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Preface

Already in the late 18th century scientists speculated about the existence of stellar
objects whose mass was confined to such a small space that the escape velocity of any
other object would exceed the speed of light. For this to happen the mass density of the
stellar object must be very large. This can occur if a star collapses under the pressure
of its gravitational self-interaction. Our sun, for instance, would have to shrink to a
ball with radius of approximately 3 km. The gravitational forces of such a collapsed
star are so strong that nothing, not even light-rays, can emerge from it. Nowadays,
these objects are called black holes, and they have, ever since their early theoretical
discovery, fascinated physicists and non-physicists alike.

For many theoretical physicists black holes are a kind of laboratory, in which
they put their ideas and theories to a test. In fact, many of the questions concerning
black holes touch the fundamental open problem of contemporary theoretical physics,
namely that of reconciling quantum theory with the theory of gravity (general relativ-
ity). When describing black holes elements of both theories become relevant. Black
holes therefore serve as probes for the yet unknown theory of quantum gravity.

For general relativity, black holes are simply spacetimes that possess horizons.
This means that any signal emanating from the region of spacetime within the horizon
stays eternally trapped. In particular, the singularity at the center of a black hole
cannot be seen from a distant observer. Such an observer can actually get to know
very little about a black hole (without falling in). All information that is measurable
is associated to long-range forces exerted by the black hole. Actually, from far away,
a black hole looks very much like a particle with a certain mass and a certain charge.
This means that, once the black hole has settled down in its final state, all the details
of the in-falling matter and radiation, which formed the black hole during the period
of collapse, have been averaged out. This is sometimes expressed by the one-liner: “a
black hole has no hair”.

The theory of black holes is a well-developed subject in general relativity, and
one of the cornerstones of this theory is formed by the laws of black hole mechanics.
Remarkably, these laws share a close similarity to the laws of thermodynamics. One
of the laws, for instance, states that the horizon area cannot decrease in any physical
process. The same is true for the entropy of a thermodynamic system. This led Beken-
stein to the conjecture that black holes are, in fact, thermodynamic ensembles and that

vii



viii Preface

their area is a measure for the entropy. In the context of the classical theory of black
holes, however, this analogy is a purely formal one.

The study of quantum field theory in a spacetime containing a black hole supports
the thermodynamic interpretation that Bekenstein gave to the black hole area. Under
some very general assumptions, Hawing showed that black holes do emit particles
due to a quantum effect. The effect responsible is called spontaneous pair production,
with which the process is meant in which the vacuum spontaneously emits a particle
and an anti-particle. If gravity is weak, the particle and the anti-particle enjoy only a
very short lifetime as they almost immediately annihilate each other and the resulting
energy is reabsorbed by the vacuum. On an average, energy therefore stays conserved.
But when this particle/anti-particle-pair is subject to the strong gravitational forces just
outside the black hole horizon, the anti-particle tends to be sucked in by the black hole,
giving the particle a chance to escape before facing annihilation. The predominantly
positive energy modes carried by the escaping particles are measured by a distant ob-
server as radiation. This radiation was found to be that characteristic of a black body
at the so-called Hawking temperature. This thermal radiation does not reveal anything
of the inner structure of the black hole: it captures only the random fluctuations of
the vacuum near the horizon, polarized by the strong gravitational forces. This is a
rather disturbing conclusion, for it implies that a black hole is a sink for information:
if particles in very particular quantum states fall into the black hole, all of the informa-
tion concerning their states is lost, because the black hole radiates but thermally. Such
an information loss seems to be in conflict with the quantum mechanical principle of
unitary time-evolution.

On the other hand, Hawking’s discovery that black holes radiate and hence have a
temperature suggests that the analogy between the laws of black hole mechanics and
the ones governing a thermodynamic system can be taken more literally. Recall that
the thermodynamic properties, such as pressure, temperature, or entropy of an ideal
gas, for instance, are explained in the context of statistical physics as averages of cer-
tain observables of an underlying quantum theory of microscopic degrees of freedom.
The picture of treating a black hole as a thermodynamic system would become com-
pelling if, in a similar way, the laws of black hole mechanics would result from the
statistical treatment of the underlying degrees of freedom describing the black hole.
What would these microscopic degrees of freedom be?

This question is one of the strongly debated issues in black hole physics. While
the classical theory of gravitation is very successful in describing the large scale struc-
ture of the universe, its applicability is limited when it comes to the small scale struc-
ture of spacetime. Providing a description of the microscopic degrees of freedom of
a black hole is a great challenge for any candidate theory of quantum gravity. String
theory has provided some exciting insights into the microscopic nature of black holes,
and much of this thesis is dedicated to the exploration of the consequences of this ap-
proach. String theory does not change the laws of quantum mechanics, but it delicately
changes the way we think about spacetime and herewith gravity. According to string
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theory, the texture of spacetime is made up of vibrating strings, and their fusing and
splitting captures all the possible ways spacetime can be deformed. These effects can
be seen only at very small length scales, or equivalently, at very high energy scales.
Spacetime then, as we perceive it, is something like the deep, collective rumbling of
such vibrating strings. This spacetime is necessarily ten-dimensional. Six of the ten
dimensions are wrapped on a tiny compact space, which is practicably invisible to us,
such that the everyday laws of physics are still effectively defined in four-dimensional
spacetime. String theory regards the microscopic degrees of freedom of black holes
as the vibrational patterns produced by strings trapped on such tiny compactification
spaces.
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Outline of this thesis

This thesis is written for a specialist audience. I have decided not to introduce and
review much of the material covered in this thesis in an elementary way. For most sub-
jects there exists a vast amount of introductory texts and I provide references where
this is appropriate. The first two chapters are, however, introductory in style. In
chapter I an overview over some of the fascinating aspects of black hole physics is
provided. In particular, I discuss the string theory approach to black hole entropy.
One of the consequences of the string theory results is that black hole entropy can
be understood within the context of an effective field theory only if one resorts to
supergravity theories with higher-order curvature interactions. To this extent, I first
introduce some relevant elements of N =2 supersymmetric theories and supergravity
theories in chapter II. In chapter III N = 2 supergravity theories with higher-order
curvature interactions are described. Chapter IV contains a classification of the fully
supersymmetric vacua and a characterization of a large class of stationary BPS black
hole configurations in the presence of higher-derivative interactions. In chapter V the
derivation of the macroscopic entropy formula appropriate for theories with higher-
order curvature interactions is reviewed and compared to the results of string theory.
Furthermore, in the absence of higher-order curvature interactions, the metric on the
moduli space of simple multi-centered black hole solutions is calculated. In chap-
ter VI, finally, a formalism to derive the geodesic description of generic gravitational
solitons is developed.
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I

Black holes and string theory

In this chapter an overview of some of the fascinating aspects of black hole physics
is presented. Section 1 contains a discussion of the laws of black hole mechanics.
These bear a striking similarity to the laws of thermodynamics. For quite some time,
the consequences of this formal analogy remained opaque. One of the remarkable re-
sults of string theory is that it provides a microscopic description of a certain class of
black holes. As a result, the thermodynamics of these black holes is derived from the
statistical theory of the underlying microscopic degrees of freedom. The prototypical
black holes described by string theory are the Reissner-Nordström black holes. Some
of their properties are discussed in section 2. In sections 3 and 4 we turn to the micro-
scopic description of these black holes and derive the entropy formula by microstate
counting. In section 5 we discuss alternative approaches to black hole entropy.

1. The laws of black hole mechanics

The theory of black holes is a well-developed subject in general relativity. Two results
form the cornerstone of this theory: the uniqueness theorems and the laws of black
hole mechanics. The uniqueness theorems state that, while a black hole can form
from an asymmetric gravitational collapse, the asymptotic equilibrium configurations
of Einstein-Maxwell gravity are axisymmetric and characterized by just three param-
eters, the total mass M , the total charge Q, and the angular momentum J . All other
details of the matter and radiation that form the black hole are dissipated off as grav-
itational and electromagnetic radiation in the process of collapse. The corresponding
three-parameter class of equilibrium solutions is formed by the Kerr-Newman solu-
tions. In this thesis we will be concerned mainly with the non-rotating subclass, the so-
called Reissner-Nordström black holes. While the three parameters (M, Q, J ) mea-
sure to the spatial asymptotic fall-off of the gravitational and electromagnetic fields
there are also theorems that refer to the properties of the black hole horizons: one
states that the surface gravity κ , which measures the acceleration of an object near the
horizon, is constant on the horizon (see e.g. [1]), the other result [2] implies that the
horizon area A of a black hole does not decrease in physical processes, δA ≥ 0. These
results are based on theorems of differential geometry and depend only on the geomet-
rical definition of black hole horizons and on certain weak assumptions concerning the
type of matter distribution.

1



2 Black holes and string theory

The constancy of κ on the horizon and the non-decreasing horizon area are rem-
iniscent of the zeroth and second law of thermodynamics, which state that the tem-
perature is constant throughout a body in thermal equilibrium and that the entropy of
such a system does not decrease in any physical process. This analogy is even more
compelling in view of the differential mass formula derived in [3],

δM = κ

8π
δA −�δJ +8δQ .

This formula expresses the change in the total mass of the black hole under a small
stationary perturbation of the solution. Here, the conjugate variables κ , �, and 8 are
the surface gravity, the angular velocity at the horizon, and the co-rotating electric
potential at the horizon, respectively. (There is also an analogue of the third law of
thermodynamics, but we will not be concerned with this.) Taken together, these rela-
tions are called the laws of black hole mechanics. As stressed in [4], it is important to
realize that at this point the similarity between the laws of thermodynamics and those
of black hole mechanics is a purely formal one. The zeroth and second law of black
hole mechanics are theorems of differential geometry and quite different in essence
from the corresponding laws of thermodynamics, these being empirical laws describ-
ing the large scale approximation to a set of complicated underlying microscopic laws
governing the equilibrium system. The analogy between mass M and energy E , sur-
face gravity κ and temperature T , and horizon area A and entropy S seems particularly
questionable when it comes to the temperature: by its very definition, a classical black
hole does not radiate and there seems no way to run it as a heat-machine. It is therefore
hard to understand why κ should have anything to do with the zero temperature of the
classical black hole.

Quantum mechanically, black holes are not so cold after all. The spontaneous
quantum particle creation in the immediate vicinity of the horizon results in so-called
Hawking radiation [5]. In Hawking’s approximation, the radiation is the perfectly
thermal one of a black body. Its temperature is proportional to the surface gravity of
the black hole,

TH = h̄κ
2π

. (1)

This result supports the view that there is indeed more to the formal analogy sketched
above but shows at the same time that a full understanding of these issues necessarily
involves a quantum theory of black holes. The analogy could be taken literally, if
the surface area of the horizon would in fact measure the entropy of some underlying
microscopic degrees of freedom of the black hole, as conjectured first by Bekenstein
[6],

Sbh

kB
= 1

4
A

l2
P
.

Here, kB is Boltzmann’s constant and lP is the Planck length. If the entropy could
be understood in terms of statistical physics, where the entropy is associated with the
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logarithm of the degeneracy of states of the quantum black hole for given energy and
charge, this picture would become compelling

It is here that string theory has made a remarkable breakthrough. We will dis-
cuss it in the following sections. For doing so we first review some properties of the
Reissner-Nordström black holes. These black holes serves as a prototype for the string
theory discussion. We will discuss more general black holes in chapter IV.

2. Reissner-Nordström black holes

Let us take a closer look at the class of static non-rotating charged black holes. The
metric and electromagnetic field strength of these so-called Reissner-Nordström black
holes are given bya

ds2 = −1
r2 dt2 + r2

1
dr2 + r2d�2

2 , (2)

F = Q
r2 dt ∧ dr , (3)

where 1 = r 2 − 2Mr + Q2 = (r − r+)(r − r−) and d�2
2 is the SO(3)-invariant

metric on the unit two-sphere S2. Here, M denotes the mass of the black hole, Q the
charge, and r is the radial coordinate. This configuration is a solution of the Einstein
and Maxwell equations, which derive from the bulk actionb

(2κ2
4 ) S4 =

∫
d4x

√
|g| R − 1

2

∫
∗F ∧ F ,

where R is the Ricci scalar and F is the U(1)-field strength. If M < |Q| there are no
real roots r±, and there is a naked singularity, which is not hidden by a horizon. A
classical argument shows that such a spacetime cannot have formed by gravitational
collapse (see e.g. [7]). For M ≥ |Q| one has two real roots r± = M ±

√
M2 − Q2.

The outer radius r+ defines the location of the future event horizon. The associated
surface gravity κ is given by

κ = (r+ − r−)
2r2

+
=

√
M2 − Q2

(M +
√

M2 − Q2)2
.

The surface gravity is independent of the angular variables and therefore indeed con-
stant on the horizon. An interesting limit to consider is M → |Q|, for which the
horizon degenerates and the surface gravity vanishes, κ → 0. The black hole is called
extremal in this limit. It still describes a smooth geometry, the singularity of the black
hole being hidden just behind the horizon at r± = M . Semi-classically, extremal black
holes are stable and do not evaporate, since their Hawking temperature (1) vanishes.

aAppendix A contains a summary of notations and conventions used in this thesis.
bThe four-dimensional gravitational coupling constantκ4 is related to four-dimensional Newton’s con-

stant by κ2
4 = 8πGN. We will usually use Planck units for which GN = h̄ = c = 1. In these units all

quantities, such M, Q, or the radius r are dimensionless.



4 Black holes and string theory

Another interesting feature is that in the extremal limit there exist multi-center gener-
alizations of this geometry, describing stationary configurations of multiple extremal
holes placed at arbitrary relative positions. These configurations are possible due to
the exact cancellation of the electric repulsion and the gravitational attraction. We
discuss such configurations at length in chapter IV.

In a supersymmetric context, these properties (along with the mass bound M ≥
|Q| that guarantees the regularity of the solutions) can be understood by supersymme-
try: the Reissner-Nordström black holes are solutions of the field equations derived
from an N = 2 supersymmetric extensions of the Hilbert-Maxwell action, and as
such subject to N = 2 supersymmetry transformations. The underlying supersym-
metry algebra has a central charge Z . Generic asymptotically flat solutions do not
preserve any global supersymmetries, and hence constitute long representations of the
supersymmetry algebra. Their masses are subject to the N = 2 supersymmetric mass
bound M ≥ |Z |. The extremal Reissner-Nordström black holes, on the other hand,
preserve one globally defined Killing spinor and hence constitute short representations
of the N = 2 supersymmetry algebra. Consequently, these configurations saturate the
mass bound, M = |Z |, where the central charge in the present case is given by |Q|.
Such solutions are called BPS configurations. This interpretation of the mass bound
(and its saturation) is much like the interpretation of the Bogomol’nyi mass bound in
Yang-Mills gauge theory.

3. D-branes, p-branes, and microstate counting in string theory

Many curved string backgrounds are known, so-called p-branes, describing brane-like
solutions of the equations of motion of one of the various ten-dimensional supergravity
theories. The p-branes are extended in p spatial directions and describe non-trivial
spacetime geometries carrying Ramond-Ramond (RR) fluxes or fluxes of the Neveu-
Schwarz (NS) gauge fields. In the latter case these are the fundamental string, called
the F-string, and the NS5-brane. There are also 2-branes (membranes) and 5-brane
solutions of eleven-dimensional supergravity, termed M2-branes and M5-branes. We
will give explicit M5-solutions in the next section.

The various sets of ten-dimensional supergravity field equations result from the
requirement that the non-linear sigma model, describing the propagation of strings in
some background, is at a critical point and hence corresponds to a conformal field the-
ory. The conditions of criticality (the β-functions) are calculated in string perturbation
theory by a double expansion: one is the loop expansion given in terms of the string
coupling constant, which is related to the vacuum expectation value of the dilaton. The
other is an expansion in the dimensionful parameter α ′ and describes the coupling of
the string world-sheet to operators of higher mass dimension. Both these expansions
modify the conditions of criticality and therefore the ten-dimensional actions these
conditions are derived from. There is evidence that the various ten-dimensional field
theories one obtains by considering different types of strings are all related to a single
eleven-dimensional theory called M-theory.
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The relevance of the p-brane solutions was fully appreciated when open string
theories with Dirichlet boundary conditions, so-called Dp-branes, were studied. An
open string theory on a Dp-brane is a string theory describing world-sheets whose
boundary is held fixed on a p-dimensional spatial hypersurface. The ends of the
strings in a D3-brane theory, for instance, sweep out world-lines in a 3+1-dimensional
spacetime. It is simple to quantize a Dp-brane string theory, if the p-dimensional hy-
persurfaces are flat and embedded in flat spacetime, since in this case the open strings
are free. In these flat D-brane theories one finds modes in the spectrum (of the open
strings attached to the D-brane) which deform these rigid hyperplanes. One identifies
such modes with the fluctuation modes of these rigid hyperplanes themselves, sug-
gesting that they are dynamical objects in their own right. This is much like the case
of the closed perturbative string defined on a flat spacetime background. It contains
massless gravitational modes which represent fluctuations of the background itself.
More striking was the realization [8] that the D-branes actually carry charges of the
RR gauge fields and are in one-to-one correspondence with the various RR p-brane
solutions of the effective ten-dimensional field theories.

Many of the p-brane solitons are black, that is, they posses event horizons in the
extended dimensions transverse to the branes. If one therefore wraps the p spatial
directions, along which a black p-brane is stretched, on a tiny compact manifold, one
is effectively left with the extended dimensions containing a horizon. String theory
thinks about black holes as interacting strings trapped on tiny compact manifolds.
More precisely: the string backgrounds, described by the lower-dimensional effective
field theory backgrounds such as the Reissner-Nordström black holes, are viewed as
the long-range fields produced by stable classical string sources of elementary (closed)
strings, oscillating and wrapped around compact dimensions. String theory accounts
for the entropy of black holes by considering the degeneracy of such oscillating and
wrapped string configurations, which produce the same long-range fields and there-
fore the same asymptotic charges. Every one of these solitonic string configurations
defines a consistent string background and hence a conformal sigma model. One way
to account for this degeneracy is to analyze the spectrum of one such conformal sigma
model. Certain states in its spectrum correspond to marginal operators that deform
the reference sigma model to another nearby conformal theory defining a string back-
ground with the same long-range behavior. When speaking about supersymmetric
black holes the relevant conformal field theories must possess a certain amount of
(world-sheet) supersymmetry, and the degeneracy of these conformal theories is de-
scribed by supersymmetric marginal deformations. For supersymmetric sigma models
the space of such deformations is determined by the (cohomology of the) target space.
The problem therefore often reduces to one of understanding the topological proper-
ties of the wrapped compactification manifold. In the next section we will present
a simple example of such a microstate counting, for which the problem reduces to
enumerating the different possible intersections of the branes on the compactification
manifold.



6 Black holes and string theory

In practice not every lower-dimensional black hole can be described by string
theory, as it is not sufficient to only identify the relevant conformal sigma model
describing the interacting strings trapped on the compactification manifolds. Quan-
titative results, say for the spectrum of the theory, can be given only if the string
theory perturbation expansion is controllable. This means that the effective string
coupling (measured by the dilaton in the p-brane background) must be small such
that string loop corrections are subleading. At the same time, various curvatures and
field strengths in the string frame must not blow up, such that world-sheet corrections
(α′-corrections) are subleading. This is the case for many dyonic black holes in the
limit of large charges, and we will discuss an example of such a black hole in the next
section.

Lower-dimensional black holes can be realized by wrapping branes with NS
charges or with RR charges. The first proposal [9] was to identify the microstates
of extremal electric black holes with the excitations of the fundamental string. This
was worked out in great detail in [10,11]. The realization of black holes in terms of
RR-branes overwhelmed the discussion ever since the discovery of the D-brane tech-
nology. The method one resorts to in this context is the use of a weak-strong coupling
duality. This amounts to swapping the conformal field theory description of the throat
region of the RR p-brane (for the “electrically” charged backgrounds with p > 3 the
effective string coupling is large in the limit of large charges), with the weakly cou-
pled Dp-brane theory of the flat rigid p-hyperplanes corresponding to the asymptotic
region of the curved p-brane solution. Of course, such a duality is not expected to
be a symmetry of the full quantum theory. According to the lore, there is, however,
a precise correspondence of the so-called BPS spectra of the dual theories, since the
properties of so-called BPS states, such as their mass, do not change when smoothly
changing the string coupling constant. Using D-brane techniques circumvents having
to deal with strongly coupled strings. But since it crucially depends on the properties
of BPS protected states, its applicability is in principle quite limited. We comment
on some remarkable result for near-extremal black holes at the end of the following
section. Interesting work was also performed in the context of NS-brane realizations.
We comment on these approaches in section 5.

4. Microstate counting for the extremal Reissner-Nordström black hole

In this section we sketch the string theory microstate counting for the simple example
of an extremal Reissner-Nordström black hole (2). We realize this configuration in
terms of intersecting M5-branes. These are brane solutions of eleven-dimensional
supergravity [12], the bosonic part of which reads

(2κ2
11) S11 =

∫
d11x

√
|G| R − 1

2

∫
∗F4 ∧ F4 + 1

6

∫
C3 ∧ F4 ∧ F4 .
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Here G is the eleven-dimensional metric, and F4 is the field strength of a three-form
potential C3. The Bianchi identity and the field equation are given by

dF4 = 0 , d (∗F4 + F4 ∧ C3) = 0 .

The combination H7 = ∗F4 + F4 ∧ C3 is the dual field strength to F4. This couples to
“electric” membrane charges (two-branes), while C3 couples to “magnetic” five-brane
charges (five-branes). These charges are conserved charges due to the Bianchi identity
and the equation of motion,

Q′ =
∫

∂V8

(∗F4 + F4 ∧ C3) , P =
∫

∂V5

F4 .

where V8 and V5 are the volumes orthogonal to the p = 2 and p = 5 spatial directions
of the branes sources.

The background describing three intersecting M5-branes is given by [13–15],

ds2
11 = (F1 F2 F3)

−2/3
[

F1 F2 F3(dudv + K du2)+ dEx 2

+ F2 F3(dy2
2 + dy2

3)+ F1 F3(dy2
4 + dy2

5)+ F1 F2(dy2
6 + dy2

7)
]
,

F4 = 3
[

3∗ dF−1
1 ∧ dy2 ∧ dy3 + 3∗ dF−1

2 ∧ dy4 ∧ dy5 + 3∗ dF−1
3 ∧ dy6 ∧ dy7

]
.

Here u = y1 − t and v = 2t , and 3∗ is the Hodge-duality with respect to the three
coordinates Ex transverse to the three branes. The functions F−1

i are harmonic func-
tions, which in the simplest case have the form F−1

i = 1 + Pi/|Ex|, such that the
corresponding branes have charges Pi and vanishing Q′

i . The y-coordinates label the
directions along which the branes are stretched. We can visualize this schematically
in the table 1. The direction y1 is parallel to all the branes. The effect of the term

TABLE 1. Three intersection M5-branes: the directions along the brane are
denoted by “—”, the directions transverse to the brane by “X”.

brane charge y1 y2 y3 y4 y5 y6 y7 Ex
M51 P1 — X X — — — — X

M52 P2 — — — X X — — X

M53 P3 — — — — — X X X

K = 1 + Q/|Ex| in the metric is to add momentum Q along the direction y1. This
is necessary if we want to compactify all internal radii yi on circles. The momen-
tum prohibits the y1-circle from shrinking.c The metric is regular at |Ex| → 0 but

cIntuitively, this is quite simple to see: the metric component in the direction y2, for example, is
proportional to [F−2

1 F2 F3]1/3, corresponding to the fact that the second and third brane are extended in
the y2-direction, while the first brane is transverse to this direction. In fact, as one approaches a brane,
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possesses a horizon, which is a surface in the (t, Ex) subspace at r = |Ex| = 0 and is
extended in the seven dimensions of the branes, hiding their charges Pi . The four-
dimensional Reissner-Nordström black hole geometry is obtained from this eleven-
dimensional configuration by compactifying the seven dimensions along which the
branes are stretched. We consider the simple case of a torus compactification. The
compactification radius of the direction yi is taken to be L i . We remark that the vol-
ume of the six-torus spanned by the y2 to y7-direction is independent of the radial
distance r from the horizon in the extended directions. The area of the horizon is
consequently given by

A9 = V6 lim
r→0

∫ √
K (F1 F2 F3)1/3 dy1

[
(F1 F2 F3)

−2/3r2d�2
2

]

= 4π V7
√

Q P1 P2 P3 ,

where V7 = L1V6 = ∏
L i and d�2

2 is the SO(3)-invariant metric on the unit two-
sphere S2. Upon compactification the metric (in the Einstein frame) becomes [16]

ds2
4 = −λ2(r)dt2 + λ−2(r)(dr 2 + r2d�2

2) , (4)

where

λ2(r) =
√

K −1 F1 F2 F3 = r2
√
(r + Q)(r + P1)(r + P2)(r + P3)

The area of the horizon in four dimensions is just

A2 = (V7)
−1 A9 = 4π

√
Q P1 P2 P3 .

This black hole is a generalization of the (extremal) Reissner-Nordström black hole
we presented in the previous section and includes both an electric charge Q as well
as magnetic charges Pi . This comes from the fact that the reduction of eleven-dimen-
sional supergravity on the seven circles produces several different U(1)-gauge fields
which can carry the different charges Q and Pi of the black hole. We note, however,
that certain characteristic features are maintained. The horizon area for the extremal
Reissner-Nordström black hole (2) was given by 4πr 2

+ = 4πQ2. Our membrane
realization of the black hole has the same feature, if we take, for instance, Q = Pi .

We can rewrite the four-dimensional electric and magnetic magnetic charges Q
and Pi as the quantized momenta and the winding numbers on the M-branes. The
precise discussiond of the quantization conditions and of charge normalizations can

|Ex | → 0, the volume perpendicular to the brane expands, while it shrinks in directions parallel to the brane
as a result of the brane tension. This can be seen by comparing the different powers of Fi appearing in
the metric. So, as far as the y2-direction is concerned, the M52-M53-brane system is stabilized, by placing
M51-branes perpendicular to them, all with comparable charges. Since all branes are parallel to the y1-
direction, on needs to add momentum along y1 for stabilization.

d The quantization of the M5-brane charges follow from the reduction of the M-theory branes to D-
branes of IIA string theory, for which the quantization conditions of the tensions are known.
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be found in [15]. The result is

Q = κ2
11

V7

N
L1
, Pi = ni

2πX i

(πκ11

2

)1/3
.

where N and ni are the integer numbers of momentum and winding quanta on the
branes: the ni count the number of parallel M5-branes in the i -th orientation, while
there is a quantum N of Kaluza-Klein momentum 2πN/L1 traveling along the y1-
direction. The X i stand for the volumes of the compact transverse directions of the
branes in the i -th orientation, hence X1 = L2L3, X2 = L4L5, and X3 = L6L7. The
entropy can be expressed directly in terms of these integers,e

Sbh = 2π A2

κ2
4

= 2π A9

κ2
11

= 8π2V7

κ2
11

√
P1 P2 P3 Q = 2π

√
n1n2n3 N . (5)

In above formula we used the fact that upon compactification the four-dimensional
gravitational constant κ2

4 is related to the one of the eleven-dimensional theory ac-
cording to κ2

11 = V7 κ
2
4 .

In the following we address the question of how to account for this entropy by
microstate counting. In the microscopic picture the black hole is made up of the three
clusters of ni parallel and relatively displaced M5-branes wrapped on a six-torus times
a circle. Looking at table 1 it is clear that the common intersections of the five-branes
are all along the y1-direction. These intersection form straight strings wrapping the
circle in the y1-direction. With respect to the remaining directions, the branes intersect
on a total of n1n2n3 different points of the six-torus and over a single point in the three
extended directions Ex .

The conjecture about the microstates of a black hole in this setup is the follow-
ing [15]: the dominant contribution to the degeneracy of states is associated with the
intersections of the brane configuration. From an M-theory perspective these intersec-
tions are seen as M2-branes connecting the M5-branes that have collapsed to strings
on the mutual intersections. These collapsed M2-branes give rise to massless modes
that are described by a 1+1-dimensional conformal nonlinear sigma model in the limit
that the radii of the six-torus are much smaller than circle L1. The massless modes
deform the n1n2n3 string-like defects within the 5 + 1-dimensional world-volume
of any of the five-branes. It is therefore suggestive to associate a central charge of
c0 = 4(1 + 1

2 ) to each of the intersections, which accounts for the four bosonic trans-
verse modes and their superpartners. Here, we have assumed that the 1+1-dimensional
model possesses a certain amount of supersymmetry. The total central charge is there-
fore c = n1n2n3c0. Of course, there are other modes of the M5-brane system, which
are not accounted for by this sigma model. In the limit of large charges n i such con-
tributions are subleading as far as the degeneracy of states is concerned. This can be
made more precise when working with D-branes, which are described by their open

eThis is in units for which h̄ = c = 1. In these units all quantities are measured in units of the Planck
length l2P = GN = κ2/8π .
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string excitations [17,18]. Furthermore, we have suppressed the fact that the branes
are actually indistinguishable. As a consequence, one would need to factor out the
permutation group, which would lead to an orbifold theory. For our simple geometry
we can ignore this subtlety [17].

The degeneracy of states of supersymmetric black holes is associated with the dif-
ferent ways one can distribute N-quanta of momenta over the n1n2n3c0 different oscil-
lators describing the string-like defects, while preserving the corresponding amount of
supersymmetry. In the present case this can be accomplished by exciting left-moving
modes only. Since the oscillators of the string-like defects run along the y1-direction,
which is identified under y1 ≡ y1 + L1, the modes are quantized in units of 2π/L1.
The Cardy formula [19] gives the asymptotic degeneracy of states for large excitation
levels N compared to the central charge,

Sstat ≈ log d(c, N) = 2π
√

1
6 Nc = 2π

√
n1n2n3 N , (N � c) .

We see that this corresponds exactly to the entropy Sbh given by the Bekenstein-
Hawking area law (5)!

From a point of view of dualities choosing N � n1n2n4 is somewhat unnatural.
In the case N ≈ ni there is another suggestion on how to count the microstates [20].
The ni quanta of flux can also be realized by three single M5-branes wrapped n i times
around the circle y1. There is only one string-like intersection of the three five-branes
now, but it itself winds n1n2n3 times, so the modes of the single string (c = 6) are
quantized in units of 2π/(n1n2n3L1). The Cardy formula yields the same result.

It should be noted that the details of the compactifications were not all that im-
portant in this analysis. The only information relevant in this calculation was the
number of string-like intersections. The six-torus we considered as the compactifica-
tion manifold possesses non-trivial four-cycles. The n1 M5-branes, for instance, wrap
the four cycle in the direction y4 to y7. The other branes wrapped other cycles of
the six-torus. The cycles triply intersect over points along the y1-direction and dou-
bly intersect over two-cycles. Similar M5-brane setups have been studied, in which
a six-dimensional Calabi-Yau manifold times a circle is utilized as a compactification
manifold. Like in the above torus compactification, the Calabi-Yau spaces possess
self-intersecting four-cycles, on which five-branes can be wrapped. Let us denote
such a cycle by P = pA6A, where 6A is a basis of the forth integer homology class
of the Calabi-Yau manifold. The integers p A correspond to the integers ni of the torus
compactification and count the number of times the M5-brane is wrapped around the
cycle 6A. Like on the six-torus, the four-cycle P intersects over two-cycles and triply
intersects over a point. The number of triple intersections is denoted by C ABC . The
study of the space of deformations of the cycle P within the Calabi-Yau space is quite
involved and relies on certain technical assumptions on the cycle P that correspond
to taking the large charge limit. We do not need the details here. The result [21] is
that the low-energy dynamics of the cycle P is described by a sigma model with (0, 4)
chiral world-sheet supersymmetry. This supersymmetry is crucial for describing the
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black holes in four dimensions, which preserve four supersymmetries. Therefore, the
degeneracy of states of the four-dimensional extremal black hole are accounted for by
the left-moving excitation of the (0, 4) supersymmetric ground state. Calculating the
central charge of the left-moving sector and using the Cardy formula gives the result
for the microscopic entropy

Sstat = 2π
√

1
6 N(CABC pA pB pC + c2A pA) . (6)

Here c2A =
∫
6A

c2(TM), where c2(TM) is the second Chern class of the tangent bun-
dle of the Calabi-Yau manifold. The intriguing consequence of this result is that the
microstate counting predicts a deviation from the Bekenstein-Hawking area law. The
first term under the square root is the term that corresponds to the contribution of the
Bekenstein-Hawking area law. The second term is a deviation and is subleading in
the limit of large charges. This deviation was interpreted in [21,22] as resulting from
R4-corrections to the effective superstring action [23,24]. Such interactions lead to
R2-interactions in the effective four-dimensional field theory after compactification.
In [25] it was shown, that this deviation predicted by microstate counting is indeed in
agreement with the macroscopic entropy based on an effective field theory computa-
tion including higher-curvature interactions. One important ingredient of this analysis
is the adoption of a more general definition of entropy, which is appropriate for gravity
theories with higher-derivative interactions. We will discuss this issue in chapter V.
The second important ingredient is the so-called fix-point behavior. This property is
due to supersymmetry enhancement and expresses the fact that on the horizon of the
black holes the various fields have to take fixed values, which are expressed solely in
terms of the charges. That this property holds even in the presence of R2-interactions
is deduced in chapter IV.

There have been various generalizations of this microstate counting to other types
of brane setups and other compactifications. Physically interesting are the attempts to
generalize the techniques of microstate counting to non-extremal black holes. While
it is simple to construct, e.g., a system of non-extremal intersecting M5-branes [26] in
supergravity and to derive the entropy that results from its compactification, a straight-
forward application of a perturbative string theory calculation to the near-extremal
case does not, at first sight, seem appropriate. Nevertheless, even for non-extremal
static [17,27] and extremal and near-extremal spinning black holes [28,29] microstate
counting has reproduced the expected area law. In addition, near to extremality, phe-
nomena such as Hawking radiation, are captured by perturbative string theory. In [17],
e.g., Hawking radiation is thought of as resulting from open-closed string interactions.
In this picture, a near-extremal black hole is described by taking the same setup as
for the extremal case, but putting, in addition to left-moving, also right-moving open
strings along the common brane intersection. Left- and right moving string modes can
interact and form closed string states. These can scatter off from the branes into the
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transversal directions. It is quite remarkable that to leading order such a simple pic-
ture correctly accounts for the thermal Hawking radiation and reproduces the expected
Hawking temperature.

5. Near-horizon geometry, AdS/CFT, and black hole moduli spaces

Another, complementary approach is to describe the near-horizon degrees of freedom
of a black hole directly in terms of the coupled string theory involving NS-branes. In
fact, the D-brane and NS-brane description are on equal footing from an M-theory
perspective. In the NS-brane picture the microscopic degrees of freedom of the inter-
acting strings near the horizon are related to certain Wess-Zumino-Witten conformal
field theories. In this approach, as well, the entropy of extremal and near-extremal
black holes is successfully reproduced by microstate counting. The setup is particu-
larly appealing, as the microstates are associated directly to string states at the horizon,
and it does not involve any weak-strong coupling duality. We will, however, refrain of
further comment and refer to the literature [26,30–33].

Another line of ideas is inspired by the conjectured AdS/CFT-correspondence
principle [34,35], which proposes that there exists a conformal field theory dual to
string theory on AdS spaces. The reasoning leading to this conjecture will not be
repeated here. A good reference for this presentation is [36]. A phenomenologi-
cally interesting case, where this conjecture is expected to apply, is the near-horizon
geometry of extremal Reissner-Nordström black holes (2). In isotropic coordinates
r = ρ(1 + Q/ρ) this metric is given by

ds2 = −
(

1 + Q
ρ

)−2

dt2 +
(

1 + Q
ρ

)2 [
dρ2 + ρ2d�2

2

]
,

In these coordinates the horizon is located at ρ = 0. If we restore length units, the
near horizon limit is defined by lP → 0 with the dimensionless Q and ρ/ lP held fixed,

ds2
n.h. = − ρ2

Q2 dt2 + Q2

ρ2 dρ2 + Q2d�2
2 . (7)

This is a metric of AdS2 × S2 with SO(1, 2)× SO(3) isometry group and is known as
the Bertotti-Robinson spacetime. The isometry group of the AdS2-part can be made
more explicit in coordinates where q2 = Q3/ρ. The near-horizon metric takes the
form

ds2
n.h. = − Q4

q4 dt2 + 4
Q2

q2 dρ2 + Q2d�2
2 .

The isometry group is generated by the Killing vectors (see e.g. [37])

h = ∂t , d = t∂t + 1
2

q∂q , k = (t2 + q4/Q2)∂t + t q ∂q ,
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which satisfy the algebra f of SL(2,R) with respect to the Lie bracket,

[d, h] = −h , [d, k] = k , [h, k] = 2d .

As we will show explicitly in chapter IV the horizon preserves 8 supersymmetries,
so in the spirit of the AdS/CFT-conjecture one expects that there exists a SU(1, 1|2)
superconformal mechanical dual. This observation renewed the interest in (super)con-
formal quantum mechanics [38–40], and various superconformal extensions were sug-
gested and constructed [41–47]. An interesting proposal for the dual of the string
theory on the AdS2-geometry was presented in [37] who conjectured that the dual
SU(1, 1|2) superconformal quantum mechanical model is in fact an N = 4 supercon-
formal extension of the Calogero model [48]. There are indications that the quantum
mechanical ground state degeneracy in fact scales like the length squared of the sys-
tem.

In the case of AdS2, the AdS/CFT-correspondence is not yet fully understood.
This is partly due to some peculiar features of AdS2 not shared by its higher-dimen-
sional cousins. For instance, it contains two disconnected timelike boundaries, and
hence a holographic interpretation is not obvious. Another observation is that the near
horizon geometry (7) is not the unique extremal ground state with charge Q. This is
related to the existence of multi-centered black holes, which are discussed at length in
chapter IV and V. Multi-centered black holes are extremal and described by metrics
of the form (4), where the harmonic function has poles at multiple centers,

λ(Ex) = 1 +
∑

A

qA

|Ex − Ex A| .

