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Chapter 1

| ntroduction

The general topic of interest of this thesis concerns the dynamics of bedforms that are ob-
served in coastal seas in water depths between 5 and 30 m and which have horizontal length
scales of a few kilometres. Both field observations and model studies indicate that the dynam-
ics of these features is due to the interaction of the hydrodynamic processes and the sandy
bottom through the motion of sediment.

In this introductory chapter the existence of these large-scale bedforms as part of the
coastal system is discussed (section 1.1 + 1.2). An overview of what the observations reveal
about these ridges is given in section 1.3, followed by a discussion on the existing theories
with regard to their formation (section 1.4). Sections 1.5 and 1.6 present a brief overview of
the basic concepts of morphodynamic models, used to verify the theories, and their applica-
tions. These concepts are applied in most modelling efforts for large-scale ridges done so far
(section 1.7). It will become clear that there are still many open questions, of which only a
few are discussed in this thesis (section 1.8). An outline of the thesis is given in section 1.9.

1.1 The coastal system: physical and geographical aspects

Coastal seas form the transition from land to sea; they extend from the shoreline to the sea-
ward end of the continental shelf, usually at depths of about 100-200 m. The offshore limit
is marked by a steep slope in the sea floor, which separates the shelf from the deep ocean.
Examples of coastal seas are the North Sea, the East Chinese Sea and the shallow waters of
the Mid-Atlantic Bight of North America.

The water motion in coastal seas is influenced in a number of different ways. The wind
blowing over the water surface induces surface waves, wind-driven currents and a set-up (or
set-down) of water towards the shoreline. Tidal forcing results in changes in the water level
and current direction between the ebb and flood period of the tide. In most coastal seas the
dominant tidal constituent is the semi-diurnal lunar (M-) tide. At the landward boundary of
the coastal sea, the outflow of fresh river water in the more saline sea water induces density
gradients which force an estuarine type of circulation.

The water motion occurs on a wide range of timescales, from seconds for short waves to
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Figure 1.1: Changing current velocity resulting in convergence (deposition, vertical downward arrow)
and divergence (erosion, vertical upward arrow) of the sediment flux in case of growing perturbations
in the seabed (no migration).

hundreds of years related to the changes in the sea level. An essential aspect of the coastal
system is that these currents and waves are capable of transporting water and sediment, and
redistribute heat and salt. In case of sediment, the currents must exceed a certain threshold
value before the sediment is eroded from the seabed (Dyer, 1986). Stronger currents are
capable of eroding and transporting more sediment, so that changes in the current velocity
can lead to a spatial convergence or divergence in the sediment transport (Figure 1.1). A
morphological change in the seabed, e.g. the development of a sand bank, is the result. If
the location of the maximum erosion (deposition) is shifted with respect to the location of
the maximum (minimum) perturbation in the seabed the morphological pattern is migrating.
In turn, these changes in the bottom can affect the currents due to changing water depths.
The result is the generation of different types of bedforms, on many different length and
timescales.

The dense population in coastal lowlands and the use of the shallow coastal seas for trans-
port, recreation, sand mining, etc., make the need for a good understanding of the coastal
system inevitable. Nevertheless, the understanding and the prediction of coastal morphody-
namics is still limited. The problem is the lack of fundamental knowledge about the under-
lying physical processes like sediment transport, wave-current interaction and turbulent mix-
ing, mainly due to the overall complexity of these processes. The wide range of length and
timescales involved in coastal seas make it difficult, if not impossible, to deal with all hydro-
and morphodynamic processes at once. Often this is solved by focusing only on a specific
zone, characterised by specific dominant physical processes (see, e.g., Wright, 1995).

The different zones within the coastal region are indicated in Figure 1.2, which shows
a sketch of a shore-normal section of the coastal shelf, starting at the landward limit of the
beach. In the nearshore zone (typical cross-shore slope of 1:100) the water motion is domi-
nated by shoaling, refraction and breaking of surface waves. Besides, tides play a role: they
cause relatively large changes in the water level during the tidal period. The shoreface is
roughly defined as the part of the nearshore zone that is permanently covered by water, i.e.
seaward from the low tide shoreline. The nearshore zone is a highly variable system, where
bedforms grow and disappear on timescales of hours to several years. The smallest bed-
forms, such as ripples (length scale ~ cm) that are often observed on the beach, change on
the shortest timescales, while larger banks in the zone where waves start to break (horizontal
lengthscale of ~ 100 m) evolve on longer timescales (Short, 1999). Between these two ex-
tremes, field observations show a large variety of morphodynamic features, including beach
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Figure 1.2: Sketch of the coastal region; the different subareas are indicated.

cusps and swash bars. The spatial extent of the bedforms is strongly related to the temporal
scale of the dominant hydrodynamical forcing.

The influence of waves is less dominant in the more offshore located areas; here other
forcing mechanisms (wind, tides) become more important. Besides the dominant constituents
of the water motion, also the depth range and the cross-shore slopes of the sea bed discern the
regions. The water depth in the offshore zone gradually increases from the seaward limit of
the shoreface (~ 10 m) over the inner shelf, with slopes of the seabed being small (1:1000)
compared to those in the nearshore. A further decrease in bedslope to almost constant depths
marks the transition to the outer shelf. The shear stresses exerted by the water motion on the
bottom are sufficiently large to mobilise the sandy sediment until depths of about 30 m.

The different hydrodynamic forcing conditions, with respect to those in the nearshore
zone, do not only result in slower response timescales, but also in a large variety of bottom
patterns. This can be seen in Figure 1.3, which shows the depth variations along the Belgian
coast in the southern North Sea, a coastal sea which has a maximum depth of ~ 50 m. This
is a meso-tidal shelf, a terminology that is often used to indicate the maximum tidal range.
The classification is from micro-tidal (range < 2 m) to meso-tidal and macro-tidal (> 4 m).
Large sand ridges are present at several locations, from a distance of 1-2 km offshore up to
depths of about 30 m, with heights ranging from 1-8 m and a length of 10-20 km. Other types
of bedforms can also be seen on this map.

1.2 Central focus of this thesis

In this thesis the focus will be on the large-scale sand ridges that are present on the inner
and outer shelves of many coastal seas. Their horizontal extent is of the order of several
kilometres and they evolve on long morphodynamical timescales (decades to centuries). It
should be realised that these bedforms only form a small part of the entire spectrum of pos-
sible bedforms that are observed within the complex coastal system. Besides pure scientific
interest in the question of why these ridges are there, their social and economical impact is
equally important. Focusing again on the southern North Sea, these large-scale bedforms are
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Figure 1.3: Sand ridges in the southern part of the North Sea, along part of the Dutch and Belgian coast.
The different shades of grey indicate the water depth, where shallower areas are darker. The offshore
ridges off the coast of Belgium aretidal sand ridges, the ones closer to the coast are shoreface-connected
ridges. Note the difference in orientation of the crests. Based on Maes et . (1997).

also present along the central part of the Holland coast, which is thought to be less subject
to erosion than the regions further north and south (Van de Meene, 1994). The presence of
these ridges (see Figure 2.1 in chapter 2) might be one of the causes, although there is no hard
evidence to support this hypothesis. The intersection of the ridges with major shipping lanes
and offshore located oil rigs is one of the obvious reasons to develop a good understanding
of the dynamical behaviour of the ridges. The large volumes of sand stored in the crests is
of interest to the construction industry, but clearly knowledge is required about the type of
sediment and how the ridges respond to large-scale sand extraction. Furthermore, the coastal
waters in which the ridges are present are of interest to ecologists. The morphology interacts
with the benthos that are present in the seabed by their mutual preference for grain size, bot-
tom slope and wave influence. Also, the troughs between the ridges provide feeding grounds
for fish, relevant to the fishing industry. In general, owing to their size and proximity to the
coast, these ridges are important features to study in detail.
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Figure 1.4: (Left) Bathymetry (in metres) of the shoreface and inner shelf showing the topography of
shoreface-connected ridges on the Long Island inner shelf (Atlantic coast of North America). The mean
longshore current is directed from northeast to southwest. (Right) Measured profi le of water depth (in
metres) and mean grain size (in phi units) for the offshore directed sample transect. Larger phi values
imply smaller grain sizes. Reprinted from Niedoroda et al. (1985), Copyright, with permission from
Elsevier.

1.3 Observations and classification of sand ridges

In an overview paper of Dyer and Huntley (1999) it becomes clear that different types of
sand ridges can be identified in coastal seas (see Figure 1.3). Besides ridges on the open
shelf, ridges are also present in the proximity of headlands and estuaries. The descriptive
classification used by these authors is based on the long-term development of the bedforms
in connection with their present-day hydrodynamic setting. It follows that the ridges which
are considered in this thesis are the Type 1 and Type 2B(ii) ridges. Type 1 are open shelf
ridges, located on the outer shelf in a meso-tidal environment and comprise the tidal sand
ridges. The second type (Type 2B(ii)) includes the shoreface-connected sand ridges. These
are located somewhat closer to the coast on the inner shelf. The length scale of these two
types of bedforms is the same order of magnitude and both evolve on timescales of decades
to centuries. The different characteristics of shoreface-connected ridges and tidal sand ridge
are discussed hereafter.

Observations of shoreface-connected ridges are reported on different coastal shelves,
most prominently present along the Atlantic shelf of North America (Swift et al., 1978; Swift
and Field, 1981), see Figure 1.4, along the Dutch coastline (Van de Meene and Van Rijn,
2000a), in the German Bight (Antia, 1996), on the Canadian Scotian shelf (Hoogendoorn,
1986; Amos and Nadeau, 1988), and in the southern hemisphere along the coast of Argentina
and Brazil (Figueiredo et al., 1982; Parker et al., 1982). Generally, patches of 4-8 ridges are
observed in water depths between 5-20 m, located several kilometres offshore. As the name
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already suggests, the landward end of the ridges often extends up to the transition from inner
shelf to the shoreface. Overall characteristics of these bedforms are: a shore-oblique orienta-
tion of their crests with respect to the coastline (average angle of 29°) (McBride and Mosow,
1991), a height of 1-6 m, a width of 2-3 km, and a spacing between successive crests of 2-6
km, while crestlines can extend for several kilometres. Side slopes of the ridge flanks are nor-
mally less than 1° and the ridges have an asymmetrical profile, i.e. they have a steeper slope
on the seaward flank. The shoreface-connected ridges are present on shelves where storms
contribute significantly to the mean longshore current, whereas the strength of the tidal cur-
rents strongly varies over the regions of occurrence. The orientation of the crests is such that
their seaward ends are shifted upstream with respect to their attachments to the shoreface.
Also, the ridges migrate in the direction of this storm-driven current, with a velocity of 1-
10 myr—!. The sediment at the surface is coarsest in the troughs and finest on the seaward
flanks. This means that, viewed in the cross-shelf direction, there is a phase difference of
approximately 90° between the mean grain size and the topography, as illustrated in Figure
1.4. The mean grain size ranges between 0.5-3.0 on the phi scale, which correponds to 0.7 -
0.1 mm.

Tidal sand ridges on the other hand are only present on meso-tidal shelves (Off, 1963). In
these areas the tidal current velocities range from 0.5 — 1.0 ms~! and net longshore currents
induced by, for example, the wind are substantially weaker. The size of these ridges can be
larger than that of shoreface-connected ridges, amplitudes can be much higher (up to tens
of metres), and the general orientation of their crests is oblique (cyclonic, i.e. anticlockwise
in the Northern Hemisphere) with the main tidal current axis. Sometimes they rise close up
to the water surface, as on the Belgian shelf in average depths of 10 m (Lanckneus et al.,
1994), see Figure 1.5, but they are also present in deeper waters (~ 20-30 m), for example
on the Dutch shelf (Van de Meene, 1994). It is not clear whether they migrate or not. Other
examples of tidal sand ridges are found in the Bristol channel (Pattiaratchi and Collins, 1987),
the Florida inner shelf (Davis et al., 1993) and the South Chinese Sea (Liu et al., 1998). Like
the shoreface-connected ridges, the tidal sand ridges also exhibit a striking and intriguing
variation of sediment over their topography. The sedimentological data on the Belgian shelf
ridges is quite extensive and show the coarsest sediment for the tidal sand ridges near the
crestline, whereas the mean grain size is finest on the landward flank or in the troughs, see
Figure 1.5. The differences in the sediment size over the topography of the ridges often
dominates over any large-scale trend within the region. Nevertheless, the variation in the
mean grain size of the sediment at the surface layer always remains within the sand range;
only very small amounts of gravel and mud are present.

Superimposed on both types of bedforms, smaller-scale bedforms can be present, such as
megaripples and sandwaves (wavelengths of order 10 m and 100 m, respectively). The ori-
entation and shape of these bedforms can be used to deduce the direction of the net sediment
transport. For the shoreface-connected ridges on the Dutch shelf both indicate a northward
directed net sediment transport (Van de Meene et al., 1996), i.e. in the direction of the mean
storm-driven current. Gao et al. (1994) state that for one of the tidal sand ridges on the Belgian
shelf (Kwintebank) these small scale bedforms indicate a net circulation around the bank,
with opposing dominant transport directions on either side of the ridge. Furthermore, they
demonstrate that the net sediment transport direction can also be deduced by investigating the
grain size trends over the area (a combination of the mean, sorting and skewness). Williams
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Figure 1.5: (Left) Sketch of the ridges on the Belgian shelf. The location of the Middelkerke Bank is
indicated, which is one of thetidal sand ridges in the group of ridges referred to as the Flemish Banks.
Reprinted from Trentesaux et a. (1999), Copyright, with permission from Elsevier. (Right) Measured
profi le of water depth (in metres) and mean grain size (in phi units) perpendicular to crestline for three
different positions along the Middelkerke Bank. Based on Trentesaux et al. (1994).

et al. (2000) report a similar net clockwise movement of sediment around the Middelkerke
Bank.

Observations reveal that the most common situation is that on a certain shelf only one of
the ridge types is present. This is related to the local dominant hydrodynamic conditions that
favour the formation of either shoreface-connected ridges or tidal sand ridges. Two prototype
regions will be defined, which will reappear throughout this thesis. For shoreface-connected
ridges the Atlantic shelf of North America is considered. This micro-tidal shelf is strongly
influenced by storms and waves, causing a strong steady alongshore current of the order
0.4 — 0.7 ms~! (Niedoroda and Swift, 1981; Niedoroda et al., 1984; Lentz et al., 1999).
Shoreface-connected ridges are present on this shelf (see Figure 1.4), but no tidal sand ridges
occur here. The Dutch-Belgian shelf is considered as a prototype meso-tidal shelf to study
the formation of tidal sand ridges. The hydrodynamics are dominated by tidal currents and
fair weather conditions (as opposed to storm conditions) (Lanckneus et al., 1994; Vincent
et al., 1998; Van de Meene and Van Rijn, 2000a). It is important to realise that on the more
onshore part of these shelves also shoreface-connected ridges are observed. Therefore, the
Dutch-Belgian shelf will also be used to study the simultaneous presence of both types of
ridges.
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1.4 Theories concerning the presence of shoreface-
connected and tidal sand ridges

Because of the long time periods involved in the development of large-scale ridges, it is
difficult to understand the dynamics with the use of only observations. Also the lack of
data including combined information on the bottom topography, sediment transport and the
hydrodynamics, especially during the (potentially) important periods of storms, is a problem.
Pattiaratchi and Collins (1987) give an overview of the proposed mechanisms, theories and
models for sand bank formation and maintenance up to that time. In Dyer and Huntley (1999)
an updated state of development is summarised. For shoreface-connected ridges and tidal
sand ridges the most relevant hypotheses can be split into two categories, based on basically
different concepts.

The first category finds it origin in the geology of the sea floor. It states that the shoreface-
connected ridges are relict features and that they developed during an earlier retreat of the
shoreline (Swift et al., 1972; Schwab et al., 2000). Sand ridges which became detached from
the coastline due to sealevel rise are now maintained at their present location on the shelf
floor. The slow or apparently absent changes in morphology support this hypothesis, which
also assumes that the ridges are not active under the present-day hydrodynamic conditions.
Also the existence of tidal sand ridges is sometimes related to the presence of a core of
eroded fluvial or estuarine sediments. This hypothesis of the first category assumes that the
sediment was deposited during a time period in which the hydrodynamic setting of the ridges
was different from to the present-day forcing (Berné et al., 1994; Trentesaux et al., 1994; Liu
etal., 1998).

The hypothesis of the second category provides the basis for the work presented in this
thesis and assumes that the ridges are active under the local hydrodynamical forcing. Al-
though only a limited amount of field measurements over long time periods are available to
verify this hypothesis, data by Swift et al. (1985) and Van de Meene et al. (1996) support the
idea of a dynamically active system. One way to investigate the validity is with the use of
process-based morphodynamical models.

1.5 Process-based morphodynamic models: concepts

The coupling between the water motion and the seabed is the essential part in a morphody-
namic model. The usual structure of such a model is that it first solves the hydrodynamic
equations for a fixed bottom topography. Next, it uses the bed shear stresses exerted by the
flow on the bed to compute the sediment flux, for which a suitable formulation has to be
selected. Finally, the bottom changes are calculated as the result of the convergence and di-
vergence in the net sediment flux. If this loop is repeated with the newly determined bottom
the feedback between the bottom, changes and the velocity field is included.

In this thesis only the transport of fine to coarse sand (grain sizes of 100 — 1000um) is
considered. This sediment is noncohesive. The dynamics of sediment erosion and the subse-
guent transport of the bottom sediment only occurs above a critical value of the shear stress
(see, e.g., Dyer, 1986; Fredsge and Deigaard, 1992; Soulshy, 1997). Above this critical value
the movement of the grains will be dominated successively by rolling (continuous contact
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with bed), saltation (jumping of a particle into the water column keeping regular contact with
the bed) and suspension (no regular contact with bed) as the stress on the bed increases. These
different ways of the movement of sediment are described with different formulations, where
the distinction is normally made between two modes of transport: bed load (rolling) and sus-
pended load (grains suspended into the water column). The latter depends on the sediment
concentration, which can be solved by incorporating a concentration equation. The preferred
downslope movement of the sediment is represented by a flux which is proportional the slope
of the bed (see, e.g. in Dyer, 1986; Fredsge and Deigaard, 1992).

Furthermore, it is important to remark that many formulations for the sediment flux are
based on the mean grain size of the sediment, i.e. a single size approach. This suffices for
many applications, but in order to understand phenomena like variations in the mean grain
size over the bedforms it is necessary to deal with grains that have different sizes, i.e. using
multiple grain sizes. In the latter case, the behaviour of the sediment mixture is influenced
by the effect of dynamic hiding: smaller grains feel the fluid drag less intensely than larger
grains. If the reduced exposure of the finer grains changes the critical shear stress for erosion
it is called static hiding (see, e.g., Ludwick, 1989; Seminara, 1995). To model these changes,
additional equations which describe the evolution of the probability of occurrence of grains
from a specific size class in the bottom layer are required.

1.6 Free and forced morphodynamic behaviour

The interaction between the water motion and bottom topography through the transport of
sediment can result, in some cases, in a positive feedback due to which small perturbations in
the bottom start to grow, as indicated in Figure 1.6. A bottom topography that does not change
in time under a certain forcing is in equilibrium with this forcing. If small perturbations are
superimposed on this equilibrium state and they start to grow, this is called free behaviour of
the system. If the changes and patterns in the system are fixed by external factors, it results in
forced behaviour. The specific conditions under which this feedback mechanism results in,
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e.g., ridges with the general characteristics of either shoreface-connected ridges or tidal sand
ridges, provides information on the potentially relevant processes for their formation.

The formation of bedforms and the analysis of the dominant physical processes requires
studies with models having different degrees of complexity. The more complex the model,
the more processes are represented and the more realistic (and therefore more complicated)
are their parameterisations. Examples that distinguish idealised from complex models are
the way in which exchange processes between different subareas in the coastal region,
(shelf/basin) geometry and boundary conditions are incorporated. The formation of large-
scale sand ridges so far have been mainly studied with idealised models. The advantage of
the latter is that they allow for a systematic analysis with mathematical methods, whereas
complex models have to be solved numerically. Analysing idealised models thus provides
insight in the actual mechanisms that are crucial for the existence of a certain type of bed
feature.

Within this idealised model context, the mathematical technique of performing a stability
analysis is applied in a variety of subjects. Besides the models for large-scale sand ridges, that
will be discussed in the next section, stability models for uniform sediment have also been
successfully used to explain the formation of other types of bedforms, such as sea ripples
(Vittori and Blondeaux, 1992), sand waves (Gerkema, 2000; Neméth et al., 2002), nearshore
bars (Falqués et al., 2000; Ribas et al., 2003) and channel-shoal formation in tidal embay-
ments (Schuttelaars and De Swart, 1999), to mention only a few. Morphodynamic pattern
formation in tidal basins has been investigated by Van Ledden et al. (2002b) for a sediment
mixture consisting of a sand and a mud fraction.

There is no existing literature which describes the modelling of shoreface-connected
ridges or tidal sand ridges on a bed consisting of nonuniform sediment. An overview of
the influence of grain sorting on other types of bedforms is given by Seminara (1995). In
Foti and Blondeaux (1995) a stability model for the formation of sea ripples includes the
dynamics of sediment consisting of two grain sizes. Their theoretical findings (coarse sand
on the crests, fine sand in the troughs) turn out to be in agreement with field and laboratory
data. Lanzoni and Tubino (1999) have applied the concepts of linear stability to study the
development of alternate bars and the grain size distribution over them. Their model results
are in qualitative agreement with experimental findings which show a reduced height, wave-
length and migration of the bars with respect to the uniform sediment case. Also the sorting
pattern with coarse sediment prevailing on upstream flank of the bar crest is reproduced in
their model.

1.7 Modelling shoreface-connected and tidal sand ridges:
state of the art

In Van de Meene (1994) (see also Van de Meene and Van Rijn, 2000b) a study of the po-
tential stability of a single ridge along the central Dutch coast was presented. A 1D current
model and 2DV morphodynamics were used, in which it is assumed that the interaction water-
morphology is local. A stationary forcing for the flow was applied, and the sediment transport
along a cross-section was calculated for a given ridge topography, assuming the crests have
an infinite length. By comparing the calculated values for the sediment fluxes with the vol-
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Figure 1.7: Schematic view of the transverse bottom slope mechanism. An upcurrent-oriented ridge
produces an offshore defection of the fow. This is a consequence of mass-conservation that causes
the cross-bank flow component to increase over the ridge, while the along-bank component remains
unchanged in the limit of an irrotational fow. The movement of a column into deeper water will
cause a mass defi cit which must be compensated by a convergence of the flow. If the sediment flux is
proportional to the velocity of the current, there will be a convergence of sediment above the crest and
thusthe ridge will grow. The convergence of the sediment flux is more effective on the downstream side
of the ridge, because the longshore movement of the control volume causes an additional mass defi cit
inthisarea. This causes the downstream migration of the bedforms. From Calvete et al. (2001b), based
on concepts discussed by Trowbridge (1995).

ume of the ridge, they concluded that the ridges can be considered active on the timescale of
thousands of years and they are no geological relicts.

A different approach was used by Trowbridge (1995), who was the first to present a
process-based model for the generation of shoreface-connected ridges. He used an irrota-
tional flow, steady forcing (no tides) and a simple sediment flux which is linear in the veloc-
ity. The model domain has a sloping bottom and includes a coastline on one boundary. He
demonstrated that an essential condition for the growth of ridges is the cross-shore bottom
slope of the inner shelf. The latter results in an offshore decrease in the carrying capacity
of sediment. In combination with a deflection of the alongshore current over the crest of the
ridges, this model reproduced the correct orientation of the ridges (seaward ends of the crest
shifted upstream with respect to their shoreface attachment). The mechanism is explained in
Figure 1.7, from which it becomes clear that the shoreface-connected ridges are trapped to
the inner shelf, because in this area the slope of the bottom in much larger that in the outer
shelf. However, his model was unable to predict a preferred length scale for these ridges and
timescales for the growth were too long.

The former problem was solved by Falqués et al. (1998), who introduced a contribution
to the sediment flux that accounts for the preferred downslope movement of grains. Calvete
et al. (2001b) demonstrated that the transport of sediment as suspended load, in addition to
bed load, as well as the stirring of the sediment due to waves was needed to obtain more
realistic timescales for the growth of the ridges. Restrepo (2001) tested the influence of
non-steady flows on the evolution of shoreface-connected ridges with a model that is based
on wave-current interaction. It appears that wave-induced Stokes drift on the relevant long
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Figure 1.8: Sketch (top view) of vorticity production resulting from atidal current fowing over aridge,
rotated cyclonically with the tidal axis and on a fit bottom. The vorticity during the food phase (left
side of ridge) and ebb phase (right side of ridge) of the tide, as well as the resulting (averaged over
tidal period) current direction (dashed arrow) are indicated. The production of anticyclonic vorticity is
indicated by —, cyclonic vorticity by +. The contributions due to Coriolis (left) and friction (middle)
both result in aanticyclonic residual circulation (right) around the ridge.

timescales can influence the shoreface-connected ridges if its magnitude is comparable to that
of the steady background current. A steady state condition for the hydrodynamics appeared
essential for the existence of shoreface-connected ridges, which confirms earlier findings by
Trowbridge (1995) and Calvete et al. (2001b).

The second type of large-scale bedforms, i.e., tidal sand ridges, have been the subject of
several studies. Zimmerman (1981) proposed a mechanism for the development of residual
circulations around tidal sand ridges. Observational evidence indicates that the length scales
and orientation of these ridges are such that they cause the largest possible residual flow
velocities around them. Zimmerman (1981) considers a (depth-averaged) tidal current over
a ridge, and argues that residual eddies develop due to tide-topography interaction. If a tidal
current moves over a ridge, continuity effects cause an acceleration of the flow over the
shallower area. The Coriolis force experienced by a water parcel on the crest is higher than
in the deeper water and it produces a torque. Conservation of potential vorticity results in
the production of anticyclonic (clockwise on the Northern Hemisphere) vorticity over the
ridge crest, during both the ebb and flood phase of the tide, as indicated in Figure 1.8. A net
anticyclonic circulation around bar, following the topographic contours, and irrespective of
the orientation of the ridge is the result. In addition, the bottom friction causes a stronger
deceleration of the flow over the shallower areas, which produces frictional torques over the
flanks of the ridge. This vorticity is advected by the tide. For a ridge oriented cyclonically
with respect to the tidal flow, anticyclonic residual vorticity is generated over the crest during
the tidal period. In that case both torques enhance each other and the strongest residual
circulation around the ridge is found. For a ridge of which the crest is rotated anticyclonically
with respect to the main tidal axis, the Coriolis and frictional torques have opposite signs
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above the crest and a weak residual circulation is induced.

The first model that deals with the free behaviour resulting from the feedback between a
tidal current and sandy sea bottom was presented by Huthnance (1982a). This model differs
from that of shoreface-connected ridges in several respects. First, only tidal forcing was
used and transport of sediment is assumed to be faster than linear in the instantaneous flow
velocity. Furthermore, the domain has a flat bottom and is not bounded by a coastline. This
model captures the dominant wavelength, initial growth and migration of tidal sand ridges. In
addition, it was shown by Huthnance (1982a) that the residual circulation around the ridge, as
was explained by Zimmerman (1981), indeed plays an important role in the positive feedback
mechanism between the water motion and the bottom such that the amplitude of the ridge will
grow. The instantaneous velocity over the upcurrent flank is enhanced due to the residual
circulation, while it is reduced over the downcurrent flank (see Figure 1.8). The net effect
over atidal period results, in case of a "faster than linear’ sediment transport, in a convergence
of sediment over the crest.

Hulscher et al. (1993) extended the model by Huthnance (1982a) by including circular
tides, which allowed for the determination of critical parameters below which the growth of
bedforms is suppressed. Only one tidal component is included in the external forcing of the
water motion. The influence of 3D effects appeared not to be important for tidal sand ridges,
although they did generate smaller-scale bedforms such as sand waves (Hulscher, 1996).
These model results sustain the hypothesis that these ridges form due to inherent feedbacks
between tidal currents and the sandy bottom. The forcing has been restricted to an M, tide
and overtides (e.g. M) have been neglected, albeit Davies et al. (1997) show that My is
important.

The simultaneous existence or absence of shoreface-connected ridges and tidal sand
ridges was investigated by Calvete et al. (2001a). Motivated by observations from the central
Dutch coast, which show the presence of both types in close proximity of each other, they
used a model domain representing the coastal shelf, extending seaward from the shoreface.
Over the inner shelf the water depth increases offshore, and the outer shelf is horizontally
flat and infinitely wide. With the combination of a forcing partly by the M, tide and partly
by steady currents, connected to a sediment transport formulation that has terms which are
cubic and linear in the instantaneous velocity, respectively, the simultaneous presence of both
types of ridges was found. However, the timescales for the growth of the shoreface-connected
ridges were unrealistically long due to the neglect of suspended load sediment transport.

All these models are able to reproduce at least qualitatively the main characteristics of the
large-scale sand ridges. One drawback is that the models discussed above all use sediment
transport parameterisations based on one single (representative) mean grain size. So, no
insight in the dynamics of variations in mean grain size over the ridges was found. The
relation between mean grain size or sorting patterns and the topography of these ridges is
often mentioned in literature, along with some hypotheses on its origin. However, they lack
a structural (model) investigation to support them. Another shortcoming of these models
is that (owing to the methods used) only the initial development of low-amplitude ridges
is modelled. No conclusions can be drawn on the long-term evolution and the final state
of maintenance of the ridges. Although the results of the linear stability models already
compare well with the field observations, the final state of the modelled ridges could be very
different from their initial shape and behaviour. Because the ridges in the field have well-
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developed amplitudes, they are probably more representative for the final "equilibrium state’,
rather than for an "initial state’. Calvete et al. (2002) studied the finite amplitude behaviour of
shoreface-connected ridges in case of a uniform grain size. The work done by these authors
is a nonlinear extension of that presented in Calvete et al. (2001b), which is based on a
linear stability analysis. The nonlinear model results show the development of ridges with
an asymmetrical profile. Moreover, the final state represents migrating ridges with a constant
amplitude.

With regard to the finite-amplitude behaviour of tidal sand ridges, Huthnance (1982b)
looked at the evolution of a small isolated bump into equilibrium bank forms under tidal
forcing. A nonlinear analysis for tidal sand ridges, using a numerical model, was performed
by Idier and Astruc (2003). This model provides a reasonable estimate for the temporal evo-
lution, although saturation heights are overestimated. At present, this work is being continued
by Roos (2003, pers.comm.), using a more analytical approach.

1.8 Objectives of this thesis

The considerations presented in the previous sections have clearly identified gaps in the
knowledge on large-scale sand ridges that form the basis of the work that will be described in
this thesis. The general objectives can be formulated as four main questions that will reappear
in this thesis:

(i) Which processes determine whether shoreface-connected ridges, tidal sand ridges, or
both types of ridges can exist on a coastal shelf? It is aimed at improving the under-
standing of the initial formation and characteristics of large-scale bedforms on storm-
dominated and tide-dominated shelves.

(if) What is the quantitative role of residual currents and the M, tide on the growth and
migration of tidal sand ridges?

(iii) What is the influence of sediment sorting on the initial temporal (i.e. growth and migra-
tion) and spatial characteristics of large-scale sand ridges, and which physical mecha-
nisms are responsible for the observed grain size distribution over these sand ridges?

(iv) What is the finite-amplitude behaviour of shoreface-connected ridges in combination
with the long-term development of the grain size pattern in case of nonuniform sedi-
ment?

1.9 Overview of subsequent chapters

Following the questions raised above, which are applied to the prototype shelves as discussed
in section 1.3, the subsequent chapters in this thesis exhibit the following structure.

Chapter 2 addresses the first two questions for the Dutch shelf. Here tides, as well as storms
that are capable of transporting sediment, are considered in relation to their potential
capacity to generate shoreface-connected ridges and tidal sand ridges. Taking into
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account the conclusions of previous studies, this hydrodynamical setting is optimal
for the presence of both types of ridges. The model is an extension of the model by
Calvete et al. (2001a) (see section 1.7) with an idealised geometry. It takes into account
the forcing by the combined effect of storms, i.e., wind-driven currents and stirring of
sediment by waves, and tidal currents. A second tidal constituent, My, is added to the
M, tidal forcing to study the role of tidal asymmetry in exciting tidal sand ridges.

Chapter 3 addresses the third question for shoreface-connected ridges on the Atlantic shelf
of North America. The most important consideration for this location is the presence
of only shoreface-connected ridges (no interference of other large-scale bedforms such
as tidal sand ridges), no significant tidal currents and the availability of sufficient data
on the sediment properties.

Chapter 4 also addresses the third question, but now for the tidal sand ridges on Belgian
shelf. Here the water motion is dominated by tides and tidal sand ridges are present of
which a large amount of sedimentary and hydrodynamical data are available.

Chapter 5 addresses the last question for shoreface-connected ridges on the Atlantic shelf
of North America, as a nonlinear extension to the work discussed in chapter 3.

In all the chapters the objective is to find an answer to (one of) the questions, within the con-
text of a morphodynamical model. Idealised models are used, which allow for a systematic
analysis by using mathematical methods, so that the focus is on analysing the basic mech-
anisms. A schematised geometry represents the coastal shelf of a semi-infinite width. The
depth-averaged shallow water equations are used, which involves the implicit assumption that
3D processes are not essential for the formation and maintenance of the ridges. In chapter 2
the model equations are introduced and used for the case of uniform sediment (single rep-
resentative grain size). A modified model, suitable to describe the morphodynamics in case
of two sediment classes is used in chapter 3. A stability analysis is performed, where the
linearised equations only apply to the initial stage of development (chapters 2-4), and the
full nonlinear equations are solved to study the evolution in the time and the final ’saturated’
state of shoreface-connected ridges (chapter 5). Time constraints prevented the study of the
nonlinear evolution of grain sorting patterns over tidal sand ridges, which would make a log-
ical topic of a next chapter. With this method of stability analysis, information on growth
rate, migration velocity, wavelength, bottom patterns, sediment patterns and final height of
the bedforms is retrieved. Finally, in chapter 6 the main conclusions of the work presented
in this thesis are summarised, along with a discussion on the parameterisations used in the
models and some suggestions for further research.






Chapter 2

Growth of large-scale bedforms
dueto storm-driven and tidal
currents

Abstract

An idealised morphodynamic model is used to gain further understanding about the formation and
characteristics of shoreface-connected sand ridges and tidal sand ridges on the continental shelf. The
model consists of the 2D shallow water equations, supplemented with a sediment transport formulation
and describes the initial feedback between currents and small amplitude bedforms. The behaviour of
bed forms during both storm and fair weather conditionsis analysed. Thisisrelevant in case of coasta
seas characterised by tidal motion, where the | atter causes continuous transport of sediment as bed load.

The new aspects of thiswork are the incorporation of both steady and tidal currents (represented by
an M3 and M4 component) in the externa forcing, in combination with dominant suspended sediment
transport during storms. The results indicate that the dynamics during storms and fair weather strongly
differ, causing different types of bedforms to develop. Shoreface-connected sand ridges mainly form
during storm conditions, whereas if fair weather conditions prevail the more offshore located tidal sand
ridges develop. Including the M4 tide changes the properties of the tidal sand ridges, such as growth
rates and migration speeds, due to tidal asymmetry. Finally a probabilistic formulation of the storm
and fair weather realisation of the model is used to fi nd conditions for which both types of large-scale
bedforms occur simultaneously. These conditions turn out to be alow storm fraction and the presence
both tidal and steady currents, with a strong steady component during storms. *

*This chapter is based on the paper entitled Growth of large-scale bedforms due to storm-driven and tidal cur-
rents: a model approach, by M. Walgreen, D. Calvete and H.E. De Swart, published in Cont. Shelf Res., 22,
2777-2793, 2002.
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Figure 2.1: Large-scale sand banksin the North Sea, contours of the Netherlands are shown on theright,

part of England on the |eft. The dashed box (1) indicates the location of the shoreface-connected ridges
along central Dutch coast, these ridges are also found east of 5°E, along the Dutch and German Wadden

Islands. Examples of tidal sand ridges are found in regions 4 and 7, where the ridges are cyclonically

rotated with respect to the dominant tidal current. The large patch of ridges in the middle of the fi gure
are possibly also tidal sand ridges. (Van de Meene, 1994).

