). (3.18)

Taking the derivative with respect toT , we find

G =
−2πdκ

ln(rµ/rm)
. (3.19)

With this equation, we can determine the dimensions of a membrane that provides the
desiredG. It is valid for round membranes, but also a fair approximation for square
membranes with a side of 2rm. For silicon nitride, values for the thermal conductivity
κ have been measured to be 15T 2.0 × 10−3 W/m/K [22] or 8T 2.2 × 10−3 W/m/K [23].
The difference between these two measurements is probably caused by a different ratio of
diffuse and specular scattering at the surface due to differences in thickness (200 nm and
1 µm, respectively) and roughness.

3.3 Practical sensor

Using the relations developed above, we can find the parameters for the ideal sensor for
our application. SRON has developed superconducting Ti/Aubilayers with a transition
temperature ofTc ≈ 0.1 K. With a practical bath temperature ofTb ≈ 0.01 K, the approx-
imation for the loop gain in section 2.3 is valid for these films. In the normal state, these
films have a square resistance ofRn ≈ 0.20 Ω. Under bias conditions, the typicalα of
the bilayers is about 50. Assuming a maximum photon energy range of 10 keV1, we find
through (3.8) a minimum heat capacity of 0.50 pJ/K. The theoretical resolution, according
to (2.38), is then∼ 1.2 eV FWHM.

From (3.12) and theXEUS specification we get a minimum thermal conductance of
0.28 nW/K. In our setup, the inductance of theSQUID and wiring is fixed at about 0.5µH.
A typical set point resistance is 0.1Rn = 0.02 Ω, giving aτelec of 25 µs. According to
(3.15), this limitsG to 0.31 nW/K for a sub-critically damped system. The range between
minimum and maximumG is in fact very small. With careful design of the wiring, it
should be possible to lower the parasitic inductance and allow for faster signals. For a
given membrane,G can be determined by measuring the bias power needed to heat the
sensor to the transition temperature as a function of bath temperature. By fitting (2.6)
to these measurements,n andK are found, from whichG is calculated through (2.10).
For the devices discussed in this thesis, a 3 mm× 3 mm × 1 µm Si3N4 membrane
was used, as shown in figure 3.3, withn = 3.2 andK = 1.5× 10−8 W/Kn. From these

1Although theXEUS specifications state a maximum energy of 15 keV, they do not require the best energy
resolution to be obtained at those high energies. Thereforewe can permit some saturation of the microcalorim-
eter at the highest energies and use a smaller maximum photonenergy for the calculation here.
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Figure 3.3: Schematic drawing (top and cross-section view) of the chiplayout. The
dimensions of the chip are 11× 11 mm. The sensor under study is on the membrane in
the centre. To allow for an independent check of the quality of the transition, a reference
TES is processed on the chip.

numbers, a thermal conductivity ofκ = 12T2.2 × 10−3 W/m/K is calculated. At 0.1 K,
G = 0.30 nW/K.

With the values for heat capacity and membrane size known, the sensor can be fabric-
ated. The fabrication of the sensors and the test setup are the subject of the next chapter.



CHAPTER 4

FABRICATION AND SET-UP

This chapter deals with the technical requirements for fabricating and testing the TES
X-ray microcalorimeters. We will have a brief look at the critical issues involved in the
lithographic process. Then, we will discuss the requirements for the test set-up and data
processing.

4.1 Lithography

The sensors discussed in this thesis are fabricated in a cleanroom using SRON expertise
and standard photolithographic techniques. We will not describe those here in detail, but
instead have a brief look at the aspects of the process that are of specific relevance to the
production of these sensors.

A complete sensor, such as shown schematically in figure 3.3,consists of a substrate,
a TES, an absorber and electrical wiring. For the substrate,a 500µm thick Si wafer
is used with a 1µm thick layer of Si3N4 on top that will form the membrane later on
(step 1 in figure 4.1). At the location of the membrane, the Si is partially or completely
etched away (step 2). Then, the Ti/Au bilayer is applied by means of e-beam evaporation.
For a reproducible transition, a good interface between thetwo layers is necessary. It is
therefore important that the two layers are deposited in quick succession. There should
also be little interdiffusion between the two layers. When the temperature exceeds∼
120◦C, interdiffusion starts to occur. Therefore, it is critical that the temperature does
not become too high during the deposition. This can be a problem at the location of
the membranes in the wafer, where the thermal conductance islimited. Two approaches
have been applied to this problem. The first is to not etch awayall the Si at the location
of the membrane until the sensor is finished. However, etching the Si from underneath
a completed sensor can be risky. The etchant may damage the sensor or wiring. The
alternative route is to etch away all the Si before the bilayer deposition, and apply a 1µm

41
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Figure 4.1: Schematic illustration of the fabrication process for a single-pixel TES micro-
calorimeter (cross-section, not to scale). An explanationof the fabrication steps is given
in the text.

thick Al or Cu cooling layer to the bottom of the wafer using sputter deposition (step
3). This provides the necessary conduction of heat away fromthe membrane and can be
easily etched away when the sensor is finished. In this way, the temperature does not
exceed∼ 40◦C during deposition.

After the bilayer deposition (step 4), the wafer is diced into chips which are processed
individually. The bilayer is patterned into a thermometer at the centre of the membrane
and a reference device towards the edge (step 5). Then, a resist pattern is laid out for
the Al wiring and bonding pads, which are applied using sputter deposition (step 6). As
shown in figure 3.3, the reference device has two connectionson either side to enable a
four-point resistance measurement; the sensor has just oneconnection on either side.

Subsequently, the resist pattern for the absorber is laid out. If an overhanging absorber
is to be produced (see section 5.2), a two-step process is used to create the mold for the
mushroom shape. Two resist layers are used with a 150 nm Al or Cu separation layer
in between to avoid double exposure of the bottom layer. The ‘hat’ of the absorber is
patterned in the top resist layer. Then, the separation layer is etched away. For this step,
it is important to protect the cooling layer on the back side of the membrane with resist,
if present. Next, the base of the absorber is patterned in thesecond resist layer. Then the
Cu part of the absorber is added by means of sputtering (step 7). If desired, a Bi layer is
applied on top of the Cu using thermal evaporation (step 8).

Finally, the cooling layer or alternatively the remaining Si under the membrane is
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etched away (step 9) and the sensor is completed. The backside of the chip is coated with
a thin layer of vacuum grease and mounted on a Cu mounting plate with phosphor-bronze
springs. The contacts are wire-bonded to a circuit board, towhich electrical leads can be
soldered.

The group at NIST has observed wide transitions in their Mo/Cu TESes [24]. This
was attributed to imperfections along the edges of the devices. They solved this problem
by creating well-defined edges by depositing normal metal strips along the edges. In the
devices manufactured at SRON, no such edge effects were observed, and no normal metal
strips were necessary to obtain steep transitions.

4.2 Cooling, bias and read-out

After the production process of the sensor is completed, it has to be incorporated in a
proper test setup. This involves cooling the sensor, applying a voltage bias and reading
out the current through the device. In this section, the requirements for the experimental
setup are described.

4.2.1 Thermal requirements

For the electro-thermal feedback to function properly, thesensor should be cooled sig-
nificantly below the transition temperature. For our 100 mK sensors, a bath temperature
≤ 20 mK is preferred. A dilution refrigerator or adiabatic demagnetisation refrigerator
may be used for this purpose. At SRON, we use a Kelvinox 100 dilution refrigerator
from Oxford Instruments, which provides ample cooling power. The necessary cooling
power at the lowest temperature stage is limited to the powerdissipated in the sensor and
(mainly) the shunt resistor, typically a nanowatt or less. At a higher temperature stage
(∼ 2 K), there is the power dissipated by theSQUID, typically∼ 0.1 µW. These demands
are not very challenging, but the bath temperature stability may be. Drift in the bath tem-
peratureTb leads to gain drift through the responsivityS. If the drift is not adequately
compensated, the measured spectrum will be smeared and the resolution degraded. When
the bath temperature changes, the system shifts to another equilibrium set point. This
changes a number of factors in the responsivity (2.30): current, resistance, temperature,
α and thermal conductance are all set point-dependent. Of these, the changes in current,
resistance and perhapsα are the most important. We will see how a change in bath tem-
perature will affect the responsivity. A set point in the transition is characterised by its
resistance, so we need to know how this parameter changes. From the feedback diagram
in figure 2.8, we see that a change in resistance due to a changein power is given by

∆R
R

=
α

GT
1

1+ β L0
∆P. (4.1)
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This change of power caused by a change in bath temperature can be derived from (2.6):

∆P =
dP
dTb

∆Tb = −nKT n−1
b ∆Tb (4.2)

We now take the derivative of the responsivityS = S( f = 0) with respect toR, see (2.30).
We use the expression withf = 0 because we are interested in the change in pulse area.
Keeping in mind the definitions ofα, β andL0, and assuming a constant slope of the
R(T )-curve, we obtain

R
S

dS
dR

= −2R + Rs + L0Rs

R + Rs

1
1+ β L0

. (4.3)

For the relative change in responsivity we can then write

∆S
S

=
R
S

dS
dR

× ∆R
R

(4.4)

=
2R + Rs + L0Rs

R + Rs

α
GT

1
(1+ β L0)2 nKT n

b
∆Tb

Tb
. (4.5)

Using the numbers from section 3.3 and a value forRs of 7 mΩ, we see that for a stability
given by a maximum∆S/S of 1/6000 (1 eV at the energy of the Mn Kα line, a widely
used X-ray test line), the bath temperature drift∆Tb should stay below 0.66 mK over the
measurement period. For shorter exposure times, this requirement is met in our dilution
refrigerator without temperature control. In 30 minutes, the peak-to-peak value of the bath
temperature is only∼ 0.15 mK. For longer measurement times (hours), active temperature
control may be necessary.

In principle, bath temperature fluctuations will also contribute to the current noise.
However, since the time constant of the bath is generally much longer than that of the
pulses due to the large mass of the cooler, this will have no effect on the energy resolution.

4.2.2 Electrical requirements

In this section we will examine the electrical requirementsfor operating the TES micro-
calorimeter with good energy resolution. These include a stable bias voltage, a low-noise
readout and an environment with low electromagnetic radiation.

Voltage bias A simplified schematic for the bias and read-out electronicsis given in
figure 4.2. The voltage bias is obtained by dividing a constant voltageVb of the order of
tens of mV by a wiring and filter resistanceRw of 130Ω and a shunt resistorRs of 7 mΩ.
Fluctuations on the bias voltage can influence the energy resolution in two ways: through
the responsivity and through the noise.
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Figure 4.2: The read-out electronics for a TES microcalorimeter. The TES is voltage-
biased through the wiring resistanceRw and the shunt resistorRs. The current through the
TES is converted to a magnetic field by the input coil and this is measured by theSQUID

magnetometer. The flux-locked loop (FLL) electronics control the current through the
feedback coil via the feedback resistorR f so that the flux in theSQUID remains constant.
The required feedback voltageVout is proportional to the TES current and can be further
amplified using room-temperature electronics.

First we will look at how drift in the bias voltage can cause gain drift. A fluctuation
in the voltage over the TES will have two important effects onthe responsivity (2.30):
The expression is inversely proportional to the voltage, but it also contains the resistance,
which depends on the set point and therefore on the voltage. Since the power flowing to
the bath is constant for small set point changes, we can write

∆R
R

= 2
∆V
V

. (4.6)

The relative effect on the responsivity is the sum of the contributions from the voltage and
the resistance effect:

∆S
S

= −∆V
V

+
R
S

dS
dR

× ∆R
R

(4.7)

= −
(

1+2
2R + Rs + L0Rs

R + Rs

1
1+ β L0

)

∆V
V

(4.8)

Hence, using again the values from section 3.3, for a responsivity stability of 1/6000, the
stability of the bias source over the course of the measurement needs to be better than
1/14000. This can be achieved using a stable voltage supply.

Noise on the bias supply can influence the current noise in theTES. We can model the
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noise from the bias generator as white up to a cut-off frequency fV :

〈V 2
b ( f )〉 = δV 2

b
1

1+ f 2/ f 2
V

(4.9)

whereδVb is the spectral density of the noise from the voltage generator. Noise on the
TES voltage couples into the circuit the same way as Johnson noise from the shunt resistor
(see the diagram in figure 2.8), so the contribution to the NEPis

NEPV ( f ) = δVb
dV
dVb

GT
Vα

√

(1−L0)2 +4π2 f 2τ2

1+ f 2/ f 2
V

(4.10)

= δVb
RRsGT

(R + Rs)RwVα

√

(1−L0)2 +4π2 f 2τ2

1+ f 2/ f 2
V

(4.11)

This can be made very small by using a low-pass filter with a very low cut-off frequency
fV in the bias line. In this way, the contribution to the energy resolution was made negli-
gible.

(Electro)magnetic susceptibility Susceptibility to electromagnetic radiation and mag-
netic fields may cause the sensor to behave differently than expected. Therefore, the
samples are mounted in the cryostat inside a superconducting Al canister which provides
good shielding from these effects. The wires going into the canister pass through filters,
shielding the inside from high-frequency noise.

Read-out The combination ofSQUID, input coil and feedback circuit provides a very
accurate current amplifier. In order not to deteriorate the energy resolution, its noise
should of course be significantly lower than the TES noise, inour case∼ 5 pA/

√
Hz.

Depending on the value of the feedback resistorR f and the ratio between the number of
turns of the input and feedback coils (in our case 1 kΩ and 1:8, respectively), the desired
noise level at the output of theSQUID will be in the order of 10 nV/

√
Hz. We have used

such aSQUID made available by the University of Colorado at Denver.

Data-acquisition For further processing (filtering), the signal may be sampled using
a digital system. To avoid ground loops, we have used an optocoupler to galvanically
separate the computer from theSQUID electronics. For the data acquisition, it is important
to avoid aliasing (see also appendix B). This is done by usinga low-pass anti-aliasing
filter and sufficient oversampling. The cut-off frequency ofthe anti-aliasing filter should
be chosen in such a way that the signal is not affected. The fastest part of the signal is the
pulse rise time of∼ 10µs. To be on the safe side, we should therefore use an anti-aliasing
filter with a time constant of∼ 5 µs. We use a 2nd order Butterworth filter. The filter
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Figure 4.3: Fraction of rejected pulses due to pile-up rejection as a function of count rate
for a 1 eV resolution contribution at 5.9 keV and a fall time of100µs, for pulses of equal
energy.

does not have an infinitely steep cut-off, so in order to avoidany aliasing we need to leave
some room between the filter cut-off frequency and the sampling frequency. Therefore,
we need a sampling interval of∼ 1 µs. We would like to sample a pulse for a length of
∼ 10τeff, so for a 100µs fall time, this means about 1000 samples/event. When the signal
is integrated, this will reduce the quantisation noise by a factor

√
1000= 32. Since our

average signal level for exponential pulses is
∫ 10

0 exp(−x)dx/10= 1/10 of the maximum
amplitude, for a 1 eV FWHM contribution at 6 keV we need 2.35×10×6000/32≈ 4000
quantisation levels, i.e. a 12-bit ADC board.

In addition to this sampling system, we use a pulse height analyser in combination
with analog pulse shaping electronics as a quick-look facility. This enables a real-time
look at a pulse height spectrum as it builds up. For measurement of I(V )-characteristics,
a high-resolution (16-bit) ADC board is available.

Pile-up rejection Resolution degradation may arise through one pulse influencing the
next. This is called pile-up. The implication of this effecton the energy resolution is
calculated analytically in the appendix in section B.3.2. Resolution degradation through
pile-up can be prevented by rejecting pulses that are too close to their precursor. In figure
4.3, the rejected fraction (dead time) is shown as a functionof count rate for a 1 eV
resolution contribution and a fall time of 100µs. As can be seen from the figure, up to a
few hundred counts per second, the dead time fraction is acceptable, but for higher count
rates it deteriorates quickly.

Filtering The digital filtering that we have used is described in detailin appendix B.
It basically consists of multiplying each pulse with an average pulse and integrating it.
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Our implementation was tested using simulated pulses onto which artificial white noise
was superimposed. In these simulations, the filter performed as expected. In appendix B,
some causes of resolution degradation in filtering are examined. However, these effects
are only responsible for a few percent in degradation of the theoretical value. Also, the
fact that our filtering procedure incorrectly assumes a white noise distribution should not
contribute significantly to the resolution degradation.

