
 

 

GEOLOGICA ULTRAIECTINA 

Mededelingen van de 
Faculteit Geowetenschappen 

Universiteit Utrecht 
 

No. 228 
 
 
 
 
 

Reactivity of  Organic Matter and other 

Reductants in Aquifer Sediments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NIELS HARTOG 





 

 

Reactivity of  Organic Matter and other 

Reductants in Aquifer Sediments 

 

Reactiviteit van Organisch Materiaal en 

andere Reductoren in Aquifersedimenten 
 
 
 

(met een samenvatting in het Nederlands) 
 
 
 
 
 

PROEFSCHRIFT 
 

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van 
de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het 

College voor Promoties in het openbaar te verdedigen op woendsag 1 oktober 
2003 des morgens te 10:30 uur 

 
 
 
 
 
 
 
 
 
 
 

door 
 

Niels Hartog 
geboren op 14 april 1974 

te Zaandam 



 

Promotores:  Prof. C.H. Van der Weijden 
   Department of Geochemistry 
   Faculty of Earth Sciences 
   Utrecht University 
 
   Prof. J.W. de Leeuw 
   Department of Geochemistry 
   Faculty of Earth Sciences 
   Utrecht University 
 
 
 
Co-promotores: Dr. J. Griffioen 
   Groundwater 
   Netherlands Institute of Applied Geosciences–TNO 
   Utrecht 

 
   Dr. P.F. Van Bergen 
   Flow Assurance (OGUA) 
   Shell Global Solutions International 
   Amsterdam 
 
 
 
 
 
 
 
 
 
 
 
Under the auspices of the Interfaculty Centre for Hydrology Utrecht (ICHU), 
this research was conducted at the Department of Geochemistry, Faculty of 
Earth Sciences, Utrecht University, The Netherlands. The Netherlands Institute 
of Applied Geosciences (NITG–TNO) provided financial support for this study. 
 
Printing: Grafisch bedrijf Ponsen & Looijen, Wageningen, The Netherlands 
 
ISBN 90-5744-087-3



 

 

 
 
 
 
 
 
 

Voor Tjok 

 
 
 
 
 
 
 

Looking forward, 
All that I can see, 

Is good things happening 
to you and to me. 

 
I'm not waiting, 

For times to change. 
I'm going to live, 

Like a free-roamin' soul, 
On the highway of our love. 

 
(Neil Young−Looking Forward) 





 

 

 

 Table of  Contents 

 

 Dankwoord−Acknowledgements ............................................9 
 

 General Introduction ............................................................13 

1.1 Reduction Capacity of Aquifers ............................................................. 15 
1.2 Composition of Sedimentary Organic Matter ........................................ 17 
1.3 Reactivity of SOM in Groundwater Systems ......................................... 19 
1.4 Scope of this Study ................................................................................. 21 
1.5 Outline of this Thesis.............................................................................. 23 

 

 Fluidized-Bed Reactor to Study Physico-Chemical Kinetics in 

Heterogeneous Soils and Sediments .......................................31 

2.1 Introduction............................................................................................. 31 
2.2 Theoretical Background.......................................................................... 33 
2.3 Material and Methods............................................................................. 36 
2.4 Results and Discussion ........................................................................... 37 
2.5 Conclusions............................................................................................. 41 

 

 Distribution and Reactivity of O2-reducing Components in 

Sediments from a Layered Aquifer.........................................43 

3.1 Introduction............................................................................................. 43 
3.2 Materials and Methods ........................................................................... 44 
3.3 Results and Discussion ........................................................................... 48 
3.4 Implications for Field Studies................................................................. 61 

 

 Nitrate Reduction Potential of Aquifer Sediments: Role of 

Microbial Adaptation............................................................69 

4.1 Introduction............................................................................................. 69 
4.2 Material and Methods............................................................................. 70 
4.3 Results..................................................................................................... 75 
4.4 Discussion............................................................................................... 82 
4.5 Conclusions............................................................................................. 87 



 

 Reactivity of Organic Matter in Aquifer Sediments: Geological 

and Geochemical Controls .....................................................93 

5.1 Introduction............................................................................................. 93 
5.2 Geological setting ................................................................................... 94 
5.3 Materials and methods............................................................................ 95 
5.4 Results................................................................................................... 100 
5.5 Discussion............................................................................................. 112 
5.6 Conclusions........................................................................................... 119 

 

 Hydrogeological Controls on the Reactivity of Organic Matter 

and other Reductants in Aquifer Sediments ..........................127 

6.1 Introduction........................................................................................... 127 
6.2 Site Description .................................................................................... 129 
6.3 Materials and Methods ......................................................................... 132 
6.4 Results................................................................................................... 135 
6.5 Discussion............................................................................................. 142 
6.6 Conclusions........................................................................................... 151 

 

 Synthesis ............................................................................159 

7.1 Introduction........................................................................................... 159 
7.2 Reactivity of Sedimentary Reductants ................................................. 160 
7.3 Molecular Composition and Reactivity of SOM.................................. 162 

 

 Samenvatting......................................................................167 

Introductie ..................................................................................................... 167 
Reactiviteit van Sedimentaire Reductoren .................................................... 168 
Moleculaire Samenstelling en Reactiviteit van SOM ................................... 171 

 

 Curriculum vitae .................................................................173 

 

 



 

 9

 Dankwoord−Acknowledgements 
Dankwoord−Acknowledgements 

Míjn proefschrift, één naam op de voorkant. Dit promotieonderzoek had ik 

echter niet in m’n eentje kunnen volbrengen. In dit ongetwijfeld meest gelezen 

onderdeel van m’n proefschrift wil ik daarom hen bedanken die op de bühne en achter 

de schermen hebben bijgedragen aan de totstandkoming van dit proefschrift. 

• Allereerst mijn promotoren Kees van der Weijden en Jan de Leeuw die mij de 

mogelijkheid gaven vernieuwend onderzoek te doen op het grensvlak van 

chemische hydrogeologie en organische geochemie. Jan was een grote 

inspiratiebron voor nieuwe ideeën, terwijl Kees ervoor zorgde dat ik oog bleef 

houden voor details. Bedankt voor jullie vertrouwen over de manier waarop ik het 

onderzoek naar eigen inzicht invulde. In roerige tijden bleven jullie aansturen op 

het hoofddoel: “proefschrift af”. 

• De levendige discussies met Jasper Griffioen en Pim van Bergen waren de 

drijvende kracht achter het analyzeren, interpreteren en opschrijven van de 

resultaten. Ik hoop dat ik iets van hun manier van wetenschappelijk werken heb 

kunnen overnemen. Jasper’s kritische houding kwam goed van pas bij het ziften 

van al te wilde ideeën, hierdoor kon het proefschrift afkomen. Als newby in de 

organische geochemie kon ik niet zonder het geduld van Pim. Jouw aanstekelijke 

enthousiasme wetenschappelijke doelgerichtheid maakten dat het onderzoek leuk 

bleef. 

• For critically reading and judging the final draft of this thesis I am grateful to the 

members of the thesis committee: Dieke Postma, Michael Barcelona, Peter 

Burrough, Philippe Van Cappellen and Stefan Schouten. 

• Ik dank Herco van Liere en Hugo van Buijsen van TNO-MEP die het mogelijk 

daar mijn oxymax experimenten uit te voeren. 

• Michiel Kienhuis en Elda Panoto hebben mij op voortreffelijke wijze geholpen bij 

de pyrolse GC/MS metingen. Dankzij hen, en de anderen op de afdeling Mariene 

Biochemie en Toxicologie van het NIOZ, heb ik me daar drie keer een week thuis 

gevoeld. 



 

• I am grateful to Polish MSc student Artur Kawicki for working hard and accurate 

on the determination of the relationship between mineral surface area and organic 

carbon content. Thanks again for bringing those bottles of Zubrowka. 

• Dank aan Marjan Reith en Paul Anten van het Sedimentologisch Lab voor het 

verrichten van korrelgrootte analyses. Ook de analytische inzet van Arnold van 

Dijk, Dineke van de Meent, Erik van Vilsteren en Helen de Waard van het 

Geochemisch Lab hebben gegevens gegenereerd die cruciaal waren voor dit 

proefschrift. Het enthousiasme en de praktische know-how van Pieter Kleingeld 

waren onmisbaar bij ontwikkelen van de fluidized-bed reactoren. 

• Boris van Breukelen en Kay Beets van de Vrije Universiteit in Amsterdam 

werkten mee aan een nieuwe techniek om gehaltes aan ijzerhoudende carbonaten 

vast te stellen. Ik hoop dat we daar in de toekomst nog verder aan kunnen werken. 

• Georg Houben for interesting discussions on the reactivity of aquifer sediments 

and for offering assistance in quantifying ferrous iron bearing carbonates. 

• Geen onderzoek zonder monsters. Hartelijk dank dus aan Harry Timmer van 

waterleiding bedrijf Zuid-Holland Oost (Langerak) en aan Kees van Beek van het 

KIWA (’t Klooster) voor het beschikbaar stellen van aquifer materiaal. 

• Hans Huisman en Gerard Klaver wekten mijn enthousiasme voor wetenschappelijk 

onderzoek tijdens mijn afstudeerstage bij de toenmalige RGD (1996). Ook tijdens 

mijn promotieonderzoek kon ik bij hen en andere medewerkers van TNO-NITG 

terecht, waarvoor hartelijk dank. 

• Ik denk met veel plezier terug aan gezellige momenten beleefd met de collega’s 

van de projectgroep Geochemie. Deze presenteerde zich vooral tijdens pauzes in 

de koffiehoek, maar ook door het gezamelijk gaan klimmen (Diana, Yvonne en 

Pierre). Vooral met Gernot kon ik het over onderzoek, aio-frustraties en van alles 

en nog wat hebben. Verder heb ik het getroffen met m’n kamergenoten met wie 

het vanaf de eerste dag klikte, allereerst met Gerben (Counseling Sessions), daarna 

met Mariëtte, Anja (Dames, bedankt voor de vele koppen thee) en petit Laurent. 

• Niet aan je onderzoek denken is soms moeilijk. Daarom bedank ik alle vrienden, 

de leden van Iets Blauws en huisgenoten voor de broodnodige lol en afleiding. 



 

 11

• Mijn ouders en mijn zus: jullie niet aflatende belangstelling en het rotsvaste 

vertrouwen in alles wat ik doe zijn een enorme steun in de rug is geweest. 

• Tjok. 





 

 13

 General Introduction 
General Introduction 

Groundwater is a major source for our drinking, industrial, and agricultural 

water needs worldwide. However, contamination of aquifers with organic and 

inorganic compounds threatens the long-term value and exploitation of groundwater 

resources. Detailed knowledge of factors that control the fate of groundwater 

contaminants is therefore of great importance. The strong influence of groundwater 

oxidation state on the fate of contaminants is well known. For example, chromium and 

uranium are soluble (mobile) under oxidizing conditions (Blowes, 2002; Senko et al., 

2002). In contrast, reducing conditions keep iron and manganese in solution by 

preventing the precipitation of their insoluble hydroxides at neutral pHs (Appelo and 

Postma, 1993). The fate of organic contaminants in groundwater is particularly 

dependent on the oxidation state of groundwater, since carbon occurs in a wide range 

of oxidation numbers (IV to -IV). For example, chlorinated solvents are more 

degradable under reducing conditions, while aromatic compounds (e.g. BTEX) are 

more degradable in oxic groundwaters (Bradley et al., 1998; Nielsen et al., 1995; 

Schreiber and Bahr, 1999; Skubal et al., 2001). Aim of this thesis is to contribute to 

the knowledge of how reactive components in aquifer sediments affect the oxidation 

state of groundwater. The oxidation state of groundwater is controlled by 

thermodynamic imbalances that drive reduction-oxidation (redox) reactions during 

which electrons are transferred from a reductant (electron donor) to an oxidant 

(electron acceptor). 

Chromate (CrO4
-) and chlorinated hydrocarbons (e.g. TCE) are examples of 

contaminants with oxidizing properties (Fig. 1.1). Oxygen, nitrate and sulfate are the 

major oxidants in pristine groundwater. Besides these dissolved oxidants, solid iron 

and manganese oxides are important sediment-associated oxidants (Fig. 1.1). 

Reductants present in the aquifer consume these oxidants sequentially along a 

groundwater flow path in an order that mainly depends on their relative oxidation 

potential (Fig. 1.1). Consequently, dissolved oxygen initially present in shallow 

groundwater is removed at depth by naturally occurring biogeochemical processes, 
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leading to aquifers that are free of oxygen (anoxic). Only under sufficiently depleted 

oxygen concentrations, the reductive transformation of nitrate (NO3) to dinitrogen 

(N2) gas occurs (Hiscock et al., 1991; Korom, 1992; Tiedje, 1988). This process, 

known as denitrification, involves a multitude of intermediate electron transfer steps 

(Fig. 1.2). Commonly, denitrification in groundwater is coupled to the oxidation of 

sediment-associated reductants, such as pyrite (Böhlke and Denver, 1995; Kelly, 

1997; Postma et al., 1991) and organic matter (Bengtsson and Bergwall, 1995; 

Obenhuber and Lowrance, 1991; Smith et al., 1991; Trudell et al., 1986). 

 

Figure 1.1 Oxidant sources and sequence of reduction reactions in groundwater: aerobic 
respiration, NO3-reduction, Mn-reduction, Fe-reduction, SO4-reduction and 
CO2-reduction (methanogenesis). Solid lines represent predominant sources. 
Dashed lines indicate additional sources. 

 

Redox processes are generally mediated by microbes that derive energy from 

the transfer of electrons. The amount of dissolved organic matter in most pristine 

groundwaters (<1 mg C/l) is too small and recalcitrant to create oxidant-depleted 

conditions (Aiken, 1985; Frimmel, 1998; Pettersson et al., 1994; Thurman, 1985). 

Only when easily degradable organic compounds are excessively present (e.g. landfill 
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leachate, petroleum spills), oxidant-limited conditions may occur. Otherwise, 

microbial metabolism is inherently limited by the availability of organic substrate or 

other potential reductants (Chapelle, 2000). Thus, while the sequence of oxidant 

consumption depends largely on their relative oxidative strength, the reactivity of 

reductants dominantly controls the rate of oxidant consumption. Therefore, to 

understand and predict the direction and magnitude of redox-related changes in the 

chemistry of both contaminated and pristine groundwater systems, detailed knowledge 

on the factors that control the reduction capacity of aquifers is essential. 

 

 

Figure 1.2 The range in oxidation states of nitrogen. Denitrification involves the transfer of 
electrons during the reductive transformation of nitrate-N (V) to harmless 
dinitrogen (0) gas. Ammonium-N (-III) is the most reduced form of nitrogen and 
is the end product of dissimilatory nitrate reduction (Tiedje, 1988). 

1.1 REDUCTION CAPACITY OF AQUIFERS 

The reduction capacity of aquifer sediments determines the extent to which 

natural attenuation of contaminating oxidants such as chromate or nitrate occurs (Fig. 

1.1). In addition, it negatively affects the efficiency during the remediation of 

reducing contaminants (e.g. petroleum), since sedimentary reductants will compete for 

injected oxidants (Baker et al., 2000; Barcelona and Holm, 1991; Broholm et al., 

2000; Heron and Christensen, 1995; Nelson et al., 2001; Schäfer and Kinzelbach, 

1996; Schreiber and Bahr, 1999). 
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Figure 1.3 The incorporation of sedimentary organic matter (SOM) during sediment 
deposition and subsequent diagenetic SOM oxidation processes. Aerobic 
oxidation and denitrification results in a loss of sediment reduction capacity. 
During manganese and iron reduction, the precipitation (↓↓↓↓ ) of mineral 
reductants retains sedimentary reduction capacity derived from SOM. Based on 
an illustration by Karen Hart. 