2.1 Introduction

On the inner and outer part of many coastal continental shelves the hydrodynamics and
transport processes are strongly affected by the presence of large-scale bedforms. In this
chapter two types of bedforms are considered: the first are shoreface-connected sand ridges
(Swift et al., 1978; Parker et al., 1982; Van de Meene and Van Rijn, 2000a), which occur on
storm-dominated inner shelves of coastal seas, where intense steady currents (of the order
of 0.5 ms—1) prevail. The second class of bedforms are the tidal sand ridges, which can be
found on the outer part of meso-tidal shelves, characterised by strong tidal currents (Dyer and
Huntley, 1999). The alongshore spacing of both types of bedforms ranges from 2 — 10 km
and an oblique orientation of the ridges with respect to the mean current is observed (Fig-
ure 2.1). An important difference between the bedforms is the orientation of the crests with
respect to the dominant current. The crests of the shoreface-connected ridges are upcurrent
oriented, i.e. their seaward ends are shifted in the upstream direction of the storm-driven
current with respect to their shoreface attachment. Those of tidal sand ridges are cyclonically
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rotated with respect to the dominant tidal current. This indicates that these types of bedforms
are generated by different mechanisms.

In this chapter an idealised morphodynamic model is used to gain further understanding
about the initial formation and characteristics of these large-scale bedforms. Most modelling
studies investigate either storm-driven shelves (Trowbridge, 1995; Calvete et al., 2001b; Re-
strepo, 2001), resulting in bed forms resembling the shoreface-connected ridges, or tidally
dominated shelves with a basic M5 tidal component (Zimmerman, 1981; Huthnance, 19823;
Hulscher et al., 1993). The two latter studies explicitly deal with the onset of tidal sand
ridges. However, in the North Sea the simultaneous presence of these two bottom modes
is observed, in an area where the quarter-diurnal overtide (M,) significantly contributes to
the tidal current structure (Davies et al., 1997). A first attempt to combine these two bottom
modes in one model is discussed by Calvete et al. (2001a). In their model a steady current is
driven by the background pressure gradient, only one tidal constituent is used and suspended
sediment fluxes are neglected. The simultaneous presence of both bottom modes is found,
but timescales for the growth of the shoreface-connected ridges appear to be too long with
respect to those characterizing the migration of the ridges. This aspect was further investi-
gated by Calvete et al. (2001b), in which they focused on the storm-dominated inner shelf of
the Atlantic coast of North America and neglected tidal motion. They found that suspended
sediment fluxes during storms control the growth of the shoreface-connected ridges, resulting
in more realistic growth times.

In this chapter the situation of a shelf, where both storm-driven currents and tidal currents
are important, will be investigated. As a prototype example we will consider the central
Dutch shelf in the southern part of the North Sea (see Figure 2.1). A new aspect of this work
is the incorporation of both steady and tidal currents, represented by the semi-diurnal Mo
component and the quarter-diurnal My tide in the external forcing. Furthermore, in addition
to bed load transport, a formulation of suspended load transport during storm conditions will
be used. Another new aspect included in the hydrodynamics is the strong density gradient in
the vicinity of the Dutch coast as a result of the outflow of fresh water from the river Rhine
(De Ruijter et al., 1997). The motivation for the present study is therefore twofold. The first
is to investigate the influence of the My tide and the more realistic hydrodynamic conditions
on the formation of tidal sand ridges. The second objective is to understand under which
conditions shoreface-connected ridges and tidal sand ridges occur simultaneously, as is the
case in the southern North Sea.

In section 2.2 the set-up of the model is given and in section 2.3 the method of analysis
is discussed. Model results are presented in section 2.4; first the storm mode is discussed
(section 2.4.1), next the results for the fair weather realisation are presented (section 2.4.2)
and in section 2.4.3 these two realisations of the model are combined. In the final section the
conclusions are given.

2.2 Model formulation
Following earlier studies by Huthnance (1982a), Hulscher et al. (1993), Trowbridge (1995)

and Calvete et al. (2001a), we hypothesize that tidal sand ridges and shoreface-connected
sand ridges form as an inherent instability of a morphodynamic system. A local model is
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used to investigate the flow-topography interaction on coastal shelves under different hydro-
dynamic conditions. The shelf geometry is schematised as a semi-infinite domain, bounded
on the landward side by the transition from the shoreface to the inner shelf, see Figure 2.2.
The reference bathymetry is uniform in the longshore direction (y). In the cross-shore direc-
tion () it consists of an inner shelf (linearly sloping bottom) and an outer shelf represented
by a horizontal bottom. The water depth at the landward side of the inner shelf (z = 0) is Hy,
L, the inner shelf width and the depth of the outer shelf is indicated by H,. Representative
values for the central Dutch coast are Hy ~ 15m, H;, ~ 20 mand L, ~ 12 km. In the
model the 2DH shallow water equations are used to describe the water motion. Consequently,
no vertical circulation is represented. This depth-averaged approach is supported by field data
on the shoreface-connected ridges along the Dutch coast, which show no indication for such
a circulation (Van de Meene and Van Rijn, 2000a). This follows the same approach as was
used in the sudies metioned above.
The dimensional momentum equations and the mass conservation read:

—
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T + (T-V)T+ fé, x¥=—gVz 5 Vp+ oD (2.1)
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Here ¥ is the depth-averaged velocity, f is the Coriolis parameter, €., a unit vector in the ver-
tical direction, g the acceleration due to gravity, ﬁp is a constant horizontal density gradient,
7, the wind-stress and 7, the bed shear stress. Furthermore, D is the local water depth, given
by D = z, — z, z, is the free surface elevation, z; the bottom depth, ¢ the time and v
the horizontal nabla operator. Typical values for the Dutch shelf will be discussed in section
2.3.1. The bottom depth is given by an undisturbed water depth A and perturbations & on this
undisturbed depth due to the presence of undulations on the bottom: z, = —H + h. The
forcing due to radiation stresses is not included, and we assume the breaking of waves does
not occur in the water depths under consideration. Furthermore, small Froude numbers are
assumed, so that the free surface elevation is much smaller than the undisturbed water depth.
This implies that the free surface effects can be neglected in the equations of motion, except
in the pressure gradient force.

The evolution of the bottom is a result of convergences and divergences in the sediment
flux and reads

(1-p)= +V-7=0 7= +a (2.3)

Here g, represents the volumetric transport per unit width of sediment as bed load and ¢ the
suspended transport of sediment, and p ~ 0.4 is the porosity of the bed. Our interest lies
in the long-term evolution of the bottom and therefore tidally and wave-averaged equations
are used, indicated by the overbar. Here we use a sediment transport formulation, which is
based on expressions derived by Bailard (1981) by using physical concepts, see also refer-
ences herein. In fact he applies the idea that part of work done by shear stresses acting on the
sediment is used for transport, the rest is lost by frictional collisions. For more background
information we refer to Dyer (1986) and Fredsge and Deigaard (1992). These considerations
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Figure 2.2: Sketch of the geometry of the model, representing the inner shelf (width L) and part of the
outer shelf of a coastal sea

result in the expressions for (g;) and (gs), given in appendix 2.A. Here the brackets indicate
an average over the wave period. Note that both the bed load part and suspended load part are
influenced by local bed slopes, as denoted by the terms proportional to Vh. This is because
gravitational effects influence both the sediment in the bed load layer, but also the immersed
weight of the suspended load sediment (Bailard, 1981). Support for the latter assumption
also comes from laboratory experiments (Talmon et al., 1995). We further assume that the
bed slope terms will only involve Vh instead of Vz,, i.e., the slope effects of the reference
bathymetry are not explicitly taken into account. We will return to this in section 2.3.1. In the
present model two different realisations of the model are analysed, which are representative
for conditions during storms and fair weather, and are characterised by different hydrody-
namic and sediment transport conditions.

2.2.1 Sediment transport and bed shear stress during storms

In the storm mode transport of sediment mainly takes place as suspended load, which is
supported by field measurements (Green et al., 1995). It is assumed that the amplitude u., of
the wave-orbital velocity Tl is much larger than that of the wave-averaged (steady plus tidal)
velocity v. To compute the wave-average it has been assumed that the waves are symmetrical
and monochromatic. If this is applied to the expressions given in eq. (2.A-1) and (2.A-2) it
then follows that the advective sediment flux, averaged over the wave period, is linear in the
wave-averaged velocity, #. The physical interpretation is that sediment is stirred by waves
and subsequently transported by the steady and tidal currents.

A modification on the original formulation of Bailard (eq. (2.A-2)) is made for the ad-
vective contribution of the suspended load flux, similar to the approach used in Calvete et al.
(2001b). We have computed the advective part of the suspended load sediment flux by using
the fact that it is defined as the product of velocity vector times the depth-integrated volume
concentration C. An expression for C' is then found from the concentration equation and
using a parameterisation for the sediment pick-up function given by Van Rijn (1993). The
result is that the advective term should be replaced by v, (|v;|3v;) D/H,, where D ~ H — h
is the local water depth and the brackets indicate an average over the wave period. The nu-
merical value of coefficient v is larger than that given by Bailard (1981), for details we refer
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to Calvete et al. (2001b). The contributions of bed load and suspended load are given by:

(@) = v (30l = Al Vh) (24
(&) = v (4fi<ﬁw|3>ﬁ As<ﬁw|5>6h) 25)

To derive these expressions the waves are almost parallel to the storm-driven current. Here
h is the elevation of the bed with respect to its reference level and the bed slope coefficients
describe the preferred downslope movement of the sediment due to gravitational forces. The
bed slope coefficient for bed load transport ), is related to the dynamic angle of friction,
while for suspended load this coefficient \; depends on the fall velocity of the suspended
sediment. The parameter values for the Dutch shelf (bottom consists of medium sand) are:

vy ~45x107°2m™t Ay~ 1.7 vy ~56x1074s’m"2 A\, ~0.3sm™!

Calvete et al. (2001b) showed that it is essential for the growth of shoreface-connected
ridges to parameterise the effect that the wave-orbital velocity increases towards shallower
water, thereby changing the amount of sediment which is stirred into the water column. This
effect is included by writing the wave-orbital velocity amplitude as u,, = U, (HO/H)m/Q,
where U,, ~ 1 ms~! is the amplitude at = = 0 (water depth H,) and m ~ 1.6 is a coefficient.
This explicitly models the depth dependence of the wave stirring process and has been derived
from a simple wave shoaling model.

A linearised bed shear stress is used in equation (2.1) following earlier studies: 7, = prv,
with r the friction parameter. During storms this results in a bottom friction parameter r
which is related to the wave-orbital velocity: r(z) = cq(|ti,|). Here cq is a constant drag
coefficient. This gives an onshore increasing bottom friction, due to the increase in the wave-
orbital velocity amplitude onshore (Calvete et al., 2001b). A characteristic value is r(z =
0) ~1x1073ms~L.

2.2.2 Sediment transport and bed shear stress during fair weather

The second realisation of the model represents the fair weather case and is characterised by
negligible wave stirring. This implies that the sediment transport is controlled by bed load
processes and it is cubic in the instantaneous velocity, see eq. (2.A-1). In this case the
suspended sediment flux is negligible and the bed load flux, averaged over the wave period,
is given by

(@) = (T — N|8])>Vh) (2.6)

The linearised bed shear stress during fair weather (7, = pr4) results in an expression
for the friction parameter  which is different than for storms. The wave stirring is not im-
portant during fair weather conditions, and the linearisation is based on the characteristic
wave-averaged velocity U: r = ¢4U. In this case the friction parameter is constant.

Boundary conditions are such that the cross-shore velocity field and bottom perturbations
h are zero at the z = 0 (the landward boundary) and very far offshore, thus no water exchange
and no advective sediment fluxes are allowed from the shoreface to the inner shelf. There is
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only a (very small) cross-shelf flux due to the gravitational downslope effects. The motivation
for these boundary conditions is that field data indicate that shoreface-connected ridges are
trapped in the inner shelf and that there is hardly any sediment exchange between shoreface
and inner shelf.

2.3 Solution method

2.3.1 Basic state

We will now investigate the possible onset of bedforms as free morphodynamic instabilities
which evolve on a basic state of the water-bottom system. In this case the model allows for
a basic state which is uniform in the longshore (y) direction: it describes a longshore current
V(z,t) over a reference bottom profile z, = —H (x). A linearly sloping reference bottom
profile is used in the inner shelf, based on the characteristic length scales of the Dutch inner
shelf, resulting in a bed slope of (H, — Hy)/Ls ~ 4 x 10~*. A horizontal flat bottom is
used to represent the outer shelf further offshore and the Coriolis parameter for this latitude
(52.5° N) is f ~ 10~%s~!. The basic state has no cross-shore component of the current
(0= (04+u,V+"), where v’ and v’ are the perturbations in the cross-shore and longshore

direction, respectively), from which it follows that the basic state satisfies V-7 = 0. This
is a steady state solution of the bottom evolution equation (2.3) and hence the basic state is
a morphodynamic equilibrium. It should be remarked that this is a consequence of the fact
that in the present model the transverse slope of the reference bathymetry does not cause a
net seaward sediment flux. It is assumed that this flux is compensated by the net landward
fluxes which are caused by physical processes not explicitly accounted for in the model (such
as wave asymmetry).

The basic state velocity consists of a steady component V{, and a tidal component, due to
the M4 and M, tidal wave, with amplitudes V,, and V,, respectively:

V(z,t) = Vo(z) + Vag, (x) sin(wt + oar, (2)) + Vag, () sin(2wt + par, () + 0)
(2.7)

Here w is the frequency of the M, tide, further details and the expressions for the cross-
shore profiles of these velocity components are given in appendix 2.B. Characteristic values
on decadal timescales (i.e. averages over many storm periods), which determine the basic
longshore velocity profile for the central Dutch coast during storm conditions are:

so~2x107"mm™ 7, ~—04Nm? ? ~—-1x10""kgm™*

Y
Here s( is the longshore gradient in the steady part of the sea surface elevation. From these
numbers a characteristic magnitude and direction of the steady current along the Dutch coast
is obtained (see eq. (2.B-4)): Vo(x = 0) ~ —0.4 ms~!, where the negative sign indicates
a northward directed current. During fair weather s and dp/9y are the same, but the wind
forcing is weaker. Here we use a value of 75, ~ —0.08 Nm~2, such that the steady current
amplitude is smaller and of magnitude —0.1 ms—!. The characteristic value for the steady
current is defined as Uy = |Vp (zx = 0)]. Tidal current amplitudes, which are the same
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during both realisations, are chosen as Vs, (z = 0) ~ 0.45 ms~! for the My component
and Vi, (z = 0) ~ 0.05 ms~—! for the My tide, resulting in a maximum tidal current
amplitude of Uyige = Var,(z = 0) + Vag,(z = 0) ~ 0.5 ms—t. The choice of these
values determines the magnitude of the sea surface elevations s; and sy of the My and My
tidal wave, as defined in the appendix 2.B. These characteristic current amplitudes will be
used in the next sections, where the maximum total current amplitude for storm conditions is
U = Uy + Uige ~ 0.9 ms™!, whilst during fair weather U ~ 0.6 ms—!. For the phase 6
between M, and M, sea surface gradient (see eq. (2.B-3)) we use the default value § = 0°.
The motivation for this is as follows: 6 can be related to the actual Greenwich phase of the
vertical My, tide, gar,, and My tide, gas,, by the relation: 6 = 2gn;, — gar,. This quantity
is highly variable in the southern North Sea due to the presence of an amphidromic point in
both the vertical M, tide and M, tide (see Prandle, 1980). However, along the central part of
the Dutch coast the maximum flood velocities exceed the maximum ebb velocities (Van der
Molen, 2000), giving an indication that 6 has a value between —140° and 40°. We will return
to this in section 2.4.2. Our first assumption of # ~ 0° is thus a reasonable approximation.

2.3.2 Linear stability analysis

Next, the stability properties of the basic state are considered by studying the dynamics of
small perturbations evolving on this basic state. Thus solutions are of the form

T=(u,V(z,t)+v"), zs=st)y+ze0(x,t)+n", z2=-H()+h.

In case of a positive feedback between flow and bottom topography, rhythmic bottom features
will develop. The linearised momentum and mass conservation equations are solved at the
tidal timescale to find the perturbed velocity field as a function of the bottom topography. The
flow variables are substituted in the bottom evolution equation. Therefore, the perturbations
u’, v’ and n’ in the water motion are functions of x, y and ¢, and the same applies to h. The
solutions are of the form

h=Re {h(@)e™ ) (o ') = Re {(ie, 1), o(a, 1), i, )P0+

with % the longshore wavenumber and €2 the complex frequency. The longshore wavelength
of the perturbations is given by A = 27 /k. The stability analysis then yields the growth rate
(€2,., i.e. the real part of Q2) of the topographic features as a function of the longshore wave-
length. Here the timescale related to the growth of the bottom perturbations is much longer
than the timescale of the hydrodynamics (related to the tidal frequency w), i.e. Q7! > w.
For each & modes with a different cross-shore structure exist. The mode with the largest
growth rate for perturbations with wavenumber k is the dominant cross-shore mode for that
specific value of k. The preferred mode is defined as the mode having the largest possible
growth rate and is attained for a specific wavenumber k& = kq. We are specifically interested
in instabilities and thus for solutions which satisfy €2,. > 0 and assume that the perturbation
corresponding to the wavenumber for which a maximum in the growth rate curve is found
is the preferred mode. The migration velocity is obtained from —Q,,, /k, where Qp,,, de-
notes the imaginary part of 2. This problem is then governed by an eigenvalue problem, for
which the equations are given in appendix 2.C. Further details of this procedure are given in
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Trowbridge (1995) and Calvete et al. (2001a). This flow over topography problem is solved
numerically by using spectral methods in the space domain and Fourier methods in the time
domain. The perturbations are expanded in Chebyshev polynomials and evaluated at the col-
location nodes (see, for example in Falqués et al., 1996). The expansions are truncated in
both the number of Fourier modes and the number of collocation points that are included.
Solutions are tested for convergence if these numbers are increased.

2.4 Results
241 Storms

In this section results are presented for the model realisation representing storm conditions.
The important parameter values are given in the previous sections. In the computations of the
characteristic timescale for the growth of the bedforms it is assumed that storms prevail during
a time fraction of 5%, whereas no growth of perturbations occurs during the remaining time
fraction. The e-folding timescale for the growth of the ridges (1/ max(£2,.)) is corrected for
this storm fraction. Figure 2.3 shows the growth rate and migration velocity of the dominant
cross-shore mode as a function of the longshore wavenumber. In the figures the individual
contributions of the suspended- and bed load fluxes are also indicated. Discontinuities in the
curves denote values of wavenumbers where a different cross-shore mode becomes the pre-
ferred mode. Suspended transport of sediment is dominant for the growth of bed forms, while
bed load transport dominates the migration of the bed forms. The preferred bottom mode has
a wavenumber of ko = 14.0/L, m~!, where L, ~ 12 km is the characteristic horizontal
length scale. This corresponds to a longshore wavelength of the bedforms of Ay ~ 5.4 km,
with an e-folding time of the growth process 1/, ~ 380 yr (where €,. = max({2,.)) and
amigration of ¢cg ~ 3 myr—! in the downcurrent direction. A second maximum with almost
the same growth rate is found for a wavelength of 10.5 km (k ~ 0.5kq) and a downcurrent
migration of 2 m yr—!. This second maximum dissapears if the tidal current during storms
is zero and is only present if the tidal and steady current have similar amplitudes. Also, the
migration velocity for the bedforms corresponding to this second maximum is similar, while
the crestlines open at an angle of approximately 40° with the coastline. The spatial structure
of the preferred bedforms with wavelengths of 10.5 km and 5.4 km are shown at the right-
hand side of Figure 2.3. They resemble shoreface-connected ridges trapped to the inner shelf,
represented by the cross-shore area between z = 0 and = = 1. Their crests are rotated in the
direction of the mean longshore current, indicated by the thick arrow (compare with ridges in
dashed box of Figure 2.1). The thin arrows denote the flow perturbation and show that there
is an offshore current deflection over the crests of the bars. The outcome of the model (spatial
pattern, e-folding time, migration speed) are in good agreement with the available field data
on shoreface-connected ridges (see Swift et al., 1978; Van de Meene and Van Rijn, 2000a).
The difference between the present model and that of Calvete et al. (2001b) is that here
a different steady current profile is used and two tidal components are added. From com-
paring the results of these two models we conclude that the steady forcing is dominating the
formation of shoreface-connected ridges. Furthermore, from a sensitivity study of the model
results we conclude that a transverse sloping bottom is essential for the growth of shoreface
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Figure 2.3: (LEFT) Growth rates (€2 /€2-0) and migration rates (c¢/co) of the dominant cross-shore
mode as a function of the longshore wavenumber k/ko, values are scaled by their values for the pre-
ferred mode. Results are shown for storm conditions and current amplitudes representative for the
Dutch shelf. The contribution of the suspended load fux and bed load fLix to the growth and migra-
tion rates for all wavenumbers is aso indicated. Here ko = 14.0/Ls, corresponding to a wavelength
Xo ~ 5.4km, \g = 2 /ko, the growth time 1/Q,0 ~ 380 yrandco ~ 3 myr~—'. (RIGHT) Bottom
perturbations (shaded) corresponding to the maxima (k = ko and k& ~ 0.5 ko) in the growth rate curve
for storm conditions, dark colours are troughs, light colours bars. The coast and shoreface are on the
right. Distances are in units of the inner shelf width L (12 km). Also indicated are the perturbations
(small arrows) in basic longshore velocity fi eld (in direction of thick arrow).

connected ridges, as was already found by Trowbridge (1995). For a discussion on the phys-
ical mechanism for the growth of the shoreface-connected ridges the reader is referred to the
introductory chapter (section 1.7). The wave-orbital velocity and the steady current ampli-
tude should be large enough (U,, > 0.8 ms~—! and Uy > 0.2 ms~1), otherwise the timescale
for the growth of the bedforms increases very rapidly to unrealistically high values of sev-
eral thousands of years. Changing the tidal current amplitude, for a fixed steady current, has
little influence on the growth and migration, while the wavelength of the bed forms varies
between 5 and 11 km. The presence of the My tide has an even smaller effect and does not
influence the results presented above, due to the linear relationship between the sediment flux
and the current velocity. Furthermore, the bedslope coefficients in the sediment transport for-
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Figure 2.4: As Figure 2.3, but for fair weather conditions. Here ko = 7.6/Ls, corresponding to a
1

wavelength Ao ~ 9.9 km, 1/Q,0 ~ 980 yrandco ~ 6.6 myr—".

mulations mainly cause a reduction of the growth of perturbations with small wavelengths.
An increase in A\, or )\, therefore increases the preferred wavelength and reduces the growth
rates. The sensitivity of the growth and migration of shoreface-connected ridges on the steady
current forcing (wind vs. pressure), the value of the exponent m in the wave-stirring and the
Coriolis parameter is small, for which the results are presented in Calvete et al. (2001a).

2.4.2 Fair weather
Effect of changing current amplitude

In this section we apply the fair weather conditions for different combinations of steady and
tidal currents. Here we extend the work of Calvete et al. (2001a) by including a second tidal
component and add the influence of density gradients and wind stress in the steady part of the
longshore current. Results for the fair weather case, with parameter values representative for
the Dutch shelf (section 2.3.1), are shown in Figure 2.4. The preferred mode has a maximum
for a longshore wavelength of A\g ~ 9.9 km (ko = 7.6/L,), with a characteristic e-folding
time of 1/Q,.0 ~ 980 yr and a downcurrent migration of 6.6 m yr—!. The bedforms extend
over the inner- and part of the outer shelf (x > 1). They also have the anticlockwise rotation
in the Northern Hemisphere with respect to the tidal current axis, which is shore-parallel. The
bedforms resemble the tidal sand ridges found further offshore of the shoreface-connected
ridges in the North Sea. A sensitivity analysis was done by changing the current amplitude.
Experiments were carried out by fixing the steady current and increasing the tidal current.
The same was done for a constant tidal current and changing steady contributions. Results
are shown in Figure 2.5 for tidal currents which are varying between 0 and 1 ms—! (Up ~
0.1 ms~1) and steady currents between 0 and 0.6 ms—! (U4 ~ 0.5 ms—!). The ratio
of the amplitude of the My tidal current over the maximum M, plus M, tidal current is kept
constant. The results indicate that e-folding times change rapidly if the tidal current amplitude
is increased: larger tides result in a faster growth of the bedforms. Migration velocities and
wavelengths increase if current amplitudes increase, although the steady current is the most
effective.



28 Growth of large-scale bedforms due to storm-driven and tidal currents

16 — . — — o
10000 F E
141 ~
£ 1o} = 5 101
e = 1000 €
1ot . i =
< 8 -20f
81 %)
6 R . 100 R R -30 . R
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ugige (Ms™) Ugige (Ms™) Uge (Ms™)
30 2000 20
~ 1500 f
g 20t °
i Z 1000}
g 151 -
<
1ol 500
5 0

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
Uy (ms™) Uy (ms™) U (ms™)

Figure 2.5: Fair weather case: wavelength of preferred mode, characteristic growth time and migration
velocities for a steady current velocity of 0.10 ms™! and increasing tidal current (TOP). Also shown
atidal current velocity of 0.50 ms™! and increasing steady current (BOTTOM). Default values are
Uside ~ 0.5ms™ " and Uy ~ 0.10 ms™".

Influence of tidal asymmetry

In this subsection we will investigate the influence of tidal asymmetry on the growth and mi-
gration of bedforms in the fair weather mode of the model, which is characteristic for tidally
dominated coastal shelves. The results in the previous sections are shown for a tide consisting
of two tidal components, where the sea surface elevations of both components are in phase
(0 = 0°). In the southern part of the North Sea, where the quarter-diurnal component (M)
of the tide is relatively important over the main semi-diurnal tide (M-), a difference between
the maximum ebb- and maximum flood velocities occurs. This asymmetry in the tidal curve
is due to a phase difference between these two tidal components and might be important for
the transport of sediment in the coastal seas (see e.g. Van de Kreeke and Robaczewska, 1993;
Van der Molen, 2000).

The influence of the M, tide is investigated by changing a parameter «1, which measures
the contribution of the maximum M tidal current amplitude to the maximum possible total
tidal current amplitude at = = 0:

Vi,

ap = —>o—
VM2 + VM4 =0

The value of this parameter ranges between zero and one, or; = 1 corresponds to only an Mo
component, a; = 0 represents the (unrealistic) situation without semi-diurnal tide, and only
a quarter-diurnal tide is used. The maximum possible tidal current, Uy;4., is kept constant.
From the parameter values discussed in section 2.3.1 it follows that the default value is oy =
0.9. Also the effects of changing the external phase 6 between M5 and My tidal current on
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Figure 2.6: (TOP) Contour plot of equal growth rates 2,. /2,0 of the dominant cross-shore mode in the
k/ko — a1 planefor fair weather case and Uyige ~ 0.5 ms™ . Here o istheratio of the maximum Mo
tidal current amplitude over the maximum total tidal current amplitude (Vas, + Vag,). (BOTTOM)
Wavenumber corresponding to the maximum growth rate, maximum growth rate and migration velocity
for the preferred mode as a function of parameter «1. Values are scaled by their default values for fair
weather. The default case is for which kmax = ko is defined at og = 0.9, for which the parameter
values are defi ned in Figure 2.4.

the instability mechanism will be investigated. In this way the asymmetry in the tidal current
is controlled. Results are summarised in Figure 2.6. In the top figure a contour plot of the
growth rates as a function of the scaled wavenumber k/kq, in the range 0 < o7 < 11is
shown. All other parameters have their default values. By adding a second tidal component
to the single M, tide, both the growth and the migration of the bedforms becomes slower for
a1 > 0.4. This can be seen from the other plots in Figure 2.6. For lower values of o the tidal
regime is dominated by M, instead of M. The default velocity amplitudes (a; = 0.9) are
used to vary the phase 6. In Figure 2.7 results are shown for the case that the phase 6 is varied
and all other parameters have their default values. It appears that the effect of tidal asymmetry
can increase or decrease the migration, while at the same time the growth rates change. The
changes in the growth rates are ~ 40% over the complete range of phases 6, and in migration
rates a variability of ~ 30% is found. Maximum asymmetry, with maximum flood velocities
(negative y direction) larger than maximum ebb velocities, is found for 6 ~ —50°, while
ebb-dominance is found for & ~ 130°. Tidal velocity profiles at maximum asymmetry at the
landward side of the inner shelf (z = 0) are shown in Figure 2.8 for one tidal cycle.

An explanation for the variation in the growth rate in Figure 2.6 and of the migration speed
Figure 2.7 can be found by examining the equation for the bottom perturbations. The latter
can be derived from eq. (2.3) and the linearised and tidally-averaged version of equation (2.6)
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(fair weather conditions, hence ¢, can be neglected) and it reads:
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The contribution proportional to 9h /9y describes the alongshore migration of the bottom
perturbations, the part proportional to )\, is mainly diffusive. The different sources of in-
stability are given by the last two terms in (2.8), of which the largest contribution to the
growth of bedforms is related to the divergence of the offshore flow component. Here v’ is
the perturbed cross-shore velocity, the perturbed longshore velocity v’ is elimated using the
perturbed version of the mass conservation (eq. (2.2)), and the overbar means an average
over a tidal and wave period. Therefore, the migration is proportional to V3, and the growth
is proportional to V2. For a velocity profile consisting of a steady component and M, and
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Figure2.8: M2 and M4 tidal velocity components at the landward side of theinner shelf (x = 0) during
one M., tidal period. Thisresultsin an asymmetrica (flbod-dominant) tidal current for 6 = —50 ° and
ebb-dominated for 6 = 130°. Here a1 = 0.9, Upige ~ 0.5 ms™ 1.

M, overtides, as defined in appendix 2.B. and eq. (2.7), these averages are given by

— 3 3 .
V3=V + 5‘/()(‘/1\2/14 + Vlefg) + ZVJ\242VM4 sin(2¢a, — o, — 0)

— 1
V2=V7+ §(VA244 + Vi)

The tidal velocity is derived from the deformation of the sea surface due to a tidal wave.
The vertical tide and the horizontal tide have different phases, due to the presence of bottom
friction, as expressed by the phases ¢, and ¢, . At the landward boundary of the domain
the last term in V3, which is the only term that depends on 6, is zero for § ~ —140° and
0 ~ 40° and in that case the tidal current is symmetrical, i.e. the maximum ebb-currents are
equal to the maximum flood currents. The bottom perturbations for these situations strongly
resemble those shown in Figure 2.4 (6 = 0°: flood dominated). The main difference is a shift
in the location of maximum crest height, which is more onshore in the ebb-dominated case
compared to the flood-dominated case. The M5 and M, tidal velocity components during one
tidal period, as well as their resultant velocity profile, are shown in Figure 2.8 for a typical
flood-dominated and a typical ebb-dominated case. We conclude that the phase lag between
the M5 and M, tidal constituents is not essential for the instabilities causing the growth of
tidal sand ridges, but merely causes a change in the characteristic growth time and migration
velocities. Fast migration of these bedforms is only found for bedforms with long growth
times, while faster growing banks migrate more slowly.

2.4.3 Storms and fair weather combined

The conclusion from the previous sections is that storm conditions are favourable for the
growth of shoreface-connected ridges, whereas during fair weather conditions bedforms are
excited which resemble the more offshore located tidal sand ridges. Motivated by these re-
sults, experiments have been carried out in which the variation in weather conditions is taken
into account. This is done by assigning a probability distribution to the two realisations of the
model. The parameter p is used to change the fraction of time during which storms prevail
such that 1 = 0 indicates only fair weather conditions and ;1 = 1 means continuous storms.
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Figure 2.9: Contour plot of equal growth rates of the dominant cross-shore mode for a storm fraction
0 < u < 0.1 asafunction of the wavenumber. Also shown are the wavenumber corresponding to the
maximum growth rates, maximum growth rates and migration velocities for the preferred mode. The
default case is for which kmax = ko and is defi ned at n = 0 (fair weather), parameter values as in
Figure 2.4.

Then the evolution of the bottom is found from eq. (2.3), with the sediment flux given by

7= 1 gstorm + (1 — 1) Grair (2.9)

where for the storm contribution expressions (2.4) and (2.5) are used (Gstorm = () + (ds))
and for fair weather expression (2.6), with (g5r = (@)). In section 2.4.1 the growth times
were already corrected for a storm fraction of 5% (x = 0.05), but the sediment transport
during the remaining time of fair weather was neglected: g¢5, = 0. In this section a transport
during this remaining time of fair weather will be included. In the model the amount of
sediment transported during storms is about 200 times larger than during fair weather. The
default parameter values for these situations have already been discussed in section 2.3.1.

In Figure 2.9 the dependence of the model results on variations in the storm fraction p
are shown. For 0 < p < 0.08 the maximum growth rates shift between different modes with
different wavelengths, as shown in Figure 2.10, where the behaviour of these different modes
is indicated. For i = 0 the only unstable modes are those related to the tidal sand ridges.
However, if i is increased other modes with characteristics of the shoreface-connected ridges
start to dominate. In this range of u both modes have similar growth rates. Also shown is the
appearance of a second maximum in the shoreface-connected ridge mode (C') which exceeds
maximum B for storm fractions lower than 4%. The bottom perturbations for the tidal sand
ridge mode A and the shoreface-connected ridges mode B are also shown in Figure 2.10 for
a storm fraction of 5%. The shoreface-connected ridge mode will cause instabilities in the
sloping part of the shelf, whilst the mode for the tidal banks grows offshore on a horizontal
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Figure 2.10: Maximum growth rates corresponding to three different modes for a storm fraction in
therange 0 — 8%. A isthe tidal sand ridge mode, with A ..« in the range ~ 10 — 12 km, B isthe
shoreface-connected ridge mode, with A, intherange ~ 11 — 14 km and C isasecond maximum in
the shoreface-connected ridge mode for Amax = 23 km (kmax ~ 0.4 ko). Also shown are the different
bottom perturbations for a storm fraction of 5%: mode A and B (Amax = 11.8 km).

bottom. Both modes will be able to grow independently. For larger storm fractions the modes
resembling the shoreface-connected ridges are dominating the tidal sand ridges, but for the
parameters that are currently considered, this situation corresponds to unrealistically large
values of p.

Comparing the spatial patterns of the tidal sand ridge mode in Figure 2.10 and Figure
2.4 shows that perturbations in the bottom are found further offshore if . = 0.05 (nonzero
storm fraction) than for 4 = 0. Experiments for which the steady component of the current
is neglected during fair weather demonstrate this effect more clearly. The bedforms in this
situation and for . = 0 are found on the inner shelf and have the orientation of tidal sand
ridges. Including a storm-related contribution to the sediment flux will result in a growth rate
curve of the dominant cross-shore mode (Figure 2.11) which is characterised by two maxima,
one related to tidal sand ridges (A) dominating for storm fractions < 3% and another for
the shoreface-connected ridge mode (B). The latter mode grows faster for larger values of
1. The second maximum in the shoreface-connected ridges mode (C' curve in Figure 2.10)
corresponding to a very long wavelength is less pronounced in this case. The wavelength of
this second mode does not agree with realistic spacings between the ridges along the Dutch
coast, which can be up to 10 kilometers. The bedforms for the no storms and 4% storms case
are shown in Figure 2.12. Clearly the inner shelf structure found for only fair weather (x = 0)



34 Growth of large-scale bedforms due to storm-driven and tidal currents

Figure 2.11: Growth rates corresponding to al unstable modes for Uy = 0 ms~! during fair weather
conditions and a storm fractions of 3% (LEFT) and 4% (RIGHT). A indicates the maximum of the
tidal sand bank mode (kmax ~ ko), B the maximum of the shoreface-connected ridge mode (kmax ~
0.6 ko). The growth rates are scaled by the values found for . = 0: Ao ~ 6.9 km, Q. corresponds to
agrowth time of Q) ~ 470 jr.
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Figure 2.12: Bottom perturbations for mode A (LEFT) related to tidal sand ridges by using only fair
weather conditions, i.e. ;4 = 0 and Ao ~ 6.9 km. Also shown are the bedforms corresponding to a
storm fraction of 4% (for growth rates see fi g. 2.11): mode A (MIDDLE), Aax ~ 7.2 km and mode
B (RIGHT), Amax ~ 11.4 km. In these experiments Uy = 0 ms™* is used.

is destroyed in case of small storm fractions. This behaviour might explain the absence of
tidal sand ridges closer to the coast. This is also seen in Figure 2.1, where along the central
Dutch coast the tidal ridges are found seaward of about 20 m, while the shoreface-connected
ridges are found in the more landward part of the shelf, where bottom slopes are higher. It
therefore seems that the simultaneous formation of these two types of bedforms in the North
Sea can be understood from this model, as two different modes with similar growth rates for
low storm fractions.
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2.5 Conclusions

The present model is able to explain the formation of both shoreface-connected ridges and
tidal sand ridges due to inherent instabilities of the coupled water-bottom system. Neces-
sary conditions for growth of shoreface-connected ridges appear to be a transversely sloping
bottom, a storm fraction of a few percent and dominant suspended load transport. Then, the
combined action of strong steady currents and large wave-orbital velocities cause realistic
growth times of bedforms resembling shoreface-connected sand riges. Tidal currents turn out
to be of minor importance for the formation of these ridges. Offshore tidal sand banks on the
other hand require strong tides and they form during fair weather conditions.