With the possible exception of theSQUID readout, these thermal and electrical re-
quirements can be met using commercially available equipment and should therefore not
be an obstacle for obtaining high spectral resolutions withthese microcalorimeters.

To test the whole system of cooler, bias voltage generator,SQUID, amplifiers, opto-
coupler, filters and data-acquisition system, a normal resistor (in this case, the TES in the
normal state) can be hooked up in the circuit. A low-noise exponential pulse can then be
superimposed on the bias voltage. The pulse is adjusted so that the amplitude and fall
time on the output match the X-ray pulses. If the setup is sufficiently quiet, the resolution
of the spectrum that is measured in this way should only be limited by the Johnson noise
in the resistor. When we scaled the spectrum to 5.9 keV, we found a resolution of 1–2 eV
FWHM. For a target resolution of 5 eV, we conclude that the measurement setup will have
no significant contribution to the measured resolution.



CHAPTER 5

TOWARDS A XEUS PIXEL

In this chapter, we will look at the preformance of differentsensor layouts in terms of en-
ergy resolution at 5.9 keV. A number of designs leading towards aXEUS-compatible pixel
were investigated. Working from a simple square absorber, we developed a sensor with a
mushroom-shaped overhanging Cu/Bi absorber for increasedfilling factor and absorption
efficiency. The results will be described below.

For most experiments, a square TES with sides of 310µm was used, consisting of a
bilayer of 50 nm Au on top of 14 nm Ti. It should be noted that a superconductor just
below itsTc has a specific heat of 2.43 times the electronic specific heat at that temper-
ature. Using values for the specific heat from [19], we have for the heat capacity of the
TES at 0.1 KCTES= 0.14 pJ/K. Keeping in mind the total heat capacity of 0.50 pJ/K from
section 3.3, this leaves for the absorberCabs= 0.36 pJ/K. In the various absorber designs
that will be considered, this heat capacity was kept constant to ensure comparable energy
resolution and time constant.

5.1 Square absorber

To be able to contain an X-ray event, the sensor needs a certain minimum heat capacity.
This can be attained by using a thick TES which combines the functions of absorber
and thermometer, as is done by groups at NIST and GSFC. Since ahigh filling factor
is desired, care must be taken to create room in the design forthe electrical wiring. At
NIST, an elevated sensor design with wiring running underneath is developed. At GSFC,
people are working on creating vias through the wafer in order to have the wiring on the
backside. SRON is working towards overhanging absorbers, which leave room for the
wiring to run underneath. Therefore, the thermometer and the absorber are not combined
but seperate. For a fast response of the sensor, a good thermal conductance of the absorber
is necessary and it has to be well-coupled to the TES. This canbe achieved by using a
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normal metal absorber and ensuring that the electron systems of TES and absorber are in
contact. However, with a normal metal absorber, theTc of a thin TES will be suppressed
in the contact area due to the proximity effect. Therefore, it is impractical to cover the
whole TES with the absorber, since it would be entirely driven to normal resistivity. A
solution to this problem is to cover only part of the TES with the absorber.

This was done with sensor X038, which consisted of a square TES with a square
absorber on top with sides of about one third of those of the TES. For further details
of this sensor, we refer to the table in appendix A. The calculated heat capacity of the
total sensor is 0.59 pJ/K at 100 mK. Through (2.38), this yields a theoretical resolution
based on the small-signal model ofξ ×4.2 eV FWHM, whereξ depends on the value
of α at a particular setpoint. This value can be experimentally determined: by sweeping
the bias voltage, anI(V )-characteristic was measured. Note that for the voltage on the
sensor, we haveV ≈ Rs(Vb/Rw− I), with Vb the measured voltage at the bias input. From
the I(V )-curve, a number of parameters can be calculated at each set point: R = V/I,
P = VI, T = (P/K + T n

b )1/n, G = nKT n−1 andα = (T/R)(dR/dT), as shown in figure
5.1. The derivativedR/dT is found by taking the average slope of theR(T )-curve (under
bias conditions, as calculated from theI(V )-curve) over a very small bias voltage interval.
Alternatively, we can useα = (GT/P)(I/V −dI/dV)/(I/V +dI/dV), whereGT/P ≈ n.
This last approximation is less exact, but does not require knowledge of the parameters
Tb or K.

It should be noted that theα plotted here describes the temperature sensitivity at each
set point in anequilibrium situation. This is the case when the sensor passes through a
range of set points as the result of a change in the bias voltage. However, when it passes
through a range of set points due to athermal effect, such as an X-ray event, it will no
longer be in an equilibrium situation. At the same set point in terms of resistance, the
current will be lower compared to the equilibrium situation. Sinceα depends on the TES
current, the values ofα that the sensor encounters will differ slightly from the ones plotted
here.

Based on theα measured here, the theoretical resolution in a practical set point (lower
part of the transition,∼ 1 µV) can be as good as 1.7 eV forα ∼ 30. How does this num-
ber compare with real measurements? Figure 5.2 shows an energy spectrum measured
with this sensor biased atV = 0.97 µV with an exposure time of 51 minutes. The spec-
trum was obtained from digitized X-ray pulses which were digitally filtered using the
‘optimum’ filter as described in appendix B, which included base line restoration, timing
correction and drift correction. The fitted resolution of 4.5 eV is fairly typical for this
sensor. With shorter exposure times (5 minutes) resolutions down to 3.9 eV were meas-
ured. The observed fall time was∼ 80 µs. This is consistent with (2.14), since we find
through (2.16) a loop gain ofL0 = 20 in this setpoint.

This design meets theXEUS requirements for fall time and resolution at 5.9 keV,
though there are still a number of issues to be pursued:

• How reproducible is this result?
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Figure 5.1: Top left: I(V )-characteristic of sensor X038 with square absorber.Top right:
P(V )-curve calculated from theI(V )-curve. The power plateau is at 24 pW.Bottom
left: R(T )-curve calculated from theP(V ) andI(V ) curves.Bottom right: α(V )-curve
calculated fromR(T ). The dotted lines indicate the values of the parameters associated
with a bias set point ofV = 0.97µV.
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Figure 5.2: Energy spectrum of a55Fe test source measured with sensor X038 with a
square absorber. Visible are the Mn Kα and Kβ lines at 5899 eV and 6490 eV, respect-
ively. The counts to the left of the main peak are attributed to photons absorbed by the
membrane. The inset shows an enlargement of the Kα-peak. The drawn line is a weighted
fit to the data made by convolving the line profile from [25] with a Gaussian instrument
response. The width of the best-fit Gaussian was 4.5 eV FWHM with a reducedχ2 of 1.2.
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Figure 5.3: Measured55Fe Kα spectra with fitted model spectrum for sensors X049 (left)
and X051-3 (right).

• Can the absorber size and efficiency be improved?

• What is the performance at lower X-ray energies?

• Can the energy resolution be improved?

These questions will be addressed in what follows.

Reproducibility To check the reproduciblity, a copy of X038 was made on a chip from a
new wafer, called X048 (see appendix A for details). The new wafer had slightly different
layer thicknesses from X038’s, but they provided the same bilayerTc of 100 mK. The Cu
absorber had a thickness of 4.1µm. This resulted in a slight decrease of heat capacity
compared to X038:C = 0.54 pJ/K. However, the theoretically expected performance
does not change significantly. During tests, this sensor hadan energy resolution of 4.7 eV
at 5.9 keV, comparable with the earlier X038. The fall time ofthe pulses was∼ 100µs.
This indicates that the performance is not dependent on a specific wafer. It also shows
that the lithographic process is under control. This sensorwill serve as a reference sensor
for the variations in absorber as described below.

Absorption efficiency In order to improve the absorption efficiency, a new sensor la-
belled X049 was made, identical to X048 but with 3.4µm Bi on top of the Cu absorber.
This increased the efficiency at 6 keV from 39% to 88% without significantly increasing
the heat capacity. Further details on this sensor are in appendix A. Pulse fall times for
this sensor were again about 100µs. The energy resolution was 4.5 eV, as shown in figure
5.3 (left). There appeared to be a low-energy tail present with the peaks in the spectrum.
When the tail was ignored and the fit was made to the part that isdominated by the peaks,
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Figure 5.4: SEM images of sensor X051-3 with overhanging absorber, as astep towards
a XEUS pixel with a high filling factor.Left : Overview of the sensor showing the absorber
on top of the TES with the wiring on the side.Right: Detail of the overhanging absorber
showing the Cu bottom layer and the Bi top layer. There is 1.3µm space between the
TES and the overhanging part of the absorber.

the reducedχ2 was 1.1. The low-energy tail might be the result of differences between
pulses in thermalisation in the absorber. While this issue is not completely resolved, we
decided to move on towards a layout more compatible with theXEUS demands.

5.2 Mushroom absorber

This section is concerned with increasing the absorber sizeso as to optimise the filling
factor, while keeping the TES the same. This can be done by creating a design in which
the absorber overhangs the TES and wiring. As a starting point, a sensor (X051-3) was
made with an absorber base identical to the sensors discussed previously, but with a ‘hat’
that overhangs the TES. Details are in appendix A. An image ofthe overhang is shown
in figure 5.4. The absorber consisted a Cu layer covered with Bi. In this sensor, the Bi
provides the stopping power while the Cu provides the heat capacity and thermal con-
ductance. The area of the TES covered by the absorber is increased from 10% to 27%.
For the finalXEUS design, a smaller TES and a larger overhang will be used, covering the
whole TES and the wiring. The absorption efficiency is calculated to be 93% at 6 keV.

The effective time constant was found to be around 140µs. The resolution was typ-
ically 5–6 eV, but in one short-exposure case, 4.5 eV was measured, as shown in figure
5.3 (right). This was a 22 s acquisition with only∼ 450 counts in the Kα peak. The
reducedχ2 of the fit was 0.7. It is not clear why the fall time and typical resolution did
not reproduce compared to earlier sensors. There may be someproblems in the Bi/Cu
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Figure 5.5: Left : 4-wire measurements of resistance as a function of temperature for a
device with a type I superconducting ground plane with several low, constant measure-
ment currents.Right: Critical current as a function of temperature (dots with error bars)
derived from the figure on the left, with a theoretical curve (solid line) based on a critical
current at zero temperature of 2 mA.

interface relating to the deposition conditions and the formation of an oxide layer on the
Cu. Groups at NIST and GSFC working on similar devices also reported problems with
Bi absorbers at higher (� 1 keV) X-ray energies [26]. This problem might be further
investigated by using an X-ray test source at a lower energy.

5.3 Magnetic effects

Due to its superconducting nature, the TES is very sensitiveto magnetic fields. This
means that shielding the TES from magnetic fields is important, but a field can also be
turned to an advantage. Sinceα is dependent on the set point, it may be that at some set
points, the constraint of (3.15) is not satisfied. This results in instabilities in the circuit that
cause oscillations on the output, which were sometimes observed. Since the intrinsicα of
a bilayer is hard to adjust and must often be considered as given, an external magnetic field
may be used to tune the transition steepness. Using a field of∼ 0.1 G, α is sufficiently
suppressed to remove these instabilities.

Because the current through the TES also generates a magnetic field, α is always
somewhat suppressed. In order to get a higherα and thus be able to use a higher heat
capacity for the same energy resolution, the induced magnetic field might be suppressed
by a superconducting ground plane. This is a layer of superconducting material close to
the TES, but electrically insulated. If a type I superconductor is used for the ground plane,
all magnetic field will be expelled. To see how the transitionis affected by such a ground
plane, a device was made with a 1µm Al layer on the backside of the silicon nitride
membrane (X052-1, see appendix A).R(T ) measurements were performed with different
measurement currents, as shown in figure 5.5 on the left. In the case of a TES without the
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Al ground plane, close toTc there will already be a partial flux penetration, even when the
current is smaller than the critical current, causing the TES to become resistive. With the
Al ground plane, the TES will remain superconducting until the critical current is reached.
In this case, the measurement current is equal to the critical current associated with the
temperature at which the TES becomes resistive. These critical currents are plotted in
figure 5.5 on the right. To this data, the theoretical relation

Ic(T ) = Ic(0)

(

1−
(

T
Tc

)2
)

√

1−
(

T
Tc

)4

(5.1)

was fitted [27]. This resulted in a value of the critical current at zero temperature of
Ic(0) = 2 mA. With a TES cross-section area of 20µm2, the critical current density is
0.1 GA/m2. This is useful information for determining the current necessary to bring a
TES into the normal state, which is necessary to start the operation under voltage bias.
Since the magnetic field is screened, the transition under bias conditions will be steeper
than in a sensor without ground plane. With a higherα the same energy resolution can
be obtained with a higher heat capacity, which is of interestfor applications that require
a larger detector size. However, the sensor X052-1 described here had the same heat
capacity as the sensors without a ground plane. Due to the higherα, its effective thermal
time constant will be shorter and it will be difficult to bias without oscillations caused by
electro-thermal instabilities.

5.4 Conclusions

In conclusion, we can say that with the type of detector discussed here, an energy resol-
ution below 5 eV at 5.9 keV is well possible. The effective fall time allows for a count
rate of the order of 100 counts per second, with little resolution degradation and pulse
rejection. The required absorption efficiency has been attained and a start has been made
towards a geometry that fulfills the filling factor requirement.

The measured resolution was not as good as predicted by theory. The cause for this
discrepancy is the subject of the next chapter.



CHAPTER 6

ENERGY RESOLUTION:
GEOMETRY AND NOISE

ASSESSMENT

In the previous chapter it was shown that the TES microcalorimeter has an energy resol-
ution that is adequate for the intended application, but that it does not perform as well as
theoretically predicted. In chapter 2, we have calculated atheoretical resolution based on
expressions for phonon and Johnson noise and a small-signalresponsivity model. This
was compared to a resolution obtained from a measured spectrum of a55Fe radioactive
source and a major discrepancy was found:

Resolution based on small-signal theory: 1.7 eV
Measured resolution at 5.9 keV: 4.5 eV

This chapter investigates a number of possible causes for this discrepancy. We will per-
form a quick check for aborption position dependence and then discuss a source of excess
noise and its dependence on the geometry by means of a numerical simulation. Finally,
we will look at the validity of the responsivity model.

6.1 Position dependence

An effect that could degrade the energy resolution is that ofthe dependence of the detected
energy on the position of the photon absorption in the absorber. In a sensor such as
X038 (see appendix A), the TES might react faster to energy deposited at the edge of the
absorber, close to the TES, than to energy deposited in the centre of the absorber, which
needs time to spread out to reach the TES. This would result ina difference in rise time of
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the pulse. Since the same filter, with a single rise time, is used for both cases, a difference
in deduced energy might arise. However, the read-out cannotdetect changes faster than
the electrical time constantL/R. So, if the heat diffusion occurs faster than this time
constant, there is no way to register any difference betweenabsorption locations. We can
compareL/R to the diffusion time constantCabs/Gabsby substituting some typical values:

Cabs = 0.40 pJ/K
Gabs = 0.12µW/K

}

⇒ Cabs/Gabs= 3.3 µs

L = 0.50µH
R = 0.020Ω

}

⇒ L/R = 25µs

The thermal conductance is obtained from the electrical resistance of the Cu absorber us-
ing the Wiedemann-Franz law. The fact that the diffusion time is faster than the electrical
time constant suggests that any position-dependent effects will not be detectable and thus
not contribute to the energy resolution.

For the overhanging Cu/Bi absorber of sensor X051-3, the situation is much the same.
Although the Bi has a low thermal conductance, the Cu layer ensures sufficiently fast
thermalisation to avoid position-dependence. For this configuration, no problems are to
be expected, but care should be taken that this remains the case also when the absorber
size is increased further and the Cu layer is made even thinner.