 

To understand the reduction capacity of aquifer sediments, knowledge of the 

amount, type and reactivity of sedimentary reductants present is crucial. Sedimentary 

organic matter (SOM) and a range of minerals that contain reduced sulfur, iron or 

manganese are potentially reactive in aquifers. For example, the anaerobic degradation 

of labile SOM during early sediment diagenesis components may drive the 

precipitation of pyrite (FeS2), siderite (FeCO3) or other mineral reductants (Berner, 

1971). Therefore, the occurrence of these diagenetic processes affects the nature of the 

reduction capacity of aquifer sediments (Fig. 1.3). These secondary reductants are 

generated at the expense of labile SOM components (Berner, 1971; Sagemann et al., 



General Introduction 
 

 17

1999). The composition of SOM is thus a critical control in determining the nature of 

the reduction capacity of sedimentary aquifers, as it 1) influences the reactivity of 

SOM as a reductant and 2) controls the importance of mineral reductants that were 

formed during early diagenesis. 

1.2 COMPOSITION OF SEDIMENTARY ORGANIC MATTER 

The importance of SOM as a reductant in the redox chemistry of groundwater 

systems is long known (Freeze and Cherry, 1979; Johns, 1968; Plummer, 1977; 

Thornstenson and Fisher, 1979), but its molecular composition is still largely 

unexplored. Consequently, SOM in aquifers is generally referred to in ill-defined 

terms such as refractory, humic, amorphous or kerogen, without molecular 

verification of its nature. To date, research on the composition and degradation of 

organic matter has primarily focused on soils and marine surface sediments, 

environments that are significantly richer in organic matter than sandy aquifers (Fig. 

1.4). As a result, numerous comprehensive books and thorough reviews on the nature 

of organic matter are available, mainly in the context of soil fertility, climate 

reconstruction and hydrocarbon source rock potential (e.g. Hedges and Oades, 1997; 

Stevenson, 1994; Tissot and Welte, 1984; Tyson, 1995). 

The predominant source of SOM is the burial of primary biomass with 

accumulating sediment (Tyson, 1995). Plant and microbial biomass consist of 

complex organic mixtures and the relative abundances of organic compounds vary 

with biomass type (Kogel-Knabner, 2002). Therefore, the compositional variation of 

SOM reflects to some extent differences in the composition of the biomass source. 

Marine phytoplankton is a considerable source for amino acids and short-chain lipids 

(Camacho-Ibar et al., 2003; Grossi et al., 2001; Sun et al., 2002), while land plants are 

predominantly composed of the carbohydrate-based macromolecules. In addition, 

higher plants contain lignin compounds that provide strength to support tree trunks 

and branches and comprise 5–30 % of dry biomass. These heterogeneous 

polyphenolic macromolecules are specific for higher land plants and thus act as 

biomarkers for a terrigenous SOM origin (Hedges and Oades, 1997; Tyson, 1995). 
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Although the initial composition of SOM strongly reflects the composition of 

the biomass source, oxidation reactions alter the composition of SOM during and after 

burial (Fig. 1.3). Most of buried SOM (63–98%) does not survive beyond early 

diagenesis (Tyson, 1995). In particular, the mineralization of labile compounds such 

as plankton-derived amino acids is faster than of macromolecular compounds such as 

lignin (Cowie and Hedges, 1992; Cowie et al., 1992; Henrichs, 1993; Tegelaar et al., 

1995). Consequently, SOM degradation rates in soils and marine sediments range in 

orders of magnitude, depending on the reactivity of the compounds present (Henrichs, 

1993; Kogel-Knabner, 2002).  

The mineralization rate of organic matter partly depends on oxidant type. 

Studies have indicated that the rates for aerobic and anaerobic degradation of labile 

organic compounds are similar (Henrichs and Reeburgh, 1987; Lee, 1992). However, 

recalcitrant organic components such as lignin or macromolecular aliphatics degrade 

much faster under aerobic than under anaerobic conditions (Canfield, 1994; Hulthe et 

al., 1998; Kristensen and Holmer, 2001). The chief explanation for these observations 

is that during aerobic degradation, oxygen not only functions as an oxidant, it also 

serves as a co-substrate for enzymes (oxygenases) that aid the oxidation of recalcitrant 

aromatic and aliphatic compounds. As a result of the lack of these oxygenases, 

anaerobic degradation proceeds through less efficient pathways, such as benzoyl-CoA 

metabolism (Harwood et al., 1999). 

For an assessment of the overall potential reactivity of SOM, its bulk 

composition must be characterized. While several analytical techniques are available 

(Kögel-Knabner, 2000), common elemental analysis is not sufficiently specific to 

cover the wide range of organic compounds present. In addition, the abundance of 

macromolecular compounds in biomass (Kogel-Knabner, 2002) makes SOM 

unavailable to any direct analytical approach (Saiz-Jimenez, 1994). 13C NMR 

spectroscopy and other spectroscopic techniques are now widely used for the chemical 

characterization of SOM (Kögel-Knabner, 2000). These techniques provide 

information about the nature of carbon environments such as functional groups or 

aromaticity, and the non-destructiveness and the lack of major pretreatment 
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requirements are big advantages for samples. However, the low organic matter 

contents and the presence of Fe-bearing paramagnetic compounds limit their 

applicability of SOM in aquifer sediments. Furthermore, these techniques do not 

provide information on the molecular associations of SOM. Pyrolysis is a powerfull 

thermal degradation technique that allows the characterization of the building blocks 

of complex macromolecular organic matter when coupled to gas chromatograph and 

mass spectrometer (Py-GC/MS). It is frequently used to characterize the bulk 

composition of organic matter in both soils and sediments (Chiavari et al., 1994; 

Kögel-Knabner, 2000; Levy, 1966; Saiz-Jimenez, 1994; Saiz-Jimenez and De Leeuw, 

1986). Although several pitfalls exist, it is currently the main technique available for 

the molecular bulk characterization of complex SOM (Chiavari et al., 1994). 

1.3 REACTIVITY OF SOM IN GROUNDWATER SYSTEMS 

Rates of SOM oxidation in aquifer sediments are several orders of magnitude 

lower than observed in environments that recurrently receive fresh organic matter, 

such as marine surface sediments (Chapelle and Lovley, 1990; Jakobsen and Postma, 

1994). In groundwater systems with an ample, continuous supply of fresh labile 

organic matter (e.g. land-fill leachate), the availability of oxidants commonly limits 

organic matter degradation rates (Chapelle, 2000). In addition, environmental 

conditions, such as nutrient level, temperature or acidity potentially control microbial 

activity (Atlas and Bartha, 1998). 

A number of studies have shown that not the addition of nitrate but the addition 

of a labile carbon source, such as glucose, significantly increased denitrification rates 

in groundwater systems (Bengtsson and Bergwall, 1995; Bradley et al., 1992; Hill et 

al., 2000; Obenhuber and Lowrance, 1991; Smith and Duff, 1988; Starr and Gillham, 

1993). This indicates that neither microbial activity nor the amount of oxidants is rate 

limiting and supports the general idea that the availability of SOM controls the rate of 

its degradation in aquifer sediments. 
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Figure 1.4 Cross plot of total organic carbon versus specific surface area of the mineral 
phase. A preliminary study (unpublished results) at the ‘t Klooster site (Fig. 1.5) 
provided the data for the aquifer sands. Data for marine clay is taken from a 
study on black shale (Kennedy et al., 2002). Clay aquitard data are taken from a 
study on four different aquitards (Allen-King et al., 1995). All specific surface 
areas (SSA) were determined by sorption of ethyl-glycol monoethyl (Churchman 
et al., 1991). 

Both its accessibility (physical) and degradability (chemical) potentially control 

the availability of SOM in aquifer sediments. Physical limitations on its reactivity 

occur at a grain scale when particle–organic compound interactions protects a part of 

the organic matter against microbial degradation. Studies have indicated a relationship 

between SOM availability and sorption to mineral surfaces in both marine clay 

sediments (Keil et al., 1994; Mayer, 1994a; Mayer, 1994b; Mayer, 1999) and soils 

(Chorover and Amistadi, 2001; Salmon et al., 2000; Sollins et al., 1996). In 

groundwater systems, it has been shown that microbes in clay aquitards are unable to 

mineralize the SOM present due to pore size restrictions (Chapelle and Bradley, 1996; 

Chapelle and Lovley, 1990; McMahon and Chapelle, 1991). In a preliminary study, a 

positive relationship was found between the specific surface area and total organic 
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carbon contents of aquifer sands (Fig. 1.4, unpublished results). While considerable 

scatter in the data exists, the general trend compares favorably with data for clayey 

sediments (Allen-King et al., 1995; Kennedy et al., 2002). Therefore, the interaction 

of SOM with mineral surfaces may decrease its availability in aquifer sediments. 

Alternatively, SOM may be chemically refractory towards oxidation. From 

studies on organic matter in soils and marine sediments, it is generally recognized that 

its reactivity decreases with continuing degradation. More precisely, the most labile 

compounds are consumed at a higher rate, resulting in an overall decrease of SOM 

reactivity with time. Built on this notion, several descriptive models have incorporated 

SOM fractions with different reactivities to account for the decreasing reactivity of 

SOM with time (Berner, 1980; Middelburg, 1989). However, these fractions are 

arbitrary and no tools exist to assess the size and reactivity of these different kinetic 

pools (Almendros and Dorado, 1999; Gleixner et al., 2002). 

1.4 SCOPE OF THIS STUDY 

This thesis focuses on the role of SOM as a reductant in aquifer sediments. 

Using pyrolysis-GC/MS, the molecular composition of SOM is characterized and the 

controls on its reactivity are assessed. 

As stated earlier, SOM generally co-occurs and is frequently even closely 

associated with other sedimentary reductants in aquifer sediments. Therefore, the 

relative contribution of SOM to oxidant consumption during sediment oxidation 

depends on the reactivity of other reductants present. The amounts of these reductants 

present depend on the diagenetic history and provenance of the sediment. For 

example, pyrite and Fe(II)-bearing glauconite are commonly formed in marine 

depositional environments, while siderite is predominantly formed in terrestrial 

settings (Berner, 1971; Postma, 1982). While the reactivity of SOM in aquifers is 

either chemically or physically controlled, the oxidation of these reductants under pH-

neutral conditions is mainly determined by surface oxidation kinetics. Therefore, the 

precipitation of metal hydroxide on mineral surfaces is an impediment that controls 

their reactivity (Nicholson et al., 1990; Postma, 1983; Postma, 1990). The co-
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occurrence of several potentially reactive sedimentary reductants in aquifer sediments 

complicates the isolated study of SOM reactivity upon exposure to oxidants. 

Therefore, the separation of and the controls on the contributions of various reductants 

to the reduction capacity of aquifer sediments is another aim of this study. 

Aquifer sediments from two drinking water production sites were studied (Fig. 

1.5). The Langerak site is located in the central part of the Netherlands. Here, a 

confined sedimentary aquifer is recharged with water from the River Lek. Proposed 

future induced riverbank infiltration will increase the oxidant loadings of NO3 and O2. 

The site ‘t Klooster is located in the eastern part of the Netherlands. Here, knowledge 

on the reactivity of aquifer sediments is particularly important as the excessive use of 

agricultural fertilizers on sandy soils cause elevated nitrate concentrations in shallow 

groundwater (Fraters et al., 1998; Hefting and de Klein, 1998; Pomper, 1989; 

Reijnders et al., 1998; van Beek et al., 1994; van Beek and Vogelaar, 1998). 

 

Figure 1.5 Location of the Langerak (1) and ‘t Klooster (2) aquifers in the Rhine–Meuse 
delta. The Langerak site is located along the River Lek. The ‘t Klooster site is 
located in between the River Rhine and River Ijssel. Dotted line represents the 
Dutch national boundary. 
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1.5 OUTLINE OF THIS THESIS 

This chapter serves as an introduction for the following research chapters. 

Chapter 2 describes the design and development of a fluidized-bed reactor for 

anaerobic biogeochemical sediment incubations; the developed fluidized-bed reactor 

was tested during denitrification experiments described in Chapter 4. In Chapter 3, 

sediments from the Langerak aquifer were characterized for the presence and 

reactivity of potential reductants. The reactivity towards oxygen was determined 

during sediment incubations. A method is developed to discriminate between 

contributions from SOM, pyrite and siderite oxidation based on CO2/O2 ratios and 

sulfate production. This method is also applied for the sediment incubations describe 

in Chapters 5 and 6. In Chapter 4, the nitrate reduction potential of anaerobic 

sediments from the Langerak aquifer is assessed using fluidized-bed (Chapter 2) and 

batch reactor experiments. The geochemical and microbial controls on denitrification 

are discussed. 

Chapter 5 describes the molecular composition of SOM in aquifer sediments 

selected from a marine and fluvio-glacial formation at the Klooster site. Molecular 

indications on the degradation status of SOM are linked with the reactivity of SOM as 

observed during aerobic incubation experiments. Chapter 6 discusses the molecular 

composition of SOM in different geological formations at the Klooster site. The 

controls on SOM preservation as well as the presence of pyrite and ferroan carbonates 

in aquifer sediments at this site are assessed. The controls on the reduction capacity 

and on the contributions of various reductants are discussed using aerobic sediment 

oxidation experiments. Lastly, Chapter 7 provides a synthesis of the thesis, in which 

the main findings are summarized and discussed, and where implications and future 

research directions are considered. 
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 Fluidized-Bed Reactor to Study Physico-Chemical 

Kinetics in Heterogeneous Soils and Sediments     

Fluidized-Bed Reactor 

2.1 INTRODUCTION 

Chemical reactivity assessments of unconsolidated geosolids as sediments or 

soils (hereafter sediments) are typically performed by batch or column experiments. 

Within well-mixed batch reactors fluid and solids interact in a homogeneous 

suspension, while within column reactors the packed solid matrix interacts with the 

passing fluid. The main disadvantage of the batch reactor type is the build-up of 

reaction products and depletion of reactants. This transient state of chemical 

conditions complicates the assessment of kinetic controls (Chou and Wollast, 1984). 

Column experiments come closest to simulating hydrogeochemical processes under 

natural flow conditions. However, chemical gradients across the column and 

physically controlled kinetics, such as inter-aggregate and film diffusion, complicate 

the assessment of chemical reaction kinetics during column experiments. 

Fluidized-bed reactors are a hybrid of column and batch reactors, in that 

aqueous chemical conditions can be kept constant while maintaining a well-mixed 

system and minimizing physical control on reaction kinetics. Unlike batch reactors, 

however, used, fluidized-bed reactors have been used rarely for sediment reactivity 

experiments. Some applied the fluidized-bed technique in weathering studies using 

particles with narrow grain size ranges (Chou and Wollast, 1984; Postma, 1990; van 

Hees et al., 2002), while (Griffioen, 1999) performed fluidized-bed experiments on 

aquifer sediments to study the biodegradation of organic contaminants. 
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Here, fluidization is defined as the suspension of grains by a sufficiently fast 

upward flow through a granular bed (e.g. Leeder, 1982; Viessman and Hammer, 

1998) and occurs when the upward flow velocity in the reactor overcomes the 

gravitational force on the solid grain particles (Fig. 2.1). Fluidized-bed reactors are 

widely used in chemical and biological engineering for chemical and physical 

production or treatment processes. In these reactors, the carrier or sorbent particles 

used are typically of uniform size and density. Therefore, the wide range of particle 

sizes and densities in natural sediments is an important difference with most industrial 

applications of fluidization. 

Vf≤≤≤≤Vf-min Vf-min≤≤≤≤Vf<Vg

DBE=1

DBE=2

 

Figure 2.1 Conceptual Fluidized-Bed Reactor containing uniform particles. Degree of Bed 
Expansion (DBE) as related to upward flow velocity (Vf). 