One of the objectives of this study was to examine the influence of the M, tide, on the
growth of large-scale bedforms. It was found that including the M4 tide and a phase lag be-
tween My and My has only significant effects during fair weather conditions. It then changes
the properties of the bedforms, which are tidal sand ridges for this case, due to tidal asym-
metry. Migration velocities can be enhanced by tidal asymmetry, while at the same time
growth rates decrease. Density gradients, driving a depth-averaged and shore-parallel flow in
our model, only result in small changes in the characteristics of the bedforms. The second
objective was to gain understanding about the simultaneous presence of shoreface-connected
ridges and tidal sand ridges in the North Sea. In this chapter it is shown that both bedforms
can form at the same time on a coastal shelf as a result of two different modes which have
positive growth rates and which appear in different regions of the shelf: one on the inner
shelf and the other on the outer shelf. To have a situation where both modes are unstable and
have growth rates within realistic estimates, essential conditions (for parameter values repre-
senting North Sea conditions) are: storms conditions during ~ 2 — 8% of the time and the
presence of both tidal- and steady currents (with a strong steady component during storms).
The simultaneous growth of both modes prevents the formation of tidal sand ridges closer to
the coast. In the North Sea these conditions prevail: the probability of storms coming from a
south-western direction is indeed in this range.

One of the limitations of the present model is that uniform sediment is considered, while
sediment with different grain sizes results in selective transport and grain size sorting, which
is observed for most ridge fields. Also it describes only the initial growth of the bed forms,
and therefore gives no information about the amplitudes and the time evolution of the bed-
forms. These aspects will be the topic of forthcoming chapters.

Appendix

2.A Sediment flux

The formulation of Bailard (1981) for the total load transport on a sloping bed can be written
as follows:

(@) = v [(151%50) = ModI5iI) V] (2AD)

(@) = v [{15[*53) = A1) ] (2.A2)
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Here h is the bottom perturbation, A\, and A, are coefficients which measure the influence
of a bed slope on bed load and suspended load transport and v, v, are coefficients which
depend on the sediment properties. Furthermore o3 is the depth-averaged velocity which
consists of a wave-averaged part o, due to steady and tidal currents, and a wave part i.,,. The
brackets (..) indicates an average over a wave period. By assuming one of these (wave or
wave-averaged) velocity components is larger than the other, we can distinguish between two
situations: storms and fair weather.

2.B Basic state velocity profile

The equations for the basic state of the momentum equations (2.1) are given by:

8230 gH ap Tsx

— =—g— — =— — 2.B-1
v g ox 2p Ox + pH ( )

ov gH 0p 14y TV
— = —gs — — — - — 2.B-2
ot 95 2p Oy + pH H ( )
The basic state velocity profile is a solution of the momentum equation in the y direction
(2.B-2), where the longshore gradient in the free surface s is defined by a steady component

so and two oscillating components with the frequency of the M5 and My tide:

s = sg — s1 cos(wt) — sg cos(2wt + 6) (2.B-3)

Here sy, s1 and s are the amplitudes of the sea surface elevations for the steady and the
oscillatory contributions, respectively, and w is the frequency of the M5 tide. Note that the
water motion is forced by two tidal harmonics, with 6 being a (constant) phase. This phase
can be determined from observations along the Dutch coast. The basic state velocity consists
of a steady component (1) and a tidal component, due to the M, and M, tidal wave:

Vi(z,t) = Vo(x) + Viide(z, 1)

The steady component is driven by a prescribed longshore wind stress, longshore free surface
pressure gradient s and a prescribed density gradient:

1 Tsy g 8p 2
= (¥ _gsoH — =ZCH 2.B-4
Vota) =+ (2~ guot — L 28-4)
The tidal velocity profile is found from the time-dependent part of the momentum eq. (2.B-2):
mg;de + %V}ide = g(s1 cos(wt) + s3 cos(2wt + 6)) (2.B-5)
The solution of this equation reads:
Viide (2, t) = Vg, sin(wt + o, ) + Vg, sin(2wt + ppr, + 60) (2.B-6)

where the tidal current amplitudes and phases are given by:

gs1H T
= e o e ()
soH r
Vi, (7) = L — o, (x) = arctan (ﬁ)

(2wH)? + r?
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Figure 2.13: Cross-shore velocity profi les for storm and fair weather conditions. Also shown are the
phases of the M, and M4 tidal current during fair weather. Parameter values are given in section 2.3.1.

The cross-shore profile of the tidal current amplitudes Vi, and V3, and the phases ¢ are
functions of the bottom friction » and the undisturbed water depth. In addition to the expres-
sions in (2.B-4) and (2.B-6), an the current amplitudes decrease exponentially offshore during
fair weather. This is motivated by a reduced forcing further offshore and allows for solutions
which are confined to that part of the outer shelf which is closest to the inner shelf (in the
model the outer shelf extends to z — o). An e-folding length of 120 km is used. The cross-
shore velocity profiles during storm conditions and fair weather are plotted in Figure 2.13,
where also tidal phases are indicated.

2.C Flow over topography problem

First the dynamics on the short, tidal timescale are analysed. From cross-differentiation of
the linearised momentum equations and substituting the solutions for v’,v’, " and h (sec-
tion 2.3.2), we obtain the Fourier-transformed vorticity equation. An expression for the am-
plitude of the alongshore velocity perturbation as a function of 4 and « follows from the
perturbed mass continuity equation (2.2):
. V. T, 1 Hy
0= Eh—i— 7l + Eﬁu
The subscripts = and ¢ are used to denote differentiation with respect to that variable, except
for the subscripts in 7,,, which denotes the cross-shore component of the wind stress. Substi-

tution of this expression in the Fourier-transformed vorticity equation yields a single equation
for the cross-shore velocity amplitude, , as a function of the bottom perturbation, A:

(2.c-1)

Uolime + Unilies + Uroly + Upatige + Uottiy + Upoth = Hihg + Hoh  (2.C-2)
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The coefficients of the flow over topography problem are given by

Uz =1
U = %
Uio = —k* + HET - %z
Uoz = % +ikV
Uy :ikv% e
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VoH, +VH,, + fH, VH?2
Hk(_kQV_V”JF . i R H2>

K2v: W 2V -V so  gH
e () G o)

H H? H H?
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Here r,. is the cross-shore gradient in the bottom friction, which is only nonzero in case
of storms. This covers the so-called flow over topography problem: for a given bottom
perturbation the flow components «" and v’ can be computed. From this the tidally- and
wave-averaged sediment transport can be computed which in turn determines the evolution
of the bottom. The linearised bottom evolution equation (2.3) becomes, after substitution of
equation (2.9) and the solutions for the perturbations:

Q1 —ph=—uV - Gsorm — (1 — 1) V - Grair (2.C-3)

where the parameter p is used to change the fraction of time during which storms prevail.
It should be remarked that the hydrodynamic problem for a specific reference bottom H(x)
and bottom perturbation h, as defined by equations (2.C-1) and (2.C-2), is solved separately
for the two different flow regimes occurring in the model, i.e. storms and fair weather with
frequencies ;. and 1 — p, respectively. Ultimately, these results are combined in a statistical
sense in the bottom evolution equation (2.C-3) to solve for the bottom perturbations. The
expression for the divergence of the sediment flux during fair weather conditions is given in
(2.8).



Chapter 3

Effect of grain size sorting on the
formation of shoreface-connected
sand ridges

Abstract

Field data of shoreface-connected ridges show persistent spatial variations of mean grain size over
the bedforms. In the shore-normal direction, the profi les of bottom topography and mean grain size
are approximately 90° out of phase. To investigate the mechanisms responsible for the observed grain
size distribution and the infuence of sediment sorting on the temporal and spatial characteristics of
shoreface-connected ridges a model is developed and analysed. A linear stability analysis of an along-
shore uniform basic state (describing a storm-driven fow on a micro-tidal inner shelf) with respect to
small bottom perturbations is carried out. The transport of non-uniform sediment is described by for-
mulations for both bed load and suspended load, both of which account for dynamic hiding effects.
A one-layer model for the bed evolution and a bottom friction term which depends on the grain size
are used. The initial formation of the ridges is studied for a bimodal sediment mixture. The results
of the model indicate that the phase shift between bed topography and mean grain size for shoreface-
connected ridges is due to the selective transport via suspended load of grains with different sizes. A
net stabilising effect on the growth of bedforms and enhanced migration are predicted, caused by the
bimodal character of the sediment. The wavelengths of the bedforms are only dightly affected. A
physical explanation for the model resultsis also given. *

*This chapter is based on the paper entitled Effect of grain size sorting on the formation of shoreface-connected
sand ridges, by M. Walgreen, H.E. De Swart and D. Calvete, published in J. Geophys. Res., 108 (C3), 3063,
doi:10.1029/20023C001435, 2003.
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3.1 Introduction

Shoreface-connected ridges are rhythmic bedforms that are observed on storm-dominated
inner shelves of coastal seas, in water depths of 4-20 m. Analysis of field observations (Swift
et al., 1978; Antia, 1996; Van de Meene and Van Rijn, 2000a) has revealed that the spacing
between the crests is in the order of 5-10 km, with heights varying between 1 and 6 m.
Migration occurs in the direction of the mean alongshore storm-driven flow and characteristic
phase speeds are 1-4 m yr—!. Previous model studies have demonstrated that the formation of
these large-scale bedforms is due to inherent positive feedbacks between the water motion and
the eroding bed (Trowbridge, 1995; Calvete et al., 2001a,b). The combined action of stirring
of sediment by waves and transport by storm-driven currents on a shelf with a transverse
bottom slope is necessary to generate shoreface-connected ridges. Furthermore, these studies
have found that the seaward end of the ridges is always shifted upcurrent with respect to their
attachments to the shoreface and explanations for this morphological characteristic have been
put forward. For the Long Island inner shelf (North America) the most frequently observed
orientation of the ridges in relation to the shoreline is between 45-49° (McBride and Mosow,
1991). The model developed by Calvete et al. (2001b) provides information on the spatial
pattern, evolution timescale and migration speed of the bedforms. These results are in good
agreement with available field data of many different shelves.

A basic limitation of these models is that they assume a uniform grain size distribution of
the sediment. This is not consistent with field data, which show persistent spatial variations
of the mean grain size over the bedforms. Especially the ridges on the Mid Atlantic shelf are
documented extensively and detailed information on the grain size characteristics has been
given in the literature (see, for example, Swift et al., 1972; Hoogendoorn, 1986; Schwab
et al., 2000). The ridges located in the Mid Atlantic Bight on the North American inner shelf
(Swift et al., 1978; Swift and Field, 1981; Figueiredo et al., 1982) reveal, in the direction
normal to the shore, grain size and topography variations that are approximately 90° out
of phase: the coarsest material occurs on the landward (upcurrent) flank. This out-of-phase
relationship extends over the entire ridge area (see Figure 1.4 in chapter 1). The phi parameter
plotted here measures the mean size and is defined in section 3.2.2. Similar trends in mean
grain size are observed for shoreface-connected ridges on the inner shelf of Brazil (Figueiredo
et al., 1982) and Argentina (Parker et al., 1982), and for similar ridges located in the German
Bight of the southern North Sea (Antia, 1996).

In the present study, the effect of sediment sorting on the formation of shoreface-
connected ridges is investigated by extending the model by Calvete et al. (2001b) for sediment
mixtures. New dynamics related to the presence of different grain sizes are incorporated in
the sediment transport formulation, the sediment continuity equation, and in the formulation
of the bottom friction in the hydrodynamic equations. Previous model studies on sediment
sorting have mainly focused on river bars and sea ripples (Ribberink, 1987; Seminara, 1995;
Foti and Blondeaux, 1995; Lanzoni and Tubino, 1999), i.e. on spatial scales much smaller
than those for sand ridges. These studies indicate that the non-uniform character of sediment
has a stabilising effect on the growth of bedforms.

The work presented in this chapter contains several new aspects. First, it focuses on sedi-
ment sorting in the sand regime in combination with ridge formation, while previous work has
largely concentrated on gravel and sand-gravel mixtures (representative of river sediments).
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Second, the influence of grain size on the entrainment and deposition of suspended sediment
is included. Third, it incorporates nonuniform sediment in a model for large-scale bedforms
in coastal seas. The first objective of this work was to investigate the influence of sediment
sorting on the temporal and spatial characteristics of shoreface-connected ridges. The second
goal was to gain insight into the physical mechanisms responsible for the observed grain size
distribution over shoreface-connected ridges. This chapter focuses on the initial formation
of shoreface-connected ridges, i.e. small bottom perturbations are assumed. For this pur-
pose, a one-layer model for the bottom evolution, based on the concept of an active transport
layer overlaying an inactive substrate, is used. The model uses a two-size sediment mixture.
The motivation for using a simple model is that it allows for a systematic analysis of the
underlying processes.

In section 3.2 the formulation of the model is given, followed by an outline of the solution
procedure in section 3.3. Results are presented in section 3.4 and a physical interpretation
is given in section 3.5. A discussion of the model results, including a comparison with field
observations, is presented in section 3.6, followed by conclusions in the last section.

3.2 Model formulation

3.2.1 Hydrodynamics

Following earlier studies by Trowbridge (1995) and Calvete et al. (2001b), we hypothesize
that shoreface-connected sand ridges form as an inherent instability of a morphodynamic sys-
tem, in which there is a feedback between the storm-driven flow and the eroding bed. A highly
idealised model is used to investigate the flow-topography interaction on coastal shelves dur-
ing storm conditions. The shelf geometry is schematised as a semi-infinite domain, bounded
on the landward side by the transition from the shoreface to the inner shelf, see Figure 3.1.
The undisturbed bathymetry (no ridges present) is uniform in the alongshore (y) direction.
In the cross-shore (x) direction it consists of an inner shelf (with a linearly sloping bottom)
and an outer shelf represented by a horizontal bottom. The water depth at the beginning of
the inner shelf (z = 0) is Ho, Ly is the inner shelf width and H is the depth of the outer
shelf. Representative values for the Long Island inner shelf (Mid Atlantic Bight, US), which
is considered as a prototype storm-driven shelf in this study, are Hy ~ 14 m, H, ~ 20 m and
Ls ~ 5.5 km. Note that in this chapter the figures are such that the coastline is on the left
(eastcoast of America), as opposed to the figures in chapter 2 that have the coastline on the
right (westcoast of The Netherlands).

In the model the water motion is described by the depth-averaged (2DH) shallow water
equations. They read

o = LS Ts — To

T +(T-V)0+ fe, xT=—gVzs + D (3.1)
oD -

E_A'_V.(D{)’):O (3.2)

Here ¥ is the depth-averaged and wave-averaged velocity, with components  and v in the
x and y direction, respectively, f ~ 1074 s~! is the Coriolis parameter, €, a unit vector



42  Effect of grain size sorting on the formation of shoreface-connected sand ridges
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Figure 3.1: Sketch of the geometry of the model, representing the inner shelf (width L) and part of the
outer shelf of acoastal sea. For further information, see the text.

in the vertical direction, 75 the wind shear stress vector, 7, the bottom shear stress vector, g
the acceleration due to gravity, p the density of water, ¢ the time and V the horizontal nabla
operator. The local water depth is given by D = 2z, — z,, where z, is the free surface
elevation and z; is the bottom depth, both measured with respect to the undisturbed water
level z = 0.

Both observations and model studies indicate that shoreface-connected ridges mainly de-
velop during storms, tides do not play an important role (see Calvete et al., 2001a; Walgreen
et al., 2002) and the timescales involved are about hundred years. This appears to justify
the neglect of tidal forcing in the model (micro-tidal shelves are assumed) and the use of a
probabilistic approach. Two realisations of the system are considered, corresponding to dif-
ferent weather conditions. During storms (which occur during a time fraction 4 ~ 0.05)
large waves and strong currents cause significant sediment transport. In contrast, during fair
weather conditions (time fraction 1 — u) the waves and currents are not sufficiently strong
to erode sediment from the bottom. Thus equations (3.1) and (3.2) are assumed to be repre-
sentative for the situation during storms. The quasi-steady approximation is made in equa-
tions (3.1) and (3.2), such that terms involving time derivatives are excluded. This is because
the hydrodynamic timescale is much smaller than the timescale on which the bed evolves.
Also, the rigid-lid assumption is used, in which case the free surface effects in the local water
depth are neglected, i.e. D ~ —z,. This is justified for small Froude numbers, typically
F? =UZ/(gHy) ~ 0.001 with Uy ~ 0.4 ms~! the characteristic current velosity.

The main forcing of the water motion is by wind and an alongshore pressure gradient.
During storms the presence of large waves causes a wave-orbital velocity amplitude .,
which is much larger than the wave-averaged velocity amplitude. This allows for a linearisa-
tion of the bed shear stress:

Ty = pri

with r the bottom friction coefficient which is written in terms of a Chezy coefficient C}, (see
Ribberink, 1987; Soulsby, 1997). For an overview of the most frequently used variables in
this chapter, the reader is referred to appendix 3.D. This results in

™, 12D
L g%% ) - @m (k_) 3.3)
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where 4., is the near-bed wave-orbital velocity and ( .. ) denotes a time average over many
wave periods. Furthermore, x is the von Karman’s constant and & is the roughness length,
which is proportional to a coarse grain size (see, for example, Ribberink, 1987; Lanzoni and
Tubino, 1999). This formulation of the friction coefficient introduces a dependence on the
grain size in the hydrodynamic equations. A characteristic value for the friction coefficient is
r ~ 0.7x1073ms™!,

Calvete et al. (2001b) found that it is essential for the growth of shoreface-connected
ridges to parameterise the wave-orbital velocity increase in decreasing water depths. The
description of the wave-orbital velocity as 4, = wu,, cos(w,t) (Symmetrical waves with
frequency w,,), with the amplitude given by

U = Uy, (Ho/H) ? (3.4)

includes this effect. Here H is the undisturbed water depth, U,, ~ 1 ms~! the amplitude at
the shoreface boundary = = 0 and m a coefficient. Runs with a simple wave shoaling model
indicate that m ~ 1.6.

3.2.2 Sediment characteristics

For a sediment mixture it is convenient to use a logarithmic scale (the phi scale) to describe
the grain diameters. The definition is

d=2"°% or ¢ = —log,d

where d is the grain diameter measured in units of mm (see Dyer, 1986). Accordingly, larger
values of ¢ correspond to finer sizes. A sediment mixture is described by a probability distri-
bution function F as a function of the grain size. This is the weight percentage of each grain
size, hence F has the following property:

| F@as=

For many sand mixtures F(¢) is approximately a Gaussian curve if plotted on this phi scale.
In that case, two statistical properties describe the sediment distribution: the mean grain
diameter ¢,,, and the standard deviation o, defined as

om=[ " oF(6)do = [ (6= bm)F($)dd

The mean diameter is calculated as d,,, = 2~ ¢=. A measure of the sorting is given by
the standard deviation of the distribution. Small values of & corresponds to a sharply peaked
curve, representing an almost uniform sample, and is classified as well sorted. A poorly
sorted mixture of sediment has larger values of o.

3.2.3 Sediment continuity

The hydrodynamic equations discussed above are supplemented with a sediment transport
formulation, based on the concepts introduced by Bailard (1981) for the total load transport
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Figure 3.2: Defi nition of the sediment layer as used in the model. The thickness of the active layer is
denoted by L, and h is the elevation of the bottom with respect to areference level.

on a sloping bed, and the bottom evolution equation. The evolution of the bottom is a result of
divergence in the sediment flux and depends on the composition of the bottom sediment. The
simplest models dealing with the effect of sediment sorting on bed level changes consider
two separate layers in the bottom (Figure 3.2), see Ribberink (1987); Seminara (1995). The
first is the active layer, which contains the material available for transport, and from now on
F is defined as the corresponding probability density function for the grain sizes in this layer.
Underneath this active layer a substrate is located with a probability density function of F,.
The bottom location is denoted by z, = —H + h, with H the undisturbed water depth
and h the bed elevation with respect to this reference level. Furthermore, z, = z, — L,
is the level of the interface between the active (surface) layer and the substrate. The active
layer thickness, L, is in the order of 2 — 3 times dgp (grain size for which 90% of the
material is finer). The thickness of the total sediment column is considered to be so large that
modifications of the sediment composition in the substrate, due to exchanges of sediment
with the upper layer, can be omitted.

A well-mixed active layer (F is independent of the depth) and a time-independent grain
size composition in the substrate (F;) are assumed. Consequently, a continuity equation
exists for each fraction of grain size ¢ (Seminara, 1995; Armanini, 1995). It reads

oh oF OLq .
(17}9) (fnat+La6t+(ffn)at> :7V.q¢ (35)
Sedimentation: % =2 (h—L)>0: Fy=7F
Erosion: T~ D (h—L,)<0: Fpy=7Fs

The terms on the left-hand side of equation (3.5) represent the bottom changes, changes in the
sediment distribution in the active layer, and changes in the thickness of the active layer due to
exchange of sediment with the substrate, respectively. Furthermore, ¢y is the volumetric flux
per unit width of grains of size ¢ and p ~ 0.4 is the porosity of the bed. In the initial growth
stage of bedforms, sorting can be seen as the rearrangement of material in the active layer
with negligible interaction between substrate and active layer (Ribberink, 1987; Seminara,
1995). This assumption, which implies that 7,, = F, is adopted here.

We consider a discrete  number (V) of grain sizes, such that
Flo) = Zﬁvzl Fi 0(¢ — ¢;) , with § the Dirac delta function. Furthermore, we
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use the fact that the morphodynamic timescale is much larger than the hydrodynamic
timescale. This implies that the bed evolution for a discrete distribution of grain sizes and
grains in class 7 (and diameter d;) is given by

-p) (A5 +L.52) = -9 (@) ©9)

Note that the sediment flux is averaged over the wave cycle. Together with the constraint
Ei]\il F; = 1laclosed system of equations is specified if §; is known.

3.2.4 Sediment transport

Calvete et al. (2001b) demonstrated that both bed load and suspended load fluxes are needed
to describe the growth and migration of the shoreface-connected ridges. The sediment flux,
therefore, reads

where ¢; and @; represent the bed load and suspended load contributions, respectively.

Bed load

The transport of sediment of class ¢ depends on the shear stress exerted by the flow on the
bed and on the grain properties. A general formulation for bed load transport of grains of size
b
d; over a flat bed is (Ribberink, 1987): ¢q,; o Fi\/g'd? ©7 . Here ¢ = g(ps — p)/p,
ps = 2650 kgm~—3 is the density of the grains, p = 1030 kgm~—2 is the water density and b
is an exponent. In the case of uniform sediment the Shields parameter ©, ,, is
T u? dm

= = and Oiu=—06n
pg'd;  g'd; ’ d;

G)i,u

In this expression 7 is the bed shear stress, u, the friction velocity, d,,, the mean grain size of
a mixture, and ©,,, the Shields parameter corresponding to grains of size d,,,. In a sediment
mixture the effective Shields parameter ©, of sediment of size class ¢ differs from ©; ,,. This
is because the behaviour of a sediment mixture is influenced by the effect of dynamic hiding:
finer grains feel fluid drag less intensely than larger grains. The effect is modelled by

1 1d

& o &Giod
with §; = &(d;) a (dynamic) hiding function. According to field and laboratory data, &;
decreases with d;/d,,. Thus, fine sand is less exposed to the shear stress than coarse sand.
The effect of &; is incorporated in a vectorial form of the bed load transport as follows:

3
Gi = Fii/ 9 &, (%")

{l _ )\lﬁh}

7]
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Figure 3.3: Different dynamic hiding functions &, for the bed load sediment transport and the corre-
sponding transport capacity functions G'; asafunction of d; /d..,. Here d; isthe grain sizeclass 4, d.,
themean grainsizeand m;, = %cb. For further information see the text.

The exponent b = 3 is chosen consistent with the arguments presented by Bailard (1981) and
G ~ 7.7 s a constant. Note that static hiding effects related to the presence of a critical shear
stress for erosion (see Ribberink, 1987; Seminara, 1995) are not modelled. Furthermore, it
is assumed that all grains are transported in the same direction: 7/|7) is independent of the
grain size and the effect of bottom slopes (see the discussion in Fredsge and Deigaard, 1992,
and references therein) are explicitly accounted for. The bottom perturbations are given by h
and )\, is a parameter which accounts for the gravitational effect of sediment movement on a
sloping bottom. For simplicity we assume \; to be constant ( ~ 1).

The bottom shear stress vector used in the sediment transportis givenby 7 = p ¢y |04 ;.
In this expression o is the total velocity, which consists of a wave-averaged velocity ¥, as
used in the hydrodynamic equations, and a wave contribution @, (¥, = ¥ + ). The
coefficient ¢ is in some sense related to the drag used in the hydrodynamic equations, which
was based on the Chezy coefficient. Here we assume that these are different and c is only
related to the skin friction. A constant value of ¢; ~ 1 x 1073 is assumed. Application of
these assumptions results in

3
. . U, - 1\2
Goi = v FiGui |0,* |:Tt - )\th} Gri = (-) (3.8)
|| &i
where v, = ¢ /Cr/g’ ~ 2x107° s?m~! and Gy, is the bed load transport capacity
function for sediment of size d;. A simple hiding function is used: & = (d,,/d;)™. In

Figure 3.3 the dynamic hiding function according to Day (see in Ribberink, 1987) and two
simplified relations are shown (m; = 0.5 and m;, = 1), together with the corresponding
transport capacity functions. Note that grains of a diameter equal to d,,, experience no hiding
effects (& = 1).

As was discussed in section 3.2.3, the model for shoreface-connected ridges requires
information about the wave-averaged bed load flux, (g;), during storms. In that case the
amplitude of wave-orbital motion is much larger than the mean current, thus w,, > |0].
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Furthermore, the waves are supposed to be almost parallel to the wave-averaged current,
which is mainly parallel to the coast. For the Long Island inner shelf (North America), with
a coastline trending approximately southwest-northeast, the highest waves are related to the
northeasterly storms and support this assumption. We will return to this in the discussion in
chapter 6. This leads to

(Gvi) = FiGviGp Ib ~ gl/b (ufﬁ %Abu?’wﬁh)
&\ 3
Gyi = (@) ;= oM (3.9)

We use m; = 0.5, which yields ¢, = 0.75 for the exponent in the transport capacity function.
Thus, the bed load transport for grains with a diameter d; < d,, is reduced compared to the
bed load transport of grains with diameter d,, due to dynamic hiding. On the other hand,
the bed load transport for grains with a diameter d; > d,, is enhanced due to their higher
exposure to the flow.

Suspended load

During storms it has been observed that the sediment on the inner shelf is mainly transported
as suspended load (Green et al., 1995). The vectorial formulation of the suspended load flux
reads

U

Goi = Ci|T| [ — Aswtﬁh} (3.10)

|G|
In (3.10), C; is the depth-integrated volume concentration of grains in class ¢, which includes
all grain size dependence, and \; is the bed slope coefficient for suspended load transport.
This coefficient is strictly also a function of the grain size: it is inversely proportional to the
settling velocity of the grains. This effect is not included in this chapter, because the beds-
lope flux for suspended load is small compared to the advective flux (first term in (3.10)) for
sand ridges of low heights and thereby would only intoduce a higher order effect. The beds-
lope fluxes are mainly responsible for surpressing the bedforms with very small wavelenghts.
Since C; is a monotonically increasing function of the bed shear stress 7, this formulation is
consistent with that in Bailard (1981). However, it is modified for strong forcing conditions,
whereas Bailard’s expression was derived for relative moderate forcing conditions. This ad-
justment is also motivated by the analysis performed by Bayram et al. (2001), who demon-
strated that Bailard’s formulation underestimates the observed transport during storms. An
expression for C; is derived in appendix 3.A. In the case of fine sand, an approximate balance
between sediment erosion and deposition near the bed exists, yielding

C; = Fi6;E;D (3.12)

In this expression, E; is the dimensionless entrainment of grains of diameter d; and §; is the
ratio of the thickness of the suspended load layer of these grains over the total water depth D.
The thickness of the suspended load layer is given by k. /ws;, with k. the turbulent mixing
coefficient for sediment particles, and wy; the settling velocity of grains in size class i. As
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discussed in Calvete et al. (2001b), k. is proportional to the water depth D (cf. Van Rijn,
1993), and therefore the parameter §; does not change in the offshore direction. Note that if
the depth-integrated concentration changes linearly with the depth, the depth-averaged con-
centration is independent of the depth.

Two (out of many) formulations for the entrainment are considered, of which one is de-
rived for sediment mixtures and one for uniform sediment. The formulation according to
Van Rijn (1993) is E; « |#;|® and is tested against laboratory experiments for uniform sed-
iment. In previous work on shoreface-connected ridges this formulation was used (Calvete
et al., 2001b; Walgreen et al., 2002, previous chapter). We use the Garcia and Parker (1991)
formulation, which is based on results from laboratory experiments carried out with sediment
mixtures, thereby accounting for possible hiding effects. The result is that E; oc |o;]> (for
the complete expressions see appendix 3.A. Similar to the hiding expression for bed load,
eq. (3.7), we write

0iEs = (i [0iEilu = Gsi OmBEm (3.12)

with ¢; the hiding function for the entrainment of sediment and 4,,, is related to the thickness
of the suspended load layer for grains of size d,,. The quantity E,, ,, is the entrainment of
grains of diameter d,,, only. The hiding function according to Garcia and Parker (1991) is

mgq9
G = |:/\E (j—l> ] (3.13)

The parameter m g defines the importance of hiding for the entrainment of sediment, its
default value is mg = 0.2. A straining parameter, A\g = 1 — 0.288 ¢, is used with o the
standard deviation on the ¢ scale, as defined in section 3.2.2. 1t models the reduced mobility
of the sediment mixture as its standard deviation increases and corrects for the otherwise
overestimated entrainment rates. The entrainment of grains from all size classes decreases
with increasing standard deviation of the sediment mixture in the active layer. This can be
interpreted as the result of a more efficient packing of grains in the bottom sediment when
grains of different sizes are present. Hence, a decrease in the porosity (=1-packing) found.
Substituting expression (3.13) in (3.12), in combination with the results from appendix 3.A,
yields for the transport capacity function of suspended load

Goi = A2 (j—l> cs = 5mp + 4.5 — bey, (3.14)
m

The first value in the definition of ¢, incorporates hiding effects, whereas the second includes
the dependence of the entrainment function on the particle Reynolds number. The coefficient
e defines the dependence of the settling velocity on the grain size: wy; o di*. The
formulation of Hallermeier (see Soulsby, 1997) for fine to coarse sand yields e,, = 1.1,
resulting in ¢, = —1.1. Another formulation by Van Rijn (1993) for settling of grains in
the sand range gives e,, = 1.0, resulting in ¢, = —0.5. The negative value of the exponent
physically means that the depth-integrated concentration for grains of sizes smaller than the
mean is larger than for grains of sizes larger than the mean grain size. Combining eg. (3.11)-
(3.14) yields for the concentration

Ci - ]:igsic C= 6mE’m,uD - 6mEm,u|17t|5D
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with £, , ~ 3 x 1074 m?s~% and §,, ~ 0.19. The averaged suspended load flux (3.10)
during storms reads

(@si) = FiGsiGs (3.15)
with G,; defined in (3.14) and

Gy o~ gamEm «D (ui,a— 1&%%) (3.16)
%3 ’ 7
Thus, for suspended load the flux of sediment decreases with an increasing diameter of the
grain and the transport of all fractions is smaller than the transport in case of uniform sedi-
ment. The first effect is opposite to the hiding effect in bed load, while the second effect is
not present in the model formulation for sorting in bed load.

3.3 Basic state, stability analysis and solution procedure

3.3.1 Basic state

We investigate the possible onset of bedforms as free morphodynamic instabilities on a planar
morphology. The basic state is uniform in the alongshore direction, with a shore-parallel
current V' (z). The corresponding bottom profile is sketched in Figure 3.1. The grain size
distribution function F; for the basic state can have an arbitrary structure in the cross-shore
(x) direction without violating the equilibrium conditions. In this chapter we assume that F;
is independent of this coordinate. The basic state is characterised by

u=0 v=V(z) 2y = —H(x) zs = S0y + 2zs0(2)
7":7’0(1') fzze m:(I)m O =0y

From the alongshore momentum balance (3.1) for the basic state it follows that

Toy/P — gSoH
To

Viz) =

The basic state velocity consists of a steady component, which is driven by a pre-
scribed alongshore free surface pressure gradient s ~ 2 x 10~7 and an alongshore
wind stress 7, ~ —0.25 Nm~2, such that the characteristic basic state velocity is
Uy = |V| ~ 0.4ms~tataz = 0 in the negative y direction. This is a representative
value of the storm-driven flow on the American Atlantic inner shelf (Niedoroda and Swift,
1981; Lentz et al., 1999). Note that the forcing by the density field is ignored, as its contribu-
tion has turned out to be negligible.

The characteristic magnitude of suspended load transport Q, = %C’OUO is defined for
uniform sediment of a grain size d,, ~ 0.35 x 10~2 m, with a representative value for the
depth-integrated volume concentration of Cy = 6mEmuU5’,Ho ~ 7.5 x 10~* m. For bed

load transport the scale is Q, = %ybUiU and the rate of bed over suspended load transport
isQp/Qs ~ 0.016.
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3.3.2 Stability analysis

The stability of the basic state is considered by studying the evolution of small perturbations
on this state. The linearised momentum and mass conservation equations are solved for a
fixed bed level to find the perturbed velocity field as a function of the bottom topography.
The flow variables are substituted in the bottom evolution equation to compute the changes
in the bed.

Hydrodynamics

We consider solutions of the hydrodynamic equations (3.1) and (3.2) of the following form:

v o= 0,V(x)) + (v(z,y,t),v'(z,y,t))
Zs = S0y + Zs0 (I) + 77/(% Y, t)
2 = —H(z) + h(z,y,t)
r = ro(z) + 7' (z,y,t)

The perturbations (indicated by primes) are assumed to be small with respect to their values
in the basic state. The expressions for ry and 7’ are given in appendix 3.B. The linearised
versions of the momentum equations (3.1) are

o’ , on' T h u
=gl S — 17
Vay fo e + p H? g (317
ov o' on' h v Vv
1YV vy r— 2 e v
“ax“/ay’Lf“ gay+soH+roH " (3.18)
and for mass conservation (3.2):
ou'  OH o' oh
g gy 2t o 3.19
or + or " + oy V@y 0 (3.19)

Two-size mixture

As with perturbations in the hydrodynamics, small perturbations in the probability distribu-
tion function F; are assumed, resulting in small perturbations in the mean grain size and
standard deviation:

Fi=Fi+ fi(z,y,t) (bm:‘I)m—l—(b;n(x,y,t) U:O'O+U/($7yvt)

In this chapter a two-size sand mixture is considered, with d; and ds the grain diameters of
the fine and coarse size fraction, respectively (¢1 > ¢2). A mean grain size of medium sand,
characteristic of inner shelf sediment, is d,,, = 0.35 mmor ¢,, = 1.5. The constraint on
the distribution function yields:

Fi+F=1 fi=—fa (3.20)

The expressions for the mean grain size and the standard deviation (as defined in sec-
tion 3.2.2) simplify to

D, = 01 F1 + 9o I o8 = FiFy(¢1 — ¢2)?
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0.0 0.5 1.0 1.5
o

Figure 3.4: Dependence of the grain diameters d; (left) and d2 (right) on the standard deviation of a
two-size mixture with mean size d,,, = 0.35 mm. The solid, dashed and dotted curves represent alarger
weight percent of the grains in the fi nest grain size class (Fi = 0.7), equal percentages of coarse and
finesand (K = 0.5), and alarger weight percent of grainsin the coarse size class (F; = 0.3).