6.2 Excess noise

An important cause of the discrepancy between theoretical and measured energy resolu-
tion is the presence of excess noise, that is noise in the detector other than described in
section 2.4. To see whether this is present, the noise can be measured as a function of
frequency at a specific set point with a spectrum analyser. Using the parameters obtained
from theI(V )-curve, the theoretical noise as described in section 2.4 can be calculated and
compared to the measured noise. Figure 6.1 (left) shows a typical measured noise spec-
trum with the calculted noise components of section 2.4 indicated. It is clear that there
is a large discrepancy at frequencies above 1 kHz. From the measured noise, the NEP
can be calculated by dividing it by the responsivity (2.30),which is calculated from the
parameters obtained from theI(V )-curve. From the NEP, the expected resolution based
on the measured noise can be calculated through (2.37) and compared to the theoretical
resolution. For the sensor X038 discussed previously, the resolution based on the noise
comes to 3.0 eV. To summarise, we have:

Resolution based on small signal theory: 1.7 eV
Resolution calculated from measured noise and small-signal responsivity: 3.0 eV
Measured resolution at 5.9 keV: 4.5 eV



6.2. Excess noise 59

100 101 102 103 104 105

frequency (Hz)

10-12

10-11

10-10

sp
ec

tr
al

 d
en

si
ty

 (
A

/r
tH

z)

100 101 102 103 104 105

frequency (Hz)

10-12

10-11

10-10

sp
ec

tr
al

 d
en

si
ty

 (
A

/r
tH

z)

Figure 6.1: Left : Measured noise spectrum of sensor X049 at set pointV = 1.2 µV
(grey), together with theoretical noise spectra of phonon noise (dotted), Johnson noise
(dashed) and total noise (solid). Unlike the other curves, the curve for the total noise
includes the cut-off at∼ 20 kHz caused by the electrical time constant in the system, so
that it may be compared with the measured curve. The 1/ f component in the measured
curve is assumed to originate from theSQUID, but the noise bump at frequencies above
1 kHz is from the sensor. Clearly the noise cannot be described just by phonon and
Johnson noise.Right: The same noise spectrum, but with internal thermal fluctuation
noise (dash-dotted) included in the theoretical curves. This gives a good description of
the noise above 100 Hz.
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From the first two numbers and figure 6.1 (left), it is clear that excess noise is present,
having a significant contribution to the energy resolution.But comparison with the third
number shows that this is not the complete explanation for the discrepancy. In what
follows, the excess noise will be examined further. Later, we will look at the remaining
discrepancy.

Flux flow noise One possible source of excess noise is flux flow noise [28]. This is noise
caused by voltage pulses that are the result of the movement of magnetic flux vortices in
the superconductor under the influence of the Lorentz force.The presence of this type
of noise may cause degradation of the resolution. To see whether this effect is present
in our devices, a sensor was made with a Nb ground plane on the backside of the Si3N4

membrane (X055-6, see appendix A). Nb is a type II superconductor, which will allow
flux to penetrate but make it harder for the vortices to move, effectively pinning them.
This should decrease the effect of flux flow noise, if present.Of this sensor, the noise
was measured and compared to that of earlier sensors. No significant reduction in current
noise was found, so we conclude that the effect of flux flow noise on the current noise in
our devices must be less than 20 pA/

√
Hz.

Superconductivity fluctuation noise Flux flow noise is associated with the creation
and destruction of flux vortices at the edges of the TES. A way to avoid such edge effects
is to use an edgeless geometry. This has been tried by Luukanen et al. in a so-called
Corbino geometry [29]. This is a round TES with a circular outer contact. The current
flows from the outside through a superconducting disc to a centre contact and radially
back through the TES. There are no edges parallel to the direction of the current, ex-
cluding any edge effects. Unfortunately, this geometry showed a lot of excess noise, and
the energy resolution was degraded compared to earlier devices. The excess noise was
explained as fluctuations in the location of the boundary between the superconducting
and normal regions. This boundary is very sharp in this geometry because of the radial
current distribution. The current density is the highest inthe centre, and this area will
be normal when the sensor is biased in the transition. The normal area is surrounded by
a superconducting area. Fluctuations in the location of theboundary result in resistance
fluctuations which are observed as current noise. In the square sensor geometry as used
by SRON, the distribution of superconducting and normal regions is less well-defined and
the superconductivity fluctuation noise is not dominant.

Internal thermal fluctuation noise In any closed thermodynamical system at non-zero
temperature, there is a random movement of energy, but the total amount of energy is
conserved. The magnitude of the fluctuations depends on the temperature and the heat
capacity of the system. When two such systems of equal temperature are placed into
contact with each other, energy transfer occurs across the boundary. In this situation, the
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Figure 6.2: Thermal schematic for the model of energy fluctuations overthe heat link
GTES between the TES and the absorber in a lateral sensor. The linkto the bathG is
shown to connect to the absorber because it dominates the electron-phonon coupling due
to its larger volume.

amount of energy in a single subsystem is not constant. This physical principle underlies
the model that follows.

Hoevers et al. have shown that excess noise in a lateral TES/absorber combination
can be described by a model based on thermal fluctuations in the TES itself [30]. In
this model, the TES and the absorber are placed side by side, as shown in figure 6.2.
There is a heat link between the two, dominated by the finite thermal conductance of the
TES itself. Random energy fluctuations over this heat link cause the TES temperature to
fluctuate. This temperature noise has a white spectrum up to acertain cut-off frequency,
determined by the heat capacity and thermal conductance of the TES. The total integrated
temperature fluctuations are normalised to

√

kBT 2/CTES. The temperature fluctuations
result in fluctuations of the TES resistance, which are observed as current noise.

This model of internal thermal fluctuation noise (ITFN) introduces a current noise
component that can be written as

iITFN = δTTES
αI
T

R
R + Rs

1
1+ β L0

√

1+4π2τ2 f 2

1+4π2τ2
eff f 2

1
√

1+( f/ fTES)
2

(6.1)

with δTTES the density of the temperature fluctuations in the TES, givenby

δTTES =

√

4kBT 2

GTES
(6.2)

and fTES the cut-off frequency of the fluctuations, given by

fTES =
GTES

2πCTES
. (6.3)
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Here,GTES is the thermal conductance inside the TES andCTES the heat capacity of the
TES.GTES can be estimated using the Wiedemann-Franz law:

GTES=
LnT
Rn

(6.4)

with Ln the Lorenz number 2.45×10−8 WΩ/K2 andRn the normal resistance of the TES.
Although the geometry is different in the case of the centralabsorber, it is likely that
a similar noise component is present. After all, we are stilldealing with two systems in
contact with each other. However, the value we should assumefor GTES is probably higher
than in the case of a TES without absorber on top, since the central absorber partially
short-circuits the TES thermally. In figure 6.1 (right), this noise component is included
in the theoretical noise curves, using a best-fit value forδTTES of 2.3 nK/

√
Hz. The total

theoretical noise shows a good match with the measured noise.
The most distinctive property of this noise component is itsdependence onαI/T , a

factor which, in turn, depends on the bias set point. In orderto see whether it is indeed
this type of noise that is present in this type of sensor, we can plot the measured and
calculated noise as a function of set point. Using an RMS voltmeter, the noise integrated
over the whole bandwidth was measured as a function of set point. Filters were used to
limit the measurement band to well-known values, typically100 Hz–20 kHz. The result
is shown in figure 6.3. The curve which incorporates the ITFN component describes the
noise well at bias levels above 1.3µV, but deviates at lower bias voltage set points. This is
probably due to problems with determiningα at these set points. As the expression forα
contains the resistance in the denominator, it is highly sensitive to the resistance value at
set points low in the transition. The resistance is determined from a measuredI(V )-curve.
A small offset in this measurement can cause up to a factor of∼ 2 uncertainty inα. The
strong correlation of the excess noise withα means that it must be of a thermal origin.
This strengthens the case for the ITFN model.

For the curve in figure 6.3, a value of 3.0 nK/
√

Hz is used forδTTES in (6.1). Through
(6.2), this results in a calculatedGTES of 68 nW/K. This is very high compared to the
value from the Wiedemann-Franz law, 6.0 nW/K, differing by afactor of∼ 11. In [30],
this factor was found to be∼ 4. Evidently, the presence of the central absorber reduces
the sensor’s sensitivity to this type of noise. The role of the absorber with respect to the
ITFN level is explored in depth in the next sections.

6.3 Zebra absorber

In the previous section it has been established that the excess noise in devices with a
central absorber can be described with a model of thermal fluctuations inside the TES,
albeit with a lower value ofδTTES than in the case of a configuration with TES and
absorber side by side. We therefore assumed that the magnitude of ITFN component was
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Figure 6.3: Current noise averaged from 100 Hz to 20 kHz as a function of bias voltage
for sensor X038. Plotted are the measured noise (solid), thecalculated noise consisting of
phonon and Johnson noise (dotted) and the calculated noise including an ITFN component
with δTTES = 3.0 nK/

√
Hz (dashed). The shaded area indicates the estimated standard

deviation of the dashed curve, which becomes large at low setpoints due to difficulties in
determiningα there.
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dependent on the absorber geometry. This section describesthe experiments that were
performed to test this assumption.

Thermal fluctuations are always present in any system with a non-zero temperature.
They can be thought of as random movements of (thermal) energy from one location to
another, causing a temperature fall in the first location anda temperature rise in the other.
In a TES, these temperature fluctuations are translated intoresistance fluctuations, which
in turn may be visible as fluctuations in the current through the voltage-biased TES. How-
ever, in a sensor without an absorber, an increase in resistance in one location will be
compensated by a decrease in resistance in another, effectively cancelling out any current
fluctuations. In other words, if energy is conserved within the TES, the temperature av-
eraged over the TES is constant and so is the total resistance. The magnitude of current
noise caused by thermal fluctuations in such a TES will be negligible. This does not hold
for a sensor that includes an absorber, since it is no longer homogeneous. The absorber
geometry makes the internal thermal fluctuation noise (ITFN) visible in three ways:

Heat capacity distribution Energy fluctuations between areas with different heat capa-
city cause different temperature variations in those areas. As the heat capacity of
the absorber is large compared to that of the TES, a temperature rise in the absorber
will be smaller than the corresponding temperature fall in the TES.

Temperature sensitivity distribution Temperature fluctuations in areas with different
temperature sensitivity (α) cause different resistance fluctuations in those areas.
The absorber resistance is not sensitive to temperature (α = 0), so an increase in
resistance in the TES will not be compensated by a corresponding decrease in res-
istance in the absorber.

Current density distribution Resistance fluctuations in areas with different current dens-
ity cause different fluctuations in the TES current. The presence of a low-resistance
absorber may cause a non-uniform current density distribution. The decrease in the
total current caused by a resistance increase in an area withlow current density will
be smaller than the increase in total current caused by a resistance decrease in an
area with high current density.

To test this, devices with so-called zebra-stripe absorbers were fabricated: X043 with a
single stripe and X047 with four stripes. These stripes are rectangular absorbers extending
over the whole width of the TES, perpendicular to the direction of the current. Details are
given in the table in appendix A. Again, the heat capacities were kept the same as the
reference device. The idea behind the stripes is that, unlike in the case of the central
absorber, the current density in these devices is completely uniform. This eliminates the
effect that a non-uniform current density distribution hason the ITFN. The effects of the
heat capacity distribution and temperature sensitivity distribution are still in place. The
different number of stripes provide a different number of areas of those parameters. Of
these sensors, noise spectra were measured at various bias points. Two examples are
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Figure 6.4: Current noise spectra of sensors X043 (one stripe, left graph) and X047 (four
stripes, right graph). The grey curve is the measured noise while the black curves are
theoretical noise spectra based on parameters obtained from the I(V )-curves: phonon
noise (dotted), Johnson noise (dashed), ITFN (dash-dotted) and total noise (solid). The
ITFN curves are fitted by adjusting the parameterδTTES to the values of 4.0 nK/

√
Hz (one

stripe) and 1.3 nK/
√

Hz (four stripes). The curve for the total noise includes thecut-off
caused by the electrical time constant at∼ 20 kHz.

shown in figure 6.4. The spectra have a 1/ f -component that is also present in spectra
taken with the sensor in the normal state. This component is assumed to originate from
theSQUID and not from the sensor. The spectrum of the single-stripe sensor is dominated
by the ITFN component, just like the sensors with a central absorber discussed earlier.
However, the spectrum of the four-stripe sensor can almost be described by phonon and
Johnson noise alone. Only a small ITFN component is nescessary. Clearly the geometry
plays a role in the magnitude of the ITFN parameterδTTES. To investigate this geometry
dependence in more detail, a numerical noise simulation of these devices was performed.

6.4 Numerical noise simulation

In this section, we will discuss the details and results of the numerical simulation used to
gain insight into the geometry-dependence of the noise. First, the method and verification
of the simulation is described. Then, a one-dimensional array of elements is simulated. In
this way, only sensors that have a uniform cross-section canbe simulated. The simulation
is later extended to a two-dimensional grid, which does not restrict the simulated sensors
to uniform cross-sections.
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6.4.1 Method

Noise is a small-signal effect, and can be calculated using the small-signal equations in
section 2.4, which are expected to yield the correct results. These equations however,
assume the sensor to be a single element. To investigate the influence of a sensor geo-
metry consisting of different elements on the spectral noise from the microcalorimeter, a
numerical simulation was used. The simulation consisted ofa system of equations which
were solved simultaneously using the Saber simulator from Synopsys Inc.

The process of the simulation involves a description of the system in terms that the
simulator can understand. The sensor is divided into a number of discrete elements with
their own temperature, electrical resistance, noise sources etc. These elements are then
allowed to exchange energy according to heat flow equations.Starting from some initial
conditions, the equilibrium state can be calculated. In that state, the effect of the noise
sources on the output signal can be calculated and the noise spectra can be plotted. The
Saber program includes facilities for probing the system indifferent locations and for
generating all kinds of graphs. Technical details on the simulation are given in appendix
C.

6.4.2 Verification

With the components described in the appendix, a simple single-element biased TES
model can be built, as shown in figure 6.5. As the current noiselevels for phonon and
Johnson noise are known analytically in this simple case (see section 2.4), we can use
this model as a verification of the simulation. To do so, the simulation was run using
realistic parameters (table 6.1) and a spectrum of the current noise through the inductor
was plotted, shown in figure 6.6. The theoretical noise levels are also given in table 6.1.
The theory and the simulation are in good agreement. Becauseour basic building block
adheres to the analytically expected results, we are confident that more complicated sim-
ulations will also yield meaningful results. We will now usethis simulation to investigate
the dependence of the noise on the geometry.

6.4.3 One-dimensional array

Using the building block consisting of a TES thermometer anda heat capacity, we can
construct a more complicated sensor geometry. To start with, we will look at a one-
dimensional array of sensor elements coupled by thermal conductors to each other (Gint)
and to the bath (Gb). This is illustrated in figure 6.7. Since the array is one-dimensional,
only sensors with a cross-section that is identical over thewhole width can be simulated.
Five one-dimensional designs were simulated. Along with the descriptions below, a little
cartoon of the cross-section is given. In these pictures, a thicker part represents an area
of higher heat capacity and thermal conductivity. The shaded areas are insensitive to



6.4. Numerical noise simulation 67

Vb

Rw

Rs

L

R(T ) C

G

δV

δP

Figure 6.5: Simple biased TES model: the temperature-dependent, power-dissipating
TES resistor is thermally coupled to a heat capacity linked to a bath. Noise sources are
present in series with the TES resistor and across the thermal link. The components within
the dashed rectangle form a basic building block for a more complex model.

Table 6.1: Parameters used in the verification of the TES simulation using a single ele-
ment, and the analytical noise levels.

Parameter Symbol Value

Bias voltage Vb 20 mV
Wiring resistance Rw 130Ω
Shunt resistance Rs 7 mΩ
Inductance L 0.5µH
Steepness of transition α 10
Normal resistance Rn 0.1Ω
Critical temperature Tc 0.1 K
Bath temperature Tb 0.02 K
Heat capacity C 0.5 pJ/K
Thermal conductance G 0.33 nW/K

Johnson noise (suppressed) ijo( f = 0) 1.6 pA/
√

Hz
Johnson noise (unsuppressed)ijo( f → ∞) 9.9 pA/

√
Hz

Phonon noise iph( f = 0) 9.3 pA/
√

Hz
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Figure 6.6: Example of the output of the Saber program: simulated noisespectra of
phonon and Johnson noise in the case of a single element. The levels and corner frequen-
cies agree with the theoretical values.

