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Chapter 1

Introduction

1.1 General introduction

During the last decade the study of cold atoms has grown in a great measure.
Research in this field has been made accessible due to the development of laser
cooling and trapping techniques [1], making it possible to cool atoms to ultra-low
temperatures and to trap samples of cold atoms in small volumes. Laser cooling
is now widely used and in many laboratories around the world the work horse
of the field, the magneto-optical trap (MOT), has been built. The alkali-metals
are the elements of the periodic table that have been used most in laser cooling
experiments. Furthermore, amongst others metastable rare gas atoms have proven
to be suitable candidates to be cooled and trapped too. In principle all atoms can
be laser cooled, but in practice the suitability depends on the wavelength of the
cooling transition, on the lifetime of the excited state, and on whether spontaneous
emission from the excited state is primarily to the ground state of the cooling
transition.

With cold atoms phenomena can be studied that are not accessible with ther-
mal atoms and as a consequence many interesting experiments have been done
since the development of laser cooling. Due to the small kinetic energy spread
of the atoms, high precision experiments can be done, such as high resolution
spectroscopy of photoassociated atoms [2] and studies of cold collisions [3]. Fur-
thermore, laser cooled atoms are the first step towards Bose-Einstein condensation
(BEC) [4]. The study of cold collisions provides information that is important for
BEC, such as the scattering length of a system or the elastic and inelastic cross
sections.
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Chapter 1

An important method to study cold atoms is photoassociation spectroscopy
(PAS), where atoms colliding in the ground state are excited to a bound state. For
a detailed description of PAS the reader is referred to Sec. 4.1. Below, the principle
of PAS is only roughly outlined. PAS allows us to study the excited state potential
at internuclear distances large compared to traditional molecular spectroscopy. At
these large distances the ground state wavefunction oscillates very slowly, since
the kinetic energy of the colliding atoms is very small. Therefore the overlap
between the free ground state and the bound excited state is largest at the outer
turning point of the bound state. This means that the excitation is made at the
outer turning point of the bound state. The resolution of the measurements is very
good, due to the low kinetic energy spread of the colliding atoms. Thus we have
a powerful and precise method to study interactions between cold atoms.

PAS has been very successful in the study of alkali-metals. In Ref. 3 various
examples of studies of alkali-metals are given, in which for example the ground
state scattering length is determined for lithium, sodium, and rubidium.

1.2 Contents of this thesis

In this thesis photoassociation of cold metastable helium atoms is discussed. Com-
pared with the alkali-metals little is known about the metastable helium system. In
this thesis we have made an exploratory study of cold colliding metastable helium
atoms in the presence of light.

The metastable helium atom is in the (23S1) state and will be denoted as the
He* atom. The lifetime of this metastable state is very long, more than 7000 s.
The part of the level diagram for the He atom that is relevant for the experiment is
shown in Fig. 1.1. As can be seen in the figure the internal energy of the metastable
state is very high (19.8 eV). Due to this high internal energy colliding He* atoms
can ionize at small internuclear distances, of the order of a few a0.

The experiments described in this chapter have been performed with cold
trapped He* atoms. The atoms are laser cooled and trapped in a MOT. In Chap. 2
we shortly discuss the principle of laser cooling and trapping. The He* atoms are
produced in a DC-discharge source. We have constructed a novel type of source,
which is cooled with liquid helium. The average velocity of the produced He*
atoms is 300 m/s, which is considerably lower than the velocity of atoms pro-
duced conventional sources (800 - 2000 m/s). The construction of the source and
the characteristics of the produced beam of He* atoms are discussed in Chap. 2.
The experimental setup that is used to cool and trap a cloud of He* atoms, is de-
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Figure 1.1 Level diagram for He.

scribed and the characteristics of the cloud of cold trapped atoms are determined.
Typically we trap 106 He* atoms, with a temperature of about 1 mK and a density
of a few times 109/cm3.

For the analysis of the measurements it is important to have a good description
of the interaction potential for the colliding atoms. We have applied methods used
to calculate long-range potentials for alkali-metal systems [5] to calculate the po-
tentials for the He* - He* system. In Chap. 3 we discuss how these potentials have
been calculated. They have been used in the analysis done in the rest of the thesis.
The potentials have been calculated in an internuclear distance range from a few
times 10 a0 to 1000 a0. At short range the electronic motion is strongly coupled
to the internuclear axis, while at long range the spin-orbit coupling is stronger
than the coupling to the internuclear axis. In the intermediate region connecting
short range and long range the molecular states are mixed due to the fine-structure
interaction. As a result of the mixing the molecular lifetime and the effective C3

coefficient (Ce f f
3 ) vary with the internuclear distance, where Ce f f

3 is defined by
Ce f f

3 = V (R)R3. As is the case for alkali-metals, in the He∗2 system there exist
purely long-range potentials, which result from avoided crossings between poten-
tials with identical symmetries. They are attractive at very long range and become
repulsive at internuclear distances of ∼ 100a0. The study of purely long-range
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Chapter 1

potentials has yielded much information in PAS of alkali-metals [2, 3].

In Chap. 4 we study excitation of the molecular system close to the 23S1 -
23P2 asymptote. These are the first PAS measurements for the He* system. Part of
these measurements have also been presented in Ref. 6. We have observed peaks
in the ionization rate, which can be attributed to the excitation of bound states
in the excited state of the molecule. The peak positions are analyzed using the
potentials calculated in Chap. 3 and three series of vibrational states are identified
in the spectra. It is not clear why ion peaks are observed when a bound state
is excited. As is discussed in Sec. 4.4.4, one would naively expect to observe a
decrease in the ionization rate when a bound state is excited. We have found a
mechanism that is responsible for the increase in ionization when a bound state is
excited and give a qualitative description of this mechanism in Chap. 4.

In Chap. 5 we study excitation of the molecular system close to the 23S1 - 23P1

asymptote. As can be seen in Fig. 1.1 this asymptote lies only 2.29 GHz above
the 23S1 - 23P2 asymptote. There are a number of differences in the potentials
compared the potentials connected to the 23S1 -23P2 asymptote. The couplings
between the potentials are stronger and there are purely long-range potentials. We
have studied loosely bound vibrational states at detunings around the atomic res-
onance. We observe a decrease in the ionization rate at a small negative detuning
and an increase in the ionization rate at small positive detunings. The dip is at-
tributed to the excitation of a bound state in a purely long-range potential. A peak
at a positive detuning cannot result from the excitation of a bound state in an at-
tractive potential, since such a state would have to be lying in the continuum of the
potential. We tentatively attribute the increase in ionization rate to the excitation
of a shape resonance.

In Chap. 6 we study optical collisions, i.e. collisions in the presence of nearly-
resonant light. With the optical collisions we study the dynamics of the collisions
and the ionization rate constants. The collisions of the He* atoms in the MOT are
manipulated by light and the manipulation is monitored by the ionization rate. We
have constructed a semi-classical model to calculate the ionization rate constant,
where we calculate both the shape of the ionization rate constant as a function
of the frequency of the light and the absolute ionization rate constant. The shape
of the ionization rate is compared with measurements. Furthermore, the calcu-
lated absolute rate constant is compared with values that have appeared in the
literature. We find good agreement between the calculated and the experimentally
determined ionization rate constant.

In conclusion, we have studied colliding cold He* atoms in the presence of
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(nearly-resonant) light. We have investigated various aspects of the system, vary-
ing from the excitation of molecular states to the dynamics of colliding atoms. It
is clear that many new things can be learned about the cold He* - He* system.
The experiments and analysis given in this thesis are just a start . . .
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Chapter 2

Experimental Setup

2.1 Introduction

The experiments described in this thesis have been carried out using cold, trapped
metastable He atoms. The metastable atoms are in the 23S1 state and will be de-
noted from now on as He* atoms. A sample of cold atoms is produced by laser
cooling and trapping the atoms. In 1975 the idea to cool atoms with nearly reso-
nant laser light was proposed by Hänsch and Schawlow [1] and by Wineland and
Dehmelt [2]. Since then various techniques have been developed to cool and trap
neutral atoms with laser light and laser cooling and trapping has become widely
established. Laser cooling and trapping has made a new area available for stud-
ies, namely the interactions between ultra-cold atoms, and in many laboratories
around the world experiments are carried out using laser cooled atoms. Exam-
ples of these experiments are studies of collisions between ultra-cold atoms [3,4],
Bose-Einstein condensation [5] and high precision spectroscopy experiments [6].
One of the main tools in the experiments is the magneto-optical trap (MOT).
Among the elements of the periodic table that are studied, the metastable rare
gases play an important role [4, 7, 8].

In this chapter we will describe the experimental setup in which we cool and
trap He* atoms. In Sec. 2.2 the basic principles of laser cooling and trapping
will be described. The experimental setup will be discussed in Sec. 2.3. Special
emphasis is put on the production of a slow and intense He* beam in Sec. 2.4,
since the design of the source that produces the beam is new. The He* beam is
used to load a MOT. The properties of the atoms in the MOT are discussed in
Sec. 2.5.
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Chapter 2

2.2 Laser cooling and trapping

Using nearly resonant light, a force can be exerted on atoms. If we consider a
two level atom, with one ground and one excited state, the atom can be excited
from the ground to the excited state by absorption of resonant laser light. When
the atom absorbs a photon, momentum from the laser beam is transferred to the
atom in the propagation direction of the light. Since the excited state has a finite
lifetime, the atom spontaneously decays back to the ground state while emitting
a photon in a random direction. In this process recoil momentum is transferred
to the atom in a random direction. After a large number of excitation and spon-
taneous emission cycles this random recoil momentum averages out to zero and
a net force is exerted on the atoms in the propagation direction of the laser beam.
This is called radiation pressure.

A slowly moving atom that is irradiated by two laser beams, having identical
frequency and polarization but opposite propagation directions, can experience a
damping force if the laser light is tuned below the atomic resonance [9]. This is
illustrated in Fig. 2.1 where the force is shown as a function of the velocity of the

-4 -2 0 2 4
-0.4

-0.2

0.0

0.2

0.4

Velocity [γ/k]

Fo
rc

e
[h̄

k
γ

]

Figure 2.1 Damping force for slow atoms as a function of the velocity of the atoms. The
velocity is expressed in γ /k, where γ is the natural linewidth of the excited state and k is
the wave number of the light. The force is expressed in h̄kγ .
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atoms. For small velocities the force can be approximated by F = −βv, where v
is the velocity of the atoms and the damping coefficient β is given by

β = −h̄k2 8s0(	/
)

(1 + (2	/
)2)2 , (2.1)

where k is the wave number of the light, s0 the saturation parameter, 	 the de-
tuning of the laser light from atomic resonance and 
 the natural linewidth of the
excited state. If the atoms have a velocity v �= 0, they will see the light of both
laser beams with a Doppler-shift. The atoms will interact strongest with light that
is Doppler-shifted towards resonance. If the light is tuned below resonance the
atoms will absorb more photons from the beam that travels opposite to the direc-
tion of the motion of the atoms and thus their velocity is reduced. The viscous
damping force on an ensemble of atoms is called optical molasses. The effect was
demonstrated experimentally for the first time by Chu et al. [10].

2.2.1 Zeeman slowing

The initial velocity of metastable helium atoms is relatively high, compared to
e.g. alkali atoms. Unlike in experiments with alkali atoms, not the ground state
of the atom is used, but a metastable excited state with a very long lifetime. The
metastable state is produced in a discharge, usually in a DC-discharge source. If
the source is not cooled, the mean velocity of a beam of He* atoms emerging
from the source is 2000 m/s [11]. Even if it is cooled with liquid nitrogen the
mean velocity is still 900 m/s [12]. Since the capture velocity of a standard He*
MOT lies around 60 m/s, a beam used to load the MOT needs to be pre-cooled,
which is mostly done in a Zeeman slower, before the atoms can be trapped.

A beam of neutral atoms can be slowed by irradiating it with a counter-
propagating laser. The radiation pressure changes the velocity of the atoms and
thereby changes the Doppler shift with which the atoms see the laser light. Since
the Doppler shift is usually much larger than the power broadened linewidth, the
atoms are shifted out of resonance with the laser light. The Zeeman-compensation
technique [13] compensates for the Doppler shift by applying an inhomogeneous
magnetic field. In the magnetic field the ground and the excited states are shifted
due to the Zeeman effect. The magnetic field of the Zeeman slower is constructed
in such a way that over the whole slowing path the Zeeman shift induced by the
varying magnetic field compensates the varying Doppler shift. In this way the
atoms in the beam can be cooled, i.e. they are slowed down to low velocities,

13
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in our case to the capture velocity of a MOT, and the velocity distribution is nar-
rowed. As will be described in Sec. 2.4.3 there are certain difficulties connected to
the use of the Zeeman slowing technique and the experiment can be greatly sim-
plified if atoms can be loaded into a MOT without being pre-cooled in a Zeeman
slower.

2.2.2 Magneto-optical trap

Many experiments require a dense sample of cold atoms. Therefore it is not just
enough to cool the atoms, they also need to be spatially confined. The damping
force shown in Fig. 2.1 only cools the atoms. In a magneto-optical trap (MOT)
the atoms are both cooled and trapped in three dimensions. The construction of
a MOT was first demonstrated in 1987 by Raab et al. [14]. A three-dimensional
schematic picture of a MOT is shown in Fig. 2.2b. Six counter-propagating laser
beams in three mutually orthogonal directions overlap in the center and produce
a damping force. The confining force is generated by the combination of an in-
homogeneous magnetic field and the laser light. The magnetic field is produced

(a)

m  = +1

m  = 0

m  = -1

e

e

e

m  = 0g

Energy

ω
l

∆

σ beam+ σ beam-

J = 0

J = 1

(b)

+o

o
_

o
_

o
_

+o+o

B

I

I

Figure 2.2 Part (a) shows a one dimensional representation of the MOT, where m g in-
dicates the ground state and m e the excited state magnetic substates. ωl is the laser fre-
quency and 	 is the detuning with respect to the atomic resonance. Part (b) is a three
dimensional representation of the MOT . The coils that generate the magnetic field are
shown and the direction of the current. Furthermore the laser beams, coming from six
directions with circular polarizations σ + and σ− are indicated.
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by two coils in an anti-Helmholtz configuration. It is zero in the center of the trap
and linearly increasing with the distance from the center for small distances from
the center.

In Fig. 2.2a the principle of the MOT is shown in one dimension when a
J = 0 → J = 1 transition is used. The inhomogeneous magnetic field splits
the magnetic substates of the states of the atom. In the one-dimensional example
shown in Fig. 2.2a the ground state has an angular momentum of J = 0, so only
the substates of the excited state are split. Two counter-propagating laser beams
have opposite circular polarizations, σ+ and σ−. For a negative detuning 	 of
the laser, the excited state with me = +1 is shifted away from the laser frequency
for positive B-field, while the state with me = -1 is shifted towards the frequency.
Therefore at positive magnetic field the atoms scatter more light from the σ−
beam than from the σ+ beam and the atoms are driven towards the center of the
trap, where the magnetic field is zero. In addition the atoms are cooled by the
velocity damping force shown in Fig. 2.1 as the laser light is tuned below the
atomic resonance.
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Figure 2.3 Part (a) shows the level scheme of He. In part (b) the transition strengths for
the possible optical transitions are shown for the 23S1 → 23P transition. The weakest
allowed transition is chosen to be 1.
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In the case of He* the 23S1 → 23P2 transition is used as a cooling transition.
In Fig. 2.3a the level scheme of helium is shown in the range that is relevant
for the experiments discussed in this thesis. The 23S1 → 23P2 transition has a
wavelength of 1083 nm. The lowest metastable state (the He (23S1) state) has an
angular momentum of J = 1 while the atom in the picture of the 1D MOT has
an angular momentum of J = 0 in the ground state. As a consequence we do
not have a two level system but a multilevel system. Since it is a closed system,
laser cooling is possible. The transition strengths of the various lines are shown
in Fig. 2.3b.

2.3 Experimental setup

A schematic picture of the experimental setup is shown in Fig. 2.4. The setup
consists of several parts. First, a slow He* beam is produced in a DC-discharge
source. The construction of this source and the properties of the beam will be
described in Sec. 2.4. Subsequently, the atoms are slowed down and trapped in
a MOT. The characteristics of the cloud of trapped atoms will be described in
Sec. 2.5.

The setup is a UHV setup which is differentially pumped. In this way the pres-
sure in the MOT chamber is minimized and losses of atoms from the trap which

130 cm

Channeltron

MCP

70 mm

He* Source
lq He cooled

Valve MOTmagnetic
hexapole lens

10
Bar

10
mBar

2 * 10
mBar

1 * 10
mBar

-2 -5 -9 -9

Figure 2.4 Schematic picture of the setup with typical pressures during operation indi-
cated at the bottom. MCP stands for micro-channel plates.
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are induced by collisions with background atoms are reduced. The pressures are
indicated in Fig. 2.4. The apparatus is pumped by magnetically suspended turbo
molecular pumps (Balzers, types TCM 180 and TCM 520).

In the experiment two types of lasers are used. The 23S1 → 23P2 transition
is the transition that is used to cool and trap the atoms. The corresponding wave-
length is 1083 nm. The light is generated by diode lasers (Spectra Diode Lab,
SDL-6702-H1). The current through the diode and the temperature of the diode
are controlled by home made units and by a commercial unit (TUI, DC 100). The
laser beam is collimated with an anti-reflection coated lens to a beam of 8 × 2
mm. The output power of the lasers is around 40 mW. The laser light is linearly
polarized and the laser linewidth is 3 MHz.

Furthermore, a single mode CW ring dye laser is used to pump the 23P → 33D
transition, which has a wavelength of 587.6 nm. This transition is used to image
the cloud of trapped atoms with visible light. The laser produces around 600 mW
linearly polarized light and it is pumped with a 7 Watt argon ion laser. The light
is coupled into a single mode polarization preserving optical fiber with a length of
100 m. The fiber is saturated at 20 mW and this intensity is coupled out.

The trapping laser is locked on the atomic 23S1 → 23P2 transition. To be
able to lock the laser on the atoms that have zero velocity, saturated absorption

laser

PD

λ/4

RF coils

PBS

glass cell,
filled with He

5 % BS

MM

Figure 2.5 The saturation spectroscopy setup. BS stands for beam splitter, M for mirror,
PBS for polarizing beam splitter, λ/4 for quarter wave retardation plate, and PD for photo
diode.
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spectroscopy is used, in a pump-probe setup. A laser beam is sent through a
sample of He* atoms and retro-reflected. The incoming laser beam is used as a
pump beam, while the retro-reflected beam is used as a probe beam. The power
of the probe beam is smaller than the power of the pump beam since light of the
pump beam is absorbed. In this way the laser can be locked on the Lamb-dip,
i.e. on the atoms which have zero velocity, and the line is not Doppler-broadened.
The linewidth of the locked laser lies below 10 MHz.

In Fig. 2.5 the setup that is used to lock the laser is shown. 5% of the laser
light is led to a glass cell. In this cell He 23S1 atoms are produced, by exciting
ground state He atoms to the He 23S1 metastable state in a RF induced discharge,
with an RF frequency of 23 MHz. It is important that only He atoms are excited
in the discharge. Therefore special care is taken to reduce impurities in the He
gas. Before the cell is filled with helium it is baked out and pumped down. Then
helium is let in through a liquid nitrogen cooled tube. The pressure in the cells is
a few times 10−1 mBar.

2.4 Metastable helium source

In this section the production of an intense low velocity metastable helium beam is
demonstrated. It is used to load a MOT without a Zeeman slower and hence avoids
the difficulties encountered in loading a metastable rare gas MOT from a Zeeman
slower. Furthermore, we have constructed a magnetic hexapole lens. Because of
the low initial velocity of the atoms produced in the source the hexapole lens can
efficiently focus the atomic beam.