From this we derive an expression for ¢; and ¢, in terms of the mean grain size and the
standard deviation:

F Fy
- =2 = ®,, — 00y] — 21
(bl m T 00 Fl ¢2 m oo F2 (3 )

For a fixed mean grain size, the values of the grain diameter of both size fractions as a function
of the standard deviation are given in Figure 3.4, where d; = 27%* and d, = 2 %2. This is
shown for different values of .

Using the expressions given above, the perturbations in the mean grain size and standard
deviation read

’ go / 00(12 ; 1)
m \ F2F1 fl 2F2F1 fl ( )

Sediment dynamics

The sediment flux consists of a bed load and a suspended load part: (¢,;) = F:Gpiqs» and
(@si) = FiGsiqs (see expressions (3.9) and (3.15)). In particular,

Gvo(x) + Gy (z,y,1) Gvi = Goi + gvi(2,y,1)
q_;O(x) + Jé($7y7t) gsi = Gsi + gsi(xvyvt)

=)

b

!
Il

In the basic state only an alongshore transport component, which depends on the distance
2 to the shoreface, is present. Thus V - (FiGpigho) = V - (FiGsi@so) = 0. The trans-
port capacity functions Gy;, G; and the perturbations gy, gs; for bed load and suspended
load are defined in appendix 3.C. Following the formulation for the roughness length &, we
use L, = d,, 27 (see appendix 3.B); the thickness of the active layer in the basic state
corresponds to L,y = 279~ %=, The linearised form of equation (3.6) is

(=) (R + L) = -9 (@) 629
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where
(@) = F,Guid@y + @vo (Goifi + Figei) + FiGsids + Gs0 (Gsifi + Figsi)

Summation of (3.23) over all size fractions, combined with the constraint on the distribution
function, leads to an equation which relates the bed evolution to the sum of the sediment flux
over all sizes. Back-substitution of this result into equation (3.23) yields the evolution of the
probability function f;. For two-size fractions (i = 1, 2) the final equations read

oh -, .
=Py ==V (a1) + V- (@) (3.24)
0 - R
(1- p)%o% = 1V - (q3) — F2V - (q7) (3.25)
where
/! = 8f
V(@) =Gu { F1V - @y + ao (FlTstrl)a—y
= o/ af
+Gs1{ FAV - @5+ gs0 (F1T5+1)8—y
= 5/ = 8f
V - A@5) =Gra { FoV - @y + qoo (FoTps — 1) Dy
. 0
+Go {sz g+ qeo (FoTes — 1) aj;l }

The quantity f5 is eliminated by using equation (3.20) and for a two-size mixture g1, gs1, gp2
and g,o are expressed in perturbatlons of the probability function f; (appendix 3.C). Also the
expressions for ¢yo, ¢so0, V- qy and V-q " are given in this appendix. Equations (3.24), (3.25)
and (3.20) give the set of equations to be solved for h and f;. Together with (3.17), (3.18)
and (3.19), they form a closed system.

Boundary conditions are that v/ = 0 and h = 0 at the transition from the shoreface to the
inner shelf (x = 0) and for x — oo. Furthermore, periodicity in the alongshore direction is
assumed.

3.3.3 Solution procedure

The solutions for the bottom perturbations are topographic waves which propagate
along the shelf and have a certain cross-shelf structure.  They are of the form
h(z,y,t) = Re {h(x)e*¥+2}: asimilar expression holds for f;. Here k is the alongshore
wavenumber and €2 the complex frequency. The stability analysis yields, for each wavenum-
ber k, solutions for €; its real part .. being the growth rate, with .- the e-folding timescale.
Furthermore, the imaginary part 2;,,, is the frequency. The migration velocity of the pertur-
bation is obtained from ¢ = —Qy,,/k. For a fixed value of the alongshore wavenumber &
the different values of 2 correspond to different cross-shore modes.

Of specific interest are growing perturbations, which have Q,. > 0. The perturbation
which has the maximum possible growth rate is called the preferred mode. The perturbed
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velocity u’ is expressed in the bottom perturbation &, by eliminating the free surface n’ from
the momentum equations and using mass conservation to express v’ in «’. In this study the
bottom friction is related to the grain size, thus a part of v’ is related to f;. Solving the
equation for »’ and substituting this in equations (3.24) and (3.25) results in an eigenvalue
problem, which determines the cross-shore structure of 4 and f;.

Equation (3.25) can be simplified, because the term on the left-hand side is a factor
Lao/Ho < 1 smaller than the contributions on the right-hand side and can therefore be
excluded. This factor was derived from equation (3.24), which defines the scale for the diver-
gence of the sediment fluxes. The result is a decoupled set of equations for the bottom and
the fraction of fine grains. Consequently, the eigenvalue problem for A and f; is reduced to a
single eigenvalue problem for h and f; is an algebraic function of h. Therefore, the fraction
of fine and coarse grains adapt instantaneously to changes in the bottom. Solutions of these
equations were obtained by numerical (spectral) methods, for details see Falqués et al. (1996)
and references therein.

3.4 Results

In this section the influence of the non-uniformity of the sediment on growth rates, migra-
tion velocities and wavelengths of the resulting bedforms is investigated. Furthermore, the
resulting spatial variations in mean grain size and bottom topography are presented. Differ-
ent experiments were performed, with particular emphasis on the sensitivity of the model
results to the formulation of the hiding functions and the properties of the sediment. First,
the influence of variation in sediment sizes was studied by varying the standard deviation
of the distribution. Next, the sensitivity of the results to the hiding coefficients for bed and
suspended load was investigated.

3.4.1 Parameter values

Values for the characteristic length and velocity scales were given in sections 3.2.1 and 3.3.1,
respectively. An overview of the parameter values used for the different experiments is pre-
sented in Table 3.1; they are representative of conditions on Long Island inner shelf and are
partly extracted from Figueiredo et al. (1982) and Schwab et al. (2000). For a list of fre-
quently used variables see appendix 3.D. Note that the sediment has the same mean grain
diameter in all experiments, while the diameters of the fine and coarse grains were allowed
to vary. The results for oy = 0 that are presented in the next section differ from the results
for uniform sediment presented in chapter 2. This is due to different parameter values, or ex-
ample for L and Uy,q4., that were used to represent the shelf of the Atlantic coast of America
and the Belgian-Dutch shelf, respectively.

3.4.2 Standard deviation

The influence of the standard deviation of the mixture on the characteristics of the ridges was
investigated. For a fixed mean grain size the standard deviation of the sediment was varied
over a range, such that d; and d are in the fine to coarse sand range. In this section the
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uniform bimodal bimodal bimodal bimodal

Fig. 3.5 Fig. 35,3.7(t) | Fig.3537(b) | Fig.36 | Fig.3.8
oo 0 0.2 1.0 05 0.5
I3 1 0.5 0.5 05 0.7
I 0 0.5 0.5 0.5 0.3
D, 15 15 15 15 15
P1 15 1.7 25 2.0 18
b2 15 1.3 0.5 1.0 0.7
d1(mm) 0.35 0.31 0.18 0.25 0.28
da(mm) 0.35 041 0.71 0.50 0.60

Table 3.1: Parameter values for uniform and bimodal sediment.

default values of ¢, = 0.75 and ¢, = —1.1 are used. Figure 3.5 shows the changes in the
growth rate and migration velocity of the dominant cross-shore mode (first cross-shore mode)
for each wavenumber and for different values of the standard deviation. The change in the
grain diameters of the fine and the coarse sediment fraction with o is shown in Figure 3.4 for
Fy = 0.5. Values are scaled by those of the preferred mode in the case of uniform sediment
(00 = 0). The maximum growth rate for uniform sediment is Q,., ~ 8.6 x 1073 yr=1,
attained for wavenumber k, ~ 1.9 km~! and the corresponding migration speed is ¢, ~
—0.9 myr—1. The alongshore spacing between successive crestsis A = 2m k! ~ 3.2 km,
and the timescale for the growth is Q.1 ~ 117 yr. In the computations of the timescale
it was assumed that storms prevail during a time fraction x ~ 0.05, whereas no growth of
perturbations occurs during the remaining time fraction. Here we use the formulation for the
entrainment of suspended sediment by Garcia and Parker (1991). In the case of o9 = 0,
the growth rate and migration curves are similar to those obtained with the Van Rijn (1993)
formulation, as was used by Calvete et al. (2001b).

A clear stabilising effect on growth rates of the bimodal mixture, as compared to uniform
sediment, is found if the standard deviation is increased (Figure 3.5). This goes along with
a (small) decrease of the wavenumber, i.e. increase in wavelength, of the bedforms. The
migration velocities are enhanced. The maximum growth rate is reduced by ~ 50% for
a bimodal sediment mixture with a standard deviation of oy = 0.5. Migration velocities
for this case increase to —1.2 m yr—!. The preferred mode in this case has a wavelength
A ~ 3.4 km, and its spatial pattern is shown in Figure 3.6. The elevation of the bottom is
indicated by the dark and light colours. The contour lines are those of the fraction of fine
grains (with diameter d;). More fine sediment (f; > 0) results in an increase in the mean
grain size in phi-units (¢/,, oc f1). The results indicate that f; is positive on the downcurrent
(seaward) flank of the ridges, hence the mean grain size becomes finer in this area and coarser
on the upcurrent (landward) flank. The spatial pattern of the perturbed bottom topography
and of the perturbed mean grain size are approximately 90° out of phase. Note that the basic
state velocity is directed from the top to the bottom of this figure (V' < 0), so that the ridges
are characterised by an upcurrent rotation.

The locations of the maxima and minima in the mean grain size depend on the value of
the standard deviation o (or sorting index). Figure 3.7 shows a shore-normal cross-section
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Figure 3.5: Growth rates (top) and migra- Figure 3.6: Bottom perturbations (greyscale; light:

tion velocities (bottom) of the dominant bars, dark: troughs) and perturbations in the frac-
cross-shore mode as a function of the tion of fi ne grains (lines; solid: fi > 0, dotted:
wavenumber & (scaled by the values for f1 < 0)foroo = 0.5, F; = 0.5, ¢ = 0.75 and
the preferred mode for uniform sediment) ¢s = —1.1. Thearrow indicates the direction of the
for different values of o¢. The param- basic state velocity.

eters used for the bimoda mixtures are:
Fi1 =05,¢=0.75andcs = —1.1.

of the bottom topography and fraction of fine grains for two different sorting indices. A
decrease in the phase difference between the two patterns is found for larger values of the
standard deviation. An interpretation of these results will be given in section 3.5.

Experiments were conducted to investigate the sensitivity of the model results to different
values of the parameter F;. It was found that, if the fraction of fine grains in the basic state
Fy > 0.5, the influence of the standard deviation on the bedform characteristics (wave-
length, growth rate and migration speed) becomes stronger. On the contrary, if F;, < 0.5
(more coarse grains than fine grains), these dependencies become weaker. Changing the
value of F; does not affect the bottom pattern or the distribution of the mean grain size of
Figure 3.6, but a different sorting pattern is obtained. In the case of F; = 0.5 it follows that
o’ = 0 according to equation (3.22), hence no changes in the standard deviation occurred.
In Figure 3.8 it is shown that for F; = 0.7 the sediment located on the seaward flank is finer
(¢!, > 0)and better sorted (¢’ < 0) than sediment on the landward flank, which is coarser
and more poorly sorted (¢' > 0).
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perturbations  perturbations

cross—shore distance x (km)
- offshore

Figure 3.7: Cross-sections through a ridge, nor-
mal to the shore, of perturbations in bottom, h,
and in the fraction of fi ne grains, fi (or similar
in mean grain size, ¢,,). Quantities are scaled by
their maximum values and shown for F; = 0.5
and asmall standard deviation of the mixture (top:

bed topography

mean grain size

0 1 2 3 4 5
cross—shore distance x (km)
- offshore

Figure 3.8: Cross-sections through aridge, normal
to the shore, of bed topography h, perturbations
¢n, in the mean grain size and perturbed sorting
index (standard deviation) o’. Results are shown
for i = 0.7, 00 = 0.5, ¢, = 0.75 and ¢, =
—1.1.

oo = 0.2), as well as for a large value (bot-
tom: oo = 1.0). Furthermore, ¢, = 0.75 and
cs = —1.1.

3.4.3 Hiding functions: bed load

The characteristics of both the preferred bottom mode and the grain size distribution also de-
pend on the coefficient ¢, in the hiding function of the bed load transport, defined in eq. (3.9).
Therefore, experiments were conducted in which ¢, was varied. Physically this means that
the hiding effects in the bed load transport were reduced or enhanced. The coefficient for the
hiding in suspended load was kept constant at its default value ¢, = —1.1.

In Figure 3.9 the characteristics of the preferred mode are shown as a function of the
standard deviation for different values of ¢,. The maximum growth rate €2,.,,,.,, Migration
velocity ¢y, and preferred wavenumber k..., in the bimodal sediment case are scaled by
their corresponding values for uniform sediment (being k., €2,., and |c,|). The curves show,
for all cases, a reduction in the wavenumber and growth rates, and an enhancement in mi-
gration rate if o is increased. A value of ¢, = 0 implies that there is no hiding, ¢, = 1.5
corresponds to a value of m; = 1 in the hiding function (see Figure 3.3). The new infor-
mation deducted from this figure is that the inclusion of a hiding function in the bed load
transport formulation has little effect on the growth of the shoreface-connected ridges, but
increasing hiding effects cause larger migration speeds. An interpretation of the results will
be given in section 3.5.

In Figure 3.10 two cross-sections show the change in the distribution of the fraction of fine
sediment for no hiding and strong hiding in the bed load flux. In the former case the selective
suspended load transport results in an almost 90° out-of-phase relation between topography
and mean grain size. An increase in the strength of the hiding in bed load (¢; > 0) reduces
this phase shift, see Figure 3.10 (bottom).
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Figure 3.9: Wavenumber k. Of the preferred mode (scaled by its value k., for uniform sediment),
growth rates and corresponding migration velocities as a function of the standard deviation of the mix-
ture 0. Results are shown for different formulations of the hiding function in the transport of bed load,
withe; = —1.1 and Fi = 0.5.
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Figure 3.10: Asin Figure 3.7, but for o9 = 0.5, Figure 3.11: Asin Figure 3.7, but for oo = 0.5,
F1 =05,¢s=—1.1ande, =0 (top), e, = 1.5 F1 =0.5,¢, = 0.75and ¢; = 0 (top), cs = —2.1
(bottom). (bottom).

3.4.4 Hiding functions: suspended load

The same experiments were done to investigate the dependence of model results on the hiding
coefficient ¢4 and the straining coefficient Ag in the transport capacity function of suspended
load transport (defined in eq. (3.14)). Only one of these parameters, c,, can result in differ-
ences between the depth-integrated concentrations of the size classes in a sediment mixture,
thereby introducing a mechanism for selective transport of suspended load.

The value of exponent c; is mainly determined by two factors. The first is the dependence
of the entrainment and the relative thickness of the suspended load layer on the grain size
(including settling velocity and particle Reynolds number). The second factor is the strength
of the hiding for the entrainment of sediment in suspension, indicated by the coefficient m g
in the hiding function ¢; (equation (3.13)). We only investigated the influence of the second
contribution and assumed e,, = 1.1 (section 3.2.4), i.e. ¢s = 5mg — 2.1. Without hiding
effects in the entrainment (mg = 0), the depth-integrated concentration of fine sediment
is larger than that of coarse material. The inclusion of hiding effects (default: mpg = 0.2)
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Figure 3.12: Asin Figure 3.9, but now for different formulations for the hiding coeffi cient ¢ in the
suspended load transport and ¢, = 0.75.

reduces the entrainment of fine sediment from the bed. Nevertheless, it still results in a
depth-integrated concentration of fine material that is larger than that of coarse material. In
the special case of mg = 0.42 it follows that ¢, = 0, hence, G,; is independent of the grain
size. The higher concentration of fine sediment, as a consequence of their smaller settling
velocities, is counterbalanced by a reduced entrainment flux of fine grains from the bed due
to hiding effects. These three situations are shown in Figure 3.12as¢;, = —2.1, —1.1 and
0, including the straining factor and a constant value of ¢, = 0.75. With higher standard
deviations, a decrease in wavenumber and growth rates and an increase in migration rates is
found. The growth rates are most strongly influenced.

The straining parameter Ag in eq. (3.14) reduces the suspended load flux of both size
classes in the sediment mixture, whereas the reduction becomes more important for larger
values of 0. To demonstrate the importance of this parameter, results are also shown without
straining (\e = 1) and no hiding in the entrainment (¢, = —2.1). Figure 3.12 indeed reveals
a change in the results: instead of a decrease in the maximum growth rate, an increase with
oo is found and the migration speed is decreased. This will be discussed in more detail in
section 3.5.

The bedform and the mean grain size patterns are in phase if no grain size dependence is
used in the suspended load transport (cs = 0), with the finer sediment on the crests for ¢;, > 0
(see Figure 3.11, top). A phase shift between the mean grain size and the bed topography
pattern is induced by the suspended load flux. In fact, the sediment is finer on the seaward
(downcurrent) flank of the ridges for ¢, < 0. These phase shifts do not change if the straining
parameter is excluded.

Model tests indicated that the grain size patterns over shoreface-connected ridges are
not affected by the grain size related bottom friction (see (3.3) and the expression for k in
appendix 3.B) that was introduced in the hydrodynamic equations. Moreover, it turns out the
related vorticity effects do not influence the instability mechanism, which is controlled by
continuity effects.
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3.5 Physical interpretation

The results presented in the previous section can be explained in physical terms. The concepts
discussed here are based on mechanisms for the formation of shoreface-connected ridges
under the assumption of uniform sediment, as presented earlier by Trowbridge (1995) and by
Calvete et al. (2001b). They have demonstrated that the transverse slope of the bottom plays
an essential role in the formation of the ridges. An offshore deflection of the current, i.e. v’ >
0, results in a convergence of the sediment flux and the growth of upcurrent-oriented ridges.
This behaviour is due to mass conservation of both water and sediment, as was demonstrated
in Figure 1.7 in chapter 1. The presence of a ridge causes an enhanced convergence in both
the water and sediment flux (with respect to that induced by the offshore movement of water
and sand) on the downstream side of the ridge. Likewise, the divergence reduces on the
upstream flank of the ridge. The result is that sediment is eroded (deposited) on the upstream
(downstream) flank of the ridges. Therefore, downcurrent migration of the ridges takes place.
It appears that the growth of the shoreface-connected ridges is mainly determined by the
suspended sediment flux, while bed load transport determines the downcurrent migration of
the bedforms.

In the case of a bimodal sediment mixture growth rates become smaller, migration rates
speed up, the preferred length scale becomes longer, and sorting of sediment is observed. To
understand these new features, we examined the effects of dynamic hiding in both bed load
and suspended load in the bottom evolution equations (3.24) and (3.25).

3.5.1 Hiding in bed load

For the exponents in the transport capacity functions for bed load and suspended load we
consider: ¢, > 0andcs = 0, respectively. These assumptions allow for an interpretation
of the results shown in Figure 3.12 and 3.11 (¢, = 0). The transport of suspended load is in-
dependent of the grain size, therefore only the effect of the straining parameter for suspended
load and hiding in bed load are included. As a result, the equations for the evolution of the
bottom and the fraction of fine sediment reduce to:

oh e T 0
(1- p)a =—TyV - § — ALV - @) — [Ty + TooThs) qro a—J;l (3.26)
= 5 Of
0=—TyV q — Eqsoafy1 (3.27)
where
Ty1 = Gp1 — G2 Tyo = F1Gy1 + FoGyo
Ty = F1Fo(Gp1 — Gp2) Tys = FoGy + F1Gpa

The expressions for T5 and Ag are given in appendix 3.C. The left-hand side of equa-
tion (3.27) has been set to zero, following the arguments presented in section 3.3.3. Fur-
thermore, since |gs0| > |gro| (Suspended load dominates over bed load transport), the terms
proportional to ¢,o are omitted in equation (3.27).
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Figure 3.13: Schematic view of the selective bed load transport mechanism. The downcurrent migration
induced by the bed load flux resultsin an erosion/deposition pattern, which is shifted with respect to the
bed topography. Equation (3.27) requires the convergence rate of the bed load flix to be proportional to
achangein the alongshore (i.e. downstream) fi ning of the sediment. In adeposition area(ﬁ -qy < 0),
therefore g.0 9 f1/0y < 0 for the situation where transport of coarse material is favoured with respect
to that of fi ne grains. The latter represents the selective bed load transport that resultsin Gye > G-
When moving from the crest to the adjacent troughs a coarsening of the sediment is found.

To understand the alongshore variation in the mean grain size we consider the expression
for V - g}, as given in appendix 3.C, and neglect bedslope effects. After substitution of
expression (3.4) for the wave-orbital velocity it reads

- 1 0H h
V- ocul | —(m+ 1)E%—xu' + %g—y

This expression is simplified by applying scaling arguments, where the parameter values are

V o~ —04ms !, H ~ 14m,0H/0z ~ 1x1073and m ~ 1.6. Assuming an

irrotational flow an using the linearised mass-balance the first term is estimated to be a factor

100 smaller than the second term and is neglected. Since g0 o u3 HV (appendix 3.C), this

yields for equation (3.27):

This result shows that the fraction of fine sand is either in phase or 180° out of phase with
the topography. For bed load the transport capacity function is given by Gy, = (d;/d,).
If ¢, > Oitfollowsthat G,y < 1 < Gye, leading to a reduced transport of fine sediment
relative to the transport of coarse sediment. The relation between the bottom topography and
the fraction of fine grains is therefore given by f; oc h for this situation. A schematic view
of this selective transport mechanism is shown in Figure 3.13. The mean grain size is finest
on the crests of the ridges, and explains the pattern shown in Figure 3.11 (c¢s = 0).

The enhanced migration rates and reduced growth rates for a sediment bed composed of
a bimodal mixture (Figure 3.12, ¢, = 0) are understood from equation (3.26). The suspended
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Figure 3.14: Schematic view of the selective suspended load transport mechanism. Suspended load
mainly causes the growth of the ridges (erosion/deposition pattern almost in phase with the bottom
topography). The deposition of suspended sediment is related to the gradient in the distribution of fi ne
grains (eg. (3.29)). In adeposition area (V - . < 0), therefore ¢.o 8f1/dy > 0 for asituation
where transport of fi ne material isfavoured with respect to that of coarse sand. The latter represents the
selective suspended load transport that resultsin Gs2 < Gs1. Theresult is adownstream fi ning in the
deposition area; the fi nest material islocated approximatelyi wavelength downstream of the crest.

load flux is only modified by the straining factor, when compared to uniform sediment. This
factor is smaller than unity and determines the reduction of the growth rates by A2 ~ 0.2 for
oo = 1 (Figure 3.12, middle). The bed load flux is a factor Tys different from the uniform
sediment case. As T2 > 1 for bed load transport, hiding effects cause a faster migration
compared to uniform sediment, while it hardly changes the growth. The last term (redistri-
bution of sediment) in eq. (3.26) could also change the migration, because f; is related to
h. However, experiments indicated that this contribution is only of minor importance to the
downcurrent migration.

3.5.2 Hiding in suspended load

For the investigation of hiding (and straining) in suspended load we set¢, = Oandc, < O.
This enables an interpretation of the results shown in Figures 3.9 and 3.10 (¢, = 0). The
equations for the evolution of the bottom and the fraction of fine sediment reduce to

of

oh - -
l—p)=—=-V-q7 — - 5] 450 —— .
( p) ot AV qy TSQV qs [Tsl + TSQTSJ] qds0 ay (3 28)
_ S 8f1
0= - s3v Qg — [Ts4 + TSSTSE)] qs0 ay (329)
where
Ts1 = Gs1 — G2 Ty = F1Gs1 + F2Ggo

Tss = F1F2(Gs1 — Gs2) Toa = F5Go1 + F1Goo
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Equation (3.29) relates alongshore changes in the fining of the bottom material to the con-
vergence of the suspended load flux, and bed load contributions are neglected. In the second
term on the right-hand side, [T4 4+ Ts57%s3] is positive for realistic values of the parameters.
In Figure 3.14 the mechanism for selective suspended load transport is sketched.

Substitution of the expression for ¢ (appendix 3.C) in equation (3.29) yields

0 Oy,
_Vaiyl ox (Gg1 — GSZ)EU/

In this expression du,,/0x < 0 (waves induce less stirring of sediment in larger depth)
and V. < 0. The momentum equations are used to relate »’ to h. Trowbridge (1995)
already showed that the perturbations in the cross-shore velocity are in phase with the bottom
perturbations (v’ > 0if h > 0). Hence, if the transport in suspension is more pronounced
for the finer grains (Gs1 > Ggo), thisleads to 0f; /0y « —u’ o« —h. Consequently, the
pattern of the mean grain size for suspended load is approximately 90° out of phase with the
topography, such that the finer sediment is found on the downcurrent flank of the ridges. This
effect is clearly seen in Figure 3.10 (top) forc, = Oandc¢s = —1.1.

The reduced growth rates for graded sediment compared to uniform sediment can be
understood from equation (3.28). Growth is mainly determined by the second term on the
right-hand side, where the part related to the grain size is a factor T, different from that
found in the case of uniform sediment. For selective suspended load transport, with hiding
coefficient ¢, = —1.1, the factor Txo < 1. The presence of a straining parameter in the
transport capacity function for suspended load (equation (3.14)) causes the total transport of
the two grain sizes in a mixture to be less than the transport of sediment of a uniform grain
size. A stabilising effect is found with an increasing standard deviation of the mixture (see
Figure 3.9, ¢, = 0), whereas the contribution of ¢ to the transport capacity function has the
opposite effect. Thus, a stronger hiding in suspended load (larger values of c;) counteracts
the stabilising effect of the straining. This explains why growth rates increase with increasing
values of |c,| for a fixed value of o (see Figure 3.12).

The bed load contribution to the migration (downstream) is the same as for uniform sed-
iment, but the contribution of suspended load (causing upstream migration) decreases with
increasing values of o, resulting in a net enhancement of the migration in the downstream
direction. An additional contribution to the bottom evolution is given by the last term in
eqg. (3.28), which turns out to be very small.

If selective transport in both suspended and bed load is included, the pattern of the mean
grain size resembles that found in the case of only hiding in suspended load. This is because
the suspended load flux dominates over the bed load flux. The hiding function of the bed
load flux slightly modifies the 90° phase difference (induced by suspended load) between the
mean grain size and bed topography. This tendency is visible in Figure 3.10.

The standard deviation oo of the mixture also influences the phase difference between
the mean grain size and bottom topography. Because of the straining parameter Ag in the
selective suspended load flux, the latter decreases with increasing oq. The bed load flux
is not changed by the straining parameter. This implies that the relative importance of the
suspended load transport, with respect to bed load transport, decreases with increasing o.
Hence, the phase shift becomes smaller with increasing standard deviations, which explains
the results shown in Figure 3.7.
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3.6 Discussion

The model results are consistent with the field data, as discussed in section 3.1, see also
chapter 1 of this thesis. The data reveal the mean grain size pattern is approximately 90° out
of phase with topography, with the coarsest sand on the landward flank (upcurrent), and the
finest sand on the seaward (downcurrent) flank. An exception to this very consistent pattern
in the mean grain size, as observed on different shelves, concerns the shoreface-connected
ridges along the Central Dutch coast (southern North Sea) (Van de Meene et al., 1996). No
marked spatial variation in the mean grain size across the ridge topography is found, except
for a weak tendency towards a better sorting (smaller standard deviations) at the crests of the
ridges. A potentially important difference between the American Atlantic shelf and the Dutch
shelf is the strength of the tidal current. Model experiments with both bimodal mixtures (this
chapter) and uniform sediment (chapter 2) showed that adding tidal currents does not change
the results. This suggests that tidal currents are not the cause of the difference in the observed
patterns for the Dutch coast (strong tides) and North America (weak tides).

Besides the mean grain size, another aspect of the model results to be compared with the
field data is the variation in the standard deviation over the ridges. For the American shelf
the most pronounced differences in sorting characteristics are seen between sediment in the
crest and trough. In general, the values of standard deviation of the sediment are higher in
the troughs than on the crests of the ridges (Swift et al., 1972, 1978; Schwab et al., 2000).
This is consistent with the sorting pattern found over the ridges along the central Dutch coast,
in contrast to the lack of a variation in the mean grain size pattern. Data gathered from the
German Bight (Antia, 1993) show that the surficial sediment found on the seaward flank are
best sorted (small ) and poorest in the troughs and on the landward flank. In the model the
variation in the sorting index is determined by relation (3.22). Clearly, variations in sorting
across the ridges in a two-size mixture are only present in the model if the fractions of fine
and coarse grains in the basic state are not equal. Choosing F; > F5 (weight percentage
of fine sediment is larger than that of coarse sediment) yields that in areas where positive
perturbations in the mean grain size are present the material is better sorted. Combined with
the effect of hiding in suspended and bed load (finer seaward flank), this case provides a good
representation of the data.

The results should be interpreted with care: the formulation for the selective transport of
suspended and bed load are based on expressions which are found as a best fit with many
different data sets (Zyserman and Fredsge, 1994; Admiraal et al., 2000). These data are
mostly based on measurements in shallow rivers and flume experiments and we assumed
them to be also applicable to shallow coastal seas. However, in the sensitivity experiments
it was shown that the trend for the changes in growth rate and the migration velocity is the
same for a large range of values of the sediment parameters, such as for the exponents in the
hiding functions and the composition of the sediment mixture.

3.7 Conclusions

In this chapter a model was developed and analysed to study the initial formation of
shoreface-connected ridges and the corresponding grain size distribution on storm-dominated
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shelves. The model consists of the depth-averaged shallow water equations, a sediment trans-
port formulation and a mass balance of sediment. The sediment is represented by two grain
size classes. Both bed load and suspended load sediment fluxes are considered, as are dy-
namic hiding effects. The basic state represents a storm-driven flow on an inner shelf with
a transversely sloping bottom. The results of the model presented here indicate that, in the
case of a sediment mixture, there is a positive feedback between storm-driven currents and
the eroding bottom. This confirms and generalises earlier findings by Trowbridge (1995) and
Calvete et al. (2001b) for a single grain size fraction.

The first objective of this research was to investigate the influence of sediment sorting on
the temporal and spatial characteristics of shoreface-connected ridges. The stabilising effect
of sediment sorting on the growth of bedforms, as found earlier in many laboratory exper-
iments and other model studies, is also observed within the present model. Based on the
experiments that were carried out, we conclude that the behaviour of growth rates is deter-
mined by the formulation for the hiding in suspended load. A reduced growth turns out to be
mainly because of the presence of a straining parameter in the hiding function of suspended
load. This accounts for the reduced mobility of grains in suspension with increasing standard
deviations of the sediment mixture. If the straining parameter is excluded in the suspended
load formulation the growth rate is increased with respect to that of uniform sediment. The
migration of the shoreface-connected ridges is in the downcurrent direction and enhanced by
the bimodal character of the sediment. Despite a suspended load flux which is much larger
than the bed load flux, the migration is controlled by the bed load flux and its hiding co-
efficient ¢,. Wavelengths of the bedforms are only slightly affected. A spatial phase shift
of approximately 90° is found between the topography and mean grain size for shoreface-
connected ridges: the coarsest material occurs on the landward (upcurrent) flank. Selective
transport of sediment in suspension causes this phase shift.

The second objective of this study was to gain knowledge into the physical mechanism
responsible for the observed grain size distribution over shoreface-connected ridges. Com-
bining the observations with the model results and their subsequent analysis, leads to several
conclusions with respect to the physical mechanisms which could be responsible for the ob-
served sedimentary patterns. First of all, the persistent finer downcurrent flank of the ridges
and the coarser sediment on the upcurrent flank appears to be in reasonable agreement with
observed grain size distributions over shoreface-connected ridges. The model results support
the assumption that the transport of sediment as suspended load cannot be neglected and that
the corresponding flux of fine material is larger than of coarse material. The relative im-
portance of the bed load flux can shift the pattern of the mean grain size more in-phase or
out-of-phase with the topography. The model reproduces observed sorting patterns over the
ridges (well/poorly sorted sediment on the seaward/landward side of the ridges) if the overall
weight percentage of fine grains is larger than that of coarse grains. Another quantity that
influences the phase shift is the standard deviation of the sediment: if it increases it causes
a reduction in the importance of suspended load over bed load. Finally, the model results
indicate that tidal currents and a grain size dependent formulation for the bottom friction co-
efficient do not change the sediment patterns for shoreface-connected ridges. In chapter 5
this study is extended into the nonlinear regime.
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Appendix

3.A Suspended load concentration

The suspended load flux requires knowledge of the depth-integrated volumetric concentration
of sediment. The latter is governed by

The first term on the right-hand side is the flux of sediment into suspension, the second
term is the deposition flux. Here wy; is the settling velocity of grains of size d;, E; is the
dimensionless entrainment of these grains, and ¢, is the actual volume concentration near
the bed. The entrainment of a size fraction is multiplied by the probability F; that sediment
of this grain size actually occurs.

For sand mixtures on inner shelves the settling period is much smaller than the hydro-
dynamic timescale. This implies that equation (3.A-1) reduces to an approximate balance
between erosion and deposition flux near the bed:

5D

F.E; 0
The second term represents the deposition flux of these grains and is expressed in terms of the
depth-integrated concentration C;. Parameter ¢; is the ratio of the thickness of the suspended
load layer of grains in class 7 over the total water depth D.

In Garcia and Parker (1991) an expression for the entrainment of a mixture of particles is
obtained by analysing laboratory and field data. They find

u d. 0.2
— 5 _ % p0.6 Q
Bi = AeZ) STl (@)
with A = 1.3 x 1077 a constant. Hiding effects are covered by the last factor in the

expression for Z;. Furthermore, \e = 1—0.288 o is astraining parameter, R,; = +/¢'d? /v
is the particle Reynolds number of grains of size d; and v ~ 1.36 x 1075 m2s~! is the
kinematic viscosity coefficient of water. The entrainment for uniform sediment (grain size
d,,) reads
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such that Z,,, corresponds the value of Z; for d; = d,,,. From this result it follows that the
expression for G; in eq. (3.12) is written as:

Goi = i E; = ¢ Wsm [ Ry ¥ Wsm °
s 5m Em u - Wgj Rpm Wsi
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3.B Bottom friction coefficient

The expression for the grain roughness length used in the formulation for the bottom friction
coefficient (see eq. (3.3)) reads ks = 3d,,0.., With o, the geometric standard deviation,
defined as o,,, = 2. When expressed in terms of phi (section 3.2.2) it follows that ks = 3 x
209 — ¢m (defined in units of mm). Including small perturbations in the mean grain size and
standard deviation in the friction parameter gives for the quantities that correspond to the
basic state and the perturbation of the bottom friction parameter:

2 g Uy ;271 , , h
== ~ = — In2+ — .B-1
ro T C%O " Cho {(U )02 + H @ )

The expression for the Chezy coefficient, as defined in section 3.2.1 with D = H — h, for the
basic state is Cro = Ch(H,®,,,00). The perturbations in the bottom friction coefficient
used in the momentum equations, with ' as defined in (3.B-1), is written in terms of the
unknowns h and f; by using equation (3.22).