Gint

Gb

Figure 6.7: Part of an one-dimensional array of simulation elements. The square boxes
contain the components inside the dashed rectangle in figure6.5. Each has electrical con-
nections to its neighbours (horizontal lines). It is also connected by thermal conductances
to its neighbours (Gint) and to the bath (Gb). A single element of this array is indicated by
a dashed rectangle.
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Table 6.2: Total values of the simulation parameters. The values per simulation element
are obtained by dividing (or in the case of the internal conductances: multiplying) the
values in the table by the number of elements.

TES normal state resistance 0.20Ω
TES internal thermal conductance 12 nW/K
TES heat capacity 0.14 pJ/K
Absorber resistance 20 mΩ
Absorber internal thermal conductance 0.12µW/K
Absorber heat capacity 0.40 pJ/K
Total thermal conductance to bath 0.33 nW/K

temperature changes, while the unshaded areas represent temperature-sensitive TES parts.
The following designs were simulated:

1. A homogeneous design with all the heat capacity distributed evenly throughout the
sensor ( ).

2. A design with the heat capacity concentrated mostly in themiddle third of the

sensor ( ). In this part, the thermal conductivity is also increased,the
electrical resistance is low and the sensor is not sensitiveto temperature change
(α = 0). This design simulates the single-stripe zebra absorberfrom the previous
section.

3. A similar design but with the absorber part in 4 seperate sections ( ),
simulating the four-stripe zebra absorber.

4. A design with higher heat capacity and thermal conductivity in the centre but
with a TES extending over the whole sensor (not suppressed bythe absorber)

( ). This is a test to see how the noise is influenced by the distribu-
tion of heat capacity, independent of the TES.

5. A design with a homogeneous heat capacity distribution but with the TES insensit-
ive to temperature in the centre ( ). This is a test to see how the noise
is influenced by the TES, independent of the distribution of heat capacity.

Each simulated design consisted of 27 elements. This numberwas chosen to allow for
a large number of different designs to be simulated with the same number of elements.
The elements could be absorber (α = 0) or TES (α > 0) elements. The heat capacity,
thermal conductance and electrical resistance, as given intable 6.2, were divided as fol-
lows over the elements. The TES parameters were divided by the total number of ele-
ments, while the absorber parameters were divided by the number of absorber elements.
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Figure 6.8: Current noise spectra obtained from the numerical simulation of a one-
dimensional homogeneous array (design 1) withα = 40. Dashed curve: Johnson noise;
dotted curve: noise from the link to the bath; solid curve: total noise.

For an absorber element, the TES and absorber parameters were added. For example,
with 27 elements of which 9 are absorber elements, the heat capacity of a single TES
element is 0.14/27 = 0.0052 pJ/K. The heat capacity of a single absorber element is
0.40/9+0.14/27= 0.050 pJ/K. The total heat capacity was kept constant to allow com-
parisons between the designs. The thermal conductance to the bath is distributed evenly
over the sensor. This is not strictly correct since a component of the thermal conductance
is the electron-phonon coupling, which scales with the volume of a sensor element. But
sinceGint � Gb, the difference in thermal conductance to the bath is insignificant and an
even distribution is a good approximation.

We are particularly interested in the behaviour of the noiseproduced by the internal
thermal conductances (Gint in figure 6.7), as these are responsible for the ITFN. In the
homogeneous case (1), this noise component is absent, as visible from figure 6.8. In
design 2 (figure 6.9, left), this component is clearly present. Apparently it originates
from the inhomogeneous distribution of heat capacity and temperature sensitivity in this
design. In the case of the four-striped absorber (3), the ITFN component is much less
prominently present (figure 6.9, right). This can be seen more clearly if we increaseα,
since this noise component scales withαI/T . In figure 6.10 the noise from designs 2
and 3 is plotted withα = 120. In the single-stripe case (design 2), the ITFN introduces
a significant bump at frequencies above 10 kHz, while this is much less pronounced in
the four-stripe case (design 3). This clearly demonstratesthe geometry dependence of the
ITFN component.

Designs 4 and 5 were intended to separate the effects of the heat capacity distribution
and the temperature sensitivity distribution. In figure 6.11, the noise spectra for those
cases are shown. Clearly, the inhomogenity in the heat capacity and thermal conductivity
are more important than that in the temperature sensitivity. However, when we compare
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Figure 6.9: Current noise spectra obtained from the numerical simulation of a one-
dimensional array withα = 40. The curves are coded in the same manner as in figure
6.8, with the addition of the dash-dotted curve: noise from internal thermal link.Left :
Design 2, single-stripe zebra absorber.Right: Design 3, four-stripe zebra absorber.

Figure 6.10: Current noise spectra obtained from the numerical simulation of one-
dimensional array withα = 120. The curves are coded in the same manner as in figure
6.9. Left : Design 2, single-stripe zebra absorber.Right: Design 3, four-stripe zebra
absorber.
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Figure 6.11: Current noise spectra obtained from the numerical simulation of the 1-
dimensional array withα = 40. The curves are coded in the same manner as in figure 6.9.
Left : Design 4, central absorber with the TES covering the whole sensor.Right: Design
5, homogeneous heat capacity with the TES suppressed in the centre. The ‘bumps’ in
the Johnson and ITFN spectra in the left plot look sharper because theL/R cut-off is at a
lower frequency than in the right plot, due to a lower value ofthe total resistance.

figures 6.8 and 6.11 (right), we see that the inhomogenity in the temperature sensitivity
also accounts for some contribution to the total noise.

By plotting the contribution of the single noise source at a time, it was revealed that
the contributions to the ITFN were the largest from the elements close to the boundaries
between absorber and TES, and small from the parts far away from those boundaries. For
both designs 4 and 5, this is shown in figure 6.12. This can be understood as follows:
As discussed earlier, the ITFN arises from energy fluctuations across a boundary. The
closer a noise source is to such a boundary, the more energy istransported across. A
larger energy difference between either side of the boundary creates a larger deviation in
electrical current, which means a higher noise level.

The asymmetry in figure 6.12 (left) is caused by the asymmetryin the chosen simula-
tion element, as shown in figure 6.7. The internal thermal conductanceGint is always to
the right of the heat capacityC with which it forms an element, so the region of higher
heat capacity does not completely overlap with the region ofhigher thermal conductance.

In a microcalorimeter with a discrete absorber and TES side-by-side, the ITFN spec-
trum can be described by (6.1). This equation also turns out to describe fairly accurately
the total ITFN spectrum from the simulated multi-element sensor, with the parameter
δTTES substituted with a parameterδTn, which is specific to a particular design. To check
if δTn only depends on the sensor geometry, the maximum in the ITFN spectrum was de-
termined from the simulation for a number of set points (different values ofI) and values
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Figure 6.12: Maximum level in the noise spectra of the ITFN contributionper simulation
element as a function of element number.Left : Design 4, with higher heat capacity
and thermal conductivity in the centre region.Right: Design 5, with the thermometer
suppressed in the centre.

of α. This maximum should be given by

iITFN,max = δTn
αI
T

β +1
2

. (6.5)

To simplify things, the inductanceL in the circuit was chosen very small so that theL/R
cut-off does not play a role. As an example, in figure 6.13 the maximum ITFN from the
simulation is plotted as a function of bias current with a fixed α and as a function ofα
with a fixed bias voltage in the case of the single-stripe sensor (design 2). As can be
seen from the figure, for all these situations the maximum ITFN agrees with (6.5) using
a single value ofδTn. This value was determined using a fit by eye. Also from designs
with 2, 3, 4 and 13 stripes, plots were made of the maximum ITFNas a function ofα
and values forδTn for these geometries were determined. These are shown in figure 6.14
(left). These values are a function of the numbern of stripes in a sensor. This can be
explained as follows:

The ITFN arises from thermal fluctuations across the boundary between absorber
stripes and TES parts. In the frequency domain, the magnitude of these fluctuations will
be frequency-independent up to a certain cut-off frequency. This frequency is mainly
determined by the internal thermal conductance of the sensor, because this thermal con-
ductance is much larger than the thermal conductance from the sensor to the bath. When
the stripes get narrower, the time constant of the fluctuations gets shorter and the cut-off
frequency will go up. Since the total integrated amount of thermal fluctuations inside the
TES is fixed by the heat capacity, a higher cut-off frequency will result in a lower ITFN
level.

Consider a one-dimensional TES with a heat capacityCTES and an internal thermal
conductanceGTES. On top of the TES aren absorber stripes, suppressing the temperature
sensitivity of the TES in those places, as shown in figure 6.14(right). The absorber



74 Chapter 6. Energy resolution: geometry and noise assessment

8.0E-12

9.0E-12

1.0E-11

1.1E-11

1.2E-11

1.3E-11

1.4E-11

1.5E-11

1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05
current (A)

i IT
F

N
,m

ax
 (

A
/r

tH
z)

0.0E+00

5.0E-12

1.0E-11

1.5E-11

2.0E-11

2.5E-11

0 50 100 150
αααα

i IT
F

N
,m

ax
 (

A
/r

tH
z)

Figure 6.13: Maximum ITFN from a simulation of a single-stripe sensor (design 2)
(squares), together with the theoretical values based on a value forδTn of 1.4 nK/

√
Hz

(solid line). Left : The ITFN as a function of bias current withα = 80. The parabolic
shape is due to the fact that a higherI is associated with a lower resistive set point and
therefore a lowerβ , soβ decreases with increasingI. Right: The ITFN as a function of
α with Vb = 30 mV.
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Figure 6.14: Left : Values of the parameterδTn as a function of the number of absorber
stripes in the sensor design (squares). The solid line is thetheoretical relation as discussed
in the text. Of course, there is no such thing as fractional stripes but a continuous curve is
used to make the trend more clear.Right: Sketch of the cross-section of a 4-stripe sensor.
The enlargement shows a TES piece on the right side of an absorber stripe. The hatched
area indicates where the temperature sensitivity of the TESis suppressed.
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stripes form local heat baths, with a TES piece the width of half a stripe on either side.
This TES piece has a heat capacityC1 = CTES/(4n +2) and a thermal conductanceG1 =
(4n + 2)GTES, as indicated in figure 6.14 (right). Therefore, the cut-offfrequency of the
thermal fluctuations in one piece is

f1 =
G1

2πC1
(6.6)

= (4n +2)2 GTES

2πCTES
. (6.7)

Since all pieces are identical, the spectral shape of the temperature fluctuations in the
whole TES is the same as that in one piece. It has the form

〈∆T 2( f )〉 = δT 2
n

1

1+ f 2/ f 2
1

. (6.8)

Because the absorber heat capacity is large compared to the TES heat capacity, we can
treat the absorber parts in the sensor as a local heat bath. Integrated over all frequencies,
〈∆T 2( f )〉 should be normalised to the total amount of thermal fluctuations in all TES
piecesnot covered by an absorber. This is equal to(2n +1)kBT 2/(n +1)CTES. In [31], a
similar normalisation procedure was used for temperature fluctuations. We can write:

2n +1
n +1

kBT 2

CTES
=

∫ ∞

0
δT 2

n
1

1+ f 2/ f 2
1

d f (6.9)

= δT 2
n

π
2

f1 (6.10)

= (2n +1)2δT 2
n

GTES

CTES
(6.11)

This yields a value for the density of the visible temperature fluctuations of

δTn =

√

1
(n +1)(2n +1)

kBT 2

GTES
. (6.12)

This theoretical relation is also plotted in figure 6.14 (left), using the value forGTES that
was put into the simulation. It is clear that there is a good agreement between theory and
simulation.

Summarising, we can say that the theory and the simulations indicate that having nar-
row TES segments decreases the contribution from the ITFN inthe signal band. However,
it is questionable that these striped TESes would make practical sensors. Because the ab-
sorption coefficient of the TES and the absorber differ by a factor of more than 3, the
stripes introduce a position-dependent absorption efficiency. If the stripes were covered
by a connecting absorber, this drawback could be overcome. However, using a normal
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metal for this would short out the sensor, making it less sensitive. Adding an electrical in-
sulator between the stripes and the absorber would remedy this, but also limit the thermal
connection between absorber and TES. A possible solution would be a low-heat capacity
mushroom absorber attached to a one of the stripes, but this has not yet been tried.

6.4.4 Two-dimensional array

In order to study the noise behaviour in more complex, thoughrealistic, geometries, the
simulation was done with a two-dimensional grid of elements. Each element consisted of
a temperature-sensitive resistor and a thermal conductor in both the lateral and longitud-
inal direction, a heat capacity and a thermal conductor to the bath.

Models were built for the following geometries (with a cartoon of the top view of the
sensor; the current flows from left to right):

1. A homogeneous TES ( ), as a base line.

2. A TES with a central absorber ( ), such as used in a practical sensor.

3. TESes with 1, 2 or 4 zebra stripe absorbers ( ), as a compar-
ison with the simulations using a one-dimensional array.

4. A TES with four absorber segments arranged in a 2×2 fashion ( ).

5. A TES with 4 stripes that do not extend all the way to the edge, so as to leave a

superconducting path through the TES and not introduce series resistance ( ).

Again, for each design a value forδTn was fitted to the maximum of the ITFN com-
ponent. These are indicated in figure 6.15. As expected, the ITFN in the homogeneous
TES (design 1) was found to be negligible and is not plotted inthe graph. In the one-
dimensional case, the current density is the same in all elements. In the present two-
dimensional case, this need not be so. In addition to the two mechanisms for making
ITFN visible that were discussed above, this non-uniform current density introduces a
third mechanism. The temperature fluctuations cause resistance fluctuations in different
locations in the TES. The effect that these resistance fluctuations have on the TES cur-
rent is weighted with the current density in the different locations. After all, we wouldn’t
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Figure 6.15: Values of the parameterδTn for some 2-dimensional designs. The zebra
designs with 1, 2 and 4 stripes are plotted with squares, while the values for the other
designs are indicated by horizontal dashed lines for comparison. The curve is the theor-
etical relation (6.12) for the striped designs.

notice a change in resistance in an element that has no current flowing through it. Be-
cause of this, the change in resistance caused by heat exchange between two elements
that have the same temperature sensitivity and heat capacity might not be cancelled out if
the elements have a different current density. In figure 6.16the simulated current density
in design 3 (central absorber) is plotted. Under typical bias conditions, the TES has a
higher resistivity than the absorber in the centre, so the largest part of the current will
flow through the absorber, creating a non-uniform current distribution. Heat fluctuations
between areas of different current density are possible in this geometry. In the single-
stripe sensor, the current distribution will be uniform. There can be no heat fluctuations
between areas of different current density. This explains why the ITFN is less visible in
the single-stripe design than in the central absorber design, as shown in figure 6.15. This
mechanism based on current distribution doesn’t play a large role compared to the other
two because in general there is a smooth gradient in the current density while the heat
capacity and temperature sensitivity can change abruptly.

From the results of the simulation, we can conclude that thermal fluctuations in a
sensor are made visible as ITFN by the presence of areas of different heat capacity and
temperature sensitivity (α), and to a lesser extent by a non-homogeneous current density
distribution. We have seen experimentally and in simulation that the ITFN can be manip-
ulated by changing the width of the TES parts between the absorber parts. The design
with four stripes not extending to the edge (design 5) shows the same low ITFN level as
the design with the stripes extending to the edge, but presumably without the negative
effects of having series resistance in the TES.
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Figure 6.16: Current density distribution in a sensor with central absorber. The numbers
on the axes indicate the position of the elements in the grid.The length of the arrows is
proportional to the magnitude of the current through an element.

6.5 Responsivity model

In the previous sections we have seen that a noise model that includes ITFN could suc-
cessfully describe the measured noise in the sensor. With a good understanding of the
noise in the microcalorimeter, the discrepancy between theoretical resolution and resolu-
tion calculated from the measured noise has been resolved. However, we are still facing
the discrepancy of a factor of∼ 2 between this resolution and the one measured using
5.9 keV X-rays. The answer to this lies in the small-signal approximation that has been
made in the microcalorimeter model. This approximation is valid for the noise, which is
a small-signal phenomenon, but can not be applied to 5.9 keV X-ray pulses, which are
large-signal events.