It is interesting to discuss the regime, in which the centers approach each other to
distances much smaller than the Planck length,

|ExA − ExB|/ lP = δ � 1 ,

where we have restored length units. In the near horizon limit, lP → 0, we keep the
distance between the centers δ small but fixed. Keeping the dimensionless |Ex|/ lP and
qA fixed, this limit amounts to dropping the constant term in the harmonic function λ.
For large values of |Ex|/ lP compared to δ the near-horizon geometry looks like AdS2
with metric l−2

P times the expression (7) with radius
√

Q = (
∑

A qA)
1/2. This is called

the geometry of near-coincident black holes [44]. At shorter distances |Ex|/ lP � δ the
throat region branches up into a tree-like structure. Each of its branches ends on the
familiar AdS2 near-horizon geometry of one the centers. In fact, in this limit lP → 0
the asymptotically flat region decouples and one is describing coalescing black holes.
In [44,49,50] arguments are put forward to suggest that the volume of moduli space
of coinciding black holes becomes very large. Together this suggest that studying the
cohomology of this decoupled region of moduli space may account for the degeneracy
of quantum ground states of a single extremal black hole with charge Q = ∑

A qA.
One pictures that in the near-horizon limit the degrees of freedom of a black hole

f Note that the algebras of SL(2,R), SO(1, 2), Sp(2), and SU(1, 1) are all isomorphic.
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are accounted for by bound states of lighter oscillating black holes which are lumped
together by velocity dependent forces [51]. Interestingly, the moduli space metric in
the near-horizon limit exhibits conformal symmetry. The study of the moduli spaces of
multi-centered black holes has been at the center of much attention and is the subject
of chapters V and VI.

These are but a few of the possible approaches to the theory of the quantum black
hole. So far, all of these approaches have relied on specifying some underlying degrees
of freedom which are believed to describe the black hole. In particular, in the D-brane
approach the analysis additionally makes use of supersymmetry. Nevertheless, as far
as the entropy is concerned, we have seen that often specific details of the quantum
gravity model do not play a too crucial role and one might suspect that in fact there
is some underlying symmetry principle which gets inherited by the quantum theory
from the underlying classical black hole background. This has been first investigated
in the context of five-dimensional black hole in [52] and [53], the work of which is
based on [54], who remarked that the asymptotic isometry group of AdS3 is generated
by (two copies of) the Virasoro algebra. On the other hand, AdS3 is the asymptotic ge-
ometry of (2+1)-dimensional BTZ black holes [55], so the conclusion is that the states
of a consistent quantum theory of gravity on this background geometry must fall into
representations of the Virasoro algebra, and therefore constitute the states of a confor-
mal field theory. In fact, the central charge of the corresponding Virasoro algebra can
be calculated and, using the Cardy formula [19], can be successfully compared with
the entropy of the BTZ black hole. There have been various attempts to generalize
this argument to black holes with the same near-horizon geometry as the BTZ black
hole. What remains unsatisfying is that the Virasoro algebra envisaged is the algebra
of deformations of the asymptotic boundary of AdS3 instead of the one of the horizon
geometry as one might expect. To this extent the algebra of surface deformations of
the horizon was analyzed in [56–59]. It was found that it contains a Virasoro algebra
as well.



II

Supersymmetry and supergravity

In this chapter an introduction to N = 2 supersymmetry and supergravity in four
spacetime dimensions is presented. In particular, we discuss vector multiplets and
hypermultiplets in flat spacetimes and coupled to supergravity backgrounds. To this
extent we introduce important elements of the superconformal approach to supergrav-
ity. The emphasis in this presentation is on the geometrical aspects of the target spaces
of the matter multiplets. An important property of theories of abelian vector multiplets
is that their action has the form of a generalized Maxwell Lagrangian, with terms that
are at most quadratic in the field strengths. As a result, the field equations are subject
to electric-magnetic duality transformations. We discuss these transformations in the
supersymmetric context.

The outline of this chapter is as follows: in section 1 we discuss electric-magnetic
duality transformations in a simple setting and discuss their physical relevance. In
sections 2 to 4 we discuss various N = 2 supermultiplets, coupled to flat and rigidly
superconformal backgrounds, and present their actions. In section 5 the coupling to
supergravity is considered. In section 6 we discuss symplectic reparameterizations.
Finally, section 7 contains further details on a coordinate independent formulation of
the vector multiplet geometry. This is illustrated by considering Calabi-Yau compact-
ifications.

1. Electric-magnetic duality

In standard electrodynamics a simultaneous rotation of (E, H ) and (D, B) leave the
Maxwell equations invariant, provided the electric and magnetic charge and current
densities, (ρe, ρm) and (Je, Jm), transform analogously [60]. These rotations give
rise to an equivalence, not to a symmetry. Let us discuss electric-magnetic duality
transformations for a generalized Maxwell action describing n different abelian field
strengths, which we denote by F I ,

4πS[F] = −1
2

∫
i
(
τ̄I J F+I ∧ ∗F+J − τI J F−I ∧ ∗F−J

)
.

15
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Here, we defineda the (anti-)selfdual two-forms F±I = 1
2(F

I ± i ∗ F I ), which satisfy
∗F±I = ∓i F±I , and a constant complex coupling matrix

τI J = θI J

2π
+ 4π i

g2
I J
.

The Bianchi identities and the equations of motion are given by

d(F+ + F−)I = 0 , d(G+ + G−)I = 0 , (1)

respectively, where the field strength G I is defined by

G±
I = −4π

δS
δF±I . (2)

In the language of macroscopic electrodynamics the fields G I = τ̄I J F+J + τI J F−J

comprise the displacement and the magnetic fields, while the F I contains the electric
fields and the magnetic inductions. The couplings τI J thus play the role of the per-
meability and permittivity. The Bianchi identities and field equations (1) are invariant
under the following rotation,


F±

G±


 −→


F ′±

G′±


 =


U Z

W V




F±

G±


 , (3)

where U I
J , Z I J , WI J , and VI

J are n × n submatrices. Demanding that the ro-
tated field strengths (F ′,G′) derive from an action S′[F ′] using (2), implies that the
transformation (3) is an element of Sp(2n,R). Using (2) one finds that the coupling
constants τ ′

I J of the action S′[F ′] must be related to the original ones by

τI J −→ τ ′
I J = (V τ + W )I L [(U + Zτ)−1]L

J . (4)

That the coupling matrix τ ′
I J is symmetric if the transformation (3) is an element of

Sp(2n,R). These transformations are referred to as symplectic reparameterizations.
If magnetic and electric currents are introduced as sources for the field equations,

d(F+ + F−)I = ∗ jm I , d(G+ + G−)I = ∗ je I ,

then these currents too must transform, like the field strengths, as vectors under sym-
plectic reparameterizations. In particular, the magnetic and electric charges, defined
by integrating over a spatial volume surrounding the current densities∫

V
dF I =

∮

∂V

(
F+I + F−I

)
= 2πq I

m ,

∫

V
dG I =

∮

∂V

(
G+

I + G−
I
)

= −2πqe I ,

(5)

constitute a symplectic pair. The normalization of the charges is such that the magnetic
induction and the electric field produced by a static point charge has the characteristic
1/4πr 2 fall-off times 2πq I

m and 1
2 g2(qe I + θI J q J

m/2π), respectively. This follows
aWe use form notation. Details concerning the notation and conventions are found in appendix A.
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directly from the Bianchi identities and the equations of motion. In the presence of
a theta angle, the magnetic charge of a particle therefore contributes to the electric
charge. This effect was first described in [61]. It is well known from semi-classical
[62–64] and topological arguments that the (abelian) charges must form a lattice with
an elementary cell of the size 2h̄. This lattice is left invariant only by the subgroup
Sp(2n,Z) of symplectic reparameterizations.

Since the F I ∧ F J term is a total derivative, the generalized theta angle θI J can
be shifted at will at the level of the classical Lagrangian. This is no longer the case
non-perturbatively and is reflected, in the canonical treatment, in the appearance of
the theta angles in above charge formulae. Furthermore, in an effective theory, the
F ∧ F-term is proportional to the integer-valued Pontryagin index, which counts the
total instanton number of the background. In the presence of instantons, therefore,
the shift invariance of the theta angles is reduces to shifting by integer multiplesb of
2π , since in that case the action gets shifted by an integer multiple of 2π . The theta
parameters are therefore periodically identified.

One may wonder to which extent the reparameterizations of the field equations
can be viewed as resulting from an operation on the Lagrangian. Indeed, some of
these transformations can be seen as Legendre transformations at the level of the La-
grangian. For this, let us regard F I as an unconstrained two-form and implement the
Bianchi identities by introducing the one-form A′

I as a Lagrangian multiplier in the
action. This one-form couples naturally to the magnetic charge and current density,

4πS[A′, F] = 4πS[F] −
∫

A′
I ∧ dF I .

Replacing A′
I by A′

I + d3′
I changes the Lagrangian only by a total derivative. Hence,

A′
I is subject to gauge transformations, δA′

I = d3′
I , and therefore represents a gauge

potential. Solving the equation of motion of A′
I implies the original Bianchi identity

for F I , and one is brought back to the original action. Alternatively, one can solve the
field equations of the two-form F I and reinsert the solution back into the action. One
finds, up to total derivatives,

4πS′[F ′] = −1
2

∫
i
(
τ̄ ′I J F ′+

I ∧ ∗F ′+
J − τ ′I J F ′−

I ∧ ∗F ′−
J

)
,

where τ ′I J = −(τI J )
−1. This transformation, which amounts to a coupling inversion,

corresponds to one specific element of the Sp(2n,R) transformation (4). The actions
S′[F ′] and S[F] are two different but equivalent descriptions of the same theory. Sym-
plectic reparameterizations do not present an invariance or a symmetry of the theory.
This would be the case only if the couplings would not change, such that S ′[F ′] would
correspond to S[F ′]. The transformations (3) must be conceived as reparameteriza-
tions: the same theory is described equivalently in terms of different coordinates (or

bThe normalization of the effective abelian theory depends on the abelian projection and therefore on
the embedding into the nonabelian microscopic theory. We chose an embedding for which the Pontryagin
index (16π2)−1∫ F ∧ F takes integer values. This fixes the overall-normalization of the Lagrangian.



18 Supersymmetry and supergravity

fields) and different coupling constants. This is what makes electric-magnetic duality
interesting at all: for the case of the coupling inversion discussed above, it relates the
strong and weak coupling regimes of a theory.

One must realize that our whole discussion, so far, relied on the fact that only the
field strengths F I appeared in the Lagrangian. This is not the case for theories that
depend on the gauge potential itself, as is the case for minimal couplings to charged
matter, Yang-Mills or Chern-Simons-like theories.

Let us conclude this section with a discussion of the physical relevance of electric-
magnetic duality. One basic assumption of the present discussion is that electric and
magnetic currents appear on footing. The magnetic currents couple to the dual field
strength and describe classical, magnetically charged sources. Magnetic monopoles
and dyons arise (as opposed to in quantum electrodynamics itself) in phases of spon-
taneously broken nonabelian gauge theories [65–67]. They appear as static solitonic
field configurations with finite energy and carry magnetic charge with respect to the
abelian projection of the spontaneously broken gauge group. Again, we emphasize
that that electric-magnetic duality is generically not realized as a symmetry of the the-
ory but relates different equivalent descriptions. This is also the case for the N = 2
supersymmetric gauge theories we discuss in the next section: magnetic monopoles
(residing in hypermultiplets) have different quantum numbers as compared to the
ones of electric excitations (these reside in vector multiplets). Nevertheless, electric-
magnetic reparameterization is at the heart of, for instance, our present qualitative un-
derstanding of the confinement phenomena in terms of monopole condensation. The
conceptual principles of using dualities as a tool for understanding non-perturbative
phenomena were pioneered by ’t Hooft [68–70]. The key idea is to utilize dualities
for comparing various dual perturbative field theory descriptions, which appropriately
capture the physics of the theory in the corresponding dual regimes. In the simple
case of a strong-weak coupling duality, the perturbative description of electric exci-
tations at weak coupling is related to the dual perturbative description in terms of the
magnetic excitations of the strong coupling regime. This strategy stands at the be-
ginning of many efforts to understanding non-perturbative aspects of gauge theories.
For N = 2 supersymmetric Yang-Mills theories, this has led to the remarkable result
of Seiberg and Witten [71–73]. In their analysis various dual descriptions are con-
tinuously patched together to form a complete characterization of the theory at low
energies. The N = 2 theory they considered is perturbatively well controllable and
nevertheless undergoes interesting dynamics. For standard gauge groups, these the-
ories possess potentials with flat directions parameterized by so-called moduli fields.
In the spontaneously broken phase, the gauge group is typically broken to its maximal
abelian subgroup. The so-called Wilsonian action is constructed, in principle, by in-
tegrating out all massive modes of the theory and retaining the light massless modes
(which are often associated to the moduli fields). Such an action is local but can con-
tain infinitely many higher derivative terms (suppressed by the cut-off scale) describ-
ing the effective couplings to the massive modes that were integrated out. In principle,
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it is possible to integrate out whole supermultiplets of massive modes at once. Hence
the procedure of obtaining the Wilsonian action does not break supersymmetry. We
will therefore mainly discuss the properties of effective supersymmetric abelian gauge
theories. Supersymmetry imposes strong restrictions on the possible coupling struc-
ture (at least at the two-derivative level) and provides non-renormalization theorems
for certain quantities. One such relation, which is not affected by quantum corrections,
is the mass-central charge relation of BPS states. For compact gauge groups, dyons
are subject to the so-called Bogomol’nyi mass bound [74]. This mass bound has a
natural interpretation when the theory is embedded into a theory with extended super-
symmetry. In that case, the masses of massive multiplets are bound from below by
the central charge of the extended supersymmetry algebra. If this bound is saturated
one speaks of a BPS state. The properties of BPS states under electric-magnetic dual-
ity transformations have been decisive for the advances in the supersymmetric gauge
theories.

In the following sections we will introduce some of the basic building blocks of
N = 2 supergravity theories. We utilize the superconformal approach and present it
here as a three-step program: first, the relevant multiplets transforming under rigid
N = 2 supersymmetry are introduced and invariant actions are constructed. Then,
the conditions are analyzed for which these actions are invariant under rigid supercon-
formal symmetries. In a last step, these rigid symmetries are promoted to local ones,
thereby coupling the various multiplets minimally to the gauge fields of the supercon-
formal algebra. Certain of these multiplets act as compensators and render the super-
conformally invariant theory gauge-equivalent to a theory of Poincaré supergravity.
For the rest of this chapter we focus mainly on vector multiplets and hypermultiplets,
and on their couplings. The Weyl multiplet, which contains the gauge fields of the
superconformal algebra, is presented in next chapter. In order to discuss vector mul-
tiplets (and chiral backgrounds in chapter III) it is useful to first introduce the N = 2
chiral multiplets.

2. Chiral multiplets

Chiral multiplets contain 16 + 16 bosonic and fermionic off-shell degrees of freedom.
In the superspace formulation, a chiral superfield 8 is defined by the condition that
the chiral superspace derivative

Di = ∂

∂θ̄i
+ γ µθ i ∂

∂xµ

vanishes when acting on it, Di8 = 0. Here, the θ i and θi constitute the chiral com-
ponents of the two Majorana spinor coordinates of N = 2 superspace. Here and
in the following we use the chiral SU(2) notation for Majorana spinors.c Written in

cThe chiral projections of a Majorana spinor transform in conjugate representations of the automor-
phism group. The specific choice of assigning a certain chirality to one of the conjugate representations is
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components, the chiral superfields have the following expansion [75],

8(z, θ) = A(z)+ θ̄ i9i(z)+ 1
2 θ̄

i Bi j (z)θ j + 1
4

(
εi j θ̄

iγ abθ j
)

F−
ab(z)

+ 1
12

(
εi j θ̄

iγabθ
j
)
θ̄kγ ab3k(z)+ 1

12(εi j θ̄
iγabθ

j )2C(z) ,
(6)

where the complex spacetime parameters z are defined by zµ = xµ + θ̄ iγ µθi . The
chiral superfield contains two complex scalars, A and C , two SU(2)R-doublets of
Majorana fermions, 9 i and 3i , an SU(2)R-triplet of complex scalars Bi j , as well
as an anti-selfdual two-form F−. In the superspace formulation it is clear that the
chiral multiplets form a ring structure under superfield multiplication: the product of
two chiral superfields is again a chiral superfield. Let us denote the components of
two chiral superfields 8I , I = 1, 2, by 8I = (AI , 9 I , B I , F−I , 3I ,C I ). Then the
product 81 × 82 has components A1 A2 at the lowest level, A192 + A291, at the
second, and so on. At the highest or C-level one finds [75]

C81×82 = A1C2 + A2C1 − 1
2ε

ikε j l B1
i j B2

i j

+ F1−
ab F2−ab + εi j

(
9̄1

i 3
2
j + 9̄2

i 3
1
j

)
.

(7)

Clearly, any holomorphic function F(8I ) of chiral superfields 8I , I = 1, . . . , n, is
again a chiral superfield.

Rigid supersymmetry transformation rules, which are compatible with above ring
structure, are induced by translation in superspace with constant parameters ε i and εi .
The components of 8 transforms as

δA = ε̄i9i ,

δ9i = 2/∂Aεi + Bi j ε
j + 1

2γ
ab F−

abεi j ε
j ,

δBi j = 2ε̄(i /∂9i) + 2εk(i ε̄
k3j) ,

δF−
ab = 1

2ε
i j ε̄i/∂γab9j + 1

2 ε̄
iγab3i ,

δ3i = − 1
2γ

ab/∂ F−
abεi + εkj /∂ Bi j εk + εi j Cε j ,

δC = −2εi j ε̄i/∂ 3j .

(8)

Note that the highest component of the chiral multiplet transforms into a total deriva-
tive and can therefore serve as a density for constructing rigid supersymmetric actions.
In a superspace treatment, the C-component can be extracted by performing a chiral
superspace integral. Hence, under supersymmetry transformations, the expression

4πL = Im
∫

d4θ F(8I ) ,

indicated by upper and lower SU(2)R indices i, j, k, . . . . Details about these assignments are found in the
tables of appendix B.
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transforms into a total derivative for any holomorphic function F . Whether or not this
expression defines a sensible action is not at stake at the moment. We will return to
this issue in the next section.

The superconformal algebra contains, apart from the N = 2 supersymmetry al-
gebra, the generators of dilatations D, special conformal transformations K , and S-
supersymmetry. In order to discuss rigid superconformal transformations we therefore
assign a Weyl weight w and a chiral weight c to the chiral multiplet. These weights
determine the transformation rules under dilatations D and chiral U(1)R transforma-
tions. It follows from the superconformal algebra that these weights are related by
w = −c. On chiral superfields these transformations are represented as

8(z, θ) −→ ew3̄8(z, e−3/2θ) . (9)

where3 = 3D+i3U(1). For the components this implies that A scales with weightw,
9i with weight w + 1/2, and so on in half-integer steps. The C-component has Weyl
weight w + 2. In order for an action, constructed from the C-component of a chiral
function F(8I ), to posses rigid conformal symmetry, the chiral multiplet F(8 I )must
therefore have weight w = 2 in four dimensions. We will discuss the consequences
of this condition for the case of vector multiplets in the following section.

3. Vector multiplets

In this section we introduce the N = 2 vector multiplet and derive an action for
it based on a chiral superspace integral. A vector multiplets can be regarded as a
reduced chiral multiplet. The fields of the latter furnish a multiplet with 16 + 16 off-
shell degrees of freedom, which is therefore reducible. There exists a set of 8 + 8
Lorentz covariant constraints which constitute a so-called linear multiplet. In the rigid
abelian case, these constraints contain the integrability condition for the two-form F−

and a reality condition on Bi j ,

∂a(F+
ab − F−

ab) = 0 , Bi j = εikεj l Bkl, (10)

where B i j denotes the complex conjugate of Bi j . The other constraints express 3i
and C in terms of derivatives of unconstrained fields,

3i = −εi j /∂9
j , C = −2 �A∗ . (11)

The constraints are solved by considering only real triples Bi j and expressing the two-
forms as the field strength of a gauge field, F = dW . The reduced chiral multiplet
therefore contains 8 + 8 off-shell degrees of freedom. In superspace above constraints
are expressed by [75],

(εi j D̄iγab D j )28 = −24�8 . (12)

This shows that in general the product of two reduced chiral superfields is no longer
reduced. Let us denote the independent fields of the constrained chiral superfield
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by 8 = (X, �i ,Wµ, Yi j ), where X is a complex scalar, �i and �i denote SU(2)R-
doublets of chiral fermions, Wµ is a gauge field, and Yi j denotes a SU(2)R-triplet of
real scalars. Together, they form the 8+8 off-shell degrees of freedom of the so-called
vector multiplet. Under rigid supersymmetry its components transform as [76],

δX I = ε̄i�I
i ,

δ�I
i = 2/D X I εi + Y I

i j ε
j + 1

2γ
ab F(W )I−

ab εi j ε
j − 2g f J K

I X J X̄ K εi j ε
j ,

δY I
i j = 2ε̄(i /D�I

j) + 2εikεj l ε̄
(k/D�l)I − 4g f I

J Kεk(i

(
ε̄j)X J�kK − ε̄k X̄ I�K

j)

)
,

δW I
µ = ε̄iγµ ε

i j �I
j .

As compared to above, we have incorporated nonabelian gauge transformations. The
indices I, J, K run over the adjoint representation of the gauge group, and f I

J K are the
structure constants, [tI , tJ ] = f I J

K tK . Accordingly, the derivatives Dµ are covariant
with respect to nonabelian gauge transformations, for instance, DµX I = ∂µX I −
g f I

J K W J
µ X K , where g is the coupling constant.

As for general chiral multiplets, Lagrangians for vector multiplets can be con-
structed using chiral superspace integrals. Comparing (11), (6) and (7) one realizes
that for the quadratic function 1

2 i82 one recovers the standard kinetic terms for a free
complex scalar, fermion and gauge field. For a general function F(8 I ) of reduced
chiral multiplets 8I = (X I , �I

i ,W I
µ, Y I

i j ), one obtains the kinetic terms [77]

4πLkin =
[

i DµFI Dµ X̄ I + 1
2 i FI J �̄

I
i /D�

i J − 1
8 i FI J Y I

i j Y J i j

+ 1
4 i FI J F−I

ab F−J ab + h.c.
]
.

In above formula, FI and FI J denote partial derivatives of the holomorphic function
F(X) with respect to the vector multiplet scalars X I . In the case of nonabelian vector
multiplets, the index I runs over the adjoint representation. The gauge invariance of
the chiral superspace integral imposes restrictions on the function F(X). The invari-
ance is guaranteed if F(X) itself is invariant, FI f I

J K X K = 0. (This condition can
be relaxed [77].) The nonabelian vector multiplet Lagrangian also contains a scalar
potential proportional to

−ig2(FI f J K
I X̄ K )( fM N

J X̄ M X N )+ h.c. .

Depending on the gauge group, the scalars can acquire vacuum expectation values,
in which case they induce spontaneous symmetry breaking. For the case of semi-
simple groups the vacuum expectation values of the scalars break the gauge group to
its maximal abelian subgroup. (When coupling vector multiplets to hypermultiplets,
further contributions to the scalar potential arise [78]. We have also suppressed the
discussion of couplings involving fermion bilinears.)
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The metric NI J of the target space, parameterized by the scalar fields X I and X̄ I

of the vector multiplets,

4πLkin = −NI J̄ DµX I Dµ X̄ J̄ + . . .

derives from a potential K (X, X̄),

NI J̄ = −i(FI J − F̄I J ) = ∂

∂X I
∂

∂ X̄ J
K (X, X̄) , (13)

where

K (X, X̄) = −i X̄ I FI (X)+ i X I F̄I (X̄) . (14)

The target space is therefore a Kähler manifold. This property actually results already
from requiring N = 1 supersymmetry. From the N = 2 superspace construction
it is clear that the Kähler potential is subject to further restrictions, since the whole
coupling structure is characterized by one single holomorphic function F(X). The
resulting geometry is referred to as special Kähler geometry. At this point, giving the
precise definition of this geometry would be premature since we have not yet discussed
the role of symplectic reparameterizations. This issue is addressed in section 6.

For the supersymmetry analysis it is natural to work with the scalars X I and X̄ I ,
I = 1, . . . , n of the n vector multiplets, as well as with the holomorphic function
F(X). Characterizing the target space geometry in terms of these fields is referred to
utilizing preferential coordinates. To underline the geometrical features of the target
space one can envisage a holomorphic coordinate transformation and proceed to a
formulation in terms of holomorphic sections X I (z), where z A and z̄ Ā, A = 1, . . . , n,
provide local holomorphic and anti-holomorphic coordinates of the target space. Note
that FI (z) = FI (X (z)) is also holomorphic in z. It is straightforward to express
the transformation rules and the Lagrangian entirely in terms of these sections and
derivatives thereof. For instance, the kinetic term for the scalars takes the form

4πLkin = −NAB̄(z, z̄)∂µz A∂µ z̄ B̄ + . . . ,

where the target space metric in (anti-)holomorphic coordinates is given by

NAB̄ (z, z̄) = ∂A∂B̄ K (z, z̄) , K (z, z̄) = −i
[

X̄ I (z)FI (z̄)− X I (z)F̄I (z̄)
]

and depends only on the section (X I (z), FI (z)). In section 6 we will argue that this
pair transforms as a vector under symplectic reparameterizations.

Let us consider vector multiplet actions with rigid superconformal invariance. For
simplicity, we will stick to the formulation in terms of the preferential coordinates X
and X̄ . In order to construct scale invariant Lagrangians for reduced chiral multiplets
there are two issues that must be reconsidered. First, the restriction (12) is consistent
with Weyl and chiral invariance only if w = 1. Second, the holomorphic function
F(8I ) must have Weyl weight w = 2, as we have argued in the previous section.
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In the case of reduced chiral multiplets the holomorphic function must therefore be a
homogeneous function of degree two. For vector multiplets this implies

F(λX) = λ2 F(X) ,

for some real scale factor λ. From this property one derives many important relations,
such as

F(X) = 1
2 FI X I , FI = FI J X J , FI J K X K = 0 . (15)

In the following we explain the consequences of these relations for the geometry of
the target space. To this extent we note that the complex scalar fields of the vector
multiplets naturally define local holomorphic and anti-holomorphic coordinates X I

and X̄ J̄ , respectively. In these coordinates the associated almost complex structure J
is constant and diagonal. In the X and X̄ coordinates, its components read J I

J = iδ I
J ,

J Ī
J̄ = −iδ Ī

J̄ . From (13) on derives that the hermitian connection is given by

0J K
I = N I L̄∂J NK L̄ = −i N I L̄ FJ K L , 0 J̄ K̄

Ī = N Ī L∂ J̄ NL K̄ = i N Ī L F̄J̄ K̄ L̄ .

This connection is metric compatible. In our coordinates this is the statement that
DI NJ K̄ = ∂I NJ K̄ −0I J

L NL K̄ = 0, and analogous for the anti-holomorphic indices.
It can be verified that the complex structure is covariantly constant with respect to
this connection. The non-vanishing components of the Kähler form in holomorphic
coordinates are given by

�I J̄ = NK J̄ J K
I = i NI J̄ , � Ī J = NK̄ J J K̄

Ī = −i NI J̄ .

The dilatation and the chiral U(1)R-transformations of the vector multiplet scalars
define the vector fields χ I and k I ,

δX I = 3Dχ
I +3U(1)k I . (16)

From (9) one finds that the components of these vectors are given by χ I = X I

and k I = −i X I . The anti-holomorphic components follow by complex conjuga-
tion. As noted above, it is convenient to characterize the geometry in terms of the
preferential coordinates, but it is simple to reformulate the geometry in terms of lo-
cal holomorphic section X I (z A). As a result of Weyl and chiral U(1)R symmetry,
the sections are defined projectively. The vector fields k I and χ I are expressed as
k I (X (z)) = k A(z)∂A X I (z) and χ I (X (z)) = χ A(z)∂A X I (z). We will stick to the
preferential coordinates X I and X̄ Ī in the following, but remark that all expressions
below can be written in terms of coordinates z A and z̄ Ā by using the matrix ∂A X I (z)
and its inverse.

From the explicit form of the hermitian connection and the homogeneity (15) one
finds that

DIχ
J = δI

J , D Ī χ̄
J̄ = δ Ī

J̄ . (17)
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The derivatives D contain the hermitian connection. This relation expresses the fact
that χ I is an exact homothetic Killing vector. Homothety is the statement that

DIχ J̄ + D J̄χI = 2NI J̄ .

It is important to realize that therefore χ I and χ̄ J̄ are not Killing vectors. Exactness
expresses the fact that the homothetic one-forms χI and χ̄ Ī derive from a potential. In
fact, this potential is given by the Kähler potential K (X, X̄) of the target space metric
NI J̄ given in (14). This can be seen by noting that the K is written in terms of the
homothetic Killing vectors as

χI χ
I = χ̄ Ī χ̄

Ī = K .

Using (17), one finds χI = ∂I K . The existence of an homothetic Killing vector is a
general feature of conformal sigma models [79]. In general, spaces with a homothety
(17) have a cone structure. The existence of a covariantly constant complex structure
guarantees the existence of a U(1) isometry,

k I = −J I
Jχ

J , k̄ Ī = −J Ī
J̄χ

J̄ . (18)

The vectors k I and k̄ Ī are associated with the chiral U(1)R transformations of the
fields. They are Killing vectors of the target space metric,

DI k J̄ + D J̄ kI = 0 , DI kJ + DJ kI = 0 ,

This can also be seen by noting that DI k J̄ = −�I J̄ , which is antisymmetric. The
contraction of the Killing vectors is given by the Kähler potential, K = k I k I = k̄ Ī k̄ Ī .
The isometry is holomorphic, as it leaves the complex structures invariant, Lk J = 0.
Likewise, the Kähler potential is invariant under the U(1)-isometry, since from (18) it
follows that k IχI + k̄ Ī χ̄ Ī = 0. The chiral SU(2)R-transformations act trivially on the
scalar fields and therefore present a trivial isometry. In summary, the target space of
the superconformal vector multiplets is a cone over a so-called Sasakian space [80].
The latter is a U(1)-fibration over the special Kähler manifold relevant for Poincaré
supergravity. We come back to this in section 5.

Finally, we comment on the supersymmetry algebra and on central charges. The
conserved supercurrent for the nonabelian vector multiplets reads [81],

Jµi = 1
4π

NI J

[
/D X̄ I γµ�

J
i − εi j

(
1
4γ

ab F−I
ab − g f I

M N X̄ M X N
)
γµ�

j J
]
.

The other chirality components result from complex conjugation. We consider the
abelian limit. Using the canonical quantization conditionsdon the fields, the conserved

d The only relevant Dirac brackets for a bosonic solution are the ones involving two fermions,
{
�I

j (x), �̄
i J (y)

}
x0=y0

= 8π h̄ [N−1]I J δj
i
( 1 + γ5

2
γ4

)
δ3(Ex − Ey) ,

{
�i I (x), �̄J

j (y)
}

x0=y0
= 8π h̄ [N−1]I J δi

j

( 1 − γ5
2

γ4

)
δ3(Ex − Ey) .
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charges Qi =
∫

d3x J 0
i generate the supersymmetry algebra,

{Qi , Q̄ j } = − 1
2 i h̄(1 − γ5)δi

j
[
γµPµ + γm Zm

]
,

{Qi , Q̄ j } = i h̄(1 − γ5)εi j

[
X̄ I (∞)qe I − F̄(∞)I q I

m

]
.

(19)

Here, Pµ is proportional to the spatial integral over T µ0, where Tµν denotes the
energy-momentum tensor. The spatial vector Z m is given by an integral involving
the pullback of the Kähler form ∂m X I ∂n X̄ J�I J̄ , where m, n run over spatial indices.
This contribution can be written as a boundary term and vanishes if the fields (X I , FI )

approach constant values at spatial infinity. Details can be found in [81,82]. The right-
hand side of the second anti-commutator defines the central charge of the algebra and
represents the (anti-holomorphic) BPS mass. The charges qe I and q I

m are defined
in (5). The observation that central charges in the supersymmetry algebra appear
as surface integrals for non-trivial field configurations was noted in [83]. The BPS
mass formula plays an important role in understanding the effective action of SU(2)
Yang-Mills theory [71]. In section 6 we discuss the generalization of the symplectic
reparameterizations to the context of N = 2 supersymmetric model. We will assert
that the holomorphic BPS mass transforms as a scalar under electric-magnetic dual-
ity transformations. We will also encounter the (anti-)holomorphic BPS mass when
discussing the ADM mass of BPS black holes in chapter IV.

4. Hypermultiplets

Hypermultiplets describe matter fields in supersymmetric theories. They contain two
complex scalar fields and their fermionic superpartners. The scalars of the hypermulti-
plet parameterize a hyperkähler manifold [84] in the case of rigid, and a quaternionic
manifold (with negative curvature) [85] in the case of local supersymmetry. In this
section we follow the presentation in [86,87].

We consider r hypermultiplets containing 4r real scalars φ A, 2r positive-chirality
spinors ζ α and 2r negative-chirality spinors ζ ᾱ. The spinors are related by complex
conjugation, under which indices are converted according to α ↔ ᾱ, while SU(2)R-
indices i, j, . . . are raised and lowered. They therefore make up 2r Majorana spinors.
In contrast to vector multiplets and, as we shall see, the superconformal gravity mul-
tiplet, there does not exist an finite dimensional, unconstrained off-shell formulation
of the N = 2 supersymmetry algebra for hypermultiplets. On-shell representations
of the supersymmetry algebra close only up to the equations of motion. Therefore,
the supersymmetry transformation rules and the form of the action, from which these
equations of motion derive, are closely related. The on-shell transformation rules for
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the hypermultiplet are given by

δQφ
A = 2

(
γ A

iᾱ ε̄
iζ ᾱ + γ̄ Ai

α ε̄iζ
α
)
,

δQζ
α = VAi

αD/φAεi − δQφ
A0A

α
βζ

β ,

δQζ
ᾱ = V̄A

iᾱD/φAεi − δQφ
A0̄A

ᾱ
β̄ζ

β̄ .

Here, the fields γ A
iᾱ and VAi

ᾱ are real (4r) × (4r) matrices. The SU(2)R ∼= Sp(1)
cannot be realized on the fields. The covariant derivatives Dµ contain the connection
0A

α
β associated with the reparameterizations ζ α → S(φ)αβζ β , Dµζ α = ∂µζ

α +
∂µφ

A0A
α
βζ

β . The hypermultiplet Lagrangian reads

L = − 1
2 gAB∂µφ

A∂µφB − Gᾱβ

(
ζ̄ ᾱ/Dζ β + ζ̄ β/Dζ ᾱ

)
− 1

4 Wᾱβγ̄ δ ζ̄
ᾱγµζ

β ζ̄ γ̄ γ µζ δ .

Here Gᾱβ is an hermitian target space metric for the fermions. Requiring that the
supersymmetry transformations close up to equations of motion derived from above
action, puts strong constraints on the objects introduced above. We refer to [86] for
a full account. The curvature of the connection 0A

α
β must take values in sp(r) ∼=

usp(2r,C). Therefore, the matrices γ A
iᾱ and VAi

ᾱ , which turn out to be each others in-
verse, act as quaternionic vielbeins, converting tangent space indices into indices of an
Sp(r)× Sp(1)-bundle. These vielbeins are related to the target space metric gAB and
fermion metric G ᾱβ and are covariantly constant with respect to the Christoffel con-
nection of the target space metric gAB and the connection 0A

α
β . The curvature Wᾱβγ̄ δ

is expressed in terms of the Riemann curvature contracted with the quaternionic viel-
beins. The covariant constancy of the vielbeins allows the construction of various
covariantly constant tensors. Important for our discussion are the three covariantly
constant, hermitian matrices E�AB ,

E�AB · Eσ i
j = −2εj lV̄[A

iᾱ�ᾱβ̄ V̄B]
lβ̄ .

These antisymmetric tensors define the triplet of covariantly constant complex struc-
tures of the hyperkähler geometry, which satisfy the quaternionic algebra,

EJ A
B = g AC E�C B , J5 J6 = −δ56 − ε563 J3 .

In the following we consider rigid superconformal hypermultiplets [86]. One
assumes that δSφ

A = δKφ
A = δK ζ

α = 0. For the scalars, the transformations under
the remaining symmetries of the superconformal algebra are parameterized by

δφA = 3Dχ
A(φ)+3U(1)k A(φ)+ 1

2
E3SU(2)Ek A(φ) . (20)

Closure of the superconformal algebra implies that χ A(φ) must be an exact homo-
thetic Killing vector,

DAχ
B = δA

B .
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Furthermore, the U(1)R acts trivially, k A(φ) = 0, and Ek A is related to χ A by the
complex structure,

Ek A = EJ A
Bχ

B , (21)

As remarked, the homothety condition already follows from requiring that the kinetic
terms of the scalars are invariant under dilatations. Locally, the homothetic one-forms
derive from the hyperkähler potential,

χA = ∂Aχ .

Given a hyperkähler metric gAB and a homothety, the hyperkähler potential can be
expressed by

χ = 1
2χ

AgABχ
B , gAB = DA∂Bχ . (22)

The hyperkähler metric therefore has a cone structure. It also possesses an Sp(1)-
isometry, since from (21) one finds that Ek AχA = 0, such that the hyperkähler potential
is Sp(1)-invariant. The vectors Ek A are in fact Killing vectors. This is seen by noting
that DAEkB = −�AB , which is antisymmetric. The Sp(1)-Killing vectors are not tri-
holomorphic, i.e., they do not leave the complex structures EJ invariant. Instead, the
complex structures transform as an Sp(1)-triplet

L E3·Ek[J0] = 2 ε056 35 J6 .

The target space of superconformal hypermultiplets is therefore a cone over a so-called
tri-Sasakian manifold [80]. This latter space is an Sp(1)-fibration over a quaternion-
Kähler manifold relevant in Poincaré supergravity. This is described in the following
section.

We close the present discussion with the remark that on the hyperkähler cone there
is no set of preferential coordinates. On the cone one can, however, resort to Sp(r)×
Sp(1)-sections defined in terms of the homothety and the quaternionic vielbeins,

Aαi = χ B VBi
α .

In terms of these sections the quaternionic vielbeins are given by V α
B i = DB Ai

α . In
the next chapter we will give the transformation rules and the action in terms of these
sections. We will see that these sections can be read off from the S-supersymmetry
transformation rules. For vector multiplets the analogous formula for the sections is
X I (z) = χ A(z)VA

I (z), where, of course, VA
I (z) is the holomorphic matrix VA

I (z) =
∂A X I (z) and χ A(z) is the homothety in coordinates z A. (Here, the index A should not
be confused with the indices appearing in the hypermultiplet sector.)

5. Poincaré supergravity

In this section we discuss the coupling of vector multiplets and hypermultiplets to su-
pergravity. Our main focus is on the geometry of the target spaces and on the coupling
structure of the gauge fields of the vector multiplets. This will enable us to discuss
symplectic reparameterizations in the next section. In order to couple the multiplets to
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a supergravity background one utilizes the superconformal approach. In this approach
one gauges the symmetries of the superconformal group, which contains the usual
Poincaré supersymmetry group as a subgroup. We emphasize that we do not intend to
describe models with a superconformal invariance. Quite on the contrary: by carefully
coupling multiplets of compensating degrees of freedom to the superconformal gauge
theory, superconformal gravity becomes gauge equivalent to Poincaré supergravity.