2.4.1 Construction

The source is shown schematically in Fig. 2.6. In the source metastable helium
atoms He(21S) and He(23S) are produced in a DC-discharge by electron impact.
The source is cooled by liquid helium. The discharge runs between a discharge
needle and a nozzle plate. A Pyrex glass tube with an orifice of 1 mm inserted in a
Teflon holder, is placed in a copper assembly as shown in Fig. 2.6. The gas flows
on the outside of the glass tube, along the cold cryostat and cold nozzle, before it
expands into the vacuum chamber. Part of the gas is pumped out by a mechanical
pump through the glass tube, in the same way as in the design of a liquid nitrogen
cooled DC-discharge source by Kawanaka et al. [15].

The glass tube and nozzle assembly were placed inside a cryostat, which was
cooled to about 10-15 K by liquid helium. Lower temperatures could be obtained
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-HV

He gas in

He gas in

Tungsten needle

Heat shield

He* output

10 mbar
-5

10 mbar
-2

He gas out

Aluminum nozzle plate

He cryostat

Teflon

Liquid helium flow

Figure 2.6 Schematic drawing of the source cooled with liquid helium.

but at the expense of instability of the source output. This is possibly due to he-
lium condensation taking place in the source. The cryostat is heat shielded by a
gold plated cylinder. The nozzle was made of an aluminum plate of 1 mm thick-
ness to reduce heat gradients (a copper nozzle did not produce as well a discharge
as an aluminum one) and the exit hole diameter used was 0.5 mm. As a discharge
needle we used a tungsten rod with a diameter of 2 mm, which was sharpened at
the end and kept in the middle of the glass tube by ceramic spacers. The optimal
distance from the nozzle plate to the discharge needle was found to be 7 mm, en-
suring both a high output stability and a high yield of the source. To minimize
heating effects the source is operated at a low discharge power of typical 50-100
mW (about 0.1 mA) and a low discharge pressure of 10−2 mBar. In this design
the helium discharge is burning inside the source, i.e. between the discharge nee-
dle and the nozzle plate. This is in contrast to conventional metastable sources
which operate at higher pressures (a few mBar) with a discharge burning outside
the nozzle, i.e. between the discharge needle and the skimmer, to reduce quench-
ing of the metastable atoms by the high pressure [11, 16]. We observed that this
operation was only possible at higher source pressures and currents, and therefore
at higher temperatures. However, we estimated the quenching of the metastables
in our design to be of minor importance due to our low source pressure of 10−2
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Figure 2.7 Output yield of source as a function of discharge voltage. The contribution
from UV photons has been subtracted.

mBar. Operating at minimum power and pressure yields a total flux of a few times
1012 atoms/s sr. This output is two orders of magnitude lower than the output of
conventional sources, but the mean velocity of the atoms is decreased from 2000
m/s to 300 m/s, as is shown in Sec. 2.4.2. As expected higher source voltages
increase the output yield further. This effect is illustrated in Fig. 2.7.

2.4.2 Results

In the source He (23S) atoms, He (21S) atoms, and UV photons are produced. The
atoms and the photons were detected with a channeltron detector, located 60.3
cm away from the source exit. The total number of UV photons in the beam was
deduced from time of flight (TOF) measurements discussed below and subtracted
from the signal measured with the channeltron detector. The fraction of He 21S
atoms produced in the source was measured by deflecting all He 23S atoms out of
the beam with a diode laser resonant with the 23S1 → 23P2 transition. The beam
flux was measured with and without deflection, which enabled us to determine the
number of singlet atoms. The fraction of singlet atoms was found to be 5–8% of
the total beam flux which is rather low compared to previous source designs [16].
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The velocity distribution was measured by a TOF technique. Fig. 2.8 shows a
typical TOF spectrum together with the corresponding velocity distribution. The
TOF spectrum was obtained by the use of a mechanical chopper inserted in the
beam. The sharp photon peak in the beginning of the spectrum provided a conve-
nient time zero as well as an indication of the time resolution in this measurement,
which was estimated to be better than 2 µs. Furthermore we used the photon peak
to determine the photon flux. We found the photon flux to be approximately 25%
of the total source output. The mean velocity of the spectrum shown in Fig. 2.8 is
300 m/s, which corresponds to a temperature of 15 K. In Fig. 2.9 the mean source
velocity is plotted against discharge power. As the discharge power increases the
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Figure 2.8 Part (a) shows a typical time of flight spectrum obtained using a mechanical
chopper. A channeltron detector located 60.3 cm away from the chopper monitored the
beam particles and photons. Part (b) displays the corresponding velocity distribution.
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Figure 2.9 Mean velocity of He* beam as a function of discharge power.

mean velocity increases slightly, due to heating of the discharge. At typical set-
tings of the source we find a mean velocity of less than 300 m/s, compared to
1000 m/s for a liquid nitrogen cooled source [15], or 2000 m/s for a conventional
source [11, 16].

2.4.3 Loading the MOT

Our source of slow metastable triplet helium atoms is used to load a magneto-
optical trap (MOT). A schematic picture of the setup is shown in Fig. 2.10. Usu-
ally a MOT for metastable rare gases is loaded from a high-pressure discharge
source cooled with liquid nitrogen [4,17–19]. In that case the helium atoms in the
beam need to be slowed down in a Zeeman slower from 1000 m/s to the capture
velocity, i.e. 60 m/s, of the MOT, before they can be captured in the MOT. Using
a Zeeman slower makes the experiment more complex since special care has to
be taken to avoid reduction of density of the beam [20]. In a Zeeman magnet the
beam is slowed down in the longitudinal direction and as it is slowed down, the
transverse part of the velocity becomes more and more dominant. The beam will
ultimately fan out and the flux in the center of the beam will strongly decrease.
This effect limits the number of atoms that can be captured in the MOT. It can
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Figure 2.10 Schematic picture of the slowing and trapping setup.

be compensated for by inserting a transverse cooling section in front of and/or at
the end of the slowing unit [17]. At the entrance of the slower the velocity of the
atoms in the beam is high and consequently the interaction time of cooling light
with the atoms is short. This limits the momentum that can be transferred to the
atoms. A complication that arises when using a Zeeman slower is extraction of
slow atoms from the end of the slower. The extraction can be made more efficient
by placing additional coils at the exit of the magnet, or by using an increasing
magnetic field [21]. These modifications also shift the atoms out of resonance
with the slowing laser light after they have left the slower and hence prevent fur-
ther deceleration of the beam and broadening of the velocity distribution at that
point.

To improve the load characteristics of our He* MOT compared to previous
experiments [12, 22], we decided to use the cryogenic helium source instead of
a source cooled with liquid nitrogen. Since the mean velocity is only 300 m/s
instead of 1000 m/s, we could decrease the length of the experiment considerably
and hence increase the loading rate dramatically. The coils that generate the MOT
magnetic field in our setup are large in diameter (∼ 400 mm). These large coils
are particularly favorable for loading a MOT from the cryogenic source, since no
additional Zeeman slower is needed. The atoms are slowed down by a counter
propagating laser beam, and the Zeeman shift that is needed to compensate the
Doppler shift is produced by the radial magnetic field of the MOT. The beam still
fans out, but the effect is smaller than for a liquid nitrogen cooled beam for two
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reasons. First, due to the lower initial velocity of the atoms the beam does not
spread out as much during the deceleration. Second, since the atoms are slowed
down in the MOT chamber the beam spreads out most in the region where the
trapping laser beams are present. This reduces the losses considerably. Fig. 2.11
shows a simulation of the slowing in the radial MOT magnetic field by a single
counter-propagating laser. As a reference we have also plotted the measured and
calculated radial magnetic field. The detuning and intensity of the slowing laser
that are used in the simulation are identical to the values that are used in the actual
experiment, which are given below.

For a slowing laser detuned 40 MHz below the 23S1 → 23P2 asymptote with
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Figure 2.11 Simulation of the deceleration of the slow He* beam in the radial magnetic
field of the MOT. For reference we have also added the radial magnetic field component
on the graph. The dots are measured magnetic field values. The beam of He* atoms
enters the MOT chamber at the negative radial distance side. The simulation is shown for
various initial velocities of the atoms. It can be seen that atoms with a velocity smaller
than 325 m/s can be slowed down enough to be trapped in the MOT.
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a saturation parameter of s0 = 400 we are able to slow down all atoms with a
velocity that is less than 325 m/s, i.e. most of velocity distribution. Experiments
show that it is indeed possible to trap most of the atoms from the slow metastable
helium beam. We easily trap about 106 atoms in the MOT, where in the previ-
ous experiment only 105 atoms were trapped by loading the MOT from a liquid
nitrogen cooled Zeeman slowed beam [12]. The volume is 1 mm3 leading to an
average density of a few times 109 cm−3 and the temperature is 1 mK. The total
number of trapped atoms is measured with micro-channel plates and the spatial
size of the MOT is measured by a CCD camera. In Sec. 2.5 it will be described in
more detail how the characteristics of the MOT are determined. With this number
and density of atoms we have entered the regime where intra-MOT collisions are
more important than collisions with background atoms. This can clearly be seen
in Fig. 2.12 where a typical decay curve of the MOT is shown. Since the decay is
not a single exponential in time, the main ion production results from intra-MOT
collisions [23].
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Figure 2.12 Decay curve of the MOT. The loading of the MOT is shut off at t = 1.0 s.
The two dashed lines represent the contributions to the decay rate of intra-MOT collisions
(steep slope) and of collisions with background atoms (weak slope).
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2.4.4 Hexapole magnetic lens

Our beam line of slow metastable helium atoms offers the possibility of manipu-
lating the initial divergent beam profile with magnetic fields. At these low atomic
velocities moderate magnetic field gradients are sufficient to reduce the initial
beam divergence and to project a larger part of the flux of the source into the
capture region of the MOT. This can result in a significant increase in the num-
ber of captured atoms. The best way to accomplish this is by focusing the atoms
emerging from the source into the center of the MOT. We have used a magnetic
hexapole lens to focus the He* atoms. In Fig. 2.10 the position of the magnetic
lens is shown. and in Fig. 2.13 a schematic picture of the hexapole lens can be
seen. We have chosen a hexapole configuration which produces a field gradient
that increases linearly with the distance from the center of the hexapole. Meta-
stable atoms with a large divergence thus experience a larger force than atoms
with a small divergence and in principle all atoms will be focused into the same
focal point. This is in contrast to a quadrupole configuration where the gradient is

dout

din

�

Figure 2.13 Schematic diagram of the hexapole lens. The inner diameter of the tube is
din=2.6 mm, the outer diameter dout= 5 mm and the length �= 40 mm. Note, that due to
the special arrangement of the slots the direction of the current alternates between two
adjacent segments.
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constant as a function of distance. The hexapole thus resembles a lens for mono-
velocity atoms. However, in our case the atoms in the beam have a certain velocity
spread and velocity aberration can be important.

The hexapole is constructed from a tube of copper with a length of 40 mm,
an inner diameter of din= 2.6 mm and an outer diameter of dout= 5 mm. The
hexapole structure is obtained by cutting 6 slots in the copper tube along its side
with a spark cut method such that six wire segments are created (see Fig. 2.13).
At each end of the tube 2 neighboring segments remain connected to each other
such that the current is allowed to flow alternately in opposite directions. The tube
assembly is connected to two wires supplying the current. The distance between
each wire segment of the hexapole is about one millimeter. A ceramic tube with
an inner diameter of 1.6 mm is put in the hexapole lens to ensure that the segments
remain fixed at their positions, avoiding unwanted contact between the segments.
Our hexapole structure can take a continuous current of about 15-20 A, without
cooling, and a maximum of 80 A for a short period of time. At high currents the
surroundings of the lens warm up, leading to an increase in pressure by outgassing
and a corresponding quenching of the metastables. Since our hexapole is most
efficient at higher currents we plan to use permanent magnets in the future.

To gain knowledge of the hexapole we modeled the atom trajectories and kine-
matics through the lens. We assume that the magnetic field is generated by six
infinite point wires put at a distance a from the center of the hexapole. To test
this assumption we have carried out numerical simulations of the actual field and
compared it to our analytical results, which will be discussed below, and found
that the distance a is just the average of the inner radius ain = din/2 and the outer
radius aout = dout/2, or a = (ain + aout)/2. For six point wires we obtain in
cylindrical coordinates (r, θ) for the magnetic field:

B(r, θ) =
(µ0

4π

) 12I r2

a3

1√
1 + (

r
a

)12 − 2
(

r
a

)6
cos(6θ)

, (2.2)

where I is the current sent through each wires. This expression is exact for all
points (r, θ) in the plane. For small r 
 a we obtain

B(r, θ) =
(µ0

4π

) 12I r2

a3
, (2.3)

which we find to be valid for r ≤ a/2. Note that the field depends quadratically
on the radius r from the center and thus that the gradient is linearly proportional
to the radius. Therefore the hexapole field provides the right field for an atomic
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lens. For a quadrupole configuration we obtain an r/a2 dependence of the field,
which does not yield the right dependence for a lens. The interaction between the
atom and the magnetic field is given by the Zeeman shift:

V = µbgsm j B, (2.4)

where µb is the Bohr magneton, gs is the spin gyromagnetic ratio, and mj is the
projection of the total electronic angular momentum along the r direction. The
force on the atom is given by:

F(r) = −gradV = −µB gsm j
∂B

∂r
= −κr, (2.5)

with the spring constant κ given by

κ = µB gsm j

(µ0

4π

) 24I

a3
. (2.6)

We assume the m j distribution to be random, since the atoms move too fast
through the lens for adiabatic following to take place. Thus along the r direc-
tion one third of the metastables will be in each of the states mj = 0,±1. For
atoms in the m j = +1 state the atoms will be deflected towards the axis of the
hexapole, atoms in the mj = 0 state will not experience any influence, while
atoms in the m j = −1 state will be deflected away from the axis.

In the hexapole the atoms will undergo an oscillatory motion. If the interaction
time τ = �/v0 is small compared to the oscillation period T = 2π/ω, where
ω = √

κ/m is the oscillation frequency, a parallel beam of atoms will be focused
at a distance f from the lens given by

f = mv0
2

κ�
(2.7)

and f thus represents the focal length of our lens. Here we have assumed that
τ/T 
 1, i.e. we have made the thin lens approximation, which is not strictly
valid in our case, but without this approximation we obtain equivalent results.
Note, that the focal length of the lens is proportional to the square of the velocity
and thus shows strong velocity aberrations. In our case, we can generate a gradient
of d2B/dr2= 6000 G/cm2 with a current of 20 A and for atoms with a velocity of
300 m/s we obtain a focal length of 12 cm.

In the present setup we are not interested in the focal properties of the lens,
since the spread in the velocity of the atoms is too high. Instead we are interested

28



Experimental Setup

to use the hexapole lens to boost the flux of atoms which can be loaded in the
MOT. Solving the equation of motion for a given velocity and entrance coordi-
nate in the hexapole enables us to determine the impact position in the detector
plane located approximately 1.6 m away from the hexapole. In the calculation
we assumed the initial beam profile to be Gaussian and the velocity distribution,
depicted in Fig. 2.8, to be of the form

f (v) = Cv3 exp

(
−
(
v − v0

	v

)2
)
, (2.8)

where C is a normalization constant, v0=300 m/s is the mean velocity and	v= 50
m/s describes the width of the distribution. The beam profile P(r) in the detector
plane is obtained from

P(r) =
∫ ∞

0
A(v, r) f (v)dv, (2.9)

where A(v, r) is the beam profile transformed first by the hexapole and then by
propagation to the detector plane.

We have calculated the beam profile for a number of values of the current
through the hexapole, varying from I = 20 A to I = 100 A, and also measured the
beam profile for various values of I . The maximum calculated flux enhancement
is a factor of 12. The detector can only be scanned in one direction and might not
be at the optimal position perpendicular to the scanning direction, since a small
misalignment of the hexapole lens can have a large effect at the distance where
the detector is placed. Therefore we have plotted the enhancement of the flux at a
fixed position of the detector and used the calculation that fits the measurements
the best. The measurements and the calculations are plotted in Fig. 2.14, where
the background of UV photons and He (21S) atoms has been subtracted from
the measured signal. It can be seen that if the current scale of the calculations
is multiplied by a factor of 2, the agreement between the measurements and the
calculations is rather well.

A few assumptions have been made in the calculations that might explain this
discrepancy in the current scale. First of all, we have assumed that the He* source
is a point source, while in reality the diameter of the nozzle is too large and the
source is too close to the lens to be regarded as a point source. Furthermore, the
atoms might spiral through the lens due to the magnetic field, since the velocity of
the atoms has both a radial and a longitudinal component as a result of the finite
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Figure 2.14 Comparison of the measured flux enhancement due to the hexapole lens as
a function of the current I compared to the calculated flux enhancement. The dots are
the measured values, the solid line is the calculation and the dashed line is the calculation
where the current scale has been multiplied by 2 to obtain better agreement with the
measurements.

extent of the source. Finally, we have not been able to measure the magnetic field
in the hexapole, to check whether our calculations are correct.

We can conclude that we can indeed enhance the beam flux with the hexapole
magnet, although not in the way we expected. To improve the flux even more
the hexapole lens should be positioned farther away from the source, so that a
lens with a larger focal length should be optimal and hence lower currents could
be used. Another possibility is to use permanent magnets to create the magnetic
hexapole field in order to obtain higher field gradients.

2.4.5 Conclusions

We have constructed an intense low velocity beam of metastable helium atoms.
The mean velocity is about 300 m/s and the output yield 1012 atoms/s sr. The
beam is used to improve the loading characteristics of a MOT. To further improve
the beam flux we have started to investigate the possibility of using a magnetic
hexapole lens to focus the beam. Initial studies show a factor of 2.5 increase in the
beam flux but more is expected when the hexapole is constructed from permanent
magnets.
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2.5 Characteristics of the MOT

In Sec. 2.2.2 the basic principles of the operation of the MOT are explained. In
this section the characteristics of the cloud of trapped atoms and the manner in
which they are determined will be discussed.

In Fig. 2.15 a picture of the MOT chamber is shown, together with the optics
used for the trapping laser. Furthermore a set of two micro-channel plates (MCPs)
is shown, which is used for the detection of ions and He* neutrals. In front of the
MCPs a grid is placed which is used to either attract or repel the positive ions
which are created during Penning ionization of colliding He* atoms. The MCPs
have a diameter of 18 mm.

The trapping laser beam is blown up to a size of 40 × 20 mm2. The saturation
parameter s0 is 70 per beam. One laser beam provides the configuration of six
laser beams shown in Fig. 2.2b. It is recycled for all directions, by reflecting it
18 times. The trapping laser runs at a detuning of 	 = -20 MHz, or −12.5 
.

laser

5 %
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OI λ/4 Spherical
Telescope

saturation
spectroscopy

70 mm

MCP
λ/2

up

magnetic coils
d =  400 mm

M

MM

M

slowing
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Figure 2.15 MOT chamber and trapping laser beam. BS stands for beam splitter, OI for
optical isolator, λ/4 for quarter wave retardation plate, M for mirror, λ/2 for half wave
retardation plate and MCP for micro-channel plates.
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When the trap is on, we typically measure 106 ions/s. The major ion production
comes from intra-MOT collisions and only a small fraction results from collisions
between trapped atoms and background gas atoms, as can be deduced from the
decay curve shown in Fig. 2.12.

The magnetic field coils that generate the quadrupole field have an inner radius
Ri = 180 mm and an outer radius Ro = 235 mm. The typical current through the
coils is 10 A and the number of windings is 588. The magnetic field gradient in
the z-direction is 15 Gauss/cm. The coils are water-cooled.

2.5.1 MOT temperature

The temperature of the atoms in the MOT is determined by means of a time of
flight method. The atoms in the MOT are released, by detuning the frequency of
the trapping beam far to the red of the 23S1 → 23P2 transition. The metastables
make ballistic trajectories and part of them hit the MCPs which are located 70
mm from the center of the vacuum chamber, perpendicular to the x-y plane. The
metastables are measured as a function of their arrival time at the MCPs. The
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Figure 2.16 TOF measurement of the He* atoms in the MOT. The dots are the measure-
ment and the line is the the fitted Maxwell Boltzmann distribution.
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spectrum can be fitted with a Maxwell-Boltzmann distribution, that is given by

f (t) ∝
(

M

3kB T

)3/2 L3

t4
e−M L2/6kB T t2

, (2.10)

where M is the mass, T is the temperature, L is the traveled distance, and t is the
time.