 

Not only do sediment particles exhibit a variety of particle sizes and densities, 

they also differ in physico-chemical reactivity. While in batch experiments all 

particles are retained within the reactor, fluidization can result in the loss of particles 

from the reactor. Minimization of particle loss due to elutriation is therefore important 
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to prevent bias of experimental results. Additionally, reduction of particle elutriation 

may prevent technical problems due to clogging of tubing or filters. 

Here, the hydrodynamical behavior of sandy sediments is studied during 

fluidization to determine how fluidized-bed reactors can be used in biogeochemical 

kinetic experiments. An experimental fluidized-bed reactor is designed and built 

considering specifically both the wide range in hydrodynamic behavior of sediment 

particles and experimental requirements. 

 

 

Figure 2.2 Nomograph of settling velocities (m/s) as a function of particle size and density 
according to Stokes’ law (Eq. 2.1). Lines represent equal settling velocities 
according to Equation 2.2. Reynolds’ number <1 correspond roughly to settling 
velocities below 0.01 m/s. As an example, common sedimentary particles with 
various densities and sizes (Table 2.1) are plotted for an equal settling velocity of 
0.001 m/s. Symbol size represents relative linear diameter. Shaded area 
represents an example range of the particles that can be fluidized by the reactor 
designed. 

2.2 THEORETICAL BACKGROUND 

Settling velocity is the main particle characteristic that determines its behavior 

during fluidization. Sediment particles exhibit a variety of particle sizes and densities, 

resulting in a wide range of settling velocities (Fig. 2.2). Stokes’ law describes the 

dependency of unhindered terminal particle settling velocities (Vg) on the basis of 

their diameters (dp in m) and densities (ρp in kg/m3) under laminar flow conditions: 

µ

gd
V wpp

g
18

)(2 ρρ −
=       Equation 2.1 
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where ρw is the density of water, µ is the dynamic viscosity of water (1 mPa.s) and g 

the gravitational acceleration (9.81 m/s2). 

Table 2.1 According to Stokes’ law, these examples of quartz and potentially redox-
reactive sedimentary particles have a settling velocity of 1 mm/s and illustrates 
the interaction between density and particle size, as shown in Figure 2.4. Density 
data obtained from (Tyson, 1995). 

Species Density 
(Kg/m3) 

Particle Diameter 
(µm) 

Settling Velocity 
(mm/s) 

Pollen 1100 135 1 
Jet 1300 78 1 

Anthracite 1600 55 1 
Quartz 2650 33 1 
Pyrite 4800 22 1 

 

On the basis of Stokes’ law, particles of different densities and size have 

identical settling velocities (Fig. 2.2) when: 

2

1

2

2

1






=

−
−

d
d

w

w

ρρ
ρρ       Equation 2.2 

where subscript 1 and subscript 2 refer to particle type 1 and 2, respectively. 

When the Reynolds number ( µdV pwgρ ) increases above 1, the error in the 

absolute value of calculated settling velocities increases, owing to turbulent effects. 

Additionally, Stokes’ law does not account for effects of shape and roughness. 

Nevertheless, Stokes’ law-like behavior has been observed for settling porous 

sediment aggregates with a Reynolds number up to 11 (Van der Lee, 2000; Wu and 

Lee, 1998). 

Under laminar flow conditions, Stokes’ law is used directly to describe either 

settling or fluidization behavior of a sufficiently isolated particle. However, the 

physical interaction of neighboring particles in a fluidized-bed results in a loss of 

kinetic energy. Moreover, the particle concentration in the bed affects the space for 

the upward fluid to flow through and thus influences the effective flow velocity. 

Therefore, the minimum flow velocity (Vf-min) required to fluidize a certain set of 

particles depends on porosity (ε) as follows; 

g
nVV ε=− minf        Equation 2.3 

where n is a function of particle characteristics and flow regime as described in 

engineering textbooks or specialized publications (e.g. Godard and Richardson, 1969; 
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Richardson and da S. Jeronimo, 1979; Viessman and Hammer, 1998). For the 

practical purpose of this study we assume Stokes’ law and porosity only (i.e. n=1, Eq. 

2.3). 

2.2.1 Geo-scientific Applications of Fluidized-bed Reactors 

Resuspension of sediment and intense mixing within the water column occurs 

in deltaic and continental systems. These natural dynamic conditions resemble those 

of fluidized-bed reactors and result in the efficient mineralization of sedimentary 

organic matter (Aller, 1998; Aller et al., 1996). Therefore, fluidization is not only a 

valuable experimental technique. It has also the potential to simulate the specific 

physico-chemical conditions during intense reworking, re-suspension and liquefaction 

of sediments. 

Fluidized-bed reactors have been applied for various environmental and 

geochemical research purposes. Most studies have used such reactors mainly in the 

context of wastewater engineering because the high degree of mixing of the water and 

solid phase minimizes physical limitations and favors microbial growth processes. For 

example, a fluidized-bed reactor allows high substrate loadings to enrich slow 

growing solid-phase-associated biomass on sparingly soluble polyaromatic 

hydrocarbons (Rockne and Strand, 1998). Furthermore, during the bioremediation of 

contaminated water the recirculation of the water phase may dilute the influent 

contaminant concentration below a toxic level that allows its degradation (Langwaldt 

and Puhakka, 2000). Abiotic studies used fluidized bed reactors to study mineral 

dissolution to enable the maintenance of a constant undersaturation in the aqueous 

phase with respect to the mineral under study (Chou and Wollast, 1984). The control 

of pH on dissolution kinetics was tested by the possibility of instantly changing the 

acidity of the influent without disturbing the solid phase. Clearly, the use of a 

fluidized-bed reactor enables to evaluate the effect of various chemical conditions on 

the (bio)geochemical process of interest, by an instant change of the influent 

composition without manipulation of the solid phase. 

An alternative application of sediment fluidization is hydrodynamic separation. 

Hydrodynamic separation of fine sediments fractions has been achieved using 
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SPLITT-fractionation (Contado et al., 1997; Keil et al., 1994). Unfortunately, this 

technique is not applicable for coarser (> 100µm) size fractions due to technical 

limitations. Hydrodynamic separation of coarser grained particles can be achieved by 

a sequence of widening elutriation columns (Nicholas and Walling, 1996; Walling and 

Woodward, 1993). Alternatively, fluidization is used for hydrodynamic separation as 

show for binary particle mixtures (Rasul et al., 2000) and offers the advantage that 

flow velocity is a continuous variable. 

2.3 Material and Methods 

Grain size fractions of crushed silicate rock, taken from a previous study on the 

dissolution kinetics of olivine (Jonckbloedt, 1998), were obtained by wet-sieving 2 kg 

of sand for 20 min, using 20 cm diameter sieves and a sieve machine (Retsch Vibro). 

The sieved fractions were subsequently ultrasonically treated to remove adhering 

fines. Grain size distributions of the particle fractions and sediments were determined 

with a Laser Particle Sizer (Malvern Series 2600). 

Fluidization experiments were performed with different size fractions of 

silicate sand (Table 2.1). The particles had a packed porosity of 0.39 and a density of 

2.9 kg.m-3 as determined using standard techniques (Goudie, 1990). Experiments were 

performed in graded glass columns of 30 cm height (internal ∅  5.7 cm) with a bottom 

glass filter to evenly distribute the upward water flow from a water faucet. Velocity 

measurements were determined using a stopwatch. 

Elutriation experiments were performed using the graded class columns 

described above. After each experiment, elutriates and residues were collected after 

which their particle size distributions were determined. A 1:1 weight mixture of the 

63–150 and the 150–500 µm sieve fractions served as starting material. This mixture 

was exposed to the upward flow velocity (1.6 cm/s) that was required to totally 

elutriate the 63–150 µm sieve fraction. The collected elutriate of this mixture at this 

flow velocity was exposed to a halved upward flow velocity of 8 mm/s. In addition, a 

sample taken from a sandy soil in the eastern part of the Netherlands was exposed to 

this upward flow velocity.  
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Figure 2.3 Behavior of the particle size fractions 63–150 µm, 150–500 µm, 500–2000 µm 
and >2000 µm during fluidization experiments. Solid lines represent the 
predicted behavior using Stokes’ law (Eq. 2.1). Dashed lines represent the 
predicted behavior using the empirical model developed by (Gibbs et al., 1971). 
Both predictions were corrected for porosity using Equation 2.3. Porosity of 0.39 
at DBE=1, density 2900 kg/m3. 

2.4 RESULTS AND DISCUSSION 

Sieve fractions of crushed silicate rock were used to study the hydrodynamic 

behavior of sediments during fluidization. Firstly, the relation between upward flow 

velocity (Vf) and the degree of bed expansion (DBE, Fig. 2.1) is discussed. Secondly, 

the relation between upward flow velocity and the elutriation of particles is assessed. 

Finally, the design of the fluidized-bed reactor is presented. 

2.4.1 Fluidization Behavior of Sieved Particle Size Fractions 

The increase of upward flow velocities resulted in a smooth progressive 

expansion of the bed for the two finest fractions (Fig. 2.3). This indicated 

homogeneous fluidized-bed conditions during the fluidization experiments. The 
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minimum upward effective flow velocities through the bed needed for fluidization of 

the 63–150 µm fraction is similar to the settling velocity of their finest end member as 

predicted by Stokes’ law (Eq. 2.1). With increasing flow velocities, the Reynolds 

number increases and Stokes’ law is no longer valid. Therefore, the fluidization 

velocity of the 150–500 µm particle sieve fractions is better described by an empirical 

relationship derived for silicate-density particles by (Gibbs et al., 1971). Fluidization 

of the two coarsest fractions required very turbulent flow conditions and these 

fractions could not be stably fluidized under the experimental conditions. 

The elutriation experiments performed on the silicate sand fraction and a 

natural soil sample showed that, at a certain upward flow velocity, the finest particles 

are are flushed out of the column while keeping a range of larger sized particle 

fluidized (Fig. 2.4). At an upward flow velocity of 16 mm/s, the sieve fraction 63–150 

µm was completely flushed out of the column. When exposing the 63–500 µm 

mixture (Fig. 2.4a) to the same upward flow velocity the particle size distributions of 

the resulting elutriated and residual fractions were very similar to that of the original 

63–150 µm and 150–500 µm sieve fractions (Fig. 2.4b). 

When the particle fraction elutriated at 16 mm/s and the bulk soil was exposed 

to an upward flow velocity of 8 mm/s, particles with an average size of 100 µm were 

flushed out in both samples (Fig 4c). The particle size distribution of the elutriated 

material was very similar in both samples, considering the differences in material 

composition. The particle size distributions of both residue fractions were dissimilar. 

This is mainly due to the presence of coarser particles in the original soil sample. 

The elutriation experiments show that the technical challenge of fluidizing a 

complete sediment sample is to keep the heavier and larger particles fluidized while 

preventing the lighter and smaller particles to escape the fluidized-bed column. A 

practical solution to this problem is to decrease the upward flow velocity in the upper 

part of the column by increasing the cross-sectional area of the column. For example, 

doubling the internal diameter of the reactor produces a four-fold increase in its cross-

sectional area and a similar reduction in upward flow velocity. 
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Figure 2.4 Cumulative frequency curve of sieved and elutriated particle size fractions 

2.4.2 Design of Fluidized-bed Reactor 

A fluidized-bed reactor was designed and built for the specific purpose of 

kinetic sediment experiments (Fig. 2.5). The reactor has a volume of 1 liter with a 

diameter of 1 cm in the lower part of the reactor and a diameter of 12 cm in the upper 

part. The small reactor volume enables both high liquid mixing and refresh rates. 

Moreover, the 12-fold increase in cross-sectional diameter from the bottom to the top 

of the column results in a large retainment capacity of sedimentary particles, since the 

decrease in upward flow velocity allows for a 144-fold range in particle settling 

velocities. Additionally, the minimum flow velocity to fluidize the particle in the 

lower part of the reactor depends on the porosity of the fluidized-bed (Eq. 3). 

Assuming a porosity of 0.25 (DBE=1) in the lower part of the fluidized-bed, even a 
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maximum range in settling velocities of 576-fold is achieved. For example, sediment 

particles with a settling velocity of 5.76 cm/s (~200 µm quartz grains) can be 

fluidized, while retaining sediment particles with a settling velocity of 0.1 mm/s, 

which corresponds roughly to quartz grains of 10 µm (Fig. 2.2). 

Lower Part: 1 cm ø

Upper Part: 1–12 cm ø

Reactor Parts

Stainless-steel outlet

Stainless-steel inlet

Cooling/heating jack

4 cm

10 cm

8 cm

 

Figure 2.5 Fluidized-bed reactor design 

Characteristic upward velocities needed to fluidize sediments range from 0.001 

to 0.01 m/s (Fig. 2.2). This requires a combined flux from the influent and 

recirculation pumps of about 5–50 ml/min. Despite the strong radius increase in the 

upper part of the fluidized-bed reactor, the relatively small total reactor volume of one 

liter allows for fast response with hydraulic retention times smaller than one day and 

recirculation rates of several times per hour. Moreover, the steep internal angle (61°) 

of the glass column prevents significant deposition of fine particles on the reactor 

walls. 

In addition to these experimental requirements regarding sediment particle 

characteristics and flow conditions, reactors may be used to study biogeochemical 

processes that require anoxia. Therefore, the fluidized-bed reactor consists of glass 

and the main tubing consists of stainless steel with gastight connections (Serto). 

Peristaltic pumps instead of piston pumps were used to add and recirculate the 

aqueous solution, since they allow the transfer of unfiltered solutions. To minimize 

the potential for oxygen diffusion into the system, Tygon tubing (Tygon LFL, 
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Masterflex) was used in the peristaltic pumps because of its low gas permeability of 

0.79*10-10 m2.s-1 (Kjeldsen, 1993). 

2.5 CONCLUSIONS 

Sediments contain potentially reactive particles that cover a wide range in size 

and density. To be able to retain this variety of representative particles, a fluidized-bed 

reactor for sediments was developed on the basis of observed hydrodynamical 

behavior during fluidization. This fluidized-bed reactor is suitable for sediment studies 

on biogeochemical kinetics under minimized physical kinetic limitations. The reactor 

is suitable for both oxic and anoxic experimental conditions. 
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 Distribution and Reactivity of  O2-reducing Components in 

Sediments from a Layered Aquifer     

Distribution and Reactivity of O2-reducing Components 

3.1 INTRODUCTION 

The natural potential of aquifer sediments to reduce oxidants is of general 

interest in groundwater chemistry. For instance, due to excessive fertilization and 

manuring extensive leaching of nitrate from agricultural fields occurs (Fraters et al., 

1998; Goodrich et al., 1991; Lin et al., 2001; Spalding and Exner, 1993) and the fate 

of this nitrate is controlled by the reactivity of the reductants present in the subsurface 

(Bradley et al., 1992; Moncaster et al., 2000; Pauwels et al., 2000; Pauwels et al., 

1998; Postma et al., 1991; Robertson et al., 1996; Smith and Duff, 1988). Degradation 

of organic contaminants is also controlled by the redox status of the contaminated 

groundwater (Nielsen et al., 1995a; Nielsen et al., 1995b; Nielsen and Christensen, 

1994a; Nielsen and Christensen, 1994b). The anaerobic degradation of benzene is of 

prime interest (Coates et al., 2001; Lovely, 2000), as is the reductive dechlorination of 

chlorinated hydrocarbons by reactive reductants (Bradley et al., 1998; Skubal et al., 

2001). The injection of oxidants such as oxygen, nitrate or sulfate may enhance the 

breakdown of mono-aromatics (Coates et al., 2001; Cunningham et al., 2000; Lovely, 

2000), but an important drawback for stimulated in-situ bioremediation in 

contaminated aquifers, is the competition of natural reductants for injected oxidants 

(Baker et al., 2000; Barcelona and Holm, 1991b). 