6.5.1 Non-ideal pulse shape

In (2.37), the theoretical energy resolution is given in thecase of optimum filtering and
stationary noise, that is noise that does not change during the passage of a pulse. Our
filtering, as described in appendix B, is not entirely optimum in the sense that it assumes
a white spectrum for the noise. In reality, the noise is not exactly white, but it comes very
close. As shown in section B.3.1 in the appendix, the assumption of white noise does
account for a few percent in resolution degradation, but cannot explain a factor of∼ 2.
Furthermore, the noise is not completely stationary. This can be seen by calculating the
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noise spectrum using parameter values as they are in the non-equilibrium situation during
the passage of a pulse. Because the current becomes smaller when the sensor is heated
by the absorption of a photon, the noise spectrum is in factlower than in the set point.
So, if the non-stationary character of the noise were taken into account, the theory would
predict an even better resolution. It is clear that the effect of non-stationary noise cannot
explain the discrepancy between theoretical and measured resolution.

The effect thatcan is that the responsivity (2.30), used to calculate the NEP, assumes
an exponential pulse shape, whereas the real pulse shape differs significantly from this
ideal shape. To make a more realistic prediction of the energy resolution, we need to look
at the way the signal is filtered: it is multiplied by the pulseshape and integrated. In a
general way, without assuming a particular signal shape, wecan describe the effect of the
filter on the signalI(t) and the noisein( f ) as follows. The filtered signal output is

O =
∫ ∞

0
F(t)I(t)dt (6.13)

where the filterF(t) is identical to the signal but normalised to unit area:

F(t) =
I(t)

∫ ∞
0 I(t)dt

(6.14)

The noise passes through the same filter, but it has to be treated in the frequency domain
and is multiplied quadratically by the Fourier transform ofthe time domain filter:F( f ) =
|F (F(t))|. The energy resolution is equal to the filtered noise transformed to units of
energy. This is done through multiplication by the slope of the calibration curve, which is
the derivative of the original energyE with respect to the signal outputO:

∆E = 2.35
dE
dO

√

∫ ∞

0
F

2
( f )i2n( f )d f (6.15)

As a check, we can look at a simple example. We will substitutewhite noisein( f ) = in and
an exponential signal pulseI(t) = ES(0)exp(−t/τeff)/τeff, whereS(0) is the responsivity
at zero frequency. The filter in the time domain is

Fwhite,exp(t) =
exp(−t/τeff)

τeff
(6.16)

so for the output signal we get

Owhite,exp =
ES(0)

2τeff
. (6.17)

This gives us the factordE/dO. The filter in the frequency domain is

Fwhite,exp( f ) =
1

√

1+4π2τ2
eff f 2

(6.18)
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Table 6.3: Measured and calculated energy resolutions at 5.9 keV for different devices.
The ‘small-signal’ numbers are obtained using the theoretical equation (2.38), while the
‘large-signal’ numbers come from (6.15) with measured pulse shapes and noise spectra.
The uncertainty in the calculated large-signal numbers is estimated to be about 10%.

Device Measured (eV) Calculated (eV)
Small-signal Large-signal

X037-2 4.2 2.1 4.4
X038 4.1 1.5 4.3
X043 4.7 3.0 3.9
X047 15.7 1.9 15.8
X049 5.3 2.4 4.7

X055-6 4.5 1.3 3.3

so for the energy resolution we obtain

∆Ewhite,exp = 2.35
2τeff

S(0)

√

∫ ∞

0

i2nd f
1+4π2τeff

(6.19)

= 2.35
2τeff

S(0)

in
2
√

τeff
(6.20)

= 2.35NEP(0)
√

τeff. (6.21)

This is identical to what we get when we make the assumption ofwhite noise in (2.37)
[12].

For a practical use, we can substitute measured pulse shapesand noise spectra in
(6.15) to calculate the energy resolution we should expect to obtain. To do so, we assume
thatdE/dO = E/O, that is a linear calibration relation between input energyand output
signal. This assumption is justified when the signal pulses do not saturate in the detector
nor in the read-out. The results from measured data for a few sensors are given in table
6.3. In most cases, there is an agreement between measured and calculated resolution that
is better than 1 eV, or< 20%. This shows that the discrepancy between theoretical and
measured resolution is to be attributed to the limitations of the small-signal responsivity
model. This can be understood by looking at figure 6.17. In thefigure, the responsivity is
shown for two pulse shapes: the exponential shape for the small-signal model and a more
realistic shape for the large-signal model. (The original pulse shapes are shown in figure
6.18). They are normalised so as to provide the same output signal value when they are
used as a filter. On the right is shown how a typical noise spectrum looks after filtering
in these two models. It is clear that in the large-signal model, more noise passes through
the filter which means that this model will predict a worse (but more realistic) energy
resolution.
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Figure 6.17: Left : simulated responsivity curves as a function of frequency for the the-
oretical small-signal model (dashed) and a numerical large-signal model (dotted), norm-
alised to equal filtered-signal output.Right: A simulated noise spectrum filtered by the
responsivity curves in the left-hand plot, dashed for the small-signal model and dotted for
the large-signal model.

From the above, we can conclude that we will not be able to obtain the energy res-
olution predicted by (2.38) since it is based on a responsivity model that is inappropiate
for large signals. So, whatcan we get? To answer this, we can use (6.15) with analytical
noise spectra given by (2.25)–(2.27) and (6.1) and pulse shapes calculated from a numer-
ical simulation. We will use the simulation to obtain the responsivity for a number of
different set points and photon energies. The next section will explain the simulation.

6.5.2 Large-signal responsivity simulation

In this simulation, we will iteratively calculate the response of the sensor to an X-ray
event. We will assume the circuit diagram as given in figure 2.7. The bias currentIb

is fixed. We will allow the TES current to change instantaneously. Since we are now
not concerned with just a single set point, the constant-α expression for the temperature
dependence of the TES resistance, used in section 6.4, is notappropiate here. For most
sensors, a linearR(T )-curve will be a fairly accurate description of the transition:

R(T ) =

{

Rn + dR
dT (T −Tc) for T ≤ Tc

Rn for T > Tc
(6.22)

The state of the system is given by the TES temperatureT . If initially this is not the
equilibrium temperature, it should be allowed to stabilisefor a few iterations. At a certain
time tγ , a photon is absorbed. In this algorithm, the symbol→ means “becomes”. The
following computations should be performed for each time step:
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Figure 6.18: Impulse response of a modelled sensor based on small-signal theory
(dashed) and on a large-signal numerical calculation usinga linearR(T )-curve (dotted).

1. If t = tγ , deposit the photon energyE in the TES:
T → T + E/C

2. Calculate the TES current:
I = IbRs/(R(T )+ Rs)

3. Calculate the net power:
Pnet = I2R(T )−K(T n −T n

b )

4. Calculate the new temperature:
T → T + Pnet∆t/C

5. Repeat from step 1.

The duration of a time step∆t is chosen small compared to the time constant of the
system. The currentI(t) now describes the impulse response of the system. Depending
on the shape of the chosenR(T )-curve, this will be a pulse with an initially slow decay
that speeds up when the current comes closer to the equilibrium current, as shown in figure
6.18. The shape is due to the fact that when the X-ray hits, theloop gain drops sharply
and the time constant approaches the intrinsic time constant. After a while, it returns to
the effective time constant in the set point.

Using this simple model, a fairly accurate pulse shape can becalculated. By Fourier-
transforming the current curve, a frequency-dependent responsivity curve is obtained, to
replace the analytical expression of equation (2.30).

Using the procedure described above with a linearR(T )-curve with a slope of 50Ω/K,
a normal resistance of 0.2Ω and a critical temperature of 0.1 K, pulse shapes have been
calculated for a few photon energies at different set pointsin the transition. Combined
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Figure 6.19: Left : Energy resolution as a function of bias voltage set point obtained from
simulated pulse shapes and analytical noise spectra for (top to bottom) 6 keV, 3 keV and
600 eV photons. For the dotted part of the curves, the pulses were clipped because the
sensor was driven into the normal state and started to saturate. In this regime, measure-
ment is still possible but the detector becomes highly non-linear and an accurate calib-
ration is necessary. The dashed curve is the energy resolution based on the small-signal
model. Right: Comparison of the energy resolution for 6 keV pulses as a function of
sensor heat capacity, calculated from the large-signal simulation (dotted) and the small-
signal model (dashed). The filled circles are 5.9 keV X-ray measurements with X039
(C = 0.59 pJ/K) and two devices with smaller heat capacities [32].

with the calculated noise spectra at those set points, the expected energy resolution is cal-
culated and plotted in figure 6.19 (left). The factordE/dO is obtained from simulating
two pulses very close in energy and noting the difference in output signal. The best resol-
ution possible at 6 keV with these device parameters and filtering algorithm is calculated
at 3.9 eV, as can be seen in the figure. With lower photon energies, better resolutions
should be possible. This has not yet been demonstrated at SRON, but GSFC has shown
2.4 eV at 1.5 keV with a device with a similar heat capacity (0.5 pJ/K) as the devices
discussed here [33]. This is consistent with the simulation.

When anR(T )-curve is used with a constantα, the calculated resolution is less de-
pendent on the set point. For 6 keV X-rays andα = 50, a best resolution of 3.2 eV is cal-
culated. This shows that the figure for the best resolution calculated with this large-signal
model does not depend greatly on the precise shape of theR(T )-curve that is chosen.

The large-signal model also tells us that increasingα and decreasing the heat capacity
is not always advantageous for the resolution, as was suggested by the small signal model
of section 2.4. For large pulses of 6 keV, the sensor is drivenfurther towards the normal
state and starts to saturate when the heat capacity is made smaller than 0.5 pJ/K, deteri-
orating the energy resolution. This is illustrated in figure6.19 (right). In this plot, the
energy resolution calculated from a simulation with a linear R(T )-curve of 50Ω/K and
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6 keV pulses is compared to the figures obtained from the small-signal model. While the
small-signal resolution improves continually with smaller heat capacity, the large-signal
resolution shows a clear optimum. The measured energy resolution at 5.9 keV for three
sensors with different heat capacities is also plotted in the graph. They show a good
agreement with the simple numerical model. This shows that the large-signal model can
be used as a tool for finding the optimum design parameters fora microcalorimeter.

6.6 Conclusions

We conclude that the noise sources in this type of TES microcalorimeter are well un-
derstood. In addition to phonon and Johnson noise, an internal thermal fluctuation noise
component adds a significant contribution to the current noise. This noise component can
be manipulated and reduced by a change in geometry. It has notyet been established
whether an improvement in resolution can be obtained in thismanner. The measured en-
ergy resolution for 5.9 keV X-rays is understood in terms of the measured noise spectra
and pulse shapes. Moreover, a numerical simulation has shown that the best obtainable
resolution is about 3.9 eV at 6 keV, which has also been demonstrated experimentally.
This model can be used to predict the energy resolution of a microcalorimeter from the
device parameters. The simulation also indicates that for low energies (< 1 keV), a resol-
ution of∼ 2.5 eV is feasible.

We can say that the physics of these devices is now sufficiently developed to consider
using them in a real instrument. The implications of this arethe topic of the following
chapter.



CHAPTER 7

LOOKING AHEAD

Now that the TES microcalorimeter has shown to meet the requirements for theXEUS

spectrometer, there are other issues to consider for using this technology in a space-borne
instrument. In this chapter, we will look at a few of these in order to identify the critical-
ities involved in using a TES microcalorimeter in space.

7.1 Degradation over time

An effect that may occur in prolonged operation is degradation of the sensors over time.
The bilayer materials, Ti and Au, may interdiffuse into eachother, which could affect the
superconduction transition. To see the magnitude of this effect, measurement of the trans-
ition was repeated after a long period of time for a few devices. One bilayer sample had
been stored at room temperature under atmospheric conditions for more than 40 months
and showed no degradation of the superconducting transition. Also, the transition of
a complete sensor showed no adverse effects after storage for 18 months at room tem-
perature: the transition temperature remained 0.1 K and thesteepness did not decrease.
Because they are thermally driven, it is expected that any interdiffusion effects will take
place at a much slower rate if the devices are kept cold. Sincethis is the case in an instru-
ment, we do not expect any degradation of the TES microcalorimeter over a reasonable
instrument lifetime.

7.2 Proton radiation test

One of the problems with operating instrumentation in spaceis the exposure to cosmic
radiation. Collision with cosmic particles may damage sensitive devices by causing inter-
stitial defects. To test the radiation hardness of the TES microcalorimeter, device X048
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was exposed to 6.4 MeV proton radiation at Birmingham University. The dose was equi-
valent to 20 times the expected irradiation of theEPIC instrument aboard XMM-Newton
for ten years. No change was observed in the shape of the superconducting transition, so
it is expected that the device incurred no permanent damage and that the performance is
unaffected. However, the power plateau seemed to be slightly lower, which indicates a
higher bath temperature or a worse coupling to the bath. A change in coupling to the bath
could be caused by a damaged membrane, but it is unlikely thatthis is the case due to the
small scattering cross-section of the silicon nitride. Therefore we think that the change in
power plateau is not due to the proton irradiation. Since thesuperconducting transition
has not changed, we can draw the preliminary conclusion thatthe TES microcalorimeter
can be used in space without the risk of radiation degradation.

7.3 Towards an instrument

With the intrinsic requirements of stability and radiationhardness for using the TES mi-
crocalorimeter in a space-borne instrument likely to be met, we can look at the surround-
ing requirements for such an instrument. Of these, the most challenging are likely to be
the use of an array of microcalorimeters, reading out such anarray and the cryogenics
involved in reaching the required low temperatures.

7.3.1 Microcalorimeter array

An array of microcalorimeters is desireable because it provides spatial information in
addition to spectral information. For imaging purposes, anarray of at least∼ 1000 pixels
would be required. The difficulties with such an array are theuniform coupling to the
heat bath of all pixels, the routing of the wiring to the pixels and the prevention of thermal
and electrical cross-talk. If all pixels were placed on a single membrane, the pixels in
the centre would have a lower thermal conductance to the baththan those closer to the
edge. This non-uniformity in thermal conductance would create problems with the time
constant and stability requirements of section 3.2. Also, since the energy of an absorbed
photon is not completely compensated by electro-thermal feedback, the absorption of a
photon in one pixel could be observed in neighbouring pixels, resulting in false counts. It
is therefore desireable to have every pixel on its own, smallmembrane. Several schemes
have been suggested to accomplish this, such as a membrane suspended over a small
chamber in the silicon wafer [34], a membrane above the wafersupported by legs [35] or
a row of membranes suspended between silicon bars [36]. These methods are currently
under developement and it is not yet clear what the advantages and disadvantages of each
are.

For the wiring, the challenge is to route wires for all the pixels over the wafer to
the outside world. The wiring could be embedded in the substrate or, with overhanging
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absorbers, underneath these along the surface. But for large arrays, there would probably
still not be enough room for all the wiring. Alternatively, connections through the wafer
to the back side, so-called micro-vias, have been suggested[37]. The contacts can then
be bonded to a separate fan-out wafer, where there is enough space to route the wiring.

7.3.2 Multiplexing

If every pixel in an array were read out separately, this would require a very large number
of SQUIDs and accompanying electronics. Moreover, all the separatewires connecting the
cold stage to the room temperature electronics would cause avery high heat load on the
cooler. Therefore, it is preferable to employ some sort of multiplexing scheme, reducing
the number of wires and the amount of electronics. The most common schemes are time-
division multiplexing (TDM) and frequency division multiplexing (FDM) [38, 39].

In TDM, different detector read-out channels are switched on and off, one after the
other in quick succession. In this way, the signals of up to 32microcalorimeters can be
transported through a single line [40]. However, the switching produces fast-changing
signals, so a large bandwidth is required. Bandwidth limitations in the electronics limit
the switching rate, which means that for the fast pulses of the XEUS specification, the
required sample rate will be hard to attain using TDM.