A TOF spectrum is shown in Fig. 2.16. From the fit of this spectrum we find
a temperature of the MOT that is 1.3 mK. The agreement between the fit and the
data points is not very good, and we can conclude that velocities of the trapped
atoms do not have a pure Maxwell-Boltzmann distribution. In the fit we did not
take gravity into account, since the effect of the gravity is negligibly small. We
have no explanation for the peak in the spectrum at small time scales. The mean
velocity of the atoms in the MOT is 2 m/s. If we integrate all the counts in the
spectrum and take the solid angle and the detector efficiency into account, we find
the number of atoms in the MOT, which is 8 · 105 in this case.

2.5.2 Spatial distribution

The spatial distribution in the MOT is measured by exciting the He* atoms to the
33D state, using visible light, as was first done by Kumakura and Morita [24]. For
this purpose a dye laser beam is used with a wavelength of 587.6 nm. A fraction

L

50mm

PD or
CCD

/4λ

/4λ

Visible laser

Figure 2.17 Imaging setup. M stands for mirror, λ/4 for quarter wave retardation plate,
L for lens, PD for photo diode and CCD for CCD camera
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of the laser light is led to a glass cell filled with helium to find the 23P ↔ 33D
transition. In the cell He 23S1 atoms are produced, which are excited to the 23P2

-state in the manner described in Sec. 2.3. The atoms in the MOT are irradiated
with light which has a saturation parameter s0 of the order 1. The laser beam is
circularly polarized and is retro-reflected. The trapped cloud is slightly disturbed
by the visible laser beam. It is elongated in the direction of the laser beam and the
temperature is increased from 1.3 mK to 1.7 mK.

A lens is placed in the vacuum chamber, as is shown in Fig. 2.17, in order
to maximize the solid angle for the fluorescence and to enlarge the image of the
trapped atoms. Outside the vacuum chamber, at the position of the image, either
a CCD camera or a photodiode can be placed. The CCD camera has an array
of 752 × 582 pixels and is used to measure the spatial profile of the cloud. The
photodiode is used to monitor the emitted fluorescence, which is a measure for
the number of trapped atoms.

A typical image, taken with the CCD camera is shown in Fig. 2.18a. A cross
section through the cloud is shown in Fig. 2.18b. With the CCD camera we can

determine rx and ryz =
√

r2
y + r2

z , by fitting the cross section with a Gaussian

distribution. Here rx is the 1/e half width in the direction of the visible laser beam,
ry is the 1/e half width in the horizontal plane perpendicular to the direction of rx ,
and rz the 1/e half width in the vertical direction. To obtain ry and rz from ryz

we have assumed that ry is a factor of
√

2 larger than rz , due to the difference in
the magnetic field gradient in the y- and z- direction. From the fit follows then
that rx = 0.61 mm, and ry = 0.37 mm, and rz = 0.26 mm. In the direction of
the visible laser beam the cloud is elongated, because it is perturbed by the laser.
When the visible laser beam is off, rx should be equal to ry . We use the sizes
without the laser beam and the number of atoms to find the central density in the
atomic cloud, which is 2 · 109 cm−3.

The visible fluorescence measured with the photodiode is 2.5 nW. The photo-
diode is calibrated for the wavelength of 587 nm. If the fraction of atoms in the
33D state is known the number of atoms in the trap N can be calculated using the
following formula:

N = f

ηeηdhνρd

, (2.11)

where f is the measured fluorescence, ηe = 0.016 is the geometrical detection
efficiency, ηd is the detection efficiency taking into account losses due to scattering
on optical elements and is estimated to be 25%, hν = 3.377 · 10−19 J is the energy
of the photons, 
 = 71.4 MHz is the natural line width of the doubly excited
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Figure 2.18 Image of the MOT taken with the CCD camera. The upper part shows the
image, the lower part a horizontal cut trough the center of the cloud. The line is a fit with
a Gaussian distribution

state and ρd = 0.05 is the fraction of atoms in the excited state. The excited
state population is found by numerically solving the optical Bloch equations for a
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coupled three-level system. From the numbers above it follows that the measured
fluorescence corresponds to a number of atoms of 1.6·105. This number is smaller
than the number of atoms that is deduced from the TOF measurement discussed
in Sec. 2.5.1. A reason for this might be the disturbance of the cloud of trapped
atoms by the visible laser light.

2.6 Conclusions

We have constructed an intense source of slow He* atoms. The beam of atoms
is used to load a MOT. As a result of the small initial velocity of the atoms it is
possible to capture them into the trap without making use of a Zeeman slowing
unit, which simplifies the experiment. The loading characteristics of our MOT
have been improved with respect to previous experiments [12,22]. The density in
the MOT has reached the regime where intra-MOT collisions are dominant over
collisions between atoms in the MOT and background gas atoms. This makes our
MOT a useful tool to study interactions between ultra-cold atoms.

We have studied and described the properties of the cloud of trapped atoms.
We have a cloud of about 106 atoms, with a density of a few times 109 cm−3 and
a temperature of about 1 mK.
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Chapter 3

Long-Range States of He∗
2

3.1 Introduction

Collisions of cold atoms primarily probe the molecular interactions at large inter-
nuclear distances. To obtain insight into these collisions it is important to have
a good description of the long-range potentials. The experiments which are de-
scribed in this thesis involve collisions between two cold He* atoms. For colli-
sions of cold alkali atoms the long-range potentials have been studied both exper-
imentally and theoretically [1, 2]. We have applied similar methods as have been
used for alkali atoms to describe the long-range interactions between cold He*
atoms theoretically. The methods we use and the results that are obtained will be
described in this chapter.

First the angular momenta, which play a role in collisions and in the formation
of molecules, will be discussed in Sec. 3.2. In Sec. 3.3 the molecular eigenstates
for 23S1 - 23S1 and the 23S1 - 23P0,1,2 system are described. The potential curves
are calculated in Sec. 3.4 and their behavior is discussed in Sec. 3.5. The contri-
bution of partial waves to the collision is discussed in Sec. 3.6. Penning ionization
is briefly described in Sec. 3.7.

3.2 Angular momenta

It is important to carefully define the angular momenta which play a role in colli-
sions between atoms and in the formation of molecules. In this section notations
for the angular momenta are given, that will be used throughout the whole thesis.

The angular momenta of the atoms a and b involved in the collision are given
below:
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la,b : electronic orbital angular momentum
sa.b : electronic spin
ja,b : total electronic angular momentum, j = l + s
ma,b : projection of ja,b on the internuclear axis

The angular momenta for the molecule can be expressed in terms of the angular
momenta of the atom. They are:

L = la + lb : total electronic orbital angular momentum
S = sa + sb : total electronic spin
� : nuclear rotational angular momentum
J = L + S + �: total molecular angular momentum
j = L + S : total electronic angular momentum

The general dipole selection rules apply and they can be found in textbooks [3].

The molecular quantum numbers are not good quantum numbers at all inter-
nuclear distances, depending on the coupling between the total electronic spin, S,
and the molecular orbital angular momentum, L. The limiting coupling cases can
be treated in terms of the various Hund’s cases, which are described in Ref. [3]. In
the present context Hund’s case (a) and Hund’s case (c) are relevant and therefore
they will be discussed below.

3.2.1 Hund’s case (a)

At short internuclear distances the electronic motion is strongly coupled to the
internuclear axis and the molecule is described by Hund’s case (a). A schematic
picture of the molecule in Hund’s case (a) is shown in Fig. 3.1. In this case the
projection of L on the internuclear axis, which is denoted by�, and the projection
of S on the internuclear axis, which is denoted by �, are good quantum numbers.
The projection of j on the internuclear axis, which is denoted by �, is also a good
quantum number. It is defined as� = �+�. States which have quantum numbers
of ±� are degenerate, so only positive eigenvalues of� are used. The Hund’s case
(a) states are labeled with 2S+1�±

g,u . The g,u and the ± labels represent symmetry
properties of the molecule and will be discussed in Sec. 3.2.3. The notation for
� = 0 is �, for � = 1 it is �, etc.
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L

Λ S

Σ

J

Figure 3.1 Vector diagram for Hund’s case (a). The angular momenta are defined in the
text.

3.2.2 Hund’s case (c)

The Hund’s case (c) description is valid when the spin-orbit coupling is stronger
than the coupling to the internuclear axis. This is the case at large internuclear

J

L

Ω

Figure 3.2 Vector diagram for Hund’s case (c). The angular momenta are defined in the
text.
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distances. In the experiments described in this thesis the excitations from the S-S
potential to the S-P potential are made at these distances.

In Fig. 3.2 a schematic picture of the molecule in Hund’s case (c) is shown.
Since L and S are strongly coupled, they are no longer good quantum numbers.
The projection of j on the internuclear axis, �, is now a good quantum number.
The Hund’s case (c) states are labeled with �±

g,u , where g,u and ± are the same
labels for symmetry properties as in Hund’s case (a). The notation for � = 0 is 0,
for � = 1 it is 1, etc.

3.2.3 Symmetry rules

Homonuclear diatomic molecules have symmetry properties. Due to these sym-
metries some combinations of quantum numbers are not allowed. In this section
various symmetry rules will be discussed. Some of them are used to label the
molecular states. The other symmetry relations that we discuss are used to ex-
clude some combinations of quantum numbers.

First we describe the two symmetry properties that are used to label the molec-
ular states. The reflection of the molecule in the center of mass is denoted as ie.
The wavefunction can be either symmetric or anti-symmetric for this reflection:

ie |�mol〉 = (−1)σ |�mol〉 . (3.1)

The wavefunction with σ = 0 is named gerade (g) and the wavefunction with
σ = 1 is named ungerade (u). The corresponding labels that are used are g and
u.

States with � �= 0 or � �= 0 are doubly degenerate. The non-degenerate
states, with � = 0 or � = 0, can be labeled with their symmetry property for
reflection of the wavefunction in a plane containing the internuclear axis. When
the wavefunction changes sign it is labeled with − and when it remains unchanged
it is labeled with +.

For the analysis of the experimental results discussed in this thesis we use
symmetry rules to find allowed combinations of quantum numbers. The combi-
nations that are relevant for the analysis of the experiments are discussed below.
First we consider the exchange of two colliding He* atoms, which will be de-
noted as vn. Since the He* atoms are bosons, the molecular wavefunction must be
symmetric when the two atoms are exchanged. The exchange of two atoms corre-
sponds to applying both the operations k → −k, where k is the wave number for
the relative motion of the two atoms, and jama ↔ jbmb. The exchange rules for
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Clebsch-Gordon coefficients [4] are used to find that the exchange corresponds to:

vn |�mol〉 = (−1)�+ j− ja− jb |�mol〉 . (3.2)

Therefore �+ j − ja − jb must be even. When two He 23S1 atoms are colliding,
ja = jb = 1. It then follows from Eq. 3.2 that when j is even, � must be even too.

The other symmetry relation is deduced from the exchange of the electrons
positioned at the two different nuclei. Due to the Pauli exchange principle, the
wavefunction must be anti-symmetric for the exchange of two electrons. This
operation is denoted as ve. For the electronic spin wavefunction |χe〉 this operation
corresponds to:

ve |χe〉 = (−1)S+1 |χe〉 , (3.3)

as will be shown in Sec. 3.3.1. The electronic exchange, when the spin part is not
included, corresponds to the operations k → −k and in, where in is the inversion
of the nuclei with respect to the center of mass. Inverting the nuclei corresponds
to the operations ie and it , where it is the inversion of all spatial coordinates with
respect to the center of mass. Thus it follows that:

ve |�mol〉 = (−1)S+1+σ+πa+πb+2� |�mol〉 = −�mol, (3.4)

where πa,b is the parity of the atomic wavefunction for atom a or b. Therefore
S + σ + πa + πb must be even. In a He 23S1 - 23S1 molecule πa = πb = 0, so
S + σ = even. Therefore wavefunctions with total spin S = 0 (singlet) and total
spin S = 2 (quintet) must have gerade symmetry and wavefunctions with total
spin S = 1 (triplet) must have ungerade symmetry.

3.3 Molecular wavefunctions

In this section we construct the wavefunctions for the He 23S1 - 23S1 system and
the He 23S1 - 23P0,1,2 system. First the electronic spin states will be described
and then the spatial part of the wavefunction will be given, for both the potentials
connected to the 23S1 - 23S1 asymptote and the potentials connected to the 23S1

- 23P0,1,2 asymptotes. The number of states is found and the labels for the states
are given. In this section only the Hund’s case (a) states are discussed, i.e. these
states are eigenstates only at short internuclear distances.
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3.3.1 Spin states

Both the atoms in the 23S1 state and the atoms in the 23P0,1,2 state have a spin of
sa,b = 1. These spins combine to singlet, triplet and quintet spin wave functions.
To avoid lengthy notations sa,b = 1; ms = +1 will be denoted as ⇑, sa,b =
1; ms = 0 as ⇔ and sa,b = 1; ms = −1 as ⇓. The lowest quintet state is ⇓⇓.
The other quintet states are found by applying the ladder operator S±. There are
5 quintet states which have ms = 0,±1,±2. The lowest triplet state, with ms =
−1, must be orthogonal to the 5χ−1 state, where 2S+1χms is the spin wavefunction.
The other triplet states are found using the ladder operator again. Finally the
singlet state must be orthogonal to both the 5χ0 and the 3χ0 state. We find the
following combinations for the spin states of the molecule:

1χ0 =⇑⇓ − ⇔⇔ + ⇓⇑
3χ+1 =⇑⇔ − ⇔⇑ 3χ0 =⇑⇓ − ⇓⇑ 3χ−1 =⇓⇔ − ⇔⇓
5χ+2 =⇑⇑ 5χ+1 =⇑⇔ + ⇔⇑ 5χ0 =⇑⇓ +2 ⇔⇔ + ⇓⇑
5χ−1 =⇓⇔ + ⇔⇓ 5χ−2 =⇓⇓

(3.5)
The singlet and quintet spin functions are symmetric under exchange of a pair
of electrons and the triplet spin function is anti-symmetric under exchange of an
electron pair.

3.3.2 He 23S1 - 23S1 molecular wavefunctions

In this section we discuss the wavefunctions for the potentials connected to the
23S1 - 23S1 asymptote, which describe both the spatial and the spin part of the
wavefunction.

Atom a has two electrons, (1s2s), with spin sa = 1 and ms = −1, 0, 1. The
same is true for atom b. Since for both atoms the electrons are in the (1s2s)
state, the electronic orbital angular momenta are la = lb = 0 and ml

a = ml
b =

0. Therefore there are 3 × 3 = 9 potentials which connect to the 23S1 - 23S1

asymptote. The wavefunctions have been found using Slater determinants to make
sure that the wavefunctions obey the Pauli principle, i.e. they are anti-symmetric
for the exchange of two electrons [5].

The 9 wavefunctions that we found can be described by the 1�+
g state, the

3�+
u state and the 5�+

g state. The wavefunctions are symmetric when they are
reflected in a plane containing the internuclear axis and therefore all wavefunc-
tions are labeled with +, as was discussed in Sec. 3.2.3. The wavefunctions fulfill
the requirements already formulated in Eq. 3.4, that the singlet and the quintet
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states must have gerade symmetry, while the triplet states must have ungerade
symmetry.

3.3.3 He 23S1 - 23P0,1,2 molecular wavefunctions

We follow the same procedures as in Sec. 3.3.2 to obtain the wavefunctions for the
potentials connected to the 23S1 - 23P0,1,2 asymptote. We assume that the electron
configuration for atom a is (1s2s). The electronic orbital angular momentum is
la = 0 with ml

a = 0 and the spin momentum is sa = 1, with ms = −1, 0, 1.
Therefore there are 3 possible states for atom a. The electron configuration for
atom b must then be (1s2p). The electronic orbital angular momentum is lb = 1
and can be aligned in three ways, ml

b = −1, 0, 1. Furthermore, the electronic
spin sb = 1 can be also aligned in three ways, ms

b = −1, 0, 1. This results in
3 × 3 = 9 possible states for atom b. Since in addition atoms a and atom b can
be exchanged, there are in total 3 × 9 × 2 = 54 possible states, which connect
to the 23S1 - 23P0,1,2 asymptotes. There are 6 singlet states, 18 triplet states and
30 quintet states. Again the Slater determinants have been used to find the spatial
part of the wavefunction. Linear combinations of Slater determinants have been
made to construct wavefunctions which are anti-symmetric when two electrons
are exchanged. The wavefunctions can be described by the 1,3,5�+

g,u states and
1,3,5�g,u states. The � states are doubly degenerate. The wavefunctions with
� = 0 all remain unchanged when they are reflected in a plane containing the
internuclear axis and hence are all labeled with +.

3.4 Calculation of long-range potentials

In the analysis of the experimental results mainly the long range potential curves
which connect to the S-P asymptote are used. In this section only the S-P long-
range potentials will be discussed, since they are most relevant for the analysis
done in this thesis. The long-range potentials which connect to the S-S asymptote
can be constructed in a similar way.

To calculate the long-range behavior of the S-P potential curves, we consider a
pseudo two-electron system, since only the two outer electrons, the electron in the
2s and the electron in the 2p state, play a role in the interaction. The long-range
interaction is determined by the Coulomb interactions and can be described by:

Vint = 1

|R| − 1

|R − ra| − 1

|R + rb| + 1

|R + rb − ra| , (3.6)
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a b

ra rb

R

-
e-

Figure 3.3 Coordinate system for a diatomic molecule with two active electrons. The
nuclei are at positions a and b. The position of nucleus b with respect to nucleus a is R,
ra is the position of electron a with respect to nucleus a, and rb is the position of electron
b with respect to nucleus b.

where the distances R, ra, and rb are defined in Fig. 3.3. The first term gives the
Coulomb interaction between the nuclei, the second term the interaction between
electron a and nucleus b, the third term the interaction between electron b and
nucleus a and the last term the interaction between the two electrons. If the two
electron wavefunctions do not overlap appreciably, the interaction potential can
be expanded in a multipole expansion [6]:

Vint =
∞∑

α,β=1

Hα,β(R̂), (3.7)

where

Hα,β(R̂) = (−1)βCα,β
rαa rβb

Rα+β+1

α∑
λ=−α

β∑
µ=−β

Qλ,µYα,λ(r̂a)Yβ,µ(r̂b)Y
∗
α+β,λ+µ(R̂),

(3.8)
where Cα,β and Qλ,µ are constants, Yl,m is the spherical harmonic, and rαa stands
for ra = |ra| to the power α. The order of the multipole terms in the expansion is
given by α and β.

We now want to calculate 〈 j | Vint |k〉. In order to do this we must choose a
basis set, for which we use a combination of atomic wavefunctions:

| j〉 = ∣∣nalaml
a; nblbml

b

〉
, (3.9)

where la,b is defined in Sec. 3.2 and ml
a,b is the projection of la,b on the internuclear

axis. From the relation in Eq. 3.8 it follows that ma + mb is preserved, i.e. ma +
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mb = m ′
a + m ′

b. We can find the matrix elements 〈 j | Vint |k〉 in terms of the
multipole expansion and diagonalize the matrix elements to obtain the interaction
potential.