One of the advantages of the superconformal approach is that a completely off-
shell formulation of the theory is available. This simplifies the coupling to on-shell
multiplets such as the hypermultiplets. The superconformal algebra contains general-
coordinate, local Lorentz, dilatation, special conformal, chiral [SU(2)×U(1)]R, super-
symmetry (Q), and special supersymmetry (S) transformations. The gauge fields asso-
ciated with general-coordinate transformations (ea

µ), dilatations (bµ), chiral symmetry
(V i
µ, Aµ), and Q-supersymmetry (ψ i

µ) are realized by independent fields. The re-
maining gauge fields of Lorentz (ωab

µ ), special conformal ( f a
µ ), and S-supersymmetry

transformations (φi
µ) are dependent fields. They are composite objects, which depend

in a complicated way on the independent fields [76,77,88,89]. The superconformal
gauge fields reside in the so-called Weyl multiplet. Their corresponding curvatures
and covariant fields are contained in a reduced chiral tensor multiplet, which com-
prises 24 + 24 off-shell degrees of freedom. In addition to the independent supercon-
formal gauge fields the Weyl multiplet also contains three auxiliary fields: a Majorana
spinor doublet χ i , a scalar D and a selfdual Lorentz tensor Tabi j (where i, j, . . . are
chiral SU(2) spinor indices). Many of the details are not relevant for the present dis-
cussion and are given in chapter III.

As compared to rigid supersymmetry there are two main differences in the La-
grangians and the transformation rules for the vector multiplets and hypermultiplets.
First, the derivatives are covariantized with respect to the superconformal invariances.
In addition, there are further couplings to the auxiliary matter fields of the Weyl multi-
plet in both the transformation rules and in the Lagrangian. We will give the details in
chapter III. For the moment it suffices to consider the result for the kinetic terms of the
bosonic Lagrangian describing abelian vector multiplets and hypermultiplets [77,86],

8πe−1
Lkin = − NI JD

µX I
Dµ X̄ I − 1

2 gABDµφ
A
D
µφB

+ K (X, X̄)( 1
6 R − D)+ 1

2χ(φ)(
1
3 R + D) (23)

−
[

1
4 i FI JF

+I
ab F+J ab + 1

8 i FIF
+I
ab T +ab + 1

32 i F(T +
ab)

2 + h.c.
]
.

Here, R denotes the Ricci scalar of the spacetime metric. The covariant deriva-
tives are given by

DµX I = ∂µX I − bµχ I − Aµk I , Dµφ
A = ∂µφ

A − bµχ A − EVµ · Ek A .

They contain the homotheties χ I and χ A and the Killing vectors k I and Ek A of the
Kähler and hyperkähler cones, respectively, and were introduced in (16) and (20).
The Kähler potential K (X, X̄) and and hyperkähler potential χ(φ) have been defined
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in (14) and (22). The tensors F I
µν contain, apart from the gauge field strength F I

µν =
2∂[µW I

ν], terms involving T −
µν = εi j T i j

µν (we suppress further terms proportional to
fermion bilinears),

F I
ab = F I

ab −
(

1
4 X̄ I T −

ab + h.c.
)
.

In order to make contact with Poincaré supergravity one needs to eliminate the
gauge fields of the superfluous gauge invariances, such as the gauge fields of dilata-
tion and the chiral [SU(2)× U(1)]R-transformations. Note that when coupling vector
multiplets and hypermultiplets to a superconformal background the [SU(2)× U(1)]R-
isometries of the rigid target spaces are gauged. The resulting target space geometries
are therefore related to the cone geometries by a quotients. Let us explain this in the
following. Since the Lagrangian is K -invariant and the gauge field bµ is (as we will
see in chapter III) the only independent field transforming under conformal boost, it
must drop out of the Lagrangian and is from here on disregarded. The equations of
motion for the [SU(2) × U(1)]R gauge fields EVµ and Aµ are algebraic and solved
by [77,78]

EVµ = 1
2χ

EkA∂µφ
A , Aµ = 1

2K

(
kI ∂µX I + k̄ Ī ∂µ X̄ Ī

)
.

Let us stress that although these expressions are presented in terms of the preferred
coordinates, it is simple to derive corresponding results in terms of sections. The field
equation of the auxiliary T ±

ab-field of the Weyl multiplet yields the relation

NI J X I X J T +
ab = 4NI J X I F+ J

ab .

We have suppressed further contributions proportional to fermion bilinears in this dis-
cussion. These expressions are reinserted into the Lagrangian (23) with the result [78]

8πe−1Lkin = − KMI J̄ ∂µX I ∂µ X̄ I − 1
2χG AB∂µφ

A∂µφB

+ K
[

1
6 R − 1

4 (∂µ ln |K |)2 − D
]

+ χ
[

1
6 R − 1

4 (∂µ ln |χ |)2 + D
]

− 1
4 iNI J F+I

ab F+J ab + 1
4 iN̄I J F−I

ab F−J ab . (24)

The target space metric of the vector multiplets and hypermultiplets in the Poincaré
frame read

MI J̄ = 1
K

[
NI J − 1

2K
χI χ̄ J̄ − 1

2K
kI k̄ J̄

]
, (25)

G AB = 1
χ

[
gAB − 1

2χ
χAχB − 1

2χ
EkA · EkB

]
. (26)

The metric (25) is that of the so-called special Kähler manifold that is relevant for
Poincaré supergravity. The target space of the superconformal vector multiplets is
a cone over a U(1)-fibration over this special Kähler manifold. The metric (26) of
the hypermultiplet target space has a similar structure and describes the metric of the
quaternion-Kähler manifold relevant for Poincaré supergravity theories. The target
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space of the superconformal hypermultiplets is a cone over an Sp(1)-fibration over
this quaternion-Kähler manifold [90,91]. Note that both quotient metrics (25) and
(26) possess null directions.

The gauge coupling functions of the vector multiplets in the Poincaré frame re-
ceive non-holomorphic contributions,

NI J = F̄I J + i
NI K X I NJ L X L

NK L X K X L . (27)

These non-holomorphic contributions originate from integrating out the T ±
ab-field. The

equation of motion for the D-field further relates the Kähler cone with the hyperkähler
cone

χ(φ) = 2K (X, X̄) ,

Note that the signs of the kinetic terms of χ and K in the Lagrangian (24) correspond
to those of compensators.e Up to a total derivative, these terms can be scaled away
by rescaling the vielbein, eµa → |K |−1/2eµa = |χ/2|−1/2eµa . The rescaling is such
that the Lagrangian is canonically normalized (in Planck units),

8πe−1Lkin = − 1
2 R − MI J̄ ∂µX I ∂µ X̄ I − G AB∂µφ

A∂µφB

− 1
4 iNI J F+I

ab F+J ab + 1
4 iN̄I J F−I

ab F−J ab .

Of course, the superconformal quotient we sketched above becomes more complicated
when taking fermionic couplings and possible gaugings into account. Furthermore, in
above computations, we have extensively used the properties (15) which follow from
the homogeneity of the function F(X). In the presence of the chiral background de-
scribing R2-interactions that we describe in chapter III, the transition to the Poincaré
frame is much more subtle, since many of the previously auxiliary fields become dy-
namical.

We emphasize that we have not imposed any gauge choices. In particular, the
coordinates X I and X̄ I , I = 0, . . . , n, are still subject to U(1)R-transformations
and dilatations and are therefore projectively defined. Note that the FI (X) scales
just as X I . The quotient metric MI J̄ , on the other hand, is invariant under these
rescalings and describes the geometry of the n (complex) dimensional quotient space.
It is often convenient to choose holomorphic and anti-holomorphic coordinates z A

and z̄ Ā, A = 1, . . . , n and describe X I and FI (X) as projectively defined sections
(X I (z), FI (z)), where, at this point, FI (z) = FI (X (z)). In terms of these coordinates
the metric is given by

MAB̄ = ∂A∂B̄K(z, z̄) , K(z, z̄) = − ln
[
i X̄ Ī (z̄)FI (z)− i X I (z)F̄Ī (z̄)

]
(28)

eWe work with mostly positive cone metrics NI J and gAB . The cone metrics must have one negative
eigenvalue in order to provide compensating multiplets. The quotient metric (25) and (26) are positive
definite and describe physical vector multiplets and hypermultiplets.
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These sections are chosen to be holomorphic in order to preserve the hermiticity of
the metric MAB̄ . The vector multiplet sector therefore singles out preferred coor-
dinates on the quotient geometry. In the next section we return to the subject of
electric-magnetic duality transformations. This discussion will show that the sections
(X I (z), FI (z)) are subject to symplectic reparameterizations.

We conclude this section with the remark that in contrast to the special Kähler ge-
ometry, the quaternionic-Kähler manifold does not come with preferred coordinates.
This is a result of the fact that the Sp(1) isometries of the hyperkähler cone are not
tri-holomorphic.

6. Symplectic reparameterizations

In this section we discuss symplectic reparameterizations in the various settings of
supersymmetry we have sketched so far. The reason why we can discuss this issue
in one go stems from the fact that the superconformal gravity multiplet is inert under
these transformations. We follow the presentation given in [92].

As argued in section 1, symplectic reparameterizations are equivalence transfor-
mations at the level of the field equations of abelian gauge theories. We consider here
the generalization of these Sp(2n + 2,R)-reparameterizations to the context of the
N = 2 supersymmetric theories of abelian vector multiplets. Using the definition (2),
one finds the dual field strengths (up to a normalization and the metric determinant),

G+
I = NI J F+ J + O

+
I , G−

I = N̄I J F− J + O
−
I . (29)

The functions NI J are field dependent and are determined from varying the terms in
the Lagrangian which are quadratic in field strengths. The tensor O±

I comes from
varying other terms in the Lagrangian which couple linearly to F± I . These may
come from couplings to fermions, to fields of the superconformal background, or to
background chiral fields, which are discussed in chapter III. For rigid supersymmet-
ric or rigid superconformal theories we have NI J = F̄I J , while O

±
µν I involves only

gaugino bilinears. For local superconformal symmetry the precise values of N I J and
O

±
µν I depend on whether one has integrated out the tensor T ±

µν . If one has not, then
the couplings are still given by NI J = F̄I J , whereas the tensors O±

µν I now read, up
to fermionic contributions, O+

µν I = 1
4(FI − F̄I J X J ) T +

µν . In the Poincaré frame, in
which the T ±

ab fields have been integrated out, there are no bosonic fields that cou-
pling linearly to the field strengths. The coupling matrix NI J , however, contain the
additional contributions given in (27).

The Bianchi identities and the field equations (1) can be written as

∂µ
[√

|g|
(

F+I
µν − F−I

µν

)]
= 0 , ∂µ

[√
|g|
(

G+
Iµν − G−

Iµν

)]
= 0 . (30)

These equations are invariant under a general linear transformation (3) of the field
strengths. From equations (3) and (29) one derives that the coupling functions must
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transform as

NI J −→ N ′
I J = (VN + W )I L [(U + ZN )−1]L

J .

The metric NI J remains symmetric if this transformation is a symplectic transforma-
tion. Furthermore, the matrix O

±
I must transform according to

O
±
I −→ O

′±
I = O

±
J [(U + ZN )−1]J

I .

The coupling matrix NI J is a field dependent object, which is expressed in terms of
the preferential coordinates X I and X̄ I , the function F(X), and derivatives thereof.
The transformation of NI J is induced if we transform X I and FI (X) as components
of a symplectic vector (X I , FI ),


X I

FI


 −→


X ′I

F ′
I


 =


U Z

W V




X I

FI


 . (31)

In fact, the components F ′
I again derive from a holomorphic function F ′(X ′) accord-

ing to ∂/∂X ′I F ′(X ′) if the transformation is symplectic.
As remarked in section 1, the charges (q I

m,−qeI ), defined in equation (5), consti-
tute a symplectic vector. Therefore, the (anti-)holomorphic BPS mass given by (19)
transforms as a scalar under symplectic reparameterizations and is therefore a dual-
ity invariant quantity. The same holds for the Kähler potentials K (X, X̄) and K(z, z̄)
given in equations (14) and (28), respectively, as well as the combination F(X) −
1
2 X I FI (X). The holomorphic quantity F(X), on the other hand, does not transform
as a scalar under symplectic reparameterizations. If this were so electric-magnetic
duality would be a symmetry of the theory.

7. Special geometry and Calabi-Yau compactifications

In this section we elaborate on the target space geometry of vector multiplets in
Poincaré supergravity, so-called special Kähler geometry. Up to now this geometry
has been described in coordinates, for which FI (X (z)) derives from a holomorphic
potential F(X (z)) according to FI (X (z)) = ∂/∂X I (z)F(X (z)). While this is nat-
ural from a supergravity point of view (especially when dealing with chiral back-
grounds) this characterization of the target space geometry does depend on the the
special choice of coordinates X I and a choice of function F(X).

In the previous section it was shown that the pair (X I (z), FI (z)) are subject to
constant Sp(2n + 2,R) transformations. It is important to realize that in order to dis-
cuss these transformations one did not rely on the fact that FI (z) derived from a holo-
morphic function F(X (z)). In fact, it was shown in [93–95], that the the full super-
gravity action can be characterized in terms of the symplectic vector (X I (z), FI (z)),
where FI (z) does not necessarily derive from a function. This vector is subject to
certain constraints which define the special geometry. It is known [94] that there are
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representations of the theory for which no function F(X) exists, although after a suit-
able electric-magnetic duality transformation the constraints can be solved in terms
of a function F(X). In the presence of a chiral background, which we discuss in
chapter III, this feature does not seem to play a direct role.

As noted at the end of section 5, the symplectic vector (X I (z), FI (z)) is projec-
tively defined. This means that it is defined up to multiplication by a function λ(z)

(X I (z), FI (z)) −→ eλ(z)(X I (z), FI (z)) . (32)

This transformation does not affect the metric MI J̄ but changes the Kähler potential
K (defined in equation 28) by a so-called Kähler transformation,

K(z, z̄) −→ K(z, z̄)− λ(z)− λ̄(z̄) .

Geometrically, the starting point of the coordinate-independent construction is a glob-
ally defined, holomorphic section� of L⊗H, where L denotes a complex line bundle
and H is an Sp(2n + 2,R) vector bundle over a (Hodge) Kähler manifold f . The sym-
plectic pair (X I (z), FI (z)) are the components of � in a coordinate patch {z A, z̄ B̄}
expressed in terms of a real basis of the flat sections (αI , β

I ) of H,

� = X I (z)αI − FI (z)β I .

On the intersections of two local coordinate patches, {z A, z̄ B̄} and {z ′A(z), z̄ ′B̄(z̄)}, the
components (X ′I (z′), F ′

I (z
′)) of � may differ from (X I (z), FI (z)) by a symplectic

reparameterization and by a multiplication with a holomorphic function (32).
For theories with n rigidly supersymmetry abelian vector multiplets one still

works with local section (X I (z), FI (z)) of an Sp(2n,R) vector bundle, but contrary to
the supergravity setting, this symplectic pair is not projectively defined. Therefore, the
line bundle L is just a trivial C factor, which further degenerates to U(1), since the real
part can be absorbed into the Sp(2n,R)-transformations. Since the function F(X) is
of arbitrary degree in the rigid case, the symplectic transformations may also contain
an inhomogeneous or translational part, which amount to the Kähler transformations.

The interesting point is that in many physically relevant situations the components
of the vector (X I (z), FI (z)) can be written as period integrals of some corresponding
Riemannian manifold. For rigid special geometry the probably best known examples
are the genus one Seiberg-Witten curves, the period vectors of which provide local co-
ordinates on the quantum moduli space of supersymmetric SU(2) Yang-Mills theory.
Many of the properties of rigid special geometry follow directly from its geometrical
representation: symplectic reparameterization correspond to transformations of the
canonical homology basis and the metric is identified with the so-called period ma-
trix. This matrix is guaranteed to be symmetric and positive definite as a result of what
are called Riemann’s relations.

f That the Kählerian base manifold must be Hodge (Kählerian of the restricted type) is understood
from the supergravity point of view from the fact that the U(1)R-field strength, when integrated out, be-
comes proportional to the Kähler two-form. The fluxes of the former are quantized, which implies integer
cohomology of the Kähler form. Such manifolds are Hodge manifolds.
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More related to the topic of this thesis is the geometrical realization of (local)
special geometry in Calabi-Yau compactifications of type II string theory. For type
IIB on a Calabi-Yau three-fold X , for example, the harmonic three-forms give rise to
vector multiplets in four dimensions. These forms in turn parameterize the complex
structure moduli space of the Calabi-Yau space. The special geometry of the vector
multiplets is induced via period maps by the specialty of the complex structure moduli
space MX . Let us explain this statement: one can make use of the fact that any Calabi-
Yau three-fold X possesses a uniquely defined (3, 0)-form �. This form provides
the projectively defined section (X I (z), FI (z)) of the bundle H of harmonic three-
forms H 3(X,C) over the n-dimensional base manifold MX . The fiber of this bundle
H ∼= H 3(X,C) is b3 = 2n + 2-dimensional, where n is the number of (2,1)-forms.
The symplectic pair of projective coordinates (X I (z), FI (z)) is represented as period
integrals

X I (z) =
∫

X
� ∧ β I , FI (z) =

∫

X
� ∧ αI ,

where αI , β
J form a real, local basisg for the harmonic three-forms H 3(X,C), I =

0, . . . , n. The period integrals are expressed in terms of non-projective coordinates
z A. The choice of such a basis of harmonic three-forms is unique up to Sp(2n +2,R)-
transformations. These reparameterizations induce the symplectic transformation on
the local sections (X I (z), FI (z)). The Kähler potential is given byh

K(z, z̄) = − ln i
∫

X
� ∧ �̄ = − ln(i X̄ I (z)FI (z)− i X I (z)F̄I (z)) .

The Kähler transformations are a result of the fact that the overall scale of the com-
pactification manifold is not fixed,� −→ expλ�.

The representation of the local sections in terms of period maps also emerges
when performing a standard Kaluza-Klein reduction. The Kaluza-Klein ansatz for the
type IIB self-dual five-form field strength, for instance, amounts to

F5 =
n∑

I=0

(
F I ∧ αI − G I ∧ β I

)
, (33)

where, due to charge quantization, αI and β J form a basis for the integral harmonic
three-forms H 3(X,Z). Consequently, they are subject to Sp(2n + 2,Z)-reparamete-
rizations and the pair (F I ,G I ) forms a symplectic vector. The corresponding term in

gWe adopt the following convention:
∫

X
αI ∧ β J = −

∫

X
β J ∧ αI = δI

J ,

∫

X
αI ∧ αJ =

∫

X
β I ∧ β J = 0 .

hWe note that Poincaré duality implies that � is anti-selfdual.
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the action of ten-dimensional type IIB supergravity readsi

S10
IIB = −1

4

∫
F5 ∧ ∗F5 + . . . ,

The Kaluza-Klein ansatz for ∗F5 can be obtained by calculating the Hodge dual of
the cohomology basis (αA, β

B). Explicit formulae were calculated in [96] and can
be found in [97]. In special projective coordinates they involve the matrices I I J =
ImNI J and RI J = ReNI J , which are expressed in terms of the the holomorphic
function F(X (z)) by (27). Integrating over the internal compactification manifold
one finds (see for instance [97,98])

S4
IIB(F,G) = −1

4

∫ [
F I ∧ ∗F J (I + RI

−1
R)I J − 2F I ∧ ∗G J (RI

−1)I
J

− G I ∧ ∗G J I
−1 I J

]
− 1

2

∫
G I ∧ F I + . . . .

The last term in the action acts as a Lagrangian multiplier and has been added to insure
the selfduality of the five-form ansatz. Eliminating G I as an independent field renders
the familiar relation for the symplectic dual of the field strength

G I = ImNI J ∗ F J + ReNI J F J = N̄I J F+J + NI J F−J .

This is the expression for the dual field strength given in (29). Inserted into the action
we recover

S(4)IIB(F) = 1
2

∫
F I ∧ G I + . . .

= 1
2

∫ (
ImNI J F I ∧ ∗F J + ReNI J F I ∧ F J

)
+ . . .

= 1
2

∫ (
iN̄I J F+I ∧ ∗F+J − iNI J F−I ∧ F−J

)
+ . . . ,

which, up to the field-redefinition F± → F∓, is the vector multiplet action (24)
with coupling matrix NI J given by (27). From (33) it follows that the Sp(2n + 2,Z)
reparameterizations of the basis of harmonic three-forms induce the electric-magnetic
duality transformations of the field strengths in four dimensions. The special Kähler
geometry of the effective vector multiplet action is inherited from that of the complex
structure moduli space of the Calabi-Yau compactification manifold.

i Incidently, there does not exist a local action for the selfdual five-form field strength in ten dimen-
sions. We can use the action as given in the text but have to impose selfduality by hand. Correspondingly,
the two-from G I in the Kaluza-Klein ansatz is considered independent at first. We impose self-duality by
adding a Lagrangian multiplier. Actually the five-form field that appears in the effective action depends
also on the NS and RR two-forms, F5 = dC4 − dB2 ∧ C2 and possibly other contributions if fluxes are
switched on.
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Supergravity theories with higher-order curvature
interactions

In this chapter we give many of the more technical details one needs to describe su-
pergravity theories with matter and with higher-order curvature interactions. After
presenting the superconformal transformation rules of the Weyl multiplet and of the
matter multiplets coupled to gravity we prepare many necessary formulae for the su-
persymmetry analysis of chapter IV. Most of this material has been presented in [99].
There are several introductions to the topics covered in this section [100–103]. We
work with the superconformal off-shell formulation of N = 2 supergravity [76,77,88,
89]. This is the only framework known in which it is possible to describe (holomor-
phic) R2-couplings in a systematic fashion.

1. Superconformal gravity

The superconformal algebra contains general coordinate, local Lorentz, dilatation,
special conformal, chiral SU(2) and U(1), supersymmetry (Q), and special supersym-
metry (S) transformations. The gauge fields associated with general coordinate trans-
formations (ea

µ), dilatations (bµ), chiral symmetry (V i
µ j , Aµ), and Q-supersymmetry

(ψ i
µ) are realized by independent fields. The remaining gauge fields of Lorentz (ωab

µ ),
special conformal ( f a

µ ), and S-supersymmetry transformations (φ i
µ) are dependent

fields. They are composite objects, which depend in a complicated way on the inde-
pendent fields [77,88,89] and are given in appendix B. The corresponding curvatures
and covariant fields are contained in a reduced chiral tensor multiplet, which com-
prises 24 + 24 off-shell degrees of freedom. In addition to the independent supercon-
formal gauge fields it contains three auxiliary fields: a Majorana spinor doublet χ i , a
scalar D, and a selfdual Lorentz tensor Tabi j (where i, j, . . . are chiral SU(2) spinor
indices)a. We summarize the transformation rules for some of the independent fields
of the Weyl multiplet under Q- and S-supersymmetry and under special conformal

aBy an abuse of terminology, Tabi j is often called the graviphoton field strength. It is antisymmetric
in both Lorentz indices a, b and chiral SU(2) indices i, j . Its complex conjugate is the anti-selfdual field
T i j

ab . Our conventions are such that SU(2) indices are raised and lowered by complex conjugation. The
SU(2) gauge field V i

µ j is anti-hermitian and traceless, i.e., V i
µ j + Vµj

i = V i
µ i = 0.

37
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transformations, with parameters ε i , ηi and 3a
K, respectivelyb,

δeµa = ε̄iγ aψµi + h.c. ,

δψ i
µ = 2Dµεi − 1

8 T ab i jγab γµεj − γµη
i ,

δbµ = 1
2 ε̄

iφµi − 3
4 ε̄

iγµχi − 1
2 η̄

iψµi + h.c.+3a
K eµa ,

δAµ = 1
2 i ε̄iφµi + 3

4 i ε̄iγµχi + 1
2 i η̄iψµi + h.c. ,

δV i
µ j = 2ε̄jφ

i
µ − 3ε̄jγµχ

i + 2ε̄iψµi − (h.c.; traceless) ,

δT i j
ab = 8ε̄[i R(Q) j ]

ab ,

δχ i = − 1
12γab/D T ab i j εj + 1

6 R(V)ab
i

j γ
abε j − 1

3 i R(A)abγ
abεi

+ D εi + 1
12 T i j

abγ
abηj ,

where Dµ are derivatives covariant with respect to Lorentz, dilatational, [SU(2) ×
U(1)]R transformations, and Dµ are derivatives covariant with respect to all super-
conformal transformations. The quantities R(Q)iµν , R(V)µνi j , and R(A)µν are the
supercovariant curvatures related to Q-supersymmetry and [SU(2)× U(1)]R transfor-
mations, respectively. Their precise definitions are given in appendix B.

The most important of the commutator relations that specify the superconformal
algebra is the one between the supersymmetries,

[δQ(ε1), δQ(ε2)] = δcov(ξ)+ δM(ε)+ δK (3K )+ δS(η)+ δG(θ) . (1)

The associated parameters are given by

ξµ = 2 ε̄i
2γ

µε1i + h.c. ,

εab = ε̄i
1ε

j
2 T ab

i j + h.c. ,

3a
K = ε̄i

1ε
j
2 DbT ba

i j − 3
2 ε̄

i
2γ

aε1i D + h.c. ,

ηi = 3 ε̄i
[1ε

j
2] χj .

In above formula, δcov is a covariantized general coordinate transformation and is
given in appendix B. It should be noted that this commutator is slightly changed
as compared to the one of the N = 2, d = 4 superconformal algebra SO(4, 2) ∼=
SU(2, 2|2). The reason is that the set of conventional constraints chosen to constrain
the gauge fields of local Lorentz, special conformal, and S-supersymmetry transfor-
mations are not fully covariant. The extra terms on the right-hand side of (1) present
compensating field-dependent gauge transformations, which must be added to pre-
serve the constraints. The gauge transformations δG may be present if additional su-
permultiplets are added to the superconformal theory and account for extra gauge
invariances that may arise in such a situation. These may also include central charge
transformations. This is discussed for the case of vector multiplets in the next section.

bTo clarify our notation, for instance, η̄i εj − (h.c. ; traceless) = η̄i εj − η̄j ε
i − 1

2 δ
i
j (η̄

kεk − η̄kε
k).
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We will make explicit use of the transformation rule of the S-supersymmetry
gauge field,

δφi
µ = − 2 f a

µγaε
i + 1

4 R(V)ab
i
jγ

abγµε
j + 1

2 i R(A)abγ
abγµε

i ,

− 1
8/D T ab i j γabγµεj + 2Dµηi .

Here f a
µ is the gauge field of the conformal boosts, defined up to fermionic terms by

f a
µ = 1

2 R(ω, e)µa − 1
4 (D + 1

3 R(ω, e)) e a
µ − 1

2 i R̃µa(A)+ 1
16 T i j

µb T ab
i j , (2)

with R(ω, e)µa = R(ω)ab
µν eνb the (non-symmetric) Ricci tensor and R(ω, e) the Ricci

scalar. Here R(ω)ab
µν is the curvature associated with the spin connection field ωab

µ .
The spin connection is not the usual torsion-free connection, but contains the dilata-
tional gauge field bµ. Because of that the curvature satisfies the Bianchi identity

R(ω)ab
[µν eρ] b = 2∂[µbν e a

ρ] .

This leads to the modified pair-exchange property

R(ω)ab
cd − R(ω)cd

ab = 2
(
δ

[c
[a R(ω, e)b]

d] − δ
[c
[a R(ω, e)d]

b]

)
.

Further relations between various curvatures are given in appendix B.
Poincaré supergravity theories are obtained by coupling the Weyl multiplet to

additional superconformal multiplets containing gauge and matter fields. This was
sketched in section II.5. These multiplets act as compensators for the superfluous
gauge invariances of the superconformal gauge group and bridge the deficit in degrees
of freedom between the Weyl multiplet and the Poincaré supergravity multiplet. For
instance, the graviphoton, represented by an abelian vector field in the Poincaré super-
gravity multiplet, is provided by one of the superconformal vector multiplets. These
also provide the local central charge transformations. It turns out that a second com-
pensating multiplet is required and that various choices are possible. We will utilize a
hypermultiplet for this purpose.

2. Chiral multiplets and chiral backgrounds

In section II.2 we introduced the chiral multiplet, which transforms under rigid su-
perconformal symmetries. In this section some details on the coupling of the chiral
multiplet to superconformal gravity is presented. Of particular interest for the present
discussion is the reduced chiral tensor multiplet W that contains the superconformal
gauge fields through their covariant derivatives and curvature tensors. From this multi-
plet one may form an unreduced chiral multiplet W 2, which will be used to incorporate
the holomorphic R2-interaction.

Let us denote the bosonic component fields of the chiral multiplet by A, Bi j , F−
ab,

and C . Here A and C denote the complex scalar fields, appearing at the θ 0- and θ4-
level of the chiral background superfield, respectively, while the symmetric complex
SU(2)-tensor Bi j and the anti-selfdual Lorentz tensor F−

ab reside at the θ2-level. The
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fermion fields at level θ and θ3 are denoted by 9i and 3i . The rigid transformation
rules (given by equations 8 and 9 of chapter II) were generalized in [75] to include
local superconformal transformations. As compared to the rigid transformation rules
the derivatives appearing are covariantized with respect to all superconformal trans-
formations. At the θ3- and θ4-level there are further modifications which involve the
auxiliary fields of the Weyl multiplet. These transformation rules are consistent with
the multiplication rule for chiral multiplets given by (7) of chapter II. We will need
the transformation rules only for the first two components,

δA = ε̄i9i ,

δ9i = 2 /D Aεi + 1
2εi j Fabγ

abε j + Bi j ε
j + 2wAηi ,

Here, w = −c denotes the Weyl weight of the chiral multiplet. The C-component
of a chiral multiplet has Weyl weight w + 2 and chiral weight −c + 2. Therefore,
the C component of a w = 2 chiral multiplet may serve as a starting point for the
construction of chiral density formula. The corresponding density formula which is
covariant with respect to all superconformal transformations was found in [75]. In
particular, the density formula can be applied to any holomorphic function F(8 I ) of
chiral multiplets 8I with Weyl weights wI , provided that it is homogeneous of Weyl
weight two, F(λwI8I ) = λ2 F(8I ).

As in the rigid case there exist various types of reduced chiral multiplets. One
of these is the vector multiplet and is discussed in the next section. Another is the
reduced chiral tensor multiplet that contains the gauge fields of the Weyl multiplet
through their covariant derivatives and curvature tensors,

W i j
ab = T i j

ab − 1
2R(M)ab

cdθ iγcdθ
j + . . . . (3)

Among various other curvatures it comprises R(M)ab
cd , which is the supersym-

metrized curvature of the spin connection and contains the Riemann-tensor. From
this multiplet one forms the unreduced chiral multiplet W 2 = [W abi j εi j ]2, which has
Weyl and chiral weights w = 2 and c = −2, respectively [104]. This multiplet will
be used to describe holomorphic R2-interactions by including a W 2-dependence in
the holomorphic function F . The components of W 2 are denoted with a caret and are
given by [25,104]

Â = (εi j T i j
ab)

2 ,

9̂i = 16 εi j R(Q) j
ab T klab εkl ,

B̂i j = −16 εk(i R(V)k j)ab T lmab εlm − 64 εikεj l R̄(Q)kab R(Q)l ab ,

F̂−ab = −16R(M)cd
ab T klcd εkl − 16 εi j R̄(Q)icdγ

ab R(Q) j cd ,
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3̂i = 32 εi j γ
ab R(Q) j

cd R(M)cd
ab + 16 (R(S)ab i + 3γ[a Db]χi ) T klab εkl

− 64 R(V)ab
k

i εkl R(Q)l ab ,

Ĉ = 64R(M)−cd
ab R(M)−cd

ab + 32 R(V)−ab k
l R(V)−ab

l
k

− 32 T ab i j Da DcTcb i j + 128 R̄(S)ab
i R(Q)iab + 384 R̄(Q)ab iγa Dbχi .

(4)

We refer to appendix B for the definitions of the various curvature tensors.
In rigid supersymmetry, chiral backgrounds are often introduced as spurion fields

to describe coupling constants as superfields, which a frozen to a certain constant
value. The complex coupling constant τ of the renormalizable supersymmetric Yang-
Mills theory, for instance, can be incorporated by considering a holomorphic function
of the form F(S, 8) = S88, where S is a reduced chiral superfield frozen to the
value τ , and8 are chiral vector multiplets (cf. section II.1). Decisive in this context is
that the way τ may appear in the Lagrangian, perturbatively and non-perturbatively, is
fixed by the holomorphicity properties of the function F . This has been used to derive
non-renormalization theorems. A similar example is the complex dilaton field of string
theory, the vacuum expectation value of which measures the string coupling constant.
It resides in a chiral multiplet as well, although in this case the chiral multiplet is
dynamical.

In the context of type II string theories couplings of the form
∑

g FgW 2g were
studied in [24] by computing certain string amplitudes Fg for c = 9, (2, 2)-super-
conformal field theory compactifications. The amplitudes capture the interaction of
the universal sectors, which include the gravitational multiplet and the universal hy-
permultiplet, and were calculated for orbifolds and general Calabi-Yau compactifica-
tions. Remarkably, the contributions Fg from the g-th string-loop order are related to
the topological partition functions Fg of a twisted two-dimensional non-linear sigma
model defined on a Calabi-Yau target manifold [105,106]. In fact, for the case of
Calabi-Yau compactifications this will be reflected in the fact that the form of the
R2-interactions are determined by topological invariants of the Calabi-Yau compact-
ification manifold. Modular invariance of Fg implies the existence of certain non-
holomorphic corrections, which can be determined recursively by so-called anomaly
equations. From a supergravity point of view (part of) these non-holomorphic can be
understood by studying symplectic reparameterizations in a chiral background [107].
Such non-holomorphic interactions are not taken into account in this analysis.

3. Vector multiplets and hypermultiplets

Many of the important elements of N = 2 vector multiplets were given in section II.3.
There, we discussed the transformation rules of the vector multiplets for rigid super-
conformal symmetry. In this section, we promote these symmetries to local invari-
ances, thereby coupling the vector multiplets to a superconformal background. The
relevant result are reported in [75]. On chiral multiplets with Weyl weight w = 1
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the following set of 8 + 8 constraints can be imposed (we denote the anti-selfdual
two-form of the chiral multiplet by F

−
ab),

3i = −εi j /D9 j , Bi j = εikεj l Bkl ,

C = −
(

Da Da Ā + 1
4ε

i j T +
abi j F

+ab + 3 χ̄i 9
i
)
,

while the supersymmetrized field strengths satisfy the Bianchi identity

Db
(
F

+
ab − F

−
ab + 1

4 XTab i j ε
i j − 1

4 X̄ T i j
abεi j

)
= 3

4

(
χ̄ iγa�

jεi j − χ̄iγa�jε
i j
)
. (5)

The constraints are the generalizations of the constraints (10) and (11) of section II.3
and are covariant with respect to local superconformal transformations. They are
solved in terms of the 8+8 off-shell degrees of freedom of the vector multiplet, which
are a complex scalar X , a doublet of chiral fermions�i , a vector gauge field Wµ, and
a triplet of real scalars Yi j . The Weyl and chiral weights and the fermion chirality of
the vector multiplet component fields are listed in table 3 of the appendix B. Under
Q- and S-supersymmetry these transform as follows,

δX I = ε̄i� I
i ,

δ� I
i = 2/DX I εi + 1

2εi jF
Iµν−γµγνε j + Y I

i j ε
j − 2g f J K

I X J X̄ K εi j ε
j + 2X I ηi ,

δW I
µ = εi j ε̄iγµ�

I
j + 2εi j ε̄

i X̄ Iψ j
µ + h.c. ,

δY I
i j = 2ε̄(i/D�I

j) + 2εikεj l ε̄
(k/D�l) I − 4g f J K

I εk(i

(
ε̄j)X J�k K − ε̄k X̄ J� K

j)

)
. (6)

We have generalized these transformation rules to include nonabelian gauge transfor-
mations. The index I runs over the adjoint representation of a given gauge group, and
the component fields transform in the adjoint representation. Here, f I J

K are the struc-
ture constants of the gauge group, [tI , tJ ] = fI J

K tK , and g is a coupling constant.
The field strengths F I

µν are expressed in terms of the nonabelian field strengths

F I
µν = 2∂[µW I

ν] − g f J K
I W J

µW K
ν ,

according to

F I
µν = F I

µν −
(
εi j ψ̄

i
[µγν]�

j I + εi j X̄ I ψ̄ i
µψ

j
ν + 1

4εi j X̄ I T i j
µν + h.c.

)
.

This tensor satisfy the supersymmetrized Bianchi identities (5). As compared to the
rigid case, the tensor F I

ab contains various couplings to the superconformal back-
ground. Under supersymmetry it transform as follows,

δF I
ab = −2εi j ε̄iγ[a Db]�

I
j − εi j η̄iγab�

I
j + h.c. .

The transformation rules (6) satisfy the commutator relation (1), including a field-
dependent gauge transformation on the right-hand side, which acts with the following
parameter

θ I = 4εi j ε̄2iε1 j X I + h.c. .
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Since at least one of the vector multiplets scalars is non-vanishing for Poincaré super-
gravity the last term in (1) will account for local central charge transformations.

Superconformal actions for vector multiplets can be derived by using the chiral
density formula [75]. As compared to the rigid superconformal symmetry, this den-
sity formula contains various extra terms describing couplings to the superconformal
background, which are necessary for local superconformal invariance. The density
formula can be applied to any holomorphic function of chiral superfields, provided
its Weyl weight is two. The vector multiplet Lagrangians are characterized, as in the
rigid case, by holomorphic functions F(X I ) that are homogeneous of degree two in
X I . An important observation is that this function can depend on any other chiral
field, as long as its scale and chiral weights are properly accounted for. In particular,
this means that we can make use of functions F(X, Â) that depend holomorphically
on the scalar of a background chiral multiplet Â. The background chiral multiplet can
be a reduced or general chiral multiplet. Under the rescaling with a complex factor λ,
the holomorphic function scales as

F(λX, λw Â) = λ2 F(X, Â) .

Therefore, this function satisfies the relation

X I FI + w Â FA = 2F .