Understanding the reactivity of reductants present in aquifer sediments thus 

deserves attention. Common reductants in aquifer sediments are sedimentary organic 
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matter (SOM) and pyrite (FeS2), but ferrous iron in silicates, siderite (FeCO3) and 

vivianite as well as exchangeable ferrous iron are potentially reactive reductants too 

(Appelo and Postma, 1993). Pyrite and siderite are commonly found in close 

association with organic matter due to redox processes occurring during or after 

deposition (Berner, 1971). Therefore, a relationship between the reduction capacity 

and the diagenetic history of sediment can be expected. Furthermore, fine-grained 

sediments are generally richer in organic material and associated reduced mineral 

phases (McMahon and Chapelle, 1991; Robertson et al., 1996) and higher total 

reduction capacities for aquifer sediments with a larger fine fraction has been 

suggested (Pedersen et al., 1991). Recently, Christensen et al. (2000) discussed 

studies on the reduction capacity of aquifer sediments. The TRC of sediments can be 

calculated if all relevant reduced components are recognized and their quantification 

is sufficiently accurate. However, this approach yields a maximum potential, since it 

does not account for the reactivities of these components. 

In this study, we focus on the reduction reactivity of pristine aquifer sediments 

by measuring the O2 consumption during incubations. Together with the overall 

change in aqueous composition, we use the stoichiometry between the O2 

consumption and CO2 production to identify the ongoing oxidation reactions. Our 

objectives were 1. to determine the relative contribution of the identified reductants to 

the reduction activity, 2. to assess the difference in the reduction capacity of different 

grain size fractions, and 3. to evaluate the impact of geological stratification on the 

reduction activity within a layered single aquifer unit that consists of three geological 

units. 

3.2 MATERIALS AND METHODS 

3.2.1 Sample Collection and Processing 

Six core samples were taken from a borehole in a sandy aquifer at the drinking 

water production site 'De Steeg' near Langerak, The Netherlands. This aquifer was 
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selected since it contains three distinct geological formations, covering a range from 

coarse to fine sands (Fig. 3.1). Furthermore, this location is proposed as a site for 

recharge through riverbank infiltration, which would result in a gradual oxidation of 

this aquifer that is currently under iron(III)-reducing conditions. Sediment cores were 

collected anaerobically at depth using Akkerman sampling tubes. The tubes were 

stored under a nitrogen atmosphere at 8°C directly after field collection. The tubes 

were opened in a N2-filled glovebox in which sediment samples were prepared for 

further study. By wet sieving, three particle size fractions were separated: 0–2000 µm 

(total fraction), 0–63 µm (fine fraction) and 63–2000 µm (coarse fraction). The 

remaining fraction containing particles larger than 2 mm was not further analyzed. 

Figure 3.1 Geological description of the sediments and geochemical characteristics of the 
total fractions (0–2 mm) used. Depth is referenced in meters below surface level. 
A log scale was used for the TOC (%) to show also the data for the fine fraction 
(< 63 µm). 

3.2.2 Geology 

Holocene clays and peat confine the top of the aquifer; Early Pleistocene clays 

confine its bottom. The Kreftenheye Formation contains coarse fluvio-glacial sands, 
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deposited during the Late Pleistocene. The Urk Formation consists of medium sized 

Middle Pleistocene fluvial sands, deposited in a perimarine environment. The Sterksel 

Formation consists of fine fluvial sands from the Early Pleistocene (Fig. 3.1). 

25 °C
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Figure 3.2 Schematic representation of the experimental set-up used (Micro-Oxymax, 
Columbus Instruments, OH). 

3.2.3 Sediment Incubations 

Samples were incubated under dark conditions. Twenty-five ml of vitamin and 

trace element solution were added in order to prevent inhibition due to nutrient 

limitation. Sample weight ranged from a few grams for the fine fraction to 100 g for 

the total fraction. The reaction chambers (100-ml bottle, Duran) were connected to the 

closed circuit of a respirometer (Fig. 3.2, Micro-Oxymax, Columbus Instruments). 

Water-saturated gasses were used to prevent evaporation in the reaction chambers. 

Oxygen (pO2 = 10-0.69±0.004 atm) and carbon dioxide (pCO2 = 10-3.3±0.11 atm) levels in the 

headspaces were kept at atmospheric conditions at 25°C (± 1°C). The O2 consumption 

and CO2 production were measured every 3 hours for 54 days, using an infrared 

sensor and an oxygen battery (fuel cell), respectively. The reaction chambers were 
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shaken (100 rpm) to ensure a well-mixed chemical system and prevent oxygen 

transfer limitations. 

3.2.4 Analytical Procedures 

Directly after incubation pH was measured with a standard pH meter (Orion) 

and alkalinity was determined by acid titration. Dissolved cations and sulfate were 

analyzed using ICP-AES (Perkin-Elmer ICP-optima 3000). X-ray fluorescence 

(XARL8410) was used to determine total iron (Fet) and total sulfur (St) contents of the 

sediments. Total organic carbon (TOC) was measured on freeze-dried sediments using 

a method adapted from Jakobsen and Postma (1999), in which we used 2.6 M HCl to 

remove inorganic carbon. TOC was determined as the sum of two fractions: acid 

dissolvable organic carbon (ADOC), and the residual organic carbon (NADOC). 

ADOC content was measured as dissolved organic carbon in the acid solution (TOC-

500, Shimadzu), while NADOC content was determined in the remaining solid sample 

by oxidation (NA1500 NCS, Carlo Erba). Pyrite contents were determined by HNO3 

extraction and total carbonate contents were determined as weight loss after acid 

digestion. Thermogravimetry is often used to assess the amounts of carbonates, but no 

good method yet exists to quantify low siderite concentrations in aquifer sediments 

(Christensen et al., 2000). We tested a combination of thermogravimetry (TGA) and 

differential thermal analysis (TG-DTA92, Setaram). 

3.2.5 Total Reduction Capacity 

The TRC was expressed in mmol O2/g.sed to enable direct comparison with the 

experimental data and was calculated using analyzed contents of total organic carbon 

[TOC], pyrite [FeS2] according to Equation 3.1. 

TRC= 3¾ [FeS2] + 1 [TOC] (mmol O2/g.sed)    Equation 3.1 

Here, 3¾ and 1 refer to the stoichiometric coefficients of pyrite and SOM 

oxidation, respectively (Table 3.1). When present, siderite contributes to the TRC as 

well, but was left out of the calculation, because of its qualitative determination (see 

results and discussion section). 



Chapter 3 
 

 

 

0 200 400 600 800
Temperature (°C)

0

5

10

m
V

0

4

8

Lo
ss

 (w
t. 

%
)

0

40

80

m
V

0 200 400 600 800
Temperature (°C)

0

30

60

L
o

ss
 (w

t. 
%

) TGA DTAA:

40 m (0 - 2000 µm)

siderite

B: 

Standards
calcite

siderite calcite

siderite

calcite

calcite

 

Figure 3.3 A: TGA-DTA measurements (N2-atmosphere/5°C.min-1 to 900°C on a Setaram 
TG-DTA92) A: TGA of (FeCO3) and calcite (CaCO3) standards and 0-2 mm 
fraction from 40 meters deep. B: DTA of (FeCO3) and calcite (CaCO3) standards 
and 0-2 mm fraction from 40 meters deep. 

3.2.6 Geochemical Modeling 

PHREEQC-2 (Parkhurst and Appelo, 1999) was used to model the chemical 

evolution in the batch chambers, using the O2 consumption over time as an input and 

the CO2 production as an output constraint. PHREEQC-2 was also used to determine 

saturation indices (SI), where SI is equal to the logarithmic value of the ratio between 

the ion activity product (IAP) and the solubility product (Ks) for the mineral phases 

considered. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Reductants present in the Aquifer Sediments 

Significant amounts of pyrite and organic matter were present in all sediment 

samples (Fig. 3.1). In the Urk Formation, where the highest pyrite contents (up to 

4350 ppm) were found, pyritic iron (Fepyr) accounted for most of the total iron (Fet, 

Fig. 3.1) Furthermore, the molar ratio between Fet and total sulfur contents (Fet/St) 

was close to 0.5. This indicates that other iron containing minerals were insignificant. 
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High Fet and low St concentrations were present in the deepest sediment taken from 

the Sterksel Formation. With 22% of Fet present in pyrite, an additional source of 

iron, such as iron hydroxides, detrital phyllosilicates or siderite must be present. The 

weight loss during heating (TGA) confirmed the presence of calcite, but not of 

siderite. However, using differential thermal analysis (DTA), two distinct endothermic 

peaks between 500–600°C and 700–850°C were observed (Fig. 3.3) that are in 

agreement with both the disintegration temperatures of siderite and calcite from 

literature data (Borrego et al., 2000; Gotor et al., 2000; Vassilev and Vassileva, 1996) 

and the standards used. These results point to a siderite content of less than 1% in this 

carbonate-rich sediment. Thus, organic matter, pyrite and siderite are the main 

potentially reactive reductants present in the aquifer sediments studied. However, 

predicting which reductant is most prone to oxidation is difficult because these species 

have comparable energy yields for their oxidation (Pankow, 1991), while their 

oxidation mechanisms are distinctly different (Table 3.1). 

Table 3.1 Oxidation reactions of considered reduced components with molecular oxygen 

    CO2/O2 0
rG∆ a 

a FeCO3 + ¼ O2 + 1½ H2O � Fe(OH)3 + CO2 4 -468 

b C9H10O5
b + 9 O2 � 9 CO2 + 5 H2O 1 -433c 

c FeS2 + 3¾ O2 + 1½ H2O + 2 CaCO3 � Fe(OH)3 + 2 Ca2+ + 2 SO4
2- + 2 CO2 15

8  -507 

d FeS2 + 3¾ O2 + 3½ H2O � Fe(OH)3 + 2 SO4
2- + 4 H+ 0 -477 

And with ferrous iron on exchange site X2 

e Fe-X2 + ¼ O2 + CaCO3 + 1½ H2O � Ca-X2 + Fe(OH)3 + CO2 4  

a 0
rG∆ values calculated from Pankow (1991). bSyringate (C9H10O5) is used as a model compound for SOM 

(Chapelle and Bradley, 1996). cvalue for acetic acid. 
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3.3.2 Identification of important Oxidation Reactions: Theoretical CO2/O2 
Ratios 

The ratio of CO2 production to O2 consumption is commonly used as 

respiratory quotient for the organic substrate. The molar CO2/O2 ratio for the complete 

oxidation of organic matter varies with chemical composition from 1.0 for the 

oxidation of carbohydrates (CnH2nOn) to 0.8 for the oxidation of a more reduced 

organic compound as benzene (C6H6). The composition of SOM in the sediments 

studied, as derived from pyrolysis-GC-MS analyses, shows a predominantly aromatic 

signature derived lignin. Syringate (C9H10O5) has a chemical structure similar to 

methoxylated aromatic compounds that make up lignin (Chapelle and Bradley, 1996). 

Therefore we use syringate as a model compound for SOM, as shown in reaction (b) 

(Table 3.1). 

While CO2 production is inherent to the oxidation of organic matter, CO2 

production during pyrite or Fe(II) oxidation depends on the presence of reactive 

carbonates. Under carbonate equilibrium conditions, the theoretical molar CO2/O2 

ratio is distinctly different during pyrite oxidation, as shown in reaction (c), than 

during the sole oxidation of ferrous iron, as shown in reaction (a). In the absence of 

reactive carbonates, pyrite oxidation will not result in CO2 production and the CO2/O2 

ratio will therefore be zero, shown in reaction (d). Pyrite, SOM and siderite are 

commonly found in other sedimentary aquifers, but reactive reductants, such as 

MnCO3 (CO2/O2=2) or FeS (CO2/O2=0.44), can be assessed using the same approach. 

Since the resulting CO2/O2 ratio of co-oxidizing reductants is not unique, constraints 

are needed to calculate their relative contributions. Here, sulfate is used to constrain 

the importance of pyrite oxidation 

.
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Figure 3.3 Cumulative O2 consumption and CO2 production during the total and fine 
sediment fraction incubations (54 days) are represented by solid lines. Kr, Urk 
and St denote Kreftenheye, Urk and Sterksel Formation, respectively. The fine 
fractions of the Urk Formation were plotted up to 2 mmol O2/g.sed (total 
consumption indicated with arrow). Stoichiometric lines (dashed) are shown for 
siderite, SOM and pyrite oxidation under carbonate buffered conditions. Note 
the different scales for the axes. 
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3.3.3 Calculating the Relative Importance of Reductants 

The relative contribution of pyrite ( bufpyrf – ) to the total oxygen consumption 

under carbonate buffered and unbuffered ( unbufpyrf – ) conditions can be calculated from 

the total sulfate production (Eq. 3.3). Then, the relative contribution of siderite (sidf ), 

SOM ( SOMf ) to the total O2 consumption can be calculated using the cumulative 

CO2/O2 ratios (Eq. 3.4). 

1=++ sidSOMpyr fff        Equation 3.2 

∑
∑== −+−

2

4

2

¾3

O

SO
fff unbufpyrbufpyrpyr

    Equation 3.3 

bufpyrSOMsid fff
O

CO
−++=

∑
∑

¾3

2
4

2

2

     Equation 3.4 

Here, ∑ 2O , ∑ 2CO and ∑ 4SO  are the total amounts of O2 consumed, CO2 

produced and sulfate produced, respectively. Equation 3.4 is valid if carbonate 

equilibrium and undersaturation for gypsum (CaSO4·2H2O) are maintained during the 

incubation. 

When pyrite oxidation proceeds unbuffered by carbonate dissolution,unbufpyrf −  

is calculated using Equation 3.5, where ∑ *2O  is the total amount of oxygen 

consumption that was unaccompanied by CO2 release. 

∑
∑=−

2

2*

O

O
f unbufpyr

       Equation 3.5 

3.3.4 Observed Processes during Sediment Incubations 

The ratios between total CO2 produced and total O2 consumed during the 

incubation experiments ranged between 0.05 and 2.7 (Fig. 3.4). These are within the 

range of CO2/O2 stoichiometries for the oxidation of pyrite, organic matter and 

siderite (Table 3.1), but do not correspond to the stoichiometric oxidation of one of 
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these main reductants. Therefore the observed CO2/O2 ratios must be the result of their 

combined oxidation (Eq. 3.2). 

3.3.5 Processes during Incubation 

3.3.5.1 Total Fraction Incubations 

As shown in Figure 3.4, SOM oxidation is predominant in the Kreftenheye 

Formation, as based on the theoretical oxidation stoichiometry (Table 3.1). Pyrite 

oxidation is the foremost process in the Urk Formation. Initially, the 30-meter 

incubation shows CO2 production and O2 consumption according to the stoichiometric 

oxidation of pyrite oxidation under carbonate buffered conditions and subsequently O2 

consumption without CO2 production. This indicates that the buffering capacity is 

limited and that the oxidation of organic matter or siderite is insignificant during the 

acidification, caused by unbuffered pyrite oxidation. Sediment incubations of the 

Sterksel Formation (35 and 40 m) show the oxidation of pyrite, SOM and siderite. 

Especially, the deepest sediment shows elevated (>1) CO2/O2 ratios and thus the 

largest contribution by siderite oxidation. This is in line with the detection of siderite 

in this sediment. The CO2/O2 ratios changed little during the total fraction incubations 

that were carbonate buffered, indicating that the reductants were oxidized 

concurrently. 