For the S-P potential the |s0; pm〉 states and the |pm; s0〉 states are coupled by
the dipole interaction. Therefore the first non-zero term in the multipole expansion
is the term where α = β = 1 and the lowest order interaction term scales as

1
R3 〈nala| r

∣∣n′
al ′

a

〉 〈nblb| r
∣∣n′

bl ′
b

〉
. We find that the diagonal matrix elements are zero

and that the non-diagonal matrix elements are given by:

〈 j | Vint |k〉 = −2

3

µ2

R3
m = 0

〈 j | Vint |k〉 = 1

3

µ2

R3
|m| = 1,

where µ is the electric dipole matrix element for the s → p transition and is given
by

µ = e 〈s| r |p〉 . (3.10)

If we diagonalize the matrix we find the energy shifts ε of the states to be:

ε1,2 = ±2

3

C3

R3
� state

ε1,2 = ±1

3

C3

R3
� state,

where C3 = µ2.
The expressions above are only valid in the region where the Hund’s case (a)

coupling can be applied. To extend the calculation to larger internuclear distances,
the fine-structure interaction should be included. The Movre-Pichler analysis [7]
is used to do this. This analysis was developed to calculate long range poten-
tials for diatomic alkali molecules, but it can also be applied to diatomic He*
molecules. Now potential curves can be calculated in the range where the dipole-
dipole interaction energy is comparable to the fine-structure splitting and in the
pure Hund’s case (a) and Hund’s case (c). We start with an atomic basis including
fine-structure and then calculate the dipole-dipole interaction. The atomic basis is
given by:

| j〉 = |na(lasa) jama; nb(lbsb) jbmb〉 , (3.11)

where na,b is the principal quantum number for the electron at atom a or b. The
potentials which are calculated for the Hund’s case (a) region are degenerate for
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Figure 3.4 Potential curves which connect to the 23S1 - 23P2 and the 23S1 - 23P1 asymp-
totes. The attractive potential couple at short range to the 1,5�g , the 3�u , the 1,5�+

u , and
the 3�+

g states. For � = 3 the attractive potential couples at short range only to the 5�g

state. The repulsive potentials couple at short range to the 1,5�u , the 3�g , the 1,5�+
g , and

the 3�+
u states. For � = 3 the repulsive potential couples at short range only to the 5�u

state.
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states with equal j . However, when fine-structure is included these states are non-
degenerate. Since the interaction potential Vint depends on la,b and not on ja,b, the
basis functions have to be expanded in terms of

∣∣nlml
〉

for the electron at nucleus
a and the electron at nucleus b:

|n(ls) jm〉 =
∑

l,ml ,s,ms

∣∣nlml; sms
〉 〈

lml; sms | jm〉 . (3.12)

When calculating the matrix elements we take into account that states with
different ma +mb do not combine. The diagonal matrix elements give the energies
of the potentials. The coupling between the potentials is important in the region
where the fine structure splitting is comparable to the depth of the potential. All
potential curves which are connected to the 23S1 - 23P1,2 asymptotes and which
are calculated with the above described method are shown in Fig. 3.4. Note that
the rotation of the molecule is not included in the calculation given above.

The basis functions which are introduced in Sec. 3.3.3 are no eigenfunctions
for the long range. In this range � = |ma + mb| is a conserved quantity. The
eigenfunctions for this region are constructed using the correct basis functions,
shown in Eq. 3.11. The eigenfunctions are labeled with � as was shown in
Sec. 3.2.2. We find 7 basis functions for � = 0, 6 for � = 1, 3 for � = 2
and 1 for � = 3. The basis functions are used to create eigenfunctions with the
correct symmetry properties. The states can have either gerade or ungerade sym-
metry, so there are 2×7 (0g,u) states. The states with� �= 0 are doubly degenerate
and therefore there are 2×2×[6 (1g,u)+ 3 (2g,u)+ 1 (3g,u)

]
states. In total there

are 54 Hund’s case (c) states so the total number of states is conserved as it should
be.

3.5 The behavior of the long-range potentials

As is discussed in previous sections, several ranges of internuclear distances can
be distinguished where different molecular coupling cases apply. These regions
are schematically shown in Fig. 3.5. In Sec. 3.4 potential curves have been cal-
culated for internuclear distances in the regions II, III, and IV. In the regions II
and IV, where Hund’s case (a) and (c) respectively can be applied, the interaction
is a pure C3/R3 interaction, as was shown in Sec. 3.4. In the region indicated by
III the behavior of the potential curves deviates from this C3/R3 interaction. This
deviation results from the mixing of states due to the fine-structure interaction and
is important in the range where the dipole-dipole interaction energy is comparable
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Figure 3.5 A potential energy curve is plotted as a function of the internuclear distance
R. Below the x-axis several regions are shown. Region I is the region where the electronic
wavefunctions of the atoms overlap. In this region chemical interactions are dominant.
In region II the electronic motion is strongly coupled to the internuclear axis. In both
regions I and II Hund’s case (a) coupling can be applied. Region III is an intermediate
region, where neither Hund’s case (a) nor Hund’s case (c) apply. In region IV the spin-
orbit coupling is larger than the coupling to the internuclear axis and the molecule is
described by Hund’s case (c). On the x-axis we have indicated the order of magnitude of
the distances R where the regions begin.

to the fine structure interaction. At these ranges the eigenstates are described with
Hund’s case (c) states. The Hund’s case (c) states are linear combinations of the
Hund’s case (a) states that describe the molecule at short internuclear distances.
As a result of the coupling the linear combinations vary with the internuclear dis-
tance.

We have projected the Hund’s case (c) states on the Hund’s case (a) states.
As an example the projection of a 2u state on the Hund’s case (a) states is plotted
in Fig. 3.6a. It can be seen that the linear combination of Hund’s case (a) states
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Figure 3.6 In part (a) the projection of the 2 u state on Hund’s case (a) states is shown as
a function of the internuclear distance. In part (b) the derivative of the projection on these
states is shown as a function of the internuclear distance.

changes completely with the internuclear distance.
In Fig. 3.6b the spatial derivative of the projection of this 2u state is shown.

The spatial derivative is a measure for coupling with other states which have the
same symmetry. The coupling is strongest in the region between 280 and 320 a0,
but it is still effective in the whole region from 100 to 500 a0.

3.5.1 Purely long-range potentials

States with identical symmetries are not allowed to cross due to the von Neumann-
Wigner non-crossing rule. As a result of these avoided crossings there are poten-
tials which are attractive at very long range, in region IV, and become repulsive at
shorter internuclear distances, in region III. These potentials are denoted as purely
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Table 3.1 List of purely long-range potentials and some of their properties.

symmetry asymptote Emin rmin rinner

(GHz) (a0) (a0)
0−

u 23S1 - 23P1 -0.0565 524 419
0+

u 23S1 - 23P0 -2.124 188 146
1g 23S1 - 23P1 -0.320 313 100
1g 23S1 - 23P1 -0.0756 528 424
1g 23S1 - 23P0 -0.427 256 205
2u 23S1 - 23P1 -0.317 408 315

long-range potentials. They have been proposed for the first time by Stwalley et
al. [8]. We can find these purely long-range potentials by calculating the poten-
tials with the method described in Sec. 3.4. The inner turning points of vibrational
states in these potentials are extremely large, in the order of a few times 100 a0.
In Tab. 3.1 a list of the purely long-range potentials of He∗2, that are connected to
the 23S1 - 23P0,1,2 asymptote, is given and some of their properties are shown.

In Fig. 3.7 the purely long-range potentials connected to the 23S1 - 23P1

asymptote and the ones connected to the 23S1 - 23P0 asymptote are shown. From
the figure it is clear that all potentials have very large inner turning points. One of
the 1g potentials that is connected to the 23S1 - 23P1 asymptote has a very special
double well structure. In a photoassociation spectroscopy experiment using cold
Cs atoms a double well structure was responsible for a rather efficient spontaneous
emission to cold ground state molecules [9].

We have calculated whether the purely long-range potentials support bound
states. We have found positions of bound states for all 6 potentials. The posi-
tions of these bound states depend solely on atomic parameters and therefore the
calculation can be done very accurately.

3.5.2 Lifetimes of the molecular states

The lifetimes of the long-range molecular states depend on their symmetry. The
lifetimes of the� and�Hund’s case (a) states can easily be calculated. The states
that are excited by an allowed transition have a linewidth 
mol of twice the atomic
linewidth, i.e. 
mol = 2
atom , while the states that are excited by a non-allowed
transition are very stable and have a linewidth of 
mol = 0 [10]. This is only true
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Figure 3.7 The purely long-range potentials connected to the 2 3S1 - 23P1 asymptote
are shown in part (a). The purely long-range potentials connected to the 2 3S1 - 23P0

asymptote are shown in part (b).

for internuclear distances R 
 –λ = λ/2π , where λ is the wavelength of the light.
The dipole selection rules can be found in Ref. [3] and are e.g.

	S = 0, 	� = 0,±1, g ↔ u, g � g, u � u. (3.13)

This means that:

1,5�+
u ,

3�+
g ,

1,5�u,
3�g → 
mol = 2
atom

1,5�+
g ,

3�+
u ,

1,5�g,
3�u → 
mol = 0

At long distance (in the regions III and IV) the states are superpositions of the
Hund’s case (a) states and their lifetime (1/
mol ) depends on the superposition.
Since the linear combination of Hund’s case (a) states depends on the internuclear
distance R, the molecular lifetimes also depend on R. This can be seen in Fig. 3.8,
where the lifetimes of various states are shown. In the figure can be seen that at
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short internuclear distances the linewidths converge to either 
mol = 2
atom or

mol = 0. Furthermore, the molecular lifetimes are also affected by retardation
effects. This effect plays a role when the internuclear distance R becomes of the
order of –λ [11]. In Fig. 3.8 we can see that there is hardly any difference between
the calculation where retardation has been neglected (the dashed line) and the
calculation where retardation has been taken into account (the solid line), in the
region that is relevant for the experiments. Only at internuclear distances larger
than R = 1000a0 retardation effects start to play a role.

0 200 400 600 800 1000
Distance (a0)

0.0

0.5

1.0

1.5

2.0

R
ed

uc
ed

 r
at

e 
Γ m

ol
/Γ

at
om

0u
+

0g
-

0u
+

1g

1u

1g

2u

2g

3g

Figure 3.8 The molecular linewidth 
mol is plotted as a function of the internuclear dis-
tance for the potential curves that connect to the 23S1 - 23P2 asymptote. The molecular
linewidth is plotted in terms of the atomic linewidth 
atom . The dashed line is the cal-
culation where retardation effects have not been taken into account, while the solid line
does take retardation into account.
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3.6 Partial waves

A collision of two structureless particles can be described by potential scattering.
A central potential Vint (R), where R is the internuclear distance, describes the
interaction between the particles. The incoming wavefunction of the colliding
particles can be expanded in partial waves, which have a well defined rotational
angular momentum �. The Schrödinger equation is then given by:

[
− h̄2

2µ
∇2 + h̄2

2µ

� (�+ 1)

R2
+ Vint

]
� = E� (3.14)

where µ is the reduced mass, � is the mechanical rotational angular momentum,
R is the internuclear distance , Vint is the interaction potential, and E is the total
energy. The second term on the left side of the equation is responsible for the ro-
tational barrier. In collisions of cold atoms, only a few partial waves can penetrate
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Figure 3.9 Plot of the S-S potential and the S-P potential, including the rotational barrier
for various partial waves, denoted with �. The asymptotic energies of the S-S potentials
and the S-P potential are both set to 0. The dashed line represents the kinetic energy of
the atoms, which corresponds to a temperature of 1 mK.
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the rotational barrier and reach small internuclear distances.
The S-S potential is a Van der Waals interaction, which behaves as C6/R6 and

is therefore small at large distances. In Fig. 3.9 the S-S potential is plotted using
the actual C6 coefficient. It can be seen that if the temperature of the colliding
atoms is 1 mK, only s-waves can reach small internuclear distances. As is dis-
cussed in Sec. 3.4 the S-P potential goes as C3/R3. This potential is much less
flat than the C6/R6 potential. This S-P potential is also plotted in Fig. 3.9, using
C3 = 10 a.u. It can be seen that partial waves up to � = 12 can penetrate the
rotational barrier and reach small internuclear distances. The number of partial
waves that can be excited from the S-S potential to the S-P potential depends on
the internuclear distance where the excitation has been made. When R decreases
the number of partial waves that can reach R on the S-S potential decreases, be-
cause of the rotational barrier. Partial waves with � �= 0 can reach an internuclear
distance of the order of minimally a few 100 a0 on the S-S potential.

3.7 Penning Ionization

The He* atom has a high internal energy. In this respect the metastable rare gas
atoms differ from ground state atoms. Due to this high internal energy He* atoms
are not stable in close collisions with He* atoms or other atoms. We will just
consider close collisions between He* atoms.

In a close collision of two He* atoms, the system can spontaneously ionize.

He∗ + He∗ → He+ + He + e− (3.15)

He∗ + He∗ → He+
2 + e− (3.16)

The process shown in Eq. 3.15 is called Penning ionization (PI) and the process
shown in Eq. 3.16 is called associative ionization (AI). For PI the relative kinetic
energy is sufficient for dissociation to take place into an ion and an atom in the
ground state. However, for AI the energy difference between the initial and the
final state is smaller than the energy of two free atomic particles. The particles
will remain bound and form molecular ions. Since we cannot distinguish between
PI and AI in the experiments, both Penning ionization and associative ionization
will be denoted as PI in the rest of the thesis. An extensive description of PI is
given in Ref. [12]. Here it will only be discussed briefly.

In Fig. 3.10 a schematic picture of PI is shown. Since the Born-Oppenheimer
approximation is used, the position of the nuclei does not change during the tran-
sition to the ionizing curve V+. The ionization process is possible if for some
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distances the potential of the two colliding He* atoms, V*, is in the continuum of
the ionizing potential V+. In that case the colliding atoms spontaneously ionize.
Ionization can be included in calculations using a complex potential:

V̄ ∗(R) = V ∗(R)− i
(R)/2, (3.17)

where 
(R) is the total electronic transition rate for a transition from V*(R) to
V+(R).

On the He 23S1 - 23S1 potential, the PI probability for close collisions in the
1�+

g and 3�+
u state is almost unity at internuclear distances of a few a0. Due to the
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Figure 3.10 Schematic representation of PI and AI. V*(R) is the potential curve of the
colliding metastable atoms and V+(R) is the potential curve describing the ionized sys-
tem. The energy of the emitted electron at a certain distance R c, ε(Rc), is the difference
between V*(Rc) and V+(Rc). At the energy axis an electron energy spectrum is shown,
with at the high energy side the electrons leading to AI and at lower energies the electrons
leading to PI.

57



Chapter 3

spin conservation rule PI is spin-forbidden for close collisions in the5�+
g state.

The ionization probabilities for close collisions on the He 23S1 - 23P0,1,2 potential
have similar behavior.
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Photoassociation Spectroscopy of He*

4.1 Introduction

Photoassociation spectroscopy (PAS) of cold atoms is an important tool to study
long-range interactions. Numerous photoassociation experiments have been done
with alkali atoms providing detailed information on ground and excited state po-
tentials [1, 2]. From this information e.g. the ground state scattering length and
the radiative lifetime can be determined [3–5]. Since the technique has proven
to be so powerful in the study of alkali atoms, it is very interesting to apply it to
metastable rare gasses as well.

PAS is done by making a free-bound transition from the ground to the excited
state. This is shown schematically in Fig. 4.1. In the figure only one potential,
connected to S+P asymptote, is shown, while there are several potentials in reality.
The transition is made at the internuclear distance Rc where the Franck-Condon
overlap between the ground state wavefunction and the excited state wavefunction
is the largest. The atoms in the magneto-optical trap are ultra-cold, which means
that the wavefunction of the free atoms in the S+S potential is slowly varying as a
function of the internuclear distance. Therefore the overlap with vibrational states
in the S+P potential is largest at the classical outer turning points. The probe laser
is scanned in frequency and when its frequency is resonant with an excited bound
vibrational state, population can be transferred to this state and a resonance can be
observed. PAS is only possible with ultra-cold colliding atoms, since the Franck-
Condon overlap needs to be the largest at the outer turning point of the excited
vibrational states, which is only possible if the ground state wavefunction varies
slowly enough.
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Figure 4.1 Principle of PAS. The S+P potential is scanned with a probe laser. When the
laser is resonant with a vibrational state energy, population is transferred from the free
system in the S+S potential to a bound state in the S+P potential. The shaded region at
small internuclear distances shows the region where Penning ionization plays a role. 	 is
the detuning of the probe laser with respect to the atomic resonance. The kinetic energy
spread due to the temperature of the trapped atoms is indicated by the shaded region on
top of the S+S potential. Note that the energy and the internuclear distance R have not
been drawn at the right scale.

In PAS experiments with alkali atoms two methods are used to detect the
excitation of bound states. A very straightforward method is to do a trap loss ex-
periment as was done by McAlexander et al. [4]. They measured the fluorescence
emitted by the trapped atoms, where the excitation to a bound state is detected as a
dip in the fluorescence signal. Another method is to make an additional excitation
from the excited bound state to an ionizing state and to measure the ion rate, as
was done by Molenaar et al. [6].

One aspect in which metastable rare gas atoms differ from alkali atoms is that
they ionize at small internuclear distances, of a few a0, by Penning ionization.
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For He (23S1) atoms colliding in the ground state the ionization probability for
the 1�+

g and the 3�+
u states is almost unity at these small distances. Ionization is

spin-forbidden for the 5�+
g state and thus suppressed with a factor of 105 [7]. It

is expected that the ionization probabilities for a molecule in the 23S1 - 23P0,1,2

potential have similar behavior at small internuclear distances. At long range the
pure singlet, triplet and quintet states mix due to the fine structure interaction. The
large ionization probabilities at short range combined with the mixing of states at
long range make it not trivial to predict the effects of PAS in the He 23S1 - 23P
system.

Until recently [8] there had been done no PAS measurements of the He* sys-
tem. In this chapter exploratory PAS measurements of ultra-cold He2* will be
discussed for potentials connected to the He 23S1 - 23P2 asymptote. In Sec. 4.2
the experimental method will be described. In Sec. 4.3 we will show measured
spectra and we will investigate several features of the spectra, such as the depen-
dence on the intensity of the probe laser. In Sec. 4.4 an analysis of the measured
spectra will be given. Series of peaks, observed in the spectra, will be assigned
to states connected to the 23S1 - 23P2 asymptote. Furthermore a description of
the mechanism, which is responsible for the ion production when a bound state is
excited, will be given in Sec. 4.4.4.

4.2 Experiments

The experiments have been done in a magneto-optical trap (MOT). The trap is
loaded with a beam of He* atoms that is produced in a DC-discharge source which
is cooled with liquid helium. The mean velocity of the atoms leaving the source is
300 m/s. Before the He* atoms are trapped in the MOT they are Zeeman slowed
with a counter-propagating laser beam while the required Zeeman shift is pro-
duced by the magnetic field of the MOT coils. Typically we trap 106 atoms with a
temperature of 1 mK and a density of a few times 109 cm−3. The atoms are cooled
on the 23S1 → 23P2 transition, which has a wavelength of 1083 nm.

As is shown in Fig. 4.1 a probe laser scans the vibrational states connected to
the 23S1 - 23P2 asymptote. An increase in the ionization rate is a signature of a
bound state. The produced ions are measured with micro-channel plates (MCPs).
The mechanism for the increase in ionization rate is explained in Sec. 4.4.4.

In Fig. 4.2 a picture of the experimental setup is shown with the trapping
beams and the probe beam. The laser light is generated by diode lasers. The fre-
quency of the probe laser light is calibrated using a Fabry-Perot interferometer for
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Figure 4.2 Probe laser setup. M stands for mirror, λ/4 for quarter wave retardation plate,
L for lens, BS for 5% beam splitter, and MCP for micro-channel plates.

the relative frequency scale and the Lamb dip to determine the absolute frequency.
The position of the Lamb dip is measured in a saturated absorption spectroscopy
setup as discussed in Sec. 2.5. The uncertainty in the absolute frequency scale is
20 MHz.

The trapping laser operates close to the 23S1 - 23P2 asymptote at a detuning of
−12.5 
. Since the rate constant for PI is a factor of 100 larger for collisions in the
23S1 - 23P2 potential than for collisions in the 23S1 - 23S1 potential, the trapping
laser induces a large number of ions [9]. To avoid this huge background ionization
signal the trapping laser is periodically switched off during measurements with a
duty cycle of 50%, by detuning its frequency 500 MHz to the red of the 23S1 →
23P2 transition. This is far enough to ensure that the laser light does not induce
many ions. The modulating frequency is chosen to be 25 KHz. This is fast enough
to avoid a significant expansion of the cloud of trapped atoms in the period when
the trapping laser is switched off. The ion signal is gated and can be measured
both in the period when the trapping laser is far detuned, which will be called
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the probing period and in the period when the trapping laser is at its operating
frequency, which will be called the trapping period. In the probing period the
resonances are measured, while the signal in the trapping period is used to monitor
the stability of the trapped cloud. The probe laser is on continuously. A typical
scan time is 100 s.