FDM does not have this drawback. This multiplexing scheme works by shifting the
detector signals in the frequency domain to different carrier frequencies. The signals
can then be transported through a single line and demodulated outside the cryostat. This
scheme, however, requires the detectors to be operated under AC bias, which introduces
problems of its own [41]. The TES is biased with an AC voltage with a period much faster
than the time constant of the TES. This causes it to stay in a single set point with a certain
temperature. However, because the current through the TES is constantly changing,α is
changing as well. This makes the responsivity dependent on the phase of the bias voltage,
which causes resolution degradation. This effect should become less pronounced with
increasing bias frequency. Efforts are currently underwayat SRON to attain the same
energy resolution under AC bias as under DC.

7.3.3 Cooling

Although space is pretty cold, the operation of a cryogenic microcalorimeter there still
requires extra cooling. Taking a dilution refrigerator up on a satellite is not practical, but
there are alternatives. There is experience with using an ADR on a rocket in the XQC
project [42]. This ADR, coupled to a liquid He bath, providesa stable (∆T < 1 µK)
temperature of 60 mK for up to 12 hours. Although the durationof the rocket flight was
only 10 minutes, the cooler performed well, and the technology can also be used on a
satellite platform. When the hold time has run out, the ADR magnet can be recycled but
the liquid He still runs out. ADR technology has been used fora longer duration on the
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MAXIMA balloon-borne cosmic microwave background experiment [43]. For theASTRO-
E(2) satellite, an ADR has been developed as well [44]. Because it is surrounded by a
block of solid Ne (17 K), its liquid He supply should last for two years. The satellite is
scheduled for launch in February 2005.

An ADR employs a magnet generating a field typically of the order of 5 T. If this is
not sufficiently shielded (below∼ 1 G), the field might make theR(T )-curve of the TES
less steep. The lower effectiveα which is the result will degrade the energy resolution
and response time of the sensor. Also, since the field is changing in time, it will result
in a time-dependent responsivity, which can also degrade the resolution. Therefore, it is
important that the field is sufficiently attenuated using compensating coils andµ-metal
shields.

The problem of having to recycle the ADR magnet every so oftencan be overcome
by using a multiple-stage ADR in continuous operation. Whenone stage is providing
the cooling power, another can be recycled, providing uninterrupted cooling. At GSFC,
a three-stage continuous ADR is being developed for use in space [45]. The heat bath is
provided by a mechanical cryocooler, so it can operate entirely without cryogenic sub-
stances. Provided that the magnetic fields are sufficiently shielded, this type of cooler
would be ideal for operating an X-ray spectrometer based on TES microcalorimeters in
space.

It looks as though the technology for fabricating, reading out and cooling microcalo-
rimeter arrays is moving forward at a fast pace. We should expect to see this technology
maturing in the next few years, enabling instruments based on TES microcalorimeters to
be built and operated in space. This should open up a new chapter in X-ray astronomy,
providing new insights into the beginning and the evolutionof the universe.



APPENDIX A

SENSOR OVERVIEW

In this appendix, the characteristics of all the sensors mentioned in the text are summar-
ised. A schematic top and section view of each sensor is shown, and the dimensions of
TES and absorber are given, as well as the critical temperature Tc, the normal resistance
Rn, the heat capacityC at Tc, the absorption efficiencyA at 6 keV of the absorber/TES
combination, the typicalα under bias conditions as obtained from theI(V )-curve, the
effective time constantτeff as obtained from observed X-ray pulses and the best measured
energy resolution∆E at 5.9 keV. Since all sensors were positioned on similar membranes,
for each theG to the bath is 300–330 pW/K.

X037-2

TES 310µm× 310µm× 18 nm Ti/30 nm Au
Absorber 150µm× 150µm× 2.2µm Cu
Tc 0.097 K
Rn 0.35Ω
C 0.59 pJ/K
A 0.22
α ∼ 100
τeff 200µs
∆E 4.2 eV
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X038

TES 310µm× 310µm× 18 nm Ti/30 nm Au
Absorber 100µm× 100µm× 4.5µm Cu
Tc 0.105 K
Rn 0.43Ω
C 0.59 pJ/K
A 0.39
α ∼ 80
τeff 85µs
∆E 3.9 eV

X043

TES 310µm× 310µm× 14 nm Ti/50 nm Au
Absorber 103µm× 310µm× 1.4µm Cu
Tc 0.098 K
Rn 0.35Ω
C 0.58 pJ/K
A 0.17
α ∼ 40
τeff 85µs
∆E 4.9 eV

X047

TES 310µm× 310µm× 14 nm Ti/50 nm Au
Absorber 4 × 34µm× 320µm× 1.0µm Cu
Tc 0.098 K
Rn 0.26Ω
C 0.56 pJ/K
A 0.14
α ∼ 20
τeff 270µs
∆E 8–9 eV
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X048

TES 310µm× 310µm× 14 nm Ti/50 nm Au
Absorber 100µm× 100µm× 4.1µm Cu
Tc 0.098 K
Rn 0.22Ω
C 0.54 pJ/K
A 0.37
α N/A
τeff 80µs
∆E 4.7 eV

X049

TES 310µm× 310µm× 14 nm Ti/50 nm Au
Absorber 100µm× 100µm× 4.1µm Cu

100µm× 100µm× 3.4µm Bi
Tc 0.102 K
Rn 0.20Ω
C 0.55 pJ/K
A 0.88
α ∼ 100
τeff 100µs
∆E 4.5 eV

X051-3

TES 310µm× 310µm× 14 nm Ti/50 nm Au
Absorber 160µm× 160µm× 1.8µm Cu

160µm× 160µm× 5.1µm Bi
(base 100µm× 100µm)

Tc 0.081 K
Rn 0.20Ω
C 0.64 pJ/K
A 0.93
α N/A
τeff 110µs
∆E 5.7 eV
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X052-1

TES 310µm × 310µm × 14 nm Ti/50 nm Au
Absorber 100µm × 100µm × 4 µm Cu
Ground plane 500µm × 500µm × 1.0µm Al
Tc 0.092 K
Rn 0.22Ω
C 0.53 pJ/K
A 0.36
α N/A
τeff N/A
∆E N/A

X055-6

TES 310µm × 310µm × 14 nm Ti/50 nm Au
Absorber 100µm × 100µm × 4.5µm Cu
Ground plane 500µm × 500µm × 0.7µm Nb
Tc 0.084 K
Rn 0.27Ω
C 0.58 pJ/K
A 0.40
α ∼ 30
τeff 260µs
∆E 4.7 eV



APPENDIX B

FILTERING

The signal from our X-ray microcalorimeter consists of pulses that are contaminated by
noise. From these pulses, we want to estimate the energy of the X-rays that produced
them as accurately as possible. For an optimum detector resolution, the signal-to-noise
ratio should be maximized. This can be accomplished by meansof filtering which is
therefore an essential part in the analysis of these X-ray pulses.

In what follows, we review the principles of filtering and compare the performance
of real-time analog filtering and ‘optimum’ (digital) filtering. Digital filtering has the
advantage of being able to use an non-causal filter, that is a filter that obtains a better
signal-to-noise ratio because it uses information not onlyfrom the present and the past
signal, but the total signal. The effect of filtering is demonstrated in a general way assum-
ing exponential pulses with zero rise time.

B.1 Principles of filtering

The purpose of filtering is to optimise the signal-to-noise ratio of the measured data.
For this purpose, a number of techniques have been developed. Using analog electronic
circuits with a frequency response that is tuned to the type of signal and noise to be
filtered, good results can be obtained in real time. An example of this is the analog
shaping described in section B.2. More elaborate data manipulation is possible using off-
line processing. This requires the signal to be digitized using a data-acquisition system.
In doing so, a number of issues deserve attention.

First of all, the Nyquist-criterion states that a sampled signal contains meaningful
information up to a frequencyfc that is half the sampling frequencyfs. The sampling
frequency should therefore be at least double the highest frequency present in our signal.

Secondly, a signal with frequencyf > fc will be folded aroundfc and introduce an
alias signal at frequency| fs − f |. So, in order to prevent higher frequencies from contam-
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inating the sampled data, an anti-aliasing filter should be used with a corner frequency
lower thanfc = fs/2.

Thirdly, to characterise the frequency dependence of a signal or noise the power spec-
tral density is used. Knowing the power spectral density of the noise for example, enables
us to correct for this noise and improve the signal-to-noiseratio. To get our data in the
frequency domain, we use the discrete Fourier transform [46] for n sampled data points
c j:

Ck =
n−1

∑
j=0

c je
−2π i jk/n k = 0, . . . ,n−1 (B.1)

Information about how much power there is at a certain frequency fk = k/(n∆), with ∆
the sampling interval, is given by the single-sided power spectral density:

PSD( fk) =
∆
n

(

|Ck|2 + |Cn−k|2
)

k = 1,2, . . . ,
n
2
−1 (B.2)

Single-sided means that the signal or noise is only defined for positive frequencies. Note
that noise levels are often given in terms of the square root of PSD( f ), in units of, for
example V/

√
Hz.

In general, we consider a signalS(t) = A · S0(t) in time, of which the shapeS0(t) is
known, but the amplitudeA is not. In frequency space, the Fourier transformS( f ) is used.
As an example, we assume that the signal is expressed in Volts. Added to the signal is
noise, with a single-sided power spectral density ofN2( f ) [V2/Hz]. The noise is usually
given only in the frequency domain, because of its random characteristic in the time do-
main. Now, in general a filterF(t) (or F( f ) in the frequency domain) works both on the
signal and the noise [47]:

Sin(t), Sin( f )
Nin( f ) → F(t)

F( f )
→ Sout(t), Sout( f )

Nout( f )
In the time domain, the filter is convolved with the signal, which is equivalent to a mul-
tiplication in the frequency domain. The filtered signal at time t is the input signal mul-
tiplied by the filter in the frequency domain and Fourier transformed back to the time
domain:

Sout(t) =

∫ ∞

−∞
Sin( f )F( f )e2π i f t d f , (B.3)

The noise is multiplied in the frequency domain by the same filter. The total noise power
integrated over all positive frequencies, which is stationary in time, is by virtue of Par-
seval’s theorem given by

N2
out =

∫ ∞

0
|F( f )|2N2

in( f )d f . (B.4)

Note thatNout is not a noise density, but a root-mean-square (RMS) value, in units of
Volts in our example. Noisepower (noise squared) is used here because the noise itself
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Figure B.1: Equivalent circuit for(CR)2RC filtering. The circuit consists of an input
integrator and a highpass filter, a lowpass filter and anotherhighpass filter, as indicated
by the dashed boxes. The time constant for each part is the product of its resistance and
capacitance.

scatters around zero, so integrating it would yield zero. For the purpose of calculating the
signal-to-noise ratio, the square root of this integral is used. So, for the signal-to-noise
ratioS/N after filtering at a certain timet we have

(

S
N

)

(t) =

∫ ∞
−∞ Sin( f )F( f )e2π i f td f
√

∫ ∞
0 |F( f )|2N2

in( f )d f
. (B.5)

This result is valid independent of the type of filtering used. Based on this relation we
will consider the performance of two types of filter: The analog (CR)2RC filter and the
digital ‘optimum’ (Wiener) filter.

B.2 (CR)2RC filtering

The first type of filtering that is considered is(CR)2RC shaping [48], or ‘double RC
differentiation’, which consists of an input integrator, two highpass filters and a lowpass
filter, as shown in figure B.1. This system combines a reasonable performance with a
quick return to the base line. If the filters all have the same time constantτ, the transfer
function of this system has the form

F( f ) =
2π i f τ

(1+2π i f τ)3 . (B.6)

We will calculate the response of this filter to an exponential pulseI(t) = I0exp(−t/τ),
as shown in figure B.2 (left). The Laplace transform of this pulse is
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Figure B.2: Left : exponential pulse with normalised amplitude and fall time. Right:
response of the(CR)2RC filter to the exponential pulse. The maximum and minimum are
at t/τ = 3±

√
3 and the zero crossing is att/τ = 3

I(s) =
I0τ

1+ sτ
, (B.7)

with s = σ +2π i f . The Laplace transform is used here because the signal is zero for t < 0.
If we neglect the damping and use the conventions = 2π i f , then the Laplace transform of
a function can be considered equivalent to its Fourier transform, except that the Laplace
transform can deal with functions that are zero fort < 0. The pulse in the frequency
domain is then

I( f ) =
I0τ

1+2π i f τ
. (B.8)

Applying the filter, we get

F( f )I( f ) =
I02π i f τ2

(1+2π i f τ)4 (B.9)

=
I0
τ2

2π i f
(1/τ +2π i f )4 . (B.10)

This can be transformed back to the time domain to a shaped pulseIs(t):

Is(t) =
I0
τ2

(−1
τ

t3

6
e−t/τ +

t2

2
e−t/τ

)

. (B.11)

The output of the filter is shown in figure B.2 (right). The maximum of this shaped pulse
is used as a measure for the integral of the original pulse. Setting dIs(t)/dt = 0 gives the
solutionst/τ = 3±

√
3 (andt = 0). This yields for the maximum of the shaped pulse
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S = Is
((

3−
√

3
)

τ
)

=
(

2
√

3−3
)

I0e
√

3−3 ≈ 0.1306I0. For the total noise power we have,
assuming a white noise levelNwhite,

N2 =

∫ ∞

0
N2

white|F( f )|2d f (B.12)

= N2
white

∫ ∞

0
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∣

2π i f τ
(1+2π i f τ)3

∣

∣

∣

∣

2

d f (B.13)

=
N2

white

32τ
(B.14)

For the signal-to-noise ratio, we obtain

S
N

=
0.7388I0

√
τ

Nwhite
. (B.15)

This expression can be used to compare this filter to others.

B.3 ‘Optimum’ filtering

The second method of filtering we will look into makes use of the so-called ‘optimum’
or Wiener filter, described in [46]. This is actually a whole class of filters that share the
property that they are constructed for a certain signal shape by finding the maximum of a
specific quantity, for instance the signal-to-noise ratio.

When the noise is not frequency-independent, in order to use‘optimum’ filtering we
must take this noise into account when constructing our filter. Therefore, the filter must
be constructed in the frequency domain and transformed backto the time domain using
the inverse discrete Fourier transform. In the frequency domain, the filter has the form
[49]

F( f ) =
S
∗
( f )

(N( f ))2 (B.16)

whereS
∗
( f ) is the complex conjugate of the Fourier transform of the pulse shape and

(N( f ))2 is the power spectral density of the noise. To find this PSD, a number of records
should be sampled that have only noise in them. The PSD can then be found as given by
(B.2) for these noise records and averaged. The expression (B.16) is different from the
one given in [46], in the sense that the expression in [46] tries to reconstruct the original
signal as well as possible, while the expression given here maximizes the signal-to-noise
ratio.

B.3.1 Optimum filter with white noise

Though the optimum filter is generally constructed in the frequency domain, it is easily
seen that if the noise is assumed to be frequency-independent, then the filter in the time
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domain is exactly the same shape as the signal pulse, but time-reversed. In the case of
exponential pulses, the maximum of the convolution integral is at t = 0, where it is simply
equal to the integral of the product of filter and pulse. Thus,under the assumption of white
noise and exponential pulses, ‘optimum’ filtering just involves multiplying the signal with
a functionF(t) = exp(−t/τ) and integrating. In practice, the average of a set of pulses is
used for the filter template.

It is attractive to construct the filter in the time domain even when the noise may not be
white, because no information about the noise spectrum is required. In order to get an idea
of the resolution degradation that is the result of the assumption of white noise, we will
compare the signal-to-noise ratio of the ‘optimum’ filter with and without taking the noise
into account, for a typical noise spectrum such as shown in figure 6.1. On the one hand,
the signal-to-noise ratio is calculated using a filter basedon an exponential pulse with a
150 µs time constant and a fit to the noise spectrum of figure 6.1. On the other hand,
the signal-to-noise ratio is calculated using a filter that is based just on the exponential
pulse and assumes white noise. The ratio of these signal-to-noise ratios was 0.85, which
means a 15% degradation in resolution when white noise is assumed compared to a proper
optimum filter. This is a significant loss, but the noise data necessary for a true optimum
filter is hard to come by during X-ray resolution measurements. Therefore, in general the
‘optimum’ filter that assumes white noise is used.