Here FI and FA denote the derivatives of F(X, Â) with respect to X I and Â, respec-
tively, and w denotes the Weyl weight of the background field. Many more important
relations can be derived from this by taking further derivatives. Eventually, we will
identify Â with the lowest component (εi j T i j

ab)
2 of the W 2 multiplet in order to incor-

porate R2-terms.
Let us turn to the superconformal hypermultiplets and their action. For writing

down actions and transformation rules with local superconformal covariance it is ad-
visable to work with local sections of an Sp(r) × Sp(1)-bundle Ai

α instead of the
coordinates φA. We introduced these section at the end of section II.4. While the in-
dices A of the real coordinates φA run from 1 to 4r , the indices of the Sp(r)-bundle, α
and ᾱ, run from 1 to 2r . The existence of such a bundle is a consequence of the homo-
thety and is read off from the S-supersymmetry transformation rules of the fermions,
δSζ

α = χ AVAi
αηi ,

Ai
α(φ) = χ B(φ)VBi

α(φ) .

Comparison with the S-variation of the gaugino (6) shows that in the case of the vector
multiplets the sections are given by the X I themselves.

In terms of the hypermultiplet sections the quaternionic vielbeins are given by
V α

B i = DB Ai
α and the hyper-Kähler potential is expressed as

εi j χ = �̄αβ Ai
αAj

β . (7)
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When written in terms of sections the supersymmetry transformation rules linearize
to a certain degree [77,86],

δAi
α = 2ε̄iζ

α + 2εi j Gαβ̄�β̄γ̄ ε̄
jζ γ̄ − δQφ

B0B
α
β Ai

β ,

δζ α = /D Ai
αεi − δQφ

B0B
α
βζ

β + Ai
αηi ,

δζ ᾱ = /D Aiᾱεi − δQφ
B0B

ᾱ
β̄ζ

β̄ + Aiᾱηi ,

where δQφ
A = 2

(
γ A

iᾱ ε̄
iζ ᾱ + γ̄ A

iα ε̄iζ
α
)
. The derivatives Dµ are covariant with re-

spect to all superconformal transformations. For later purposes we give the covariant
derivative Dµ with respect to the bosonic invariances,

DµAi
α = ∂µAi

α − bµAi
α + 1

2 Vµi
j Aj

α + ∂µφ
A 0A

α
β Ai

β .

The Weyl and chiral weights of these fields are given in table 3 of appendix B.

4. Action and symplectic reparameterizations

We have given parts of the N = 2 action describing vector multiplets and hypermulti-
plets in chapter II. We give it here again for r hypermultiplets and n +1 abelian vector
multiplets in the presence of a chiral background. The bosonic terms of the action are
encoded in the function F(X, Â), in the hypermultiplet sections Ai

α(φ), and in the
target space connections 0A

α
β ,

8π e−1
L = i DµFI Dµ X̄ I − i FI X̄ I ( 1

6 R − D) − 1
8 i FI J Y I

i j Y J i j − 1
4 i B̂i j FAI Y I i j

+ 1
4 i FI J (F−I

ab − 1
4 X̄ I T i j

abεi j )(F−J ab − 1
4 X̄ J T i jabεi j )

− 1
8 i FI (F+I

ab − 1
4 X I Tabi j ε

i j )T ab
i j ε

i j − 1
32 i F(Tabi jε

i j )2

+ 1
2 i FAĈ − 1

8 i FAA(ε
ikε j l B̂i j B̂kl − 2F̂−

ab F̂−ab)

+ 1
2 i F̂−ab FAI (F−I

ab − 1
4 X̄ I T i j

abεi j )+ h.c.

− 1
2ε

i j �̄αβ DµAi
α DµAj

β + χ( 1
6 R + 1

2 D) . (8)

Recall that two compensating multiplets are needed if above theory is to be gauge
equivalent to a theory of Poincaré supergravity. One of these multiplets is always a
vector multiplet and for the second one we choose a hypermultiplet. This implies that
the number of physical vector multiplets is equal to n and the number of physical
hypermultiplets is equal to r − 1.

Even in the presence of the chiral background the Lagrangian has the form of
a generalized Maxwell Lagrangian with terms that are at most quadratic in the field
strengths. This feature will change once we start eliminating auxiliary fields.c Hence

cBecause the chiral background field given in (4) involves terms of higher order in derivatives, the
Lagrangian will contain higher-derivative interactions. The most conspicuous ones are the interactions qua-
dratic in the Riemann curvature. Such Lagrangians generically describe negative-metric states. However,
they should not be regarded as elementary Lagrangians, but rather as effective Lagrangians. This implies
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it is advisable to first solve the Maxwell equations, before eliminating the auxiliary
fields. One distinguishes the Bianchi equations, which are expressed directly in terms
of the field strengths F± I

µν , and the equations for the electric and magnetic displace-
ment fields G±

µν I , which are proportional to the variation of the action with respect
to the F± I

µν . With suitable proportionality factors, these tensors read (we suppress
fermion contributions),

G+
µν I = F̄I J F+J

µν + O
+
µν I , G−

µν I = FI J F−J
µν + O

−
µν I ,

where

O
+
µν I = 1

4 (FI − F̄I J X J ) Tµνi jε
i j + F̂+

µν F̄I A ,

O
−
µν I = 1

4 (F̄I − FI J X̄ J ) T i j
µν εi j + F̂−

µν FI A .

We note that since we have not integrated out the field T i j
ab at this point, the coupling

functions are given simply by F̄I J and FI J . Observe that the tensors O±
µν I therefore

contain terms proportional to the field T i j
ab, but also depends on the chiral background.

The Maxwell equations in the absence of charges read (in the presence of the back-
ground), Da(F− − F+)I

ab = 0, and Da(G− − G+)ab I = 0. Eventually we will solve
these equations for a given configuration of electric and magnetic charges in a station-
ary geometry. These charges will be denoted by (p I , qJ ) and are normalized such
that for a stationary multi-centered solutions with charges at centers Ex A Maxwell’s
equations read

∂µ




√
g(F− − F+)I µt

√
g(G− − G+)µt

I


 = 4 i π

∑

A

δ(Ex − Ex A)


 pI

A

qAI


 . (9)

Observe that
√

g (F− − F+)I µν and
√

g (G− − G+)µνI are Weyl invariant quantities.
As discussed in chapter II, the field equations of the vector multiplets are subject to
equivalence transformations corresponding to electric-magnetic duality. The electric-
magnetic duality transformations cannot be performed at the level of the action, but
only at the level of the equations of motion. After applying the transformations one
can find the corresponding action. This is then characterized by a relation between
two different functions F(X, Â). We emphasize that these transformations do not af-
fect the fields of the Weyl multiplet and of the chiral background. Accordingly, the
background field Â is inert. From the discussion on in section II.6 we recall that the
two complex (2n + 2)-component vectors (X I , FI (X, Â)) and (F± I

ab ,G±
ab I ) trans-

form linearly under the Sp(2n + 2; R)-duality group, but more such vectors can be
constructed. The first vector has weights w = 1 and c = −1, whereas the second one
has zero Weyl and chiral weights. Although the background field Â itself is inert under

that auxiliary fields that appear with derivatives, should still be eliminated. This leads to an infinite series
of terms that corresponds to an expansion in terms of momenta divided by the Planck mass.
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the dualities, it nevertheless enters in the explicit form of the transformations. Con-
sequences of this are discussed in [92,108,109]. It follows from (9) that the charges
(pI , qJ ), as well, comprise a symplectic vector. In the presence of these charges the
symplectic transformations are restricted to an integer-valued subgroup that keeps the
lattice of electric and magnetic charges invariant as discussed in chapter II.

The various transformation rules only take a symplectically invariant form when
one solves the field equations for the auxiliary fields Y I

i j ,

Y I
i j = i N I J

(
FJ A B̂i j − F̄J A εikεj l B̂kl

)
.

With this result we can cast δ�I
i and δ9̂i in a symplectically covariant form (we

suppress fermionic bilinears),

 δ�I

i

δ(FI J�
J
i + FI A9̂i)


 =

+2/D


X I

FI


 εi + 1

2εi jγ
abε j




 F−I

ab

G−
abI


− 1

4εkl T kl
ab


X̄ I

F̄I






+ i B̂i j ε
j


 N I J FJ A

F̄I J N J K FK A


− iεikεj l B̂kl ε j


 N I J F̄J A

FI J N J K F̄K A


+ 2ηi


X I

FI


 .

In the above formulae, N I J is the inverse of the matrix NI J = −i FI J + i F̄I J , which,
as discussed in chapter II, is the target space metric of the Kähler cone.

5. Supersymmetry variations

For the rest of this section we will evaluate the supersymmetry variations of a number
of spinors that are needed in the analysis in subsequent sections. Some of the spinors
can act as suitable compensating fields with regard to S-supersymmetry. We also
evaluate the supersymmetry variations of the supercovariant derivatives of the spinors
belonging to one of the matter multiplets as well as the variation of the supersymmetry
field strength R(Q)iab. This analysis naturally leads us to the definition of a number
of bosonic quantities that play a central role in what follows. It is important that
one considers supersymmetry variations of objects, which transform as tensors under
symplectic reparameterizations.

The first spinor we consider is expressed in terms of hypermultiplet fermions and
reads

ζ H
i ≡ χ−1�̄αβ Ai

α ζ β .



5. Supersymmetry variations 47

Its supersymmetry variation reads

δζ H
i = χ−1�̄αβ Ai

α/D Aj
β ε j + εi jη

j ,

where χ is the hyperkähler potential defined in (7) and where terms proportional to the
fermion fields are suppressed. It is important to realize that one has the decomposition
[86]

χ−1�̄αβAi
αDµAj

β = 1
2kµ εi j + kµ i j ,

where kµ is real and given by

kµ = χ−1(∂µ − 2 bµ)χ ,

and kµ i j is symmetric in i, j and pseudoreal so that it transforms as a vector under
SU(2). Its explicit form is not important for us. Hence we write

δζ H
i = 1

2/k εi j ε
j + /ki j ε

j + εi j η
j .

In the vector multiplet sector there are two spinors that can be constructed which
transform as scalars under electric-magnetic duality. One, denoted by ζ V

i , transforms
inhomogeneously under S-supersymmetry. It can be conveniently introduced from the
variation of the symplectically invariant expression (with w = 2 and c = 0)

e−K = i
[

X̄ I FI (X, Â)− F̄I (X̄ ,
¯̂A) X I

]
. (10)

The object K resembles the Kähler potential of special geometry (cf. equation 28 of
chapter II). Its supersymmetry variation leads to the spinor

ζ V
i ≡ −

(
�I

i
∂

∂X I + 9̂i
∂

∂ Â

)
K = −i eK

[
(F̄I − X̄ J FI J )�

I
i − X̄ I FI A 9̂i

]
.

It is obvious that ζ V
i transforms as a scalar under symplectic reparameterizations, be-

cause it follows from a symplectic scalar. This can also be seen by noting that ζ V
i is

generated by the symplectic product F̄I δX I − X̄ I δFI . This leads us to introduce yet
another spinor ζ 0

i generated by FI δX I − X I δFI ,

ζ 0
i ≡ (FI − X J FI J )�

I
i − X I FI A 9̂i .

This spinor is invariant under S-supersymmetry and it vanishes in the absence of the
chiral background. However, it does not play a useful role in what follows. Under Q-
and S-supersymmetry ζ V

i transforms as

δζ V
i = eK /D e−Kεi + 2i /Aεi − 1

2 iεi j F
−
ab γ

abε j

+ eK N I J
[
(F̄I − F̄I K X̄ K )FJ A B̂i j − (F̄I − FI K X̄ K )F̄J A εikεj l B̂kl

]
ε j

+ 2 ηi ,
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where we ignored higher-order fermionic terms. The quantity Aµ resembles a covari-
antized (real) Kähler connection and F

−
ab is an anti-selfdual tensor,

Aµ = 1
2 eK

(
X̄ J ↔

Dµ FJ − F̄J
↔
Dµ X J

)
,

F
−
ab = eK

(
F̄I F−I

ab − X̄ I G−
ab I

)
.

There is another symplectically invariant contraction of the field strengths,

eK
(

FI F−I
ab − X I G−

ab I

)
+ 1

4 iεi j T i j
ab =

eK FI A

[
w Â(F−I

ab − 1
4 X̄ I εi j T i j

ab)− X I F̂−
ab

]
,

which appears in the variation of ζ 0
i .

As it turns out we also need to consider the supersymmetry variations of deriva-
tives of the fermion fields. However, one can restrict oneself to the variation of the
supercovariant derivative of a single fermion field, as is discussed in appendix C. For
this field we choose ζ H

i . The Q- and S-supersymmetry variation of its covariant deriv-
ative reads

δ(Dµζ H
i ) = 1

2Dµ(χ
−1Dνχ) εi j γ

νε j + Dµkνi j γ
νε j

− 1
32χ

−1/2(δ
j
i Dν − kνikε

kj )(χ1/2T lm
ab εlm) γ

νγ abγµεj

+ εi j

[
fµaγaε

j − 1
8 R(V) j

kabγ
abγµε

k − 1
4 i R(A)abγ

abγµε
j
]

+ ( 1
4χ

−1/D χ εi j + 1
2/ki j ) γµη

j .

Finally we present the variation of the curvature tensor R(Q)iµν , defined by

R(Q)iµν = 2D[µψ
i
ν] − γ[µφ

i
ν] − 1

8 T i j
abγ

abγ[µψν] j ,

where φi
µ is the dependent gauge field associated with S-supersymmetry, defined in

appendix B. The variation of this tensor reads,

δR(Q)iab = − 1
2/DT i j

ab εj + R(V)−ab
i
j ε

j − 1
2R(M)ab

cd γcdε
i + 1

8 T i j
cd γ

cdγab ηj ,

where R(M)ab
cd is defined in appendix B.



IV

Supersymmetric vacua and stationary BPS configurations

1. Introduction

This chapter is based on [99,110], where a broad class of stationary solutions of
four-dimensional N = 2 supergravity theories with R2-interactions is described.
The solutions that are considered are BPS solutions, because they possess a resid-
ual N = 1 supersymmetry. Some of them describe extremal black holes that carry
electric and/or magnetic charges or superpositions thereof. We also describe rotating
solutions with one or several centers. The extremal black holes are solitonic inter-
polations between two fully supersymmetric ground-states. Without R2-interactions
these are flat Minkowski spacetime at spatial infinity and a Bertotti-Robinson geom-
etry at the horizon. In that case, the moduli fields, which can take arbitrary values at
infinity, must flow to specific values at the horizon which are determined in terms of
the charges. This so-called fixed-point behavior explains why the black hole entropy
depends only on the charges and not on the asymptotic values of the moduli. This is
in contradistinction with the black hole mass which does depend on the values of the
fields at spatial infinity. Owing to this fixed-point behavior the resulting expressions
for the entropy, based on the effective low-energy action, can be compared success-
fully with microstate counting results from string and brane theory, which also depend
exclusively on the charges.

Solutions based on supergravity actions without R2-terms were analyzed some
time ago [111–120]. In [25] it was shown that corrections to the black hole entropy
associated with R2-terms are in agreement with certain subleading corrections to the
entropy (in the limit of large charges) that follow from the counting of microstates
[21]. As mentioned in chapter I, the main ingredients of the derivation in [25] are
the behavior of the solution at the horizon and the use of a definition of the black
hole entropy that is appropriate when R2-interactions are present. The latter point is
addressed in chapter V.

This chapter contains a careful study of various supersymmetric black hole solu-
tions in the presence of R2-interactions. Our analysis thereby provides the complete
proof underlying the results of [25]. We consider the full interpolating extremal black
hole solution, multi-centered solutions, as well as general stationary solutions. All
solutions known so far (in particular the ones of [121]) are contained as special cases.
We begin our analysis by determining all spacetimes with N = 2 supersymmetry.
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We prove that, in spite of the presence of R2-terms, there is still a unique spacetime,
which is of the Bertotti-Robinson type, whose radius as well as the values of the var-
ious moduli fields are determined by the electric and magnetic charges carried by the
solution. Flat Minkowski spacetime can be viewed as a special case of such a solution,
but here the moduli are constant and arbitrary and there are no electric and magnetic
fields. Our analysis thus shows that the enhancement of supersymmetry at the horizon
forces the moduli fields to take prescribed values. Consequently the uniqueness of the
horizon geometry implies the existence of a fixed-point behavior even in the presence
of R2-interactions. Note that the fixed-point behavior is usually derived by invoking
flow arguments based on the interpolating solutions (see, e.g., [113,114,119,120]), but
these arguments are much more difficult to derive in the presence of R2-interactions.

Subsequently we turn to the analysis of spacetimes with residual N = 1 super-
symmetry. A general analysis of the conditions for N = 1 supersymmetry turns out to
be extremely cumbersome. We therefore restrict ourselves to a well-defined class of
embeddings of residual supersymmetry and derive the corresponding restrictions on
the bosonic background configurations. Our analysis is set up in such a way that the
presence of the R2-interactions hardly poses complications. This is so because the R2-
terms are incorporated into the Lagrangian by allowing the holomorphic function to
depend on an extra holomorphic parameter. Furthermore, by stressing the underlying
electric-magnetic duality of the field equations throughout the calculations, the de-
pendence on the R2-interactions remains almost entirely implicit and does not require
much extra attention.

Using the restrictions posed by residual supersymmetry and assuming stationary
field configurations we analyze the solutions. We prove that they are expressed in
terms of harmonic functions associated with the electric and magnetic charges carried
by the solutions, while the spatial dependence of the moduli is governed by so-called
“generalized stabilization equations”. The latter were first conjectured in [116–118]
and in [122] for the case without and with R2-interactions, respectively. The resulting
stationary solutions include the case of multi-centered solutions of extremal black
holes.

Our analysis of the restrictions imposed by N = 2 and N = 1 supersymmetry on
the solutions is based on the existence of a full off-shell superconformal multiplet cal-
culus for N = 2 supergravity theories [76,77,88,89], and was discussed in chapters II
and III of this thesis. It turns out that the hypermultiplets play only a rather passive
role. It proves advantageous to perform most of the analysis before writing the theory
in its Poincaré form (by imposing gauge conditions or reformulating it in terms of
fields that are invariant under the action of those superconformal symmetries that are
absent in Poincaré supergravity). As a consequence we fix the stationary spacetime
line element only at a relatively late stage of the analysis. An unusual complication is
that, in order to determine the restrictions imposed by full or residual supersymmetry,
it is not sufficient to consider the supersymmetry variation of the fermions only. One
also needs to impose the vanishing of the supersymmetry variation of derivatives of
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the fermion fields. We present an argument that shows which of these variations are
needed.

2. Fully supersymmetric vacua

From the supersymmetry variations presented in section III.5 one can determine the
conditions on the bosonic fields imposed by the requirement of full N = 2 super-
symmetry. These conditions follow from setting all Q-supersymmetry variations of
the fermionic quantities to zero. However, these variations are determined up to an
S-supersymmetry transformation. Thus one can either impose the vanishing of all Q-
variations up to a uniform S-supersymmetry transformation, or one can restrict oneself
to linear combinations that are invariant under S-supersymmetry and require their Q-
supersymmetry variations to vanish. Examples of such S-invariant combinations are,
for instance,�I

i − X I ζ V
i and 9̂i −w Â ζ V

i , while the spinor ζ 0
i is S-invariant by itself.

In this section we will include an arbitrary number of hypermultiplets.
We start by considering the S-supersymmetric linear combination of ζ V

i and ζ H
i .

Requiring its Q-supersymmetry variation to vanish for all supersymmetry parameters,
we establish immediately that

F
−
ab = B̂i j = kµ i j = Aµ = 0 ,

and

Dµ

(
eKχ

)
= 0 . (1)

Comparing the supersymmetry variations of the vector multiplet fermions to those of
ζ V

i leads to

F−I
ab = 1

4εkl T kl
ab X̄ I ,

G−
abI = 1

4εkl T kl
ab F̄I ,

Dµ

(
eK/2 X I

)
= Dµ

(
eK/2FI

)
= 0 .

(2)

These equations themselves again imply that F−
ab and Aµ vanish. Furthermore, by

using the explicit expression of the tensors G−
abI , one finds that F̂−

ab = 0. The last two
equations imply that we also have

Dµ

(
ewK/2 Â

)
= 0 .

From the supersymmetry variations of the hypermultiplets we find a similar result,

Dµ

(
χ−1/2 Ai

α
)

= 0 . (3)

Observe that all the above equations are K -invariant.
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Subsequently we compare the supersymmetry variations of the spinors χ i and ζ V
i ,

which leads to the relations,

D = R(V)ab
i
j = R(A)ab = Da

(
e−K/2T abi j

)
= 0 .

With these results it follows that the vector field strengths satisfy the following equa-
tions,

Da F−I
ab = DaG−

abI = 0 ,

which imply (but are stronger than) the equations of motion and the Bianchi identities
for the vector fields.

A similar calculation for the curvature R(Q)iab yields

DcT i j
ab = − 1

2DdK
(
δd

c T i j
ab − 2δd

[a T i j
b]c + 2ηc[a T i j d

b]

)
,

R(M)ab
cd = 0 .

The first equation is consistent with the result found earlier. Because D = 0, the tensor
R(M)ab

cd is just the traceless part of the curvature tensor R(ω)ab
cd associated with

the spin connection field ωab
µ (which at this stage depends on the dilatational gauge

field bµ). Upon suppressing bµ, this tensor becomes equal to the Weyl tensor. Hence
the above condition will eventually lead to the conclusion that N = 2 supersymmetric
solutions require a conformally flat spacetime. We stress again that all of the above
conditions are K -invariant.

Before continuing, let us make a few remarks. First of all, we note that at this
stage all equations are consistent with all the superconformal symmetries; in partic-
ular, we have not yet fixed a scale. All the above results are also manifestly consis-
tent with electric-magnetic duality. Secondly we found a number of conditions on
the chiral background field, namely B̂i j = F̂−

ab = 0 and the covariant constancy of
exp(wK/2) Â. So far no conditions have been derived for its highest-θ component Ĉ ,
but by considering the supersymmetry variation of the spinor 3̂i one can easily show
that Ĉ = 0. It is illuminating to verify whether these results hold for the chiral field
starting with Â = [T abi jεi j ]2. It turns out that they are indeed satisfied on the basis
of the above results, with the exception of the Ĉ component which contains a term
proportional to the second derivative of Tab i j . Also in view of later applications we
consider this term in more detail and note that the bosonic contribution to the second
derivative of T i j

ab takes the form

DµDcT i j
ab = DµDcT i j

ab + fµc T i j
ab − 2 fµ[a T i j

b]c + 2 f d
µ ηc[a T i j

b]d .

Consequently

DµDa T i j
ab = DµD

aT i j
ab − f a

µ T i j
ab .

With this result we consider the relevant term in Ĉ ,

T ab i j Da DcTcb i j = T ab i j
DaD

cTcb i j − f c
a T ab i j Tcb i j , (4)
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where we note in passing that, in the first term on the right-hand side, we can sym-
metrize the derivatives as the antisymmetric part vanishes due to the (anti-)selfduality
of the T -fields. By using the equations found above, we can work out the double
derivative on the T -field, and verify whether it vanishes against the second term pro-
portional to f a

µ .
Rather than determining f a

µ in this way, we continue and consider the supersym-
metry variation of the supercovariant derivatives of fermion fields. First we make
the observation that the derivatives of S-invariant combinations of fields, whose Q-
supersymmetric variations were already required to vanish in the bosonic background,
will still vanish. But we can also compare the variation of the supercovariant deriva-
tive of a fermion field to the variation of a fermion field without derivatives. Consider
for example the Q-variation of the following S-invariant expression

Dµζ H
i + (− 1

4χ
−1/Dχ δ

j
i + 1

2/kikε
kj ) γµζ

H
j . (5)

The derivative of another fermion field can now be written as the derivative of an S-
invariant linear combination of that fermion field with a bosonic expression times ζ H

i ,
which is one of the previously considered linear combinations whose vanishing varia-
tion in the supersymmetric background has already been ensured, a term proportional
to (5) and terms proportional to ζ H

i without a derivative. Therefore, once we have
imposed that the variation of (5) vanishes, then the variation of the derivative of every
other fermion field is guaranteed to vanish against some bosonic term times the vari-
ation of ζ H

i . Consequently variations of such linear combinations can be ignored and
our only task is to require that the variation of (5) vanishes. Note that the above argu-
ment can be extended to variations of multiple derivatives as well, which therefore can
also be ignored. For a more explicit proof of this statement we refer to appendix C.

Imposing the condition that the Q-supersymmetry variation of (5) vanishes, we
find that most terms vanish already by virtue of previous results and we are left with
just one more equation,

Dµ
(
χ−1 Daχ

)
= 1

2

(
χ−1 Dµχ

)(
χ−1 Daχ

)
− 1

4e a
µ

(
χ−1 Dcχ

)2
.

Note that we have superconformal derivatives here which involve the gauge field fµa

associated with conformal boosts. Upon using the previous results (1), (2) and (3), all
equations coincide. Hence we are left with the following equation for f a

µ ,

fµa = − 1
2Dµ

(
eKDae−K

)
+ 1

4

(
eKDµe−K

)(
eKDae−K

)
− 1

8 e a
µ

(
eKDce−K

)2
,

(6)

which is K -invariant. With this result we can verify that the term (4) vanishes as well,
so that we establish that the Ĉ component of the Weyl multiplet vanishes. The above
equation (6) can be rewritten as

R(ω, e)µa − 1
6 R(ω, e) e a

µ = − 1
8 T i j
µb T ab

i j + DµD
a
K + 1

2DµKD
a
K − 1

4e a
µ (DcK)

2 .
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So far the analysis is valid for any chiral background field. For the rest of this sec-
tion we assume that the chiral multiplet is given by equation (4) of chapter III so that
at this point we have identified all supersymmetric configurations in the presence of
R2-terms. The results obtained so far are in a manifestly conformally covariant form.
We can now impose gauge choices and set bµ = 0 (because of the K -invariance the
conditions found above are in fact independent of bµ) and exp[K] equal to a constant.
(Alternative we may use exp[K] as a compensator to make all quantities invariant un-
der scale transformations, at which point the field bµ will drop out.) The values of
exp[−K] and χ are related. With the choice that we made for the action we find that
χ = −2 exp[−K] as a result of the field equation for the field D. For future reference,
we give both the field equations for the field D and for the U(1) gauge field Aµ,

3 e−K + 1
2χ = − 192i D(FA − F̄A)

+ 4i
{
(εi j T i j

cd )
−2 εkl T abkl (FI F−I

ab − X I G−
abI )− h.c.

}
, (7)

e−KAa = 128i Db
(

FA R(A)−ab − h.c.
)

− 8Dc(FA + F̄A) Ti jab T i j cb

+ 8(FA − F̄A)
(

T i j
abDcT cb

i j − Ti jab DcT cbi j
)

− 8Db
{
(εi j T i j

de)
−2 εkl T kl c

[a (FI F−I
b]c − X I G−

b]cI )+ h.c.
}
. (8)

Observe that these field equations can only be found from the action, and cannot be
obtained from requiring that the supersymmetry variations vanish, because the ac-
tion consists of a linear combination of two actions that are separately invariant, cor-
responding to the vector multiplets and the hypermultiplets, respectively (we point
out that the hypermultiplets contribute only fermionic terms to (8), which have been
suppressed above). The coefficient of the Ricci scalar in the action is now equal to
−(16π)−1 exp[−K], so that Newton’s constant equals GN = exp[K], assuming a
conventionally normalized flat metric. Furthermore we can put the gauge fields Aµ
and Vµ

i
j to zero, because their field strengths vanish.

The most general N = 2 supersymmetric background can now be characterized
as follows. First of all the spacetime has zero Weyl tensor and is thus conformally flat.
Its Ricci tensor is given by

Rµν = − 1
8 T i j
µρ Ti jν

ρ ,

where Ti jµν (T i j
µν) is a covariantly constant (anti-)selfdual tensor. Furthermore we

have a number of constants X I . The electric/magnetic field strengths are also covari-
antly constant and given by

F−I
µν = 1

4εkl T kl
µν X̄ I , G−

µν I = 1
4εkl T kl

µν F̄I . (9)

By using relations for products of (anti-)selfdual tensors one can verify that the
integrability condition that follows from the covariant constancy of the tensor fields
T i j
µν , is identically satisfied. In order to investigate explicit solutions one chooses
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coordinates such that the metric reads

gµν = e2 f (x)+K ηµν , (10)

with ηµν the flat Minkowski metric (normalized in the standard way). We included the
factor exp[K], which we adjusted to a constant, so that the function f is independent
of the scale. To have a vanishing Ricci scalar the function exp[ f ] must be harmonic,

ηµν∂µ∂ν e f = 0 .

The remaining conditions are (here we raise and lower indices with the flat metric)

Rµν = 2∂µ∂ν f − 2∂µ f ∂ν f + ηµν (∂ρ f )2 = − 1
8 T i j
µρ Ti jν

ρ e−2 f −K ,

∂µT i j
νρ = 2∂µ f T i j

νρ − 2∂[ν f T i j
ρ]µ + 2ηµ[ν T i j

ρ]σ ∂
σ f .

As a result of the second condition we derive

∂[µT i j
νρ] = ∂µT i j

µν = 0 ,

so that T i j
µν is a harmonic tensor.

We are interested in time-independent solutions so that we assume that f is in-
dependent of the time t . In that case we can express the tensor field in terms of a
complex potential8. Denoting spatial world indices by â, b̂, ĉ, we may write

εi j T i j
âb̂

= εâb̂ĉ ∂ĉ8 , εi j T i j
t â = i∂â8 ,

where 8 is a complex harmonic function. The equations are now solved for by

8 = 4 z e f +K/2 ,

with z a constant phase factor, and f satisfying

e f ∂â∂b̂e f = 3 ∂âe f ∂b̂e f − δâb̂ (∂ĉe f )2 . (11)

This system of differential equations can be integrated. Its solution is unique (up to
translations) and is given by exp[ f (r)] = c/r , where c is a real constant. This leads
to a Bertotti-Robinson spacetime, the geometry of which describes the near-horizon
limit of an extremal black hole with horizon at r = 0. Thus there exist no fully
supersymmetric multi-centered solutions, which is not surprising in view of the fact
that the differential equations (11) are nonlinear in exp[ f ]. The field Â is now equal
to

Â = (εi j T i j
ab)

2 = 64 e−K

z̄2 e2 f (r) (∂â f )2 .

From evaluating (9) it follows that the electric and magnetic charges are equal to

pI = c eK/2 [z̄ X I + z X̄ I ] , qI = c eK/2 [z̄ FI + z F̄I ] . (12)

With this result we consider the so-called BPS mass, which takes the form

Z = eK/2(pI FI − qI X I ) = −i z c , (13)
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so that we obtain the equations (sometimes called stabilization equations) [111,112,
114,115],

Z̄


X I

FI


− Z


X̄ I

F̄I


 = i e−K/2


pI

qI


 . (14)

Observe that this result is covariant with respect to electric-magnetic duality.
Finally we note that the area in Planck units equals

Area
GN

= 4π c2 = 4π |Z |2 .

This does not determine the black hole entropy, because the Bekenstein-Hawking area
law is not applicable for these black holes [123–126]. After including an appropriate
correction one obtains instead [25]

S = π
[
|Z |2 − 256 Im[FA(X I , Â)]

]
, (15)

where Â = −64 Z̄−2 e−K. We will comment on this result in chapter V.
In section 3 we will be using another coordinate frame with line element given by

ds2 = −e2g dt2 + e−2g dEx2 . (16)

The conformal coordinates of this section are related to those of the above frame by

t −→ d
c2 eK

t , Ex −→ d
Ex

|Ex|2 ,

where d is some real constant. The function e−2g in (16) corresponding to the line
element (10) is equal to

e−2g = c2 eK

|Ex|2 .

For later reference let us give the field strengths (9) in the frame (16),

F− I
tm = i z X̄ I eg xm

|Ex|2 , G−
tm I = i z F̄I eg xm

|Ex|2 . (17)

Here (t,m) denote world indices in the frame (16). For these expressions Maxwell’s
equations (cf. equation 9 of chapter III) are satisfied with the charges defined in (12).
Observe that, when calculating Maxwell’s equations directly in the frame (10), one
encounters a different sign as compared to (12). This is related to the fact that a
charge located at the origin in the frame (16) corresponds to a charge at infinity in the
conformal coordinates used in this section. When evaluating Maxwell’s equations in
the latter coordinates one is considering the corresponding mirror charge placed at the
origin. This explains the apparent sign discrepancy.
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3. Stationary BPS configurations

A general analysis of the conditions for residual N = 1 supersymmetry is extremely
cumbersome. Therefore we base ourselves on a given class of embeddings of the
residual supersymmetry by imposing the following condition on the supersymmetry
parameters,

h εi = εi j γ0 ε
j , (18)

where h is some unknown phase factor which is in general not constant, and which
transforms under U(1) with the same weight as the fields X I . At the moment we
proceed without imposing gauge choices. Therefore the choice of γ0 is somewhat
arbitrary, because it can be changed into any other gamma matrix by means of a lo-
cal Lorentz transformation. However, we will eventually impose a gauge condition
on the vierbein field, which restricts the local Lorentz transformations to the three-
dimensional rotationsa. It is clear that (18) is then consistent with spatial rotations
and SU(2) transformations, although we will not require the solutions to be invariant
under these symmetries. An embedding condition such as (18) was also used in the
analysis presented in [116,118–120] of N = 2 theories without R2-interactions.

Subject to this embedding we can now evaluate the conditions for N = 1 super-
symmetry by following essentially the same steps as in the previous section. We start
by considering the variations of the vector multiplet fermions and of the spinors ζ V

i
and ζ H

i . They lead to the equations

B̂i j = ka i j = 0 , (19)

and

A0 = 0 ,

D0(χeK) = 0 ,

Ap = Re[h F
−
0p] ,

Dp(χeK) = 2χeK Im[h F
−
0p] .

(20)

where the indices (0, p) with p = 1, 2, 3 refer to the tangent space. With this result
we find that the variation of ζ V

i simplifies considerably and reduces to

δζ V
i = χ−1/Dχ εi + 2 ηi . (21)

For the hypermultiplets we find the same condition as for full supersymmetry,

Da(χ
−1/2 Ai

α) = 0 .

Returning to the vector multiplet spinors, we then establish the relations

D0(χ
−1/2 X I ) = D0(χ

−1/2 FI ) = 0 ,

a In view of this, Lorentz covariant derivatives should be applied with caution, as the various equations
we are about to derive are not Lorentz covariant.
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and

Dp(χ
−1/2 X I ) = −h χ−1/2(F−I

0p − 1
4εkl T kl

0p X̄ I ) ,

Dp(χ
−1/2 FI ) = −h χ−1/2(G−

0pI − 1
4εkl T kl

0p F̄I ) .
(22)

These last two equations transform covariantly with respect to electric-magnetic dual-
ity. Taking their symplectically invariant product with ( X̄ I , F̄I ) leads to the previous
equations (20).

Subsequently we consider the variations of the spinor χ i , which lead to

R(V)ab
i
j = 0 ,

Dc(χ
1/2 T i j c0 εi j ) = −6h χ1/2 D ,

Dc(χ
1/2 T i j cp εi j ) = 8ih χ1/2 R(A)−0p .

(23)

Note that the first equation is consistent with the fact that B̂i j vanishes (cf. equation 4
of chapter III). In view of the fact that the SU(2) field strengths vanish, we will set the
SU(2) connections to zero in what follows.

The variations for the field strength R(Q)iab lead to

D0T i j
ab − 1

2χ
−1

Ddχ
(
δd

0 T i j
ab − 2δd

[a T i j
b]0 + 2η0[a T i j d

b]

)
= 0 ,

DpT i j
ab − 1

2χ
−1Ddχ

(
δd

p T i j
ab − 2δd

[a T i j
b]p + 2ηp[a T i j

b]
d
)

= 4h εi j R(M)−ab 0p .
(24)

We now consider the variation of derivatives of fermion fields. (The variation of
the gravitini is considered later on.) The arguments presented below (5) and in appen-
dix C about the fact that there is no need to consider more than one of these variations,
apply also to residual supersymmetry. Hence we consider the Q-supersymmetry vari-
ation of (5), making use of the previously obtained results. This yields the following
equation,

Dµ(χ−1 Daχ)+ 1
4 (χ

−1 Dcχ)
2 eµa − 1

2(χ
−1 Dµχ)(χ−1 Daχ) =

− 3
2 D(eµa − 2eµ0 η

a0)− 2i [R(A)+ − R(A)−]µa − 4i R(A)−µ0 η
a0 . (25)

All terms in this equation are real, with the exception of the last term, from which it
follows that R(A)±a0 must be purely imaginary, so that

R(A)a0 = R̃(A)pq = 0 . (26)

Just as before, (25) fixes the value of the gauge field fµa, which takes the (K -invariant)
form

fµa = − 1
2Dµ(χ

−1Daχ)− 1
8 (χ

−1Dcχ)
2 eµa + 1

4 (χ
−1Dµχ)(χ

−1Daχ)

− 3
4 D(eµa − 2eµ0 η

a0)− i [R(A)+ − R(A)−]µa − 2i R(A)−
µ0 η

a0 . (27)
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Comparing with equation (2) of chapter III yields

R(ω, e)µa − 1
6 R(ω, e) e a

µ =
− Dµ(χ

−1Daχ)− 1
4 (χ

−1Dcχ)
2 eµa + 1

2(χ
−1Dµχ)(χ

−1Daχ)

− 1
8 T i j
µb T ab

i j − D (eµa − 3eµ0 η
a0)+ i [R̃(A)µ0 η

a0 − R̃(A)0a eµ0] . (28)

Let us briefly return to (23) and (24) and explore the consequences of (26). The
first equation of (24) yields

D0T i j 0p − 1
2χ

−1
D0χ T i j 0p + 1

2χ
−1

Dqχ T i j qp = 0 . (29)

Making use of this, the last equation (23) leads to

Dq T i j qp + χ−1D0χ T i j 0p = −2ih εi j R̃(A)0p ,

which can be rewritten as

D[pT i j
q]0 εi j = 2i R(A)pqh − 1

2χ
−1D0χ T i j

pq εi j . (30)

Observe that so far we have not imposed any gauge conditions. In order to pro-
ceed we will now choose a gauge condition that eliminates the freedom of making
(local) scale transformations and conformal boosts. This gauge condition amounts to
choosing bµ = 0 and χ constant. Therefore the covariant derivative Da contains only
the spin connection fields and the U(1) connection, when appropriate.

In this gauge, (30) and the second equation of (23) read,

h̄ D[pT i j
q]0 εi j = 2i R(A)pq , h̄ D

pT i j
p0 εi j = 6 D . (31)

Furthermore we establish from (28) that

R(ω, e) = −3D . (32)

Then, from the second equation of (24), one derives the following expressions for the
components of the curvature tensor R(M)ab cd ,

R(M)pq 0r = 1
8 iεpq

s h̄ Dr T i j
s0 εi j + h.c. ,

R(M)0r pq = 1
8 iεpq

s h̄ Ds T i j
r0 εi j + h.c. ,

R(M)0p 0q = − 1
8 h̄ Dq T i j

p0 εi j + h.c. ,

R(M)pq rs = 1
8εrs

vεpq
u h̄ DvT i j

u0 εi j + h.c. .