4.3 Results

In Fig. 4.3 a typical spectrum is shown. The saturation parameter of the probe
laser is s0 = 104. Several scans are added together to produce the spectrum. The
noise in the spectrum is filtered out using a least-squared spline approximation,
developed by Thijsse et al. [10]. We have made sure that no structure has been
added to the spectrum by this algorithm and that only noise is filtered out. In
the spectrum distinct peaks can be observed, with increasing distances between
neighboring peaks when the detuning 	 from the atomic resonance increases.
When the frequency of the probe laser is close to the atomic resonance the cloud
of trapped atoms is disturbed by the laser, which is on continuously, and the trap
can be emptied completely. In Fig. 4.3 the dashed line indicates the detuning
where the probe laser starts to disturb the trap.

We have measured photoassociation spectra as a function of the probe laser
intensity. In Fig. 4.4 a number of spectra is shown which have been measured with
increasing probe laser intensities. The intensities range from s0 = 50 to s0 = 105.
The figure shows that, when the laser intensity increases, ionization peaks start
to appear at increasing detunings and that the heights of the peaks grow. Deeply
bound states can only be measured with high probe laser intensities. The bound
states which lie close to the dissociation limit are measured with low intensities
since a high intensity probe laser would disturb the cloud of atoms in the frequency
region of interest. In the experiments intensities up to s0 = 2 ·105 have been used.
We have measured peaks at detunings of up to -20 GHz. Peaks corresponding to
the most deeply states that are measured can only be observed with the highest
laser intensities.

We have analyzed the line shapes of the peaks in order to determine the width
as a function of the intensity of the probe laser, for all peaks. Since we expect the
width to be mostly determined by the temperature of the atoms in the MOT, the
ion peaks in the spectra have been fitted with Gaussian line shapes. The resolution
of the measurements is not good enough to analyze the line shape of the peaks as
was done by Napolitano et al. [11] who studied relative contributions of different
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Figure 4.3 Photoassociation spectrum as a function of the detuning	 of the probe laser.
The noise in the spectrum is filtered out. The saturation parameter of the probe laser
s0 = 104. The assignment of the states to series of vibrational states is shown on top. The
dashed line indicates the detuning where the probe laser starts to disturb the MOT.

partial waves and obtained detailed information on the ground state potential. We
do not expect to measure contributions from different partial waves either since
for states, which are more deeply bound than -2 GHz, only s-waves can penetrate
the potential barrier of the He 23S1 - 23S1 potential and reach the outer turning
points. However, the highest lying vibrational states have extremely large outer
turning points and there several partial waves can contribute. In the spectra it can
be seen when the contribution of partial waves with � �= 0 starts to be important.
In this regime we observe ion peaks superposed on a continuous increase of the
ionization rate, which is explained by the contribution of partial waves with angu-
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Figure 4.4 Spectra measured with increasing probe laser intensities. The saturation pa-
rameter s0 is shown above the corresponding spectrum.

lar momenta up to � = 12 [9]. In this region the peaks are too close to each other
to be able to analyze the line shapes.

We have determined the peak widths as a function of the probe laser intensity.
Some of the peaks are too small to fit or have too much overlap with neighboring
peaks. Therefore it is not possible to make an accurate estimate of the width for
all peaks at all probe laser intensities. In Fig. 4.5 the widths of several peaks
are plotted as a function of the laser intensity. It can be seen that they are slightly
broadened with increasing power. The average width at low laser intensities, i.e in
cases where the width is least power broadened, is 30±10 MHz. The temperature
of the trapped atoms is 1 mK, which corresponds to a frequency of 20 MHz. So
the actual width is in the order of the thermal width for low laser intensities and
slightly power broadened at higher intensities. The majority of the peaks has
identical widths. However, one of the measured peaks, the one at a detuning of
-0.93 GHz, has a much larger width of 70 MHz. Probably two or more peaks
overlap at this position and the resolution of the measurement is not good enough
to separate them.
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Figure 4.5 Peak widths (in MHz) as a function of the probe laser intensity. The lines
have been drawn to guide the eye.

In all measurements discussed above the probe laser was circularly polarized.
In Fig. 4.6 two spectra are shown that are measured under similar conditions,
but with a linearly polarized probe laser beam and a circularly polarized probe
laser. The dashed line shows the measurement where the laser light is circularly
polarized. The measurement that is plotted with the solid line is taken with the
probe laser light linearly polarized. There are no significant differences between
the two spectra. The peaks appear at the same positions and their heights and
widths have the same magnitude. It is not surprising that this is the case. The
spins of the atoms in a MOT are randomly oriented due to the combination of
the inhomogeneous magnetic field and the fact that atoms are pumped by the
six trapping laser beams which have opposite circular polarizations. Therefore
the polarization of the probe laser light is not in a well defined direction with
respect to the collision axis and hence it should not influence the photoassociation
spectrum. The atoms in the trap would have to be spin polarized in order to
measure the effect of the polarization of the light.

There is no rotational structure visible in the spectra. It is not clear why this
would be the case. Because of the height of the potential barrier, close collisions
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Figure 4.6 Spectrum taken with linear and circular probe laser polarizations.

in the ground state can only occur with s-waves (� = 0). However, transitions
with 	J = 0,±1 with J = 0 � J ′ = 0 are allowed. In the 23S1 - 23S1 state
there are states which have angular momenta of J = 0 and J = 2. Therefore
it should be possible to observe rotational structure with angular momenta up to
J = 3 in the spectra.

4.4 Analysis

In Tab. 4.1 an overview is given of all measured peaks. We have analyzed the
peak positions in order to assign the peaks to the long-range potentials. The long-
range potentials have been calculated using the Movre-Pichler method [12], as is
described in Sec. 3.4. For the He 23S1 - 23P0,1,2 system there are in total 54 states.
Some of these are degenerate, so we have to consider 34 non-degenerate states.
The long-range potentials are shown in Fig. 4.7. Nine of these potentials are both
attractive and connect to the He 23S1 - 23P2 asymptote.

Since the spacing between the subsequent peaks in the measured spectra is not
regular, it is clear that the spectrum should consist of several series of vibrational
states. In alkali systems states with different symmetries have different hyperfine
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Figure 4.7 Long-range potential curves for Hund’s case (c) states connected to the 2 3S1

- 23 P0,1,2 asymptotes.

splittings. Therefore the widths of the photoassociation resonances can be used to
assign a series of resonances to a state with a particular symmetry [13]. However,
in the He* system there is no hyperfine splitting and we cannot use the widths of

Table 4.1 Detunings 	 of the probe laser from the 2 3P2 atomic resonance at which
photoassociation peaks have been observed. If possible an assignment of the peaks to
a particular series has been made. The positions of the very weak peaks are given in
parentheses.

n −	 (GHz) ser. n −	 (GHz) ser. n −	 (GHz) ser.
1 0.11 2 9 1.77 1 17 6.85 3
2 0.19 - 10 1.91 - 18 7.26 2
3 0.27 2 11 2.27 3 19 8.80 1
4 0.45 1 12 2.43 2 (20) 10.73 3
5 0.50 3 13 3.20 1 (21) 11.43 2
6 0.59 2 14 4.07 3 22 13.67 1
7 0.93 1 15 4.32 2 (23) 20.11 -
8 1.20 2,3 16 5.45 1 (24) 21.01 -
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the peaks to distinguish between levels from states with different symmetries. As
was shown in Sec. 4.3 the peak widths are indeed identical for almost all peaks.
This makes the assignment of the peaks to particular series more difficult. The
only information that is available is the position of the peaks and the height of
the peaks. It is not straightforward to use the height of the peaks to distinguish
to identify different series, because the peak height depends on the ground state
wavefunction.

Due to the mechanism which is responsible for the formation of ions when
a bound state is excited, only peaks corresponding to states that are at most as
deeply bound 20 GHz can be observed. This maximal depth limits the accuracy
with which the peaks can be assigned to specific potentials.

4.4.1 Leroy-Bernstein fit

To start with the analysis we have used the Leroy-Bernstein (L-B) method [14]
to find the various series of peaks present in the spectrum. In this approach it
is assumed that the positions of the high-lying vibrational states are completely
determined by the long-range part of the potential since most time is spent in the
outer range of the potential. Therefore the approximation is only valid close to
the dissociation limit. The long-range part of the potential has the shape V (R) =
D − Cn/Rn , where D is the dissociation limit and n is the power of the long-
range potential. The interaction on the S-P potential is a dipole-dipole interaction
which corresponds to a C3/R3 interaction. Leroy and Bernstein deduced that the
positions of the vibrational levels should then be given by

Ev − Ed = 1

C2
3

(
h̄

2

√
2π

µ


(4/3)


(5/6)
(v − vd)

)6

, (4.1)

where Ev is the energy of a vibrational level, Ed is the dissociation energy, v is
the vibrational quantum number, vd is the effective vibrational quantum number
of the level at the dissociation limit, and 
(n) is the Gamma-function. We have
compared the distances between all peaks. After analyzing them with Eq. 4.1 at
least 3 series of vibrational levels were found to be present in the spectra.

In Fig. 4.8 the three series are shown, together with the fits made with the L-B
formula. From the fits the C3 coefficients for the three series follow. They are
found to be -8.38, -7.62, and -8.00 a.u. for the series 1, 2, and 3 respectively that
are indicated in Tab. 4.1. The dispersion coefficient µ is given by

µ = e 〈s| r |p〉 , (4.2)
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which is the electric dipole matrix element of the s → p transition. The dispersion
coefficient µ2 for the 23S − 23 P potential is 19.20 a.u. The C3 coefficients of
the states are fractions of the dispersion coefficient and the fitted C3 coefficients
have realistic values. As will be shown in Sec. 4.4.2 the fitted C3 coefficients are
average values. They cannot be used to assign the three series to particular states.
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Figure 4.8 Three series of vibrational states. On the x-axis the vibrational quantum
number v is plotted. The vibrational level that is closest to the dissociation limit is labeled
with v = 0. The symbols are the measured peak positions and the lines are the Leroy-
Bernstein fits, using Eq. 4.1.
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4.4.2 Effective C3 coefficient

At the long-range distances where the excitations to the bound states are made,
the excited state potential does not have a pure C3/R3 behavior. Due to the fine
structure interaction, states with identical symmetries couple at long range. At
these distances the potentials are linear combinations of the Hund’s case (a) states
that describe the system at short range. The linear combinations vary with the
internuclear distance. Therefore the potentials deviate from the C3/R3 behavior.

The deviation from the pure C3/R3 behavior of the potentials is illustrated
in Fig. 4.9. In this figure the effective C3 coefficient is plotted as a function of
the internuclear distance R for all attractive curves which connect to the 23S1 -
23P2 asymptote. This coefficient is found by Ce f f

3 (R) ≡ V (R)× R3. We can see
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Figure 4.9 Effective C3 coefficient plotted as a function of the internuclear distance R.
The vertical dashed lines indicate the internuclear distances at which the potential energy
is equal to the fine structure splittings of the J=0 and the J=1 asymptote. These distances
are found by using an average C 3 coefficient of C3 = 10 a.u. to calculate the potential
energy.
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that the Cef f
3 coefficient is constant at distances of R > 1000 a0 and at ranges of

R = (20 − 100) a0. In the range of (20 − 100) a0 the potentials are described by
Hund’s case (a) states which have a pure C3/R3 behavior. Their C3 coefficients
are fractions of 1/3 or 2/3 of the dispersion coefficient.

The coupling between the states is expected to be largest in the region where
the fine structure interaction is comparable to the depth of the potential. In Fig. 4.9
the vertical lines indicate the distances at which these energies are identical. When
the coupling is strongest the variation of the Ce f f

3 coefficient should be largest. It
is clear that the coupling is not only strong at the positions indicated by the vertical
lines. It is substantial in the whole region between R = (100 − 1000) a0. This is
precisely the region where the outer turning points of the bound states lie in the
frequency region where we excite the bound states. This is the reason why the C3

coefficients that are found from the L-B fits of the three series are average values.
Therefore we cannot use them to assign the series to specific states.

4.4.3 Accumulated phase analysis

We have further analyzed the spectra using the accumulated phase (AP) method
which was first described by Moerdijk et al. [15]. It is used to assign the series of
vibrational states that we found to specific states. Actually the AP method is based
on the same approximation as the L-B analysis. It is assumed that the energetic
position of bound states close to the dissociation limit is determined by the long-
range part of the potential. The way in which this is incorporated in the model is
that the phase accumulated by the wavefunction in the inner part of the potential
does not depend on energetic the position of the bound state for these loosely
bound states. Like the L-B analysis the AP method is only valid for bound states
close to the dissociation limit.

In order to calculate energetic positions of bound states, the Schrödinger equa-
tion is numerically solved. The potentials in the outer region have been calculated
as discussed in Chap. 3 and are shown in Fig. 4.7. The wavefunction is integrated
in the outer region of the potential and its phase should match the phase that is
accumulated in the inner region. If the position of one bound state in the potential
is known the accumulated phase in the inner region can be fixed. Since this phase
is identical for all bound states close to the dissociation limit, it can be used to
calculate the positions of other bound states in the same potential.

In the L-B analysis a pure C3/R3 interaction potential was used. As is dis-
cussed in Sec. 3.5 and shown in Sec. 4.4.2 the actual potential curves do not have
pure C3/R3 behavior in the region where the excitations to the bound states have
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Table 4.2 Measured and calculated energetic peak positions. The positions have been
calculated with the AP method. The positions are given as the detunings with respect to
the He 23S1 → 23P2 asymptote in GHz.

Series 1 Series 3
measured calculated calculated measured calculated calculated
position position position position position position

0+
g state 1g state 0+

g state 1g state
−	 −	 −	 −	 −	 −	

(GHz) (GHz) (GHz) (GHz) (GHz) (GHz)
0.45 0.19 0.27 0.50 0.43 0.51
0.93 0.76 0.84 1.20 1.10 1.18
1.77 1.67 1.72 2.27 2.26 2.29
3.20 3.16 3.18 4.07 4.07 4.07
5.45 5.44 5.43 6.85 6.79 6.78
8.80 8.80 8.80 10.73 10.77 10.76
13.67 13.68 13.65

been made. The analysis of the peak positions can be improved by using the actual
long-range potential curves. In the AP analysis that we did, the correct potential
curves have been used. In Tab. 4.2 the measured peak positions are shown to-
gether with the peak positions found with the accumulated phase method for the
best matching states. We can assign series 1 and 3 to both a 0+g and a 1g state.
We cannot distinguish between the 0+

g and the 1g state enough to determine which
state belongs to which series.

We have compared the positions found with the AP method with the positions
found with the L-B method. This is shown in Fig. 4.10. The L-B method is
used to find the least bound vibrational state. The AP method cannot be used to
determine the most loosely bound state, since such a calculation would require
the potential to be calculated up to infinite distances. We have calculated the
potential up to distances of 500a0. It can be seen that for more deeply bound
states the deviation between the positions found with the L-B method and the
AP method increases. Since both the L-B method and the AP analysis are based
on the same approximations it is in principle hard to state which method should
be most accurate. However, in this case it is clear that more information can be
obtained from the AP-method, since the actual potentials can be used, while with
the L-B analysis we are restricted to using a simple C3/R3 potential. Therefore
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Figure 4.10 Difference in peak position between positions calculated with the L-B
method and the AP method. The most loosely bound vibrational level is labeled with
v = 0. Series 1 and series 3 are the series indicated in Tab. 4.1. The L-B fits shown in
Fig. 4.8 have been used to obtain the peak positions that follow from the L-B method.
The positions obtained with the AP method are shown in Tab. 4.2. Since it is not possible
to state whether the 0+

g or the 1g state fit best with series 1 and 3 they are both compared
with the positions that are found with the L-B method.

the AP analysis provides more information that can be used to assign the series to
particular states.

4.4.4 Ionization Mechanism

The bound states are detected by measuring ionization rates. It is not beforehand
clear why this is possible. In this section we will describe a mechanism that
explains why the ionization rate can be used as a signature of a bound state.

At short internuclear distances, where the molecular states can be described
with Hund’s case (a) states, the total spin S and the projection of the spin on
the internuclear axis � are good quantum numbers. For singlet and triplet states
the Penning ionization probability at short range is very large, almost unity. For
quintet states Penning ionization is forbidden by the spin selection rule. This has
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been verified for thermal collisions [16].

If a bound state would be excited in a singlet or triplet potential, the lifetime
of this bound state would be extremely short, as a result of the efficient ionization.
Therefore the width of the state would be extremely large and an ion peak would
be too broad to be observed. Now, if a bound state would be excited in a quintet
potential, the lifetime of this bound state would be long, since the ionization rate
would be zero. However, it would not be possible to detect the excitation of such
a state by an increase of the ionization rate. On the contrary, one would expect a
decrease in the ionization rate when a bound state is excited in a quintet potential.
The ionization probabilities at short range have been verified only for the He 23S1

- 23S1 system, but we have no reason to expect that they are different for the the
He 23S1 - 23P2 system.

The simple picture given above is not complete. As we discussed in Sec. 3.5,
at the internuclear distances where the bound state are excited, the molecular states
must be described with Hund’s case (c) states. At those distances a state is a
superposition of Hund’s case (a) states and the spin states are mixed due to the
fine structure interaction. Due to this mixing of states the ionizing singlet and
triplet states and the non-ionizing quintet states are coupled. The coupling of

1,3 Σ,Π
5Σ,Π

region of population
transfer

Figure 4.11 Schematic figure of the mechanism that is responsible for ion formation. The
shaded region is the region where ionization takes place.
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the states is strongest in the region where the dipole-dipole interaction energy is
comparable to the fine-structure interaction. This can be seen in Fig. 4.9, where
the variation of the Cef f

3 coefficient due to the coupling is shown.
In Fig. 4.11 a schematic picture of the mechanism that is responsible for the

increase of the ionization is shown. After a bound state is excited, part of the
population is transferred to a state that ionizes at short range. The coupling to the
ionizing state should not be too large, since otherwise the lifetime of the bound
state is too short to detect a peak in the ionization rate. Indeed the states that have
been identified, the 0+

g and the 1g state both have a high quintet character.
The ionization peaks have been observed in a detuning range from 0 to 20

GHz. This is consistent with the mechanism described above, since this is pre-
cisely the range where the coupling due to the fine-structure interaction is strongest.
To study more deeply bound states a different detection method should be used.

4.5 Conclusions

We have studied several features of photoassociation spectra of He*. Contrary
to what is the case for the alkali systems, photoassociation of He* has not been
studied in detail yet. We have measured three series of vibrational states in the
range from - 20 to 0 GHz. Two of these series can be identified as either a 0+g
or a 1g state. The bound states are detected through ionization via an indirect
process. We can describe this process qualitatively. The mechanism allows us to
detect ions as a result of excitation to a bound state only in the range where the
fine structure splitting is comparable to the well depth of the potential. If we want
to study deeper lying states different detection methods should be applied.
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Chapter 5

Effects near the 23S1 - 23P1 Asymptote

5.1 Introduction

Photoassociation spectroscopy (PAS) of cold atoms is a powerful technique to
study long-range interactions [1–3]. Numerous photoassociation experiments have
been performed with alkali atoms providing detailed information on ground and
excited state potentials. Due to the low kinetic energy of the colliding cold atoms,
the measurements can be performed with high precision. Recently for the first
time PAS experiments with cold He* atoms have been reported (Chap. 4 and
Ref. [4]). These measurements concerned PAS for the potentials connecting to
the 23S1 - 23P2 asymptote. In this chapter we study potential curves that connect
to the 23S1 - 23P1 asymptote, where the total angular momentum of the excited
P-state is J=1, while it is J=2 for the 23P2 state. The asymptotic energy of the
23S1 - 23P1 system is very close to the asymptotic energy of the 23S1 - 23P2 sys-
tem, only 2.29 GHz above it. As a result the behavior of several potential curves
connected to the 23S1 - 23P1 asymptote is different from the behavior of the poten-
tials connected to the 23S1 - 23P2 asymptote. Due to avoided crossings between
potentials with identical symmetries, some of the potentials connected to the 23S1

- 23P1 asymptote have very large inner turning points, of the order of a few times
100 a0. These potentials have been described in Sec. 3.5.1 and are named purely
long-range potentials.