To compare this filter with the(CR)2RC filter, we will calculate the signal-to-noise
ratio using exponential pulses and white noise. The integrated signal is

S =

∫ ∞

0
I0e−t/τ e−t/τ dt =

I0τ
2

(B.17)

The noise power still has to be calculated in frequency space. Therefore, we use the
complex conjugate of the Laplace transform of the ideal pulse:

F( f ) =
τ

1−2π i f τ
(B.18)

The noise then yields:

N2 =
∫ ∞

0
N2

white|F( f )|2d f (B.19)

= N2
white

∫ ∞
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1−2π i f τ
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2

d f (B.20)

=
N2

whiteτ
4

(B.21)

Then, the signal-to-noise ratio of the filtered signal becomes

S
N

=
2I0τ

2Nwhite
√

τ
=

I0
√

τ
Nwhite

, (B.22)
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which is a factor∼ 1.35 better than(CR)2RC filtering. It is clear that digital processing
offers a large advantage. The drawback is that it does not provide information during the
measurement, only afterwards. Therefore, we often use the analog(CR)2RC processing
as a ‘quick-look’ facility, and make a final measurement for digital processing.

In what follows, a number of algorithms are described that are used to obtain the best
possible resolution in practical, non-ideal conditions.

B.3.2 Pile-up rejection

Pile-up is the effect of one pulse influencing the next. This may cause resolution degrad-
ation . The magnitude of this effect can be calculated analytically. For simplicity, we will
consider only pulses of equal energy. A pulse normalised to amplitude and fall time can
be described by

p(t) = e−t . (B.23)

A pulseq(t) occuring∆t earlier in time is described by

q(t) = p(t + ∆t). (B.24)

Pulsep will be superimposed on the tail ofq, so the integral of their sum after filtering
will be slightly larger compared to a pulse without a precursor. Since this addition to the
integral depends on the time elapsed since the previous pulse, it will cause a smearing of
the spectrum. Here, the filter is assumed to be equal to an ideal pulsep(t), so the integral
becomes

∫ ∞

0
p(t)(p(t)+ q(t))dt = 0.5

(

1+ e−∆t
)

, (B.25)

whereas the integral of a single pulse after filtering is just0.5. Therefore, the relative
contribution to the integral is

c(∆t) = e−∆t . (B.26)

Now, a pile-up rejection system makes sure that there is a minimum ∆t between two
pulses by rejecting pulses that are too close to their precursor. With a typical chosen
interval of 10 fall times, the relative contribution to the pulse integral will lie between
zero and exp(−10). The absolute contribution for 5.9 keV X-rays will be between zero
and 0.27 eV. It is clear that the energy resolution will not beimpaired.

But what fraction of the pulses are rejected in this way? To answer that, we need to
look at the distribution of time intervals∆t. This distribution follows from the Poisson
distribution of random events:

P(x,∆t) = e−∆tλ (∆tλ )x

x!
(B.27)
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is the probability ofx events occuring in a time interval∆t, when the average number
of events per time interval equalsλ . Now, we are looking for the distribution of time
intervalsbetween two pulses; in other words the probability of findingzero events in the
time interval:

P(0,∆t) = e−∆tλ (B.28)

With the proper normalisation this becomes

P(∆t) = λ e−∆tλ . (B.29)

So, the fraction of rejected pulses using a minimum time interval ∆tmin is

∫ ∆tmin

0
P(∆t)d∆t = 1− e−∆tminλ . (B.30)

Substituting the∆tmin of 10 fall times that we mentioned above, this is about 2% for a
typical count rate of 20 s−1 and a 100µs fall time, which is no problem for our test setup.
However, for a count rate of 100 s−1, the rejected fraction is 10%, already a sizeable
portion. Therefore, for higher count rates, we would like touse a smaller value of∆tmin.
To see how small we can make∆tmin without impairing the energy resolution, we need to
find the distribution of contributionsc(∆t) to the measured energy. This is done by solving
∆t from (B.26) and substituting it into the time interval distribution function (B.29):

P(c) = −P(∆t(c))
d∆t
dc

(B.31)

= λ cλ−1, (B.32)

where the minus sign is due to the fact that a large∆t corresponds to a smallc, and that
therefore the integration limits are switched. Integration overc from 0 contribution (pulses
infinitely far apart) to 1 (pulses exactly on top of each other) shows that the distribution
is properly normalised. The maximum contribution to the pulse integral that corresponds
to the minimum time interval∆tmin is cmax = e−∆tmin. This is where the distribution is cut
off by the pile-up rejection system.

We now have the distribution of contributions as a function of count rate. The average
contribution is

〈c〉 =

∫ cmax
0 cP(c)dc
∫ cmax

0 P(c)dc
(B.33)

=
λ

λ +1
e−∆tmin. (B.34)

But a contribution to the pulse integral in itself does not cause resolution degradation.
It is the spread in the contributions that causes the degradation. Therefore, the standard
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deviation of this distribution is a measure of the magnitudeof this effect. The standard
deviation is

σ =

√

∫ cmax
0 (c−〈c〉)2P(c)dc

∫ cmax
0 P(c)dc

(B.35)

=

√

λ
(λ +1)2(λ +2)

e−∆tmin. (B.36)

This should be scaled to the energy of the pulses and multiplied by 2.35 to get a FWHM
contribution to the resolution; for Mn Kα1 pulses:

∆Epile−up = 2.35×5899×σ (B.37)

Note that the count rateλ should be expressed in terms of the reciprocal fall time while the
minimum time between pulses∆tmin should be expressed in terms of the fall time. There
is a clear trade-off between count rate, rejected fraction and resolution contribution. An
example for a 1 eV resolution contribution at 5.9 keV was shown in figure 4.3 in the main
text.

It should be noted that when the shape and the arrival time of the previous pulse is
known exactly, the effect of pile-up can be completely removed and no pulse rejection
is necessary. This, however, requires a very detailed pulsemodel and advanced signal
processing. The method using a minimum time interval is muchsimpler.

The pile-up rejection is accomplished in practice by including in the event record a
number of samples acquired just before the pulse starts, so-called ‘pretrigger samples’.
The duration of this pretrigger phase should be adjusted to the desired minimum time
between pulses. Event records that contain a pulse in the pretrigger phase are rejected,
as well as records that contain a second pulse after the one that triggered the acquisition.
This ensures that every event included in the spectrum is a ‘clean’ one, not contaminated
by other pulses.

B.3.3 Base line restoration

Due to slow changes in amplifier offsets or other effects, thequiescent signal level may not
be constant. Since the(CR)2RC filter is AC-coupled, it is not very sensitive to these ‘base
line shifts’, but if we use the ‘optimum’ filter they degrade the resolution and should be
corrected. This can be done by subtracting a constant value from the filter before applying.
The filter then becomes

F(t) = e−t/τ − c (B.38)

wherec is the subtracted constant. This value should be chosen in such a way that the
integral of the filter vanishes. In that case, any base line shifts are corrected. If we work
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with a record lengthtl that is a couple of times longer thanτ, we see that:

∫ tl

0
e−t/τ dt − ctl = 0 (B.39)

c ≈ τ
tl

(B.40)

In practice, the valuec is computed using

c =
1
n

n−1

∑
j=0

c j (B.41)

from n samples denotedc0 . . .cn−1. The pulse is modelled as

I(t) = I0e−t/τ + b (B.42)

whereb is the unknown base line shift. When the filter is applied, we get

Sblr =

∫ tl

0
F(t)I(t)dt (B.43)

=

∫ tl

0

(

I0e−2t/τ +(b− cI0)e
−t/τ −bc

)

dt (B.44)

≈ I0τ
2

− I0τ2

tl
(B.45)

The unknownb has indeed vanished, but the integral is smaller by a factor of 1−2τ/tl.
For the noise, we use the complex conjugate Laplace transform of the shifted filter:

F( f ) =
τ

1+2π i f τ
+

c
2π i f

(B.46)

With a record length oftl , the lowest frequency present in the signal is 1/2πtl. We now
calculate

N2
blr =

∫ ∞

1/2πtl
N2

white|F( f )|2d f (B.47)

= N2
white

∫ ∞

1/2πtl

∣
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d f (B.48)

≈ N2
whiteτ
4

(

1− 2
π

arctan
τ
tl
− 2τ

tl
+

4τ
πtl

arctan
τ
tl

+
2τ
πtl

)

(B.49)

=
N2

whiteτ
4

·d, (B.50)
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with d the expression in brackets in (B.49). This yields for the signal-to-noise ratio

(

S
N

)

blr
=

(

I0
√

τ
Nwhite

− 2I0τ3/2

Nwhitetl

)

1√
d

(B.51)

=
S
N
·
(

1− 2τ
tl

)

1√
d

. (B.52)

This expression gives the factor with which the resolution is degraded when this type of
base line restoration is used. For typical values ofτ = 200µs andtl = 4096µs, it results
in a degradation of the resolution of∼ 5%. This method should therefore only be used
when the expected degradation by base line shifts is more than 5%.

B.3.4 Timing correction

A problem with using the ‘optimum’ filter in the time domain isthat it is quite sensit-
ive to how well the filter is lined up with the pulse. Due to a finite sampling interval in
the data-acquisition, the arrival time of each pulse is slightly different with respect to the
time bin divisions. To correct for this, we would like to shift the filter slightly in time
before applying it to the pulse, so that it lines up well and the integral of the filtered pulse
yields a maximum. However, since the filter is constructed from the sampled pulses, it
too has a finite time resolution. Shifting the filter less thanthe duration of one time bin
requires interpolating between the points, which might be complicated. Another possibil-
ity is to repetitively shift the filter an integer number of time bins and use a least-squares
approximation to estimate the integrals of the shifts in-between. For example, the filter
is applied 5 times, shifted -2, -1, 0, 1, and 2 time bins, respectively. Then, a parabola
y = a2x2 + a1x + a0 is fitted through the integrals, as shown in figure B.3. The topof the
parabola, as given byymax = −a2

1/4a2+ a0, is a good approximation of the integral with
a filter that is properly lined up.

B.3.5 Gain drift correction

Gain drift arises when the amplifier gain is changing over time during the measurement.
This causes the spectrum to be smeared and the resolution to be degraded. It can be
compensated by selecting events that belong to a narrow spectral line and calculating a
moving average of their energy as function of time. When the moving average is nor-
malised to the total average, it can be used as a correction factor for all events. In this
way, most of the gain drift can be eliminated. For the spectral line, a calibration line in
the measured spectrum or a line due to a heat pulser can be used. The measured energies
in this spectral line have a certain error, so applying the gain correction introduces some
extra resolution degradation. If the gain correction is to help more than it hurts, sufficient
averaging is necessary. This reduces the error in the correction factor with the square root
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Figure B.3: Integrals of shifted filter applied to X-ray pulse (×) with fitted parabola (solid
line).

of the number of points to be averaged. The minimum number of points is dictated by
the width of the spectral line used. If the line has a very narrow intrinsic width (as with a
heat pulser line), its width in the spectrum is equal to the energy resolution. For the gain
drift correction to contribute no more than 20% to the resolution, we need to average over
at least 1/0.22 = 25 points. When the spectral line has a larger instrisic width ∆Eint, the
minimum number of points for a 20% contribution is

n = 25+25
∆E2

int

∆E2 . (B.53)

So, when the Mn Kα complex is used for the gain drift correction, with an intrinsic line
width of ∼ 15 eV, then for a 20% contribution to a 5 eV resolution, a moving average
over 250 points is necessary. Of course, when the gain varieson a shorter time scale, it
may well be that using a lower number of points is preferred. Some experimentation is
necessary to find the optimum number of points for a given dataset.

B.4 Peak fitting

After filtering, the calculated photon energies are plottedin a histogram. In order to
calculate the measured resolution, it is necessary to compare the measured spectrum with
the intrinsic spectral shape. To do so, the intrinsic spectrum (as obtained from e.g. a
very-high-resolution crystal spectrometer) is convolvedwith an instrument response that
is assumed to be Gaussian. The convolved spectrum is then fitted to the measurements,
and the width of the Gaussian that produced the best fit is the energy resolution of the
spectrometer. For the fitting, a weighted least-squares procedure is used. The weights are
1/σ2 with σ the error in the data. For the Poisson statistics of our histogram, the error



B.4. Peak fitting 105

is the square root of the number of counts, so the weight of a bin is the inverse of the
number of counts in that bin. The fitting is performed in two stages: in the first stage, the
weights are based on the measured number of counts. Bins withzero counts get a weight
of 1. In the second stage, the weights are based on the fitted curve from the first stage.
This ensures that the weighting is based on the spectrum as itshould be, given a certain
instrument response width, and not as it was measured. The energy resolution obtained
in this way is a good measure for comparing the quality of spectrometers.
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APPENDIX C

TES SIMULATION WITH SABER

This appendix describes the technical details of the TES noise simulation using the Saber
program from Synopsys, Inc. The program requires input in the form of text files called
templates. These templates are written in the MAST language. A hierarchical structure
of components can be described and equations governing the behaviour of each compon-
ent can be specified. Each component has a number of connections to other components
calledpins. These pins all have a specific type, for instance electricalor thermal. The
equations should specify the “flow” from one pin to another (so-called “through” vari-
ables) in terms of the “potential” between those pins (so-called “across” variables). For
example, a thermal conductance has two pins, labelleda andb. The through variable for
this component is power (P) and the across variable is temperature (T ). Each pin has its
own temperature, and the equation describing the power flow from pina to pinb is:

Pa→b = G(Ta −Tb), (C.1)

whereG is the value for the thermal conductance. In some cases, the through variable
cannot be expressed directly, and another equation is necessary. For instance in an ideal
voltage source, the through variabele current (I) is not known as it depends on the load.
The simulator has to solve the system of equations to find the current. This is specified as
follows:

Ia→b = I (C.2)

I : Va −Vb = Vs (C.3)

This means that the simulator should find theI that makes the voltage between the two
pins equal to the specified source voltageVs.

Noise can be specified as a spectral density level for either athrough variable (e.g.
current noise between two pins) or an across variable (e.g. voltage noise). In each simu-
lation element, noise sources are included. The simulator can then calculate and plot the

107
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Table C.1: Components used in the numerical noise simulation.

Component Param- Electrical Thermal Equations
eters pins pins

Voltage source Vs p,m Vp −Vm = Vs

Resistor R p,m Ip→m = (Vp −Vm)/R

Inductor L p,m Vp −Vm = L dI/dt

Temperature
source

Ts p,m Tp −Tm = Ts

Heat capacity C,Tinit p Pp = C dT/dt

Thermal
conductor

G p,m Pp→m = G(Tp −Tm)
δPp→m =

√
4kBG(Tp + Tm)/2

Thermal
conductor with
gradient

G p,m Pp→m = G(Tp −Tm)

δPp→m =
√

4γkBGTp

TES
thermometer

α,Rn,Tc p,m t R = Rn(Tt/Tc)
α

Ip→m = (Vp −Vm)/R
Pt = −(Vp −Vm)2/R
δVm =

√
4kBTtR

contribution of each noise source to a selected quantity, e.g. current or power. Also, the
current noise spectrum of the total sensor can be plotted.

For the TES simulation, the components specified in table C.1were designed. The
actual MAST code is given at the end of this appendix. The basis for the TES thermometer
component is the expression for the temperature dependenceof the resistance. For reasons
of simplicity, an expression has been chosen in which the value of the parameterα is
independent of the set point in the transition:

R(T ) =

{

Rn

(

T
Tc

)α
for T ≤ Tc

Rn for T > Tc

(C.4)

The fact that in reality,α is generally not constant over the whole transition, is of little
concern since we are only looking at the noise in a single set point. A constantα allows
easy comparison of the noise in different sensor layouts.

The thermal conductor is implemented in two ways: The first has the noise based
on the average temperature on both ends and should be used when there is only a small
temperature difference across the link, as is the case inside the microcalorimeter. The
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other should be used when there is a large temperature gradient across the heat link,
for example in the membrane. Its noise is based on the temperature on the warm end,
but contains a factorγ which corrects for the effect of the temperature gradient. Since
n ≈ 3.2, we getγ ≈ n/(2n +1)≈ 0.43.