3.3.5.2 Fine Fraction Incubations 

The oxidation of SOM is most pronounced in the fine fraction incubations of 

the Kreftenheye Formation (Fig. 3.4), indicating that diagenetically formed reductants 

were absent or less reactive. The fine fractions of the Sterksel Formation show 

elevated CO2/O2 ratios towards the end of the incubations (Fig. 3.4), indicating an 

increasing importance of siderite oxidation. Although the oxidation of exchangeable 

ferrous iron, as shown in reaction (e), would result in an identical CO2/O2 ratio, the 

estimated release of ferrous iron from cation-exchange sites in these fine fractions was 

insignificant compared with the total observed O2 consumption. Moreover, it would 

be expected to proceed early in the experiments, since desorption (Koretsky, 2000; 
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Sposito, 1989) and oxidation of aqueous ferrous iron at circumneutral pH (Stumm and 

Morgan, 1970) are both almost instantaneous. The CO2/O2 ratios of the fine fraction 

incubations of the Urk Formation (Fig. 3.4) initially show buffered pyrite oxidation 

followed within a week by pyrite oxidation unbuffered by carbonate dissolution. Even 

though the fine fractions of the Urk and Sterksel Formation are relatively enriched in 

TOC (Fig. 3.1), the diagenetically formed reductants in the fine fractions are more 

reactive than SOM. 

0 50 100 150
SO4 (mmol/l)

0

20

C
a 

(m
m

ol
/l)

0 4 8
Alkalinity (mmol/l)

A B

acidification acid titration

SOM

25m (<)

Gypsum

1:1

30 m (>)
30 m (T)

30m (<)

 

Figure 3.4 Final concentrations in the supernatants of (A) calcium and alkalinity and (B) 
calcium and sulfate. Filled and open circles represent buffered and acidified 
samples, respectively. The solid line in (A) represents calcite equilibrium for 
increasing CO2-pressure, the rectangle encompasses samples that show over 
70% SOM oxidation and that are therefore less influenced by acid titration. The 
arrow in (B) indicates the onset of gypsum saturation and the dashed lines 
describe the modeling results. Depth (m) is shown for the acidified total (T), 
coarse (>) and fine (<) fractions. 

3.3.5.3 Coarse Fraction Incubations 

The coarse fractions were less reactive (55–86%) compared with the total 

fractions. The carbonate buffered coarse fractions show a greater contribution (52–

86%) by SOM oxidation compared with the corresponding total and fine fractions. 

However, SOM oxidation was insignificant during the incubation of the coarse 
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fraction from 30 meters depth, which acidified due to the pyrite oxidation that 

proceeded largely (75%) unbuffered by carbonates. 

3.3.6 Chemical Evolution of Supernatants during Incubation 

Final pHs, alkalinities and calcium concentrations of the supernatants were all 

in agreement with carbonate equilibrium, except for the incubations that showed 

unbuffered pyrite oxidation, which acidified to pH values of 1.6 to 2.5 (Table 3.2, Fig. 

3.5a). The relatively high CO2 production rates in combination with the low 

equilibrium concentration of CO2 (10-3.5 atm) caused a build-up of CO2 (10-1.7 atm) in 

the supernatants. However, this was less than 1% of the total CO2 production in all 

incubations. Therefore, overall CO2/O2 ratios were not significantly affected. 

The interpretations based on CO2/O2 ratios are in keeping with the chemical 

composition of the supernatants after incubation. Incubations that dominantly showed 

buffered pyrite oxidation have higher calcium concentrations (up to 15 mmol/l) and 

lower alkalinities compared with those expected from calcite dissolution in 

equilibrium with the CO2 pressure in the headspaces. Especially, final calcium and 

sulfate concentrations in the supernatant of the carbonate buffered incubations were 

highly correlated along the theoretical stoichiometry for pyrite oxidation, but were 

still undersaturated with respect to gypsum (Fig. 3.5b). This indicates that H+ 

production during pyrite oxidation was the main drive for the dissolution of 

sedimentary calcite. Total sulfate production was highest for samples that showed a 

pyrite oxidation CO2/O2 stoichiometry (Urk Formation). In these samples the total 

sulfate production was also related to the total O2 consumption along the pyrite 

oxidation stoichiometry (Fig. 3.6). The incubated fractions of the Kreftenheye 

Formation from 20 meters depth show CO2/O2 ratios that are closest to SOM 

oxidation. If sulfate in these experiments is the product of SOM oxidation only, then 

the degree of sulfurization (S/C) of the oxidized SOM (0.03) is high compared with 

those of organic matter (0.006–0.03) in freshwater lake sediments (Urban et al., 

1999). Although it is not possible to distinguish between an organic or pyritic source 

of the sulfate, it is clear that pyrite oxidation contributes very little to the observed 

total O2 consumption in these incubations. 
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Figure 3.5 O2 consumption and total sulfate production for total and coarse (both circles) 
and fine (squares) fractions. Carbonate buffered and acidified incubations are 
represented by filled and open symbols, respectively. Lines refer to 
stoichiometric oxidation of pyrite and SOM. Note the logarithmic scales. 

 
In the four samples where pyrite oxidation resulted in acidic supernatants, final 

sulfate concentrations could only account for half of the total O2 consumption. Since 

CO2 production ceased in these incubations (Fig. 3.4), the additional oxidation of 

SOM or siderite oxidation cannot account for this discrepancy. Therefore, the 

precipitation of sulfate-containing solids controlled the final sulfate concentrations in 

these samples. This hypothesis was tested by modeling the pyrite oxidation in the two 

fine fractions of the Urk Formation with PHREEQC-2 (Parkhurst and Appelo, 1999). 

We used the total amount of O2 consumption and CO2 production as a constraint for 

the total amount of pyrite oxidation and the total amount of reactive carbonate buffer, 

respectively. A model containing only calcite and pyrite and K-feldspar (as a source 

of potassium) was used. Results (Fig. 3.5b) indicated the likely precipitation of K-

jarosite (KAl3(OH)6(SO4)2) as well as gypsum during the incubation of the fine 

fraction from 30 meters and 25 meters depth, respectively. Considering the limited 

number of input constraints, the modeled pH and final calcium and sulfate 

concentrations agree very well with the measured values in the supernatants. 
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3.3.7 Reactivity of Reduced Components 

Our results show that pyrite, SOM and siderite were oxidized simultaneously 

during our sediment incubations (Table 3.2). To assess their separate reactivities, we 

will next consider experiments in which one reductant was dominantly important. 

3.3.7.1 Sedimentary Organic Matter 

In the fine (Fig. 3.7a) and coarse (Fig. 3.7b) fraction from 20 meters depth, 

SOM accounted for 85% and 86% of the total O2 consumption. Both incubations 

show continuously decreasing O2 consumption rates. Decreasing respiration rates are 

often observed (e.g. Kristensen et al., 1995) and are attributed to an increasing 

stability of the residual organic compounds (Cowie and Hedges, 1994; Hulthe et al., 

1998). In comparison with the coarse fractions, the importance of SOM oxidation was 

less important in the fine fractions than the oxidation of pyrite and siderite. This can 

be due to a decreased reactivity of SOM in the fine fractions as a result of physical 

protection through sorption and complexation of SOM by clay minerals (Mayer, 

1994) or to a higher degree of mineralization of the original SOM during to the 

formation of reduced secondary minerals, like pyrite and siderite, during diagenesis 

(Cowie and Hedges, 1994). Even though the acid hydrolysis of SOM during 

unbuffered pyrite oxidation resulted in final DOC concentrations up to 87 mg/l, SOM 

oxidation was not observed. This is probably due to the inhibition of microbial 

respiration under acid conditions (Atlas and Bartha, 1998). 

3.3.7.2 Pyrite 

Buffered pyrite oxidation is the dominant (86%) oxygen-consuming process in 

the coarse fraction from 25 meters (Fig. 3.7a). Here, the O2 consumption rates 

decreased continuously. Pyrite oxidation will result in the formation of iron 

hydroxides provided that the proton production is buffered by carbonate dissolution to 

keep the pH circumneutral. These iron hydroxides may precipitate on the pyrite 

surfaces and act as a diffusive resistance, slowing its oxidation (Nicholson et al., 

1990; Andersen et al., 2001). 
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After the carbonate buffer had been consumed within one week of incubation, 

unbuffered pyrite oxidation started in the coarse (30 m, 75%) and fine (25 m, 77%) 

fractions (Figs. 3.7a and 3.7b). During the acidification O2 consumption rates started 

to increase up to a maximum, after which the rates dropped until the end of the 

experiments when the samples had acidified to a pH < 2. Since only the samples that 

showed unbuffered pyrite oxidation exhibit this typical sequence, we interpret this 

maximum in the O2 consumption rate to be a pH effect. The pH-dependent dissolution 

of an inhibiting iron hydroxide coating, formed during buffered pyrite oxidation, and 

the subsequent production of ferric iron at acid pH, which is a rate-controlling 

intermediate in the oxidation of pyrite by O2 (Moses and Herman, 1991), are probable 

causes for the increased rates compared with buffered pyrite oxidation. Furthermore, 

the modeled pH values of 2–4 during the maximum O2 consumption rates 

approximate the reported optimal pH conditions for microbial ferrous iron oxidation 

(Roychoudhury et al., 1998). This suggests that bacteria, capable to facilitate acid 

pyrite oxidation, were already present in this initially reduced sediment. The final 

decrease in pyrite oxidation rates is probably due to the slow, rate-controlling, abiotic 

oxidation of ferrous iron at a pH < 2 (Stumm and Morgan, 1970). 

3.3.7.3 Siderite 

Although the quantification of low contents of siderite remains difficult, our 

CO2/O2 ratios indicate the importance of siderite as a reactive species in subsurface 

sediments. The fine fraction from 40 meters depth showed the highest (43%) 

contribution by siderite oxidation (Table 3.2) and continuously decreasing O2 

consumption rates (Fig. 3.7b). It also has the lowest total oxygen consumption of all 

incubated fine fractions, while the corresponding total fraction is relatively much 

more reactive. This suggests that the oxidation of siderite is a slower process, 

compared with the oxidation of pyrite or SOM. The chemical stability and weathering 

of siderite to form iron hydroxides in geological environments is well documented but 

rather little is known about the nature of siderite weathering itself (McMillan and 

Schwertmann, 1998; Postma, 1983; Weber et al., 2001). Similar to the inhibition 



Distribution and Reactivity of O2-reducing Components 
 

 59

during buffered pyrite oxidation, the iron oxyhydroxides coatings formed during 

siderite oxidation can potentially slow down its oxidation. 
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Figure 3.6 O2 consumption rates during the incubation of coarse (A) and fine (B) fractions 
that dominantly showed unbuffered pyrite oxidation (open circles, buffered 
pyrite oxidation (filled circles), SOM oxidation (plusses) or siderite oxidation 
(crosses). The rate maxima in O2 consumption during unbuffered pyrite 
oxidation correspond with a modeled pH range of 3–4. 

3.3.8 Measured Reduction Capacity 

Oxygen consumption of the sediment fractions slowed down considerably 

during incubation, but had not ended at the end of the incubations. Therefore, the total 

amount of O2 consumption on a dry weight basis will be referred to as measured 

reduction capacity (mRC). The mRC of the total fractions (Table 3.2) was related to 

their geology and ranged from 8 µmol O2/g in Kreftenheye Formation, to 20–84 µmol 
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O2/g in the Urk Formation. The mRCs of the sediments from the Sterksel Formation 

were intermediate (15–20 µmol O2/g). This relative trend for the different formations 

is also reflected in the mRCs of the coarse (6–47 µmol O2/g) and fine fractions (Table 

3.2). This suggests that the reducing capacity of these sediments is related to their 

geological histories. 

Table 3.2 TRC values of the total fractions, as calculated from SOM and pyrite contents 
and final mRC values for the total and fine fractions. Final pHs and total 
produced sulfate in the supernatants. Cumulative molar CO2/O2 ratios and 
sulfate production were used to calculate the relative contribution to the total O2 
consumption of the oxidation reactions (a-d, Table 3.1). 

Depth TRC mRC pH SO4 CO2/O2 Oxidation reactions (%) 
(m) (µmol O2/g) (µmol O2/g)  (µmol/g) (molar)  (a)  (b) (c) (d) 

Total Fractions (0–2 mm) 

15 93 8 7.2 1.8 0.75  54 46  
20 62 8 7.5 1.0 1.06 6 68 26  
25 176 20 6.3 6.7 0.66  38 62  
30 199 84 2.1 19.1 0.02   9 91 
35 164 15 6.8  0.94  87 13  
40 172 20 7.1 2.7 1.41 18 56 26  

Fine Fractions (< 63 µm) 

15  422 7.2 25.5 1.40 15 74 11  
20  1169 6.6 38.3 1.22 8 86 6  
25  5217 1.6 1598 0.06   23 77 
30  9357 1.6 2628 0.02   8 92 
35  307 7.1 49.4 1.51 22 48 30  
40  215 7.2 30.7 2.17 43 30 27  

 

The mRCs of the fine fractions (Table 3.2) were around two orders of 

magnitude higher than those of the corresponding total fractions, due to the higher 

content of TOC (Fig. 3.1) and associated diagenetic reductants in the fine fractions. 

However, the greater importance of the fine fraction in the Sterksel sediments (Fig. 

3.1) is not reflected by the intermediate mRCs of their total fractions. Moreover, the 

mRCs of the fine Sterksel fractions are lowest of all fine fractions. Probably, the 

differences in grain size distribution between the studied aquifer sands are too minor 

for the higher reduction capacity of the fine fraction to have profound effect on the 

reduction capacity of the total fractions. This is due to the fact that the significance of 

the fine fraction is relatively small in the total grain size distribution. Consequently, 

the coarse fraction mainly diluted the reduction activity of the fine fraction with its 
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lowest overall mRC. This conclusion is in line with the lack of correlation found 

between the clay content and TRC of a sandy aquifer material (Pedersen et al., 1991). 

3.3.9 Kinetic Controls on the Available Reduction Capacity 

The mRCs after 54 days of incubation were around 10% of the TRC calculated 

from pyrite and TOC contents of the carbonate buffered total fractions (Table 3.2). 

Thus, only a small fraction of the TRC present reacted during these incubations. As an 

exception, the mRC of the total fraction from 30 meters depth was 42% of the 

calculated TRC. While SOM oxidation was suppressed at these low pHs, these results 

indicate that pH is an important factor controlling the oxidation rates of different 

reductants. 

Previous studies on aquifer sediments used the standard method of acid 

dichromate oxidation (Christensen et al., 2000; Pedersen et al., 1991) to measure 

reduction capacities. Using this method, Barcelona and Holm, (1991a) and Barcelona 

and Holm (1991b) found the mRCs to be around 50% of the TRCs calculated from the 

total amounts of reduced solid species. While this indicates that still only a part of the 

TRC present in aquifer sediments is reactive at experimental time scales, this higher 

recovery is likely caused by the use of this abiotic method with a stronger oxidant 

under acid conditions that would promote pyrite oxidation. Furthermore, Pedersen et 

al. (1991) found around 40% of the mRC remaining after having been exposed to 

oxygen and nitrate for about 2 years, in a study on an oxidation–reduction front in a 

shallow sandy aquifer using the same method. 

3.4 IMPLICATIONS FOR FIELD STUDIES 

Clearly, the reactivity of the subsurface reductants depends on the 

physicochemical conditions (oxidant type, temperature, pH) as well as on the intrinsic 

characteristics of the reductants that make up the TRC. For instance, the degradability 

of SOM is determined by its chemical composition and the strength of the degrading 

oxidant (Kristensen et al., 1995), while the occurrence of iron sulfide oxidation 

depends strongly on oxidant type and pH (Schippers and Jørgensen, 2002). Therefore, 
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the mRC of subsurface sediments depends on the strength of the oxidant used and the 

applied conditions as well as on exposure time. Thus, while the use of the acid 

dichromate oxidation method may be appropriate in the context of an in-situ 

contaminant oxidation using Fenton’s reagents, it is prone to overestimate the 

reduction capacity of aquifer sediments under milder conditions, since most redox 

reactions occurring in aquifers involve oxidation by weaker oxidants, such as oxygen, 

nitrate, ferric iron, sulfate or tetrachloroethylene and are microbially mediated 

(Jakobsen and Postma, 1994; Murphy et al., 1992). 