PAS is performed by making a free-bound transition from the ground state
to the excited state. This is shown schematically in Fig. 5.1, where only one
attractive potential and one purely long-range potential connected to the 23S1 -
23P1 asymptote are shown, while in reality there are several potential curves. The
potentials connecting to the 23S1 - 23P2 asymptote are not shown in the figure,
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Figure 5.1 Principle of PAS. In this case the 23S1 - 23P1 potential is scanned with a probe
laser. When the laser is resonant with a vibrational state energy, population is transferred
from the free system in the 23S1 - 23S1 potential to a bound state in the 23S1 - 23P1

potential. Both an attractive potential curve and a purely long-range potential curve have
been drawn. The shaded region at small internuclear distances shows the region where
Penning ionization plays a role. 	 is the detuning of the probe laser with respect to the
atomic resonance. The kinetic energy spread due to the temperature of the trapped atoms
is indicated by the shaded region on top of the 2 3S1 - 23S1 potential. Note that the energy
and the internuclear distance R have not been drawn at the right scale.

although the asymptotic energy lies only 2.29 GHz below the asymptotic energy
of the 23S1 - 23P1 asymptote. The transition in the PAS process is made at the
internuclear distance Rc where the Franck-Condon overlap between the ground
state wavefunction and the excited state wavefunction is the largest. The atoms
in the magneto-optical trap are ultra-cold, which means that the wavefunction of
the free atoms in the S - S potential varies slowly with the internuclear distance.
Therefore the overlap with vibrational states in the S - P potential is largest at the
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classical outer turning points of bound states in the excited potential. The probe
laser is scanned in frequency and when its frequency is resonant with an excited
bound vibrational state, population can be transferred to this state and a resonance
can be observed.

In this chapter photoassociation experiments close to the 23S1 - 23P1 asymp-
tote will be described. In these experiments we have been able to identify three
different effects, which will be discussed separately. Only a qualitative analysis
will be given. The experimental methods used will be described in Sec. 5.2. In
Sec. 5.3 the excitation of vibrational states will be discussed. In Sec. 5.4 the ob-
servation of a dip in the ionization rate will be analyzed, which we attribute to the
excitation of a bound state in a purely long-range potential. Finally in Sec. 5.5 we
will show peaks in the ionization rate at positive detunings, which we interpret as
the observation of shape resonances.

5.2 Experiments

The experiments have been done in a magneto-optical trap (MOT). The trap is
loaded with a beam of He* atoms that is produced in a DC-discharge source,
cooled with liquid helium. The mean velocity of the atoms leaving the source is
300 m/s. Before the He* atoms are trapped in the MOT they are Zeeman slowed
with a counter-propagating laser beam while the position dependent Zeeman shift
is realised by the magnetic field of the MOT coils. Typically we trap 106 atoms
with a temperature of 1 mK and a density of a few times 109 cm−3. The atoms are
cooled on the 23S1 → 23P2 transition, which has a wavelength of 1083 nm.

A probe laser scans the potential curves connected to the 23S1 - 23P1 asymp-
tote. The ion rate is measured as a function of the probe laser frequency, using
micro-channel plates (MCPs). In Fig. 5.2 a picture of the experimental setup is
shown, with the trapping laser beams and the probe beam. The laser light is gen-
erated by diode lasers. The frequency of the probe laser light is calibrated using
a Fabry-Perot interferometer for the relative frequency scale and the Lamb dip to
determine the absolute frequency. The position of the Lamb dip is measured in a
saturated absorption spectroscopy setup as discussed in Sec. 2.5.

The trapping laser operates close to the 23S1 - 23P2 asymptote at a detuning
of −12.5 
. Since the rate constant for PI is a factor of 100 larger for collisions
in the 23S1 - 23P2 potential than for collisions in the 23S1 - 23S1 potential, the
trapping laser induces a large number of ions [5]. To avoid this huge background
ionization signal the trapping laser is periodically switched on and off during the

81



Chapter 5

probe
laser

L

λ /4

Fabry-Perot
interferometer

Saturation
spectroscopy

MCP

trapping laser

BSAOM

Figure 5.2 Probe laser setup. M stands for mirror, λ/4 for quarter wave retardation plate,
L for lens, BS for 5% beam splitter, AOM for acousto-optical modulator, and MCP for
micro-channel plates.

measurements, by detuning its frequency 500 MHz to the red of the 23S1 →
23P2 transition. This is far enough to ensure that the laser light does not induce
many ions. The period when the trapping laser is switched on will be called the
trapping period, while the period where the trapping laser is switched off will be
called the probing period. The probing period is fixed at 20 µs, regardless of the
duty cycle of the switching of the laser. This period is short enough to avoid any
significant expansion of the cloud of trapped atoms in the probing period. The
duty cycle for the probing period is varied between 10% and 25%, depending
on the intensity of the probe laser. The probe laser beam can be switched off in
the trapping period using an acousto-optical modulator (AOM). The first order
diffraction beam is then used as a probe laser. In this way we can make sure that
the cloud of trapped atoms is not perturbed by the probe laser beam. The ion signal
is gated and can be measured both in the probing period and in the trapping period.
In the probing period the dependence of the ion rate on the probe laser frequency
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is measured, while the signal in the trapping period is used to monitor the stability
of the trapped cloud. A typical scan time is 100 s. In the experiments described
below the probe laser was either on continuously or periodically switched off
using the AOM.

5.3 PAS near the 23S1 - 23P1 asymptote

In this experiment vibrational states in potentials connecting to the 23S1 - 23P1

asymptote are probed. The measurements are similar to the photoassociation
spectroscopy measurements for the 23S1 - 23P2 asymptote, which are described
in Chap. 4. First the results will be shown and then a short analysis will be given.

5.3.1 Results

We have measured the ion rate as a function of the probe laser frequency, while
the probe laser was on continuously. A typical spectrum is shown in Fig. 5.3. The
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Figure 5.3 Photoassociation spectrum measured as a function of the probe laser fre-
quency. The frequency is given as the detuning	 with respect to the 2 3S1 - 23P1 asymp-
tote. The saturation parameter of the probe laser was s0 = 103. The background ion
signal is indicated by the horizontal dashed line. The asymptotic energies for the 2 3S1 -
23P2 and the 23S1 - 23P1 system are given by the vertical dashed lines.
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saturation parameter of the probe laser was s0 = 103. Several scans were added
to produce the spectrum. Distinct peaks can be observed, which have similar
properties as the ones detected in the spectra discussed in Chap. 4 and therefore
they can also be identified as excited bound states. Since the probe laser is on
continuously, it affects the cloud of trapped atoms when the laser is tuned close to
the atomic resonance. This effect can be observed at frequencies around the 23S1

- 23P1 asymptote and around the 23S1 - 23P2 asymptote.

The spectra have been measured as a function of the probe laser intensity.
When the intensity is increased, the height of the peaks increases and more deeply
bound states can be excited. However, the region where the trap is perturbed by
the probe laser also increases with increasing intensity and hence the frequency
range in which bound states can be observed decreases. The positions of all ex-
cited bound states that are measured between the 23S1 - 23P2 and the 23S1 - 23P1

asymptote are listed in Tab. 5.1.

The widths of the ion peaks in the spectra have been determined as a function
of the probe laser intensity, for intensities ranging from s0 = 102 to s0 = 105.
They have been fitted with Gaussian line shapes, since it is expected that their
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Figure 5.4 Peak widths as a function of the probe laser intensity. The lines are drawn to
guide the eye.
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Table 5.1 List of the positions of the photoassociation peaks measured between the 2 3S1

- 23P2 and the 23S1 - 23P1 asymptote. The detuning	 is given with respect to the 23S1 -
23P1 asymptote. The position of a very weak peak is given in parentheses.

n −	 (GHz)
1 0.05
2 0.12
3 0.19
4 0.29
5 0.40
6 0.57
7 (1.17)

widths are mostly determined by the temperature of the trapped atoms. In Fig. 5.4
the widths of three peaks have been plotted as a function of s0. The width does not
increase significantly when the probe laser intensity increases. It is not possible to
determine the widths of the small peaks and of the ones that overlap with neigh-
boring peaks. The mean width, that is found when low probe laser intensities are
used, is (34±13) MHz. The temperature of the atoms in the MOT is 1 mK, which
corresponds to an energy of 20 MHz. Therefore it can be concluded that the width
is mostly determined by the temperature of the trapped atoms.

5.3.2 Analysis

The PAS measurements shown here probe bound states in potentials connecting
to the 23S1 - 23P1 asymptote. They have similar properties as the PAS measure-
ments probing bound states in potentials connected to the 23S1 - 23P2 asymptote,
discussed in Chap. 4. In principle the analysis that was done in Chap. 4, can also
be applied here.

First of all an analysis is made of the positions of the peaks that are measured.
The only states that can be uniquely attributed to potentials connecting to the 23S1

- 23P1 asymptote are the states that are probed at energies between the 23S1 - 23P2

and the 23S1 - 23P1 asymptotic energies. This energy range is only 2.29 GHz wide
and therefore strongly limits the number of peaks that can be detected. We can
use the Leroy-Bernstein analysis (L-B) to find a series of vibrational states [6]. In
this approach it is assumed that the positions of the high-lying vibrational states
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are completely determined by the long-range part of the potential, since most time
is spent in the outer range of the potential. Therefore the approximation is only
valid close to the dissociation limit. The long-range part of the S-P potential has
the shape V (R) = D − C3/R3, where D is the dissociation limit and the C3/R3

term originates from the dipole-dipole interaction. Leroy and Bernstein deduced
that the positions of the vibrational levels should then be given by:

Ev − Ed = 1

C2
3

(
h̄

2

√
2π

µ


(4/3)


(5/6)
(v − vd)

)6

, (5.1)

where Ev is the energy of a vibrational level, Ed is the dissociation energy, v is
the vibrational quantum number, vd is the effective vibrational quantum number of
the level at the dissociation limit, and 
(n) is the Gamma-function. It is possible
to make a L-B fit, including all peaks listed in Tab. 5.1. However, from this fit
we obtain a C3 coefficient which is equal to 80 a.u. The dispersion coefficient µ
for the S-P potential is 19.20 a.u. and the C3 coefficient must be a fraction of µ
(see Sec. 3.4 and Sec. 4.4.1). Therefore the value of 80 a.u. for the C3 coefficient
cannot be physical. The L-B fit is rather insensitive if only a small number of
vibrational levels is included in the fit, especially if the distance between the levels
is small. From the fact that the value of the obtained C3 coefficient is not physical,
we can conclude that there must be more than one series of vibrational states
present in the spectra. Unfortunately, the available information is too limited to
find the series of vibrational states and to assign these series to specific potentials.
The mechanism, which is responsible for the formation of ions when a bound state
is excited, is identical to the mechanism described in Sec. 4.4.4 and will therefore
not be discussed here.

5.4 Purely long-range states

In this section we study effects very close to the atomic resonance. To be able
to observe effects at these frequencies, we must take care not to perturb the trap
with the probe laser. Therefore the probe laser is switched off with an AOM
in the trapping period. We will discuss the effects that are observed at negative
detunings, close to the atomic resonance.
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5.4.1 Results

We have used various probe laser intensities to investigate the region around the
atomic resonance, varying the saturation parameter from s0 = 40 to s0 = 600.
Two typical spectra are shown in Fig. 5.5. In the spectrum measured with the
probe laser intensity of s0 = 100 a dip in the ionization rate is found at a negative
detuning, 	 ∼ −30 MHz. The ion rate has simultaneously been measured in the
trapping period, to check whether the trap is not partially emptied by the probe
at the position of the dip. This is not the case. Furthermore we have found that
the shape and the size of the dip do not depend on the direction in which the
probe laser is scanned. If the trap would be partially emptied by the probe laser, it
would load again when the frequency of the probe laser was tuned away from the
atomic resonance. In that case the shape of the loading curve of the MOT should
be distinguishable in the rising flank of the dip, where the probe laser was tuned
away from the atomic resonance. Therefore the shape of the dip should depend
on the direction in which the probe laser is scanned. The fact that the scanning
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Figure 5.5 Two spectra taken when the probe laser does not perturb the cloud of trapped
atoms. The spectra are taken with two different probe laser intensities, namely s 0 = 100
and s0 = 450. The ion rate is expressed in arbitrary units and an offset is added to the
upper spectrum for clarity. The dashed vertical line indicates the atomic resonance.
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Figure 5.6 Size of the dip at the detuning 	 = −26 MHz. The relative dip size, i.e.
the size of the dip compared with the constant ion rate, is plotted as a function of the
saturation parameter s0.

direction does not influence the shape of the dip is another argument that shows
that the dip is not caused by the probe laser emptying the trap.

In Fig. 5.5 it can be seen that the dip disappears when the intensity of the
probe laser is increased to s0 = 450. We have determined the size of the dip as
a function of the saturation parameter s0. The relative size, compared with the
constant background ion signal is plotted in Fig. 5.6. It is constant for s0 = 40
and s0 = 100 and then decreases when the saturation parameter increases. When
the intensity increases not only the dip disappears, but also peaks start to appear
at negative detunings (see Fig. 5.5). These peaks result from excitations to the
bound states that were probed in the PAS measurements discussed in Sec. 5.3. A
list of the positions of the dip and the peak at negative detunings for various probe
laser intensities is given in Tab. 5.3.

5.4.2 Analysis

Some of the potentials, that are connected to the 23S1 - 23P1 asymptote, have
a purely long-range behavior. They are attractive at long range and become re-
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pulsive at internuclear distances in the order of a few 100 a0. These potentials
result from avoided crossings between potential curves. We have calculated these
potentials using the Movre-Pichler analysis [7], as is described in Chap. 3. The
purely long-range potentials, which connect to the 23S1 - 23P1 asymptote, are
shown in Fig. 5.7. They are very shallow, namely their depths range from 0.05
to 2.1 GHz. Because of their small depths they can support only a small number
of bound states, compared to the number of bound states that can be supported
in the attractive potentials for the 23S1 - 23P0,1,2 system. Only atomic parame-
ters are used in the calculation of the positions of the bound states in the purely
long-range potentials and therefore the calculation is very accurate. Hence very
precise information can be extracted from the observation of these bound states.
In a PAS experiment with sodium the measured positions of bound states in a
purely long-range potential have been used to determine the excited state lifetime
and to measure retardation effects with great precision [8]. A similar experiment
is done for potassium, by Wang et al. [9, 10].

The excitation of a bound state in a purely long-range potential should for
He* be observed as a decrease of the ionization rate. This can be understood
by looking at the inner turning points of bound states in the purely long-range
potentials. These inner turning points are at very large distances, of the order
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Figure 5.7 Purely long-range potentials connected to the 2 3S1 - 23P1 asymptote.
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of a few 100 a0. Therefore the system cannot reach the region where Penning
ionization (PI) takes place, which is at internuclear distances of a few a0. Hence
the excitation of a purely long-range bound state can be observed as a suppression
of the ionization rate. The dip that is observed at the detuning of −26 MHz can
be attributed to the excitation of such a state.

We have calculated the positions of the bound states in the purely long-range
potentials, to verify whether we can find a bound state at the position where the
dip in the ionization rate is observed. The positions of the bound states are listed
in Tab. 5.2. The bound states for the 1g potential with the double well structure
have not been calculated. The maximum of the barrier located around 200 a0,
that determines the inner turning point of the purely long-range bound states, lies
below the asymptotic energy. Therefore the bound states lying above this barrier
must also exist at short range and their position cannot be calculated using just
atomic parameters. When rotation of the molecule is added to the potential the
maximum of the barrier lies above the asymptotic energy and this argument is not
valid anymore. However, we are interested in the most loosely bound states and

Table 5.2 Bound states in the purely long-range potentials connected to the 2 3S1 - 23P1

asymptote. The bold printed states lie at the detuning where the dip in the ionization rate
is observed, within experimental error.

State v J −	 rinner router raver

(MHz) (a0) (a0) (a0)

0−
u 0 0 20.6 444 856 720

0 1 16.6 449 883 743
0 2 9.32 461 954 804
0 3 0.33 487 1201 952

1g 0 1 30.2 451 819 693
1 1 3.09 432 1755 1189
0 2 21.9 459 856 724
0 3 10.7 474 934 791

2u 0 2 192 352 554 474
1 2 70.9 330 805 657
2 2 19.9 323 1232 997
0 3 166 357 565 483
1 3 55.6 335 837 684
2 3 12.4 329 1337 1073
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for these states the wavefunction can probably tunnel rather efficiently through
the barrier, because the height of the barrier is small. For these two reasons it
is complicated to calculate positions of bound states in this potential. If we just
consider the calculated bound states in the other three potentials, we find four
states which are at the measured position within the accuracy of the measurement,
namely the 0−

u potential with v = 0 and J = 0, the 1g potential with v = 0 and J
= 1 or J = 2, and the 2u potential with v = 2 and J = 2. Note that the rotation of
the molecule is included in the calculation of these states [11], while rotation was
not included in the calculation of the potentials described in Chap. 3. We cannot
determine which of these four ro-vibrational states is probed in the spectra. It is
possible that we probed more than one state. If it is the bound state in the 2u
potential that we have excited, it is surprising that only one dip is observed, since
there are a number of states relatively far from the atomic resonance.

In the analysis given above we have not discussed the dependence of the ob-
served dip on the saturation parameter, s0, of the laser, although the size of the dip
is strongly dependent on s0. As was shown in Sec. 5.4.1, the dip in the ionization
rate disappeared, when the saturation parameter of the probe laser was increased
to s0 = 450. Furthermore, peaks started to appear at negative detunings and we
observed an increase of the ionization rate due to optical collisions. The posi-
tions of the peaks are identical to the positions of the peaks discussed in Sec. 5.3
and are attributed to the excitation of bound states in attractive potentials. Optical
collisions are binary collisions in the presence of nearly-resonant light. They are
discussed in Chap. 6 for light with frequencies close to the 23S1 - 23P2 asymptote.
In principle the discussion in Chap. 6 also applies here. However, the states con-
nected to the 23S1 - 23P1 asymptote are strongly coupled, so it is more difficult
here to predict the increase of the ionization rate due to optical collisions.

In order to explain the laser intensity dependence of the measured signal, we
must conclude that there are competing excitation processes, where either a non-
ionizing purely long-range bound state, an ionizing bound state or an optical col-
lision can be excited, as is illustrated in Fig. 5.8. Depending on the saturation
parameter of the laser, one of these excitation processes is favored. We investigate
this behavior by considering the probability for excitation for the atoms colliding
in the 23S1 - 23S1 potential to the potentials connected the 23S1 - 23P1 asymptote.
To calculate the excitation rate we use the semi-classical Landau-Zener transition
probability [14] at the distance where the excitation is made:

Pexc = 1 − exp(−π�), (5.2)

91



Chapter 5

with

� = h̄�2

2αvrad
, (5.3)

where � is the Rabi frequency, α is the gradient of the potential at Rc, and vrad is
the radial velocity of the atoms. The Rabi frequency � is given by �2 = s0


2/2.
First we examine the situation for low saturation parameters of the laser. As will
be explained in Sec. 6.4, the excitation rates are not identical for all excited po-
tentials. We have calculated the excitation rates for all potentials and have found
that one of the purely long-range potentials is a dominant channel. However, if
the saturation parameter is increased the Rabi frequency � is also increased, and

S - P

S - S

E

ν ν

~ 300 a

’ "

Figure 5.8 Schematic picture of a purely long-range potential and an attractive potential
connected to S-P asymptote. In both potentials a bound state is shown, indicated with
the dashed line. The bound states lie at different detunings from the S-P asymptote and
therefore are probed with different laser frequencies ν. The shaded region around the
bound states indicates the frequency width, in which population can be transferred to the
bound state.
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the excitation probabilities increase to unity for all allowed transitions. The at-
tractive potential shown in Fig. 5.8 is steeper than the purely long-range potential.
Therefore, if the intensity is high enough, all population can be transferred to the
bound state in the attractive potential, before the outer turning point of the bound
state in the purely long-range potential has been reached. Furthermore, close to
the atomic resonance the system can ionize in an optical collision, preventing the
bound state in the purely long-range potential to be populated. In the discussion
above we did not take into account that the excitation to a bound state should be
a resonant excitation and thus can only be made at discrete resonant energies. If
the width of the transition would be infinitely small, it would not be possible that
the excitation of one bound state would be dominant over the excitation of an-
other bound state, that is bound with a different energy. In reality the linewidth is
broadened due to the temperature of the atoms and the intensity of the probe laser,
as is indicated in Fig 5.8 by the shaded region around the bound states. Thus we
can explain why a dip is observed in the spectra when low saturation parameters
are used and why a peak appears instead of a dip when the saturation parameter is
increased.