The Johnson noise in the TES has two effects: it adds directlyto the noise in the elec-
trical system which dissipates in the TES resistor and adds power to the thermal system,
but the work done by the noise source itself also removes power from the thermal system.
To implement this in a correct manner, the TES thermometer component was split into
two parts: a noiseless, temperature-dependent resistor generating a power ofP1 = I2R(T )
in series with a noise source generatingP2 = ∆V2I, where∆V2 is the voltage across the
noise source. Variations in these powers have an opposite sign. The sum of these two
powers being put into the thermal system results in the correct current noise spectrum in
the electrical system.

Since we are interested in the noise from the microcalorimeter itself, the shunt resistor
is kept noiseless.

Below, the program code for the MAST templates used in the numerical noise simu-
lation as described in section 6.4 is included. A multi-element one-dimensional simula-
tion consisted of a number oftes instances in series, terminated by ateselement in-
stance, together with the components for providing the non-ideal bias voltage (voltage
and tworesistors) and aninductor to simulate theSQUID inductance. For the two-
dimensional simulations, a grid oftes2d instances was used, terminated bytes instances
and oneteselement.

# Thermal conductivity with power noise based on the average

# temperature of the two pins.

element template thermcond p m = g

thermal_k p,m

number g # thermal conductivity coefficient

{

number k = 1.3807e-23 # Boltzmann’s constant

val nw noise # power noise

values {

noise = sqrt(4.0*k*g)*(tk(p)+tk(m))/2.0

}

control_section {

noise_source (noise, p, m)

}

equations {

p(p->m)+=g*(tk(p)-tk(m))

}

}
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# Thermal conductivity with temperature gradient. Noise based on

# temperature of p pin.

element template thermcond_gradient p m = g

thermal_k p,m

number g # thermal conductivity coefficient

{

number k = 1.3807e-23 # Boltzmann’s constant

val nw noise # power noise

values {

noise = sqrt(0.43*4.0*k*g)*tk(p)

}

control_section {

noise_source (noise, p, m)

}

equations {

p(p->m)+=g*(tk(p)-tk(m))

}

}

# Heat capacity with initial temperature

element template heatcap p = c, ti

thermal_k p # just one pin, the other always to ground

number c # heat capacity

number ti = undef # initial temperature

{

val tk t # temperature

values {

t = tk(p)

}

control_section {

initial_condition(t,ti)

}

equations {

p(p)+=d_by_dt(c*t)

}

}

# Constant temperature source to be used as heat bath

element template tempsource p m = t

thermal_k p,m

number t # temperature difference
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{

var p x

equations {

p(p->m)+=x

x: tk(p)-tk(m)=t

}

}

# Ideal inductor

element template inductor p m = l

electrical p, m

number l # inductance

{

var i il

equations {

i(p->m)+=il

il: v(p)-v(m)=d_by_dt(l*il)

}

}

# Ideal electrical resistor

element template resistor p m = r

electrical p,m

number r # resistance

{

equations {

i(p->m)+=(v(p)-v(m))/r

}

}

# Ideal constant voltage source

element template voltage p m = vs

electrical p,m

number vs # voltage

{

var i x

equations {

i(p->m)+=x

x: v(p)-v(m)=vs

}

}
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# TES thermometer; temperature dependent, dissipates heat and

# generates Johnson noise.

element template testherm p m t = alpha, rn, tc

electrical p,m

thermal_k t # thermal connection

number alpha # coefficient of steepness

number rn # normal resistance

number tc # critical temperature

{

number k = 1.3807e-23 # Boltzmann’s constant

val r res # resistance

val nv noise # Johnson noise

var i i # current

var i j # extra current

electrical c # extra centre pin

values {

if ((tk(t)>tc)|(alpha==0)) res = rn

else res = rn*(tk(t)/tc)**alpha

noise = sqrt(4*k*tk(t)*res)

}

control_section {

noise_source(noise,j)

}

equations {

i(p->c)+=i

i: v(p)-v(m) = i*res

i(c->m)+=j

j: v(c)-v(m) = 0

p(t)-=i*i*res+(v(c)-v(m))*j

}

}

# TES thermometer, heat capacity and thermal conductance to bath

# combined.

element template teselement p m a b = alpha, rn, tc, c, gb, ti

electrical p,m

thermal_k a # thermal connection to neighbour

thermal_k b # connection to bath

number alpha # steepness of transition

number rn # normal resistance



113

number tc # critical temperature

number c # heat capacity

number gb # thermal conductivity to bath

number ti # initial temperature

{

testherm.t1 p m a = alpha, rn, tc

heatcap.c1 a = c, ti

thermcond_gradient.g1 a b = gb

}

# 1-dimensional TES building block

template tes p m a1 a2 b = alpha, rn, tc, c, g, gb, ti

electrical p,m

thermal_k a1,a2 # thermal connection to neighbours

thermal_k b # connection to bath

number alpha # steepness of transition

number rn # normal resistance

number tc # critical temperature

number c # heat capacity

number g # thermal conductivity

number gb # thermal conductivity to bath

number ti # initial temperature

{

teselement.t1 p m a1 b = alpha, rn, tc, c, gb, ti

thermcond.g1 a1 a2 = g

}

# 2-dimensional TES building block with connections in lateral

# and longitudinal directions

template tes2d e1 e2 e3 t1 t2 t3 b = alpha, rn, tc, c, g, gb, ti

electrical e1,e2,e3

thermal_k t1,t2,t3 # thermal connection to neighbours

thermal_k b # connection to bath

number alpha # steepness of transition

number rn # normal resistance

number tc # critical temperature

number c # heat capacity

number g # thermal conductivity

number gb # thermal conductivity to bath

number ti # initial temperature

{
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tes.tes1 e1 e2 t1 t2 b = alpha, rn, tc, c, g, gb, ti

testherm.tes2 e1 e3 t1 = alpha, rn, tc

thermcond.g1 t1 t3 = g

}
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SUMMARY

This thesis describes the development and device physics ofan X-ray microcalorimeter.
This is a device for measuring the energy of X-rays. The microcalorimeter measures the
temperature increase that is the result of the absorption ofan X-ray photon. Since the
devices described in this thesis are produced using photolithographic techniques, they
have the potential, in combination with suitable X-ray optics, to be made into imaging
arrays. The availability of an imaging X-ray spectrometer with a high energy resolving
power will have a significant impact in astronomy and material analysis. In astronomy, X-
ray spectra provide information about high-energy processes taking place in the universe.
In material analysis, the structure and composition of materials can be determined. The
work described here is guided by therequirements of an instrument forXEUS, a future
space-based astrophysical observatory.

The microcalorimeter is based on a superconducting-to-normal phase transition edge
thermometer (TES). This is a superconductor that is voltage-biased in the very narrow
transition from superconducting to resistive behaviour. In the transition, the electrical
resistance is very sensitive to changes in the temperature,making the TES a good temper-
ature to resistance transducer. The resistive element is easily incorporated in an electrical
read-out circuit. The TES is coupled to a cold bath, providing a temperature reference. A
voltage-biased TES benefits from negative electro-thermalfeedback, which stabilises the
sensor and shortens the response time. The energy resolvingpower of the microcalorim-
eter is limited by noise. In this thesis, this noise is studied in detail, both in experimental
sensors as well as through simulations.

The specifications of the microcalorimeter are subject to a number of constraints. In
particular, there is a trade-off between absorption efficiency, detector area and resolving
power. The sensor described in this thesis is optimised for the demands of theXEUS

mission. The sensor is fabricated using existing Si3N4 micromachining and thin-film
photolithographical techniques. For testing, there are a number of requirements of which
a stable bath temperature and bias voltage are the most important.

Several sensors with small square absorbers were manufactured and tested. With
an operating temperature of 0.1 K, their energy resolution was about 4.5 eV for X-ray
photons of 5.9 keV. This is equivalent to a resolving power of1300. Furthermore, a sensor
with a bigger, overhanging absorber with a ‘mushroom’ shapewas tested, with a similar
result. This energy resolution is satisfactory, but not as good as predicted by theory. This
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discrepancy was investigated and forms the heart of this thesis. The difference between
theory and measurement was explained by a combination of twoeffects:

Firstly, because the TES and absorber are seperate parts in the sensor, there can be an
exchange of energy between the two. This results in an internal noise component which
deteriorates the energy resolution. By changing the sensorgeometry, we were able to
influence and reduce the spectral density of this noise component. Using a numerical
noise simulation, several geometries were evaluated. An analytical relation was derived
for the magnitude of this internal noise component as a function of the geometry. Based
on the knowledge about the influence of the geometry on the noise, an optimised geometry
was designed.

Secondly, besides the internal noise, there is another effect that causes a difference
between the theoretical and measured resolution. The predicted resolution is based on a
small-signal model, which assumes limited excursions overthe transition of the TES. For
actual X-ray pulses that use a significant part of the dynamicrange of the TES, this model
was found to be incorrect. The large excursions cause the pulse shape to deviate from
the ideal shape as assumed by the small-signal model. Because of this, the small-signal
model predicts a smaller amount of noise to be present in the filtered signal than is the
case in reality. This caused the theory to predict a better resolution than could actually
be measured. Using measured pulse shapes, a more accurate prediction was made, which
is in agreement with the measurements. A simple large-signal model was constructed
to simulate pulse shapes based on the sensor parameters. With this model, the energy
resolution can be described as a function of the size of the excursion over the transition
(equivalent to different X-ray photon energy or device heatcapacity). The model can
be used for performance prediction at arbitrary X-ray energies and for improved sensor
optimisation.

Finally, we have looked at the requirements that using this type of sensor in a space-
borne instrument puts on the devices. They were tested for radiation hardness and stability
over time. For use in an instrument, imaging capability is required. This makes it neces-
sary to use an array of microcalorimeters. Among the challenges related to the design of a
microcalorimeter array are the uniform coupling of the pixels to the cold bath, the lay-out
of the electrical wires and multiplexing of the signals.



SAMENVATTING

Dit proefschrift beschrijft de ontwikkeling en de natuurkunde van een röntgenmicroca-
lorimeter. Dit is een sensor voor het meten van de energie vanröntgenstraling. De mi-
crocalorimeter meet de temperatuurverhoging die het gevolg is van de absorptie van een
röntgenfoton. Aangezien de in dit proefschrift beschreven sensoren geproduceerd worden
met behulp van fotolithografische technieken, hebben ze de mogelijkheid om, in combi-
natie met geschikte röntgenoptiek, tot afbeeldende rasters samengesteld te worden. De
beschikbaarheid van een afbeeldende röntgenspectrometer met een hoog energieschei-
dend vermogen zal een aanmerkelijk invloed hebben in de sterrenkunde en de materiaal-
analyse. In de sterrenkunde verschaffen röntgenspectra informatie over hoogenergetische
processen in het heelal. In de materiaalanalyse kan de structuur en de samenstelling van
materialen bepaald worden. Het hier beschreven werk wordt geleid door de eisen voor
een instrument voorXEUS, een toekomstig astrofysisch observatorium in de ruimte.

De microcalorimeter is gebaseerd op een supergeleidende-naar-normale faseovergangs-
thermometer (TES). Dit is een supergeleider die in de zeer smalle overgang van superge-
leidend naar weerstandshebbend gedrag ingesteld wordt meteen elektrische spanning. In
de overgang is de elektrische weerstand zeer gevoelig voor veranderingen in de tempe-
ratuur, zodat de TES een goede omzetter is van temperatuur naar weerstand. Het weer-
standselement is op eenvoudige wijze op te nemen in een elektrisch uitleescircuit. De
TES is gekoppeld met een koudebad dat een temperatuursreferentie vormt. Een met een
spanning ingestelde TES profiteert van negatieve elektro-thermische terugkoppeling, het-
geen de sensor stabiliseert en de reactietijd verkort. Het energiescheidend vermogen van
de microcalorimeter wordt beperkt door ruis. In dit proefschrift wordt deze ruis in detail
bestudeerd, zowel in experimentele sensoren als door middel van simulaties.

De specificaties van de microcalorimeter zijn onderworpen aan een aantal beperkin-
gen. In het bijzonder is er een afweging tussen absorptierendement, detectoroppervlak en
scheidend vermogen. De sensor beschreven in dit proefschrift is geoptimaliseerd volgens
de eisen van deXEUS missie. De sensor wordt gemaakt door middel van bestaande Si3N4

bewerkingsprocessen op microschaal en dunne-film fotolithografische technieken. Voor
het testen is er een aantal eisen waarvan stabiele badtemperatuur en instelspanning de
belangrijkste zijn.

Verschillende sensoren met vierkante absorptie-elementen werden gemaakt en getest.
Bij een bedrijfstemperatuur van 0.1 K was hun energieresolutie ongeveer 4.5 eV voor
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röntgenfotonen van 5.9 keV. Dit komt overeen met een scheidend vermogen van 1300.
Bovendien werd een sensor met een groter, overhangend absorptie-element met een ‘pad-
destoelvorm’ getest, met een soortgelijk resultaat. Deze energieresolutie is bevredigend,
maar niet zo goed als voorspeld werd door de theorie. Deze tegenstelling werd onderzocht
en vormt de kern van dit proefschrift. Het verschil tussen detheorie en de metingen werd
verklaard door een combinatie van twee effecten:

Ten eerste kan er, omdat de TES en het absorptie-element afzonderlijke delen van
de sensor zijn, een energie-uitwisseling plaatsvinden tussen beide. Dit heeft een interne
ruiscomponent tot gevolg, die de energieresolutie verslechtert. Door de sensorgeometrie
te veranderen waren wij in staat de spectrale dichtheid van deze ruiscomponent te be-
invloeden en te verminderen. Door gebruik te maken van een numerieke ruissimulatie
werd een aantal geometrieën geëvalueerd. Een analytischverband werd afgeleid voor de
grootte van deze interne ruiscomponent als functie van de geometrie. Gebaseerd op de
kennis over de invloed van de geometrie op de ruis werd een geoptimaliseerde geometrie
ontworpen.

Ten tweede is er naast de ruis een ander effect dat een verschil veroorzaakt tussen
de theoretische en de gemeten resolutie. De voorspelde resolutie is gebaseerd op een
klein-signaalmodel, dat beperkte uitwijkingen over de overgang van de TES aanneemt.
Voor daadwerkelijke röntgenpulsen die een aanmerkelijk deel van het dynamisch bereik
van de TES gebruiken is dit model onjuist gebleken. De grote uitwijkingen veroorzaken
dat de pulsvorm afwijkt van de ideale vorm zoals die aangenomen wordt door het klein-
signaalmodel. Hierdoor voorspelt het klein-signaalmodeldat er een kleinere hoeveelheid
ruis aanwezig is in het gefilterde signaal dan in het echt het geval is. Dit zorgde ervoor
dat de theorie een betere resolutie voorspelde dan daadwerkelijk gemeten kon worden.
Door gebruik te maken van gemeten pulsvormen werd een nauwkeuriger voorspelling
gedaan die in overeenstemming is met de metingen. Een eenvoudig groot-signaalmodel
werd opgesteld om pulsvormen te simuleren op basis van de sensorparameters. Met dit
model kan de energieresolutie beschreven worden als functie van van de grootte van de
uitwijking over de overgang (overeenkomend met verschillende röntgenfotonenergie of
warmtecapaciteit van de sensor). Dit model kan gebruikt worden voor het voorspellen van
de prestaties bij willekeurige röntgenenergieën en voorverbeterde sensoroptimalisatie.

Tenslotte hebben we gekeken naar de eisen die het gebruik vaneen sensor van dit type
in een instrument in de ruimte stelt aan de componenten. Zij werden getest op stralings-
hardheid en stabiliteit over lange duur. Voor gebruik in eeninstrument is de mogelijkheid
tot het maken van afbeeldingen vereist. Dit maakt het noodzakelijk om een raster van
microcalorimeters te gebruiken. De uitdagingen met betrekking tot het ontwerp van een
raster van microcalorimeters zijn onder andere de uniformekoppeling van de beeldele-
menten naar het koudebad, de lay-out van de elektrische aansluitingen en het multiplexen
van de signalen.
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