These expressions satisfy all the constraints (1) listed in appendix B, provided one
makes use of the relations (31) for R(A) and D. Using (27) and the definition ofR(M)
allows us to find expressions for the components of the Riemann tensor. Making use
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of (31) we find

R(ω)pq 0r = R(ω)0r pq

= 1
8εpq

s
[
i(h̄ Dr T i j

s0 εi j − 1
2 T i j

r0 Ti j s0)+ h.c.
]
,

R(ω)0p 0q = R(ω)0q 0p

= − 1
8

[
(h̄ Dq T i j

p0 εi j + 1
2 T i j

q0 Ti j p0)+ h.c.
]
,

R(ω)pq rs = − 1
2δ[r[p

[
h̄ Dq]T

i j
s]0 εi j + h.c.

]

+ 1
4δ[r[p

[
T i j

q]0 Ti j s]0 + Ti jq]0 T i j
s]0 − δq]s] T i j v

0 Ti j v0

]
.

(33)

Here we observe that, owing to (31), this result satisfies all the algebraic properties of
a Riemann tensor, such as cyclicity and pair exchange. We also note that, by virtue of
(31), (33) gives rise to (28) upon contraction.

At this point we adopt a gauge condition for local Lorentz invariance. We remind
the reader that the supersymmetry embedding condition (18) is obviously inconsistent
with local Lorentz invariance and presupposes that we would eventually impose such
a gauge condition. Therefore we bring the vierbein field in block-triangular form
by imposing et

p = 0, thereby leaving the SO(3) tangent-space rotations unaffected.
Denoting world indices by (t,m), with m = 1, 2, 3, we parametrize the vierbein as
follows,

eµ0dxµ = eg[ dt + σm dxm ] , eµ pdxµ = e−g êm
p dxm ,

where êm
p is the rescaled dreibein of the three-dimensional space. The corresponding

inverse vierbein components are then given by

e0
t = e−g , e0

m = 0 , ep
t = −σp eg , ep

m = eg êp
m ,

where, on the right-hand side, spatial tangent-space and world indices are converted
by means of the dreibein fields êm

p and its inverse.
Now we concentrate on stationary spacetimes, so that we can adopt coordinates

such that the vierbein components are independent of the time coordinate t . In that
case the spin connection fields take the following form,

ωl pq = eg[ ω̂l pq + 2δl[p ∇q]g ] ,

ω0 pq = ωq p0 = − 1
2e3g εpql R(σ )l ,

ω0 0p = eg ∇pg ,

where ω̂m
pq is the spin-connection field associated with the dreibein fields ê in the

standard way. We used the definition

R(σ )l = εlpq ∇pσq .

Observe that ∇ p R(σ )p = 0. The covariant derivatives ∇m refer to the three-dimen-
sional space only. Hence they contain the three-dimensional spin connection ω̂m

pq .
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The corresponding curvature components take the following form (where we con-
sistently use three-dimensional notation on the right-hand side),

R(ω)pq 0r = 1
2εpq

s e4g
[
∇r R(σ )s + 5R(σ )s ∇r g + R(σ )r∇s g − 2δsr R(σ )u∇ug

]
,

R(ω)0p 0q = −e2g
[
∇p∇q g + 3 ∇pg ∇q g − δpq (∇r g)2

]

+ 1
4e6g

[
R(σ )p R(σ )q − δpq R(σ )2

]
,

R(ω)pq rs = e2g R̂pq rs − 4 e2g δ[p[r

[
∇s]∇q]g + ∇s]g ∇q]g − 1

2δs]q] (∇ug)2
]

+ 3 e6g δ[p[r

[
R(σ )s] R(σ )q] − 1

2δs]q] R(σ )2
]
. (34)

However, for stationary solutions also other quantities than those that encode the
spacetime should be time-independent. Hence we infer that h̄ X I , h̄ FI , and h̄T i j

p0 are
time-independent while (∂t + i At)h = 0.

Until now we have restricted our attention to quantities that are supercovariant
with respect to full N = 2 supersymmetry. However, when considering residual
supersymmetry, certain linear combinations of the gravitini will still transform covari-
antly. To see how this works, let us record the gravitini transformation rules in the
restricted background. Here we make use of (21) to argue that there is no need for
including compensating S-supersymmetry transformations. The result takes the form

δψ i
t = 2∂tε

i + i At ε
i + e2g

[
Tp − ∇pg + 1

2 ie2g R(σ )p
]
γ pγ0ε

i ,

δψ i
m = 2∇mε

i − (Tm − i Am)ε
i

− i ê p
m εp

qr
[
Tr − ∇r g + 1

2 ie2g R(σ )r
]
γqγ0ε

i

+ σm e2g
[
Tp − ∇pg + 1

2 ie2g R(σ )p
]
γ pγ0ε

i ,

where we have introduced a three-dimensional world vector Tm ,

Tm ≡ 1
4e−g êm

p h̄T i j
p0 εi j .

Now we observe that the combinations ψµi − h̄ εi jγ0ψ
j
µ transform covariantly un-

der the residual supersymmetry. From the requirement that these covariant variations
vanish we deduce directly that

Tm = ∇mg − 1
2 ie2g R(σ )m , h̄∇mh + i Am = − 1

2 ie2g R(σ )m .

This leads to the following expressions for the gravitini variations,

δψ i
t = 2∂tε

i + i Atε
i , δψ i

m = 2∇mε
i − (∇mg + h̄∇mh)εi . (35)

With these results we return to the previous identities and verify whether they are
now satisfied. It is straightforward to see that this is the case for (29). For the other
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identities one needs the covariant derivative h̄ DpT i j
q0, which, in three-dimensional

notation, reads

h̄ DpT i j
q0εi j = 4 e2g

[
∇pTq + 2 TpTq − δpq (Tr )

2
]
.

It is now straightforward to prove (31) with D given by

D = 2
3e2g

[
∇ 2

p g − (∇pg)2 + 1
4e4g (R(σ )p)2

]
. (36)

Furthermore, it turns out that (33) and (34) agree, provided that the curvature of the
three-space is zero,

R̂mn pq = 0 ,

so that the three-dimensional space is flat. Observe that this result is consistent with
the integrability condition corresponding to the Killing spinor equations that one ob-
tains when setting the gravitino variations (35) to zero. The only remaining equations
are now (22), which express the abelian field strengths in terms of the other fields,

F−I
0p = −eg

[
∇p(h̄X I )+ (∇pg) h X̄ I − 1

2 ie2g R(σ )p(h̄X I + h X̄ I )
]
,

G−
0pI = −eg

[
∇p(h̄FI )+ (∇pg) h F̄I − 1

2 ie2g R(σ )p(h̄FI + h F̄I )
]
,

where on the right-hand side, we consistently use three-dimensional tangent space
indices. With these results we derive the following expressions,

Da F−I
ap = ieg εp

qr∇q F−I
0r =

= − 1
2eg εp

qr∇q

[
e3g R(σ )r (h̄X I + h X̄ I )

]
− ie2g εp

qr ∇q g ∇r (h̄ X I − h X̄ I ) ,

Da F−I
a0 = eg

[
∇q F−I

q0 − 2(∇qg − 1
2 ie2g R(σ )q) F−I

q0

]
=

= e2g
[
∇ 2

p (h̄X I )+ (∇ 2
p g) h X̄ I − (∇pg)2 hX̄ I + (∇pg)∇ p(hX̄ I − h̄X I )

− 1
2 ie3g R(σ )p ∇p[e−g(hX̄ I − h̄X I )]+ 1

2e4g(R(σ )p)2(hX̄ I + h̄X I )
]
,

and likewise for the electric-magnetic dual equations (i.e., replacing F−I by G−
I and

X I by FI ). The imaginary parts of the above expressions correspond to Maxwell’s
equations for the abelian vector fields. Because the first expression is manifestly real,
the corresponding Maxwell equation (and its electric-magnetic dual) is satisfied. The
imaginary part of the second expression and its dual equation provide the remaining
Maxwell equations, which read

∇ 2
p

[
e−g(h̄ X I − h X̄ I )

]
= 0 ,

∇ 2
p

[
e−g(h̄FI − h F̄I )

]
= 0 ,

(37)



3. Stationary BPS configurations 63

which shows that the functions in parentheses are harmonic. Furthermore we note the
equations

F−I
0p + F+I

0p = −∇p

[
eg(h̄ X I + h X̄ I )

]
,

G−
0pI + G+

0pI = −∇p

[
eg(h̄ FI + h F̄I )

]
,

so that the functions under the derivative can be regarded as electric and magnetic
potentials.

So far our analysis is valid for any chiral background. Now we identify this
background with (4) and note that the field Â can be written as

Â = −64e2g h2 (Tp)
2 .

With this choice for the background we now evaluate the field equations for the fields
D and Aµ, which were given in (7) and (8), respectively. Using (22), (36) and the
homogeneity properties of F(X, Â), the first equation takes the form

e−K + 1
2χ = − 128i e3g ∇ p

[
e−g ∇pg (FA − F̄A)

]
− 32i e6g (R(σ )p)2(FA − F̄A)

− 64 e4g R(σ )p ∇ p(FA + F̄A) . (38)

The second equation (8) comprises four equations. The one with a = 0 turns out
to be identically satisfied, by virtue of of an intricate interplay of all the results that
we obtained above. This constitutes a very subtle check upon the correctness of the
results obtained so far. Using similar manipulations the equation (8) with a = p can
be written as

(h̄ X I − h X̄ I )
↔
∇ p (h̄FI − h F̄I )− 1

2χ e2g R(σ )p =
128 e2g ∇q

[
2∇[pg ∇q](FA + F̄A)+ i∇[p

(
e2g R(σ )q] (FA − F̄A)

)]
. (39)

To arrive at this concise expression requires an extensive usage of many of the previ-
ously obtained results, and in particular of (38).

This concludes our analysis. The solutions can now be expressed in terms of
harmonic functions according to (37). The two field equations (38) and (39) then
determine the function g and R(σ )p , from which all other quantities of interest follow.
We should point out that there are some equations of motion whose validity has not
yet been verified. We claim that those are implied by the residual supersymmetry of
our solutions. For instance, for the vector multiplets we have imposed the Maxwell
equations. Therefore the N = 1 supersymmetry variation of the field equations of the
vector multiplet fermions can only lead to the field equations of the vector multiplet
scalars, which must thus be satisfied by supersymmetry. For the hypermultiplets a
similar argument holds. Indeed, the result (32), which is crucial for the validity of the
field equation for the hypermultiplet scalars, has already been established on the basis
of the previous analysis. The field equations for the fields of the Weyl multiplet have
been imposed, with the exception of those for the vierbein field and the tensor field
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Ti jab (the field equations for the SU(2) gauge fields are trivially satisfied because of
the SU(2) symmetry of our solutions). However, the field equations of the gravitino
fields and of the fermion doublet χ i transform into these two field equations, from
which one may conclude that they are also satisfied by supersymmetry.

4. Summary of the BPS analysis

Let us discuss what we have found in the previous section. We have characterized
all stationary solutions with a residual N = 1 supersymmetry embedded according to
(18). In principle there may exist other solutions based on inequivalent embeddings of
N = 1 supersymmetry. It should be interesting to apply our approach to more general
embeddings of the residual supersymmetry.

By imposing the conditions for residual supersymmetry and a subset of the field
equations we have obtained the full class of these solutions, albeit not explicitly be-
cause the equations depend on the holomorphic function F(X, Â) that characterizes
both the vector multiplets and the R2-interactions. A gratifying feature of our results
is that the presence of the R2-interactions gives rise to relatively minor complications,
something that may seem rather surprising in view of the complicated structure of the
higher-order derivative terms in the action. There are two reasons for the fact that these
complications can remain so implicit in our analysis. The first is that the higher-order
derivative interactions are nicely encoded in the holomorphic function F(X, Â). The
second reason is that we have consistently used quantities that transform covariantly
under electric-magnetic duality. Without this guidance there would be a multitude of
ways to express our results and perform the analysis.

We have also shown that solutions with supersymmetry enhancement exhibit
fixed-point behavior of the moduli fields, simply because the solutions with full N = 2
supersymmetry are unique. This result is relevant when calculating the horizon geom-
etry of extremal black holes since it explains why the black hole entropy depends only
on the electric and magnetic charges carried by the black hole.

Let us briefly summarize the solutions that we have found. Following [115] we
introduce the rescaled U(1) and Weyl invariant variables,

Y I = e−g h̄ X I , ϒ = e−2g h̄2 Â , (40)

so that, using the homogeneity of F(X, Â), we can write

F(Y, ϒ) = exp[−2g] h̄2F(X, Â) ,

and

 Y I

FI (Y, ϒ)


 = e−g h̄


 X I

FI (X, Â)


 .
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Observe that FA(X, Â) = Fϒ (Y, ϒ). Henceforth we will always use the rescaled
variables. The rescaled background field ϒ is given by

ϒ = −64
(
∇mg − 1

2 ie2g R(σ )m
)2
. (41)

Furthermore from (40) and equation (10) of chapter III and we infer that

e−2g = i eK
[
Ȳ I FI (Y, ϒ) − F̄I (Ȳ , ϒ̄)Y I

]
. (42)

According to (37) we can express the imaginary part of (Y I , FJ ) in terms of a sym-
plectic array of 2(n + 1) harmonic functions (H I (Ex), HJ (Ex)),


 Y I − Ȳ I

FI (Y, ϒ) − F̄I (Ȳ , ϒ̄ )


 = i


H I

HI


 . (43)

These are the “generalized stabilization equations” which were conjectured in [116,
118] and [122] for the case without and with R2-interactions respectively (a derivation
for certain solutions without R2-terms appeared in [121]). In principle these equations
determine the full spatial dependence of Y I in terms of the harmonic functions and
the background field ϒ . However, explicit solutions of the stabilization equations can
only be obtained in a small number of cases and usually one has to solve the equations
by iteration which is extremely cumbersome. We will discuss a few examples of
explicit solutions in section 5.

We write the harmonic functions as a linear combination of several harmonic
functions associated with multiple centers located at Ex A with electric charges qAI and
magnetic charges p I

A,

H I (Ex) = h I +
∑

A

pI
A

|Ex − Ex A| , HI (Ex) = h I +
∑

A

qAI

|Ex − Ex A| ,

where the (h I , h J ) are constants and the charges are normalized according to (9) of
chapter III. Furthermore, we recall

F−I
0p = −e2g

[
∇pY I + (∇pg − 1

2 ie2g R(σ )p)(Y I + Ȳ I )
]
,

G−
0pI = −e2g

[
∇p FI + (∇pg − 1

2 ie2g R(σ )p)(FI + F̄I )
]
,

(44)

and hence

F−I
0p + F+I

0p = −∇p

[
e2g(Y I + Ȳ I )

]
,

G−
0pI + G+

0pI = −∇p

[
e2g(FI + F̄I )

]
.
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We also rewrite the expressions (38) and (39) in terms of the rescaled variables,

e−K + 1
2χ = − 128i e3g ∇ p

[
e−g ∇pg (Fϒ − F̄ϒ )

]
− 32i e6g (R(σ )p)2(Fϒ − F̄ϒ )

− 64 e4g R(σ )p ∇ p(Fϒ + F̄ϒ ) , (45)

H I ↔
∇ p HI = − 1

2χ R(σ )p

− 128 ∇q
[
2∇[pg ∇q](Fϒ + F̄ϒ )+ i∇[p

(
e2g R(σ )q] (Fϒ − F̄ϒ )

)]
.

(46)

We note that both sides of (46) are manifestly divergence-free away from the cen-
ters. Furthermore, in the one-center case where the solution has spherical symmetry
and depends only on the radial coordinate, the terms involving Fϒ and its complex
conjugate vanish in (46).

It is remarkable that apart from (43) the only other equations that must be solved
to fully specify the stationary BPS solutions, are the ones for the spacetime line ele-
ment. To this extent we eliminate e−K from above equations using (42).

i
[
Ȳ I FI (Y, ϒ) − F̄I (Ȳ , ϒ̄)Y I

]
+ 1

2 χ e−2g =

128i eg ∇ p
[ (

∇pe−g) (Fϒ − F̄ϒ )
]

− 32i e4g (R(σ )p)2(Fϒ − F̄ϒ )

− 64 e2g R(σ )p ∇ p(Fϒ + F̄ϒ ) ,

H I ↔
∇ p HI + 1

2 χ R(σ )p =
−128i ∇q

[
∇[p

(
e2g R(σ )q] (Fϒ− F̄ϒ)

)]
−128 ∇q

[
2∇[pg ∇q](Fϒ+ F̄ϒ )

]
,

(47)

Let us first briefly discuss the solutions in the absence of R2-interactions. Then (45)
and (46) imply that

e−K + 1
2χ = 0 , R(σ )m = −2χ−1 H I ↔

∇m HI .

Once we have solved the stabilization equations, we have thus constructed the full
solution in terms of the harmonic functions. For the static solutions, where R(σ )m =
0, this implies that H I ↔

∇m HI = 0, which leads to the following condition on the
charges [116,118],

h I qAI − h I pI
A = 0 , pI

A qB I − qAI pI
B = 0 . (48)

The second condition implies that the charges are mutually local, i.e., the solution can
be related to one carrying electric charges only by electric-magnetic duality. Moreover
it implies that the total angular momentum of a dyon A in the field of a dyon B
vanishes.
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Asymptotically, at spatial infinity, the fields can be expanded in powers of 1/|Ex|,

Y I (Ex) = Y I (∞)+ y I

|Ex| + · · · , FI (Ex) = FI (∞)+ f I

|Ex| + · · · . (49)

Inspection of (43) then shows that Y I (∞)− Ȳ I (∞) = ih I , FI (∞)− F̄I (∞) = ih I as
well as y I − ȳ I = i pI and f I − f̄ I = iqI , where p I and qI denote the (total) magnetic
and electric charges, respectively. The homogeneity of the holomorphic function F
implies FI δY I −Y I δFI = 0, and therefore we conclude that y I FI (∞)− f I Y I (∞) =
0. The following results can then be obtained by explicit calculation,

ER(σ )(Ex) = eK
[
h I pI − h I qI

] Ex
|Ex|3 + · · · ,

e−K−2g =
[
e−K−2g

]
∞

{
1 +

[
eK/2+g

]
∞

2MADM

|Ex | + · · ·
}
,

where MADM denotes the ADM mass (in Planck units),

MADM = 1
2

[
eK/2+g

]
∞

(
pI FI (∞)− qI Y I (∞)+ h.c.

)
. (50)

Note that the MADM can be written as MADM = 1
2 [h̄Z(∞)+ h Z̄(∞)], where Z was

defined in (13). For static solutions h̄Z is real by virtue of the first condition in (48), so
that MADM = h̄Z(∞) [116,118]. With these results one easily shows that the electric
and magnetic fields (44) have the characteristic 1/r 2 fall-off at spatial infinity.

We now discuss the solutions with R2-interactions. In the presence of these in-
teractions the equations (45) and (46) are more difficult to analyze. We note that,

generically, multi-centered solutions satisfying H I ↔
∇ p HI = 0 are not static, since

(46) then reads

R(σ )p = −256χ−1 ∇q
[
2∇[pg ∇q](Fϒ + F̄ϒ )+ i∇[p

(
e2g R(σ )q] (Fϒ − F̄ϒ )

)]
.

Examples of black holes exhibiting this feature will be discussed in section 5.
When a solution has a horizon with full supersymmetry, we can connect the re-

sults of this section to those of section 2. In doing so, it is important to keep in mind
that we used a different parametrization of the metric in section 2 (cf. equation 10).
The results can be connected through the following identifications, which are valid at
the horizon (which we take to be located at |Ex| = 0, for convenience),

Y I ≈ [eK/2 Z̄ X I ]hor

|Ex | , FI (Y ) ≈ [eK/2 Z̄ FI (X)]hor

|Ex | ,

e−g ≈ [eK/2|Z |]hor

|Ex| , h ≈ Z
|Z |

∣∣∣
hor
, ϒ ≈ − 64

|Ex|2 . (51)

In particular, when approaching the horizon, the expressions for the field strengths
(44) coincide with (17).

In the presence of R2-interactions, the homogeneity of the holomorphic function
F(Y, ϒ) implies FI δY I − Y I δFI = 2ϒ δFϒ . If we assume that, at spatial infinity,
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the fields Y I , FI and e−g have an asymptotic expansion of the type (49), and if we
furthermore assume that ϒ δFϒ falls off to zero sufficiently rapidly so that we have
y I FI (∞)− f I Y I (∞) = 0, then the ADM mass of the solution is still given by (50).

5. Examples of stationary BPS configurations

The equations (43), (47), and (41) determine the stationary BPS solutions. They can,
however, be solved explicitly in only very few cases. Even in the absence of R2-terms
the solution to the equations (43), for instance, is often not known. Furthermore,
equations (47) and (41) are coupled and can usually be solved only iteratively. For
concreteness, let us consider a first simple example,

F(Y, ϒ) = − 1
2 i Y I ηI J Y J + cϒ , (52)

where η is a real symmetric matrix and c a complex number. Since FI (Y, ϒ) does not
depend on ϒ it is simple to solve the equations (43),

Y I = 1
2

(
i H I − ηI J HJ

)
, FI = 1

2

(
i HI + ηI J H J

)
, (53)

where ηI Jη
J K = δ K

I . The dependence on the R2-background will enter only when
solving for the line element (as is done in the next section). This is rather the exception
than the rule. Consider, for instance, the coupling function which arises in Calabi-Yau
three-fold compactifications in the large volume limit,

F(Y, ϒ) = DABC Y A Y B Y C

Y 0 + dA
Y A

Y 0 ϒ , (54)

with A, B,C = 1, 2, . . . , n. We construct solutions to this model satisfying H 0 =
0 so that Y 0 is real. Introducing the matrix DAB = DABC H C and assuming its
invertibility DAB DBC = δ C

A , the stabilization equations can be solved to all orders in
ϒ ,

Y A = 1
6Y 0 DAB

(
HB + idB

ϒ − ϒ̄

Y 0

)
+ 1

2 i H A ,

(Y 0)2 = DABC H AH B H C − 1
3 (ϒ − ϒ̄)2dA DABdB − 2(ϒ + ϒ̄)dA H A

4
(

H0 + 1
12 HA DAB HB

) .

(55)

For more complicated F(Y, ϒ), solving equations (43) can become very involved.
It may be possible to cast F(Y, ϒ) into a power series expansion (possibly after an
electric-magnetic duality transformation) in which case the generalized stabilization
equations (43) can be solved iteratively in powers of ϒ ,

Y I =
∑

n,m

Y I
(n,m)(H

J , HK )ϒ
nϒ̄m . (56)

Clearly, FI (Y, ϒ) and Fϒ (Y, ϒ) will have corresponding expansions inϒ and ϒ̄ once
the solutions Y I (H J , HK , ϒ, ϒ̄) are inserted, and one could in principle, by treating
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ϒ as a formal expansion parameter, proceed to solve (47) and (41). Since such a
procedure is not feasible in practice, the question arises whether it makes sense to
solve the equations (47) and (41) iteratively and truncate at some suitable order. To
address this question we recall that the function F(Y, ϒ) is homogeneous of degree
two,

F(λY, λ2 ϒ) = λ2 F(Y, ϒ) .

It follows that

Y I FI (Y, ϒ) + 2ϒ Fϒ (Y, ϒ) = 2F(Y, ϒ) ,

and in particular we have FI (λY, λ2 ϒ) = λ FI (Y, ϒ). This shows that the equations
(43) are invariant under this rescaling if we let the harmonic functions H I and HI scale
with weight one. Therefore the coefficient functions Y I

(n,m)(H
J , HK ) in the expansion

(56) will scale with weight 1−2(n+m), such that every power ofϒ is accompanied by
a net amount of two inverse powers of harmonic functions H −2. The expressions (55)
illustrate this feature. In a similar way homogeneity is reflected at the level of the La-
grangian. Therefore, corrections due to R2-interactions become subleading whenever
|ϒ| � H 2. One can pinpoint such a hierarchy when one encounters supersymmetry
enhancement in the immediate neighborhood of a charged center. There, |ϒ| has a
1/r 2-fall-off proportional to a charge-independent constant, while the harmonic func-
tions fall off as Q/r , where Q is the charge carried by the center. This is the reason
why the corrections to the entropy of BPS black hole configurations [25], for instance,
are subleading in the limit of large charges. In fact, due to homogeneity, the entropy
will have an expansion of the form S = π

∑
n≥0 S(n)Q2−2n, where the coefficients

S(n) are independent of the charges. As argued above, homogeneity implies that the
expansion of the line element takes the schematic form

e−2g ∼
∑

n≥0

α(n)|ϒ|n H 2−2n , R(σ ) ∼
∑

n≥0

β(n)|ϒ|n H 2−2n , (57)

where α(n) and β(n) are independent of the harmonic functions. This shows that a
truncation at some finite order may be sensible only in situations in which ϒ falls off
much stronger than the harmonic functions H 2 when moving away from the centers.

Let us reconsider the holomorphic coupling function (52). In this simple example
we can use c as an expansion parameter, since by homogeneity every power of c will
always be accompanied by two inverse powers of harmonic functions. After solving
the generalized stabilization equations (53) the remaining equations (47) reduce to
(

H IηI J H J + HIη
I J HJ

)
+ χ e−2g = 256 i (c − c̄)

[
eg∇2

pe−g − ( 1
2 e2g R(σ )p)2

]
,

2H I ↔
∇ p HI + χ R(σ )p = −256 i (c − c̄)∇q

[
∇[p

(
e2g R(σ )q]

)]
.

(58)

The case where c is real corresponds to adding a total derivative term to the action.
Above formulae show that the line element stays unaltered in this case, while the field
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ϒ is given by

ϒ = 64

[(
H I − iηI J HJ

)
∇p HI −

(
HI + iηI J H J )∇p H I

H IηI J H J + HIηI J HJ

]2

.

There are other less obvious situations where the dependency on c drops out of the
equations (58). This is the case, for instance, when R(σ )p = 0 and all the harmonic
functions are proportional to e−g,

H I = a I e−g , HI = aI e−g ,

where (a I , aI ) are constants.
Generically, however, the right-hand sides of (58) do not vanish and the equations

must be solved iteratively. For mutually local charges, H I ↔
∇ p HI = 0, static solutions

with R(σ )p = 0 are possible. This is what we want to investigate in the following.
The remaining equation,

e−2g
(
χ − 256 i(c − c̄) e3g∇2

pe−g
)

= −
(

H IηI J H J + HIη
I J HJ

)
,

is a non-linear differential equation for e−g . To zeroth order in c we find

[e−2g](0) = −χ−1
(

H IηI J H J + HIη
I J HJ

)
.

Making the ansatz e−g = ∑
n≥0[e−g](n)

(
256i(c − c̄)/χ

)n the line element is deter-
mined iteratively by

[e−g](n) = 1
2 [e2g](0)

(
∇2

p [e−g](n−1) −
∑

i, j,k

′
[e−g](i)[e−g]( j)[e−g](k)

)
, (59)

where the truncated sum
∑ ′

i, j,k runs over all 0 ≤ i, j, k < n subject to i + j + k = n.
The presence of the overall factor [e2g](0) ∼ H −2 on the right-hand side of (59) indeed
induces the expansion indicated by (57).

Let us return to the more complicated example (54). In this case we can use
dA as the expansion parameters. The exact solution to the generalized stabilization
equations for the case H 0 = 0 are given in (55). We find by direct calculation that

i
[
Ȳ I FI − Y I F̄I

]
= − DABC H A H B H C

Y 0 + dA H Aϒ + ϒ̄

Y 0 ,

and

Fϒ − F̄ϒ̄ = idA H A

Y 0 , Fϒ + F̄ϒ̄ = 1
3 dA DAB

(
HB + idB

ϒ − ϒ̄

Y 0

)
. (60)

To leading order the solutions to (47) are given by

1
2 χ e−2g = DABC H AH B H C

[Y 0](0)
+ O(dA)

1
2 χ R(σ )p = −H I ↔

∇ p HI + O(dA) ,

(61)
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where [Y 0](0) is the tree-level expression for Y 0,

([Y 0](0))2 = DABC H AH B H C

4(H0 + 1
12 HADAB HB)

.

Keeping track of the terms coming from (60) the expressions for the line element to
second order in dA are readily read off from (47),

1
2 χ e−2g = DABC H AH B H C

[Y 0](0)
− 128γ−1∇ p

[
(∇pγ )

dA H A

[Y 0](0)

]

+ 32γ−4(ρp)
2 dA H A

[Y 0](0)
− 64

3 γ
−2 ρp∇ p

(
dA DAB HB

)
+ O(dA dB) ,

1
2 χ R(σ )p = − H I ↔

∇ p HI + 256
3

∇q
[
γ−1(∇[pγ )∇q](dA DAB HB)

]

+ 128∇q∇[p

(
γ−2ρq]

dA H A

[Y 0](0)

)
+ O(dA dB) ,

where γ 2 and ρp are abbreviations for the leading order results as given in (61) for
e−2g and R(σ )p respectively. Again, the first order approximation to the line element
is cast into the form (57), the first correction from the R2-terms being suppressed by
one order in H −2.

6. Static versus stationary extremal solutions

In section 4 we pointed out that higher-order curvature interactions induce non-static
pieces in the line element even for extremal configurations with mutually local charges,

H I ↔
∇ p HI = 0. This effect can be observed in the previously discussed example.

This issue does not arise when the solution has only one center because the right-hand
side of the second equation (47) vanishes due to rotational symmetry. Therefore the
question arises whether R2-interactions still allow for regular multi-centered black
hole solutions. Again, it is difficult to address this question in general. Due to (57)
we expect e−2g generically to diverge as |Ex − Ex A|−2 as one approaches one of the
charge centers Ex A. If the charges are not mutually local one expects R(σ )p to behave
as |Ex − Ex A|−3. For mutually local charges, on the other hand, the singularity of R(σ )p
is, in fact, milder. Inspection of the expressions for the curvature components given in
(34) show that every term involving R(σ )p is accompanied by a sufficient amount of
factors of eg such that the effect of the non-static pieces of the line element vanishes
near the center. This indicates that multi-centered extremal solutions still possess an
AdS2 × S2 near-horizon geometry. The following example illustrates this.

Let us consider a simple model describing pure supergravity with the particular
R2-interactions given by

F(Y, ϒ) = − 1
2 i (Y 0)2 + b

ϒ2

(Y 0)2
.
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We assume b to be a real constant. By the same arguments as above, we use b as an
expansion parameter. We solve the generalized stabilization equations for the purely
electric situation H 0 = 0, H0 ≡ H . To zeroth order in b we find

e−2g = − H 2

χ
+ O(b) , R(σ )p = 0 + O(b) , ϒ = −64

(∇p H )2

H 2 + O(b) .

To calculate the leading corrections to the line element one needs Fϒ + F̄ϒ to first
order in b,

Fϒ + F̄ϒ = −1024 b
(∇p H )2

H 4 + O(b2) .

We consider a harmonic function H with multiple centers located at Ex A. For simplic-
ity let us assume that center 1 is at Ex1 = 0 and calculate R(σ )p around this center.
Therefore we expand the harmonic function appearing in above expression in powers
of |Ex |,

H = h +
∑

A

qA

|Ex − Ex A| = q1

|Ex| + h +
∑

A6=1

qA

|ExA| + O(|Ex |) ,

∇p H = −q1
xp

|Ex|3 +
∑

A6=1

qA
xAp

|ExA|3 + O(|Ex |) ,

∇p∇q H = q1

(
3

xp xq

|Ex|5 − δpq

|Ex |3
)

+
∑

A6=1

qA

(
3

xAp xAq

|ExA|5 − δpq

|ExA|3
)

+ O(|Ex |) . (62)

In the limit |Ex| → 0 one finds that R(σ )p to first order in b is given by,

1
2 χ R(σ )p = 3 · (512)2 b q−3

1

(
δpq + x̂p x̂q

|Ex |

)∑

A6=1

qA
xAq

|ExA|3 + O(b2) ,

where x̂p denote the components of the unit vector. Thus, according to the above
arguments, we recover in this simple example the usual AdS2 × S2 geometry typical
for extremal configurations.



V

On entropy and moduli spaces of black holes

In the previous chapter we constructed stationary BPS black hole configurations and
presented a general entropy formula, which applies to black hole solutions that arise
in theories containing higher-order curvature interactions. This macroscopic entropy
formula is not the usual Bekenstein-Hawking area law, but it contains additional con-
tributions, which are derived using the more general definition suggested by Wald.
This definition is based on the notion of a conserved Noether charge, and it is reviewed
in sections 1 and 2. We return to the example of the self-intersecting M5-brane dis-
cussed in chapter I and address the question of whether the additional contributions
in the macroscopic entropy formula correctly account for the deviation from the area
law found by microstate counting.

Section 3 contains a discussion of the moduli space of multi-centered black hole
solutions. While this subject is interesting in its own right, the study of these moduli
spaces could shed more light on black hole entropy. This perspective is based on
the idea that at least a part of the degeneracy of black hole states is accounted for
by the degeneracy of bound states of coalescing black holes. We review the method
proposed by Ferrell and Eardley for deriving the moduli space metric for the particular
case of extremal Reissner-Nordström black holes and discuss the limit of coalescence.
Interestingly, the metric on the moduli space derives from a potential. This feature
remains true when calculating the moduli space metrics for more complicated multi-
centered black holes. In section 4 we point to a possible connection between black
hole entropy and this moduli space potential.

1. Entropy as a Noether charge

The first law of black hole mechanics, which we discussed in the chapter I, was orig-
inally derived using the Einstein equations for gravity. When discussing gravity with
higher-order curvature interactions, these equations are modified, and the derivation
of the first law breaks down when using the Bekenstein-Hawking area law as the def-
inition for black hole entropy. In [123], Wald proposed an improved derivation of
the first law applicable to any diffeomorphism invariant theory. In this construction,
the entropy of a black hole is identified with the conserved Noether surface charge S

associated to the diffeomorphisms generated by the horizon-generating Killing vec-
tor field. In the absence of higher-curvature interactions, the Noether charge entropy

73
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coincides with the area law, while there are explicit corrections in the presence of
R2-terms.

In field theory there are well-known procedures to derive the Noether currents for
global symmetries of the Lagrangian. Less familiar is the fact that Noether currents
can be constructed for local invariances of the action as well. We elaborate on this in
the following. Consider an action given in terms of a Lagrangian density L, which
depends arbitrarily on a set of fields we collectively denote by ψ . These fields may
include the metric gµν , as well as matter or gauge fields. The variation of the action
with respect to a general variation of the dynamical field variables ψ produces the
usual split,

δ
(√

|g|L
)

=
√

|g| E · δψ + ∂µ

(√
|g| θµ(ψ, δψ)

)
,

where “·” is a contraction of the variation of the dynamical fields δψ with the tensors
E that constitute the field equations E = 0. The vector θµ(ψ, δψ) denotes the usual
boundary terms one encounters in the variational principle.

Let us construct a Noether current associated with an arbitrary invariance of the
action. Under such an infinitesimal symmetry transformation, which we parameterize
by ξ , the Lagrangian density is left invariant up to a total derivative,

δξ

(√
|g|L

)
= ∂µ

(√
|g| Nµ(ψ, ξ)

)
,

where Nµ(ψ, ξ) is determined uniquely up to a divergence-free vector field. The
conserved Noether current associated with the invariance is defined by

Jµ(ψ, ξ) = θµ(ψ, δξψ) − Nµ(ψ, ξ) .

Due to the ambiguity in the definition of Nµ(ψ, ξ), the Noether current too is deter-
mined up to the addition of a divergence-free vector field. It is simple to show that the
current Jµ(ψ, ξ) is indeed conserved for any ξ ,

∇µ Jµ = −E · δξψ .
Therefore, for field configurations satisfying the field equations, the current can be
written as the divergence of the so-called Noether potential,

Jµ = ∇νQµν .

The Noether potential Qµν(ψ, ξ) is antisymmetric in µ and ν. It is determined up to
the addition of a divergence-free term. Since it generically depends on the trans-
formation parameter ξ itself, it therefore does not necessarily vanish for invariant
field configurations δξψ = 0. An important application of this formalism is the
construction of a Noether potential associated to diffeomorphism invariance. With
respect to diffeomorphisms, δξψ = Lξψ , a covariant Lagrangian density transforms
into a total derivative, δξ (

√|g|L) = ∂µ(
√|g| ξµL). According to above definition

we have Nµ(ψ, ξ) = ξµL, and hence the corresponding conserved current reads
Jµ(ψ, ξ) = θµ(ψ, δξψ)− ξµL.
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Integrating the Noether potential over the boundary ∂V of a spacelike hypersur-
face V ,

∫

V
d6µ Jµ =

∫

∂V
d6µνQµν,

defines a unique conserved surface charge. Here d6µ is the volume element of V , and
d6µν is the induced volume element on its boundary. If ξ corresponds to a symmetry
transformation of the field configuration (in the case of diffeomorphisms these are
given by global Killing vectors) the corresponding conserved surface charge is the
Noether charge in the ordinary sense.

The notion of a Noether charge provides a generalized definition of black hole
entropy that is consistent with the first law of black hole mechanics in the presence
of higher-order curvature interactions. The central observation of Wald [123] is that
if one considers field variations 1ψ , such that ψ and ψ +1ψ are configurations of
a continuous variety of solutions, and focuses on the residual diffeomorphism δχψ

of this solution space generated by the horizon-generating Killing vector field χ , the
following quantity must vanish

1H =
∫

∂V
d6µν

(
1Qµν(ψ, χ)− 2χ [µθν](ψ,1ψ)

)
= 0 .