So far, studies did not address the contributions of various reductants 

(Barcelona and Holm, 1991a; Barcelona and Holm, 1991b; Christensen et al., 2000; 

Pedersen et al., 1991). However, the secondary effects on groundwater quality may be 

quite different for the oxidation of SOM versus that of pyrite. For example the release 

of increased mobility of trace metals during pyrite oxidation (Larsen and Postma, 

1997; Nickson et al., 2000) or the eutrophication by NH4
+ or PO4

2- during SOM 

oxidation (Nolan and Stoner, 2000). 

The reactivity of natural reductants is an important environmental issue, either 

during the natural attenuation of percolating nitrate or in competition with 

contaminants for injected oxidants. Our oxidation experiments with O2, showed the 

simultaneous oxidation of reductants. Their relative contribution depends both on 

their relative amounts and their relative reactivity towards O2. However, there is still 

limited knowledge about the controls on reactivity of characteristics such as the 

specific surface area of and coatings on pyrite (Andersen et al., 2001) and the 

association and composition of SOM (Christensen et al., 2000) on their reactivity of 

within aquifer sediments. Moreover, the reactivities of reductants present are affected 

by the conditions of the system to which they are exposed. 

Incubations, which resulted in acidification, bear more resemblance to pyrite 

oxidation in leached topsoil. However, incubations under permanent carbonate 

buffering are relevant for many natural aquifer settings. Our buffered batch 

incubations show considerably lowered but still continuous oxygen consumption 

rates. Extrapolation of these rates, using an exponential decrease model, suggests that 
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20–40% of the TRC present in the sediments would remain after 2 years. While this 

estimate is in agreement with previous data (Pedersen et al., 1991), this is a crude 

estimate, since the calculated TRC does not account for contributions by reductants 

other than pyrite and SOM and assumes constant conditions. 

In the field of reactive transport modeling, major uncertainties exist about the 

availability and reactivity of the solid redox-sensitive phases. Results of this study 

indicate that several reductants can be oxidized simultaneously and that their 

reactivities depend on both geological and environmental factors. These factors should 

be taken into account in order to describe and predict the development of groundwater 

chemistry. Moreover, considering the vertical heterogeneity in reduction activity in 

the studied aquifer, a reactive transport model would not only require model layering 

in its physical properties but in its geochemical reactivity as well (Islam et al., 2001). 
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 Nitrate Reduction Potential of  Aquifer Sediments: 

Role of  Microbial Adaptation     

Nitrate Reduction Potential of Aquifer Sediments 

4.1 INTRODUCTION 

Nitrate is a common contaminant of shallow freshwater aquifers in many rural 

regions of the world, mainly due to its extensive leaching from manured and fertilized 

agricultural soils (Fraters et al., 1998; Goodrich et al., 1991; Lin et al., 2001; Spalding 

and Exner, 1993). The removal of nitrate from abstracted groundwater is difficult 

because of its high solubility and low potential for co-precipitation or adsorption 

(Kapoor and Viraraghavan, 1997; Shrimali and Singh, 2001). Therefore, the natural 

capacity of many groundwater systems to remove nitrate is of great significance. 

Nitrate becomes the thermodynamically favorable terminal electron acceptor 

after dissolved oxygen concentrations have been sufficiently depleted. Denitrification 

refers to the reduction of nitrate to gaseous nitrogen compounds. Under the commonly 

carbon-limited conditions of pristine groundwater systems, this is the main 

mechanism of nitrate removal (Freeze and Cherry, 1979; Korom, 1992; Smith and 

Duff, 1988; Smith et al., 1991). The transfer of electrons during the transformation of 

nitrate to harmless dinitrogen (N2) gas proceeds through a series of four reduction 

steps (NO3
- � NO2

- � NO � N2O � N2) that are microbially mediated (Atlas and 

Bartha, 1998). 

The attenuation of nitrate in groundwater is generally controlled by the 

reactivity of the reductants present in the subsurface (Bradley et al., 1992; Postma et 

al., 1991; Richards and Webster, 1999; Smith et al., 1991). Aquifer sediments contain 

various electron donors that can potentially drive the reduction of nitrate. Sedimentary 
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organic matter (SOM) is a common reductant that facilitates heterotrophic 

denitrification (Bates and Spaldin, 1998; Clay et al., 1996; Grischek et al., 1998; 

Smith et al., 1991; Starr et al., 1996) as follows: 

5 CH2O + 4 NO3
- � 2 N2 + 4 HCO3

- + H2CO3 + 2 H2O (1) 

Here, CH2O is used as a simplified representation of SOM. 

Alternatively, denitrification can be driven autotrophically by inorganic 

electron donors such as ferrous iron in silicates, siderite (FeCO3), pyrite (FeS2) or 

exchangeable ferrous iron (Ottley et al., 1997; Postma, 1990; Postma et al., 1991; 

Sorensen and Thorling, 1991; Weber et al., 2001). For example, ferrous iron oxidation 

coupled to complete nitrate reduction is described as: 

10 Fe2+ + 2 NO3
- + 12 H+ � 10 Fe3+ + N2 + 6 H2O (2) 

Under carbonate-buffered conditions, this reaction is rapidly followed by: 

Fe3+ + 3 H2O � 3 H+ + Fe(OH)3 (3) 

In Chapter 3, the reactivity of sediments from a sandy aquifer towards 

molecular oxygen was described. Sedimentary organic matter, pyrite and siderite were 

identified as the major reactive reductants. In this study, the biogeochemical controls 

on the potential denitrification activity of two of these sediments were investigated 

using fluidized-bed reactor and batch reactor experiments. The objectives were to: 1) 

determine which reductants are reactive during nitrate reduction, 2) compare the 

nitrate and oxygen reduction potentials of sediments studied, and 3) assess the role of 

microbial mediation during nitrate reduction. 

4.2 MATERIAL AND METHODS 

4.2.1 Sample Collection and Processing 

Core samples were selected from a borehole in a sandy aquifer at the drinking 

water production site 'De Steeg' near Langerak, The Netherlands. The aquifer is 

currently under iron-reducing conditions. The sediment core was collected anoxically 
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at depth using Akkerman sampling tubes. The tubes were stored under a nitrogen 

atmosphere at 8°C directly after collection in the field. The tubes were opened in a N2-

filled glove box in which sediment samples were prepared for further study. Two 

sediment samples (Table 4.1) from different sandy geological formations were 

selected for the experiments of this study: LA4 (Middle Pleistocene, Urk Formation) 

and LA6 (Early Pleistocene, Sterksel Formation). The geological origin of the samples 

has been described in more detail in Chapter 3. The 0–2000 µm particle size fraction 

was isolated by wet sieving. This fraction was used for the experiments; the remaining 

fraction (> 2 mm) was discarded. 
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Figure 4.1 Schematic representation of the fluidized-bed reactor.  

 

4.2.2 Fluidized-bed Experiments 

Nitrate reduction experiments were conducted in a funnel-shaped glass 

fluidized-bed reactor (~1 l) for 49 days in the dark (Fig. 4.1). The temperature of the 

reactor was controlled at 10° (day 1–13) or 25°C (day 13–49) with a cooling jacket 

connected to a thermostated (±1°C) water bath. One variable-speed peristaltic pump 

(Cole Parmer, Masterflex console drive, 1–100 rpm, with Easy Load Pump Head) 

operating at a rate of 2 ml/min, supplied the influent to the fluidized-bed reactor. At 

day 19 the influent flow rates were decreased to 1 ml/min to increase the experimental 

resolution. Another peristaltic pump (Cole Parmer, Masterflex console drive, 6–600 

rpm console drive, 1–100 rpm, with Easy Load Pump Head) recirculated the solution. 

The funnel shape of the reactor enables the fluidization of the coarser sediment 

particles in the lower upper part of the reactor with a liquid velocity of 0.01–0.02 m/s, 

while retaining the finer sediment particles in the upper part. Sediment loss from the 

column was less than 0.1 wt.%. Flow conditions resulted in a hydraulic retention time 

of 8–19 hours and a mixing rate of 2.8–3.6/hour. Tubing with low gas permeability 

(Tygon LFL, Masterflex) was used in the peristaltic pumps and remaining tubing and 

connectors consisted of stainless steel (Serto) to prevent oxygen diffusion. 

Influent with a concentration of 1.3 mM nitrate was prepared by adding 

CaNO3.4H2O (Merck) to tap water in a 20-l PVC tank (Table 3.2). Calcite pieces were 

added to the tank to sustain pH-buffering of the influent. During the first 37 days of 

the experiment, the influent was kept oxygen-free by flushing either with N2/CO2 

(99%/1%) or N2 (100%) gas, to control the pH of the influent at 7.2 and 8.4, 

Table 4.1 Bulk composition of the sediment samples (0–2 mm) studied. Depth in meters 
below surface level (m-bsl). 

Sample 
 

Depth 
(m-bsl)a 

SiO2 

(wt.%) 
Al 2O3 

(wt.%) 
Fe 

(wt.%) 
S 

(wt.%) 
Pyrite 

(wt.%) 
TOCb

 

(wt.%) 
TICc

 

(wt.%) 
LA-4 30 92.19 3.76 0.22 0.15 0.43 0.08 0.79 
LA-6 40 82.06 5.55 0.42 0.06 0.2 0.13 8.68 

(a) Meters below surface level 
(b) Total organic carbon 
(c) Total inorganic carbon 
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respectively. The influent was oxygenated during the last 12 days of the experiment 

by flushing with air. After the experiments, the sediment samples were removed from 

the reactors and stored under N2 at 8°C until transfer to the acetylene-block 

experiments. 

Table 4.2 Chemical composition of influent used for the fluidized-bed experiments. 

Species Concentration (mmol/l) 
Ca  1.7 

NO3 1.3 
Cl 0.4 

SO4 0.2 
NO2 0.0 

4.2.3 Acetylene-block Batch Experiments 

The potential for denitrification was measured using acetylene (C2H2) to block 

the microbial reduction step of N2O�N2 (Yoshinari et al., 1977), during parallel 

batch incubations of eight sediment slurries in 50 ml-glass bottles (Table 4.4). Besides 

the two samples from the preceding fluidized-bed experiments (LA4-FB and LA6-

FB), two samples of untreated sediment (LA4-1/2 and LA6-1/2) were incubated in 

duplicate. In addition, two abiotic controls (LA4-X and LA6-X) of untreated sediment 

received mercury chloride (HgCl2) in a resulting concentration of 100 mg/l. One ml of 

1 M KNO3-solution was added to all samples to obtain an excess concentration of 30 

mM of NO3. The bottles were stoppered, crimped, and flushed for 15 minutes with 

oxygen-free helium after which 10 % of the headspace volume was replaced by 

acetylene. Slurry incubations were performed in the dark and shaken at room 

temperature. Five ml of gas was withdrawn daily from the headspace of each bottle 

using a gas-tight syringe and was replaced by an equal volume of helium to maintain 

constant pressure. Acetylene concentrations in the headspaces remained constant 

except for the abiotic controls. Here, the presence of HgCl2 resulted in the oxidation 

of acetylene to CO2, as suggested by the high CO2 production and acetylene 

consumption in the controls. Therefore, the acetylene concentrations in the controls 

were maintained by extra additions. The total amount of gases in the bottles was 

calculated from the partial pressures in the headspace plus the amount dissolved in the 

aqueous phase, using Henry’s Law constant of 34.1*10-3 (M/atm at 25 °C) for CO2 



Chapter 4 
 

 

(D'Angelo and Reddy, 1999) and using a Bunsen absorption coefficient of 0.544 for 

N2O (Tiedje, 1982). 

4.2.4 Analytical Procedures 

4.2.4.1 Sediment Analysis 

X-ray fluorescence (XARL8410) was used to determine total aluminum, 

silicon, iron and sulfur contents of the sediments. Pyrite contents were determined by 

HNO3 extraction. Total organic carbon (TOC) was measured on freeze-dried 

sediments using a method adapted from (Jakobsen and Postma, 1999), in which 2.6 M 

HCl was used to remove inorganic carbon. TOC was determined as the sum of two 

fractions: acid dissolvable organic carbon (ADOC), and the residual organic carbon 

(NADOC). The ADOC content was measured as dissolved organic carbon in the acid 

solution (TOC-500, Shimadzu), while the NADOC content was determined in the 

remaining solid sample by oxidation (NA1500 NCS, Carlo Erba). Total inorganic 

carbon (TIC) content was determined as weight loss after the acid digestion. 

4.2.4.2 Gas and Wet Analysis 

During the fluidized-bed experiments, the oxygen concentration in the effluent 

was measured within a flow cell using a dissolved-oxygen electrode (WTW Cellox-

325) connected to an oxymeter (WTW Oxi-538). Effluent and influent water samples 

were taken periodically and filtered through a 0.45 µm membrane filter (Whatmann, 

no. 5). Samples for sulfate, nitrate and nitrite concentrations were frozen (-20°C) until 

analysis using an ion-chromatograph (Dionex DX-120). Samples for dissolved cations 

and total sulfur were acidified (< pH 1) with 1 M HCl and stored at 8°C until analysis 

using ICP-AES (Perkin-Elmer ICP-optima 3000). The strong 1 to 1 correlation 

(R2=0.92) between dissolved total sulfur and sulfate (SO4) indicates that SO4 was the 

dominant dissolved sulfur species. 

Headspace gas samples from the acetylene-block experiments were injected 

into a sample loop of a gas chromatograph (Trace GC-Thermoquest) and assayed for 

N2O, CO2 and C2H2. Gas samples were separated on a 25-m capillary plot-fused silica 
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column (Poraplot Q, film thickness 10µm, i.d. 0.32 mm, Chrompack) with He as the 

carrier gas (flow rate 4.2 ml min-1). A Valco valve with a split-ratio of 1:10, split the 

GC eluent to either the electron capture detector (ECD) for N2O analysis or to the 

thermal conductivity detector (TCD) for CO2 and C2H2 analyses. The oven 

temperature was 40°C and the inlet temperature was 90°C. The temperatures of the 

ECD and TCD were 280 °C and 180 °C, respectively. 

4.3 RESULTS 

4.3.1 Nitrate Reduction during Fluidized-bed Experiments 

The conditions during the fluidized-bed experiments can be split into three 

redox phases. The initial phase was aerobic and lasted for 5 days. Following the 

removal of oxygen, the second phase was anaerobic and lasted for a month. The last 

phase represents the return of aerobic conditions upon re-oxygenation. 

During the first 5 days of the fluidized-bed experiments, oxygen concentrations 

in the effluent gradually decreased to below 2 µM in both sediment incubations. 

During the LA4-FB experiment (Fig. 4.2), ulfate concentrations decreased parallel to 

the oxygen decrease and the pH increased from 6.6 to 7.1–7.2, which is the value for 

calcite equilibrium at the pCO2 of 10-2 atm (Figs. 4.2 and 4.3). 

At the onset of the second phase, sulfate concentrations returned to input 

concentrations and nitrate concentrations decreased with a simultaneous increase of 

nitrite concentrations during both sediment incubations (Figs. 4.2 and 4.3). Lowering 

influent flow rates at day 19 resulted in doubling of the nitrite concentrations, after 

which nitrite production rates gradually decreased again, while nitrate reduction rates 

decreased more slowly. 