5.5 Shape resonances

In this section we also study effects close to the atomic resonance. Here we are
interested in a different aspect of the spectra discussed in Sec. 5.4, namely the
effects at positive detunings, while in Sec. 5.4 we studied the effects at negative
detunings.

5.5.1 Results

In the spectra shown in Fig. 5.5 there is, besides the dip in the spectrum at a
negative detuning which was discussed above, also a peak in the spectrum at a
positive detuning. Two peaks have been observed, one at a detuning of 	 =
(+14 ± 6) MHz, and one at a detuning of 	 = (+33 ± 6) MHz. The peak at
	 = +14 MHz is only observed for the lowest saturation parameter used, namely
when s0 = 40. The peak at 	 = +33 MHz is observed for larger saturation
parameters. In Tab. 5.3 a list is given of all dips and peaks that are measured at the
various saturation parameters. Since the peaks at positive detunings are observed
at very small detunings, they were not observed in experiments where the probe
laser was on continuously. In those experiments the probe laser perturbed the trap
in the frequency region where these peaks were measured.
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Table 5.3 A list of the positions of the peaks and dips measured when the probe laser
does not perturb the cloud of trapped atoms. The uncertainty in the positions is 6 MHz.

s0 dip peaks
	 (MHz) 	 (MHz)

40 −26 - +14 -
100 −26 - - +33
200 −26 −50 - +33
450 - −50 - +33
600 - −50 - +33

5.5.2 Analysis

The observation of a peak at a positive detuning with respect to the atomic reso-
nance, cannot be attributed to photoassociation to a bound state as that was dis-
cussed in Chap. 4 and Sec. 5.3.1. The reason for this is that a bound state which
is probed at a positive detuning would have to be lying in the continuum of the
potential and therefore could not exist. However, if the rotational barrier is in-
cluded in the potential, one can see that there can exist a bound state at a positive
detuning, if the maximum of the barrier lies above the asymptotic energy (see
Fig. 5.9). Such a bound state is called a shape resonance. The wavefunction can
tunnel through the rotational barrier. A shape resonance in the ground state has
been observed for colliding Rb atoms by Boesten et al. [12, 13].

We calculate the potentials connected to the 23S1 - 23P1 asymptote, including
rotation of the molecule, to find a potential in which a shape resonance can be
excited. We can exclude most potentials, using arguments discussed in Sec. 3.6.
There we saw that the S-P potential goes as C3/R3, while the S-S potential goes
as C6/R6. As is shown in Fig. 3.9, for the S-P potential partial waves up to
� = 12 can penetrate the rotational barrier, while for the S-S potential only partial
waves with � = 0 can reach small internuclear distances. A shape resonance at
a positive detuning can only exist in a potential, if there exists a local maximum
in the potential, which is larger than the asymptotic energy. This means that there
can only exist shape resonances in the excited state potentials for � > 12. It would
not be possible to excite such a shape resonance from the S-S potential because
of the rotational barrier. The internuclear distance, where the shape resonance
should be excited, could never be reached on the S-S potential for � > 12, only
for � = 0, since it should be excited at its outer turning point.
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Figure 5.9 Schematic picture of a shape resonance. Four potential curves are drawn. The
dashed lines represent the attractive potentials and the solid lines represent the 1 g state
with the double well structure. The ones labeled with V (R) are the potentials without
rotation of the molecule and for the ones labeled with V (R)+ �(�+ 1)/R 2 the rotational
barrier is included. The dotted line is the asymptotic energy. There can exist a bound
state above the asymptotic energy in the double well potential, if rotation of the molecule
is included.

There is one potential connected to the 23S1 - 23P1 asymptote, that is a suit-
able candidate to support a shape resonance. This is the 1g potential with the
double well structure, as is illustrated in Fig. 5.9 and Fig. 5.10. If rotation of
the molecule is not included in the calculation of the potential the maximum of
the potential barrier lies below the asymptotic energy of the system. This is not
physical, since there cannot exist a molecule without rotation. If rotation of the
molecule is included we find that the maximum of the potential barrier increases
to values above the asymptotic energy. In Fig. 5.10 the calculated 1g potential is
shown, including rotation of the molecule, for J = 1,2,3.

The excitation to the shape resonance should be made at the inner side of the
potential barrier. On the ground state only partial waves with � = 0 can reach this
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Figure 5.10 Calculation of the double well 1g potential with rotation of the molecule in-
cluded. The dashed line is the potential without rotation. The higher lying potentials have
a total angular momentum of J=1,2,3 where the highest lying potential has the highest
value of J . The dotted horizontal line represents the asymptotic energy of the 2 3S1 - 23P1

system.

distance. The overlap between the wavefunctions is largest near the maximum
of the barrier (at Rmax ), where the derivative of the 1g potential is zero. Since
the ground state wavefunction is varying slowly with the internuclear distance
the overlap is largest if the derivative of the potential is small. The overlap with
a potential with a steep slope is small, as can be seen in the expression for the
Landau-Zener excitation probability given in Eq. 5.2 and Eq. 5.3. Since the slope
of the potential increases rapidly at internuclear distances smaller than Rmax , it is
not probable that the excitation takes place far from the maximum of the barrier.
The two different peaks could originate from resonances in the 1g potential with
different total angular momentum J .

5.6 Conclusions

We have observed remarkable effects near the 23S1 - 23P1 asymptote, doing pho-
toassociation experiments. Bound states in attractive potentials have been ob-
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served. Due to the limited number of observed bound states it is not possible to
assign these states to specific potentials. However, we are sure that more than
one series of vibrational states has been probed. At very small detunings, in the
range of 10 - 30 MHz around the atomic resonance, we have observed two special
states. The first one is identified as a bound state in a purely long-range potential.
The other is interpreted as a shape resonance in an excited state potential. The
position of both these states can yield high-precision information on the lifetime
of the He*(2P) state. A more detailed analysis in combination with more pre-
cise experiments will need to be done to extract this kind of information from the
spectra.
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Chapter 6

Penning Ionization in Optical Collisions

6.1 Introduction

Since the development of laser cooling and trapping techniques [1], it has become
possible to study collisions between ultra-cold atoms. As was discussed in pre-
vious chapters, interactions at long range play an important role for cold atoms.
An important method to study long-range interactions is photoassociation spec-
troscopy, as is described in Chap. 4 and Chap. 5. In this chapter we study optical
collisions of cold He* atoms, which we define as binary collisions in the presence
of nearly-resonant light. Since the light is nearly resonant with the atomic tran-
sition frequency, the number of ro-vibrational states in the diatomic molecule is
large and thus can be treated as a quasi-continuum. While photoassociation spec-
troscopy provides detailed information on vibrational states in potentials, with the
optical collisions we study the dynamics of the collisions and the role of the Pen-
ning ionization process. In Fig. 6.1 a schematic picture of an optical collision is
shown.

In the present work we discuss collisions between cold He (23S1) atoms in a
magneto-optical trap (MOT), which are excited by light with frequencies close to
the 23S1 → 23P2 transition. The modification of these collisions can be monitored
by the process of Penning ionization (PI). When the light is detuned to the red of
the 23S1 → 23P2 transition, one can observe a strong increase of the ion rate with
respect to the ion rate for collisions between two 23S1 atoms. [2–6]. This strong
increase is due to the fact that on the 23S1 - 23S1 potential, which varies as R−6

only partial waves with � = 0 can penetrate the rotational barrier, while on the
23S1 - 23P2 potential, which varies as R−3 partial waves up to � = 12 can penetrate
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Figure 6.1 Schematic picture of an optical collision. An excitation is made from the
S+S curve to the S+P curve at the distance Rc. The shaded region at small internuclear
distances shows the region where Penning ionization plays a role.

the rotational barrier, as is shown in Sec. 3.6. Hence more close collisions are
induced on the 23S1 - 23P2 potential than on the 23S1 - 23S1 potential.

For each ion that is created in a close collision, two atoms vanish from the trap
and hence the ionization rate is part of the decay rate. In a MOT, loss can also be
caused by radiative escape (RE), where the colliding atoms are accelerated on the
attractive S-P potential and thus can gain enough kinetic energy to escape the trap
after spontaneous emission to the S-S potential. The magnitude of the RE process
depends on the relation between the lifetime for spontaneous emission and the
collision time. Since the lifetime of the 23S1 → 23P2 transition is relatively long,
the effect of RE is expected to be small compared to the losses due to ionization
and the decay rate should be dominated by the ionization rate. This has been
the basis for the evaluation of measured trap decay curves in terms of ionization
rates [3, 4, 6].

Up until present, no rigorous theoretical description has been developed of
the ion rate and trap decay for an ensemble of He (23S1) atoms in the presence
of nearly-resonant light. Such a description would require the calculation of all
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ground and excited state molecular potentials and the coupling of these potentials
by the light. Furthermore, a dynamical description should be given of the collision
under the influence of the light. For the general case of one molecular ground
and one molecular excited state models have been developed which provide a
qualitative description of the increase of the collision rate constant in the presence
of nearly-resonant light [7–9]. We have developed a semi-classical version of
such a two-state model, described in recent publications [2, 10], that is able to
reproduce the ionization rate constant for optical collisions of He* atoms.

In this chapter we present a semi-classical model, which we use to calcu-
late the ionization rate constant and compare with measurements. In Sec. 6.2 the
experimental method will be described. A partial wave formulation of our semi-
classical two-state model will be given in Sec. 6.3. We will make an attempt to
calculate the absolute ion rate constant in Sec. 6.4 by calculating the couplings be-
tween the various ground state potentials connected to the 23S1 - 23S1 asymptote
and the excited state potentials, connected to the 23S1 - 23P2 asymptote. Subse-
quently we will apply the two-state model and compare the calculated ion rate
constant with new measurements of improved quality. Finally in Sec. 6.5, the ab-
solute ion rate constant will be compared with values that have appeared in the
literature.

6.2 Experimental

The experiments are performed in a magneto-optical trap (MOT). The trap is
loaded with a beam of He* atoms produced in a DC-discharge source, which
is cooled with liquid helium. The mean velocity of the atoms leaving the source is
300 m/s. Before the He* atoms are trapped in the MOT, they are Zeeman slowed
with a counter-propagating laser beam while the required Zeeman shift is pro-
duced by the magnetic field of the MOT coils. Typically we trap 106 atoms with a
temperature of 1 mK and a density of a few times 109 cm−3. The atoms are cooled
on the 23S1 → 23P2 transition, which has a wavelength of 1083 nm.

A probe laser is scanned in frequency around the 23S1 - 23P2 asymptote and
the ion rate is measured as a function of the probe laser frequency. The produced
ions are measured with micro-channel plates. The laser light is generated by diode
lasers. The frequency of the probe laser light is calibrated using a Fabry-Perot
interferometer for the relative frequency scale and the Lamb dip to determine the
absolute frequency. The uncertainty in the absolute frequency scale is 20 MHz.

The trapping laser is periodically switched off, since we are only interested
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in ionization induced by the probe laser. The laser is switched off for 25% of
the period, by detuning its frequency 500 MHz to the red of the 23S1 → 23P2

transition. This is far enough to ensure that the trapping laser does not induce
many ions. The period when the trapping laser is switched off is defined as the
probing period, while the period when the trapping laser is switched on is defined
as the trapping period. The probing period is 20 µs, which is short enough to avoid
significant expansion of the cloud of trapped atoms. The probe laser is switched
off in the trapping period using an acousto-optical modulator, from which the first
order diffraction beam is used as the probe laser. In this way we make sure that the
cloud of trapped atoms is not perturbed by the probe laser. The ion signal is gated
and can be measured both in the probing period and in the trapping period. In the
probing period the detuning-dependent ion rate is measured, while the signal in
the trapping period is used to monitor the stability of the trapped cloud. A typical
scan time is 100 s. A typical measurement is shown in Fig. 6.2.
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Figure 6.2 Ion rate as a function of the probe laser frequency. The probe laser frequency
is expressed as the detuning	 with respect to the 23S1 - 23P2 asymptote. The saturation
parameter of the probe laser was s0 = 450.
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6.3 The two state model

In Fig. 6.3 a schematic representation of the two-state system is shown. The laser
light is detuned to the red of the 23S1 - 23P2 asymptote with a detuning 	. For a
large detuning of	 � 
, where 
 is the linewidth of the transition, the excitation
can only take place around the Condon point Rc, where a transition can occur
without appreciable change of the relative kinetic energy of the atoms.

We describe the system in terms of a dressed-state picture to obtain an insight-
ful and quantitative description, where the ground and the excited state potential
are coupled by the light field. The electronic coupling is given by the Rabi fre-

S-P

S-S + h ν

rotational
barrier

RR

∆

Figure 6.3 Schematic representation of the two-state system, where energy of the ground
state S+S potential is shifted by the energy of a photon. The light is detuned with 	 to
the red of the S+P asymptote. A transition can occur at the crossing at R c and the grey
arrow indicates the population that is not excited. The shaded regions indicate the regions
where PI can take place. The potential barrier on the S+S potential (for � �= 0) is shown
with the dashed line.
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quency �, which can be found from the atomic Rabi frequency �2
at = s0/2
2

at ,
and is responsible for an avoided crossing of the adiabatic potentials, which can
be seen in Fig. 6.4. The transition from the ground to the excited state is described
in terms of the electronic coupling. Collisions in the ensemble of 23S atoms occur
on the ground state potential, with velocities determined by the temperature of the
MOT. After having passed the region around the Condon distance, a system can
be either on the lower adiabatic potential, or on the upper adiabatic potential. Be-
ing on the lower one at R < Rc means to be in the excited state. The probability
for this is given by the Landau-Zener expression [9]:

P = 1 − exp

(
− π h̄�2

2αvrad

)
, (6.1)

where α is the gradient of the difference between the diabatic potentials at the
crossing point Rc, and vrad is the radial velocity. We have used the relation
|H12|2 = (�/2)2 to express the electronic coupling in terms of the Rabi fre-
quency. The detuning 	 is used to determine Rc via the relation 	 = C3/R3

c . The
Condon distances relevant for the present discussion are found to be in the order

-20

-10

0

10

20

0 1000 2000 3000 4000

E
 (

Γ)

R (a.u.)

S-S

S-P

E
kin

S-S

S-P

direct path to ionization

indirect path

transient molecule

rotational barrier (l=1)

∆/Γ

Figure 6.4 Molecular dressed state picture, where the adiabatic potentials are shown.
The system can ionize directly or indirectly. For � �= 0 the rotational barrier on the S-S
potential prevents the transient molecule to reach small internuclear distances.

104



Optical collisions

of 100 - 1000 atomic units. At these large distances α is given by α = 3C3/R4
c

and the local � is approximately constant and can be calculated from �at .
We use Eq. 6.1 to formulate an expression for the ionization rate constant.

The model assumes that close collisions lead to PI with 100% probability, except
if this is forbidden by the spin selection rule. This is a valid assumption, which has
been verified even for thermal collisions [12]. The expression is given in terms of
the partial wave expansion of an inelastic scattering cross section described by O�,
which is the angular momentum dependent ionization probability. The ionization
rate constant K depends on the detuning 	, the laser intensity s0, and the velocity
v, and is written as [8]

K (	, s0, v) = π h̄2v

µ2

�max∑
�=0

(2�+ 1)"�O�, (6.2)

where µ is the reduced mass, and "� is a step function. The step function "� is
introduced, because the collision system has a well defined gerade (g) or ungerade
(u) symmetry, which restricts the allowed partial waves. Since the collision system
is symmetric the weight of the allowed partial waves is doubled. Thus:

even � odd �
gerade ground state: "� = 2 "� = 0

ungerade ground state: "� = 0 "� = 2

The summation in Eq. 6.2 has to be carried out until a certain maximum angular
momentum �max . The maximum angular momentum is limited by the rotational
barrier in the ground state and the kinetic energy of the collision system. The
system needs to reach the Condon point Rc in order make the transition, reach
small internuclear distances on the excited state potential, and contribute to the
ionization. Hence �max is determined by the relation:

h̄2

2µ

�max(�max + 1)

R2
c

− C6

R6
c

>
1

2
µv2. (6.3)

In order to find an expression for O�, we have to distinguish the different
possible paths leading to ionization. Below we make a distinction between direct
and indirect paths of ionization, either in the excited state (SP) or in the ground
state (SS):

• The direct SP contribution is possible for all allowed values of �. The sys-
tem is excited on the way in at the avoided crossing, then approaches small
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distances on the excited state potential without decaying spontaneously by
photon emission and Penning ionizes on the excited state potential. The
corresponding probability is given by P�S�, where P� is defined in Eq. 6.1
and S� = exp(−
t�) is the survival probability in the excited state during
the approach time t�. This time is obtained from integration along the �-
dependent trajectory, using t� = ∫

d R/v�(R), with v�(R) the �-dependent
radial velocity on the excited state potential curve.

• The indirect SP contribution has not been considered in earlier models [2,
10]. In this case the system is not excited on the way in. If � �=0 and
Ekin < 	, the system is partly captured and forms a transient molecule
in the upper adiabatic potential (see Fig. 6.4). This molecule can either
dissociate by diabatic crossing on the way out, or ionize after a diabatic
crossing on the way in. While a correct calculation should use amplitudes
and phases to calculate this contribution, we content ourselves here with a
calculation using probabilities. The total contribution can then be calculated
by summation of the successive contributions, i.e., the contributions after
1,2,3, .. oscillations. The infinite sum can be carried out and leads to the
ionization probability P�S�(1 − P�)/(1 + P�).

• For the direct SS contribution the system is not excited on the way in at the
avoided crossing, then approaches small distances on the ground state po-
tential and Penning ionizes on the ground state potential. The corresponding
probability is (1− P�). As is shown in Sec. 3.6, at the low collision energies
in the MOT only partial waves with � = 0 can penetrate the rotational bar-
rier on the ground state and reach the small internuclear distances, where PI
occurs, i.e. only � = 0 contributes to the ionization.

• For the indirect SS contribution the system is excited on the way in, then
spontaneously decays to the ground state, and Penning ionizes in the ground
state, which is only possible for � = 0. The corresponding probability is
P�(1 − S�).

The ionization probability to be used in Eq. 6.2 thus becomes the sum of those
four terms:

O� = P�S� + P�S� (1 − P�) / (1 + P�) = 2P�S�/ (1 + P�) for � �= 0
O� = P�S� + (1 − P�)+ P�(1 − S�) = 1 for � = 0.

(6.4)
In a numerical program, the evaluation of expression Eq. 6.4 for the ionization
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rate constant is easily carried out. In Fig. 6.5 the total calculated ionization rate
constant and the direct and indirect contributions to it are shown. It can be seen
that the direct SP contribution is the dominant contribution. The crucial quan-
tity that determines the quality of the result is the excitation probability func-
tion, which is approximated using the Landau-Zener formula in Eq. 6.1. While
this approximation is expected to be valid for large detunings (	 � 
), when
the region of distances where transitions induced by the radiation occur is rather
narrow [11], its validity for small detunings is questionable. To check whether
the approximation is good enough, we have calculated the excitation probability
with a quantum-mechanical model and find the agreement with the semi-classical
Landau-Zener excitation probability to be good.
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Figure 6.5 Calculated ionization rate constant as a function of 	. The direct and the
indirect contributions, as discussed in the text, are shown. The symbols represent the
calculation. A smoothed line is drawn to correct for structure that arises, due to the finite
steps in the velocity distribution that have been used in the calculation.
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6.4 Calculation of the absolute ionization rate constant

In this section we describe the procedure we followed to calculate the absolute
ionization rate constant for the 23S1 - 23P2 system, using the semi-classical two-
state model described above.