Here, H is the Hamiltonian that generates the flow along χ . We refer to [123,127]
for details. The boundary ∂V has two disconnected pieces, asymptotic spatial infinity
and the Killing horizon, and the expression therefore relates the variation of quantities
defined at spatial infinity to quantities defined at the horizon. It is shown in [123,125]
that the contribution of the former is proportional to the variation of the mass M and
of the angular momentum J , defined in terms of Komar integrals. The contribution of
the integral over the horizon, on the other hand, is proportional to the surface gravity
and is associated with the variation of the black hole entropy (we use the conventions
of [128]),

S = −π
∫

hor
εµνQµν d6 , (1)

where εµν is the binormal on the horizon normalized as εµνεµν = −2. We have
d6µν = εµνd6, where d6 is the surface element on the horizon. (We refer to the
literature for a discussion of the subtlety that arises when defining entropy in the case
of extremal black holes, for which the surface gravity vanishes at the horizon.) With
these identifications, the vanishing of 1H gives rise to the generalized first law of
black hole mechanics.
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2. Macroscopic entropy formula

Let us employ the Noether charge formula (1) and calculate the black hole entropy for
theories described by Lagrangians of the form

L(gµν, Rµνρσ ;φ,∇µφ) ,
which depend on the metric gµν , the Riemann curvature Rµνρσ , on matter fields φ,
and covariant derivatives thereof. The approach is generalizable to Lagrangians that
depend on derivatives of the Riemann tensor [125,126], but this will not be relevant
for the present discussion. It is shown in [123,124] that the corresponding Noether
potential, evaluated on the horizon, is given by

Qµν

∣∣∣∣
hor

= −2ερσ
δL

δRµνρσ

∣∣∣∣
hor

. (2)

We first evaluate this expression for the case of classical general relativity, LGR =
− 1

16π R,

δLGR

δRµνρσ
= − 1

16π
gµ[ρgσ ]ν .

Using the normalization of the binormal one immediately obtains the Bekenstein-
Hawking area law S = A/4.

We now turn to the supergravity theories discussed in chapters III and IV and
present the entropy formula for the supersymmetric black holes we constructed. Since
these theories depend on the Riemann tensor but not on derivatives thereof we can ap-
ply formulae (1) and (2) to the action (8) of chapter III in the Poincaré frame and sub-
stitute the values the various fields take at the horizon. Recall that the values of these
fields are determined by the fixed-point behavior derived in section IV.2. Apart from
the usual Einstein-Hilbert term there are further dependencies on the Riemann tensor
hidden in the background chiral multiplet describing the R2-interactions. According
to (4) of chapter III, there are two places where this can occur: in the F̂−

ab-component
and in the Ĉ-component of the background chiral multiplet,

F̂−ab = −16R(M)cd
ab T klcd εkl + . . . ,

Ĉ = 64R(M)−cd
ab R(M)−cd

ab − 32 T ab i j Da DcTcb i j + . . . .

The bosonic terms of the double derivative are given in expression (4) of chapter IV,

T ab i j Da DcTcb i j = T ab i j
DaD

cTcb i j − f c
a T ab i j Tcb i j .

Recall that the gauge field of conformal boosts f c
a is not independent but is given

by an expression that involves the Ricci tensor and Ricci scalar (cf. equation 2 of
chapter III).

When evaluated at the horizon, there are fewer terms that contribute to the Noether
potential than one might expect. This results from the fact that many tensors vanish
at the horizon due to the fixed-point behavior. This is the case, in particular, for the
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supersymmetrized curvature R(M)−cd
ab , the field strength F̂−

ab, and the combination
F I

ab − 1
4 T −

ab X̄ I . Since all terms involving F̂−
ab in the action are multiplied by terms

proportional to such vanishing tensors, the variation of the F̂−
ab-terms with respect

to the Riemann tensor does not contribute to the entropy formula. Likewise, since
R(M)−cd

ab vanishes at the horizon, the only contribution from the variation of the term
1
2 i FAĈ + h.c. in the action stems from variations of the gauge field fa

c. Straightfor-
ward calculation of the variation and substitution of the fixed, non-vanishing value that
T i j

ab takes at the horizon yield the following result [25] for the macroscopic entropy,

S = π
[
|Z |2 − 256 Im[FA(X I , Â)]

]
. (3)

We referred to this expression in (15) of chapter IV. The first term |Z |2 = A/4 is
the area of the black hole and arises from the contribution of the Einstein-Hilbert term
in the effective action. The quantity |Z |2 is determined in terms of the charges of
the black hole through the stabilization equations (cf. equation 14 of chapter IV).
In these equations, the higher-derivative interactions enter through the dependence of
FI (X, Â) on the background Â =

(
εi j T i j

ab
)2. The near-horizon solution, and hence the

area |Z |2, is therefore modified in the presence of higher-order curvature interactions.
The second term in the entropy formula originates form the variation of the fa

c-term
we discussed above. It presents an explicit deviation from the area law. It is important
to stress that both contributions separately are scalars under electric-magnetic duality
transformations. It is convenient to rewrite the entropy formula in terms of the rescaled
variables Y I and ϒ used in section IV.4. Using the homogeneity of the function
F(X, Â) and the relations (51) of section IV.4, one finds

S = π lim
|Ex |→0

|Ex |2
(

i
[
Ȳ I FI (Y, ϒ) − F̄I (Y, ϒ)Y I

]
+ 4 ImϒFϒ

)
. (4)

We now have all the ingredients together to address the question raised in chap-
ter I: can the deviation from the Bekenstein-Hawking area law, predicted by microstate
counting, be understood in terms of higher-order curvature interactions in the effective
field theory? The corresponding effective Lagrangian is discussed in section IV.5 and
is characterized in terms of the rescaled variables by the homogeneous function

F(Y, ϒ) = −1
6

CABC Y A Y B Y C

Y 0 − 1
24 · 64

c2A
Y A

Y 0 ϒ .

This model describes the effective action of the M5-brane wrapped on a self-inter-
secting cycle P = pA6A of a Calabi-Yau three-fold [21]. We briefly discussed this
setup in section I.4. The coefficients C ABC are the triple intersection numbers of the
cycle P and c2A are the second Chern class numbers. The effective Lagrangian as-
sociated with this homogeneous function contains terms proportional to c2AIm(z AĈ),
where z A = Y A/Y 0 and Ĉ contains, among others, the square of the anti-selfdual part
of the Weyl tensor. In section IV.5 the equations that determine the fields Y I and ϒ
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in terms of the harmonic functions were solved for the case p0 = 0. For q A = 0 one
finds, using (4), the macroscopic entropy [128],

S = 2π
√

1
6 |q0|(CABC pA pB pC + c2A pA) .

This is in perfect agreement with the result found by microstate counting (cf. equa-
tion 6 of chapter I. The charge q0 corresponds to the N quanta of Kaluza-Klein
momentum.) Both the macroscopic and the microscopic analysis can be generalized
to incorporate electric charges q A 6= 0, but we refrain from giving these details. The
agreement provides a highly non-trivial check on the consistency of both the micro-
scopic and macroscopic approaches to black hole entropy. Note that the modifica-
tions of the macroscopic entropy due to R2-terms are subleading in the limit of large
charges. This is also the limit, for which the result based on microstate counting is
valid. The entropy formulae of extremal black hole solutions that arise in supergravity
theories based on various other homogeneous functions have been worked out. We
refer to [103] for a summary.

3. Moduli space and dynamics of multi-centered black holes

The perfect agreement of the microscopic and the macroscopic entropy of the black
holes we considered is an encouraging result, especially in view of the fact that the
methods applied in the two approaches are of completely different nature. The ex-
tremal black holes with large charges, however, are rather special, and it is therefore
desirable to develop other approaches to black hole physics. We have sketched some
strategies on how to describe more general black hole in chapter I. The approach we
want to focus on in the following is the study of the moduli spaces of multi-centered
black holes. The motivation for studying this subject are manifold. As far as black
hole entropy is concerned, the quantum mechanics on the moduli space of coalesc-
ing black holes is of prime interest. The states described by this quantum mechanical
model are believed to correspond to the low-energy quantum states of configurations
of black holes bound states, and it is therefore conceivable that (at least part of) the
entropy of a black hole can be associated with the degeneracy of such bound states.
So far, this approach has not lead to compelling results. One of the reasons is that
the calculation of the moduli space geometry can become rather complicated and is
not simple to control. Furthermore, the quantization of the resulting mechanical mod-
els, even for the simplest moduli spaces, turns out to be quite involved and so far the
results [129,130], while promising, are not conclusive. Our interest in the question
originates from the desire to understand the effects of R2-terms on the moduli space
geometry. The consequences of higher-derivative effective interactions on the geom-
etry of moduli spaces are still largely unexplored. (We note in passing that as a first
step in this program one could envisage studying the moduli space of monopoles of
Seiberg-Witten theory [131].)
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Moduli space calculations for black holes have been presented in various con-
texts: in [132] the asymptotic moduli space metric was calculated by deriving the
motion of a test black hole in the static multi-centered black hole background. More
complete calculations were performed in [133,134], and later generalized in [135,136]
to dilaton-coupled Einstein-Maxwell systems in general dimensions and to p-branes.
The moduli spaces of black holes in pure supergravity in four and five dimensions
were discussed in [45,137] and [44,138], respectively, the moduli space of black holes
in supergravity coupled to U(1)-vector multiplets is discussed in [139]. In chapter VI
a more extensive list of references is given. These calculations resort to the methods
developed by Ferrell and Eardley [133,134] in the context of multi-centered extremal
Reissner-Nordström black hole solutions. Since this approach differs from the one
developed in chapter VI, we present this analysis here in some detail.

We choose a slightly different normalization of the gauge fields as compared to
section I.2, such the extremal Reissner-Nordström black hole solution reads

ds2 = −ψ−2dt2 + ψ2(dEx)2 , A = −(1 − ψ−1)dt ,

where ψ denotes a harmonic function determined by the source ρ according to

ρ = − 1
4π
1ψ , ρ =

∑

A

m Aδ
(3)(Ex − Ex A) .

The Laplace operator is with respect to the flat Euclidean metric, 1 = ∑
m ∂m∂m . In

the following we use the letters m, n, . . . to denote spatial indices, whereas A, B, . . .
denote the centers of the black holes. Above configuration is a solution of the equa-
tions of motion corresponding to the action

S = 1
16π

∫
d4x

√
|g| ( R(g)− FµνFµν

)−
∑

A

m A

∫

A
(ds − A) .

This action is the bosonic part of the supergravity action in the Poincaré frame de-
scribed by the holomorphic function

F(X) = − 1
2 i X2 .

The program for calculating the geodesic approximation (sometimes called the
moduli space approximation) to the dynamics of black holes, proposed by Ferrell and
Eardley, consists of the following steps:

(i) The centers Ex A parameterize the space of static solutions. These parame-
ters are viewed as collective coordinates. In the geodesic approximation one
promotes these collective coordinates to arbitrary time dependent functions,
ExA → ExA(t). This implies that the harmonic function ψ that characterizes the
static solution, becomes implicitly time dependent,

ψ = 1 +
∑

A

m A

|Ex − Ex A(t)|
.
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(ii) All fields of the solution acquire explicit and undetermined field perturbations.
Certain perturbations, however, are not included for symmetry reasons. For
instance, the perturbation in the t-component of the gauge field and in the gt t-
component of the metric are set to zero. Furthermore, there is no perturbation
of the geometry of the conformally flat three-space. For the case at hand, the
perturbed metric and the perturbed gauge connection are parameterized by two
vectors Nm and Rm , respectively,

ds2 = −ψ−2dt2 + 2Nmdxmdt + ψ2(dEx)2 ,
A = −(1 − ψ−1)dt + Rmdxm .

(5)

(iii) The action is expanded to second order in velocities Ėx A(t). The field perturba-
tions Nm and Rm are considered to be first-order in velocities.

(iv) The action is varied with respect to the field perturbations. This yields a set of
constraint equations, which determine the perturbations in terms of the veloc-
ities and the static, implicitly time dependent, solutions.

(v) The solutions for the perturbations are reinserted into the action and the three-
dimensional integral is performed to obtain an effective Lagrangian for the
collective coordinates.

(vi) The effective mechanical model has the form of a non-linear sigma model. The
target space metric of the model is the metric on the moduli space of solutions.

The outline of the following sections is as follows: in sections 3.1 to 3.4 we implement
step (iii) of above program. In section 3.5 we solve for the field perturbations and read
off the metric on the moduli space (steps iv to vi). In section 3.6 we discuss the result.

3.1. Gravity in ADM variables. In view of the perturbation ansatz (5) it is conve-
nient to make use of the standard decomposition of the Einstein-Hilbert action in terms
of the ADM-variables.a The metric is parameterized by the three-metric, the shift- and
the lapse-function,

ds2 = −(N2 − Nm hmn Nn)dt2 + 2hmn Nm dt dxn + hmn dxmdxn .

The inverse metric is given by

gt t = −N−2 , gtm = N−2 Nm , gmn = hmn − N−2 Nm Nn .

In particular, it is convenient to make use of the Gauss-Codazzi relation and expresses
the Ricci scalar in terms of Ricci scalar 3R(h) of the three-metric h and the extrinsic
curvature Kmn ,

∫
d4x

√−g 4R =
∫

d4x
√

h N
(

3R(h)+ Kmn K mn − K 2
)

+ (b.t.) ,

a In the following we use conventions of [1], which differs from the ones of appendix B by a sign in
the definition of the curvature tensor.
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where K = hmn Kmn and (b.t.) is a boundary term, which will be ignored in the
present discussion. In view of (5), we factor out a conformal factor e−2ω from the
spatial metric, hmn = e−2ω ĝmn. Note that

√−g = N
√

h = Ne−3ω
√

ĝ .

We express everything with respect to the covariant derivative ∇̂ belonging to ĝ. The
indices of hatted objects are raised and lowered with the metric ĝ. In above coordi-
nates, the extrinsic curvature is given by

Kmn = 1
2N

(
∂t hmn − 2∇(m Nn)

)

= e−2ω

N

{
1
2∂t ĝmn − ω̇ ĝmn − ∇̂(m N̂n) + ĝmn N̂ s ∇̂s ω

}
.

Using above decomposition, the Einstein-Hilbert term is written with respect to ∇̂ as
follows,
∫

d4x
√−g 4R =

∫
d4x

√
ĝ e−g N

(
3R̂(ĝ)+ 4 1̂ω − 2(∇̂ω)2

)
+ (b.t.)+

+
∫

d4x
√

ĝ
e−3ω

N

[
− 6 ω̇2 − 4 ω̇ (∇̂m N̂m − 3∇̂mωN̂m)+ ∇̂(m N̂n)∇̂(m N̂n)

− N̂m ∇̂mω
(

2∇̂n N̂n − 3∇̂nωN̂n

)
− (∇̂m N̂m − 3∇̂mωN̂m)

2 + U − V
]
. (6)

The expressions U and V are proportional to ∂t ĝmn,

U = ∂t ĝmn

(
1
4 ĝms ĝnv∂t ĝsv − ω̇ ĝmn − ∇̂(m N̂n) + ĝmn N̂ s ∇̂sω

)
,

V = ĝmn∂t ĝmn

(
1
4 ĝsv∂t ĝsv − 3 ω̇ − (∇̂s N̂s − 3∇̂sωN̂s)

)
.

These terms do not play a role in the later calculation, since the three-metric ĝmn of (5)
is flat and constant. We also suppress the boundary term in the following. This section
has been completely general and did not involve any approximation whatsoever. Vari-
ation of this action with respect to N and N m yields the so-called super-Hamiltonian
and super-momentum constraints of the ADM-formulation of general relativity.

3.2. Gravity perturbations. The ansatz (5) corresponds to keeping the three-metric
conformally flat and not including a perturbation for gt t , hence, in ADM-variables,
N2 − EN2 = ψ−2. We make the following substitutions in (6),

N2 = ψ−2(1 + ψ4 N̂s N̂s) , e−ω = ψ ,

and expand the result to second order in velocities and perturbations. It is convenient
to express the result in terms of the rescaled variable Q̂m = ψNm = ψ3 N̂m . Note that
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the indices of hatted objects are raised and lowered by ĝ, e.g., Q̂m = ψ3 N̂m = ψ3 Nm .
For the Einstein-Hilbert action,

16πSG =
∫

d4x
√−g 4R(g) ,

one finds, dropping the hats on ∇̂ and Q̂ in the following, the zeroth-order contribution
in perturbations and velocities,

16πS(0)G =
∫

d4x
[
−4ψ−11ψ + 2ψ−2( E∇ψ)2

]
.

There are no first-order contributions, since only squares of the extrinsic curvature
appear in the action. The second-order contribution is found after partially integrating
several times and completing squares,

16πS(2)G =
∫

d4x
[

− 6ψ̇2ψ2 − 4 EQ E∇ψ̇ − 4ψ−2
(
∇[m Qn] − ψ−1∇[m(ψQn])

)2

+ ψ−4∇[m(ψQn])∇[m(ψQn])+ ψ−4 EQ2( E∇ψ)2
]
.

The term proportional to EQ2( E∇ψ)2 arises from the expansion of the factor N in the
metric determinant and will be canceled by a corresponding term that appears in the
expansion of the Maxwell action.

3.3. Electromagnetic perturbations. The normalization of the Maxwell fields is
chosen such that the kinetic term is given by

16πSEM = −
∫

d4x
√−gFµνFµν .

Inserting the perturbation ansatz (5) into the definition of the field strength yields,

Ftm = Ṙm + ψ−2∇̂mψ , Fnm = 2∇̂[n Rm] .

Expanding the Maxwell action to second order in perturbations and velocities one
finds

16πSEM =
∫

d4x
√

ĝ
[

2ψ
N

Ftm ĝmn Ftn − N
ψ

ĝnm ĝsr Fns Fmr

−4ψ
N

ĝsm Nn Ftm Fns + O(3)
]
.

After partial integration one finds (dropping hats in the following),

16πS(0)EM = 2
∫

d4x ψ−2( E∇ψ)2 ,

16πS(2)EM =
∫

d4x
[

− ψ−4 EQ2( E∇ψ)2 − 4( E∇ψ̇) ER − 4ψ−2∇[n Rm]∇[n Rm]

+ 8ψ−3∇[n(ψQs])∇[n Rs] − 8ψ−2∇[n Qs]∇[n Rs]

]
.
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3.4. Source terms. The current and matter source actions can be expressed in terms
of a dust density ρ = − 1

4π1ψ . At first we leave this dust density unspecified. At
the end, we consider the black hole limit, ρ −→ ∑

A m Aδ
(3)(Ex − Ex A(t)). The matter

source action reads

Smatter = −
∫

ds
(
ρ d3x

)
= −

∫
d4x ρ

(
N2 − ψ2 ĝmn(N + ẋ)m(N + ẋ)n

)1/2
.

Expanding to second order in perturbations and velocities one finds

S(0)matter = −
∫

d4x ψ−1ρ = 1
4π

∫
d4x ψ−11ψ ,

S(2)matter =
∫

d4x ρ

(
EQ Ėx + ψ3

2
Ėx Ėx
)
.

The current source action is simple and is given by

Scurrent =
∫

d4x ρAµ
dxµ

dt
= −

∫
d4xρ +

∫
d4x ρ

(
ψ−1 + ER Ėx

)
.

3.5. Effective Action. It is convenient to introduce the quantity EP = EQ + ER and
express the resulting combined action in terms of the velocities, EP and EQ. The zeroth-
order action is related to the energy density of the static configuration,

S(0)G + S(0)EM + S(0)matter + S(0)current = −
∫

d4x ρ .

The combined second-order expressions nicely combine and reproduce the result [133,
134],

S(2)G + S(2)EM + S(2)matter + S(2)current =
∫

d4x
[
− 3

8π
ψ̇2ψ2 + EP

(
ρ Ėx − 1

4π
E∇ψ̇

)
+ 1

2
ρ ψ3 Ėx Ėx +

+ 1
16π

ψ−4∇[m(ψQn])∇[m(ψQn])− 1
4π
ψ−2

(
∇[m Pn] − ψ−1∇[m(ψQn])

)2
]
.

Following [133,134], one introduces the vector EK defined by 1K m = −4πρ ẋm ,
where 1 is the Laplacian of the Euclidean three-metric. From current conservation,
E∇(ρ Ėx)+ ρ̇ = 0, one derives

ρ ẋn − 1
4π

∇nψ̇ = 1
2π

∇m∇[n Km] .
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The perturbations EP and EQ are constrained by imposing their field equations, which
are given by

∇m∇[m Kn] = ∇m

(
ψ−2

[
∇[m Pn] − ψ−1∇[m(ψQn])

])
,

0 = ∇m

(
ψ−3

[
∇[m Pn] − 3

4
ψ−1∇[m(ψQn])

])
.

These equations can be solved by

∇[m Pn] = −3ψ2∇[m Kn] − 3ψ2εmns∇s32 + 4ψ3εmns∇s31 ,

∇[m(ψQn]) = −4ψ3∇[m Kn] − 4ψ3εmns∇s32 + 4ψ4εmns∇s31 ,
(7)

where 31,2 are two independent integration functions. Reinserting these expressions
into the effective action one finds

Sapprox =
∫

d4x
[

− 3ψ2

8π
ψ̇2 − 3ψ2

4π

(
∇[m Kn]

)2 − ρ + 1
2
ρ ẋ2ψ3

− ψ2

4π
( E∇32)

2 + ψ2

π
( E∇32 − ψ E∇31)

2
]
.

(8)

It is important to realize that the functions of integration do not drop out automatically
in the action and therefore potentially contribute to the metric on the moduli space. In
principle, the integration functions31,2 are determined by the integrability conditions
derived from (7). In [133,134] it is claimed that in the black hole limit, the integration
functions in fact do not contribute to the effective actions. To this extent, it is useful
to relate the integration functions31,2 to the ones introduced in [133,134],

31 = ψ−3α , 32 = ν + 2ψ−2α .

In fact, one of the integrability conditions expresses ν in terms of α,

1
2
ψ31ν + α1ψ = 0 .

This can be inverted for ν with the following result in the black hole limit ρ =∑
m Aδ(Ex − Ex A),

ν(Ex) = −4π
∑

A

1
|Ex − Ex A|ψ

−3(Ex A) α(Ex A) .

If α(Ex) is not too singular, as Ex → Ex A, then ν = 0. In this case, 31 = 1
2ψ

−132
and the contribution of the integration functions to the action (8) is proportional to the
Laplacian of ψ ,

Sapprox = . . .+ 1
4π

∫
dx4

[
−2ψ−11ψ α2

]
,

and vanishes if α is not too singular. In principle, analyzing the second integrability
condition allows one to estimate the degree of divergence of α as one approaches a
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center, but we refrain from giving these details here. It is clear, however, that gener-
ically such integration functions do contribute to the effective moduli action. Using
ψ̇ = −E∇ EK we find (suppressing the issue of the integration functions)

Sapprox = −
∫

d4x ρ − 1
8π

∫
d4x 1ψ ẋ2

− 3
8π

∫
d4x ψ2

[
( E∇ EK )2 + ∇m Kn∇m K n − ∇n Km∇m K n

]
.

In the black hole limit, ρ → ∑
m Aδ(Ex − Ex A), we can replace the term involving the

Laplacian by
∑

A ẋ2
A ∂

2
Aψ under the integral. Furthermore, we have

Km =
∑

A

m A ẋAm

|Ex − Ex A(t)|
, ∇m Kn = −

∑

A

ẋAm∇Anψ .

Using these expressions, the action for the collective coordinates can be written as a
non-linear sigma model,

Sapprox = −
∑

A

m A + 1
2

∫
dt
∑

AB

gAm Bn ẋm
A ẋn

B , (9)

where gAm Bn(ExC) is identified with the the metric on the moduli space of static solu-
tions and is given in terms of a derivative of a potential [44,45],

gAm Bn(ExC) =
(
δm

iδn
j + εm

ilεln
j
)

∇Ai ∇B j2(Ex A) ,

2(Ex A) = − 1
16π

∫
d3x ψ4 .

(10)

Varying the action (9) with respect to Ex A(t) yields the equation for geodesic motion
on the moduli space of solutions.

3.6. Discussion. The reason why the method used to derive the geodesic description
of the multi-centered black hole dynamics works hinges on an intricate interplay be-
tween the restricted perturbation ansatz (5) and, as a consequence, on the existence of
additional constraint equations when working to first order in velocities and perturba-
tions. Recall that we imposed field equations for EP and EQ to first order in velocities
and perturbations. These equations are constraint equations as they involve at most
first time derivatives on implicitly time dependent functions. These constraint equa-
tions are in fact linear combinations of the original field equations expanded to first
order in velocities and perturbations,

∇µFµm = 4π J m , Gtm = 8πT tm .

The first equation is the spatial component of Maxwell’s equation, the second one is
the spatial component of the initial value constraint (sometimes called super-momen-
tum constraint) of general relativity. The latter is a constraint equation to any order,
since it does not involve second time derivatives and no first time derivatives on the
shift- and lapse-function. The spatial components of Maxwell’s equation, on the other
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hand, do contain a second time derivative. It is only when working to first order in
velocities and perturbations and when restricting the perturbations to the ansatz (5)
that one recovers a constraint equation, namely Ampère’s law. The Gauss constraint
and the so-called super-Hamiltonian constraint,

∇µFµt = 4π J t , Gt t = 8πT t t .

on the other hand, are satisfied automatically to first order by the ansatz (5). It is clear
that due to the mismatch between the number of genuine constraint equations and the
number of explicit perturbations incorporated in (5) the method proposed by [133,134]
is very much tailored to this specific application and approximation scheme. It is
quite remarkable that the method can be applied to the more complicated black hole
solutions of N = 2 supergravity coupled to U(1)-vector multiplets [139], though
here it is necessary to adopt a scheme including many more field perturbations. On
the other hand, generalizing the calculation of Ferrell and Eardley to black holes of
supergravity theories with R2-interactions has proven to be very arduous. We stress
that R2-interactions potentially affect to the metric on the moduli space of solutions.
We discuss these issues in the chapter VI.

The effective action (9) is the starting point for investigating the classical slow-
motion of extremal black holes and for addressing questions of scattering and coa-
lescence. Since 2 is a polynomial of degree four in the black hole centers, there are
only two-body, three-body, and four-body interactions. Furthermore, due to transla-
tional invariance, the center of mass motion decouples. Generically, the system is not
integrable and one has to resort to numerical methods.

An interesting property of the moduli space metric is that it possesses an SL(2,R)
conformal symmetry in the limit of small black hole separations [45,139]. We men-
tioned this scaling limit in section I.5 in the context of the AdS/CFT-correspondence.
In this limit, the moduli space potential reduces to

2(Ex A) = − 1
16π

∫
d3x

[∑

A

m A

|Ex − Ex A|

]4

.

The corresponding metric in fact admits an exact homothetic Killing vector,

χ Am = −2 x Am , χAm = ∂Amχ ,

with homothetic Killing potential [45]

χ = 2
∑

A6=B

m3
Am B

1
|ExA − ExB| .

In [45] the supersymmetric completion of (9) was studied. The Lagrangian is based
on a superspace integral utilizing 2(8) as the holomorphic function, where 8 de-
note constrained N = 4 superfields in one dimension, each containing 3 + 4 physi-
cal degrees of freedom [140]. The superconformal extension of the supersymmetric
models presented in [45] have a D(2, 1; 0) superconformal symmetry. It is still un-
clear as to whether this superconformal mechanical model bears any relation to the
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superconformal models we mentioned in section I.5 in the context of the AdS/CFT-
correspondence.

4. Entropy formula and moduli space potential

The multi-centered solutions we have studied in chapter IV can be used as a starting
point for computing the metric on the moduli space of extremal black holes in the pres-
ence of R2-interactions. In [139] the result of [133] was generalized to supergravity
theories of the type we considered in chapter IV, but in the absence of R2-interactions.
It was found that the metric on the moduli space of electrically charged BPS black
holes is still determined in terms of the moduli space potential 2 given in equation
(10), where ψ2 is the function that appears in the line-element and is identical to the
function e−2g in the notation of chapter IV,

ψ2 = e−2g .

For these more complicated theories, the function ψ = e−g is not just a simple har-
monic function, but depends on the scalar fields of the vector multiplets, which in
turn are expressed by harmonic functions. In the presence of R2-interactions, e−2g

receives additional modifications (we use Planck units),

e−2g = i
[
Ȳ I FI (Y, ϒ) − F̄I (Ȳ , ϒ̄ )Y I

]
− 128i eg ∇ p

[ (
∇pe−g) (Fϒ − F̄ϒ )

]

+ 32i e4g (R(σ )p)2(Fϒ − F̄ϒ )+ 64 e2g R(σ )p ∇ p(Fϒ + F̄ϒ ) .

How do the R2-terms affect the moduli space potential? We expect that the moduli
space potential receives corrections as a result of the R2-dependence of e−2g. On the
other hand, there may also be additional modifications of2, which originate from the
various additional couplings of the supergravity action in the presence of higher-order
curvature interactions. In the following, we focus only on the modifications encoded
in e−2g. Using above expression we rewrite 2 as follows,

−16π 2 =
∫

d3x ψ4 =
∫

d3x e−4g

=
∫

d3x e−2g
(

i
[
Ȳ I FI (Y, ϒ) − F̄I (Ȳ , ϒ̄)Y I

]
− 4 |ϒ| Im Fϒ

)
, (11)

where we integrated by parts, used the fact that R(σ )p is divergence free, and inserted
the expression for the rescaled chiral background, ϒ = −64(∇mg − 1

2 ie2g R(σ )m)2.
Observe that the combination i

[
Ȳ I FI (Y, ϒ) − F̄I (Ȳ , ϒ̄)Y I ] − 4 |ϒ| Im Fϒ , when

evaluated at the horizon of a BPS black hole, is precisely equal to π−1|Ex|−2 times the
expression for its macroscopic entropy (4) of the black hole! This intriguing feature
may indicate that there are in fact no additional explicit modifications of 2 due to
the R2-interactions. In establishing (11) we dropped certain boundary terms when
integrating by parts. Some of those are known to be proportional to |Ex A − ExB|−1 (for
two non-coincident centers A and B) and therefore do not contribute to the metric on
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the moduli space [45]. We close with the remark that, just as the macroscopic entropy,
the moduli space potential is a scalar under electric-magnetic duality transformations.



VI

Moduli spaces and geodesic description

This chapter contains an introduction to the geodesic description of soliton dynamics
for theories with gauge invariance and/or diffeomorphism invariance. The motivation
for this work is to address the question of how the higher-order curvature corrections,
which we have discussed at length in chapter IV, affect the geometry of the mod-
uli space of stationary multi-centered solutions. As mentioned in chapter V, a good
understanding of this geometry is relevant for the understanding of the (quantum) me-
chanics of black holes. It is, however, not yet possible to present definite answers
to these last questions. This chapter therefore differs from the previous ones in that
it deals with the conceptual basis of the geodesic approximation rather than with its
concrete applications. Some results of this chapter have been reported in [141,142].

1. Introduction

The study of the time evolution of (multi-)solitonic field configurations was initiated
by the work of Manton [143]. The principal idea is to approximate the full classical
dynamics of solitons by their geodesic motion in the space of static (or stationary) con-
figurations (moduli space). In the case of SU(2)magnetic monopoles the 2-monopole
moduli space is known exactly [144,145] and questions concerning monopole scatter-
ing can be addressed in this geodesic approximation. However, the n-monopole solu-
tion space is understood only asymptotically [146,147]. Nevertheless, a general (albeit
implicit) formula for the metric on the moduli space has been given [148]. Certain el-
ements of this chapter are based on the fairly general setup presented in [149]. For
applications along these lines, we refer to [150,151]. Moduli space calculations have
also appeared in the context of lump solutions in CP1-models [152,153] and for the
CP1-model coupled to gravity [154]. The moduli spaces of abelian vortices were dis-
cussed in [155,156] and a nice discussion of string soliton scattering appeared in [157]
(see also [158]). The dynamics of Kaluza-Klein monopoles was discussed in [159].

The moduli spaces of BPS black holes are known explicitly in a number of cases.
The first references on this subject are [132–134]. In the latter two papers the me-
chanics of four-dimensional multi-centered Reissner-Nordström black holes was de-
rived. We reviewed this approach in detail in chapter V. This work was generalized
in [135,136] to dilaton-coupled Einstein-Maxwell systems in general dimensions and
to p-branes. The moduli spaces of black holes in pure supergravity in four and five

89
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dimension were discussed in [45,137] and [44,138], respectively; the moduli space
of black holes in supergravity coupled to abelian vector multiplets was discussed
in [139].

In the above references many diverse, seemingly unrelated, and often context-
adapted methods are used. The goal of this chapter is to present a conceptual basis
from a more unified perspective. The construction of the geodesic approximation we
propose is directed towards the moduli spaces of stationary solutions of generic field
theories with arbitrary invariance groups. In particular, it is shown how the well-
developed methods used in the gauge theory setting [148] can be carried over to the-
ories with diffeomorphism invariance. While the geodesic description is by itself an
approximation based on the restricted motion in the space of static solutions, there
is no compelling mathematical reason why one has to subsequently resort to a low-
velocity approximation. Indeed, our methods can in principle deal with field theories
that contain higher powers in the time derivative. The terms of higher order in the time
derivatives of the fields may still influence the standard kinetic terms in the moduli ac-
tion that are quadratic in the velocities. There are general arguments that indicate that
this is indeed the case, at least for the solutions discussed in section IV.

1.1. Geodesic approximation for the nonlinear sigma model. Let us first remind
the reader how the geodesic approximation (sometimes also called the moduli space
approximation) appears in its simplest form for a theory without gauge invariance.
Consider a nonlinear sigma model in d + 1 spacetime dimensions with a potential

L =
∫

dd x
(

1
2 gI J ∂tφ

I ∂tφ
J
)

− V [φ, ∂mφ] .

We assume that this theory has static solutions that can be parametrized by a number
of continuous integration constants X a , which we call collective coordinates. These
solutions are encoded in time-independent functions φ I (Ex, Xa), which characterize a
continuous variety of extrema of the potential. We have a situation in mind where the
field theory has solutions that describe localized lumps so that the collective coordi-
nates Xa typically denote their positions. Often, the total number of lumps is fixed
by topological constraints. In that case φ I (Ex, Xa) describes a family of degenerate
static multi-lump solutions. The collective coordinates X a parameterize the moduli
space of these solutions and two neighboring solutions are related through a variation
of the collective coordinates, X a → Xa +δXa , which induces a variation on the fields
δcovφ

I = δXa∂aφ
I (Ex, Xa). The reason for introducing the notation δcov refers to the

situation with gauge invariance, as will be explained in due course.
When we let the collective coordinates depend on the time t , the field equations

induce equations of motion for the collective coordinates. These describe the (ap-
proximate) dynamics of the solitons as a geodesic motion in the moduli space of static
configurations, parametrized by the X a . To see this, let us first write the equations of
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motion for φ I (t, Ex),

gI J (φ)
(
∂ 2

t φ
J + 0 J

K L(φ) ∂tφ
K ∂tφ

L
)

+
(
∂V
∂φ I − ∂m

∂V
∂(∂mφ I )

)
= 0 , (1)

where, 0 J
K L denotes the Christoffel connection associated with gI J . When substitut-

ing the static solutions φ I (Ex, Xa(t)) with time dependent collective coordinates into
this equation, the last terms referring to the potential will vanish because the continu-
ous class of static solutions φ I (Ex, Xa(t)) has a fixed potential energy and corresponds
to a subspace of the space of field configurations for which the potential is stationary
with respect to arbitrary field variations.

The field equation (1) follows from requiring the action to be stationary with
respect to arbitrary variations of the fields. But these are not the equations that are
appropriate in the geodesic approximation, since those refer to field variations that
are restricted to the extremal potential energy surface. Instead we should thus restrict
ourselves to variations induced by the change of the collective parameters, i.e., to
δcovφ

I = δXa(t) ∂aφ
I (Ex, Xa(t)), where the δXa(t) are arbitrary functions of time

t . The relevant dynamical equations in the geodesic description then follow from
multiplying (1) with δcovφ

I and integrating over the d-dimensional space. This leads
to the following geodesic equation,

Gab

(
∂ 2

t Xb + 0b
cd ∂t Xc ∂t Xd

)
= 0 , (2)

where the moduli metric and the corresponding Christoffel connection are given by,

Gab(X) =
∫

dd x gI J ∂aφ
I ∂bφ

J ,

0a
bc(X) = Gad

∫
dd x gI J

(
∂b∂cφ

I + 0 I
K L ∂bφ

K ∂cφ
L
)
∂dφ

J ,

(3)

where everywhere we put φ I = φ I (Ex, Xa(t)). Obviously, one can consider diffeo-
morphisms of the moduli space coordinates X a , under which Gab transforms as a
symmetric tensor and the velocities Ẋa = ∂t Xa transform as covariant vectors.

Here, we have chosen to effect the geodesic approximation through the equations
of motion, but for the example at hand we could easily have worked at the level of
the action: after substituting φ I (t, Ex) = φ I (Ex, Xa(t)) into the action and performing
the integration over spatial coordinates, one obtains the action for a particle moving
through the target space parametrized by the collective coordinates X a and described
by the metric Gab given above. This target space is just the moduli space of the static
solutions. The geodesic equation (2) results from varying this action with respect to
Xa(t) → Xa(t)+ δXa(t).

In this paper the term “geodesic approximation” refers to the description where
one restricts the fields to evolve solely within the space of static field configurations.
By itself, this does not imply that one resorts to an approximation in terms of low
velocities. The only reason why the particle action is quadratic in velocities is that the
underlying field theory is at most quadratic in the time derivatives. Terms of higher
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order in the time derivatives of the fields lead to terms of higher order in the velocities
(which couple to symmetric target-space tensors Ua1···an (X)) in the moduli space ac-
tion, and can be evaluated in the same way. As long as there are no higher-order time
derivatives, the moduli action will be a function of coordinates and velocities, and not
of the accelerations or derivatives thereof. Of course, one expects the geodesic ap-
proximation to break down at high velocities on physical grounds, because the motion
will no longer be confined to the static field configurations.

1.2. Global symmetries and moduli space isometries. The symmetry features of
the underlying field theory can lead to corresponding features at the level of the geo-
desic description. Here we should make a distinction between rigid and local symme-
tries and symmetries of spacetime itself. Local symmetries will be discussed at length
later in this chapter. Spacetime symmetries that involve the time coordinate cannot be
preserved in the geodesic description, which is based on identifying a time coordinate
from the start. We return to this point in due course. Rigid spacetime symmetries that
do not involve the time coordinate and rigid target space symmetries induce an action
on the collective coordinates, provided they act non-trivially on the static solutions
φ(Ex, Xa). Here we briefly discuss the consequences of such rigid symmetries.

Assuming the φ(Ex, Xa) completely characterize the static solutions, they will
transform among themselves under the rigid symmetry transformations. This implies
that the action of the symmetry on the fields induces a transformation on the collective
coordinates. For the model at hand, the symmetries of the field theory take the form of
isometries of the target space (possibly further restricted by the requirement that they
also leave the potential energy term invariant). They correspond to the infinitesimal
transformations φ I → φ I + k I (φ), where the k I (φ) are Killing vectors associated
with the metric gI J . Because both φ I (Ex, X) and φ I (Ex, X) + k I (φ(Ex, X)) are static
solutions, it follows that a moduli space vector K a(X) must exist such that,

K a(X) ∂aφ
I (Ex, X) = k I (φ(Ex, X)) . (4)

Contracting this equation with gI J (φ(Ex, X))∂bφ
J (Ex, X) and integrating over space

one finds the inverse relation,

Ka(X) =
∫

dd x kI (φ(Ex, X)) ∂aφ
I (Ex, X) .