3.C Sediment flux

The transport capacity functions, defined in (3.8) and (3.14) for bed load and suspended
load, was split into contributions which correspond to the basic state and the perturbed state,
respectively. These results are used in section 3.3.2 and read

Gpi = 2¢(@m—d1) Gy = 200(Fm=90) gvi = v In2Gy; ¢y, = GoiThs f1
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AE=1-0.288¢0 Ag =1 —-0.2880¢ )‘;E = —0.288¢"
where
ao (o) 02880‘0 (F2 — F1)
Tys = cpIn2——— Tis =csIn2 —
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The total load sediment flux in the basic state only has an alongshore component and consists
of contributions caused by bed load and suspended load, given by:
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The divergences of the perturbed sediment fluxes are
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Here equation (3.19) has been used to eliminate v’.

3.D  List of frequently used variables

cp exponent in bed load transport capacity function

Cs exponent in susp. load transport capacity function

C; depth-integrated volume concentration of grain sizes in class d;, m

dy grain diameter of finest sediment fraction, mm

do grain diameter of coarsest sediment fraction, mm

dm mean grain size of a sediment mixture, mm

E; entrainment of sediment of diameter d; in suspension

E;i. as I;, but in the case of uniform sediment

Fi probability distribution function for size class 4 in the active layer

F; weight percent of the grains in the finest (i = 1) or coarsest (i = 2) grain size
class in basic state

fi perturbation on F; (i = 1,2)

Fs probability density function in substrate

Gui bed load transport capacity function for sediment of size d;

G basic state bed load transport capacity function

bi perturbation on Gy,

Gsi suspended load transport capacity function for sediment of size d;

Gsi basic state suspended load transport capacity function

9si perturbation on G;
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L, active layer thickness, m

Lao basic state active layer thickness, m

m exponent in wave stirring function

my, exponent in hiding function bed load

mg exponent in entrainment of sediment in suspension

d: total sediment flux of sediment of grain size d;, m?s—!

Tbi bed load flux of grains d;, m?s—!

qvo basic state alongshore bed load flux, m?s—!

7, perturbation in bed load flux, m2s—!

si suspended load flux of grains d;, m2s—!

dso basic state alongshore suspended load flux, m2?s—!

q; perturbation in suspended load flux, m2?s—!

Uy wave-orbital velocity amplitude, ms—1

oy near-bed wave-orbital velocity, ms—!

0; ratio of the thickness of the suspended load layer of grains of diameter d; over the
total water depth

Om ratio of the thickness of the suspended load layer of grains of diameter d,,, over
the total water depth

G hiding function for entrainment of sediment in suspension

O Shields parameter for uniform sediment of size d;

O Shields parameter for sediment of size d,,

AE straining parameter

Ag basic state straining parameter

AE perturbation on Ag

& dynamic hiding function for bed load

o standard deviation of the mixture on the phi scale

00 standard deviation of the mixture in the basic state

o’ perturbation on oy

T bed shear stress (skin friction), Nm—2

Th bed shear stress vector (form drag + skin friction), Nm—2

bm mean grain diameter on phi scale

D, basic state mean grain diameter

4 perturbation on ®,,,

m



Chapter 4

A modeé for grain size sorting over
tidal sand ridges

Abstract

A model was developed and analysed to quantify the effect of graded sediment on the formation of
tidal sand ridges. Field data reveal coarse (fi ne) sediment at the crests (in the troughs), but often phase
shifts between the mean grain size distribution and the bottom topography occur. Following earlier
work, this study is based on a linear stability analysis of a basic state with respect to small bottom
perturbations. The basic state describes an alongshore tidal current on a coastal shelf. Sediment is
transported as bed load and dynamic hiding effects are accounted for. A one-layer model for the bed
evolution is used and two grain size classes (fi ne and coarse sand) are considered.

Results indicated an increase in growth and migration rates of tidal sand ridges for a bimodal mix-
ture, whilst the wavelength of the ridges remains unchanged. A symmetrical tidal current results in
a grain size distribution which is in phase with the ridges. Incorporation of an additional M4 tidal
constituent or a steady current results in a phase shift between the grain size distribution and ridge to-
pography. These results are consistent with observations. The physical mechanism responsible for the
observed grain size distribution over the ridges is aso discussed. *

*This chapter is based on the paper entitled A model for grain sorting over tidal sand ridges, by M. Walgreen,
H.E. De Swart and D. Calvete, submitted for publication in Ocean Dynamics.
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4.1 Introduction

Tidal sand ridges are rhythmic bedforms that are observed on the outer part of meso-tidal
shelves. A characteristic spacing between successive crests is 5-8 km and the ridges are ro-
tated cyclonically with respect to the dominant tidal current. These characteristics have been
explained in various studies dealing with tide-topography interaction (Zimmerman, 1981;
Huthnance, 1982a). One aspect that has not been addressed so far is the role of graded sedi-
ment in the morphodynamics of tidal sand ridges. Analysis of field observations indicates the
potential importance of graded sediment: a persistent spatial variation of the surficial sedi-
ments over these ridges is found, of which the cause is not well known. A well-documented
example of a tidal sand ridge is the Middelkerke Bank along the Belgian coast (see, for ex-
ample, Lanckneus et al., 1994; Houthuys et al., 1994; Vincent et al., 1998). The distribution
of the mean grain size shows coarser sediment on the crests and a fining trend towards the
troughs, see Figure 1.5 in chapter 1 of this thesis. Moreover, the location of the coarsest
sediment is shifted seaward at the northern end of the Middelkerke Bank and landward at the
southern end (Trentesaux et al., 1994). Data gathered from the more seaward located Kwinte
Bank (Gao et al., 1994) indicate a similar grain size pattern, with the seaward flank typically
consisting of coarser sediment than the landward flank.

The first objective of the present study was to gain understanding of the physical mech-
anisms responsible for the observed grain size distribution over the tidal sand ridges. In ad-
dition, the work was aimed at identifying possible causes for the shift between the crest and
the maximum in the mean grain size. The second objective was to investigate the influence
of sediment sorting on the temporal (i.e. growth and migration) and spatial characteristics
of the ridges. Following earlier work, it is hypothesized that tidal sand ridges form as a free
instability of a morphodynamic system. Calvete et al. (2001a) studied the initial formation of
tidal sand ridges in the case of uniform sediment. In contrast to the open domain, as was used
in earlier studies by Huthnance (1982a) and Hulscher et al. (1993), the shelf was bounded by
a coast. In the present chapter the model is extended with a formulation for the transport of
a sediment mixture. The approach is similar to that used by Walgreen et al. (2003), see also
chapter 3 of this thesis, who investigated the effect of sediment sorting on the formation of
other large-scale bedforms detected on coastal shelves, viz. shoreface-connected sand ridges.
The model for tidal sand ridges differs from the one presented by Walgreen et al. (2003) in
the sense that the dominant forcing is by tides, rather than by storms, and that suspended load
transport is neglected.

In section 4.2 a brief description of the model is given, including the linear stability ap-
proach to solve the equations. Section 4.3 shows the influence of a bimodal sediment mixture,
as compared to sediment with a single grain size, on the initial formation of tidal sand ridges.
A physical interpretation of the model results is presented in section 4.4, followed by a com-
parison with field observations. In this last section the conclusions are given.

4.2 Model formulation and solution methods

A local model is used to investigate the flow-topography interaction on a tide-dominated
coastal shelf. To this end, it is assumed that bedforms can develop as perturbations on an
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alongshore-uniform basic state, as defined in section 4.2.3. The geometry of the model
represents a semi-infinite domain, bounded on the landward side by the transition from the
shoreface to the (sloping) inner shelf. Further seaward, a flat bottom is used to represent the
outer shelf, see also Figure 2.2 in chapter 2.

4.2.1 Hydrodynamics

The water motion is described by the depth-averaged (2DH) shallow water equations.

0 e R
a+(v'v)v+]£ezxv*79vzs*pl) (4.1)
D =

aat +V - (DV) =0 (4.2)

Here @' is the depth and wave-averaged velocity, f is the Coriolis parameter, €, a unit vector
in the vertical direction, g the acceleration due to gravity, p is the density, 7, = prv'is a
linearised bed shear stress, ¢ is time and V the horizontal nabla operator. The bottom friction
coefficient is r = cqU ~ 1073, where ¢, is the drag coefficient and U a characteristic value
for the depth-averaged velocity. In this chapter results will be presented for a grain size
independent bottom friction. The local water depth is givenby D = z, —z, ~ —z;,, where
z4 IS the free-surface elevation and z; is the bottom depth. A rigid lid is assumed, which also
implies that the first term in equation (4.2) can be omitted. This is justified on the basis of a
small Froude number. The main forcing in the momentum equations is due to a prescribed
pressure gradient induced by a tidal wave propagating along the coast.

4.2.2 Sediment dynamics

A sediment mixture consisting of IV different grain size classes d; can be described using a
logarithmic scale, the phi scale:

d; = 27 % or ¢ = — 10g2 d;

where d; is measured in units of mm. The mean grain size and the standard deviation are
defined as

N

N
bm =Y 6iF; o =Y (¢ — )’ Fi
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i=1

Here F; is the probability distribution function of the grain size class 7 and obeys the con-
straint Zf;l JF; = 1. For an overview of the frequently used variables related to the sediment
and transport characteristics, the reader is referred to appendix 3.D of chapter 3.

The hydrodynamic equations discussed in section 4.2.1 are supplemented with a sediment
transport formulation, based on the concepts introduced by Bailard (1981) for bed load trans-
port on a sloping bottom. In turn, the evolution of the bottom results from a convergence or
divergence in the sediment flux. A one-layer model for the bed, based on the concept of an
active transport layer overlaying an inactive substrate is used (see Ribberink, 1987; Seminara,
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1995). The active layer is well mixed and has a thickness of L, in the order of 2 — 3 mm.
The exchange of sediment with the substrate is ignored. Consequently, the relation between
the bottom evolution, the grain size evolution and the sediment flux of class d; yields

(1-p) (ﬂ% + La%?) ==V Gy (4.3)
In (4.3), gp; is the volumetric flux per unit width of grains of diameter d; and p ~ 0.4 is
the porosity of the bed. The first term on the left-hand side of equation (4.3) represents
the bottom changes, and the second describes changes in the sediment distribution in the
active layer. Besides, the formation of tidal sand ridges takes place on a timescale which is
much larger than the hydrodynamic timescale. For instance, Vincent et al. (1998) estimated
the timescale for the growth of the Middelkerke Bank to be 102 — 10% years. Therefore, a
tidally- and wave-averaged sediment flux is used, denoted by the overbar, and the flow adjusts
instantaneously to the new bottom.

Tides are supposed to control the growth of tidal sand ridges. This is supported by the
findings of Trentesaux et al. (1994), which show a near absence of wave-induced structures
on the Middelkerke Bank. This implies that bed load is the dominant mode of transport and
suspended load contributions can be neglected. A more elaborate discussion on this topic is
given in section 4.4.3. In case of a single grain size the (wave-averaged) bed load transport
reads (see also (2.6) in chapter 2)

@ = vy |7 [% - Aﬁh]
|1
where v, is a coefficient, A, ~ 1 and h is the bottom level with respect to the alongshore-
averaged bathymetry. Note that this flux relates to the velocity to the power three, and that
it includes effects due to the local slope of the bottom. To calculate the sediment flux of a
specific grain size within a sediment mixture, two additional corrections are made, such that

@b = FiGviQh

First, F; corrects for the availability of grains of diameter d; in the mixture. Second, dynamic
hiding effects are included, represented by the function G,,. This is the bed load transport
capacity function for sediment of grain size d;, and accounts for the effect that finer grains
feel the fluid drag less intensely than coarser grains. It is convenient to use the following
expression

d; b
Gys = (d—) (4.4)

with the exponent ¢, measuring the influence of the hiding on the transport of sediment. A
default value of ¢, = 0.75 is used (see discussion in Walgreen et al., 2003, and chapter 3 of
this thesis), which results in a reduced transport rate of the grain sizes finer than the mean
grain size. At the landward and seaward boundaries of the model domain no cross-shore
velocity component and no bottom changes are allowed.
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4.2.3 Basic state

The possible onset of bedforms as free morphodynamic instabilities, which evolve on a basic
state of the water-bottom system, is investigated. The model allows for a morphodynamic
equilibrium, which is alongshore uniform:

0= (0,V(x,t)) zp = —H(x) zs = s(t)y + zs0(z, 1)
Fi=F; Om = P, 0 =00
It describes a shore-parallel current V' (z, t) over a fixed bottom z, = —H (x). The grain size

distribution function F; of the basic state can have an arbitrary structure in the z-direction.
For simplicity, F; is assumed to be independent of this coordinate. As a result, the mean grain
size ®,,, and the standard deviation o are also uniform in the domain. The velocity of the
basic state is a solution of the alongshore momentum equation (4.1):

WV __ Y
ot~ T H

The alongshore gradient in the free surface, s, is defined by a steady component s, and two

oscillating components:

s = 89 — 51 cos(wt) — sg cos(2wt + 6)

Here s; and s5 are the amplitudes of the sea surface gradients with the frequency (indicated
by w) of the M5 and of the My tide, respectively. Furthermore, 6 is a (constant) phase between
the two tidal harmonics. The velocity of the basic state consists of a steady component, Vj,
and an oscillatory component, due to the M, and M, tidal wave:

V(z,t) = Vo(z) + Vi, (@) sin(wt + o, (7))

+ Vg, (2) sin(2wt + oar, (z) + 0) (4.5)
where
H
Vo(z) = _95+ (4.6)

The cross-shore profile of the tidal current amplitudes and phases are given by:

gs1H r
W) = T . (x) = sectan (i)

gsoH r
) = e (@) = arctan (577)

A similar tidal velocity field was also considered in chapter 2 of this thesis, for profiles see
appendix 2.B. The values used for the basic state variables are given in section 4.3.1.
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4.2.4 Stability analysis

The dynamics of small perturbations on this basic state are studied. In case of a positive feed-
back between the flow and the bottom perturbation, the basic state is unstable and rhythmic
bottom features will develop. Solutions of the form

7= 0, V(z,t)) + (u'(z,y,t),0(2,y,1))
zs = s(t)y+zsolz,t) + n'(x,y,t)

2 = —H(z) + h(z,y,t)

@ = Go(z) +  qy(x,y,1)

G = Gvi +  gui(z,y,t)

.7:7; = Fl + fl(it, Y, t)

¢m = (I)m + (/b;n(x7 Y, t)

o = oo + o (z,y,t)

Lo = Lo + L;(CE, y7t)

are substituted in the equations of motion and the results are linearised. In this chapter a
two-size sediment mixture will be used, where dy (or ¢1) and ds (or ¢2) represent the sizes
of the fine and coarse grains, respectively. The constraint on the grain size fraction becomes

Fi+F=1 Ji=—/2 (4.7)
The mean grain size and the standard deviation in the basic state simplify to
Dy = G1F1 + P2 Fp o5 = FaFi(¢1 — ¢2)°

From these expressions the values of of the grain diameters of the fine and coarse size class
on the phi scale, i.e. ¢; and ¢-, can be obtained as a function of ®,,,, o¢ and F. Together
with the relations given above, the perturbations in the mean grain size and standard deviation
can be written as

, 00 ,  oo(Fhy — FY)
n = TRET 7= amE
The linearised form of the bottom evolution equation (4.3) is
oh 8fl =3
Fi— + L, = -V (G}, 4.8
ot + Lao ot V@) (4.8)
where
Gpi = FiGuidy + Goo (Guifi + Figei) (4.9)

is the perturbed bed load flux and gy, G and V- ¢y are given in appendix 4.A. The active
layer thickness in the basic state is given by L,q = d,,,27° and from equation (4.4) it follows
that

G = 200 (Fm =90 gbi = 102G @), (4.10)
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Summation of equation (4.8) over the two fractions and using the constraint (4.7) for the
probability distribution, results in an equation relating the bottom evolution to the sum of
the sediment flux over all sizes. Back-substitution of this result in equation (4.8) yields the
evolution of the distribution function f;. The final results are

oh

(1=p)5; ==V T +V 3] (4.12)
9 = - =S =
(1 —p)La()% = F1V ql;Q — FQV qbl (412)

The solution of any perturbed variable is sinusoidal in the alongshore direction (with
wavenumber k), and exponential in time (with complex frequency €2). In particular, the bot-
tom perturbations are topographic waves propagating along the shelf, of the form i(z, y, t) =
Re {h(z)e*¥+2t} A similar expression holds for f,. The stability analysis yields for each
wavenumber & solutions for 2 and the corresponding cross-shore structures of the perturbed
variables. The real part ©,. of  is the growth rate, with Q.71 being the e-folding timescale.
Furthermore, its imaginary part Q;,, is the frequency. The migration velocity of the pertur-
bation is ¢ = —Qy.,, /k. Of specific interest are growing perturbations, which satisfy €2, > 0.
The preferred mode is defined as the mode with the largest growth rate. From the boundary
conditions it follows that «' = 0 and h = 0 at the transition from the shoreface to the inner
shelf (x = 0) and at x+ — oo. Solutions of the linear stability problem were obtained by
numerical methods, for details see Calvete et al. (2001a) and references herein.

4.3 Results

The model was run for different parameter settings to meet the objectives of this study (see
section 4.1). In particular, the sensitivity of the model results with respect to variations in the
standard deviation of the mixture; the size distribution in the basic state; and the exponent
¢p in the hiding function for bed load was investigated. First, a brief consideration of the
most important characteristics of a typical tide-dominated coastal shelf is given. The results
presented in this section are based on these values.

4.3.1 Shelf characteristics

On the Belgian coastal shelf, different types of sand ridges are present, classified accord-
ing to the influence of tides and storms on the sea bed. The Flemish Banks, including the
Middelkerke Bank, are tidal sand ridges located 10-20 km offshore, in a meso-tidal environ-
ment. To validate the model results, this shelf was used as a prototype. It is approximately
14 m deep at the transition from the shoreface to the inner shelf, 12 km wide, and 20 m deep
on the outer shelf. The latitude is 52°N, for which the Coriolis parameter f ~ 1 x 10~4s1,
Although the dominant hydrodynamical forcing is due to the M, tide, contributions of the M,
constituent and residual currents can be present. The behaviour of the tidal current changes
from almost symmetrical north of the Flemish Banks, to increasingly flood-dominated closer
to the shore, with a residual flow directed towards the northeast (along a SW-NE trending
coastline) (Lanckneus et al., 1994). This is in agreement with the residual sand transport to
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uniform bimodal bimodal | bimodal

Fig. 4.1 | Fig. 4.1,4.2,4.3,44 | Fig. 4.1 | Fig. 4.4
0o 0 0.5 1.0 0.4
a 1 0.5 0.5 0.8
) 0 0.5 0.5 0.2
D, 15 15 15 15
o1 15 2.0 2.5 2.0
o 1.5 1.0 0.5 1.0
dy (mm) 0.35 0.25 0.18 0.25
do (mm) 0.35 0.50 0.71 0.50

Table 4.1: Parameter values for uniform and bimodal sediment used in the model experiments.

the northeast in a narrow coastal region and a southwest-directed transport in the offshore
region. On the scale of the Belgian shelf, measurements indicate an almost zero long-term
average of the steady current.

To illustrate the effect of the velocity profile on the formation of tidal sand ridges, three
experiments were conducted. Firstly, a forcing by the M, tidal constituent was used, with
a depth-averaged tidal current amplitude of 0.5 ms—!. This means that the tidally-averaged
alongshore sediment transport is zero. Secondly, asymmetry in the flow was introduced by
adding an M, constituent to the forcing, where Vy;, ~ 0.45 ms™%, Vi, ~ 0.05 ms—!
(Williams et al., 2000). Lastly, an asymmetric current profile introduced by a steady com-
ponent V, ~ —0.05 ms~! (free surface forcing so ~ 4 x 10~7), in addition to the Vjy,
component, was investigated. The former two situations are characterised by a net along-
shore (flood-dominated) current and a tidally-averaged sediment flux along the coast (in a
north-easterly direction).

On the scale of the Belgian coastal shelf the sediment becomes coarser offshore, while
locally the coarsest mean grain size is found on the crest of the ridges. For simplicity, in
the basic state a uniform mean grain size of d,,, = 0.35 mm (®,,, = 1.5), characteristic
of surficial sediment on the Middelkerke Bank, was adopted throughout the domain. The
sediment size distribution observed on the steep seaward flank of the sand ridge supports
the use of a bimodal sediment mixture: two peaks were present, for the size classes of 0.25-
0.30 mm and 0.42-0.50 mm (Vincent et al., 1998). The diameters of the two size classes in the
sediment mixture were confined to non-cohesive sediment in the sand range (3 > ¢; > 0).
Table 4.1 presents the properties of the sediment mixtures used in the different experiments.

4.3.2 Sensitivity to standard deviation

The growth rates and migration velocities of the preferred mode for different compositions
of the sediment bed are shown in Figure 4.1. The standard deviation o of the basic state
increased from zero (i.e. uniform sediment) to a bimodal mixture in the case of forcing by
a pure M, tide and a combined M5, My tide. A constant mean grain size and equal weight
percentages of the two size classes in the basic state (F}; = F» = 0.5) are assumed. As
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Figure 4.1: Growth rate and migration velocity, ¢, of dominant cross-shore mode as a function of the
alongshore wavenumber k for different values of the standard deviation and the same mean grain size
in all experiments (®,, = 1.5). Forcing by the M, tide (a), and M2 + My tides (b). The coeffi cient in
the hiding functionis ¢, = 0.75.

a result, the grain sizes d; and d, change with o, see Table 4.1 and Figure 3.4 of chap-
ter 3. For a bimodal mixture growth rates and migration speeds increase with increasing .
The wavelengths (27 /k) of the ridges for which maximum growth rates are attained remain
unchanged: 7.5 km and 7.2 km for M, and My+M, tidal conditions, respectively. The cor-
responding e-folding timescales for the initial growth are 320 yr (M2) and 440 yr (M3 + My)
for a value of 5y = 0.5. The tidal sand ridges migrate with a speed of 0.04 myr—! and
1.9 myr—! in these two cases. The small nonzero migration velocity for a symmetrical (Ms)
tidal forcing is due to the bedslope contribution in the sediment flux. In fact, the relative
increase in growth and migration due to a changing standard deviation was larger for a com-
bined M5 and M, tide than for a symmetrical M, tide. Additional experiments were carried
out with a velocity of the basic state consisting of a steady current V; and an M, tidal current.
The results (not shown) indicate that growth rates and migration velocities again increase
with oy. The bedforms migrate in the direction of the mean flow. This behaviour is similar to
that obtained in the case of an asymmetrical flow driven by the M5 and My tidal constituents.
In the situation where forcing includes both the M, tide and a steady sea surface gradient, it
is possible to have a migration of the bedforms against the direction of the steady current. A



78 A model for grain size sorting over tidal sand ridges

€
<
1]
O
C
2 o
%] C
° .2
© ©
o o
< 5
° z
5 g
o
10 8 6 4 2 0
15 oo 5 0 cross—shore distance x (km)
cross—shore distance (km) « offshore

(M2
T
<
9 [92]
O
:
2]
&
5 | 2
o C
: | 2
c
3 \
° 15 10 5 0
» 20 s 10 5 ° cross—shore distance x (km)
cross—shore distance (km) « offshore

(b) Mo + My

Figure 4.2: Bottom perturbations (greyscale; light: bars, dark: troughs) and perturbations in the distri-
bution of mean grain size (solid lines: fi ner; dashed lines: coarser). Also shown is the variation of the
bottom and mean grain size along a cross-section (location indicated by white dashed line in the con-
tour plots), positive (negative) values of f; indicate alocal fi ning (coarsening) of the bottom sediment.
Ridges are shown for og = 0.5, ®,,, = 1.5, ¢, = 0.75 and forcing by M, tide (a), and M2 + M4 tides
(b).

necessary condition is that the phase between the M5 and M, tide is such that it introduces a
residual sediment transport in the direction opposite to the residual sediment transport caused
by the residual current. In addition, the amplitude of the M, tide should be at least ~ 3 — 4
times larger than the amplitude of the steady current. As such situations are not observed an
the Belgian shelf, this is not further pursued.

The patterns of topographic perturbations (shaded) and variations in the mean grain size
are shown in Figure 4.2, for parameter values of non-uniform sediment. The contour lines
refer to the perturbation in the fraction of the finest grains, values along solid lines are positive
and indicate a locally finer mean grain size. If a symmetrical tidal current is used, the grain
size distribution is in phase with the ridge topography, with the finest sediments located in the
troughs. Incorporation of an additional My tide in the forcing results in a phase shift between
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Figure 4.3: Growth rate €2.. of the preferred mode as afunction of the standard deviation of the mixture
oo of the basic state. Forcing due to M., tide (left), and M2+M, tide (middle). The default value
¢, = 0.75 is used. Results are shown for a bimodal mixture with fi xed grain sizes % = 2.0 and
¢1 = 1.0, where changes in the basic state o result in variation of ®,,, and F; (right). Note that
a larger weight percentage of ¢; (i.e. F1 > 0.5, indicated by diamonds), as well as a larger weight
percentage of ¢2 (F1 < 0.5, indicated by crosses) can result in the same value of oy.

the mean grain size and topography. In the present case of a flood-dominant tidal current
(residual transport indicated by the arrow), the finest sediments are located on the upcurrent
(seaward) flank and on the crests of the ridges. The underlying physics will be discussed in
sections 4.4.1 and 4.4.2.

In order to test the robustness of these results, experiments were carried out in which the
diameters of both fractions were fixed and the standard deviation was varied. This implies
the changing of the composition of the sediment mixture, i.e., the mean ®,,, and the fractions
Fy and F of the sediment in the basic state will change. A linear relation exists between
®,,, and Fi: higher values of F; correspond to higher values of ®,, (i.e. finer mean grain
sizes). The results in Figure 4.3 are only shown for the preferred mode (which has the largest
growth rate). As before, the maximum growth rates and migration velocities (not shown)
increase with the standard deviation. Wavelengths of the preferred mode do not change, and
the perturbations in the bed and sediment distribution have the same characteristics as the
ones shown in Figure 4.2. In the case of o < 0.5 two different compositions of the sediment
mixture are possible for each value of the standard deviation. One with a larger percentage
of fine grains (indicated by diamonds) and a mean grain size ®,,, > 1.5, and a second with a
larger percentage coarse grains (indicated by crosses) and ®,,, < 1.5. Figure 4.3 demonstrates
that, in case of forcing solely by an M, tidal current (left subplot), for a fixed value of o the
instabilities grow fastest for a grain size distribution in the basic state which contains more
fine than coarse sediment. The opposite occurs in case of a combined M, My tidal current
(middle subplot).

4.3.3 Sensitivity to hiding coefficient

Another series of experiments was conducted to investigate the influence of the intensity of
the hiding in the bed load transport capacity function, as measured by the coefficient ¢;,. For
all three velocity profiles (solely Ms, My + My and My + Mg) the maximum growth rates and
corresponding migration of the preferred mode are shown as a function of ¢, (eq. (4.4) and
Figure 4.4). The wavelength of the preferred mode does not depend on c,. The experiments
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Figure 4.4: Growth rate and migration velocity of the preferred mode as a function of the coeffi cient
b, indicating the strength of the dynamic hiding. Results are shown for a current forced by M-, tide,
M2+My4 tide, and M., tide + steady current. Other parameter values are: F1 = 0.5, oo = 0.5, @, =
1.5.

reveal enhanced growth rates and migration velocities for higher values of the exponent ¢y, i.e.
if dynamic hiding effects become stronger. Positive (negative) values of ¢, correspond to a re-
duced (enhanced) bed load transport of fine grains with respect to coarse grains. The relative
influence of hiding is larger for asymmetrical flows than for symmetrical flows. Apparently,
an enhancement of both the growth and the migration of the ridges is present, irrespective of
the sign of the hiding coefficient. The only change is in the distribution of fine sediment, as
will be explained in the next section.

4.4 Discussion

In this section a physical interpretation of the grain size pattern, as found in the model is
given. This is done for the two hydrodynamic conditions considered in the experiments of
the previous section: symmetrical and asymmetrical tidal forcing. The mechanisms discussed
here are based on the concepts of the formation of tidal sand ridges under the assumption of
uniform sediment, as discussed in Huthnance (1982a); Hulscher et al. (1993); Calvete et al.
(2001a) and section 1.7 of chapter 1. In addition, the model results are discussed in relation
to field observations.

4.4.1 Symmetrical tidal forcing

The first situation concerns a pure symmetrical M, tidal forcing, for which the velocity V' of
the basic state obeys V3 = 0. This implies that no alongshore sediment flux is present in
the basic state and g, = 0. A local change in the size distribution of the surficial sediment
can be understood as a result of the interaction of the tidal current with the bottom. The
difference in the sediment transport capacity of the two grain size classes, caused by hiding
effects, reduces the erosion and deposition flux of the finest sediment fraction. Consequently,
a fining of the sediment in the erosion areas, and a sediment coarsening in the deposition
areas occurs. A symmetrical current causes only growth of the perturbations and (almost) no
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migration, because the largest erosion takes place in the troughs and the largest deposition
occurs on the crest of the ridges. This corresponds to a mean grain size pattern, which is 180°
out of phase with the topography. A more quantitative way to understand the results, is to
examine the equations for the evolution of the bottom. Using equation (4.9) and an M, tidal
forcing, equations (4.11) and (4.12) reduce to

oh > =

(A=p)5, =12V g (4.13)
(1— p)Lag% = -3V g, (4.14)
where
Ty = FiGy + FoGhy Ts = FyFy (G — Gi)

The form of the equations is identical, so that the relation between h and f; is given by

oh_, (T of
o~ O\ 1y) ot

Depending on the sign of coefficient T3, a phase difference between the bottom topography
and the spatial pattern of the fraction of fine grains of 0° or 180° is found. The latter case,
with the finest sediment on top of the ridges, occurs for T3 < 0, which means Gy1 < Ge,
thus ¢, > 0 (see Figure 4.2(a)).

The enhanced growth rates for bimodal mixtures compared to uniform sediment are de-
rived from equation (4.13). In case of a sediment mixture the time evolution of the bottom
topography only differs from the uniform sediment case by a factor 75. For a hiding formu-
lation as introduced in equation (4.10) the function 7 > 1, leading to the enhanced growth
of perturbations for a bimodal sediment mixture. This effect was illustrated in Figure 4.1(a).

4.4.2 Asymmetrical tidal forcing

The second case involves a forcing by an asymmetrical tidal current, which can be either due
to a steady component or the combination of an M5 and M, tide. The important difference
with the previous case is the non-zero alongshore bed load flux in the basic state. This induces
a migration of the ridges in the direction of the maximum tidal current. In turn, the sediment
pattern is shifted alongshore with respect to the pattern found for the case of a symmetrical
tidal current. In particular, a fining on the (erosive) upcurrent flank of the ridge is found
(Figure 4.2(b)), instead of a fining in the trough. Equations (4.11) and (4.12) in case of an
additional current contribution (V, or V) read

oh = o7 S /=
(1- P)E = -V ¢, — [T1 + TT5] V - (G0 f1) (4.15)
0=-T3V -G — [Ty + T5T5]V - (Gro f1) (4.16)
where
cpooIn2
Ty = Gy — G2 Ty = FoGp1 + F1Gpe T, = 2=

VI Fy
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The left-hand side of equation (4.12) is neglected. This because the dominant balance is
between the terms in (4.16), representing the unequal erosion of fine and coarse sediment due
to hiding effects and a redistribution of sediment due to advection by a non-zero background
sediment flux. This is a crucial difference with the balance found in the symmetrical tide case.
In the expression for the divergence of the perturbed sediment flux (see appendix 4.A) the
term involving the cross-shore gradient in the cross-shore component of the current (Ou’/dx)
controls the growth of tidal sand ridges (Calvete et al., 2001a). The divergence of this flux
can thus be approximated by

= —ou’  _V30h

Gy~ —2V2—— +3— 4.17
Vea or U H oy 17

Here the second contribution on the right-hand side causes the migration of the bedforms. To

find the relation between h and f; a flood-dominant current is considered, i.e. V3 < 0. Fora

realistic ratio of the tidal current amplitudes Vi, /Vis, the first term in the above expression

is dominant over the contribution of the migration, reducing equation (4.16) to

—=0f1 —ou/

V3= xx T3V2—

y R A
For realistic values of the standard deviation oy, it is found that 7, + 7375 > 0. The perturbed
residual velocity follows the bottom contours, with an offshore component on the seaward
flank of the ridge and a landward component on the landward flank, resulting in a clockwise
(anticyclonic) circulation around the bar, leading to du’/dx o h. If this is substituted in the
expression above, it follows that

of1
———  (Gp1 — Gp2)h
8y o8 ( bl b2)
and the size distribution is = 90° out of phase with topography. If ¢, > 0 then
Gy < 1 < Gy and a fining of the bottom sediment on the upcurrent (seaward) flank
of the ridges occurs. In Figure 4.2(b) this case is shown, where the phase shift is less than
90° due to the additional contribution of the migration term in eq. (4.17).

The enhanced growth and migration rates for bimodal mixtures compared to uniform sed-
iment for asymmetric tides are due to the same effects as those discussed in case of a symmet-
rical tidal forcing. The main difference between these two cases is the last term (redistribution
of sediment) in equation (4.15), however, experiments indicate that this contribution is only
of minor importance to the growth and migration of the tidal sand ridges.

(Ty + T5T5)

4.4.3 Comparison with field observations

The model predicts tidal sand ridges with the crest rotated counter-clockwise at an angle of
30° —35° with the tidal current axis, which is in good agreement with measurements (Vincent
etal., 1998). Forcing the model with a symmetrical M- tide showed that the coarsest sediment
is located on the crest of the ridges, consistent with the general trend that is detected in the
field data of the Belgium shelf. Furthermore, if forcing by a flood-dominant tidal current
is considered, hiding effects in the bed load transport result in a pattern of the mean grain
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size that is comparable to that observed on the southern part of the Middelkerke Bank, i.e.
with the coarsest sediment on the landward flank. According to the model results, the offshore
decrease in the flood-dominance contributes to the shift in the location of the maximum mean
grain size. It is found that, for a temporal phase between the M5 and My tidal constituents
such that the residual sediment flux is in the ebb-direction, the coarsest sediment is located on
the seaward flank. This is in accordance with the pattern found on northern end of the bank.
Although it is not very clear from field data whether the ridges migrate or not, they mostly
indicate erosion on the landward flank and deposition on the steep seaward flank (Berné et al.,
1994). The model for the flood-dominated tidal current predictes the opposite pattern. An
alongshore migration, leading to erosion on the seaward flank is found.

Other researchers have suggested that the shift in the pattern could be related to the steep-
ness of the flanks of the ridges. In the direction perpendicular to their main axes, the profile of
the ridges is asymmetrical, with a steep seaward flank (Lanckneus et al., 1994). Since in the
present study a linear stability approach is used, only symmetrical (sinusoidal) perturbations
were incorporated in the model, and this hypothesis cannot be verified. Further research with
a nonlinear model could provide such information.