We have used the actual potential curves connected to the 23S1 - 23P2 asymp-
tote, which were discussed in Chap 3. We only consider the attractive potentials,
since they can be populated at negative detunings from the atomic resonance. We
have found nine such potentials, which all behave as C3/R3 at the large distances
that are relevant for the calculation of the ionization rate constant. For all po-
tentials we have calculated the C3 coefficients, the linewidths for spontaneous
emission 
, and the Penning ionization probability p. The PI probability is de-
duced from the spin character of the state at large internuclear distances, where
the spin states are mixed. We have assumed that at short range, where S is a good
quantum number, the singlet and triplet spin states ionize with unity probability
and the quintet states ionize with zero probability. A list of the properties of the
potentials connected to the 23S1 - 23P2 asymptote is given in Tab. 6.1.

The excited state potentials can be populated from various potentials con-
nected to the 23S1 - 23S1 potentials. These potentials are degenerate at the dis-
tances where the excitations are made, but we characterize them by the total spin
quantum number and its projection on the internuclear axis. Since the potentials
are degenerate we can choose any axis. We found that when the system is ex-
cited to the 23S1 - 23P2 system, every ground state potential is mainly coupled
to one excited state potential and that the coupling to other excited states is an
order of magnitude weaker. In principle, allowed contributions from all ground to
all excited states should be taken into account, but we have used an approxima-
tion where only the dominant contribution has been included in the calculation.
We find that all dominant transitions are π transitions. For the excited states the
spin states are mixed and the Hund’s case (a) ground states couple only with a
fraction of the excited Hund’s case (c) states. This fraction is given by w, where
w is the population probability of the fraction of the excited state coupling with
the ground state. We use w to obtain the Rabi frequency for each ground to
excited state transition, since we need the Rabi frequency to evaluate the Landau-
Zener expression. The characteristic Rabi frequency �mol for each pair is given
by �mol = (�at/
at) 
mol

√
w.

We use the nine values of �mol to calculate the total ionization rate constant.
The rate constant for each of the nine contributions is calculated using the two-
state model. The total ionization rate constant is obtained by summing over the
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Table 6.1 Properties of the excited state potentials connected to the 2 3S1 - 23P1 asymp-
tote. The C3 coefficient is expressed in terms of the dispersion coefficient µ, as discussed
in Sec. 3.4. The excited fraction is the fraction of the state that can be excited from the
ground state. The polarization is the polarization of the light required to make the excita-
tion. The ground state potentials where they are excited from are also shown.

Ground state Excited state
Symm. � Symm. 
 C3 w p pol.

(
at ) (µ)
1�+

g 0 0+
u 1.271 -0.536 0.509 0.89 π

5�+
g −2 2u 1.016 -0.455 0.394 0.59 π

5�+
g −1 1u 1.582 -0.313 0.522 0.27 π

5�+
g 0 0+

u 1.984 -0.242 0.505 0.08 π
5�+

g 1 1u 1.582 -0.313 0.522 0.275 π
5�+

g 2 2u 1.016 -0.455 0.394 0.59 π
3�+

u −1 1g 1.217 -0.516 0.557 0.86 π
3�+

u 0 0−
g 1.538 -0.333 0.500 0.75 π

3�+
u 1 1g 1.217 -0.516 0.557 0.86 π

nine contributions and weighing each contribution with a statistical factor of 1/9,
where each rate constant is multiplied by its own Penning ionization probability
p.

The result of such a calculation, averaged over the thermal velocity distribu-
tion, corresponding to a temperature of 1 mK, is shown in Fig. 6.6. In the calcu-
lation we take into account that only a third of the light has the π - polarization
required to make the transitions shown in Tab. 6.1. Since for the measured curve
neither a reliable absolute calibration was possible, nor a reliable determination of
the background, we adapted the measured curve to the calculated one by choos-
ing the background and the normalization to obtain best agreement. Therefore the
comparison between the measurement and the calculation yields only information
on the accuracy of the predicted shape of the curve. In Fig. 6.6 we can see that
the shape of the ionization rate constant is very accurately predicted by the cal-
culation. The slightly higher values in certain detuning ranges can be attributed
to the photoassociation resonances discussed in Chap. 4. The excitation of these
bound states is not included in the semi-classical two-state model, so we expect to
see these deviations. Therefore we can state that there is agreement within experi-
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Figure 6.6 The scaled measured ionization curve and the calculated ionization curve as a
function of the detuning of the probe laser. The ion rate constant is expressed in arbitrary
units.

mental error. This is a remarkable result considering the complexity of the system
and the simplification that we made.

6.5 Comparison of calculated and measured absolute ionization rate
constants

Since the agreement of the calculated behavior of the ionization rate constant
with the measured behavior is so good, we are confident that the calculated abso-
lute ionization rate constant should also be reasonably accurate. This is especially
interesting, because existing experimentally determined absolute ionization rates
are uncertain by factors of 2 to 100 [2–6]. In this section we will compare our
calculated absolute ionization rate constant with the experimental ionization rate
constants. All of these values have been determined at the detuning where the ion-
ization rate constant is maximal, but under different experimental circumstances.
Especially, different laser intensities have been used and slightly different MOT
conditions and correspondingly slightly different temperatures. Our model allows
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us to judge the possible influence of these different conditions. As an example, we
show the ionization rate constant in Fig. 6.7 calculated at a temperature of 1 mK
for different saturation parameters, namely s0 = 50 and s0 = 200. We notice that
the maximum value of the ionization rate constant, Kion

max , is rather insensitive to
the varied parameter. Since the uncertainties of the available experimental values
are much larger than the variation of the calculated maximum rate constant for
different experimental conditions, it is not necessary to account for these differ-
ences. It is sufficient to compare the calculated Kion

max with the maximum values
reported in the literature.

To be able to compare the measured and calculated rate constants, we must
take care to use identical definitions for the rate constant. Therefore it is neces-
sary to briefly outline the procedures that have been applied to obtain experimental
ionization rate constants for optical collisions. In most experiments the ionization
rate constant Kion or the collision rate constant K was obtained from a measure-
ment of the decay rate β of the MOT, when stopping the loading of the MOT.
Note, that the collision rate constant K is a measure for all collisions resulting in
trap loss, while the ionization rate constant Kion only takes into account the colli-
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Figure 6.7 Ionization rate constant calculated for s0 = 50 (dashed line) and s0 = 200 (solid
line).
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sions where an ion is formed. The ion rate or fluorescence rate is used to monitor
the decrease of the density n. The valid assumption is made, that the decay is
mainly due to collisions between trapped atoms. Hence a loss rate constant β is
defined by dn/dt = −βn2, where β = 2K . The factor 2 stems from the fact,
that in one trap loss collision two atoms escape from the trap. We use the same
definition in the semi-classical two-state model, i.e. dnion/dt = Kn2, where nion

is the ion density.

In order to experimentally determine the value of K , one needs to know n
on an absolute scale. This poses severe problems and is the reason for the rather
large uncertainties of the experimentally determined rate constants. Furthermore,
some confusion has arisen because the experimentally determined rate constants
have not been defined in the consistent way described above. Instead, one has
argued that the ionization rate constant should be defined as the rate constant for
ionization in collisions of excited 23P2 atoms with ground state 23S1 atoms. Hence
the decay is given by dnion/dt = 2K ′n pns = 2K ′πp(1 − πp)n2, where πp is the
population of the excited state [3]. The factor of 2 comes from the fact that we
cannot distinguish between a collision of a S with a P atom and a P with a S atom.
The rate constant at the detuning where the ion rate constant is maximal, K′

max is
then found by assuming that the ensemble is saturated, i.e. that πp = 1/2. For a
given measured ion rate constant this leads to the relation K′

max = 2Kmax , where
Kmax is our maximum rate constant.

This definition of K ′
max is unphysical, which can be seen as follows. The rate

constant is the product of the collision velocity and the cross section for ionization.
This cross section is limited by the number of partial waves that can contribute.
For 	 � 
, πp goes to zero, while K still has a value of the order of Kmax , as
can be seen in Fig. 6.6. In that case the definition dnion/dt = 2K ′πp

(
1 − πp

)
n2

would lead to unphysically large values of K′, which would require ionization
cross sections exceeding the maximum cross section, given the total number of
partial waves. In Tab. 6.2 an overview is given of the measured values of β and
K ion

max ’ that are found in the literature. These values have been corrected to agree
with our definition of Kmax as defined above. In some of the experiments the
collision rate constant Kmax is determined and in other experiments the ionization
rate constant Kion

max is determined. Since we cannot estimate for each experiment
the fraction of collisions that do lead to losses from the trap, but do not lead to
ionization, we cannot compare every value with the calculation.

We notice that the experimentally determined ionization rate constant of Ku-
makura et al. [5] agrees within given limits of error with the value predicted by
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our calculation. However, the value of Mastwijk et al. [2] does not agree with
the calculated ionization rate, which is due to an error made in determining the
transmission through the mass spectrometer used to measure the ion rate. It is
difficult to estimate the accuracy of the calculated value, as a result of the approx-
imations that have been made. However, the Kion

max is virtually independent of the
experimental conditions used in the experiment. We therefore estimate that if our
assumptions are correct, the calculated cross section is accurate to within 20%.
We cannot calculate the collision loss rate Kmax from K ion

max , but it is clear that the
K ion

max should be a fraction of Kmax .

Table 6.2 Comparison of experimental values of K max and K ion
max with the theoretical

value predicted by our two-state model and with each other. The corrected values are
based on the definitions given in the text.

Reference Published Corrected Published Corrected
βmax Kmax K ion

max ’ K ion
max

(cm3/s) (cm3/s) (cm3/s) (cm3/s)
Bardou 7 × 10−8 3.4 × 10−8 - -
et al. [3] uncertainty:

factor 4
Tol (1.3 ± 0.3) (6.5 ± 0.3) - -
et al. [4] ×10−8 ×10−9

Browaeys 3 × 10−8 1.5 × 10−8 - -
et al. [6] uncertainty:

factor 2
Kumakura - - (8.3 ± 2.5) (2.1 ± 0.6)
et al. [5] ×10−8 ×10−8

Mastwijk - - (1.9 ± 0.8) (1.3 ± 0.6)
et al. [2] ×10−9 ×10−9

This work - - - 2.5 × 10−8
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6.6 Conclusion

We have developed a semi-classical model to describe Penning ionization in opti-
cal collisions. The model is a two-state model, using a partial wave expansion and
the Landau-Zener approximation to calculate the excitation rate. The predicted
ionization rate constant as a function of the detuning of the light agrees well with
measurements that we have done. Furthermore we have calculated the absolute
ionization rate constant and compared it with measured absolute rate coefficients
that have appeared in the literature. We have calculated an absolute ionization rate
constant Kmax = 2.5 × 10−8 cm3/s. If we use a consistent definition of Kmax we
find good agreement with most quoted experimentally determined values.
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Samenvatting

De experimenten die in dit proefschrift besproken worden, zijn uitgevoerd met
ultra-koude atomen. In de jaren ’80 is een methode ontwikkeld om atomen af te
koelen tot ultra-lage temperaturen. Deze methode wordt laserkoeling genoemd.
Met deze koude atomen kunnen allerlei experimenten worden gedaan, die niet
mogelijk zijn met thermische atomen. Voordat daar op ingegaan wordt, zal kort
besproken worden wat laserkoeling is.

Met behulp van laserlicht kan een atoom aangeslagen worden naar een hogere
energietoestand, een aangeslagen toestand, als het laserlicht de energie heeft die
overeen komt met de energie die nodig is om het atoom in die aangeslagen toes-
tand te brengen. Met het aanslaan van het atoom wordt er impuls overgedragen op
het atoom door het foton, dat afkomstig is uit de laserbundel, in de richting waar
het licht vandaan komt. Omdat de aangeslagen toestand geen stabiele toestand is,
valt het atoom na een korte tijd terug naar zijn oorspronkelijke toestand. Het moet
de overtollige energie kwijt en zendt daarom een foton uit, in een willekeurige
richting. Met het uitzenden van het foton ervaart het atoom een terugslag van het
foton. De snelheidsverandering van het atoom per geabsorbeerd foton is klein,
maar als een atoom vaak genoeg door een laser aangeslagen wordt en vervolgens
vervalt, kan een grote snelheidsverandering bereikt worden. Omdat het atoom als
het terugvalt een kracht in een willekeurige richting ervaart, is de netto kracht als
gevolg van de terugslag na een groot aantal keer terugvallen gelijk aan nul. Op
deze manier wordt er een kracht op het atoom in een wel bepaalde richting uit-
geoefend, namelijk in de richting van het laserlicht, en kan de snelheid van het
atoom in deze richting verkleind worden.

Om de snelheid van de atomen in drie dimensies af te remmen gebruiken
we laserlicht uit zes richtingen, namelijk twee tegenovergesteld gerichte bundels
per richting. We bestuderen interacties tussen de koude atomen en daarom is het
belangrijk om de atomen zo dicht mogelijk bij elkaar te houden. Daarvoor is
alleen laserlicht niet voldoende, maar moeten we ook een speciaal magneetveld
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gebruiken. De combinatie van het laserlicht en dit magneetveld (dit heet een
magneto-optische val) remt de atomen af en vangt ze in het midden van de op-
stelling. In het experiment gebruiken we helium atomen, die we koelen tot een
temperatuur van ongeveer 1 mK, dat is 1

1000 graad boven het absolute nulpunt.
We vangen ongeveer 1 miljoen atomen in onze magneto-optische val met een
dichtheid van 1 miljard atomen/cm3. Deze dichtheid is groot genoeg om inter-
acties tussen koude gevangen atomen te bestuderen. In hoofdstuk 2 worden de
principes van laserkoeling kort besproken. Verder wordt in dit hoofdstuk de expe-
rimentele opstelling beschreven, waarmee de experimenten die besproken worden
in dit proefschrift gedaan zijn. Ook wordt er uitgelegd hoe de eigenschappen van
het wolkje koude atomen, gevangen in de magneto-optische val, bepaald zijn.

Het atoom dat in dit proefschrift bestudeerd wordt is metastabiel helium. Het
helium atoom bestaat uit een kern en twee elektronen. Metastabiel helium (He*)
bevindt zich in een aangeslagen toestand, waarbij één van de elektronen is aan-
geslagen naar een hogere energietoestand. Het woord metastabiel geeft aan dat
de levensduur van de aangeslagen toestand heel lang is. De levensduur van He*
is ongeveer twee uur, wat oneindig is op de tijdschaal die relevant is voor onze
experimenten. Doordat het atoom in de metastabiele toestand is, is de interne
energie van het atoom heel groot. Als twee atomen dicht bij elkaar komen (in de
orde van een paar tiende nm, waarbij een nm een miljoenste mm is), wordt de
metastabiele toestand instabiel en wordt er een ion gevormd.

Met behulp van koude atomen kunnen hoge precisie experimenten worden
uitgevoerd, omdat hun kinetische energie zo laag is. Een veelgebruikte methode
om interacties tussen koude atomen te bestuderen is foto-associatie spectroscopie.
Deze methode is ook in dit proefschrift toegepast. Tot nu toe zijn vooral de alkali-
metaal atomen met foto-associatie spectroscopie bestudeerd. Wij hebben foto-
associatie gebruikt om He* atomen te bestuderen.

In een foto-associatie experiment worden twee botsende atomen aangeslagen
naar een geëxciteerde toestand met behulp van laserlicht. In deze geëxciteerde
toestand is de aantrekkingskracht tussen de atomen al op grote afstanden (∼ 100
nm) groot genoeg om een molecuul te vormen. In zo’n molecuul kunnen de
atomen alleen in discrete vibratiemodes ten opzichte van elkaar bewegen, die
elk een eigen energieniveau hebben. Het molecuul kan ook alleen in deze vi-
bratiemodes worden aangeslagen. Daarom kan er alleen met de laser een overgang
gemaakt worden naar een vibrationele toestand in een molecuul, als het licht pre-
cies de energie heeft die overeenkomt met het energieniveau van die vibratiemode.

De moleculen die gevormd worden met foto-associatie zijn heel bijzonder.
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De atomen in deze moleculen bevinden zich het grootste gedeelte van de tijd op
grote afstanden van elkaar, die in de orde liggen van ongeveer 100 nm. Normaal
is de gemiddelde afstand tussen de atomen in een molecuul ongeveer 0.1 nm.
Doordat de afstand tussen de atomen zo groot is, levert foto-associatie ook infor-
matie over atomaire eigenschappen op. De alkali-metaal atomen zijn uitgebreid
bestudeerd met foto-associatie spectroscopie, met veel resultaat. De methode was
daarentegen nog niet toegepast op de metastabiele edelgas atomen. Over koude
He* atomen is weinig bekend. In dit proefschrift worden de eerste resultaten van
foto-associatie spectroscopie voor He* besproken. Er wordt een eerste verkenning
gemaakt van interessante processen die een rol spelen voor He*.

Om de experimentele resultaten te kunnen analyseren is het belangrijk om
de interacties in het molecuul te kennen. We hebben deze interacties berekend.
De berekeningen worden besproken in hoofdstuk 3. Aangezien de gemiddelde
afstand tussen de atoomkernen in het molecuul zo groot is, zijn de parameters die
gebruikt worden in de berekeningen atomaire eigenschappen.

In hoofdstuk 4 worden foto-associatie experimenten besproken. In het exper-
iment worden ionen gemeten, terwijl de golflengte van de foto-associatie-laser
gevarieerd wordt. Als de golflengte overeen komt met het energieniveau van een
gebonden toestand, wordt een verhoging van het aantal ionen gemeten en op die
manier wordt de energie van de gebonden toestanden gemeten. De energie van de
toestanden wordt bepaald door de interacties in het molecuul. De berekeningen
uit hoofdstuk 3 zijn gebruikt om de energieniveaus van de toestanden te bereke-
nen. Vervolgens zijn de berekende energieniveaus vergeleken met de gemeten
energieniveaus.

In hoofdstuk 5 meten we een aantal bijzondere effecten, waarvoor we een
kwalitatieve verklaring hebben gevonden. Eén van die effecten is, dat we een ver-
mindering van het ionensignaal waarnemen, als er een gebonden toestand wordt
aangeslagen. In dat geval wordt er waarschijnlijk een vibratiemode in een “puur
lange-drachts” molecuul aangeslagen. In zo’n molecuul kunnen de atoomkernen
niet dicht bij elkaar komen. De kleinste afstand die ze bereiken is ongeveer 50
nm. Dat betekent dat ze niet dicht genoeg bij elkaar kunnen komen om te ionis-
eren en dat is de reden waarom ze waargenomen worden als een afname van het
ionensignaal.

In hoofdstuk. 6 tenslotte wordt het dynamische gedrag van de botsende atomen
bestudeerd. Ook in dit geval worden de atomen aangeslagen met laserlicht. In
de aangeslagen toestand maken de botsende atomen meer kans om het gebied
te bereiken waar ionisatie plaatsvindt. We hebben een model opgesteld om de
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ionisatie-waarschijnlijkheid te berekenen als functie van de kleur van het licht.
De uitkomsten van dit model worden vergeleken met gemeten waarden.

Samenvattend bestuderen we koude botsende He* atomen onder invloed van
licht. Daarbij worden verschillende processen bekeken, variërend van het aanslaan
van moleculaire toestanden tot het dynamische gedrag van botsende atomen. Alle
experimenten en bijbehorende analyses beschreven in dit proefschrift leveren in-
formatie op over de interacties tussen de koude He* atomen.
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