We have lowered the index of K a by contracting with the moduli metric Gab(X).
From the fact that k I is a Killing vector associated with gI J it follows that K a gen-
erates an isometry of the moduli space metric, i.e., LK Gab = 0. To see this one
conveniently makes use of (3) and (4).

Similarly, spacetime symmetries that do not involve the time coordinate induce
Killing symmetries on moduli space. As an example consider the case of transla-
tional symmetry, i.e., invariance of the field theory under Ex → Ex + Er , where Er is
constant. Obviously translated solutions remain within the variety of solutions that
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we are considering, so that there must be d vectors ERa(X) in the moduli space subject
to ∂mφ

I (Ex, A) = Ra
m(X) ∂aφ

I (Ex, X). Performing the same steps as before, we find

ERa(X) =
∫

dd x E∂xφ
I (Ex, X) gI J (φ(Ex, X)) ∂aφ

J (Ex, X) .

The vectors ERa satisfy

L ER Gab(X) =
∫

dd x E∂x

(
∂aφ

I gI J ∂bφ
J
)
.

Dropping the surface term it follows that we have d (abelian) isometries of the tar-
get space metric. Obviously these isometries are associated with the center-of-mass
motion of the static solutions.

1.3. Outline. So far we have discussed a field theory without local gauge symme-
tries. Gauge invariances and diffeomorphisms are more subtle to deal with, since they,
generically, do not represent symmetries but redundancies in the field representation.
In order to deal with gauge degeneracies, one can either gauge-fix all gauge invari-
ances and unambiguously determine the stationary solution space in that gauge, or
one can proceed gauge covariantly by working with gauge equivalence classes of so-
lutions. The non-covariant approach tends to be problematic because one will have to
show at the end that the result does not depend on the chosen gauge. Therefore we
will follow a covariant approach, which will be introduced in the next section for a
gauge theory.

The construction of the geodesic approximation proceeds in three, logically dis-
tinct steps. First, the space of static/stationary soliton configuration is determined and
analyzed with respect to its residual gauge symmetries. The notion of a covariant
variation (i.e. parallel transport in the moduli space) is introduced in order to com-
pare two neighboring equivalence classes. In a second step the time dependence is
re-introduced by letting the collective coordinates depend on time. Here the residual
gauge symmetries are lifted to the the time-dependent situation. In this thesis the re-
introduction of time into the problem is referred to as the “geodesic lift”. This lift
requires the introduction of terms that depend explicitly on the velocities Ẋa(t), to
preserve the invariance under the residual gauge transformations. We will establish
that these velocity-dependent modifications follow from gauge invariance. In this way
one defines a consistent mapping of the time evolution of the collective coordinates to
the time evolution in the field theory configuration space. With this relation, the action
principle for the dynamics of the collective coordinates is induced by the action prin-
ciple of the underlying field theory. In particular, the covariant variation of the fields,
which is the representation in field configuration space induced by the change of the
collective coordinates, must satisfy the same properties as in the original field theory
variational principle. Finally, one has to deal with the modding out of the gauge redun-
dancy in order to ensure that the geodesic motion is orthogonal to the gauge orbits in
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the underlying field theory. This requirement is related to imposing the correct initial-
value constraints in order to obtain a well-posed Cauchy problem in the underlying
field theory.

The outline of the chapter is as follows: in section 2 we discuss ordinary gauge
theories and perform the three steps mentioned above for scalar and vector fields,
stressing the role of the residual gauge symmetries and of the geodesic lift. In sec-
tion 3 we explain how to generalize the construction to theories with diffeomorphism
invariance. In section 4 we summarize our findings and give an outlook.

2. Geodesic description for gauge theories

In this section we discuss the geodesic approximation for gauge theories in flat space-
time. We concentrate, for concreteness, on a gauge theory minimally coupled to a
scalar field φ in the adjoint representation of the gauge group,

S =
∫

dd+1x
(

Tr
[1

4
Fµν Fµν + 1

2
Dµφ Dµφ

]
− V (φ)

)
. (5)

Throughout this section we will write the fields in Lie algebra valued form. We assume
that this field theory has a continuous variety of static solutions parametrized by a
number of collective coordinates X a . More general Lagrangians can be studied within
the framework that we will explain, including Lagrangians that contain higher powers
of the covariant derivatives and the fields strengths. But the emphasis will be on the
conceptual framework, rather than on specific applications.

2.1. Static solution space. In the case of a gauge theory the static solutions are in
general subject to a class of residual gauge transformations that do not involve the
time variable. This implies that these solutions are still ambiguous and the corre-
sponding gauge degeneracy has to be modded out when extracting the correct moduli
space description. As mentioned previously, one could adopt a gauge condition that
would result in a class of unique solutions, depending again on collective coordinates
Xa (which themselves are gauge invariant). However, it is unclear whether this de-
scription will lead to a gauge invariant and gauge independent moduli space metric.
This question is hard to answer, also in view of the fact that it is difficult to respect the
gauge conditions when re-introducing time. See, for instance, the examples discussed
in [148,149], where the initial gauge conditions are modified by velocity-dependent
terms. Therefore we will pursue a covariant approach, in which none of the residual
(i.e. time-independent) gauge transformations are fixed. We will then argue that the
above mentioned velocity-dependent modifications follow from gauge covariance and
are uniquely determined within the geodesic approximation.

The residual gauge transformations, which act on the static configurations, are
parametrized by parameters 3 that depend on Ex . In addition they can depend on the
collective coordinates Xa , so that inequivalent solutions (characterized by different
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values for the Xa) may be subject to different gauge transformations. The residual
transformations take the form,

δφ = [3,φ] , δAt = [3, At ] , δAm = ∂m3− [Am, 3] ,

where the gauge connections and the scalar fields that appear in (5) are denoted by
Am(Ex, X), At(Ex, X) and φ(Ex, X), and belong to the class of static solutions para-
metrized by the collective coordinates.

The fact that we are dealing with fields and transformations that depend on both Ex
and Xa , implies that we are dealing with an extended base space parametrized by the
coordinates (xm, Xa). To define parallel transport in this extended bundle, we need
connections AM = (Am, Aa), where Aa(Ex, X) is a new connection field, which for
the moment is left undetermined. This suggests that the new connection field will
transform under residual gauge transformations according to

δAa = ∂a3− [Aa, 3] . (6)

The implications of this are discussed below.
When comparing two neighboring solutions φ(Ex, X) and φ(Ex, X + δX) (and cor-

respondingly for the connections Am and At ) one must account for the fact that the
solutions, as one explicitly writes them down, are but representatives of a whole class
of gauge degenerate solutions. Comparing two solutions characterized by collective
coordinates Xa and Xa + δXa , one must therefore allow for residual gauge transfor-
mations that differ at these two values of the collective coordinates. This difference
is reflected in an infinitesimal gauge transformation parametrized by the new connec-
tions Aa with parameter3 = δXa Aa , so that the resulting field variations induced by
shifts of the collective coordinates take the form [148,149],

δcovφ = δXa ∂aφ − [δXa Aa, φ] = δXa Daφ ,

δcov At = δXa ∂a At − [δXa Aa, At ] = δXa Da At = δXa Fat ,

δcov Am = δXa ∂a Am − Dm(δXa Aa) = δXa Fam .

(7)

where Fmt = −Ftm = Dm At and Fat = −Fta = Da At are the nonabelian field
strengths in the static geometry and Fam = ∂a Am − ∂m Aa − [Aa, Am]. Assuming
the gauge transformation (6) for the connection Aa, we conclude that the combined
variations (7) are covariant. This result can now be extended straightforwardly to
obtain the expression for δcov Aa. We give the combined result for AM ,

δcov AM = δXb ∂b AM − DM(δXb Ab) = δXb FbM , (8)

where FM N denotes the field strength in the extended space,

FM N = ∂M AN − ∂N AM − [AM, AN ] . (9)

As indicated above, the letters M, N, . . . refer to indices that run both over spatial
(m, n, . . . ) and moduli space (a, b, . . . ) indices. Obviously these field strengths sat-
isfy corresponding Bianchi identities. It is straightforward to determine the action of
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δcov for other covariant quantities. We give two examples,

δcovDMφ = δXa Da DMφ = DM (δcovφ)− (δcov AM)φ ,

δcovFM N = δXa Da FM N = −2 δXa D[M FN]a = 2D[M(δcov AN]) ,

where we used the Ricci identity for the commutator of two covariant derivatives
and the Bianchi identity for the field strength in the extended base space. The above
formulae take the form of a generalized Leibniz rules for δcov whose relevance will
be explained later. There are analogous formulae for expressions such as Fmt =
Dm At and Dtφ = −[At , φ], which follow analogously but become non-trivial when
performing the geodesic lift. This issue is addressed below.

2.2. Geodesic lift. We now proceed and reintroduce a time dependence through the
collective coordinates, Xa → Xa(t), which implies that both the fields and the pa-
rameters of the residual gauge transformations will implicitly depend on time. It is
clear that the residual gauge invariance, which is crucial for the moduli space geome-
try, should be preserved when introducing the time dependence in this way. For many
quantities this is trivial and the time dependence of the collective coordinates does not
play a role. But as soon as one is dealing with time derivatives, this is no longer so,
and this is why the geodesic lift is subtle. In the field theory the derivatives appear
already in covariantized form, such as in Dtφ = ∂tφ − [At, φ]. In the static case this
derivative transforms covariantly under the residual gauge transformations, just be-
cause the time derivative vanishes and At and φ transform covariantly. To ensure that
the derivative remains covariant in the geodesic lift, we must modify the connection
At ,

A′
t = At + Ẋa Aa ,

so that A′
t transforms under residual gauge transformations as

δA′
t = Ẋa Da3(Ex, X)− [At, 3(Ex, X)]

= dt3(Ex, X)− [A′
t , 3(Ex, X)] ≡ D′

t3(Ex, X) .

Here dt = d/dt denotes the total time derivative that acts on both the explicit time
coordinate and on the implicit time dependence contained in the collective coordi-
nates. Hence, for the parameters 3(Ex, X), we have ∂t3 = 0 and dt3 = Ẋa∂a3.
Observe that the covariant derivative Dt is defined with the explicit time derivative ∂t ,
which vanishes on static quantities, while D′

t contains the total time derivative dt . On
φ(Ex, X (t)) we thus have Dtφ = −[At, φ], while

D′
tφ = Ẋa∂aφ − [A′

t, φ] = Ẋa Daφ − [At, φ] . (10)

Obviously D′
tφ transforms covariantly under the (lifted) gauge transformations with

parameters3(Ex, X (t)). With this modified connection we can thus preserve the gauge
invariance under residual gauge transformations in the presence of time derivatives.
This is an obvious necessity in view of the fact that the geodesic description deals
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with the time evolution in the space of static configurations, whose nature depends
crucially on modding out the corresponding residual gauge transformations.

Not only the connection At is modified in the geodesic lift, but also correspond-
ing covariant field strengths are affected. As usual they follow from taking commuta-
tors of the appropriate covariant derivatives. We have already defined FM N ; the field
strengths Ft M are modified and denoted by F ′

t M = −[D′
t , DM ], so that

F ′
t M = −F ′

Mt = Ft M + Ẋb FbM ,

where we used ∂M Ẋa = 0. Observe that the field strengths are only linear in ve-
locities; there are no Ẍa or Ẋa Ẋb terms, reflecting that the field-strength is linear in
first-order (time)derivatives. Of course, when applying higher-order time derivatives,
as in the field equations, one does obtain terms proportional to powers of accelerations
and derivatives thereof. The curvatures FM N remain as in (9). Also the new curvatures
satisfy corresponding Bianchi identities,

D′
t FM N + 2 D[M F ′

N]t = 0 . (11)

As before we must determine the covariant variations induced by the variation of
the collective coordinates, X a(t) → Xa(t)+ δXa(t). The covariantization is effected
by including a gauge transformation with parameter −δX a(t) Aa(Ex, X (t)). This pa-
rameter depends on time both through the collective coordinates X a(t) as well as
through their variations δXa(t) with arbitrary functions, which implies

δcov A′
t = δXa(t) ∂a A′

t + δ Ẋa Aa − D′
t (δXa(t)Aa)

= δXa ∂a(At + Ẋb Ab)− δXa D′
t Aa

= δXa F ′
at . (12)

where we used dtδXa = δ Ẋa . Observe that this covariant result is in line with the
results derived previously in (7). Furthermore, the variation is proportional to δX a

and not to δ Ẋa .
Secondly, we verify that the generalized Leibniz rules still hold on the covariant

quantities. For the time derivative of φ, we combine the terms proportional to δX a

and δ Ẋa and find after proper covariantization,

δcov(D′
tφ) = δXa Da(D′

tφ)+ δ Ẋa Daφ

= δXa D′
t Daφ + δ Ẋa Daφ − δXa [F ′

at , φ]

= D′
t (δcovφ)− [δcov A′

t , φ] .

A similar calculation reveals

δcovF ′
t M = δXa Da F ′

t M + δ Ẋa FaM

= D′
t (δXa FaM)− δXa DM F ′

at

= D′
t (δcov A′

M)− D′
M (δcov A′

t) .
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where we used the Bianchi identity (11). Hence we see that the lifted expressions
satisfy the generalized Leibniz rules, provided we identify the covariant variation of
A′

t with (12). These generalized Leibniz rules are the same as for the underlying field
theory, which is crucial for a proper identification of the covariant field variations δcov
with the variations associated with the moduli action principle. It is a welcome feature
that these variations are proportional to the variation of the collective coordinates and
not of the velocities. Furthermore they involve contributions that are at most linear in
the velocities.

The fact that we had to include a velocity-dependent correction into the con-
nection A′

t shows that maintaining the residual gauge covariance in the geodesic lift
dictates the form that these correction terms should have. To exhibit this feature for
general field theories with gauge and diffeomorphism invariance is the central theme
of this chapter. Purely based on covariance, we could have separated the two terms
in the modified connection, but this would have affected the generalized Leibniz rules
formulated above.

2.3. Effective moduli action. To demonstrate the use of the results obtained so far,
we consider the action (5) and replace Fµν , Dµ and φ by the appropriate quanti-
ties in the geodesic lift, namely Fmn F ′

tm , Dmφ, D′
tφ and φ(Ex, X (t)). Dropping the

(constant) contribution from the potential, one obtains the following action for the
collective coordinates,

S[X (t)] =
∫

dt
(

1
2

Gab(X) Ẋa Ẋb − Ja(X) Ẋa
)
, (13)

where

Gab(X) = −
∫

dd x Tr
[

Fam Fbm + Daφ Dbφ
]
,

Ja(X) = −
∫

dd x Tr
[

At (Dm Fma + [φ, Daφ])
]
.

(14)

This result is invariant under residual gauge transformations and covariant under mod-
uli space diffeomorphisms (similar results were obtained in [148,149]).

The equations of motion one obtains by varying the action (13) with respect to
the collective coordinates, X a(t) → Xa(t) + δXa(t), can be written, after partial in-
tegrations, as convolutions of the original field equations with the covariant variations
of the fields as defined previously. These are the geodesic equations belonging to the
particle Lagrangian given by (13) and (14) written in terms of the solutions to the
original field equations,

Tr
∫

dt δXa(t)
∫

dd x

{
−
δcov A′

µ

δXa(t)

(
D′
νF ′µν + [

D′
µφ, φ

] )+

+ δcovφ

δXa(t)
D′
µD′µφ

}
= 0 . (15)
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The various expressions for the fields and their derivatives are the ones defined in the
geodesic lift, and therefore it is important that the generalized Leibniz rules apply.
Observe that there was no need for adopting a gauge condition, but, on the other hand,
the result still depends on the newly introduced but so far undetermined connection
Aa . This connection can be eliminated in a gauge invariant fashion by use of its
equation of motion,

Ẋa Ẋb
∫

dd x Tr
[
δAa

(
Dm Fmb + [φ, Dbφ]

)]
= 0 , (16)

valid for any δAa. Note that the term
∫

Ja Ẋa does not contribute to (16), because
its variation is just proportional to the (static) At -equation of motion. Moreover, its
contribution vanishes also in the effective action, once the constraint (16) on Aa is
imposed. In fact, upon partial integration and comparison with (8), one observes that
(16) is the well-known orthogonality condition [143,160],

∫
dd x Tr

[
(δcov Am) (δgauge Am)+ (δcovφ) (δgaugeφ)

]
= 0 , (17)

which ensures that the geodesic motion corresponding to δcov is orthogonal to the
gauge orbits. In this connection observe that the moduli space metric Gab(X) can be
written as

Gab(X) = −
∫

dd x Tr
[
δcov Am

δXa
δcov Am

δXb + δcovφ

δXa
δcovφ

δXb

]
. (18)

Since the constraint (16) is a covariant equation for Aa, we may solve for Aa and rein-
sert the result into the expression for the metric Gab without affecting gauge invari-
ance. In practice it is quite complicated to obtain explicit expressions for the moduli
metric. Notwithstanding these practical difficulties, the above framework can in prin-
ciple be used for more general Lagrangians, including Lagrangians that contain terms
of higher order in the field strengths. The latter case would lead to an effective moduli
action that contains terms of higher order in the velocities. While we refrain from dis-
cussing this in any detail, it should be noted that this aspect is important for us in view
of the fact that we are interested in obtaining results for supergravity Lagrangians that
contain interactions quadratic in the Riemann curvature.

2.4. Different spacetime coordinate frames. In many cases one is dealing with a
Lorentz invariant field theory, so that the identification of the time coordinate is some-
what arbitrary and depends on the frame that has been adopted. Of course, choosing
another Lorentz frame will lead to identical results. Formally we can set up the formu-
lation in such a way that the choice of the Lorentz frame is encoded in a time evolution
vector kµ, which is a constant timelike vector that can be chosen at will. A time coor-
dinate τ can be defined by kµ∂µ = ∂τ and one also derives that dτ = k−2kµ dxµ. Sta-
tionary solutions are characterized by their independence on the coordinate τ , so that
e.g., kµ∂µφ = 0. Of course, any frame can be brought into standard form by means
of a suitable Lorentz transformation, with adapted coordinates for which kµ = (1, E0).
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Keeping kµ general one can postpone the definition of the time coordinate until the
end. But one can also go further and formulate the previous results in the context of
a more general coordinate frame in order to pave the way for the discussion in the
next section. Such a coordinate system will no longer constitute a Lorentz frame, al-
though it still describes flat Minkowski spacetime. Both the metric gµν and the time
evolution vector kµ take a more complicated form and are no longer constant. The
time τ remains integrable and kµ is a Killing vector. This is reflected in the following
conditions,

kµ∂µ = ∂τ , dτ = k−2kµ dxµ , ∂[µ(k−2kν]) = Lkk = Lk g = 0 . (19)

Clearly kµ remains timelike in the new coordinate system (kµkµ < 0).
The static fields and the corresponding residual gauge transformations are now

defined by the condition,

Lkφ = Lk A = Lk3 = 0 . (20)

and the moduli space of static configurations can be defined as before. The fields
are functions of the spacetime coordinates and the collective coordinates, xµ and Xa ,
respectively. The gauge fields and the metric may be regarded as vectors and tensors
in this extended space. As explained before we have to introduce extra connection
fields Aa, so that altogether we are dealing with gauge fields A�, where the index �
runs over both spacetime indices µ, ν, . . . and moduli space indices a, b, . . . . In view
of the condition (20), the solutions depend on one coordinate less (corresponding to
the time coordinate τ ).

For the gauge field the residual gauge transformations can now be written as,

δ3A� = D�3 = ∂�3− [A�, 3] ,

where D�3 refers to all the covariant derivatives in the extended space. The transfor-
mation of the gauge field along the time component, k�A�, remains covariant in view
of the condition (20). Here we extended the timelike Killing vector kµ to a vector of
the extended space, but this extension is trivial because the components ka are zero:
k� = (kµ, 0). At this point we do not introduce a metric for the extended space and
the spacetime metric gµν does not depend on the collective coordinate but is just a
given background metric.

A variation of the collective coordinates X a → Xa + δXa induces a motion on
the configuration space of static solutions, just as before. For the case at hand the
covariant variations take the compact form,

δcovφ = δXa Daφ , δcov A� = δXa Fa� .

Here we used the covariant field strengths,

F�6 = ∂�A6 − ∂6 A� − [A�, A6] .

The geodesic approximation is effected by promoting the collective coordinates
to time-dependent coordinates, X a → Xa(τ ). All gauge transformations and diffeo-
morphisms now carry an implicit time dependence through the collective coordinates.
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As before, we introduce total derivatives dµ = d/dxµ, which act both on the explicit
spacetime coordinates and on the implicit τ -dependence of the collective coordinates.
These derivatives are now generalized to

d�Xa = k−2k� Ẋa ,

so that on static solutions, say on φ(x, X), the derivative d� acts as,

d�φ = ∂�φ + k−2k� Ẋa ∂aφ , (21)

where we assumed k� = (gµνkν, 0), so that for� = a we have daφ = ∂aφ.
As before, we should modify the connection in order to maintain the gauge co-

variance in the geodesic lift. In the new coordinate frame, this modification takes the
form,

A′
� = A� + k−2k� Ẋa Aa .

Under residual gauge transformations the new connections A′
� transform as

δA′
� = D�3+ k−2k� Ẋa Da3 = d�3− [A′

�, 3] ,

where k�D�3 = −k�[A�, 3]. The lifted covariant derivative of the scalar field
reads

D′
�φ = D�φ + k−2k� Ẋa Daφ .

In adapted coordinates, this reduces to the expression (10). This derivative transforms
covariantly under the residual gauge transformations so that we remain within the
context of the space of static configurations, just as before.

What remains is to calculate the field strengths in the context of the geodesic lift.
As before we consider the commutator of two covariant derivatives,

F ′
�6 = 2 d[�A′

6] − [A′
�, A′

6] = F�6 + 2 k−2k[� Ẋa F(A)a6] ,

where we have made use of

d� Ẋa = k−2k� Ẍa .

Moreover, we suppressed a term proportional to d[� d6] which vanishes in view of the
fact that the curl of the vector k−2k� vanishes according to (19). When nonzero, this
term would give rise to torsion in the extended space. This issue will play a role in the
following section.

Also the definition of the covariant variation induced by X a → Xa +δXa follows
from the same reasoning as before,

δcov A′
� = δXa ∂a A′

� + k−2k� δ Ẋa Aa − D′
�(δXa Aa) = δXa F ′

a� ,

where we used D′
�(δXa) = k−2k�δ Ẋa . These field strengths satisfy corresponding

Bianchi identities,

D′
[�F ′

64] = 0 .
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Owing to this and the Ricci identity, the generalized Leibniz rules hold in the geodesic
lift,

δcov(D′
�φ) = D′

�(δcovφ)− [δcov A′
�, φ] , δcovF ′

�6 = 2 D′
[�(δcov A′

6]) .

In adapted coordinates, all these results coincide with the results derived in the
previous subsection. At this point one may wonder whether the metric gµν could not
also depend on the collective coordinates. In that case the time evolution vector k�
would have nonzero components for� = a, and the above formulae would follow for
that case as well. Nevertheless we would not go beyond the case of a flat metric and
the curl of k−2k� would still vanish.

In the next section we will go beyond flat spacetime and consider a gauge theory
in a nontrivial stationary spacetime. The metric is dynamical and determined by, for
example, Einstein’s equations. This implies that the metric depends non-trivially on
the collective coordinates. The residual gauge transformations will then include cer-
tain diffeomorphisms of the extended space characterized by parameters ξ�. When
performing the geodesic lift, one obtains formulae that are quite analogous to the ones
obtained above, except that in that case the appropriate description involves torsion.
Here the formulae are motivated by the necessity of preserving the residual gauge and
diffeomorphism invariance in the geodesic lift.

3. Gauge theory and spacetime diffeomorphisms

We now couple the gauge theory to a nontrivial dynamical metric gµν . This metric
is determined by certain field equations, such as Einstein’s equations, but we refrain
from being more specific at this point and concentrate first on the geometric features.
The corresponding action reads

S =
∫

dd+1x
√

|g|
(

Tr
[

1
4

Fµν Fµν + 1
2

Dµφ Dµφ

]
− V (φ)

)
. (22)

As before, we assume the existence of a continuous variety of stationary solutions,
parameterized by collective coordinates X a . The stationary solutions are character-
ized by the existence of a (globally defined) timelike Killing vector field kµ, which
generates diffeomorphisms that leave the solutions invariant,

Lkφ = Lk A = Lk g = 0 .

As alluded to above, we now assume the metric to be dynamical, so that it will de-
pend on both spacetime and collective coordinates. As before, we trivially extend
the Killing vector kµ to a vector over spacetime and moduli space, k� = (kµ, 0),
hence ka = 0. The indices �,6, . . . run over the indices µ, ν, . . . of spacetime and
a, b, . . . of moduli space. In the previous section, where we treated a flat background,
the vector k� was linked to the specification of a global coordinate systems, and the
extension of kµ to k� = (kµ, 0) enabled us to compare the result for the geodesic lift
in different but equivalent coordinate systems. In the present case, however, we are
dealing with a theory that is diffeomorphism invariant. The stationary solutions are
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invariant under diffeomorphisms generated by the timelike Killing vector k�. The first
objective here is to extend kµ = gµνkν to a covariant vector k� of the extended space.
This covariant vector is subsequently needed for the construction of the geodesic lift
while preserving the residual diffeomorphism invariance. The resulting expressions
are in agreement with the findings in [141], where adapted coordinates were used.

In general, the stationary solutions are subject to a class of residual gauge trans-
formations and residual spacetime diffeomorphisms, which are parameterized by the
functions3(x, X) and ξµ(x, X), respectively, and are subject to the condition,

Lkξ = 0 , Lk3 = 0 .

The residual transformations leave the vector field k� invariant and hence preserve
the stationarity of the solution. In addition, we consider reparametrizations of the
collective coordinates, encoded in the functions δX a = ξa(X). The associated diffeo-
morphisms may only depend on X a and not on the spacetime coordinates xµ. This
implies that the components of the extended contravariant and covariant vectors, V �

and W�, respectively, transform as follows under the residual diffeomorphisms of the
extended space, characterized by ξ� = (ξµ(x, X), ξa(X)),

δV µ = ∂νξ
µ V ν + ∂bξ

µ V b − ξ�∂�V µ ,

δV a = ∂bξ
a V b − ξ�∂�V a ,

δWµ = −∂µξ ν Wν − ξ�∂�Wµ ,

δWa = −∂aξ
ν Wν − ∂aξ

b Wb − ξ�∂�Wa .

(23)

The vectors V� and W� can be restricted in a way that is consistent with these resid-
ual diffeomorphisms, by setting V a = 0 and/or Wµ = 0. In particular, this shows that
the condition on the time evolution field, ka = 0, is preserved by the diffeomorphisms
of the extended space, so that we can indeed assume that k� transforms consistently
as a contravariant vector. We note that from (23) it follows that generically kµ(x, X)
depends on both spacetime and collective coordinates. Assuming that the spacetime
metric gµν belongs to a covariant tensor of the extended space, it follows that there
must be other tensor components which transform into gµν under the residual diffeo-
morphisms. On the other hand, we may introduce a (reference) metric gab(X) at this
point for the collective coordinates (to be distinguished from the dynamical metric
that we have to determine later) which depends exclusively on the collective coordi-
nates and not on the spacetime coordinates. The metric gab(X) constitutes a covariant
tensor in the extended space. We will further clarify this issue shortly.

For the sake of clarity let us illustrate the present set-up in adapted coordinates:
in these coordinates the coordinate x 0 = t is singled out as the time coordinate, hence
k� = (1, 0, . . . , 0). This implies that the metric, the gauge fields and the scalar fields
do not depend on the coordinate t . Furthermore, the residual diffeomorphisms leave
the vector k� invariant. We can parameterize the line element by

ds2 = gt t(Ex, X) (dt + σm(Ex, X) dxm)2 + hmn(Ex, X) dxmdxn , (24)
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where the functions gt t , σm , and hmn are all time independent. Obviously, k2 = gt t
and

k−2kt = 1 , k−2km = σm(Ex, X) .

However, if k� is to transform as a vector in the extended space, there must also exist
components ka(Ex, X). Before introducing these, we will present a variety of argu-
ments why the various fields have indeed an interpretation in terms of the extended
space parametrized by the coordinates (xµ, Xa).

3.1. Stationary solution space. Our first task is to determine the transformation
properties for A� = (Aµ, Aa) with respect to the residual gauge transformations and
diffeomorphisms. Naturally, we expect that the combined transformation rules for the
residual transformations are given by

δA� = −ξ6∂6A� − ∂�ξ
6 A6 + D�3 .

The last term is the gauge transformation and was discussed already for the flat back-
ground. We note that this term transforms as a vector in the extended space, hence,
the same must be true for the A�. Indeed, the consistency of the combined alge-
bra of residual gauge transformations and diffeomorphism implies that A� must itself
transform as a covariant vector.

When comparing two neighboring stationary solutions, one must again account
for the fact that the actual solutions are representatives of a class of solutions that are
degenerate with respect to the residual gauge transformations and diffeomorphisms.
This was the argument that originally forced us to introduce the extra connection fields
Aa , and in the context of the residual diffeomorphisms it now forces us to introduce a
new field Va

µ. When comparing two solutions parametrized by collective coordinates
Xa and Xa + δXa , one must again allow for residual transformations. For the scalar
φ(x, X), e.g., the stationary covariant variation is given by

δcovφ = δXa(Da − Va
µDµ)φ . (25)

The second term on the right-hand side is the accompanying spacetime diffeomor-
phism with parameter δXaVa

µ. We have covariantized the derivatives with respect to
gauge transformations. In order for the second term to covariantize the variation with
respect to the residual spacetime diffeomorphisms the field Va

µ must transform in the
following inhomogeneous way,

δξVa
µ = −∂aξ

µ + Va
ν∂νξ

µ − ∂aξ
bVb

µ − ξ� ∂�Va
µ . (26)

The field Va
µ has a natural interpretation in terms of a universal vielbein. Adopting

the notation that underlined indices refer to the tangent space we introduce a vielbein
of the extended space, which we restrict to a block-triangular form,

E�6(x, X) =


 eµν 0

ea
ν ea

b


 .
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As argued earlier, the restriction to a block-triangular form is consistent with resid-
ual diffeomorphisms. Here, eµν(x, X) denotes the spacetime vielbein, and ea

b(X)
is a spacetime-independent reference frame for moduli space. With the exception of
ea

b(X) all components of the vielbein depend on both xµ and Xa and all are subject
to Lk E�6 = 0. The standard transformation rules for the vielbein under the residual
diffeomorphisms read,

δξ E�3 = −ξ6 ∂6E�3 + E�6 ∂6ξ3 .

Comparing this with (26) leads to the following identification,

ea
µ = −ea

b Vb
µ . (27)

Therefore we conclude that the geometry of the extended space plays a natural role.
It is straightforward to construct the inverse universal vielbein, which again takes

a block-triangular form,

E�6 =


 eµν 0

ea
ν ea

b


 , ea

ν = −ea
b eb

ρeρν = Va
µeµν .

where the matrices eµν(x, X) and ea
b(X) are the inverse of eµν and ea

b, respectively.
The tangent-space group acting on these universal vielbein components decom-

poses into two groups in order to preserve the block-triangular form. The local Lorentz
group acts on the indicesµ in the usual way, while the tangent-space group of the mod-
uli space is simply the orthogonal group. This implies that there are two independent
invariant tensors in the tangent space, which we denote by ηµ ν and ηa b. From these
various covariant symmetric tensors can be formed by contraction with components
of the universal vielbein,

g̃�3 = ηµ ν e�µ e3ν =


 gµν gµρVb

ρ

Va
ρgρν Va

ρVb
σ gρσ


 ,

ĝ�3 = ηa b e�a e3b =


 0 0

0 gab


 ,

g̃�3 = ηa b ea
� eb

3 =


gcd Vc

µVd
ν −Vc

µgcb

−gacVc
ν gab


 ,

ĝ�3 = ηµ ν eµ� eν3 =


gµν 0

0 0


 .

(28)

The tensors g̃�3 and ĝ�3 are the covariant extensions of the spacetime metric gµν =
eµσ eνσ and of the reference frame gab = eac eb

c , respectively. Similarly, the tensors
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ĝ�3 and g̃�3 are the extensions of the inverse spacetime metric gµν and the inverse
frame gab, respectively. This is in line with the fact that the restrictions V ab··· = 0
and/or Wµν··· = 0 on higher-rank tensor fields are covariant with respect to residual
diffeomorphisms, as was argued previously for the case of contravariant and covariant
vector fields. The matrices g̃�3 and ĝ�3 are not invertible. From above expressions
it follows directly that

g̃�6 g̃63 = ĝ�6 ĝ63 = 0 ,

g̃�6 ĝ63 =


δµ

ν 0

0 0


 , ĝ�6 g̃63 =


0 0

0 δa
b


 .

As a result of the product structure of the tangent space there is no unique choice for
the covariant metric tensor of the extended space associated to the universal vielbein.
On the other hand, the extension of the normalized vector k−2gµνkν to the extended
space is unique and given by

k−2k� = k−2(kµ, Va
νkν) , kµ = gµνkν , k2 = kµkµ .

As opposed to the flat spacetime background, the curl of k−2k� does not vanish. An
important consequence of the triangular form of the vielbein is that for contravariant
vectors satisfying V a = 0 and covariant vectors subject to Wµ = 0 one finds,

Va = V a = 0 , Wµ = Wµ = 0 .

Note in particular that ka = 0. For completeness, let us give the expressions for k−2k�
in adapted coordinates (24),

k−2k� = (1, σm, σa) , σa = Va
t + Va

nσn .

We now define the covariant variation of arbitrary fields. In (25) the covariant
variation of the scalar field φ(x, X) was given. Using the identification (27) the co-
variant variation can be written as

δcovφ = δX�∂�φ − [δX�A�, φ] ,

where,

δX� = δXbeb
aea

� = (−δXaVa
µ, δXa) .

It follows from (26) that δX� is the covariant extension of the moduli space vector
δXa . It satisfies

δX�k� = 0 .

The covariant variation of the scalar field consists of a diffeomorphism with parameter
−δX�, accompanying gauge transformation with parameter −δX�A�. This defini-
tion of the covariant variation is applicable for general tensor fields,

δcov(δX) = −LδX − δgauge(δX · A) . (29)
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This is a coordinate and background independent definition of the covariant variation.
In particular, it does not involve an extended metric tensor (or affine connection).
This is essential when passing to the geodesic lift. Using this definition, the covariant
variation of the gauge field A� reads

δcov A� = δX3∂3A� + ∂�
(
δX3

)
A3 − D�

(
δX3A3

)

= δX3F3� (30)

where the field strength is defined as for the flat background, F�3 = 2∂[�A3] −
[A�, A3]. It satisfies the Bianchi identities D[�F64] = 0. Definition (29) has the
desired property that it implies generalized Leibniz rules,

δcovD�φ = D� (δcovφ)− [δcov A�, φ] ,

δcovF�3 = 2 D[�
(
δcov A3]

)
,

where we used the Ricci identity for the commutator of two covariant derivatives and
the Bianchi identity for the field strengths.

3.2. Geodesic lift. As in section 2.4, the dynamics in the geodesic approximation is
characterized by the timelike Killing vector field kµ and a time parameter τ defined by
kµ∂µ = ∂τ . The collective coordinates are promoted to time dependent coordinates,
Xa → Xa(τ ). We note that the moduli space vector Ẋa of the geodesic lift is extended
to the contravariant vector Ẋ� = (−ẊbVb

µ, Ẋa) on the extended space. On the
other hand, since partial derivatives ∂� act only on an explicit coordinate dependence,
D�φ = ∂�φ − [A�, φ] remains a covariant vector with respect to the implicitly
time-dependent residual transformations in the geodesic lift. The geodesic lift for the
covariant derivative of the scalar field therefore reads

D′
�φ = D�φ + k−2k� Ẋa(Da − Va

µDµ)φ = D�φ + k−2k� Ẋ3D3φ .

This is a direct generalization of the result found for the flat spacetime background.
As stressed in the beginning of this section, the vector k−2k� is a covariant vector
on the extended space. Therefore, the Ẋ-dependent terms multiplying this vector
must transform as a scalar under the residual invariances, as is indeed the case for the
contraction Ẋ3D3φ. We can project this covariant derivative onto directions along
the vector field kµ,

k · D′φ = k · Dφ + Ẋ3D3φ .

The first term on the right-hand side contains only the connection piece, k · Dφ =
−[k · A, φ]. The second term accounts for the time dependence induced by the col-
lective coordinates in the geodesic lift. The covariant derivatives projected onto direc-
tions along to the spatial hypersurface orthogonal to kµ are unaltered in the geodesic
lift. This is the same result as the one found in section 2.4.
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Since the covariant derivatives contain the gauge connection, the geodesic lift of
the gauge field is given by

A′
� = A� + k−2k� Ẋa(Aa − Va

µAµ) = A� + k−2k� Ẋ6 A6 . (31)

Under residual gauge transformations parameterized by 3(x, X (τ )) the geodesically
lifted connection transforms as

δ3A′
� = D�3+ k−2k� Ẋ6D63 = d�3′ − [A′

�, 3] . (32)

This last equation follows directly from the expression (31). Here we have introduced
the derivatives d� along same lines as in the previous section. On functions with
implicit τ -dependence only, the derivatives d� are given by

d�φ(x, X (τ )) =
[
∂� + k−2k� Ẋ3∂3

]
φ(x, X (τ )) .

It is important to realize that, as opposed to (21), this derivative does not correspond
to a (total) coordinate derivative. On functions that depend exclusively on the time
parameter, such as the velocities Ẋa(τ ), the total derivatives are defined by

d� Ẋa(τ ) = k−2k� Ẍa(τ ) .

While suggestive, the derivation of this last equation is subtle and the equation, as we
have written it, is not covariant. For the present discussion it is sufficient to remark
that it allows for the construction of covariant field strengths. The commutator of two
derivatives, acting on any function φ(x, X a(τ )) with implicit time dependence, ceases
to vanish and is given by

[d�, d3]φ(x, X (τ )) = t�36 ∂6φ(x, X (τ )) , (33)

where we defined the covariant tensor

t�36 = 2d[�

(
k−2k3] Ẋ6

)
= 2Ẋad[�

(
k−2k3]ea

cec
6
)
.