Stoichiometric evaluation indicated that 10–100% of the observed nitrate loss 

is accounted for by its reduction to nitrite (Fig. 4.4). Net nitrite production rates, as 

calculated from concentrations and flow rate, were highest at day 15 (LA4-FB) and 

day 10 (LA6-FB). However, during the anoxic phase, the ratios of nitrite production 

to nitrate reduction declined, indicating that nitrite reduction was progressively more 
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important. Towards the end of the anoxic second phase, nitrite production accounted 

for 60% of the observed nitrate loss for the LA4-FB sample and down to 15% for the 

LA6-FB sample. The average nitrate to nitrite conversion ratio was higher for the 

LA4-FB sediment sample (0.72) than for the LA6-FB sediment sample (0.45; Table 

4.3). Increase of the experimental temperature from 10 to 25°C (day 13) or pH from 

7.2 to 8.7 (day 12–15) had no observable effect on the nitrate reduction rates. 
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Figure 4.2 Chemical evolution during the fluidized-bed experiments with sediment sample 
LA4-FB. Arrow at day 19 indicates the decrease of influent flow rates. Roman 
numerals I, II and III represent the first suboxic phase, the anoxic phase and 
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final oxic phase, respectively. Horizontal lines represent average influent 
concentrations for sulfate and nitrate, and atmospheric equilibrium 
concentration for oxygen 
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Figure 4.3 Chemical evolution during the fluidized-bed experiments with sediment sample 
LA6-FB. Details as for Figure 4.2. 
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Table 4.3 Results of the fluidized-bed experiments. Total nitrate reduction, nitrite 
production, nitrite production to nitrate reduction ratio and aerobic respiration 
rates. Nitrate reduction and nitrite production rates are averaged over phase II. 
For oxygen, reduction rates are averaged over phase III. 

Sample 
Code 

Sample 
Weight 

(g) 

∆∆∆∆NO3
- 

(µmol/g) 
∆∆∆∆NO2

- 
(µmol/g)  

-
∆NO

 
-

∆NO

3

2
 NO2

- 
(µmol/g.day) 

NO3
-
�NO2

- a 
(µeq e-

/g.day) 

O2 
(µmol/ 
g.day) 

O2
 a 

(µeq e-

/g.day) 
LA4-FB 16.5 143 104 0.72 3.24 6.48 3.9 15.6 

         
LA6-FB 18.39 190 86 0.45 2.70 5.40 3.0 12.0 

(a) Reduction rates normalized to electron (e-) transfer. 
 
 
 
 
 
 
 
 
 
 

Table 4.4 Cumulative results of the cetylene-block sediment incubations. Ratios for N2O 
production to CO2 production and rates for N2O production and NO3

- reduction 
are averaged over the total duration of the experiments. 

Sample 
Code 

Sample 
Weight 

(g) 

final 
pH 

CO2 
(µmol/g) 

N2O 
(µmol/

g) 
2CO

O2N

 
N2O 

(µmol/g.day
) 

NO3
-
�N2O

a 
(µeq e-/g.day) 

LA4-1 16.5 3.28 0.14 ND 0 ND ND 
LA4-2 20.05 3.46 0.09 ND 0 ND ND 
LA4-X 15.48 2.17 1.00 0.01 0.01 0.002 0.007 
LA4-FB 12.95 6.72 1.41 0.29 0.20 0.042 0.167 

        
LA6-1 18.39 7.20 0.39 0.04 0.10 0.006 0.022 
LA6-2 17.68 7.10 0.60 0.06 0.10 0.009 0.035 
LA6-X 20.46 6.09 11.66 ND 0 ND ND 
LA6-FB 8.57 7.15 1.24 0.43 0.35 0.063 0.250 

(a) Reduction rates normalized to electron (e-) transfer. 
ND Not detected 
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Figure 4.1 Amount of nitrate reduced (∆∆∆∆NO3
-) versus the amount of nitrite produced (NO2

-

). The 1 to 1 line represents the situation where nitrite production accounts for 
100% of the observed nitrate reduction. The other line represents the situation 
where nitrite production accounts for only 10% of the observed nitrate 
reduction.  
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Directly after the re-oxygenation of the influent, nitrite concentrations dropped 

and nitrate concentrations returned to influent values. Oxygen concentrations 

increased sharply to 0.16 mmol/l (LA4-FB) and 0.22 mmol/l (LA6-FB), but remained 

below atmospheric equilibrium values (0.25 mmol/l). The calculated average oxygen 

consumption rates are 3.9 (LA4-FB) and 3.0 (LA6-FB) µmol/day (Table 4.3). Sulfate 

concentrations did not evidently change in response to re-oxygenation. 

4.3.2 Nitrate Reduction during Batch Experiments 

The fluidized-bed experiments were followed by acetylene-block experiments 

to assess the potential of the sediment samples to denitrify nitrate to gaseous nitrogen 

products. Production of N2O and CO2 were measured during batch incubations lasting 

7 days (Table 4.4). The pH values at the end of the incubations were circumneutral 

except for the incubated LA4-1/2 and LA4-X samples (pH<4). These, as well the 

control samples (LA4/6-X), did not reveal significant N2O production, demonstrating 

the absence of denitrification. 

The sediments pre-exposed to nitrate (and oxygen) during the fluidized-bed 

experiments (LA4-FB and LA6-FB) showed the highest N2O production rates (> 0.03 

µmol/g.day) during the subsequent batch incubations. After day 1 (LA6-FB) and day 

3 (LA4-FB), these sediment samples produced N2O and CO2 according to the 

characteristic 1:2 stoichiometry of NO3 reduction to N2O (Fig. 4.5): 

2 CH2O + 2 NO3
- + 2H+ � N2O + 2 CO2 + 3 H2O (3) 

In contrast, denitrification coupled to pyrite oxidation would yield a N2O/CO2 

ratio of 15 following: 

8 FeS2 + 30 NO3
- + CaCO3 + 12 H2O � 

8 Fe(OH)3 + 16 SO4
2- + 15 N2O + CO2 (4) 

The incubated LA6-1/2 sediment samples exhibited lower N2O to CO2 ratios, 

reflecting incomplete denitrification. 
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4.4 DISCUSSION 

4.4.1 pH-Control on Pyrite Oxidation 

Increased sulfate concentrations and acidity during the first phase of the 

fluidized-bed experiments reflect the aerobic oxidation of sulfides, such as pyrite 

(Table 4.1). These chemical changes are especially pronounced during the LA4-FB 

incubation (Fig. 4.2) and are in agreement with the dominance of pyrite oxidation as 

observed for this sample during oxic incubations (Chapter 3). Moreover, the final pH 

of 2–4 of the LA4-1/2 samples in the acetylene-block incubations (Table 4.4) points to 

untimely aerobic oxidation of some of the reactive pyrite during transfer of these 

samples causing an inhibition of microbial denitrification. 

The integrated amount of sulfate released during the first phase was one (LA4-

FB) to two (LA6-FB) orders of magnitude smaller than the sulfur contents initially 

present as sulfide in pyrite (Table 4.1). Thus, only a small fraction of the initial pyrite 

amount was oxidized during the fluidized-bed experiment and pyrite was still present 

during the following phases of the experiments. While in the aerobic first phase pyrite 

was readily oxidized by oxygen, no sulfate was released during the second, anoxic 

phase. Since sulfate production was also absent during the aerobic final phase, this 

suggests that the surface oxidation of pyrite was inhibited by the precipitation of iron 

hydroxides, as observed for the oxidation of pyrite under carbonate-buffered 

conditions (Nicholson et al., 1990). Alternatively, the low solubility of pyrite under 

slightly alkaline pHs limits its role as a reductant of nitrate in carbonate-buffered 

marine sediments (Schippers and Jørgensen, 2002). Therefore, the observed nitrate 

reduction during the suboxic phase was unlikely to be coupled to the oxidation of iron 

sulfides. Rather, a coupling with SOM or ferrous iron oxidation is expected since 

these were identified as reactive reductants during previous aerobic experiments 

(Chapter 3), in addition to pyrite. 

4.4.2 SOM Oxidation coupled to Nitrate Reduction 

Denitrification coupled to the oxidation of SOM or to the oxidation of ferrous 

iron can be separated on the basis of the opposite effects on alkalinity. While SOM 
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oxidation (reaction 1) results in the production of bicarbonate, ferrous iron oxidation 

leads to the net production of protons when reaction 2 is followed by reaction 3. 

Unfortunately however, the high pCO2 (10-2 atm) of the influent solution obscured any 

alkalinity effects during the fluidized-bed experiments. Still, the N2O to CO2 

stoichiometries during the acetylene-block incubations of the LA4-FB and LA6-FB 

samples point to SOM oxidation as the dominant pathway of denitrification (Table 

4.4). Thus, while pyrite was the reactive phase during oxygen reduction, nitrate 

reduction is dominated by SOM oxidation. This selective preference for SOM 

oxidation under denitrifying conditions is in agreement with the mass balance 

observations during aquifer recharge experiments (Stuyfzand, 1998). 
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Figure 4.2 Cross plot of CO2 and N2O production during the sediment incubations with 
final circumneutral pH values. Closed symbols represent the sediment samples 
pre-exposed to nitrate (FB). Open symbols represent the unexposed sediment 
samples (1/2). Squares represent LA6-FB sediment samples, while circles 
represent LA4-FB sediment samples. Numbers in symbols represent days. Lines 
representing oxidation stoichiometries of SOM and pyrite under carbonate-
buffered conditions are also shown. 

 
The undersaturated oxygen concentrations of the effluent during the third phase 

of the fluidized-bed experiments demonstrate the instant recovery of aerobic 

respiration upon re-oxygenation. Based on electron transfer, the oxygen reduction 

rates during this phase are about two times faster than the average nitrate reduction 
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rates observed in the preceding phase (Table 4.3). In addition, these nitrate reduction 

rates are similarly slower than those measured for the same sediments during oxic 

batch incubations of 54 days (Chapter 3). This difference is in agreement with the 

observation of slower anaerobic as compared to aerobic oxidation rates (D'Angelo and 

Reddy, 1999; Jacobsen and Bossi, 1997; Kristensen et al., 1995; Rockne and Strand, 

1998). 

4.4.3 Role of Microbial Adaptation 

The very low N2O production for the poisoned controls (Table 4.4) confirmed 

that nitrate reduction in the sediments was microbially mediated. Nitrite accumulation 

has frequently been observed during the initial stages of denitrification, both under 

laboratory (Broholm et al., 1999; Burland and Edwards, 1999; Devlin et al., 2000; Oh 

and Silverstein, 1999; Spence et al., 2001) and in situ conditions (Bates et al., 1998; 

Smith et al., 2001; Spence et al., 2001). The temporary build-up of nitrite has been 

interpreted as either slow microbial generation of nitrite reductase (Shi et al., 1999; 

Smith et al., 2001) or as the effect of carbon-limited conditions (Kelso et al., 1999; Oh 

and Silverstein, 1999; Spence et al., 2001; Stief, 2001). But while the reactivity of the 

organic substrate being oxidized presumably decreased, nitrite accumulation rates 

diminished during the fluidized-bed experiments in this study. Therefore, the initial 

nitrite accumulation observed was probably related to the slow microbial adaptation to 

the instant nitrate availability. The aquifer, from which the sediment samples were 

collected, contains no nitrate and is presently under iron-reducing conditions. 

Therefore, the delay in the microbial ability to reduce nitrite is fully explained by an 

adaptive response in reductase production of the bacterial population upon nitrate 

exposure (Bengtsson and Bergwall, 1995; Shi et al., 1999). 

The slow N2O production rates of the unexposed sediments during the 

acetylene-block incubations (Table 4.4) compare favorably with the rates obtained 

from other deep aquifer sediments (Morris et al., 1988). While, this indicates that little 

denitrifying potential was initially present, the decrease in the ratios of nitrite 

production to nitrate reduction during the fluidized-bed experiments (Figs. 4.2 and 

4.3) brings forward a growing significance of denitrification as compared to the partial 
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reduction of nitrate to nitrite. This is confirmed by the higher N2O production of the 

sediment pre-exposed to nitrate (LA6-FB) as compared with the unexposed sediments 

(LA6-1/2) during the acetylene-block experiments. Thus, pre-exposure to nitrate 

allowed microbial adaptation to facilitate denitrification. 

The bacterial population in the sediments studied needed over a month to fully 

develop the ability to denitrify. These adaptation times are long in comparison with 

those in the order of days found for studies using sediments pre-exposed to nitrate in 

situ (Bengtsson and Bergwall, 1995; Obenhuber and Lowrance, 1991). Moreover, 

response times for denitrification using more labile organic substrates (e.g. acetic 

acid) were similarly faster (Constantin and Fick, 1997; Gómez et al., 2000; Kelso et 

al., 1999; Roy and Greer, 2000). In contrast, the biodegradation of recalcitrant 

aromatic hydrocarbons resulted in an accumulation of nitrite that lasted for over one 

month (Hutchins et al., 1991). Therefore, the absence of denitrification in situ as well 

as the refractory nature of SOM are likely responsible for the observation of long 

microbial adaptation times and initial build-up of nitrite. 

Since SOM oxidation was the dominant nitrate reduction process during all 

experiments, a decreased SOM reactivity is expected for the samples that were 

transferred from the fluidized-bed to the batch reactors (LA4-FB, LA6-FB). 

Therefore, a higher degree of degradation of SOM may explain why the N2O 

production rates of the these samples were two orders of magnitude lower than the 

average NO3 reduction rates during the fluidized-bed experiments (Table 4.2). 

However, the absence of physical limitations in the fluidized-bed reactors or the build 

up of reaction products in the batch experiments probably contributes as well. 

4.4.4 Experimental Results in View of Field Observations 

Nitrite is not commonly observed during natural attenuation of nitrate (Appelo 

and Postma, 1993). Whereas the nitrite accumulation observed during the fluidized-

bed experiments was substantial, natural groundwater flow rates are slow enough to 

enable the bacterial population to develop a full denitrifying potential as nitrate 

percolates (Puckett and Cowdery, 2002) and thus minimizing the zone where 

temporary nitrite build-up occurs. Moreover, unconfined aquifers are subject to low 



Chapter 4 
 

 

natural background concentrations of nitrate at shallow depths. This facilitates a more 

rapid response to an increased nitrate supply than sediments that have been unexposed 

to nitrate at a geological time scale, such as the sediments studied here (Bengtsson and 

Bergwall, 1995). 

Results of this study point to several complications for the assessment 

denitrification potentials of sediments. While N2O production in acetylene block 

experiments is a good measure of total microbial denitrification potential of sediments 

that are adapted to an abundant nitrate supply, N2O production results in an 

underestimation of this potential when microbial ability to facilitate complete 

denitrification is underdeveloped. Conversely, sole dependence on decreases in nitrate 

concentrations results in an overestimation of denitrification potential when the 

reduction of nitrate is incomplete, i.e. when part of the reduced nitrate accumulates as 

intermediates. Therefore, nitrite is an intermediate that should be measured in 

denitrification studies, especially when microbial adaptation time is potentially longer 

than the experiment duration. 

Numerous field studies have ascribed the disappearance of nitrate in 

groundwater at least partly to pyrite oxidation (Cravotta, 1998; Houben et al., 2001; 

Kelly, 1997; Molenat et al., 2002; Pauwels et al., 2000; Pauwels et al., 1998; Pauwels 

et al., 2001; Pinault et al., 2001; Postma et al., 1991; Tesoriero et al., 2000). In 

addition, the oxidation of dissolved dihydrogen sulfide by nitrate, as mediated by 

Thiobacillus denitrificans, is a well-known process (e.g. Hole et al., 2002). To date 

however, laboratory experiments to confirm the role of pyrite during nitrate reduction 

in field studies were unsuccessful (Devlin et al., 2000; Houben et al., 2001). 