The influence of storms on tidal sand ridges and their sedimentary pattern is still a matter
of debate. As banks may rise up to 4 m below low water level at spring tide, the small depths
and the exposure to storm waves from the north renders them susceptible to waves. Vincent
et al. (1998) pointed out that the combined effect of strong tidal flows and oscillatory wave-
induced currents, acting approximately normal to the tide, mainly results in the (enhanced)
re-suspension of the bottom sediment. However, no observable effect on the direction of
transport was found. The bank volume was used by Lanckneus et al. (1994) to assess the
impact of different weather conditions on the formation and maintenance of the Middelkerke
Bank. They found that the bank volume decays in periods of winter storms, while the bank
restores during long periods of fair weather. Despite large variations of the volume during
the season, these data suggest that on the long-term the banks are in equilibrium with the
hydrodynamic conditions. On the other hand, Vincent et al. (1998) presented data which show
an upslope sediment transport during storms. This suggests that waves are important for the
maintenance of the ridges, and not only act to prevent their unrestricted growth due to tidal
currents alone. Besides the impact on the morphology, Houthuys et al. (1994) also focused
on the effect of storms on the surficial sediment grain size. Quiet, pre-storm conditions (fair
weather), which are supposed to represent the tidally forced equilibrium state, were compared
with the sediment distribution after a normal autumn storm period. The main changes were
a coarsening on the north-western flank, contrary to a fining of the landward flank. It was
argued that waves coming from the north cause a winnowing of fines on the exposed seaward
flank, and subsequent deposition an the landward flank. In short, there is no consensus in
the literature regarding the influence of storms and waves on the formation of the tidal sand
ridges on the Belgian shelf (Houthuys et al., 1994; Vincent et al., 1998). Also, the ratio of
suspended load transport over bed load transport is poorly known. The influence of waves
was not included in this study, and only bed load transport was accounted for. The largest
influence of waves can be expected in the nonlinear regime, supported by work done by
Huthnance (1982a), which indicates that the effect of wind-waves on the initial growth of
tidal ridges is small, while the equilibrium height is reduced. This thesis only explores tidal
sand ridges in the linear regime. Nevertheless, owing to these uncertainties, the application
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of the results would be more appropriate for tidal sand ridges in deeper water in the southern
North Sea. The main problem with this is that no extensive sediment data are available for
the more offshore located ridges, so that no verification of the model results is possible.

Including a suspended load transport in a tidally dominated (i.e. fair weather) forcing
corresponds to an additional sediment flux, related to a higher power in the flow velocity (see
in Bailard, 1981). Such a flux would enhance the growth rate and migration speed of the
bottom perturbations. It does not change the bottom patterns as presented in this chapter,
but a grain size dependent suspended load flux (enhanced transport fines) could in principle
reverse the mean grain size patterns as found for bed load only (reduced transport fines). It
would require a suspended load flux of the same order of magnitude as the bed load flux
during fair weather and a strong grain size dependence.

The present model, with the restriction to bed load transport and tidally dominated or
fair weather conditions, is not directly applicable to other shelves. Sedimentological infor-
mation on sand ridges and grain size distributions exists for the Bristol channel (Pattiaratchi
and Collins, 1987) and for tidal sand ridges in the Florida inner shelf (Davis et al., 1993).
Although interesting differences with the sorting pattern (e.g. the location finest and coarsest
sediment on ridge topography) for ridges on the Belgium shelf are perceived, a comparison
with these data is beyond the scope of this chapter.

4.5 Conclusions

In this chapter a model was developed and analysed to study the initial formation of tidal sand
ridges and the corresponding grain size distribution on meso-tidal shelves. The sediment was
transported as bed load and dynamic hiding effects resulted in the selective transport of the
two grain size classes.

The objective of the present study was to gain insight into the physical mechanisms re-
sponsible for the observed grain size distribution over the tidal sand ridges. To this end, the
temporal and spatial characteristics of tidal ridges in case of a bimodal sand mixture were
compared with results obtained in case of a single grain size class. Growth rates and migra-
tion velocities increased with increasing standard deviation of the sediment mixture, yielding
realistic timescales for the formation of the ridges. The wavelengths of the ridges remained
unchanged if more than one size class was considered. Experiments also revealed the im-
portance of different forcing conditions. A forcing by M- tidal currents, in combination with
a reduced flux of fine grains, resulted in a grain size distribution which was in phase with
the ridge topography. The coarsest mean grain size was located on the crests, representative
of the general pattern of the data. A shift between the topographical pattern and the pat-
tern of mean grain size was introduced by adding an M, tidal constituent or a steady current
to the forcing. A flood-dominant tidal current, in combination with the hiding of the finest
grains, resulted in a coarser landward flank. These results are in fair agreement with field
observations on the Belgium shelf.
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Appendix

4.A Sediment flux
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Here the linearised mass conservation is used to eliminate v’ in the expression for V - qp. It
reads:

(4.A-1)
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Chapter 5

Nonlinear evolution of
shor eface-connected ridges and
grain sorting

Abstract

A nonlinear model for the long-term evolution of the topography of shoreface-connected ridges and
the variationsin the mean grain size over thistopography is presented. The importance of nonlinear pro-
cesses for their maintenance is suggested by fi eld observations. the amplitude of shoreface-connected
sand ridges can be quite large (several metres) with respect to the water depth and their shape is often
asymmetrical (seaward fanks are steeper than landward fanks). The linear analysis of chapter 3 is
extended into the nonlinear regime, using a spectral method. The focus is again on storm-dominated
micro-tidal shelves. With this model it is shown that, starting from an initial state without bedforms,
a pattern of shoreface-connected ridges with fi nite amplitudes devel ops, whilst the downcurrent migra-
tion velocity of these ridges remains constant in time. Also, the maximum variation in the mean grain
size evolves towards a constant value. Furthermore, the results of the nonlinear model show the devel-
opment of an asymmetrical ridge topography. At the sametime, the spatial shift between the patternsin
the mean grain size and bottom topography (asfound from thelinear analysis) decreases. The processes
that cause these changes are identifi ed and explained. Extrapolating the resultsfor the fi nal height of the
ridges to redlistic values of the slope of the inner shelf provides a good agreement with the height and
timescal e of formation obtained from fi eld observations. However, the modelled maximum variation in
the fraction of fi ne and coarse sediment over the ridges are much smaller than those measured in the
fi eld. The reasons for this discrepancy are also discussed.
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5.1 Introduction

Shoreface-connected ridges and tidal sand ridges that are observed on many coastal shelves
(Swift and Field, 1981; Antia, 1996; Dyer and Huntley, 1999; Van de Meene and Van Rijn,
2000a) usually concern bedforms with a considerable height (several metres). In the interpre-
tation of the data it is often implicitly assumed that these bedforms are in equilibrium with
the environmental conditions on the shelf. The main objective of the study presented in this
chapter is to model this final” state of the evolution of large-scale ridges, with particular em-
phasis on the mean grain size variations over these ridges. Sediment sorting is incorporated
in a simple way, and this study should be regarded as a first step to improve the knowledge
on the long-term evolution of large-scale sand ridges for nonuniform sediments.

In chapter 2-4 of this thesis idealised process-based models were used to model large-
scale sand ridges. The results of these models indicate that shoreface-connected ridges and
tidal sand ridges can initially form as inherent free instabilities of the coupled bottom-water
system. The wavelength, migration velocity, characteristic e-folding growth time and the
phase shift between the topography and the mean grain size, as calculated with these mod-
els, already showed a good agreement with the general characteristics of the observed ridges.
Nevertheless, these results are based on a linear stability analysis of the model equations and
are strictly speaking only valid for bedforms with small amplitudes (compared to the water
depth) and for small variations in the fractions of the different grain size classes with respect
to their undisturbed values. Field data suggest that the amplitude of both shoreface-connected
sand ridges and tidal sand ridges can be a considerable fraction (sometimes over 50%) of the
local water depth, thereby indicating the importance of nonlinear processes for their mainte-
nance. Whether the results of the linear analysis still hold in the nonlinear regime must be
investigated with a model that is based on a nonlinear stability analysis. In addition, more
detailed field information on the spatial structure of the bedforms, such as the asymmetry in
the shape, final height, maximum variation in mean grain size and timescale of formation,
can be compared with the results obtained with a nonlinear model.

As demonstrated in the previous chapters, the physics of both types of large-scale bed-
forms is quite different. In order to keep the analysis transparent, the focus of this chapter
is on the nonlinear dynamics of shoreface-connected ridges only. These are found on storm-
dominated shelves, with a characteristic spacing between successive crests of 2-6 km. The
ridges migrate in the direction of the storm-driven current, with a velocity of 1-10 myr—'. The
estimated timescale for formation from geological evidence is in the order of centuries. Field
data often show a final "equilibrium’ amplitude in the topography of shoreface-connected
ridges, ranging from 1 to 9 m. The crests can reach up to 1/3 of the water depth in the shal-
lowest areas, and troughs are excavated by the same amount below the mean sea bed level
(Dyer and Huntley, 1999). The mean grain size of the surficial sediment shows maximum
variations over the ridge topography that normally range from 0.5-2.5 phi (0.7-0.2 mm), as
can be seen in Figure 1.4 (chapter 1). The finest sediment is found between the crests and
the seaward (downcurrent) troughs, the coarsest sediment is located between the landward
trough and the ridge crest (Swift et al., 1978). The bottom profiles of the ridges are asym-
metrical: they have steep slopes on the seaward side and more gentle slopes on the landward
side. Thus, the flanks of the ridges are steeper in the direction of migration, i.e. downcurrent
of the average alongshore storm driven flow.
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Swift and Field (1981) studied the ridges on the Atlantic shelf of North America, and
reported a decrease in the maximum side slopes with increasing distance offshore, while
along with that, the ratio of seaward to landward slope and the cross-sectional area of ridges
both increase. Typical values for the side slopes are between 0.75° — 2.0°, which corre-
spond to a typical ridge height of 6-9 m (Swift and Field, 1981). Extreme low and high
values for the side slope are 0.2° and 7°, while the extremes for the height are 3 m and
12 m. The asymmetry ratio (seaward:landward slope) is at most 5:1 for the most offshore
located shoreface-connected ridges, for the more onshore located ridges this ratio is 2:1. On
the Virginia shelf of North America, Swift et al. (1972) observed ridges which have troughs
that are much broader and less well defined than the narrow and rounded crests. Along the
coast of Argentine, the ridges are locally double-crested (Parker et al., 1982). The most
northern ridges have steeper seaward flanks, while further south they are more nearly sym-
metrical. The shoreface-connected ridges along Dutch coast (southern North Sea) show both
symmetrically- and asymmetrically-shaped profiles, where the steep slope can be either on
the landward or on the seaward side (Van de Meene et al., 1996). The height is between 1
and 6 m, and side slopes are gentle: they range from 0.1° (1:400) to 0.3° (1:200).

Besides the morphological asymmetry also textural asymmetries are reported. They usu-
ally concern abrupt transitions from fine to coarse sediment in the troughs, while the tran-
sition from coarse to fine sand is more gradual over the crest. The asymmetry in the mean
grain size profile, as a deviation from a sinusoidal shape, is clearly seen in Figure 1.4. The
North American ridges (Swift et al., 1978) show finer sediments on the steeper (and down-
current) flanks, a pattern which is also found for the ridges far offshore. For the Scotian
shelf, Canada, Hoogendoorn (1986) observed the finest mean grain size at the base of the
downcurrent (steep) flank. A similar distribution of mean grain size is also observed with the
ridges in the German Bight (Antia, 1993): the finest sediments are found on the seaward (and
downcurrent) flank. Also the crests are clearly covered with sediment that is finer than the
sediment found on the landward flanks and in the troughs. The profile of the ridges in the
German Bight changes with the distance from the shore: from nearly symmetrically-shaped
ridges into ridges with a steeper seaward side further offshore.

The long-term evolution and the final state of the shoreface-connected ridges was investi-
gated by Calvete et al. (2002) and Calvete and De Swart (2003). The work reported in these
papers is a nonlinear extension to the linear work presented in Trowbridge (1995) and Cal-
vete et al. (2001b). Their method involves the expansion of physical variables in truncated
series of known eigenmodes of the linear system (given in Calvete et al., 2002) with unknown
amplitudes. Substitution in the equations of motion and application of a Galerkin projection
method then yields a system of nonlinear ordinary differential and algebraic equations for
the amplitudes of the modes. This system was subsequently solved with standard numeri-
cal methods. The results of these models show the development of ridges that, after a few
thousands years, reach a constant amplitude. In this saturated stage the bottom profiles are
asymmetrical. The sediment flux is represented by a combination of bed and suspended load,
where a parameterisation of the wave-stirring is included. In addition, the model of Calvete
and De Swart (2003) includes a concentration equation and allows solutions which have an
alongshore uniform structure and solutions with a longer spacing than that obtained from the
linear analysis (subharmonics). The control parameter is the slope of the inner shelf, which
turns out to be the limiting factor in their work. The method used is restricted to a small
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slope of inner shelf, otherwise numerical instabilities occur. Nevertheless, extrapolation of
the results to realistic values of the slope indicates good agreements with field data. From
a physical analysis of the model output it was found that saturation behaviour is induced by
nonlinear terms and that the bedslope terms in the sediment flux are key factors to reach a
finite-amplitude.

So far, the nonlinear models for shoreface-connected ridges listed above are based on a
single grain size which is used to represent the sediment flux. This motivates the main goal
of this chapter, which is to provide insight in the physical mechanisms that play a role in
the long-term development and maintenance of the shoreface-connected ridges in case of a
sediment mixture. This will be done by generalising the nonlinear model, such that it is able
to deal with the bottom evolution and the transport of sediment in the case of a mixture in the
most simple way, following the theory discussed in chapter 3. By distinguishing the transport
of two size classes, information on the final sediment distribution and the final amplitude of
the variations in mean grain size can be retrieved from the model. For simplicity (and to keep
the number of unknown variables to a minimum), the one-layer concept will be applied: an
active transport layer is overlying an inactive substrate, with negligible interaction between
them. This simplification has the (rather severe) restriction that the vertical variations in the
mean grain size cannot be modelled. The advantage is that no rather ad hoc parameters of
vertical sorting processes (Ribberink, 1987; Parker et al., 2000; Van Ledden et al., 2002a)
need to be included, whereas this approach also yields insight in the basic performance of
the model. We will return to these assumptions in the discussions in section 5.4 and chap-
ter 6. The focus is again on storm-dominated micro-tidal shelves, with the model domain and
parameters representative for the Long Island inner shelf of North America, as was also the
location considered in chapter 3.

The specific questions that will be addressed are: how does the mean grain-size difference
between crest and trough evolve in time, and does the use of multiple grain sizes influence the
results for the bottom topography, as were found in case of a single grain size model? To this
end, the model for shoreface-connected ridges in Walgreen et al. (2003) (chapter 3), which
incorporates two grain size classes in the transport of sediment, is extended into the nonlinear
regime. The techniques as discussed by Calvete et al. (2002) are used to obtain solutions.

In section 5.2 a brief summary of the model equations is given, including the methods
used to solve the final system of equations. The main results of the nonlinear model for
a single grain size are summarised. As will become clear in this section, the method used
for the nonlinear analysis strongly depends on the results from linear analysis. Therefore,
in section 5.3 first the relevant model results from a linear analysis are summarised (sec-
tion 5.3.2 and 5.3.3), followed in section 5.3.4 by the results of the nonlinear analysis. The
processes which are relevant for the physical mechanisms of the formation and maintenance
of shoreface-connected ridges are illustrated in section 5.3.5. The main conclusions and a
discussion on the results are given in section 5.4.
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5.2 Model formulation and methods

5.2.1 Morphodynamic model: equations of motion

The model formulation and the linearised equations are identical to those that were already
described in chapter 3. The interaction between the storm-driven current and the erodible
bottom is considered on the domain shown in Figure 3.1, which includes the inner and outer
shelf. A Cartesian coordinate system is used with z-axis and y-axis pointing in the cross-shelf
and alongshelf direction. The selected bottom profile of the basic state reads

H =H,+ px for 0<z< L and H=H, for Li<r< o

Thus, the undisturbed water depth H increases linearly on the inner shelf (width L, ~
5.5 km) and is constant on the outer shelf. The slope of the inner shelf is defined as
6 = (Hs — Hy)/Ls, where Hy is the depth at the transition shoreface-inner shelf. Obser-
vations indicate that a realistic value for the slope of the inner shelf is B4 ~ 1.1 x 1073,

The water motion is described by the 2DH shallow water equations and mass conserva-
tion. They read

% +(T-V)T+ féL x T=—gVz, + TSp;” (5.1)
D -
%T +V - (D7) =0 (5.2)

Here v is the depth- and wave-averaged velocity, f the Coriolis parameter, €, is a unit vector
in the vertical, 75 the wind shear stress vector, 7, = prt the linearised bed shear stress
vector, g the acceleration due to gravity, p the density of water and r is the bottom friction
coefficient. Furthermore, ¢ is time and V is the two-dimensional (horizontal) nabla vector.
The local water depth is given by D = 2z, — z,, where z, is the free surface elevation
and z; is the bottom depth, both measured with respect to the undisturbed water level z =
0. The steady forcing of the water motion is caused by a prescribed longshore pressure
gradient and a longshore wind stress. This model only represents conditions during storms,
in which the water motion is characterised by strong waves (amplitude of the local near-
bottom wave orbital motion is u,,) and a storm-driven net current. It is assumed that during
fair weather conditions no sediment is transported, because the flow velocities are supposed
to be below the critical velocity of erosion. Other forcing mechanisms that are not considered
are the cross-shore wind stress, density gradients and tides. In the linear analysis, based
on the depth-averaged shallow water equations, these appeared to have a minor influence
on the dynamics of shoreface-connected ridges (Walgreen et al., 2002, and chapter 2). The
bottom friction coefficient r = ¢4(|i,,|), Where ¢4 ~ 0.001 is the drag coefficient which is
assumed constant in this chapter. This is because in chapter 3 it was found that a grain-size
dependent drag coefficient does not influence the initial formation of the shoreface-connected
ridges. The wave-orbital velocity is defined as @i, = w,, cos (w,,t) (Symmetrical waves with
frequency w,,), with a depth-dependent amplitude. In accordance with the previous chapters
on shoreface-connected ridges, it is given by w,, = U,,(Ho/H)™/?. Here U,, ~ 1 ms~! and
m ~ 1.6. This means that we assume that in the inner shelf environment, with water depths
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Figure 5.1: Defi nition of the sediment layer as used in the model. The thickness of the active layer is
denoted by L, and h is the elevation of the bottom with respect to areference level.

of approximately 20 m, wave properties only depend on the reference depth and refraction
and shoaling due to the presence of bedforms is not accounted for. This will be addressed in
more detail in chapter 6. The expression is averaged over a wave period, indicated by (..).

For an extensive discussion on the equations used for the bottom evolution the reader is
referred to section 3.2.3; here only the final equations are given. The bottom evolution and
evolution of size distribution are based on a one-layer model for the bottom (see Figure 5.1).
It involves a well-mixed active layer that overlies a substrate with a constant distribution in
time. Furthermore, sand with two different grain sizes (d; and d- for fine and coarse material,
respectively) is considered. Mass conservation for each size class yields

1-p) (A5 + 1,52 ) -9 (@) (=12 6%
where p is the bed porosity, F; is the probability density function for grains of size d;,
2z, = H — h the bed elevation with H the reference level and h the perturbation with
respect to the undisturbed depth and L, ~ 0.02 m is the thickness of the active layer.
The instantaneous volumetric sediment flux per unit width during storms of grains with size
d; is indicated by ¢;; in (5.3a) it is averaged over a wave period. Using the constraint that
Ef;l F; = 1 with N = 2 equation (5.3a) can be rewritten as:

(-9 % =9 (@) + ¥ - (@) (5:30)
(1 =Pt = (1~ F)T (@) - AV (@) (539

The sediment flux for each grain size class (subscript « = 1 indicates the class of fine sand,
i = 2 that of coarse sand) is composed of a bed load and a suspended load contribution, i.e.
G = Gv; + qsi- These are based on the formulations for a single grain size and corrected for
availability of sediment in that size class and dynamic hiding effects. The latter refers to the
fact that fine grains hide between the coarser grain, with the consequence that they do not
experience the full stress of the water motion acting on the bed.
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The formulations used for bed load sediment transport are

Cp
(@vi) = FiGui@y G = gl/bui, (17— )\buwﬁzb) Gyi = (j—z> (5.4)
m

Here, Gy; is the transport capacity function for sediment with size d; that is transported as

bed load, coefficient ¢, indicates the strength of the hiding (for a more extensive discussion

see chapter 3) and d,, is the diameter of the local mean grain size. This formulation is

based on the concept of dynamic hiding discussed by Day (see in Ribberink, 1987). The

parameterisations for a single grain size are based on concepts discussed by Bailard (1981)

for the transport during storms. The sediment flux parameterisation ¢; is equal to the one

in section 3.2.4 for bed load and averaged over the wave-period. The first contribution to

qp represents a stirring of the sediment by waves and the subsequent transport by the wave-

averaged current. The second contribution to g, (proportional to coefficient ;\b) accounts for

the preferred downslope movement of sediment. Here 5\b = Q%Ab, with ) is the bedslope
parameter of order 1 and v, ~ 2 x 107° s2m~—1.

For suspended load sediment transport the formulations are

<(Tsz> = figsiq_'s CTS = VSU?UD (’U_ 5\suz;ﬁzb) gsi = )\g (;l_l) (55)
where G; is transport capacity function for sediment with size d; for suspended load. Fur-
thermore, Ag = 1 — 0.288¢ is a straining factor with o the local standard deviation of the
mixture. Besides the effect of hiding, the coefficient c, also includes the effect of a grain size
dependent settling velocity of the sediment, which is used in the derivation of the concen-
tration. Note that ¢, is a wave-averaged flux (the brackets are dropped). Its first (advective)
contribution is obtained from (C'%;), where ¥, = ¥ + ﬁw is the total velocity. The depth-
integrated volume concentration of sand C is, to a good approximation, determined by a
local balance between entrainment and deposition. For the entrainment flux the formulation
of Garcia and Parker (1991) is used, which has been validated against data for a sediment
mixture. For deposition it is assumed that the near-bed volume concentration is proportional
to the depth-mean concentration (see discussion in Van Rijn, 1993). The result is

C ~ O B |ve|> D (5.6)

where §,, ~ 0.19 is the ratio of the thickness of the suspended load layer of grains of size d,,,
over the water depth D, and Emu ~ 3 x 107* s°m~? is related to the entrainment of these
particles in uniform sediment. Comparing the expression for (C'v;) with eq. (5.5), using the
fact that the amplitude of the wave-orbital velocity u., is much larger than the wave-averaged
velocity amplitude |#], it follows that v, = %%Em,u ~ 1 x 10~* s°m~5>, Furthermore,
a bedslope flux is included in the expression for the suspended load flux ¢, with coefficient
As = %)\s. This is related to an ’efficiency’ factor e, ~ 0.015 and the settling velocity of
sediment with size d,,,: wg, ~ 0.04ms™1, thus Ay = €5 /wgy, ~ 0.4 sm~t, This formulation
uses the same ratio between the advective part and the bedslope part of the suspended load
flux as used by Bailard (1981). In this paper an extensive discussion on the value of X, is
included. A difference with the work of Calvete et al. (2002) is that both terms that contribute
to 7, (proportional to 7 and \,, respectively) are proportional to the volumetric concentration
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C. This appeared to have little influence on the results and is consistent with the formulation
used for the suspended load flux in chapter 3.

The boundary condition are such that the cross-shore flow velocity and the bottom pertur-
bations are zero at the transition from the shoreface to the inner shelf (x = 0) and for x — oc.
Also, no changes in the fraction of fine and coarse sediment are allowed at these boundaries.

The assumptions made to implement the equations in the final model are: a rigid lid ap-
proximation (small Froude number), thus D = z,—z;, ~ —z;, . A quasi-steady approximation
allows the neglect of the time derivatives in hydrodynamic equations (5.1) and (5.2). This is
because the bottom evolves on a timescale of centuries which is much longer than those of
hydrodynamic processes (days-weeks). Also, a quasi-steady assumption is used in equation
(5.3c), because the thickness of the active layer is relatively thin as compared to the water
depth. This means that also the sediment distribution will adapt instantaneously to changes
in the bottom. The expressions for the sediment fluxes ¢, and ¢, are derived for the case of
symmetrical waves and do not allow for an onshore sediment transport to compensate for the
slope effect of the reference bottom VH. Therefore, Vz, is replaced by Vhin expressions
(5.4) and (5.5), where h represents the bottom perturbations on the reference slope. Finally,
in expression (5.6) for the concentration D ~ H — h is replaced by H/(1 + h/H), and
consequently also in (5.5). This means that for large-amplitude bottom perturbations more
sediment is kept into suspension. The reason to adopt this depth dependence is one of humer-
ical stability; the initial solutions are still consistent with the ones discussed in chapter 3.

5.2.2 Stability analysis

As was shown in the previous chapters and references therein, shoreface-connected ridges
can form as a free morphodynamic instability of a basic state. The latter describes a steady
storm-driven flow V' (z) over a shelf, characterised by a topography H (x) and a distribution
of fine and coarse sand F (x) and Fx(x), respectively, that only vary in the cross-shore (x)
direction. Since the aim of this study is to analyse the dynamics of shoreface-connected
ridges, it is convenient to split the model variables (velocity, free surface elevation, fraction
of fine grains and bottom depth) in a basic state contribution and a perturbation on this basic
state. Thus, ¥ = ¥, + ), where

\I/:(’U/,U,Zs,fl,Zb) \I/b:(ov‘/agaFla_H) w:(ulvvlanlaflah)

Note that ¥, and « are the vectors containing the information of the basic state and the pertur-
bations, respectively. Details on how to calculate the basic state are discussed in section 3.3.1.
It is assumed that the distribution function Fj is spatially uniform. These variables are used
to compute the perturbations in the mean grain size, the standard deviation and the sediment
flux (expressions (5.4) and (5.5)). The mean grain size is used in the formulations for the
transport capacity functions, whereas the standard deviation only occurs in the suspended
load function G,;. For a complete formulation of these terms see Appendix 5.A.

Nonlinear analysis

The model variables that are split in a basic state contribution and a perturbation on the basic
state, i.e. ¥ = W, + 4, are substituted in the system of equations (momentum: (5.1), mass
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balance: (5.2), fraction fine grains: (5.3c) and bottom evolution: (5.3b)). The properties of
the basic state solutions are used to derive the equations for the perturbed variables, which
can be written symbolically as

S%—lf = Ly + N () (5.7)
Here ¢ = (v/,v',n’, f1,h) and S is a matrix which contains the temporal information of
the perturbations. Furthermore, £ is a matrix operator containing the linear contributions
and AN () is a vector operator containing the nonlinear contributions. The elements of S,
L and N (1) are given in Appendix 5.B. It shows that S only has one nonzero element, due
to the term Oh /0t in equation (5.3c). This is consistent with the rigid lid and quasi-steady
assumptions in the equations. The linear terms are the same as in chapter 3 and follow from
the linearised system of equations.

In this study a spectral method is used to solve the system (5.7) of partial differential
equations. The perturbations are expanded in known eigenmodes of the linear system, with
amplitudes that are to be determined. This approach is used because the linear solutions
already show a high resemblance with the observed ridges. Hence, at this point it is helpful
to summarise the results of the linear stability analysis that will be used hereafter.

The linear perturbations are of the form (., y, t) = ¢ (z)e™*¥e® + c.c.. Here ¢(x) de-
scribes the known cross-shore structure of the perturbation, % is the longshore wavenumber
and 2 is the complex growth rate. The real part €, is the growth rate and the migration is
obtained from the imaginary part: ¢ = —Qy,,/k. For each possible longshore wavenumber
k, growth rates (corresponding to different cross-shore mode numbers n; = (1, 2,3, ...)) can
be computed by solving the eigenvalue problem. In previous chapters nearly always the dom-
inant cross-shore mode, i.e. n; = 1, was shown. This is because the underlying assumption
in a linear stability analysis is that the mode with the largest growth rate will dominate over
all other modes since the model predicts exponential amplification for all modes. However,
after some time the amplitudes will be quite large and nonlinear terms that are neglected in
the linear stability analysis will become important. As a consequence, even modes that were
damped in the linear case can be excited due to the nonlinear interaction between different
modes.

For the expansion of the nonlinear solutions in the linear eigenmodes (as described
in Calvete et al. (2002)), a truncated series of eigenmodes is selected. The mode with
the largest initial growth rate (¢ = Kjs) and its superharmonics will be used, i.e.
k = (2Kwm,3Ky,..,JK)). Subharmonics, as considered by Calvete and De Swart
(2003), are not included, i.e. perturbations with a wavelength longer than the wavelength
of the linearly preferred mode cannot occur. The solutions are thus computed in a domain
of alongshore length L = 27/ K, with periodic boundary conditions in the longshore ()
direction. Also the perturbation with an alongshelf-uniform structure, which describes the ex-
change between the inner and outer shelf and the inner shelf and the shoreface is not included.
The reason to neglect them is that they hardly affect the solutions for h.

The structure of these different modes will be indicated by (j,n;), where j is the along-
shore mode number and n; the cross-shore mode number. The number of eigenfunctions
used in the time evolution is truncated at mode (.J, N;). The numerical values of the trun-
cated numbers J and N; should be chosen in such a way that the properties of the final
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solution do not change if more modes are included. If this is the case then the main physics
are represented correctly by the selected modes. The nonlinear solutions of the equations of
motion are thus written as

J Ny ()0 (x)
Yla,y,t)=> > | at)ix) edimy 4 e

S fofe)

h(t)h(x)

Jjnj

Here, for example, 4, (t) is the amplitude of the cross-shelf velocity component with mode-
number (j,n;) and @, () is its known cross-shore structure. This expansion is inserted in
the nonlinear system (5.7) and results in equations for the amplitudes ., ¥, ;, Njn, , fjnj
and fzjn].. The equation for «’ is projected on the adjoint linear eigenfunction of «’, indi-
cated as ajm the equation for v’ on f;j*n?,, etc. This means that the equations are multiplied
by a specific adjoint and subsequently are integrated over the domain. These adjoint eigen-
functions are known solutions of a linear system. The reason for projecting onto the adjoint
eigenfunctions is that this is a very effective way of solving the nonlinear system because
they usually form a bi-orthogonal set with the eigenfunctions. For the case discussed in this
chapter, where the only time-derivative is included in the equation for the bottom evolution
h, it turns out that only the bottom modes and adjoint bottom modes form a bi-orthogonal set.
This is due to the singularity of the S matrix which is a direct consequence of the quasi-steady
approximation. This is a typical problem that arises in morphodynamic systems.

Finally, one ends up with a system of equations in terms of the amplitudes of mode (5, n;).
Of the five equations for each mode, four are algebraic equations, whereas one equation
(for h) is a differential equations. The model discussed in this chapter is an extension of
the nonlinear model for a single representative grain size class. This Galerkin projection
method is solved numerically, using a third-order time integration scheme. A similar system
of equations is given in Calvete (1999), where also more details about the computation of
adjoint eigenfunctions and solving the final set of equations are given.

One final problem is left to discuss: the selection of modes and the truncation of spectral
expansions. If the linear system is solved it turns out that, deep in the spectrum, there are
modes which seem not physical. Their spatial structure is highly irregular and they also show
strong variability on the outer shelf. If such modes are included in the spectral expansions as
given above, they result in strong numerical instabilities. Therefore, these modes have to be
a priori filtered. An effective way to do this is to assume that there is no spatial convergence
of sediment transport on the outer shelf. This assumption has almost no effect on the correct
modes, because they are trapped to the inner shelf, because they are trapped to the inner shelf,
but it causes the growth rates of all spurious modes to vanish, thereby providing an efficient
selection method.

5.2.3 Summary of previous model results

Previous modelling work (Calvete et al., 2002) already showed that the method discussed in
section 5.2.2 of using linear eigenmodes is only successful in case that the transverse bot-
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tom slope ( of the inner shelf is small. The model which assumes uniform sediment shows
the development of migrating ridges that ultimately reach a constant amplitude. Numerically
stable solutions could only be obtained for a bottom slope (3) up to half of its realistic value.
For large values of 3 solutions become unbounded at some time during the saturation pro-
cess. Nevertheless, extrapolation of their findings (amplitude and pattern of saturated ridges,
saturation timescale) to realistic values of the slope yields results that show good agreements
with field data. Therefore, in experiments done with the nonlinear model for nonuniform
sediment, that are presented in this chapter, a small value of the transverse bottom slope is
taken. The advantage is that for this setting a relatively low number of modes is needed to
obtain reliable solutions.

5.3 Results

The main motivation of the present study was to investigate whether it is possible to model
the finite-amplitude behaviour of shoreface-connected sand ridges in combination with the
long-term evolution of the local fractions of fine and coarse sediment. Therefore, numerical
simulations were performed with the nonlinear spectral model that was derived in section 5.2.
This is done for a storm-dominated shelf characterised by sediment composed of grains with
two different sizes, for which the default model parameter values are given in section 5.3.1.
The initial state represents a situation without ridges; only small random perturbations in
the bottom (typical amplitudes of 10~* m) are present. The linear solutions for the default
case (section 5.3.2) are used as the expansion modes in the nonlinear spectral model. Their
dependence on other values of the transverse bottom slope, the standard deviation and the
bed load hiding coefficient is also presented (section 5.3.3). Section 5.3.4 shows the model
results of the nonlinear analysis for the default parameter setting. The processes involved
in the development of perturbations with a finite amplitude are illustrated in section 5.3.5.
Finally, in section 5.3.6 results are presented of a sensitivity study to give an indication for
the robustness of the model results at the final saturated state of the system.

5.3.1 Parameter values: default case

The default case is representative for the Long Island shelf (~ 40° N) on the Atlantic coast
of North America, thus the Coriolis parameter f ~ 1 x 10~* s~1. The bottom profile for the
inner shelf (width L, = 5.5 km) and outer shelf is indicated in section 5.2.1. Experiments
are done with a mild bottom slope in the basic state: 3 = 1.3 x 10—, which corresponds to
an increase in depth over the width of the inner shelf from Hy = 14.0 mto H, = 14.7m, as
indicated in Figure 5.2. This slope is approximately 10% of its observed value in this area.
Observations (Niedoroda and Swift, 1981; Lentz et al., 1999) show that typical values for the
forcing during storms are

Tey ~ —0.25 Nm~2 so~2x 107" mm™! Up~1ms™?

where 7, is the alongshore component of the wind stress vector, s is the alongshore com-
ponent of the sea surface gradient and U, the amplitude of the wave-orbital motion at z = 0.
The resulting typical steady current amplitude is U ~ 0.4 ms—!, of which the cross-shore
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Figure 5.2: Basic state; cross-shore profi le of bottom (left) and velocity (right).

profile is shown in Figure 5.2 (right subplot). Furthermore, in the basic state equal amounts
of fine and coarse sediment are present, which are uniform over the domain: F; = F;, = 0.5.
The mean grain size is d,, = 0.35 mm and for a standard deviation of oy = 0.50 (default)
these values correspond to a fine grain size class with a diameter of d; = 0.25 mm and
a coarse fraction with do = 0.50 mm. A typical value for the advective part of the bed
load flux in the model is Q, = 31,U2U ~ 1 x 107° m2s~!. The advective suspended
load flux is Qs = vsU3HoU ~ 6 x 10~% m2s~—t. Other parameter values are the typical
magnitudes of the bedslope fluxes: %ubf\bUf;Ho/Ls ~ 3 x 1078 m2s—! for bed load and

g’—if\susUgHg/Ls ~ 2 x 1077 m2?s~! for suspended load. The default case is defined by
hiding in suspended and bed load, with values of ¢, = —1.1 and ¢;, = 0.75, respectively. This
means a reduced transport of the coarse grain size class for transport due to suspended load
and a reduced sediment flux of the fine grain size class for bed load. For a more extensive
motivation of these choices see Walgreen et al. (2003), also chapter 3.

The number of modes used in the nonlinear evolution was truncated at J = 25 (longshore)
and N; = 16 (cross-shore) for this value of 5. The timestep involved in the time integration
is 10 yr. This turned out to be sufficient: adding more modes or decreasing the timestep did
not affect the behaviour of the solutions.