For a flat spacetime the tensor t�36 vanishes as k−2k� is related to a coordinate trans-
formation and is therefore curl-free (19). This is no longer the case for a diffeomor-
phism invariant theory and one must deal with a geometry that involves torsion. This
has various consequences: first, special care must be taken when identifying covariant
field strengths in the geodesic lift and checking their Bianchi identities; second, defin-
ing the covariant variation for tensors in the geodesic lift becomes more intricate. As
remarked previously, these two issues are related. For instance, the covariant variation
of the gauge field in the geodesic lift is related to the geodesic lift of the field strength
in view of (30). Furthermore, it is necessary to enforce generalized Leibniz rules for
the covariant variation in the geodesic lift, which make usage of the Ricci and Bianchi
identities.

In order to develop the geometry of the geodesic lift systematically, one must, in
principle, discuss the role of an affine connection 0�36 . So far, this complication was
avoided by focusing only on the field strengths and not on the covariant derivatives
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of tensors. Moreover, the definition of the covariant variation involves a Lie deriva-
tive and is hence independent of an affine connection. For the present discussion it
is sufficient to realize that the affine connection must contain non-vanishing torsion
components in the geodesic lift. There may, of course be further modifications to the
affine connection in the geodesic lift. These will become relevant when discussing the
gravity sector of the theory.

Let us identify the gauge field strength by considering the Ricci identity for co-
variant derivatives acting on the scalar field in the geodesic lift,
[
D′
�,D

′
3

]
φ =

[
d�, d3

]
φ −

[(
2d[�A′

3] −
[
A′
�, A′

3

])
, φ
]

− 20′
[�3]

6D′
6φ . (34)

Here we use D′ to denote the fully covariant derivative in the geodesic lift which
contains both the gauge and the affine connection. Comparison with (33) reveals that
the antisymmetric part T ′

�3
6 of the affine connection 0′

�3
6 in the geodesic lift reads

T ′
�3

6 = 20′
[�3]

6 = t�35
(
δ5

6 − k−2k5 Ẋ6
)
, (35)

such that the commutator [d�, d3]φ is absorbed. Here, and in the following, we
assume that the affine connection 0�36 of the stationary geometry is torsion-free, but
this is not essential. The matrix (δ56 − k−2k5 Ẋ6) on the right-hand side of above
equation is chosen such that the derivative D′

6φ in the torsion term of (34) is converted
to a covariant derivative D5φ of the stationary geometry in view of (33). Note that
this result relies crucially on the property

Ẋ�k� = 0 .

Consequently, the field strength is modified according to

F ′
�3 = 2d[�A′

3] − [A′
�, A′

3] − T ′
�3

6A′
6

= 2d[�A′
3] − [A′

�, A′
3] − t�36A6 ,

(36)

such that the Ricci identity for the covariant derivatives on the scalar fields indeed
takes the form,

[
D′
�,D

′
3

]
φ = −[F ′

�3, φ] . (37)

The field strength (36), with the term t�36 A6 , is in fact gauge covariant with respect
to the residual gauge transformations (32). This is made more explicit by rewriting
the expression for the field strength, using the explicit expression for the derivative d�
and the tensor t�36 ,

F ′
�3 = F�3 − 2k−2k[� Ẋ6F3]6 .

This is the generalization of the result that was derived in [141] by requiring gauge and
diffeomorphism covariance. Furthermore, the field strength F ′

�3 satisfies the Bianchi
identities

D
′
[�F ′

36] = D′
[�F ′

36] + T ′
[�3

5F ′
6]5 = 0 . (38)
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We note in passing that the various result of the geodesic lift can be related to the
stationary geometry by

d�φ = 8�
3 ∂3φ , A′

� = 8�
3 A3 , F ′

�3 = 8�
6 83

5 F65 , (39)

where

8�
3 =

(
δ�

3 + k−2k� Ẋ3
)
, (8−1)3

� = 8�3 =
(
δ�3 − k−2k3 Ẋ�

)
.

The torsion is related to the curl of this matrix

t�36 = 2 d[�83]
6 .

Using this relation the Bianchi identity for the field strength in the geodesic lift can be
written in terms of the one of the stationary geometry,

D′
[�F ′

36] + T ′
[�3

5F ′
6]5 = 8�

583
486

2 D[5F42] = 0 . (40)

It is amusing to realize that the torsion (35) of the affine connection 0 ′
�3

6 is obtained
by considering the antisymmetric part of the expression

(0�3
6)′ = 85

6
(
d�835 +8�

483
2042

5
)
, (41)

where 0365 is the torsion-free affine connection of the stationary geometry. This ex-
pression takes the form of a general basis rotation on tangent space (which is to be dis-
tinguished from a general coordinate transformation). Above formulae might indicate
that the geodesic lift can be related to an uniform velocity-dependent tangent-frame
rotation encoded in the matrix 8�3. Obviously, the consequences of this interpreta-
tion deserve further study.

3.3. Covariant variation in the geodesic lift. In the following we discuss the co-
variant variation of various fields in the geodesic lift. Clearly, the covariant variation
of the scalar remains unaltered,

δcovφ = δX�D�φ = δX�D′
�φ ,

where we have used the fact that δX� is unchanged in the geodesic lift and that
δX�k� = 0. This expression is in accord with the prescription (29) for the covari-
ant variation. Deriving the covariant variation of general tensor fields, such as the
gauge connection A′

�, is more involved. In the previous section we have seen that the
differential calculus in the geodesic lift is somewhat intricate and that consequently
the definition of the field strength, for instance, depends on the torsion-component of
an affine connection. One might therefore question how the definition of the covari-
ant variation (29), which involves the Lie derivative and hence is independent of the
affine connection, can be reconciled with the definition of the field strength in view
of (30). The reason is that the Lie derivative, as well, contains certain torsion-like
modifications if one works with derivatives that do not commute. Recall that the Lie
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derivatives of higher-rank tensors are found inductively. The starting point is the com-
mutator of two vector fields V = V�d� and W = W�d�, acting on functions, such
as φ(x, X (τ )),
[
V,W

]
φ = V�d�(W3d3φ)− (V ↔ W )

=
[
V3d3W6 − W3d3V6 + V�W3t�35

(
δ5

6 − k−2k5 Ẋ6
)]

d6φ .

The bracket on the last line defines the components of the Lie derivative LW V when
working with the derivatives d�. The last term in this bracket is exactly the torsion-
like contribution (35) which entered the definition of the field strength. It arises from
the commutator of the derivatives d�. The presence of these torsion-like contributions
pertains when passing to the Lie derivative of higher-rank tensors. The details are
not necessary here and we only give the results. The covariant variation of the gauge
connection is given by

δcov A′
� = δX3d3A′

� + d�
(
δX3

)
A′
3 − δX3t3�5

(
δ5

6 − k−2k5 Ẋ6
)
A′
6

− D′
�

(
δX3A′

3

)

= δX3
(
d3A′

� − D′
�A′

3 − t3�6 A6
) = δX3F ′

3� ,

where we used Ẋ�k� = δX�k� = 0 and the definition (36). The last term on
the first line arises from the modifications to the Lie derivative in the presence of
non-commuting derivatives. The geodesic lift therefore preserves the basic relations
(30) of the stationary solution space. The same modifications of the Lie derivative is
relevant to verify the generalized Leibniz rule

δcovD′
�φ = δX3D′

3D′
�φ + d�(δX3)D′

3φ

− δX3t3�5
(
δ5

6 − k−2k5 Ẋ6
)
D′
6φ

= D′
�(δX3D′

3φ)− [δX3F ′
3�, φ]

= D′
�(δcovφ)− [δcov A′

�, φ] ,

where we used the Ricci identity (37) and (35). Finally, for the field strength we find

δcovF ′
�3 = δX6D′

6F ′
�3 − 2d[�

(
δX6

)
F ′
3]6

+ 2δX6 t6[�
5
(
δ5

4 − k−2k5 Ẋ4
)
F ′
3]4

= −2D′
[�F ′

3]6δX6 − T ′
�3

6δX5F ′
56

= 2D′
[�δcov A′

3] − T ′
�3

6δcov A′
6 .

We used the Bianchi identities (38) and (35) for going from the first to the second
line. The last line is the appropriate Leibniz rule for geometries that involve torsion.
We discussed the relevance of these relations for the action principle in the previous
section.
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One easily verifies the these expressions are related to the corresponding relations
of the stationary geometry,

δcovD′
�φ = 8�

3
(
δcovD3φ

)
, δcovF ′

�3 = 8�
683

5
(
δcovF65

)
.

3.4. Effective moduli action. The derivation of the effective action proceeds along
the same lines as in section 2. In the action (22) we substitute the expressions F ′

µν

and D′
µφ we found for the field strength and the covariant derivative in the geodesic

lift, respectively. These expressions are contracted with the inverse metric gµν . The
contributions that do not involve any Ẋ-dependence are equal to the constant station-
ary potential and are therefore dropped. In addition, there are terms that are linear and
utmost quadratic in Ẋ ,

S[X (τ )] =
∫

dτ
(

1
2

Gab Ẋa Ẋb + Ja Ẋa
)
. (42)

The moduli space metric Gab and the vector Ja are read off directly from expanding
1
4

F ′
µν gµρgνσ F ′

ρσ + 1
2

D′
µφ gµν D′

νφ ,

and extracting the first-order and second-order terms in Ẋa . The resulting expressions
are direct generalizations of the results found in section 2,

Gab = −
∫

dV Tr
[
(Fµa − Va

ρFµρ) hµν (Fνb − Vb
σ Fνσ )

+ (Daφ − Va
µDµφ)(Dbφ − Vb

νDνφ)
]
,

Ja = −
∫

dV Tr
[
kµFµν hνρ (Fρa − Va

σ Fρσ )+ (k · Dφ)(Daφ − Va
µDµφ)

]
.

Here, dV is the d-dimensional volume form of the induced metric hµν = gµν −
k−2kµkν on the spacelike hypersurface, dV =

√
h

|k|d! kσ εσµ1···µd dxµ1 · · · dxµd , where√
h is the determinant of the non-trivial d-dimensional submatrix of hµν . The volume

form is invariant under residual diffeomorphisms. In above expressions we used the
fact that k2 is negative definite. The matrix hµν = gµν − k−2kµkν is the hypersurface
inverse of hµν . In adapted coordinates (24) the non-vanishing parts of the matrices
hµν and hµν are hmn and hmn , respectively. The expressions for the metric Gab and
the vector Ja are covariant with respect to the extended residual diffeomorphisms and
gauge transformations. This follows, as discussed in section 3.1, from the fact that the
hypersurface inverse can be extended trivially to the covariant tensor

h�3 =


hµν 0

0 0


 , k�h�3 = k�h�3 = 0 .

Similarly, terms such as Daφ−Va
µDµφ are components of a covariant vector defined

on the extended space, (0, Daφ − Va
µDµφ).
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We next turn to the constraints that follow from setting the variation of the action
with respect to Aa to zero. To a large extent, the discussion of the constraints carry
over from the case of a flat spacetime background. Varying the action with respect to
Aa yields the constraint

Ẋa Ẋb
∫

dV Tr
[
δAa

(
Dµ{hµν(Fbν − Vb

σ Fσν)}

+
[
φ, (Dbφ − Vb

σ Dσφ)
])]

= 0 .

The derivative Dµ refers to the stationary geometry and contains both the affine and
the gauge connection. In above formulae we assumed that the affine connection is
the Christoffel connection, and we have integrated partially along the directions of
the spatial hypersurface. Just as for flat spacetime backgrounds, the variation of the
term Ja Ẋa is proportional to the stationary equations of motion. Moreover, this term
vanishes in the action once the constraint is imposed. The constraint can be written in
terms of the generalized orthogonality condition

∫
dV Tr

[
(δgauge Aµ)hµν(δcov Aν)+ (δgaugeφ)(δcovφ)

]
= 0 .

Likewise, the moduli metric takes the form

Gab(X) = −
∫

dV Tr
[
δcov Aµ
δXa hµν

δcov Aν
δXb + δcovφ

δXa
δcovφ

δXb

]
.

These formulae are the generalization of the expressions (17) and (18) to the case of
a curved spacetime background. This demonstrates that the methodology for dealing
with gauge invariance can be carried over to a treatment of theories with diffeomor-
phism invariance. In practice, solving the constraint equations for the connection
components Aa in terms of the stationary solution is quite involved.

It is clear that due to the covariance of the underlying theory, the variation of the
action (42) with respect to the collective coordinates, X a(τ ) → Xa(τ ) + δXa(τ ),
can be related to the covariant variation of the fields, convoluted with the original
field equations in the geodesic lift just as in (15). However, since we have not yet ac-
counted for the dynamics of gravitation, a discussion of the corresponding expressions
is premature.

4. Summary and outlook

In the previous sections we identified the crucial ingredients relevant for deriving the
geodesic description of solitons arising in theories with gauge and diffeomorphism
invariance. To this extent we carefully analyzed the geodesic description of gauge
theory solitons and pinpointed the constructional principles in section 2. In section 3
we demonstrated that these elements carry over to the study of the moduli spaces of
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solitons arising in theories with diffeomorphism invariance. To complete this discus-
sion we still need to take the dynamics of the gravitational background into account.
This issue is currently under investigation.

The following features of this formalism are worth emphasizing. First, the form of
the velocity-dependent modifications of the various fields are determined completely
by gauge and diffeomorphism covariance and the requirement that covariant field vari-
ations δcov are identified with the variations of the collective coordinates in the moduli
action principle. This feature is in contradistinction to the methodology advocated
by [133–135,139,161], where, in principle, arbitrary velocity-dependent field pertur-
bations are included. We discussed this issue in chapter V. Second, even for curved
spacetime backgrounds, there is a one-to-one correspondence between the (gauge) in-
variances and the (initial-value) constraint equations. The constraints imply that the
motion in moduli space, represented on the space of field configurations, is orthog-
onal to the gauge orbits. More work is needed to establish this for gravitation and
diffeomorphism invariance. Third, there is no mathematically compelling reason for
resorting to a low-velocity approximation. The formalism therefore lends itself to
analyzing solitons that arise in theories with higher-order derivative interactions.

There are various issues that must still be addressed before turning to applications.
Of immediate interest is the geodesic description of the gravity sector. Depending on
the application one has in mind, a metric formulation or a formulation in terms of
vielbeins is more appropriate. Certain elements have already been uncovered. For
instance, the spacetime metric gµν , appropriately enlarged, constitutes a covariant
tensor in the extended space even in the geodesic lift. On the other hand, just like
the gauge connection, the affine connection is modified by velocity-dependent terms
and involves torsion. In view of (39), (40), and (41) it is tempting to conclude that the
geodesic lift for the Riemann tensor and Ricci tensor are given by analogous formulae,
which involve the matrix8�3, but we prefer to refer to future analysis.

An important further issue is the discussion of source terms. For the discussion of
the lump-solutions of section 1 and Yang-Mills monopoles section 2 this was not nec-
essary, since these solutions carry topological charge. On the other hand, source terms
play a crucial role in the moduli space description of electrically charged, extremal
black holes as explained in chapter V.

Once these remaining issues have been understood, many interesting applications
can be worked out. We have mentioned several of these earlier. Of central importance
is the application of the formalism to the geodesic description of extremal black holes
and the comparison with the results of [133,134]. Reverting to the discussion at the
end of chapter V, one might envisage addressing, in a second step, the question of
the effects of R2-terms on the moduli space geometry, although the corresponding
calculations are probably very involved. In this context it is important to keep in
mind that much of the symmetry structure of the moduli space metric is induced by
the symmetries of solutions of the underlying field theory. For the nonlinear sigma
model, we briefly discussed this in section 1. Having a fully covariant framework at
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our disposal, we expect that much about the moduli space geometry can be deduced
from symmetry properties of the underlying solution spaces.





A

Notations and conventions

d = 4 supergravity

In chapters I through IV we denote spacetime indices by µ, ν, · · · , and Lorentz in-
dices by a, b, · · · = 0, 1, 2, 3. Indices i, j, k, . . . are usually reserved for SU(2)-
indices. Our conventions for (anti-)symmetrization are

[ab] = 1
2 (ab − ba) , (ab) = 1

2 (ab + ba) .

We take

γaγb = ηab + γab , γ5 = iγ0γ1γ2γ3 ,

where ηab is of signature (− + ++). The complete antisymmetric tensor satisfies

εabcd = e−1εµνλσ ea
µeb
νec
λed
σ , ε0123 = i ,

which implies

γab = − 1
2εabcdγ

cdγ5 .

The dual of an antisymmetric tensor field Fab is given by

F̃ab = 1
2εabcd Fcd ,

and the (anti-)selfdual part of Fab reads

F±
ab = 1

2 (Fab ± F̃ab) .

We note the following useful identities for (anti-)selfdual tensors in 4 dimensions:

G±
[a[c H ±

d]b] = ± 1
8 G±

e f H ±ef εabcd − 1
4 (G

±
ab H ±

cd + G±
cd H ±

ab) ,

G±
ab H ∓cd + G±cd H ∓

ab = 4δ[c
[aG±

b]e H ∓d]e ,

1
2ε

abcd G±
[c

e H ±
d]e = ±G±[a

e H ±b]e ,

G±ac H ±
c

b + G±bc H ±
c

a = − 1
2η

ab G±cd H ±
cd ,

G±ac H ∓
c

b = G±bc H ∓
c

a ,

G±ab H ∓
ab = 0 .
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Note that under hermitian conjugation (h.c.) selfdual becomes anti-selfdual and vice-
versa. Any SU(2) index i or any quaternionic index α changes position under h.c., for
instance

(Tab i j )
∗ = T i j

ab , (Aαi )
∗ = Ai

α .

Form notation

When using form notation we follow the conventions of [162]. The normalization of
the p-form components is given by

Ap = 1
p!

Aµ1...µp dxµ1 ∧ · · · ∧ dxµp .

In accordance with the usual convention for differential forms, the Hodge dual ∗ is
calculated with a real totally antisymmetric tensor. (When working in supergravity we
define the dual field strength F̃ with an extra factor of i .) We have

(∗ Ap)µ1...µd−p = 1
p!

√
|g| εµ1···µ(d−p)

ν1···νp(Ap)ν1···νp ,

and ∗ ∗ Ap = (−1)p(d−p)+σ Ap, where σ = 1 for Minkowskian, and σ = 0 for
Euclidean signature. The invariant volume form is denoted by

∗ 1 =
√|g|

d!
εµ1···µd dxµ1 ∧ · · · ∧ dxµd =

√
|g| dx1 ∧ · · · ∧ dxd =:

√
|g| dd x .

The exterior derivative is given by

(dAp−1)µ1···µp = p ∂[µ1(Ap−1)µ2···µp] .

The Hodge dual is defined such that for two p-forms ηp and ωp one has

ωp ∧ ∗ ηp = ηp ∧ ∗ωp =
√|g|

p!
ηµ1···µp ω

µ1···µp dd x .

This follows from the identity

εa1···ar cr+1···cd ε
b1···br cr+1 ···cd = r !(d − r)! δ[a1

[b1 · · · δar ]
br ] . (1)

For even dimensional spacetimes, d = 2n, one can define the (anti-)selfdual n-
forms according to

F±
n = 1

2 (1 ± cn∗)Fn , (2)

for some number cn satisfying c2
n ∗ ∗ = 1. For Lorentz signature metrics this implies

cn = ±i , for d = 2n = 4, 8, 12, . . . , and cn = ±1 for d = 2n = 2, 6, 10, . . . ,
whereas it is the other way around for Euclidean signature. Note that (cn ∗ F±

n ) =
±F±

n . Specializing to d = 4 we note that this definition is identical to the one given
in components previously.



B

Supersymmetry conventions

The superconformal algebra consists of general coordinate, local Lorentz, dilatation,
special conformal, chiral U(1) and SU(2), and Q- and S-supersymmetry transforma-
tions. The fully supercovariant derivatives are denoted by Da. We use Dµ to denote a
covariant derivative with respect to Lorentz, dilatation, chiral U(1), SU(2), and gauge
transformations. The component fields of the various superconformal multiplets carry
certain Weyl and chiral weights. Those of the Weyl multiplet and of the supersymme-
try transformation parameters are listed in table 1, whereas those of the vector and of
hypermultiplets are given in table 3. These tables also list the fermion chirality of the
various component fields. The gauge fields are normalized as

hab
µ (M) = ωab

µ , hµ(D) = bµ ,

hµ(U(1)) = Aµ , hµi
j (SU(2)) = − 1

2Vµ
i
j ,

hi
µ(Q) = 1

2ψ
i
µ , hi

µ(S) = 1
2φ

i
µ ,

ha
µ(K ) = f a

µ ,

such that the supercovariant derivative reads,

Dµ = ∂µ −
∑

A

δA(hµ(A)) ,

where hµ(A) are the gauge fields associated with δA. The covariantized general coor-
dinate transformation is given by given by

δcov(ξ) = Lξ −
∑

A6=Pa

δA(ξ
µhµ(A)),

where Lξ is the Lie-derivative. We use the the symbol Dµ to denote a covariant
derivative with respect to M , D, U(1), SU(2), and gauge transformations. To exhibit
the form of the derivatives Dµ and the normalization of the gauge fields contained in
them, we give the derivative of the chiral spinor ε i ,

Dµε
i = ∂µε

i − 1
4ω

ab
µ γabε

i + 1
2 (bµ + i Aµ)εi + 1

2Vµ
i
jε

j .
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TABLE 1. Weyl and chiral weights (w and c, respectively) and fermion chi-
rality (γ5) of the Weyl multiplet component fields and of the supersymmetry
transformation parameters.

Weyl multiplet parameters

eµa ψ i
µ bµ Aµ Vµ

i
j T i j

ab χ i D ωab
µ fµa φi

µ εi ηi

w −1 − 1
2 0 0 0 1 3

2 2 0 1 1
2 − 1

2
1
2

c 0 − 1
2 0 0 0 −1 − 1

2 0 0 0 − 1
2 − 1

2 − 1
2

γ5 + + − + −

The gauge fields for Lorentz and S-supersymmetry transformations are composite
objects and given by

ωab
µ = − 2eν[a∂[µeν]

b] − eν[aeb]σ eµc∂σ eνc − 2eµ[aeb]νbν

− 1
4 (2ψ̄

i
µγ

[aψ
b]
i + ψ̄aiγµψ

b
i + h.c.) ,

φi
µ = 1

2 (γ
ρσγµ − 1

3γµγ
ρσ )
(
Dρψ

i
σ − 1

16 T ab i jγabγρψσ j + 1
4γρσχ

i
)

= − 1
3 (4δ

[ρ
µ γ

σ ] + εµλ
ρσγ λ)

(
Dρψ

i
σ − 1

16 T ab i jγabγρψσ j + 1
4γρσχ

i
)
,

respectively. The gauge field for special conformal transformations is also a com-
posite object and was already given in (2) of chapter III, up to fermionic terms. The
composite gauge fields given above transform as follows

δωab
µ = − 1

2 ε̄
iγ abφµi − 1

2 ε̄
i T ab

i j ψ
j
µ + 3

4 ε̄
iγµγ

abχi

+ ε̄iγµR(Q)ab
i − 1

2 η̄
iγ abψµi + h.c.+ 23[a

K eb]
µ ,

δφi
µ = − 2 f a

µγaε
i − 1

8 D/T i j
abγ

abγµεj + 3
2

[
(χ̄jγ

aε j )γaψ
i
µ − (χ̄jγ

aψ j
µ)γaε

i]

+ 1
4 R(V)ab

i
jγ

abγµε
j + 1

2 i R(A)abγ
abγµε

i + 2Dµηi +3a
Kγaψ

i
µ ,

δ f a
µ = − 1

2 ε̄
iψ j
µ DbT ba

i j − 3
4 eµa ε̄i D/χi − 3

4 ε̄
iγ aψµi D

+ ε̄iγµDb R(Q)ba
i + 1

2 η̄
iγ aφµi + h.c.+ Dµ3

a
K .

Throughout this thesis we need certain supercovariant curvature tensors. They are
listed in table 2. The following modified curvature tensors appear in the component
fields of the chiral multiplet W 2 (cf. equation 4, chapter III),

R(M)ab
cd = R(M)ab

cd + 1
16

(
T i j cd Ti jab + T i j

ab T cd
i j

)
,

R(S)iab = R(S)iab + 3
4 T i j

abχj .
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TABLE 2. Curvatures of the superconformal algebra

R(Q)iµν = 2D[µψ
i
ν] − γ[µφ

i
ν] − 1

8 T ab i jγabγ[µψν] j ,

R(A)µν = 2∂[µAν] − i
(

1
2 ψ̄

i
[µφν]i + 3

4 ψ̄
i
[µγν]χi − h.c.

)
,

R(V)µν i
j = 2∂[µV

i
ν] j + V i

[µkV
k
ν] j

+
(

2ψ̄ i
[µφν] j − 3ψ̄ i

[µγν]χj − (h.c. ; traceless)
)
,

R(M)ab
µν = R(ω)ab

µν − 4 f [a
[µ e b]

ν] +
(

1
2 ψ̄

i
[µγ

abφν]i + h.c.
)

+
(

1
2 ψ̄

i
[µT ab

i j φ
i
ν] − 3

4 ψ̄
i
[µγν]γ

abχ i − ψ̄ i
[µγν] Rµν(Q)i + h.c.

)
,

R(S)iµν = 2D[µφ
i
ν] − 2 f a

[µγaψ
i
ν] − 1

8 D/T i j
abγ

abγ[µψν] j − 3χ̄jγ
aψ

j
[µγaψ

i
ν]

+ 1
4 R(V)ab

i
jγ

abγ[µψ
j
ν] + 1

2 i R(A)abγ
abγ[µψ

i
ν] ,

R(D)µν = 2∂[µbν] − 2 f a
[µ eν]a −

(
1
2 ψ̄

i
[µφν]i + 3

4 ψ̄
i
[µγν]χi + h.c.

)
.

The T 2-modification cancels exactly the T 2-terms in the contribution to R(M) from
f a
µ . The curvature R(M)ab

cd satisfies the following relations,

R(M)µνab eνb = i R̃(A)µa + 3
2 D eµa ,

1
4εab

ef εcd
gh R(M)e f

gh = R(M)ab
cd ,

εcdea R(M)cd e
b = εbecd R(M)ae cd = 2R̃ab(D) = 2i Rab(A) . (1)

The first one is the constraint that determines the field fµa while the remaining equa-
tions are Bianchi identities. Note that the modified curvature does not satisfy the pair
exchange property,

R(M)ab
cd = R(M)cd

ab + 4iδ[c
[a R̃(A)b]

d] .

From these equations one determines for instance

R(M)±0[p
0

q] = ± 1
2 i R(A)±pq .

We note that R(Q)iab satisfies the constraint

γ µR(Q)iµν + 3
2γνχ

i = 0 , (2)

which must therefore hold for its variation as well. This constraint implies that the
tensor R(Q)iµν is anti-selfdual, as follows from contracting it with γ ν γab.

The curvature R(S)iab satisfies

γ a
R̃(S)iab = 2 Da R̃(Q)iab ,
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TABLE 3. Weyl and chiral weights (w and c, respectively) and fermion
chirality (γ5) of the vector and hypermultiplet component fields.

vector multiplet hypermultiplet

X I � I
i W I

µ Y I
i j Aαi ζ α

w 1 3
2 0 2 1 3

2

c −1 − 1
2 0 0 0 − 1

2

γ5 + −

as a result of the Bianchi identities and of the constraint (2). This identity (upon
contraction with γ bγcd) leads to

R(S)iab − R̃(S)iab = 2 /D(R(Q)iab + 3
4γabχ

i) .



C

Supersymmetric bosonic backgrounds

In this appendix we discuss the restrictions imposed on a bosonic background by set-
ting the supersymmetry variations of fermionic quantities to zero. In particular we
want to answer the question, to which extent the supersymmetry variations of the co-
variant derivatives of fermions must be considered. Our statement is true for full as
well as residual supersymmetry.

Let us consider all fermionic fields (except the gravitinoψ i
µ and the S-gauge field

φi
µ), including also all fermionic composites and fermions with any number of co-

variant derivatives. Let us denote such fermionic quantities collectively by 9. Under
S-supersymmetry their transformation rules have the form

δS(9) = F9(φ)η ,

where F9 (φ) is a matrix depending on the bosonic fields φ. Let us denote a field 9
by ζn, if the matrix F9 (φ) is a non-trivial constant, and call this constant αn . The
ζn-fields act as S-compensators. This is the case, for instance, for ζH

i or ζV
i discussed

in section III.5. From any 9 and any compensator ξn one constructs the S-invariant
supersymmetry constraint

δQ

(
9 − 1

αm
F9(φ)ζm

)
= 0 . (1)

For 9 = ζn this means

δQ

(
ζn − αn

αm
ζm

)
= 0 . (2)

Let us denote by D the superconformal covariant derivative. We note the following
property: if we satisfy (1) for some ζn then (1) is satisfied for any choice of ζm if
we impose (2). This means that we can limit ourselves to using always the same
compensator if we ensure (2). Let us consider 9 = Dζn . Due to the connections
contained in the covariant derivative, Dζn in general does not transform like a ζ -field
under S-supersymmetry. The condition (1) is therefore non-trivial,

δQ

(
Dζn − 1

αm
FDζn (φ)ζm

)
= 0 , (3)

for any choice of m and n. We wish to argue for the following statement: if we ensure
(1) for all fermions without derivatives, in particular thus (2) for all compensators, and
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we impose (3) for one particular choice of compensator, then no additional constraints
are found by considering covariant derivatives of other fermions. In formulae the
statement is that if we have satisfied (3) for one specific choice of n and m, it follows
from δQ(9− 1

αm
F9 (φ)ζm) = 0 that for the covariant derivative D9 one automatically

has δQ(D9 − 1
αm

FD9(φ)ζm) = 0. The reason is quite simple. If 9 − 1
αn

F9ζn is an
S-invariant combination then it follows that δS[D(9 − 1

αn
F9ζn)] = 0 in a bosonic

background. This is because S-variations on the covariant derivative do not survive
in a bosonic background. Working out the covariant derivative and using that the
combination Dζn − 1

αm
FDζn (φ)ζm is S-invariant by construction, we arrive to the

conclusion that δS[D9 − 1
αn

DF9ζn − 1
α2

n
F9FDζnζn] = 0 in the bosonic background.

Thus up to fermionic terms, which are not relevant for a bosonic background, one
finds that the uniquely determined bosonic part of FD9 is given by FD9 = DF9 +
1
αn

F9FDζn for any n. Using this relation it follows, by the same line of reasoning, that
from

δQ

[
D
(
ψ − 1

αn
Fψ ζn

)]
= 0 (4)

one has

0 = δQ

[
D9 − 1

αn

(
DF9 + 1

αn
F9FDζn

)
ζn

]
= δQ

[
D9 − 1

αn
FD9ζn

]

for any n in a bosonic background. Thus granted we have imposed the constraints
(1) and, in particular, all constraints (2) for fermionic fields without extra covariant
derivatives, as well as the constraints (3) for any one choice of n and m, no new
constraints will be obtainable from considering the variations of covariant derivatives
of these fermions.
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Samenvatting

(Summary in Dutch)

In het volgende geven we een samenvatting van dit proefschrift in het Nederlands. We
beginnen met een samenvattende vertaling van het voorwoord. Daarna bespreken we
de inhoud van de hoofdstukken I–VI.

Dit proefschrift gaat over zwarte gaten. Sinds hun vroege theoretische ontdek-
king spelen zwarte gaten een belangrijke rol in het theoretische onderzoek. Veel van
de opgeroepen vragen hebben te maken met het centrale open probleem van de he-
dendaagse theoretische natuurkunde, namelijk met de vraag hoe de quantumtheorie
met de theorie van gravitatie (de algemene relativiteitstheorie) in één, mathematisch
consistente formulering kan worden verenigd.

De theorie van zwarte gaten is een veel bestudeerd onderwerp in de algemene
relativiteitstheorie. Eén van de centrale resultaten wordt gevormd door de wetten van
de mechanica van zwarte gaten. Deze wetten lijken opvallend veel op die van de ther-
modynamica. Eén wet, bijvoorbeeld, zegt dat de oppervlakte van de horizon van een
zwart gat in een fysisch proces niet afneemt. Hetzelfde is het geval voor de entropie
van een thermodynamisch systeem, en men zou zich kunnen afvragen in hoeverre een
zwart gat als een thermodynamisch systeem opgevat zou kunnen worden, ondanks het
feit dat, in eerste instantie, de analogie alleen van formele aard is. De opvatting van
een zwart gat als thermodynamisch systeem werd onderbouwd door de ontdekking
dat quantumeffecten ertoe leiden dat zwarte gaten tóch stralen: ze zijn niet helemáál
zwart, maar stralen volgens een patroon dat karakteristiek is voor een thermisch en-
semble bij een bepaalde temperatuur.

Thermodynamische eigenschappen, zoals temperatuur, druk of entropie, worden
in de statische fysica afgeleid uit de verwachtingswaarden van bepaalde grootheden
in de onderliggende quantumtheorie, welke de microscopische vrijheidsgraden van
het thermodynamische systeem beschrijft. De thermodynamische interpretatie van de
wetten van de mechanica van zwarte gaten zou kunnen worden bevestigd als men
deze wetten, op soortgelijke manier, door de statistische studie van de microscopische
vrijheidsgraden zou kunnen afleiden. Wat zouden deze onderliggende, microscopische
vrijheidsgraden van zwarte gaten kunnen zijn?
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Deze vraag is een van de veel bediscussieerde onderwerpen in de fysica van
zwarte gaten. Terwijl de algemene relativiteitstheorie zeer succesvol is in het beschrij-
ven van het heelal op grote afstandsschalen is haar toepasbaarheid beperkt als het om
de structuur van de ruimtetijd op kleine afstandsschalen gaat. Een belangrijke toets
voor iedere kandidaattheorie van quantumgravitatie is het correct beschrijven van de
microscopische vrijheidsgraden van zwarte gaten. De snaartheorie heeft in dit opzicht
veelbelovende resultaten geleverd en in grote gedeelten van dit proefschrift worden de
consequenties van deze aanpak uitgewerkt.

In dit proefschrift komen de volgende onderwerpen ter sprake:
Hoofdstuk I – Black holes and string theory. Dit eerste, introducerende hoofdstuk

geeft een overzicht van verschillende aspecten van de fysica van zwarte gaten. In het
bijzonder worden de wetten van de mechanica van zwarte gaten besproken, en wordt
de klasse van zwarte gaten beschreven, die in latere hoofdstukken in detail wordt be-
studeerd. Vervolgens wordt de nadruk gelegd op de snaartheoretische beschrijving
van de microscopische vrijheidsgraden van zwarte gaten. Voor een bepaalde klasse
van zwarte gaten slaagt deze aanpak er inderdaad in, een formule voor de entropie af
te leiden, die tot op laagste orde in overeenstemming is met de (macroscopische) wet-
ten van de mechanica van zwarte gaten, en dus diens thermodynamische interpretatie
te bevestigen. Verder wordt erop gewezen dat in sommigen gevallen de statistische
beschrijving deviaties van de horizonoppervlakte-wet voorspelt.

Hoofdstuk II – Supersymmetry and supergravity. Een belangrijk ingrediënt in de
voorafgaande analyse van de entropie in hoofdstuk I is supersymmetrie. In dit tweede
introducerende hoofdstuk worden daarom belangrijke elementen van N =2-super-
symmetrie en supergravitatie besproken. De nadruk ligt daarbij op de geometrische
aspecten van de constructie en op de rol van symplectische herparametrisatie van deze
theorieën.

Hoofdstuk III – Supergravity theories with higher-order curvature interactions. In
dit hoofdstuk worden de meer technische aspecten van de constructie van de supergra-
vitatie-theorieën beschreven. In het bijzonder worden de interacties van materievelden
met hogere machten van de kromming (R2-interacties) geı̈ncorporeerd. De complete
bosonische actie wordt gegeven en verschillende supersymmetrie-transformaties wor-
den uitgewerkt.

Hoofdstuk IV – Supersymmetric vacua and stationary BPS configurations. Dit
hoofdstuk bevat een gedetailleerde analyse van supersymmetrische zwarte gaten in
de aanwezigheid van R2-interacties. Eerst worden ruimtetijden die volledige N =2-
supersymmetrie bewaren onderzocht. Het wordt afgeleid dat supersymmetrische ruim-
tetijden uniek en van het Bertotti-Robinson type zijn. Daarbij zijn alle velden van
deze configuraties bepaald door de elektrische en magnetische lading van de oplos-
singen. Een belangrijke conclusie van dit resultaat is dat voor zwarte gaten met een
volledig supersymmetrische horizon alle velden vaste waarden aannemen op de ho-
rizon, zelfs in aanwezigheid van R2-interacties. Vervolgens wordt een grote klasse
van ruimtetijden die de helft van de N = 2-supersymmetrie bewaren bepaald. Deze
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BPS-configuraties beschrijven onder meer stationaire zwarte gaten, die tussen de vol-
ledig supersymmetrische ruimtetijden interpoleren en mogelijk meerdere centra heb-
ben. Tenslotte worden verschillende expliciete voorbeelden besproken.

Hoofdstuk V – On entropy and moduli spaces of black holes. In dit hoofdstuk
wordt uitgelegd hoe de deviatie van de microscopische entropie van zwarte gaten ten
opzichte van de horizonoppervlakte-wet in overeenstemming kan worden gebracht
met een macroscopische beschrijving in termen van een gravitatietheorie met R2-
interacties. Een belangrijk ingrediënt hiertoe is een entropieformule die algemener is
dan de horizonoppervlakte-wet en die toepasbaar is voor theorieën die interacties be-
vatten met hogere afgeleiden. De derivatie van zo’n entropieformule wordt uitgelegd.
Vervolgens gaat de aandacht uit naar de moduli-ruimte van zwarte gaten. Voor het
meest simpele geval wordt de metriek op deze ruimte volgens een standaard methode
bepaald. Deze metriek kan worden beschreven als een afgeleide van een potentiaal.
Er wordt gewezen op een mogelijk verband tussen dit potentiaal en de entropie van
zwarte gaten.

Hoofdstuk VI – Moduli spaces and geodesic description. Het laatste hoofdstuk
is een studie van de moduli-ruimte en de geodetische beschrijving van solitonische
oplossingen. Er wordt een algemeen formalisme ontwikkeld, dat voor zowel solitonen
van niet-abelse ijktheorieën als voor gravitationele solitonen (zoals extremale zwarte
gaten) van toepassing is. Er wordt afgeleid dat ijk- en/of diffeomorfisme-invariantie
onder meer de effectieve moduli-actie, en hiermee de metriek van de moduli-ruimte,
bepalen.
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