5.3.2 Linear analysis: default case

The growth rate curve of the linear perturbations evolving on the basic state of the model is
shown in Figure 5.3. The default values for the model parameter are used. The largest pos-
sible growth rate €2, 5, is found for a mode that has an alongshore wavenumber k = K s ~
0.8 km~!. This is called the (initially) preferred mode. The corresponding wavelength is
A = 2rk~! ~ 7.6 km, and its e-folding timescale for the growth is Q,,‘_}W ~ 2.3 x 103 yr.
As explained in section 5.2.2, the linear modes that are used as expahsion modes in de-
riving the nonlinear spectral model equations are those with a longshore wavenumber of
k= (1,2,..,J) x K. Inthis case only two of these modes have positive growth rates: the
(1,1) mode with the wavenumber K »; and the (2,1) mode, with k = 2K, ~ 1.6 km~!. Both
have a structure of one ridge in the cross-shore direction (cross-shore mode numbers n; = 1
and ny = 1). The spatial structures of the (1,1) bottom mode and of the mode with n; = 2,
i.e. mode (1,2), are shown in Figure 5.4. The greyscale is used to indicate the height of the
perturbations in the basic state topography (h), contour lines show the perturbation in the
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Figure 5.3: Linear growth rates as a func-  Figure 5.4: Structure of fi rst two linear cross-shore
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indicate which modes from this plot are used ~ dashed: fi < 0). The arrow indicates direction of
in the nonlinear analysis. basic state longshore velocity V. Parameters have
their default values for nonuniform sediment.

fraction of fine grains (f1). The (1,1) mode clearly shows a phase shift between the pattern
of h and f1, whereas for mode (1,2) the shift is hardly present. This might be related to the
fact that the growth rate of the preferred mode is dominated by suspended load. For the other
modes, which grow slower, the bed load becomes relatively more important with respect to
suspended load. In chapter 3 it was already discussed that the hiding in bed load favours a
0° phase shift between the fraction of fine sand and the topography, while suspended load
favours a 90° phase shift. It should be kept in mind that a linear relation exists between the
perturbations in the mean grain size (¢/,,) and the perturbations in the fraction of fine grains
(f1) (seein (5.A-2)).

5.3.3 Linear analysis: sensitivity to parameter values

The changes in the general characteristics of the linear modes if the slope of the inner shelf is
increased towards more realistic values are plotted in Figure 5.5. It shows the variation in the
wavenumber K, of the preferred mode, its growth rate (2, /) and migration velocity (cas)
versus 3. The critical value for the slope of the inner shelf below which no instabilities grow
is ~ 0.03 x 1073, Larger values of 3 correspond to a smaller initial wavelength, a faster
growth and a slower migration. The phase shift between the pattern of f; and h appears
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Figure 5.5: Wavenumber K, of the preferred linear mode, growth rates and corresponding migration
ey velocities as afunction of the slope of the inner shelf in the basic state. The default value for 3 is
indicated by the arrow. Other parameters have their default values for nonuniform sediment.
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Figure5.6: AsinFigure5.5, but for different values of the standard deviation o of the sediment mixture
(arrow indicates the default value of o). Other parameters, including 3, have their default values for
nonuniform sediment.

to increase slightly with higher values of 3 for the reason that was explained at the end of
section 5.3.2.

The results for a nonuniform sediment mixture can be related to the results for uniform
sediment by decreasing the standard deviation of the mixture. A default value of oy = 0.5
in the basic state was used for the two-grain size mixture, whereas oy = 0 by definition cor-
responds to a single grain size. As shown in Figure 5.6, within a realistic range of standard
deviations, the wavenumber of the preferred mode does not change, its growth rate decreases
with increasing values of o and its migration velocity increases. Thus, for identical slopes
of the inner shelf, the number of linear modes that have positive growth rates is larger for
sediment consisting of a single grain size than for a two-size mixture. These characteristics
of the linear solutions do not strongly depend on the formulations of the hiding function in
the transport of bed load (Figure 5.7). However, the relative strength of hiding in bed load
sediment transport (represented by the coefficient ¢;) with respect to the hiding in suspended
load (represented by c,) determines the phase shift between h and f;. This will be investi-
gated only by changing the value of ¢; because the situation for ¢, = 0 and ¢ # 0 is the
more interesting case. The reason for this will become clear in section 5.3.6. As mentioned
above, this linear phase shift is ~ 90° for ¢, = 0 and ¢; # 0, and it decreases with larger
values of c.
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5.3.4 Nonlinear analysis: default case

Figure 5.8 (left subplot) shows for the default case the temporal evolution of the maximum
and minimum heights (with respect to the level of the undisturbed bottom), as well as the
evolution of the total height of the ridges. The subplot on the right shows the same character-
istics, but for the fraction of fine sediment. In addition, Figure 5.9 shows the evolution of the
amplitudes of the five modes that have the largest values at the final time of the simulation
(t ~ 25 x 103 yr). This is done for the amplitudes of 4 (defined as |ﬁjnj [) and f;, where the
structure of the bottom topography at a specific time is determined by the longshore () and
cross-shore (n;) mode numbers that have positive amplitudes.

The subplots of Figures 5.8 indicate that, in the initial stage of evolution, the height of the
bedforms and the variation in the fraction of fine grains increase exponentially in time. After
some time (in the present case after about 8 x 103 yr) amplitudes are large enough (although
the height of the bedforms is only about 0.02 m) for nonlinear processes to start to grow,
whereas their effect becomes important around ¢ ~ 15 x 103 yr. The consequence is that the
full model results start to deviate from those predicted by the linear stability analysis (see the
dashed lines in the two subplots of Figure 5.8). In Figure 5.9 it can be seen that nonlinear
interactions between different modes are such that they cause excitation of modes which are
linearly damped, such as the (2,2), (3,3) and (3.2) mode. This causes a reduction in growth
of the height of both the bedforms and the size fractions and after about 20 x 103 yr they
become even constant. The total height of the bottom perturbations in this saturated stage is
approximately 0.72 m, which is slightly larger than the total change in depth over the inner
shelf in the basic state. The total variation in the fraction of fine and coarse grains is rather
small: less than 1% of their characteristic values F}, = F» = 0.5 in the basic state. Figure 5.9
demonstrates that the saturated stage is still dominated by the (1,1) mode, which was also the
initially preferred mode.

The spatial patterns of the perturbations in both the bottom and fraction of fine sediment
at different times during the evolution are shown in Figure 5.10. The different greyvalues are
indicative of the local elevation the bottom (light: crests, dark: troughs) that exist on an inner
shelf with a transverse bottom slope, contour lines indicate the pattern in f;. The bedforms
which develop from the initially random pattern of modes with equal (small) amplitudes soon
resemble shoreface-connected ridges. They migrate in the direction of the mean storm-driven
flow (negative y-direction). Initially, a spatial phase shift between bottom perturbation and



102 Nonlinear evolution of shoreface-connected ridges and grain sorting

height (m)

fraction fine grains (1074)

0 5 10 15 20 25 0 5 10 15 20 25
time (103 yr) time (103 yr)

Figure 5.8: (Left) Time evolution of maximum, minimum and total height of the bedforms. (Right)
Time evolution the total (=max-min) variationsin the fraction of fi ne grains. The dashed line indicates
the linear solution for the total. Default case.
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fraction of fine sediment is present. This is consistent with the results of a linear stability
analysis, as presented in Figure 5.4. During the nonlinear stage of the evolution the spatial
patterns of the bottom and fractions of fine and coarse sediment become asymmetrical. Most
noticeable are the mild gradients on the landward (and upstream) sides and the steep gradients
on the seaward (and downstream) sides. The ratio of the seaward slope and landward slope,
once a constant amplitude of the ridges is reached, is 6:1. The steepening of the downstream
flank ridges can also be seen in Figure 5.11 which shows the alongshore locations of one
ridge crest and its downstream trough as a function of time. This figure also shows that in
the saturated stage the ridges are still migrating with a speed that hardly deviates from that
predicted by a linear stability analysis.

A new result is that the distance between location of ridge crest and the location where
the finest sediment occurs decreases during the nonlinear evolution stage. In the final state
this distance is so small that the finest sediment is almost located at the crests; likewise the
coarsest sediment is found almost in the troughs. This tendency is rather difficult to relate to
field data, as in general the finest sediments are observed at measurable distances downstream



Results 103

alongshore distance y (km)

A I 4 o A LTo 1= [
o 1 2 3 4 56 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 7
cross—shore distance x (km)  cross-shore distance x (km)  cross-shore distance x (km)  cross—shore distance x (km)  cross-shore distance x (km)

0

Figure 5.10: Contour plot of perturbations in bottom (greyscale) and fraction of fi ne grains (contour
lines) at different times during the model simulation. Light areas indicate a crest, dark areas indi-
cates a trough. Solid lines show increase in fraction of fi ne grains, dashed lines a decrease. For
t ~ 0,2,6,16,25 x 10 yr. Default case (initial state: ridges are absent). Note that the alongshore
position of the crests and troughs changes between the plots; thisis caused by amigration of the pattern
in the negative y-direction.
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Figure 5.11: The y-coordinate of the location of the maximum and minimum bottom perturbations as a
function of time. It shows the migration of the crest and its adjacent downcurrent (seaward) trough.

of the ridges. We will return to this aspect in the discussion and in chapter 6. At this point
it is also important to remark that the time to reach the final saturated stage is quite long.
However, it should be realised that in the simulations a rather small value of the transverse
bottom slope 3 has been used. As will appear later on (section 5.3.6), the saturation timescale
becomes considerably smaller if 3 is increased.

In short, during the evolution process the shape of the ridges evolves from symmetrical to
highly asymmetrical, the height of the ridges ultimately becomes constant and the initial shift
between the location of the maximum in f; and h decreases during the process of saturation.
In order to gain further knowledge about these changes the model is analysed in more detail
in the next subsection.
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Figure5.12: Shore-normal cross-sections of perturbationsin depth (— H + k) and fraction of fi negrains
(f1) through the ridge top. The basic state distribution of the fraction of fi ne grainsis i = 0.5 and

uniform in the domain. The dotted lines indicates the depth of the inner shelf in the basic state and the
locations of the maximum of A (c: crest) and minimum of A (t: trough) for this shore-normal section.

The sections are taken at ¢t ~ 10,13, 16,21 x 10® yr, with time increasing from top to bottom. The
alongshore locations of these sectionsin time are indicated by max(h) in Figure 5.11.

5.3.5 Process analysis

The first step in understanding the model behaviour is to plot shore-normal cross-sections of
the total depth (—H + h) and the perturbations in the fraction of fine grains (f1) at different
times during the evolution through the highest point of the ridge crest. The results are shown
in Figure 5.12; the corresponding alongshore y-coordinates at the different times can be found
from Figure 5.11. The cross-shore bottom profiles clearly reveal that during the nonlinear
evolution stage the depth at the landward side of the crest becomes almost constant. The
seaward flank of the ridge has a slope of ~ 0.05° in the shore-normal direction. The ratio
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of seaward and landward slope is most easily determined from a shore-parallel section: it
increases from 1.2 (at ¢ ~ 10 x 102 yr),to 3and 5 (at ¢ ~ 14 and 17 x 102 yr). Note that in
the nonlinear evolution stage (Figure 5.12 bottom) small-scale perturbations develop on top
of the large-scale ridges.

Since morphodynamic changes are due to the divergence and convergence of the sediment
flux it is useful to consider these as well. Moreover, to gain insight in the underlying pro-
cesses, this convergence is split into parts related to suspended load and bed load. At first we
focus on the temporal behaviour of the bedforms. As follows from eq. (5.3b), in this case it is
not necessary to distinguish between fine and coarse sediment fractions because the different
contributions are added. Rather, it is sufficient to make a further distinction into advective
and bedslope (proportional to the terms \s and Xb) contributions. Cross-shore profiles of
these contributions at different times during the development of the ridges (identical to those
used in Figure 5.12) are shown in Figure 5.13. From this it follows that, during the linear
stage, near the crest the convergence of the suspended load sediment flux is much larger than
that of the bed load flux. In the area between the crest and the trough the convergence of
the bed load flux is dominant. Thus, suspended load transport determines the growth, while
bed load transport mainly determines the migration of the ridges in the initial phase of the
development of the ridges.

First the growth and saturation process is investigated in more detail, i.e. the convergence
of the suspended load flux. Advective processes cause growth, and the bedslope contribution
causes decay, hence their the patterns are ~ 180° out-of-phase. During the initial stage the ad-
vective part dominates over the bedslope part, but the magnitude of the bedslope part rapidly
increases with respect to that of advective part, until ultimately a balance is established with
a negligible total convergence on the crest. This can also be seen in Figure 5.14, which shows
the convergence of the advective and bedslope suspended load fluxes as a function of the total
height of the ridges (left subplot) and the ratio of these two on the crest (right subplot). On the
crest there is a net deposition of sediment due to convergence of the suspended load sediment
flux. For a height of the ridges up to ~ 0.05 m (at ¢t ~ 12 x 102 yr) the magnitude of the
convergence of the advective flux increases to a value which is ~ 3.5x larger than that of the
bedslope flux. Beyond this point the divergence of the bedslope flux increases more rapidly
than the convergence of the advective flux at the crest, until they ultimately balance. If a
height of ~ 0.45 m (at t ~ 16 x 102 yr) is reached another change in the behaviour is seen.
Hence, the saturation of the height of the ridges occurs because the bedslope contribution in
the suspended load sediment flux increases more rapidly than the advective contribution.

The increase in the bedslope flux can be related to the shape of the bottom profile. Note
that the maximum convergence due to suspended load is not on the crest of the ridge, but
shifted offshore and downcurrent with respect to the crest (see Figure 5.13, left panel). Thus
the maximum deposition occurs on the high part of the seaward flank, whereas the maximum
erosion due to suspended load shifts towards the deep part of this flank during the growth
process, i.e. both extremes are on the seaward (steep) side of the ridge (at ¢ ~ 16 x 102 yr).
As a result, suspended load is responsible for the asymmetrical bottom profile. The transition
towards such a shape of the ridge is accompanied by a rapid increase in the second-order
derivatives of the bottom perturbation (k. and h,,) at the crest. This confirms the conclusion
by Calvete and De Swart (2003) that, within the present model context, the bedslope term is
important to reach the saturation. So, not only was a bedslope contribution to the sediment
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Figure 5.13: Shore-normal cross-sections of: (Left) the convergence of the total suspended load flux
(=V -G’ —V-q%). (Right) the convergence of the total bed load fux (— V- G}, — V - q1). Thetota is
split in an advective and a bedslope contribution, sections are taken through the ridge top. The vertical
dotted lines indicated the locations of the maximum of i (c: crest) and minimum of A (t: trough) for
this section. The sections are taken at t ~ 10,13, 16,21 x 10® yr, with time increasing from top to
bottom.

flux needed in the linear analysis to find a preferred wavelength of the perturbations, it also
is essential in the mechanism which results in a reduction of the growth and a finite height of
the ridges.

The convergence of the bed load sediment flux is also plotted in Figure 5.13 (right-hand
panel). Cross-sections at different times show that this term causes downcurrent migration,
specifically by its advective part. The bedslope contribution is negligible. Deposition occurs
over almost the complete downstream (and seaward) flank, erosion over the upstream (and
landward) flank, a pattern of erosion and deposition which does not change in time. This
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migration behaviour is demonstrated in Figure 5.15 (left subplot), which shows that, at the
location of the maximum convergence of sediment, the convergence of the bed load trans-
port increases linearly with the height of the ridges. This location is on the downcurrent
(seaward) flank of the ridges during the entire duration of the growth of the ridges and is a
good representative of the sediment deposition halfway the flank of the ridge. For a constant
wavelength (and therefore width) of the ridges the volume of sediment per unit width that
has to be replaced to result in the migration is roughly proportional to the height of the ridge.
This shows why the migration rates remain almost constant in time under a linear increase
of the convergence of sediment with the height of the ridges. Furthermore, the divergence of
the bedslope flux at this location remains small compared to the convergence of the advective
part at all times, as demonstrated in Figure 5.15 (right subplot).

The analysis presented so far yields clues about the shape of the bedforms, their constant
migration and the saturation of the growth of the bottom perturbations, but it does not explain
the change in the spatial shift between the ridge topography and the pattern of the mean grain
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size. The growth of the ridges was related to the superposition of the contribution of the
fine and coarse sediment fraction to the convergence of the total sediment flux on the crest.
In contrast, the evolution of the fraction of fine sediment is determined by the difference in
erosion and deposition of fine and coarse grains, as can be traced back from equation (5.3c).
The investigation of the nonlinear grain sorting process requires an analysis of the full spectral
model. However, this is a difficult task, because of the many nonlinear terms involved. To
facilitate the work, test experiments were performed to see which nonlinear terms are crucial
for the evolution of the ridges and the grain sorting. It was found that the saturation still occurs
if the nonlinear contributions in the equations for the bottom and the fraction of fine grains
are excluded in the computations (N4, = N5 = 0, see appendix 5.B). Only minor differences
with respect to the original results are found: the final height and saturation time are the same,
and the (1,1) mode is dominant at all times. The main difference is that the amplitude of the
higher modes for f; are more pronounced, e.g., the amplitude of mode (2,1) is now 64% of
that of mode (1,1), rather than the 40% in the full nonlinear simulation. Therefore, it seems
unlikely that the terms N, and N5 are important for the mechanism underlying the saturation
process.

Upon ignoring the nonlinear terms in the equations describing the dynamics of the frac-
tion of fine sediment, equation (5.3c) becomes

> — 0
—Ty3V - qy — T3V - §y 2 [Tsa + To3Ts5) qsoa—fy1 (5.8)

where T}, and T are known coefficients defined in appendix 5.B and it is used that in the
basic state the suspended load sediment flux ¢so = (0, gs0) dominates over the bed load
flux. For the present parameter setting a reduced transport of fine grains as bed load, i.e.
Tys = F1F2(Ger — Grz) < 0, is used and a reduced flux of coarse grains for suspended
load yields T3 > 0. The contribution between the brackets is positive. This is the same
balance as for the linear system: the only parameters that can change in time are ¢; and ¢,
which are the perturbed sediment flux for bed load and suspended load in case of uniform
sediment, and f;. Thus, the spatial pattern of f; is related to the patterns of the bed load and
suspended load convergence. The temporal behaviour of the two contributions on the left-
hand side of equation (5.8) is shown in Figure 5.16 for a shore-normal (left panel) and a shore-
parallel (right panel) cross-section. The zero-crossings of the solid line indicate the position
where df1/0y = 0, and thus an extremum in the fraction of fine grains, corresponding
to the locations of the maximum and minimum value of the mean grain size ¢,, (in phi-
units). Initially, the maxima of the contributions related to bed load and suspended load
transport are of similar magnitude, but shifted in location. During the evolution the spatial
distribution of these terms change significantly, where at the final stage of saturation both
show the largest contributions on the steep slope of the ridge. Furthermore, the term related
to bed load transport has become dominant over the term related to suspended load transport
along most of the cross-shore transect. The maxima in 91 /dy correspond to the locations
where the largest gradients in f; occur, as shown in Figure 5.12 (right-hand panel) for the
shore-normal cross-sections of f;. The preferred sediment convergence over the seaward
flank of the ridges causes the asymmetry in the pattern for the fraction of fine grains. The
conclusion is that for these parameter settings the initial shift between the mean grain size
pattern (or, similarly, that of the fraction of fine grains) and the topography can change in time
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Figure 5.16: Shore-normal (left panel) and shore-parallel (right panel) cross-sections of ~TsV - L —
Ty3V - G}, where ¢ and §; are the perturbed sediment flix for suspended and bed load, respectively
and excluding grain size dependence. Thetotal is splitin abed load and a suspended load part, sections
are taken through the ridge top. The vertical dotted lines indicated the locations of the maximum of i
(c: crest) and minimum of A (t: trough) for this section. The sections are taken at ¢t ~ 10, 13, 16, 21
% 10® yr, with time increasing from top to bottom.

due to the changes in the pattern of suspended load and an increase in the relative importance
of the bed load contribution.

Experiments with a change in the sign of the hiding coefficient for bed load (¢; < 0, thus
Ty3 > 0) show a reversed final pattern for the fraction of fine grains, whereas a change in
sign for ¢, does not change the final pattern. This leads to the conclusion that the pattern for



110 Nonlinear evolution of shoreface-connected ridges and grain sorting

3 2.0 ~— 1000
>
—~ bl
£ w15 2
22 e : 100
-g - 10 =
=1 ° s 10
£ £ o5 K
2
0 0.0 a 1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.0 0.1 0.2 0.3 0.4 05 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
g (10-3) B (10-3) 8 (1073)

Figure 5.17: Total height of bedformsin the saturated state, total variation in the fraction of fi ne grains
in the saturated stage (in the fi gure called: fi nal f) and time needed for saturation as a function of the
slope of the inner shelf in the basic state. The arrow indicates the default value of 3, for which case the
evolution in time towards the saturated stage is shown in Figure 5.8.

the mean grain size at the saturated state is determined mainly by the bed load flux and its
hiding formulation. The interesting question is then what happens with the pattern in f; if
the hiding in bed load is decreased, and only hiding in suspended load is included (¢, = 0).
For this case, the linear analysis showed a phase shift of ~ 90°. These nonlinear results will
be discussed in the next subsection, along with a sensitivity for the finite-amplitude results
on the standard deviation and the slope of the inner shelf.

Equation (5.8) also gives an indication of the gradients in the fraction of fine grains that
can be expected with this model. These gradients are determined by the selective transport
of coarse and fine sediment that cause different amounts of erosion and deposition of the
two fractions. This effect is represented by the terms (for bed load and suspended load,
respectively) on the left-hand side of the equation. Here the case of ¢, = 0 is used as an
example. The differences in the fluxes correspond to a value of T's3 ~ 0.09. On the right-hand
side contributions involve [Ty + Ts3Ts5] ~ 0.4 and a longshore sediment transport in the
basic state with magnitude Q. The relative ratio between the height of the bedforms and the
maximum value of f; can be estimated if the expression for v q! (appendix 5.A.2) is written
in terms of the bottom perturbations k. To do this, only the advective flux is considered and
irrotational flow is assumed. Therefore, this estimate only applies to the linear stage of the
evolution. With the linearised mass balance of water, a ratio of |f;/h| ~ 1 x 107* m~!
is found. This is based on the characteristic scales for variations in the cross-shore (L)
and longshore (K;ll) direction, the depth (H) and the slope of the inner shelf (H, ~ ().
The model results show that this ratio remains almost constant during the evolution in time.
For the final stage the ratio f;/h can be easily computed from Figure 5.8 and confirms the
estimate obtained from equation (5.8). Although this figure was for ¢, # 0, the results in the
next section will show that this only enhances the ratio by a factor 4. Thus, the small values
for f; seem inherent in the equation that is used for the grain size evolution. We will return
to this in the discussion in section 5.4 and chapter 6. It should be kept in mind that in the
model the transported sediment has the same composition as that of the bottom from which
it is eroded.
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Figure 5.18: Time evolution of maximum, minimum and total height of the bedforms for
B = 0.05 x 1073 (left), and 8 = 0.38 x 1073 (right).
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Figure 5.19: Contour plot of perturbations in bottom and fraction of fi ne grains for two different values
of 8 and during the initial and fi nal stage of development of the ridges. The two plots on the left are for
values of the inner shelf slope smaller than the default setting: 5 = 0.05 x 1072 and ¢t ~ 26 x 10® yr
(left)y and t ~ 130 x 10% yr (right). The two plots on the right are for a higher value of the slope:

B=038x10"3andt ~ 3.1 x 10% yr (left) and t ~ 6.2 x 10° yr (right). On the greyscale the light
indicates a crest, dark indicates a trough. Solid (dashed) lines show increase (decrease) in fraction of

fi negrains.

5.3.6 Nonlinear analysis: sensitivity to parameter values

Additional experiments with this nonlinear model for shoreface-connected ridges were car-
ried out for different values of the transverse bottom slope; all other parameters had their
default values. The results shown in Figure 5.17 indicate that the final height of the ridges
and the variation in the mean grain size increase for a higher transverse bottom slope of the
inner shelf (Figure 5.17). The former trend is the same as was already found in the model
for uniform sediment. Saturation occurs faster for higher values of /3, related to the increase
in linear growth rates (Figure 5.5). This is illustrated in Figure 5.18 for the evolution of the
height of the ridges in time for two values of 3. The qualitative behaviour remains the same.
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transport function.

However, the bottom patterns clearly show an increase in asymmetry in the final state of the
evolution of the ridges for larger slopes of the inner shelf, as demonstrated in Figure 5.19.
The results are shown for a value of  near critical conditions and for a value resulting in
highly nonlinear behaviour. The solutions become unbounded at some time during the satu-
ration process for values of 3 larger than 0.55 x 103, which is approximately 50% of the
observed values.

Sensitivity experiments were also carried out by varying the standard deviation of the
sediment mixture. Compared to the case pf uniform sediment the final height of the ridges is
hardly changed, while increasing o causes an increase in the distribution range and ampli-
tude of f; (Figure 5.20). The saturation time is enhanced for a larger difference between the
two grain sizes.

Another series of experiments shows that the saturated state depends on the coefficient ¢;
in the hiding function for bed load. It enhances the variation in the mean grain size (Fig-
ure 5.21). However, if hiding is only included in suspended load, the behaviour of the
amplitude for ~ and f; in time is significantly different. In Figure 5.22 this is shown: at
t ~ 15 x 10 yr mode (2,2) becomes the dominant mode for f,, while for » mode (1,1) has
the largest amplitude. For f; the amplitude of the mode (1,1) is only half of that of the (2,2)
mode. This shows that superharmonic (k > Kj;) modes are excited and they can become
the dominant mode for f;. For a single grain size, a change between the dominant (bottom)
modes was only found when subharmonics (k < K ;) were included in the truncated series
(Calvete and De Swart, 2003). In contrast to the change in time towards modes of f; with a
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Figure 5.23: Att ~ 6,13,16,25 x 10° yr the plots show: perturbations in bottom (greyscale) and
fraction of fi ne grains (contour lines). No hiding is used in the transport of sediment as bed load, i.e.
¢y, = 0, other parameters have their default values.

shorter wavelength than K, as found with the present model, the single grain size model
showed a change towards modes of & with a longer wavelength. The bottom pattern in the
saturated stage has the same characteristics as that obtained in the default case of hiding in-
cluded in both the suspended and bed load flux. In Figure 5.23 the linear solution with an
approximately 90° phase shift between h and f; is clearly recognised during the initial stage
of development of the ridges. However, similar to the default case, the fraction of fine grains
is largest on the crest of the ridge at the saturated state. In this case of only hiding in the
suspended load flux the pattern of the fraction of fine grains is determined by the suspended
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load flux, see equation (5.8) for T3 = 0. If the hiding for suspended load flux is reversed
(cs > 0) the initial phase difference is —90°, which evolves into a final pattern in which A
and f; are 180° out-of-phase. Thus, the final distribution due to hiding in suspended load
flux also tends to adjust to the pattern to the shape of the ridge topography.

5.4 Discussion and conclusions

In this chapter a nonlinear model for the long-term evolution of the topography of shoreface-
connected ridges and the variations in the mean grain size over this topography is presented.
The model uses two grain size classes, includes dynamic hiding effects in both suspended and
bed load sediment transport and is based on the one-layer concept for the bottom evolution.
A linear stability analysis of the basic state of the model, characterised by a storm-driven
flow over a longshore uniform shelf, showed the formation of ridges and of a mean grain
size pattern as free instabilities of the morphodynamic system. The analysis is extended into
the nonlinear regime, using a spectral method. This involves an expansion of the physical
variables in a truncated series of modes of the linear system. Substitution of these expan-
sions in the equations of motion and projection of the results on the adjoint eigenmodes
yields a set of differential and algebraic equations for the unknown amplitudes of the differ-
ent modes, which are solved numerically. With this method the finite-amplitude behaviour
of shoreface-connected ridges under storm conditions is simulated, under the restriction of a
small transverse bottom slope 3 of the inner shelf (up to ~ 1/2 of its realistic value). For
large values of 3 solutions become unbounded at some time during the evolution.

With this model it was shown that, starting from an initial state without bedforms, a
pattern of shoreface-connected ridges with finite amplitudes develop. Initially, the height of
these ridges increases exponentially, but nonlinear effects cause a reduction of the growth,
such that height tends to a constant value. At the same time, the maximum variation in the
mean grain size evolves towards a constant value. The results clearly demonstrate that it is
possible to simulate the finite-amplitude behaviour of shoreface-connected ridges in a model
that is based on a mass balance for nonuniform sediment. The use of multiple grain sizes
does not significantly change the final height and shape of the bottom topography that were
obtained by Calvete et al. (2002) with a model based on a single grain size. For the default
case a transverse bottom slope which is approximately 10% of its observed value was used.
Stable solutions for the model could be obtained until a slope of approximately 50% of its
observed vale. The shape of the ridges changes from symmetrical in the linear stage towards
asymmetrical in the nonlinear stage. The asymmetry ratio of the seaward over the landward
slope for the default case is ~ 6 : 1 after reaching the equilibrium amplitude, whereas the
maximum side slope of the ridges is around 0.05°.

The dependence of the final height and the maximum variation of f; on the transverse
bottom slope 3 is also investigated. It appears that the saturation height and the asymmetry
in the bottom profile and in the grain size profile increase with 3, while the saturation time
reduces. The results for the final height of the ridges can be extrapolated to realistic values
of the slope of the inner shelf using the trend for increasing 3 as found in Figure 5.17. For
a realistic slope this would give a final height of ~ 6 m after a period of ~ 1 x 102 yr.
These values agree rather well with those obtained from field observations. The asymmetry
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ratio for the default slope is already larger than the highest values observed in the field. This
may suggest that observed shoreface-connected ridges have not reached their final stage of
development yet.

A serious shortcoming of the model is that the modelled maximum variation in the frac-
tion of fine and coarse sediment over the ridges are much smaller than those measured in
the field. Extrapolating towards realistic slopes still indicates variations in the fraction of
fines of only 0.004 (~ 1% change on the initial value of 50% fines in the basic state). For a
diameter of the fine and coarse grains of 250m and 500um, respectively, this corresponds
to a total variation in the mean grain size of approximately 2um. Observations suggest that
the variations in the mean grain size are in the range of 200-500.m. This indicates that not
all physical processes are incorporated correctly in the model. It should be realised that the
assumptions that lead to the equation describing the evolution of the grain size fraction might
not be valid for ridges with a significant height. The validity of the one-layer concept, which
assumes a thin transport layer that is uniformly mixed over its depth and negligible interac-
tion with the underlying substrate, might not be valid for the long timescales that are related
to the formation of large-scale bedforms. This could be in principle overcome by using, for
example, a two-layer model (cf. Ribberink, 1987) or a continuous distribution in the vertical
(cf. Van Ledden et al., 2002a) that account for vertical sorting. However, a major drawback
of this approach is the large number of extra parameters which are poorly known. We will
return to this point in the next chapter.

A constant height of the ridges is reached as a result of a balance between the deposition
related to the advective part of the suspended sediment flux and erosion related to the bedslope
part over the crest. The maximum deposition due to the advective part of the suspended
sediment flux is not on the crest, but shifted towards the seaward flank of the ridge and results
in asymmetry in the profile. At the same time, the contribution related to the bed slope flux
starts to increase more rapidly compared to the advective part. Thus, the mechanism for
saturation is strongly related to the bedslope flux for suspended load, which is proportional to
the bedslope coefficient \,. Further model experiments with an improved formulation for A,
could therefore be interesting, although little is known about this parameter. In this work it is
assumed that this coefficient is constant, i.e. independent of the direction (x, y) and the grain
size fraction. The result is that the grain size dependence in the advective and bedslope flux is
the same. The maximum deposition as a result of bed load is located approximately halfway
between the crest and trough, and shows a linear increase with the height, thereby a constant
migration velocity is attained in time. A possible additional mechanism for saturation that is
excluded in the present model is a stirring of sediment by waves that is larger at the crests
than in the troughs. This remains a topic of future research.

A remarkable result is that the distance between location of ridge crest and the location
where the finest sediment occurs decreases during the nonlinear evolution stage. The linear
analysis showed a spatial shift between the variations in the mean grain size and the ridge
topography, with the maximum fraction of fine grains located just seaward (downcurrent) of
the crest. This phase shift is also observed in the field (cf. Figure 1.4). The spatial shift
changes if the ridges develop an asymmetrical profile: in the final state this distance is so
small that the finest sediment is located almost at the crests; likewise the coarsest sediment
is found almost in the troughs. This tendency is rather difficult to relate to field data, as most
fine sediments are observed at measurable distances downstream of the ridges.
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Experiment have shown that the nonlinear terms in bottom evolution equation are only
of minor importance for the development of perturbations with a finite amplitude: saturation
still occurs if these are neglected. These terms tend to enhance the amplitude of the small-
scale bedforms which develop at the final stage of development of the large-scale ridges.
The most important nonlinear contribution in the system of equations that is essential for the
saturation of the ridges is the one in the continuity equation for water. With this in mind, the
change in the distance between the maximum in i and f; in the model can be linked to two
effects. The first is an increase in the importance of bed load sediment transport (with respect
to suspended load) in time. The mean grain size pattern for dominant bed load transport,
including a hiding formulation to reduce the flux of fine grains, is in phase with topography.
For suspended load transport a 90° phase shift is the initially preferred pattern. The second
effect is a change in the pattern of the divergence of the suspended load flux (ﬁ -q7) intime.
Initially, its pattern is such that it mainly results in the growth of perturbations followed by
a stage in which it enhances the asymmetry. At the final stage V- " is almost in phase with
V- 7, and mainly influences the migration of the ridges. The first effect is dominant for our
default case, where the second one is responsible for a shift in the phase when the hiding in
bed load is neglected. Comparing these results with the ~ 90° out-of-phase relation between
mean grain size and topography in field data, might lead to the hypothesis that most ridges
are not yet in equilibrium with the present-day hydrodynamic conditions.

Appendix

In this appendix the subscripts z, y, zz and yy indicate the first and second derivatives with
respect to = and y.

5.A Sediment flux

5.A.1 bed load

The bed load flux in the basic state, the perturbations in the bed load flux and its divergence
for a single grain size are based on the expression for ¢ in (5.4) and read

o 3
qv0 = (07 qu) = (0 Vbuwv)

2
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The perturbed bed load flux and its divergence for sediment with a grain size diameter d; in
a sediment mixture are
(@pi) = (Fs + fi)(Gri + 90i) (@ + Gb0) — FiGriGro
VA = (Gyi + 90) (@) - V i + fiyavo) + (E5 + fi) (@5 - Vi + Gviyqeo)
+(F + :)(Ghi + g1i)V - @4
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The bed load transport capacity function, and the corresponding basic state G'y; and pertur-
bation gy; (including higher order terms) are

Gpi = 2¢0(@m—d1) Gy = 260(Fm=90) goi = Gi(2709m — 1) (5.A-1)

where the mean grain size is written in terms of a basic state value (®,,,) and a perturbation
(¢7)
/ / oo
¢7n :®m+¢m ®,, :¢1F1 +¢2F2 (bm = \/m
Thus the linearised part of the perturbed transport capacity function, indicated by £(..), is
L(gvi) = GiTps f1, With Tys = ¢, In200/+/F2Fy. The linearised parts of the flux diver-
gences due to the fine and coarse sediment class read

f1 (5.A2)
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Here the constraint on the distribution F; is used to eliminate f5. It also fixes the relation
between the basic state values of the fraction of fine and coarse grains, i.e.

Fi+Fy,=1 f1+f2:0

5.A.2 Suspended load

The suspended load flux in the basic state, the perturbations in the suspended load flux and
its divergence for a single grain size are based on the expression for ¢, in (5.5) and read
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Here v, = 225,,Ep, . The expressions for V - (77;) and V - (7/,) are the same as for bed
load, but with the transport capacity functions and sediment flux terms replaced by the ones
for suspended load. The suspended load transport capacity functions, and the corresponding
basic state and perturbation (including higher order terms) are

Gei = (1 — 0.2880)72¢ (Pm—%1)
Gai = (1= 0.28809) 2% (*r =) gsi = Gi(2°9m — 1)
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where the standard deviation is spit in a basic state oo and a perturbation o”,
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The linear part of the perturbed transport capacity function is £(gs;) = Gs;Ts5 f1, where
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5.B Matrix elements

The partial differential equations describing the evolution of the flow, mass, fraction of fine
grains and bottom can be symbolically written as

1o}

Sa—f — Lo+ N () (5.B-1)
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Here L11_15, L21_95, L31_35 are the same as for uniform sediment. Also the nonlinear con-
tributions A/ (u’,v’, ") are same as in the uniform sediment case. The elements of the linear
matrix £ are
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where 6, = (%ub)/us is the ratio of the wave stirring for bed load and suspended load. The
nonzero element of the temporal matrix S is Ss5 = 1/v, Furthermore,

Ty = Gb1 — Gbg T = Gsl - G32
Tyo = F1Gp1 + FoGho Teo = F1Gs1 + FoGg2
Tys = F1Fy(Gyy — Gia) Ts3 = [1F2(Gs1 — Gs2)
Tyy = F5Gy1 + F1Gyo Tos = F5Go1 + F1Gg
The nonlinear contributions of the vector A" = (N1, Ny, N3, Ny, N5) are
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Here ¢/ = ¢}, + ¢, and L(V - (})) is the linearised part of V - (7).







Chapter 6

Discussion and conclusions

The work presented in this thesis concerns the dynamics of shoreface-connected ridges and
tidal sand ridges. These large-scale bedforms are found on the inner and outer shelf of coastal
seas in water depths of 10-20 m. The motivation of this work is to improve the understand-
ing of the mechanisms related to their formation and the processes that determine their main
characteristics. Existing literature already showed that this insight could be achieved with
the use of idealised morphodynamic models. The basic concept behind these models is that
bedforms can develop as a result of the interaction between the water motion and the sandy
sea bottom. The approach of this thesis is to extend existing models with new physical pro-
cesses of which field data suggest the potential importance, in particular the role of grain size
sorting. Mathematical methods based on a stability analysis are applied, whereas numerical
methods are used to solve the equations.

In this chapter the aspects of the model that have improved our understanding of large-
scale sand ridges are discussed, using the main results of chapters 2 to 5. The more spe-
cific research questions that were formulated in section 1.8 are addressed in more detail in
these chapters. First, the basic assumption related to the formation of tidal sand ridges and
shoreface-connected ridges is discussed and the results for the impact of storms and tides are
summarised. Second, the main results obtained with the linear analysis for grain size sorting
are given, followed by a presentation of the results of the nonlinear analysis. The crucial
assumptions in the model for the evolution of the grain size distribution are discussed. In
addition, we focus on the representation of the sediment transport and waves in the model.
Finally, suggestions are given for further research.

Formation process: basic hypothesis

The basic assumption underlying this thesis is that large-scale sand ridges can solely form
as free instabilities on a flat sea bottom. Nevertheless, there is no consensus on this point in
the literature. Other theories relate their presence to old geological relicts, which might be
subsequently reworked by the present-day hydrodynamics (Swift et al., 1985; McBride and
Mosow, 1991; Dyer and Huntley, 1999). The interpretation of field observations often does
not give the exclusive answer to all the mechanisms that play a role. In this thesis we have
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not elaborated on theories that are based on solely geological aspects. The results of stability
models can indicate whether the hydrodynamic processes incorporated are likely to play a
role. An important part of this thesis concerns the unresolved question about the origin of
the observed mean grain size pattern over the ridges. It explores the hydrodynamic processes
that can lead to sediment sorting and the formation of large-scale sand ridges.

Storms and tides

The literature on large-scale sand ridges (cf. Van de Meene and Van Rijn, 2000a; Dyer and
Huntley, 1999, and refernces herein) already indicated that shoreface-connected ridges and
tidal sand ridges both have crests up to several metres in height. They also have an elongated
shape with a length of the crest of a few kilometres. Tidal ridges dominantly prevail in a
meso-tidal environment, whereas shoreface-connected ridges prevail when storms dominate
the hydrodynamic forcing on the continental shelf. A characteristic difference between these
two types of ridges is the orientation of the crest: cyclonic with respect to the tidal current
axis (in case of tidal sand ridges) or upstream oriented, i.e. seaward ends are shifted upstream
with respect to the steady alongshore current, in case of shoreface-connected ridges.

A question that was raised is: On which coastal shelves can we expect to find these
shoreface-connected ridges and tidal sand ridges? A primary requirement is a sandy (in-
ner) shelf. Trowbridge (1995) showed that an essential condition for the development of
shoreface-connected ridges is that the inner shelf has a transverse bottom slope. Thus, these
ridges are likely to be more prominent (i.e. grow faster) on that part of the coastal shelf where
the slopes are largest. They form under storm conditions, during which waves cause a stirring
of the sediment into the water column and the subsequent transport is due to steady currents
(Calvete et al., 2001b). Tidal sand ridges, on the other hand, form merely under a significant
tidal current amplitude and fair weather conditions (Huthnance, 1982a; Hulscher et al., 1993;
Calvete et al., 2001a) and their formation is not restricted to a sloping seabed.

In chapter 2 a model was presented that combines two model realisations in a statistical
way: one state representing the dominant forcing conditions for shoreface-connected ridges
and one state representing forcing conditions for tidal ridges. This model yields insight in
the conditions under which the simultaneous existence of both types of bedforms on different
locations of the same coastal shelf (on the inner and outer shelf, respectively) can be found.
An example shelf where both types of bedforms are found is the Dutch-Belgian shelf (south-
ern North Sea), with the tidal ridges located further offshore. The results indicated that both
shoreface-connected ridges and tidal sand ridges can only be present on meso-tidal shelves
where storms occur frequently enough to induce a steady current (averaged over many storm
periods) with an amplitude that compares with the tidal current amplitude. Already for realis-
tic storm fractions, the growth of shoreface-connected ridges on the slopes of the inner shelf
prevents the formation of tidal sand ridges on this part of the shelf. Consequently, they only
occur further offshore, i.e. on the outer shelf. For parameter values representing southern
North Sea conditions, the probability of storms (time average over many years) for which
shoreface-connected ridges grow on the inner shelf and tidal sand ridges on the outer shelf of
the model domain is in the range of ~ 2 — 8%. This estimate agrees with statistical data for
wind speed and direction related to southwestern storms on this shelf. The absence of tidal
sand ridges on the Atlantic shelf of North America can be (at least partly) attributed to the
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small tidal current amplitudes.

Grain sorting

In chapters 3 and 4 a first step was taken to understand the observed grain size pattern over
shoreface-connected ridges and tidal sand ridges. The model for a single grain size was ex-
tended such that it accounts for the sediment flux of fine and a coarse grains and the evolution
of the fractions of fine and coarse grains in the bottom sediment. Within an idealised model
context, it was shown that dynamic hiding (reduced mobility of one fraction) leads to the de-
velopment of a spatially non-uniform mean grain size and sorting pattern over the bedforms.

For shoreface-connected ridges (chapter 3) the model represents a micro-tidal inner shelf,
where the water motion is forced by storms. Essential different results were found when
grain sorting is included in the bed load or suspended load sediment flux. The pattern that
was obtained from a linear model analysis and hiding in suspended load transport agrees well
with the field observations for shoreface-connected ridges (cf. Swift et al., 1978; Parker et al.,
1982; Antia, 1996). The latter show a persistent spatial phase shift of approximately 90°
between the topography and mean grain size: the coarsest sediment occurs on the landward
(and upcurrent) flank, the finest on the seaward (and downcurrent) flank. Model results only
showed this phase shift when grain sorting was included in suspended load transport, while
for hiding in bed load the patterns are in-phase. The spatial changes in the fractions of fine
and coarse grains are fixed by the erosion and deposition patterns. In case of suspended load
transport the maximum deposition occurred near the crest (resulting in growth of the ridges),
while in case of bed load maximum deposition occurred on the downstream flank (resulting
in migration of the ridges). These results stress the importance of a selective suspended load
sediment transport during storms, for which the flux of fine material is larger than that of
coarse material.

Adding hiding effects in the bed load flux shifted the pattern of the mean grain size more
in-phase (by using a reduced transport of fine grains) with the topography. Model tests in-
dicated that introducing a grain size dependent bed shear stress in the momentum equations,
i.e. a feedback between changes in the sediment composition and the current, did not change
the patterns of the mean grain size and sorting over shoreface-connected ridges. Also, the
combination of a steady and a tidal current (as compared to only a steady current) did not sig-
nificantly influence the results of the linear model. A stabilising effect of sediment sorting on
the growth of shoreface-connected ridges was obtained by the model, while the wavelength
of the ridges was slightly increased. In the context of the experiments that were carried out
in this thesis, it can be concluded that growth rates are determined by the formulation of dy-
namic hiding in the suspended load flux. A reduced growth (compared to that of sediment
with a single grain size) turns out to be mainly caused by the presence of a straining parameter
in the hiding function of suspended load. This parameter accounts for the reduced mobility of
grains in the sediment mixture due to more efficient packing. In this thesis, such an effect was
not included in the bed load flux because it is not used in most empirical formulas that exist
for bed load hiding. The main effect of hiding in bed load was that it enhances the migration
velocity of the shoreface-connected ridges.

Marked variations in the mean grain size are also observed over tidal sand ridges. Field
data for the Belgian shelf reveal coarse (fine) sediment at the crests (in the troughs), but
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phase shifts between the mean grain size distribution and the bottom topography can also
occur. The forcing of the model in case of tidal ridges (chapter 4) is dominated by tides
and represents fair weather conditions only; the sediment is transported as bed load. The
validity of this assumption was already discussed in chapter 4. Experiments revealed the
importance of different tidal constituents for the spatial pattern in the grain size distribution.
A symmetrical tidal forcing, in combination with a reduced bed load flux of fine grains,
resulted in a grain size distribution that was in phase with the ridge topography. The coarsest
mean grain size was located on the crests, in agreement with the data of the Belgian shelf.
When a steady component was added to the external forcing (or an asymmetrical tidal current
was used by adding an overtide) the coarsest sediment was found on the flank downstream of
the net alongshore current. Thus, the offshore decrease in the flood-dominance in this region
(Lanckneus et al., 1994) could contribute to the shift in the location of the maximum mean
grain size. Growth and migration rates of tidal sand ridges increased for a two-grain size
mixture, the wavelength is only slightly affected.

Linear versus nonlinear

A linear stability analysis is representative for the initial formation stage of the bottom pertur-
bation: it only allows for symmetrical (sinusoidal) perturbations, which grow exponentially
in time. The question is how the results of such an analysis are related to ridges of a finite am-
plitude. The evolution (saturation process) towards ridges with an equilibrium amplitude is
accompanied by nonlinear interactions between different modes (each representing a solution
with a specific longshore and cross-shore structure). Therefore, in chapter 5 the long-term
dynamics of shoreface-connected ridges were studied, along with the evolution of the mean
grain size patterns. The nonlinear analysis uses a truncated series of solutions (eigenmodes)
of the linear analysis to compute this final state. A nonlinear analysis for tidal sand ridges
was beyond the scope of this thesis.

Starting from random initial conditions, a field of shoreface-connected ridges develops.
Initial amplitudes increase exponentially and then the nonlinear terms become important.
After several thousands of years the amplitude of the ridges becomes constant. The initially
preferred mode also dominates in the nonlinear regime and the spacing of the ridges and their
migration velocity remain constant during the evolution. During the saturation process the
shape of the ridges changes from symmetrical to asymmetrical, with a steeper seaward (and
downstream) flank. This asymmetry is often observed in field data for shoreface-connected
ridges. Besides, the spatial shift between the patterns in the mean grain size and bottom
topography (as found from the linear analysis and in the field observations) decreased. In
the final state the relative distance between the crest and the location of the finest mean grain
size was very small. This was related to a change in the erosion and deposition pattern of
suspended load and the relative importance of bed load with respect to suspended load.

A limitation of the method used for the nonlinear model is that it does not permit calcu-
lations for realistic slopes of the inner shelf. For values larger than 50% of observed values,
numerical instabilities develop during the evolution process, causing unbounded behaviour.
Extrapolation of the model results towards realistic bottom slopes yielded estimates of the
bedform height, saturation time and migration velocity that agree well with field data. How-
ever, a large discrepancy exists between the observed and modelled maximum variation in
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the mean grain size. The latter gives values that are approximately a factor 100 smaller than
those obtained from field measurements. The reason for this discrepancy must be sought in
the neglect of physical processes in the equation that describes the evolution of the fraction
of fine and coarse grains. Here we will discuss the validity of the assumptions that underlie
this equation and their possible implications.

One possibility that may explain the too small grain size variations in the model is that the
one-layer model for the bottom evolution is not valid for bedforms that evolve on timescales
of 100-1000 years. The basic idea was that sediment is only transported from a bottom layer
of a few centimetres thick, in which no vertical sorting an negligible interaction with the
layer below occurs. If the exchange of sediment between the transport (surface) layer and
the underlying substrate occurs on a faster timescale than the bottom evolution, the sediment
flux between the two layers can significantly influence the grain size distribution in the upper
layer. This is likely to occur, because the presence and migration of small-scale bedforms on
top of the large-scale ridges can cause a significant reworking of the sediment. Introducing
such an exchange flux changes the balance in the evolution equation for the fractions of fine
and coarse grains and introduces a possibility for additional growth of the mean grain size
variations.

A second possibility is that the surficial sediment is a response to forcing conditions that
are not accounted for in the model. For shoreface-connected ridges the forcing is only repre-
sentative of storms. The suggestion has been raised by Swift et al. (1972) that the develop-
ment of ridges occurs during storm periods, whereas the surficial sediment pattern mainly de-
velops during the intermediate periods of fair weather. They relate the size-fractioning of the
sediment at the crest and on the flanks to low-amplitude swell waves with associated strong
asymmetrical bottom currents. Besides, during fair weather conditions wind-induced Ekman
transport and horizontal density gradients caused by river discharges generate a net cross-
shore circulation in the vertical plane, such that the near-bottom flow is directed landward
(Van der Giessen et al., 1990; De Ruijter et al., 1997; Niedoroda and Swift, 1981). Measure-
ments indeed reveal a landward transport of sediment during calm weather. This is opposite
to the circulation in storm conditions: current measurements on the North American Atlantic
shelf indicate that storms cause strong offshore directed bottom currents (downwelling con-
ditions) (Swift et al., 1978; Swift and Field, 1981; Niedoroda et al., 1984). Furthermore,
observations (Swift et al., 1978; Parker et al., 1982) show that while the shape of the ridges
changes between symmetrical and asymmetrical, the surficial grain size pattern is more con-
sistent with the finest sediments on the seaward flank. With the main deposits consisting
of storm-related layers (Figueiredo et al., 1982), fair weather induced variations in the mean
grain size can not be present below the surface. The vertical sediment cores that could provide
such information are scarce and the often complex structure of the deposited layers under the
migrating ridges makes it impossible (at this moment) to verify this hypothesis on the basis
of field data only.

Including a fair weather transport in the model introduces a highly nonlinear relation be-
tween the sediment fluxes and the current. For a steady flow this could introduce other bottom
and grain size patterns, which can have a different amplitude and shape with respect to the
ones found in case of solely storm conditions. Furthermore, in the models presented in this
thesis the vertical structure of the currents is neglected. Although the main characteristics
(shape, height) of the ridge topography are represented quite well with depth-averaged cur-
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rents, the sediment distribution in a thin surface layer can be more strongly determined by the
near-bed currents.

One last aspect in the modelling of sediment mixtures is that in the present study the num-
ber of grain size classes used is only two, while in fact the distribution covers a wide range of
grain diameters. In the context of idealised models, accounting for more grain fractions does
not seem to lead to more insight in the physical processes because the mechanisms causing
the sediment sorting do not change and therefore no major changes are expected.

Currents, waves and sediment flux

The morphodynamic models presented here consist of the depth-averaged (2DH) shallow
water equations, a sediment transport formulation and a bottom evolution equation. The un-
certainty in the latter is already discussed above. The formulation of the sediment transport
also requires some further discussion. It should be noticed that there is still a lack of funda-
mental knowledge (and data) on the sediment transport processes in coastal seas, especially
during storms. The parameterisations used in this study for the sediment transport and their
extension towards sediment mixtures are based on several assumptions. These should be dis-
cussed in the context of idealised models, where the philosophy is to include only processes
that are expected to play a key role in the dynamics of the phenomena under investigation.
The transport formula that are used in stability models for the formation of bedforms have
evolved from a simple bed load formulation that is given by a constant times the velocity
(Trowbridge, 1995), towards formulations which include bedslope effects, suspended load
fluxes and the effect of wave-stirring (cf. Falqués et al., 1996, 2000; Calvete et al., 2001a,b).
With the good results obtained with these models, which consider a single grain size only, the
next step was to generalise them to include multiple grain sizes in a simple manner. Dynamic
hiding effects that are mostly based on empirical relations deduced from measurements in
shallow rivers and flume experiments were applied to shallow coastal seas. The convergence
of the sediment flux determines the pattern of erosion and deposition and thereby not only the
characteristics of the bedforms, but also the pattern in the fraction of fine and coarse grains.
Therefore, we again focus on the (single grain size) transport parameterisations that were
used as a basis for the multiple grain size formulations in this thesis.

The derivation of the sediment flux during storms is based on assumptions regarding the
wave amplitude, direction and asymmetry of the velocity field with time. The amplitude of
the wave-orbital velocity is large compared to the wave-averaged velocity (due to the wind
shear stress, pressure gradients and tides). A linear relation exists between the advective part
of the sediment flux and the wave-averaged velocity (v), thus ¢ = K. In the case that the
waves are directed parallel to the velocity ¢ (i.e. almost shore-parallel), K is a scalar that
represents a wave-stirring factor. In a more elaborate expression which is valid for different
angles between the direction of the wave incidence and the net current, X becomes a tensor,
such that the net sediment flux and net current have different directions. This may lead to
changes in the growth and migration rate of the bedforms.

Furthermore, the impact of waves is restricted to symmetrical waves. In this first-order
approximation waves only result in the stirring of sediment and no net sediment transport (due
to wave-asymmetry) is modelled. In the model it is assumed that the onshore flux of sediment
due to wave-asymmetry is compensated by the offshore bedslope flux due to the transverse
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bottom slope of the inner shelf. Therefore, the bedslope flux only acts in case of perturbations
in the bottom. At present, boundary conditions are such that no sediment exchange is allowed
between the inner shelf and shoreface and thus the model does not account for a dynamical
interaction of the ridges with the coastline. In the context of the nonlinear analysis this can
be studied by including solutions with an alongshore uniform structure, as was already done
by Calvete and De Swart (2003) for shoreface-connected ridges.

The wave effect in the nonlinear model is incorporated in the same way as in the linear
model: wave properties only depend on the undisturbed reference depth and refraction and
shoaling due to the presence of bedforms is not accounted for. For ridges with a considerable
height the impact of waves on the crest is stronger than in the troughs, an effect which is
not included in the model due to this simplification. Such a mechanism would result in an
increased stirring above the ridges and smaller stirring in the troughs (see also discussion in
Calvete et al., 2001b), thereby contributing to the saturation process that leads to a finite-
amplitude. The processes that caused a stabilisation in the growth of the shoreface-connected
ridges in the present model were related to a change in the pattern for the suspended sediment
flux with an increased height of the ridges (chapter 5). Including the local depth in the
parameterisation of the wave effects in this flux could therefore influence the evolution of the
ridges. Such a generalisation is in fact not allowed, because the parameterisation is strictly
only valid for parallel depth contours. Also other effects that influence the wave-impact, such
as refraction and partial breaking of waves, should then be accounted for in an appropriate
manner.

Further research

In the context of the models that are presented in this thesis a few problems that have not been
addressed can be studied relatively easily. In chapters 3 and 4 the initial formation of grain
sorting patterns is investigated for either storm or fair weather conditions. A similar study for
a combined forcing by both conditions, as was done in chapters 2 for uniform sediment, could
give an indication of the influence of storms (fair weather) on the grain size distribution over
tidal sand ridges (shoreface-connected ridges). Another interesting experiment is when the
reference state is extended to include a cross-shelf gradient in the mean grain size. A seaward
fining trend is reported for the areas of shoreface ridges on the American Atlantic shelf and
the German Bight (Swift et al., 1978), while on the Belgian shelf, where also tidal ridges are
present, the sediment becomes finer in the landward direction. This introduces new terms in
the bottom evolution equations and they will influence the dynamics of grain sorting.

As mentioned above, the effect of bedforms on the wave stirring could be a valuable
extension of the model. To account properly for the effect of bedforms on the wave stirring,
a sophisticated wave transformation model, based on e.g. the eikonal equation, would be
required. Application of such a method to the nearshore region of a straight barred coast
already showed succesful results (Calvete et al., 2003).

In the subsection ’linear versus nonlinear’, the suggestion was raised that a more realistic
representation of the bottom layer is needed to represent the grain size pattern correctly, e.g.
by introducing an exchange layer to the one-layer model. This could be done. Nevertheless,
the present knowledge on vertical sorting processes is very limited (see, for example, Blom
and Ribberink, 1999; Parker et al., 2000) and a verification of the model results would be
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very difficult.

Bearing in mind the previous remarks with regard to the formulation for the sediment
fluxes, it is important too realise that the most crucial nonlinear contributions for the finite-
amplitude evolution of the shoreface-connected ridges originate from the mass balance equa-
tion. Similar results were found by Idier and Astruc (2003), who analysed the results of a
nonlinear model for tidal sand ridges, and showed that saturation is mostly due to hydrody-
namic processes, albeit for a different case (viz. it is based on a single grain size, tidal current
forcing and different solution methods). It would be interesting to investigate whether the
saturation for shoreface-connected ridges is influenced by the quasi-steady assumptions and
the neglect of free-surface variation on the water depth in the hydrodynamic equations.

The analysis of a 3D flow over an uneven bed, which is a complicated problem, is consid-
ered to be one of the most important topics for further research, especially in the context of
the origin of the mean grain size patterns. Finally, also tests should be performed with more
complex process-oriented models, such as Delft3D, that attempt to describe all physical pro-
cesses. For instance, they are better suited to investigate the optimal number of grains that
is needed to describe the sorting processes correctly and experiments with larger slopes of
the inner shelf and arbitrary geometries could be performed. Furthermore, complex process-
oriented models are suitable to be used for studying practical problems in the coastal zone,
such as the dynamical interaction of large-scale ridges with the coast.
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Samenvatting

Dynamica van zandruggen in kustzeeén:
de invloed van stormen, getij en korrelgrootte sortering

Voor de kust van Nederland, op de bodem van de Noordzee, bevinden zich zandruggen.
Kennis hierover is relevant voor onder andere de aanleg van vaargeulen voor de scheepvaart,
booreilanden voor olie- en gaswinning, een vliegveld in zee en de winning van zand. De
motivatie van het onderzoek dat is samengevat in dit proefschrift is het verkrijgen van meer
fundamentele kennis van het dynamische gedrag van zandruggen.

Kenmerken van zandruggen

Zandruggen zijn langgerekte zandbanken van enkele tientallen kilometers lang en een paar
kilometers breed, die zich bevinden op de bodem van ondiepe kustzeeén. Deze kustzeeén
vormen de overgang van het land naar de diepe oceaan. Een typisch voorbeeld hiervan
is de Noordzee. In figuur 1.3 is het deel voor de Belgische kust weergegeven, waarbij
de donkere vlakken de ondiepere delen markeren. In waterdiepten van ongeveer 5-30 m
vormen de zandruggen een ritmisch patroon dat zorgt voor een glooiing in de zeebodem. De
kammen (het hoogste gedeelte van de zandruggen) kunnen een hoogte bereiken van enkele
meters. In dit figuur is te zien dat zandruggen voorkomen in groepen, op verschillende
locaties en met verschillende oriéntaties van de kammen ten opzichte van de kustlijn. \Voor
dit proefschrift maken we onderscheid tussen twee soorten zandruggen: kustaangehechte
banken en getijbanken, waarvan de belangrijkste kenmerken hieronder besproken worden.

Waarneming laten zien dat kustaangehechte banken (’shoreface-connected ridges’)
voorkomen in kustzeeén die gedomineerd worden door een sterke windgedreven (storm-
gedreven) stroming langs de kust. Zij bevinden zich in een waterdiepte tussen de 5 en 20
meter en worden gekenmerkt door een hoek van 20 — 50° tussen de kammen en de kustlijn.
Het zeewaarts uiteinde is hierbij stroomopwaarts verplaatst. In de Noordzee komen de
kustaangehechte banken voor langs de kust van Nederland en Belgié (zie figuur 2.1), en
voor de Duitse Waddeneilanden. Ook langs grote delen van de Atlantische kust van Noord
Amerika en voor de kust van Argentinié zijn ze aanwezig. In figuur 1.4 (linker afbeelding)
zijn de kustaangehechte banken voor Long Island (Noord Amerika) duidelijk zichtbaar in
de dieptecontouren die schuin weglopen van de kust. Deze banken verplaatsen zich in de
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richting van de stormgedreven stroming, met een snelheid van ongeveer 1-10 meter per jaar.
Naast de topografische variatie, ofwel de veranderingen in waterdiepte die de ruggen mar-
keren, is in dezelfde gebieden ook een opvallende variatie in de korrelgrootte verdeling van
het oppervlakte sediment aanwezig. Het sediment aan het oppervlak van de ruggen bestaat
voornamelijk uit zand, met slechts kleine hoeveelheden modder, grof schelpen materiaal en
grind. Voor kustaangehechte banken bevindt het gemiddeld fijnste sediment mengsel zich op
de stroomafwaartse (en zeewaartse) zijde van de ruggen, terwijl het grofste sediment zich op
de stroomopwaartse (en landwaartse) zijde bevindt. In de rechter afbeelding van figuur 1.4
is dit patroon geillustreerd voor een sectie gemeten dwars op de kust van Long Island. Deze
variaties over de ruggen domineren vaak over grootschaligere trends in de omgeving.

In gebieden waar het getij een belangrijke rol speelt in de waterbeweging, treft men veelal
een ander type zandruggen aan: getijbanken (tidal sand ridges’). De kammen van deze
zandruggen zijn cyclonaal, d.w.z. anti-kloksgewijs op het Noordelijk Halfrond, geroteerd
ten opzichte van de dominante getijstroomrichting. De getijbanken hebben afmetingen van
dezelfde grootte orde als voor kustaangehechte banken. De hoogste kammen zijn echter
waargenomen voor de, meestal in dieper water gelegen, getijbanken. Het is niet goed bekend
of getijbanken zich verplaatsen. Ook over dit type zandruggen is een duidelijke variatie van
de gemiddelde korreldiameter van het oppervlakte sediment waargenomen. Een voorbeeld
hiervan is weergegeven in figuur 1.5 voor de Belgische kustzee. Het grofste sediment ligt nu
juist rond de kammen van de banken. Het begrijpen van deze variaties in korreldiameter over
zandruggen is één van de doelstellingen van dit onderzoek.

Beiden typen zandruggen ontstaan over een tijdsperiode van decennia tot eeuwen. Door
deze langzame evolutie geven waarnemingen geen uitsluitsel over alle mechanismen die hier-
bij een rol spelen. Daarnaast ontbreken vaak gegevens die zowel informatie geven over de
topografie, de waterbeweging en de hoeveelheid verplaatst sediment. Eén van de theorieén
voor het ontstaan van zandruggen is gebaseerd op de hypothese dat ze een dynamisch geheel
vormen met de waterbeweging, waarbij er sprake is van een actieve interactie tussen beiden.
Dit is de grondslag van het werk in dit proefschrift.

Onderzoeksmethode

De aanpak van het onderzoek is om bestaande morfodynamische modellen uit te breiden.
Een morfodynamisch model beschrijft de waterbeweging en de evolutie van de bodem aan
de hand van de fysische vergelijkingen. Hierbij is een sterk versimpelde (geidealiseerde)
weergave van de werkelijkheid gebruikt. Zo is bijvoorbeeld de gebruikte geometrie van de
kust geschetst in figuur 2.2. In de beschrijving van de waterbeweging worden slechts de
belangrijkste processen meegenomen. Voor de gebieden waar zandruggen voorkomen zijn
dit vooral de wind- en getijgedreven stromingen. Aangezien het interessegebied horizontale
afmetingen heeft van een paar kilometers en de waterdiepte slechts enkele tientallen meters
is, worden alleen de dieptegemiddelde (horizontale) snelheden beschouwd.

De basisgedachte achter de bodemevolutie is dat door hogere stroomsnelheden meer se-
diment getransporteerd kan worden. Veranderingen in de stroomsnelheid zorgen daarmee
voor de erosie van sediment van de zeebodem op de ene plaats en depositie op een andere
plaats. Deze verandering in de stroomsnelheid kunnen ontstaan door veranderingen in de
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lokale waterdiepte, die veroorzaakt worden door de aanwezigheid van kleine oneffenheden
op een vilakke bodem. Onder sommige omstandigheden zorgt dit voor een toename van de
depositie van sediment, waardoor kleine verstoringen in de bodem kunnen uitgroeien tot bo-
demvormen.

Zandruggen ontstaan op tijdschalen (decennia-eeuwen) die veel langer zijn dan de do-
minante tijdschalen voor de waterbeweging (seconden - dagen). In het model worden om
deze reden slechts de netto verplaatsingen van het sediment gedurende enkele golf- en ge-
tijperioden meegenomen. Op deze manier kunnen met behulp van wiskundige methoden
oplossingen gezocht worden die de belangrijkste kenmerken (oriéntatie, golflengte, migra-
tie en groeisnelheid) van de ruggen reproduceren. De analyse van dit soort modellen geeft
inzicht in de fysische mechanismen die essentiéel zijn voor het bestaan van een bepaald ty-
pe bodemvorm. De toepassing van deze onderzoeksmethode is in het verleden al succesvol
gebleken voor verschillende soorten bodemvormen, waaronder ook zandruggen.

Resultaten

In hoofdstuk 2 zijn de processen onderzocht die het samen voorkomen van zowel kustaange-
hechte banken als getijbanken in eenzelfde kustzee kunnen verklaren. Deze situatie doet zich
onder andere voor langs het centrale deel van de Nederlandse kust (figuur 2.1), waar de getij-
banken zich verder uit de kust bevinden. Dit gebied wordt gekenmerkt door de aanwezigheid
van een sterke getijstroom en het met enige regelmaat voorkomen van stormen.

Het gebruikte model beschrijft zowel de situatie tijdens stormen, als tijdens rustig weer
condities. De eerste kenmerkt zich door een sterke windgedreven stroming, transport van
sediment in suspensie in de waterkolom en een sterke opwerveling van het sediment door
golven. Onder deze omstandigheden voorspelt het model de groei van kustaangehechte ban-
ken. De tweede situatie is representatief voor een waterbeweging aangedreven door het getij
en transport van sediment aan de bodem. Hiermee kunnen getijbanken worden gesimuleerd.
Essentiéle condities voor het tegelijkertijd voorkomen van beide typen zandruggen zijn
bepaald uit een combinatie van bovenstaande modeltoestanden. Dit zijn de aanwezigheid van
zowel een sterke getijstroming, als een storm frequentie (gemiddeld tijdspercentage stormen
over tientallen jaren) die hoog genoeg is om te zorgen voor een stroming van vergelijkbare
grootte. De stroomsnelheden zijn hierbij ongeveer 0.5 m/s. Voor de zuidelijke Noordzee
betekent dit een stormfrequentie van 2-8%, welke overeenkomt met schattingen uit winddata.
In dit hoofdstuk is, net als in de bestaande modellen voor zandruggen, aangenomen dat het
zand op de bodem gekenmerkt wordt door &én enkele korreldiameter.

De nadruk in dit proefschrift (hoofdstuk 3-5) ligt op het modelleren van de waargenomen
korrelgrootteverdelingen van het bodemsediment over de zandruggen. Om deze te kunnen
modelleren is onderscheid gemaakt tussen transport van fijn en grof sediment. Verschillen
hierin kunnen ontstaan door de invloed van *hiding’: de krachten die de korrels ondervinden
door de stroming zijn kleiner voor de fijnere korrels, omdat deze afgeschermd (’verstopt”)
liggen tussen de grovere korrels. Voor bodemtransport zorgt dit voor een afname in de mo-
biliteit van de fijne sediment fractie. Voor sediment in suspensie neemt het transport van de
fijne sediment fractie relatief toe ten opzicht van de grove fractie; dit komt doordat tevens is
meegenomen dat grover sediment makkelijker uitzakt uit de waterkolom.
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Hoofdstuk 3 en 4 laten zien dat "hiding’ effecten binnen de context van een geidealiseerd
model voor zandruggen kunnen leiden tot de sortering van sediment, wat resulteert in een
ruimtelijk niet-uniforme verdeling van de gemiddelde korrelgrootte in het gebied. Dit is
gedaan voor kustaangehechte banken (hoofdstuk 3) langs de kust van Noord Amerika, een
gebied waar getijbanken afwezig zijn. Storm condities komen hier frequent voor en ge-
tijstromen zijn verwaarloosbaar klein. De verdeling van sediment komt goed overeen met
veldwaarnemingen: het fijnere sediment bevindt zich op de stroomafwaartse zijde. De ver-
schuiving tussen de locatie van de maxima in de gemiddelde korrelgrootte verdeling en de
locatie van de kammen van de ruggen is het gevolg van het dominante transport van sedi-
ment in suspensie. Daarnaast zorgt het meenemen van de interactie tussen de korreldiameters
voor een verandering in de karakteristieken van de kustaangehechte banken: de groeisnelheid
neemt af, en de migratiesnelheid en golflengte (afstand kam - kam) van de ruggen nemen toe.

In hoofdstuk 4 is de sortering onderzocht voor de getijbanken voor de Belgische kust. In
tegenstelling tot de Atlantische kust van Noord Amerika is hier is de getijstroom dominant.
De belangrijkste component hiervan is het My getij, welke het resultaat is van de aantrek-
kingskracht tussen de zon en de maan en zorgt voor twee keer per dag hoog water. In het
model wordt de invloed van stormen en golven verwaarloosd. Tijdens deze zogenaamde rus-
tig weer condities is aangenomen dat het sediment transport alleen plaatsvindt aan de bodem.
Onder de aandrijving van de waterbeweging door het M5 getij ontstaat een patroon in de
gemiddelde korreldiameter, waarbij het grofste sediment zich rond de kammen bevindt. Dit
komt overeen met de waargenomen trend. De aanwezigheid van een windgedreven stroming
naast het My getij, kan het sorteringspatroon verschuiven ten opzichte van de topografie.
Hetzelfde effect kan worden bereikt door het meenemen van een getijcomponent met een an-
dere periode, zoals het M, getij, waardoor een asymmetrische getijstroom ontstaat (maximale
vloed snelheid hoger dan maximale eb snelheid). Op sommige locaties zijn zulke verschui-
vingen waargenomen.

Bovenstaande resultaten zijn alleen representatief voor de eerste fase van het ontstaan van
de ruggen, waarbij de hoogte van de kammen nog klein is ten opzicht van de waterdiepte. De
toegepaste analyse methode (lineaire stabiliteitsanalyse) laat alleen exponentiéel groeiende
oplossingen toe, en is daarom slechts een goede benadering voor de initiéle groei. Deze
beperking zorgt voor een relatief simpel stelsel van vergelijkingen, waardoor de interpretatie
(oorzaak - gevolg) van de gevonden resultaten gemaakt kan worden. De vraag is echter hoe
de resultaten kunnen worden gerelateerd aan de veldwaarnemingen van zandruggen met een
eindige (maar niet kleine) hoogte.

In hoofdstuk 5 is de analyse van hoofdstuk 3 voor kustaangehechte banken hiertoe aan-
gepast. De resultaten van de niet-lineaire analyse uit hoofdstuk 5 geven een indicatie van
de uiteindelijke evenwichtstoestand van de banken. De schatting voor de evenwichtshoogte
(enkele meters), tijd voor het bereiken van deze hoogte (enkele eeuwen) en migratie (en-
kele meters per jaar) komen goed overeen met de waarnemingen. Echter, de variaties in
korreldiameter over de banken zijn onrealistisch klein, welke mogelijk een oorzaak heeft in
de beschrijving van de bodemlaag van waaruit het sediment transport plaatsvindt. In hoofd-
stuk 6 worden de aannamen van de modellen die zijn gebruikt bediscussieerd. Tevens worden
mogelijke punten van verbetering aangedragen.
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Tijdens de afronding van het manuscript voor de leescommissie, leken de dagen opeens
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Delft en Utrecht. Gelukkig was er genoeg steun om dit wat te verlichten. Mijn voorstel om
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Het vertrouwen dat Huib daarmee in mij stelde was erg prettig. Gelukkig waren er nog
genoeg verlofdagen over voor als er thuis dan toch teveel andere zaken waren die net even
belangrijker leken.
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Als laatste, maar zeker niet als onbelangrijkste, wil ik ook Garrelt bedanken voor het mo-
gelijk maken van het thuiswerken. Ons eigen computernetwerkje thuis werkte, na wat opstart
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