Moreover, observations of nitrate reduction coupled to pyrite oxidation are largely 

confined to mildly acidic (pH 5–7) groundwater systems (Cravotta, 1998; Houben et 

al., 2001; Kelly, 1997; Molenat et al., 2002; Pauwels et al., 2000; Pauwels et al., 

1998; Pauwels et al., 2001; Pinault et al., 2001; Postma et al., 1991; Tesoriero et al., 

2000). Therefore, nitrate reduction by pyrite seems limited to environments free of 

reactive carbonates. This is demonstrated by the localization of denitrification coupled 

to pyrite oxidation within weathered, acidic iron oxyhydroxide crusts in a limestone 



Nitrate Reduction Potential of Aquifer Sediments 
 

 87

aquifer (Moncaster et al., 2000). Alternatively, denitrification in these studies may be 

coupled to the oxidation of ferrous iron, as derived from incomplete aerobic pyrite 

oxidation (Postma et al., 1991). Overall, there is a clear need for experimental results 

that define the biogeochemical controls on nitrate reduction by pyrite in groundwater 

systems. 

4.5 CONCLUSIONS 

The potential for denitrification of the anaerobic aquifer sediments studied is 

primarily controlled by microbial adaptation and secondarily by the recalcitrant nature 

of SOM. In the absence of oxygen, reduction of nitrate to nitrite occurs readily upon 

nitrate exposure. However, nitrite accumulated until slow microbial adaptation 

enabled complete denitrification. 

Sedimentary organic matter was the principal electron donor during 

denitrification under the carbonate-buffered experimental conditions. Nitrate 

reduction coupled to pyrite oxidation is probably limited by either its low solubility at 

circumneutral to slightly alkaline pH or by an inhibition due to the precipitation of 

iron oxyhydroxides on its surface. The experimental results differ from those obtained 

for oxygen reduction, where pyrite oxidation was an important process. Overall, the 

rates obtained for nitrate reduction are two times slower than those obtained for 

oxygen reduction. 
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 Reactivity of  Organic Matter in Aquifer 

Sediments: Geological and Geochemical Controls 

Reactivity of Organic Matter in Aquifer Sediments 

5.1 INTRODUCTION     

The natural reduction capacity of aquifer sediments is of general importance to 

the redox processes within groundwater, but has only received increased attention 

over recent years. This is mainly related to the natural attenuation of nitrate in 

groundwater percolating from agricultural fields (Bradley et al., 1992; Moncaster et 

al., 2000; Pauwels et al., 2000; Pauwels et al., 1998; Postma et al., 1991; Robertson et 

al., 1996; Smith and Duff, 1988) and to the background consumption of oxidants 

injected during organic contaminant remediation (Barcelona and Holm, 1991; 

Schreiber and Bahr, 1999). 

The reactivity of sedimentary organic matter (SOM) towards oxidants plays a 

prominent role in controlling the redox status of groundwater systems, since its 

oxidation can drive the formation of secondary solid reductants such as pyrite (FeS2) 

or siderite (FeCO3). These minerals are formed during sediment diagenesis and are 

often found in close association with organic matter (Anderson et al., 1997; Grimes et 

al., 2001). 

Several factors are known to affect the reactivity of SOM towards oxidants, 

including environmental conditions, such as pH, temperature and oxidant 

concentrations (Tyson, 1995; van Bergen et al., 1998), physical protection 

mechanisms as sorption to mineral surfaces (Collins et al., 1995; Keil et al., 1994; 
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Mayer, 1994) and the chemical composition (i.e., quality) of SOM (Canuel, 1996; 

Henrichs, 1993; Kristensen and Holmer, 2001). 

Over the last decades, research has focused on the degradability of SOM in 

surface soils and marine sediments (Hedges and Oades, 1997 and references therein). 

In aquifers, SOM is ubiquitously present but generally in low contents (0.01–0.2 

wt.%). Field studies have shown that SOM oxidation rates in aquifers are generally 

carbon limited (Bradley et al., 1992; Hansen et al., 2001; Postma et al., 1991; Starr et 

al., 1996). These findings suggest that the composition of SOM is a rate-controlling 

factor. To date however, little is known about the molecular composition and 

reactivity of SOM in aquifer sediments. Hence, the aim of this study was 1) to assess 

the controls on the molecular composition of SOM present in two distinct aquifer-

forming geological formations and 2) to verify a relationship between the molecular 

composition of SOM in these sediments and its reactivity towards molecular oxygen. 

5.2 GEOLOGICAL SETTING 

The study site is located in the eastern part of The Netherlands near 

groundwater pumping location 't Klooster (Fig. 5.1a). Here, thick sedimentary 

deposits of near-shore marine and fluvial origin (van den Berg et al., 2000) form 

interconnected aquifers (van Beek and Vogelaar, 1998). Regional groundwater levels 

are shallow (2–6 m-bs). The hydrogeological base at over 120 m below surface (m-bs) 

is formed by unconsolidated Miocene marine deposits of silty clay, loam and very fine 

sand of the Breda Formation (Fig. 5.1b). These are overlain by Pliocene deposits 

composed of calcareous silty and medium fine sands. At the location of core 34C-104 

these deposits have been eroded. The erosion valley is filled with Upper Pliocene 

fluvial coarse sands and covered with Middle Pleistocene fluvio-glacial calcareous 

very fine sand and clay deposited during the Saalian. The upper 30 meters of the 

deposits consist of Upper Pleistocene fluvial and fluvio-glacial sediments, including a 

5 m thick top layer of Weichselian non-calcareous sands and loam, which are of 

fluvial and aeolian origin. Holocene aeolian deposits of the Holocene Kootwijk 

Formation (e.g., ‘t Zand) form the local topography (van den Berg et al., 2000). 
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Largest part of the sedimentary sequence is presently under anoxic conditions. 

Groundwater chemistry reveals an approximately stratified redox zonation. Oxygen is 

consumed within the first 10 m below surface. The NO3/Fe redoxcline lies between 6 

and 12 m below surface, while sulfate disappears in the depth interval between 30 and 

55 m below surface (Griffioen, 2001; van Beek and Vogelaar, 1998). 

5.3 MATERIALS AND METHODS 

5.3.1 Sediment Selection 

Sediment cores were obtained in 40 cm long stainless steel tubing with a 90 

mm inner diameter, using a hollow stem auger with a Nordmeyer drilling rig. Pristine 

sediment samples were taken at two stratigraphic depths from the Pleistocene fluvio-

glacial Drente Formation (DR-1 and DR-2— core 34C-104) and from the Pliocene 

shallow marine Oosterhout Formation (OO-1 and OO-2—core 34C-105). At these 

depths, iron-reducing conditions currently prevail (van Beek and Vogelaar, 1998). 

These sediment samples (Table 5.1, Fig. 5.1b) were selected because their geological 

formations 1) form important aquifer units in the local hydrogeology, 2) have a 

similar provenance (river Rhine) and 3) were deposited in contrasting environments 

(van den Berg et al., 2000). 

 

Table 5.1 Bulk characteristics of the total (0-2000 µm) and fine (0-63 µm) sediment 
fractions studied 

Core 
 

Sample 
 

Depth 
(m-bs) 

TOC 
(wt.%) 

TIC 
(wt.%) 

SiO2 
(wt.%) 

Al 2O3 
(wt.%) 

Fe 
(wt.%) 

S 
(wt.%) 

TOC 
(wt.%) 

TIC 
(wt.%) 

   0-2000 µm 0-63 µm 
34C-104 DR-1 26.7 0.10 1.14 86.3 7.8 1.55 0.53 0.33 0.76 
34C-104 DR-2 32.7 0.11 1.32 85.4 8.2 1.41 0.47 0.42 0.6 
34C-105 OO-1 34.0 0.14 1.59 84.5 7.1 4.15 0.68 1.08 0.69 
34C-105 OO-2 54.0 0.12 1.73 83.9 6.0 4.14 0.69 0.89 0.27 

TOC: Total Organic Carbon 
TIC: Total Inorganic Carbon 
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Figure 5.1 (a) Location of the study area near Doetinchem, The Netherlands, showing the 
location of the geological cross-section along A–A´ and the cores used; (b) 
Geological cross-section along A–A and location of the selected samples. 
Adapted from Van Beek and Vogelaar (1998) and Van den Berg et al. (2000) 

5.3.2 
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Sample Processing 

Sediment samples collected were stored in glass bottles at 8°C until they were 

wet sieved into four particle size fractions: 0–63 µm (fine fraction), 63–2000 µm 

(coarse fraction), a separate 0–2000 µm (total fraction) and >2000µm. The latter (<5 

wt.%) was discarded. Fractions were freeze-dried (-40°C) and stored in glass jars 

under N2 at 8°C in the dark until subsamples were taken for bulk sediment chemistry, 

organic matter isolation and batch incubation experiments. 

5.3.3 Bulk Sediment Chemistry 

Total Al, Si, Fe and S contents of the total fraction samples were determined by 

X-ray fluorescence spectroscopy, using a XARL8410 spectrometer. Total inorganic 

carbonate (TIC) contents were determined by weight loss after acid digestion with 2.6 

M HCl. Subsequently, total organic carbon (TOC) contents were measured in 

duplicate on decarbonated freeze-dried sediment fractions by combustion in an 

elemental analyzer (NA1500 NCS, Carlo Erba) with an analytical precision (1σ) 

better than 5%. 

5.3.4 Organic Matter Isolation 

Samples were treated with excess 10% HCl to remove carbonates and settled 

overnight, after which the samples were centrifuged at 2200 rpm for 7 minutes and the 

supernatant was decanted. Samples were then treated with excess 38% HF to dissolve 

the silicate mineral matrix, shaken at 250 rpm for two hours, after which the samples 

were centrifuged at 2200 rpm for 7 minutes and the supernatant was decanted. 

Subsequently, the samples were washed three times with distilled water by 

centrifugation and decantation as described above. Then, the HCl/HF procedure as 

described above was repeated. Finally, samples were treated with 30% HCl to remove 

any potential fluoride gels and were washed as described above until the samples were 

diluted to an aqueous pH of 7. Samples were freeze-dried and weighed. The dried 

isolates were stored in glass at 8°C in the dark until analysis by pyrolysis-gas 

chromatography/mass spectrometry (Py-GC/MS). 
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5.3.5 Curie-point Pyrolysis-Gas Chromatography/Mass Spectrometry 

The organic matter isolates were pressed onto a ferromagnetic wire with a 

Curie temperature of 610°C. Py-GC/MS analyses were carried out on a Hewlett-

Packard 5890 gas chromatograph (GC) equipped with a FOM-3LX unit for pyrolysis. 

The GC was interfaced to a VG Autospec Ultima mass spectrometer operated at 70eV 

with a mass range of m/z 50-800 and a cycle time of 1.7 s (resolution 1000). The gas 

chromatograph, equipped with a cryogenic unit, was programmed from 0°C (5 min) to 

300°C (10 min) at a rate of 3°C/min. Separation was achieved using a fused silica 

capillary column (25 m × 0.32 mm) coated with CP Sil-5CB (film thickness 0.4 µm). 

Helium was used as a carrier gas. 

5.3.6 Sediment Fraction Incubations 

A few grams of the fine fractions or 20 grams of the total fractions were added 

to individual reactions chambers (100 ml bottle, Duran). Fifty milliliters of solution 

containing vitamins, trace elements and K2HPO4/KH2PO4 were added (Table 5.2). 

The phosphate buffer serves as an additional pH buffer to the carbonate buffer present 

in the sediment and impedes potential pyrite oxidation (Elstinow et al., 2001). One 

additional set of total fraction samples received glucose amendments with half of the 

amounts of vitamins and trace elements (Table 5.2) to check for nutrient or substrate 

limitations. The reaction chambers were connected to the closed circuit of a 30-

channel computerized respirometer (Columbus Instruments Micro-Oxymax). The 

respirometer was used to simultaneously measure O2 uptake and CO2 production 

every 4 hours as an indication for the respiration activities of the microorganisms in 

the sediment samples. Carbon dioxide (pCO2 = 10-3.35 ± 0.34 atm) and oxygen (pO2 = 10-

0.68 ± 0.001 atm) levels in the headspaces of the reaction chambers were kept constant 

throughout the experiments. The evaporation of water in the reaction chambers 

enlarges the headspace volumes causing reduced oxygen concentrations. Therefore, a 

reaction chamber with 50 ml of the added solution was simultaneously run as a blank. 

Reported oxygen consumptions were corrected for this background ‘consumption’. 

The effect of evaporation on the CO2 production was negligible, because of the low 
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atmospheric concentrations of CO2 in the headspace atmosphere. The sediment 

slurries were incubated for 106 days in the dark at 25°C (± 1°C), while shaken gently 

at 100 rpm to ensure sufficient mixing of the solid and water phase and to enhance 

exchange with the gas phase in the reaction chambers. 

 

Table 5.2 Medium composition of the unamended and glucose-amended incubations 

Component Unamended 
Glucose-
amended 

   
pH Buffer (g/l)   

KH2PO4 4 4 
K2HPO4 4 4 

Basic media (mg/l)   
CaCl2.2H2O 13.25 6.63 

NaCl 10 5 
NH4Cl 1.7 0.85 

Amendment (g/l)   
Glucose - 0.4 

Trace metals 
(µg/l) 

  

FeCl3 120 60 
H3BO3 50 25 

CuSO4.5 H2O 10 5 
KI 10 5 

MnSO4.H2O 45 22.5 
Na2MoO4 20 10 

ZnSO4.7 H2O 75 37.5 
CoCl2.6 H2O 50 25 

Alk(SO4).12 H2O 20 10 
Vitamins (µg/l)   
Nicotinic acid 100 50 

Ca-panthothenate 200 100 
Cyanocobalumin 25 12.5 

Inositol 100 50 
P-aminobenzoate 20 10 

Thiamine.HCl 50 25 
Pyridoxine.HCl 25 12.5 

Biotine 10 5 
Riboflavine 10 5 
Folic acid 10 5 

Thiotic acid 10 5 
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5.4 RESULTS 

5.4.1 Physical and Bulk Geochemical Characteristics 

The bulk mineral composition of the total fraction samples consists of quartz as 

indicated by the dominance (>80 wt.%) of SiO2 (Table 5.1). The particles in both the 

Drente and Oosterhout total fraction samples are predominantly (> 90 wt.%) larger 

than 63µm. Total organic carbon contents are low in all total fractions (0.1–0.14 

wt.%). Highest TOC contents are observed in the fine fractions (0.3–1.0 wt.%). Total 

sulfur contents and especially total iron contents are higher in the Oosterhout total 

fraction samples relative to those of the Drente samples. 
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Figure 5.2 Representative gas chromatograms of the evaporate/pyrolysate mixtures of (a) 

the Drente samples and (b) the Oosterhout samples. Peak numbers refer to the 
compounds listed in Table 5.4.     + = alkane, , = alkene. Gray bars indicate the 
trace position in Figures 5.3–5.6. 
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5.4.2 Pyrolysis-Gas Chromatography/Mass Spectrometry 

Curie point pyrolysis-GC/MS was used as a qualitative method to characterize 

the chemical composition of SOM in the selected aquifer sediments. The flash heating 

results in an evaporate/pyrolysate mixture due to the evaporation of “free” low-

molecular-weight (LMW) compounds and the pyrolysis of macromolecular 

compounds (Faure and Landais, 2001). Due to the presence of an unresolved complex 

mixture (UCM) in all evaporate/pyrolysate mixtures (Fig. 5.2), the organic 

composition of the isolates does not fully represent the chemical composition of SOM 

present in the incubated sediment samples. Also acid hydrolysis of organic 

compounds during HF/HCl isolation inevitably results in the loss of some compounds, 

studies have indicated that HF/HCl treatment does not significantly affect the bulk 

composition of the organic matter isolated (Sanchez-Monedero et al., 2002; Schmidt 

et al., 1997). 

5.4.2.1 Bulk Chemical Composition of SOM 

Overall, the obtained organic matter compositions of the samples are 

remarkably similar for the fractions analyzed. The evaporate/pyrolysate mixtures are 

dominated by aromatic compounds and homologous series of alk-1-enes and alkanes, 

with contributions from alkylthiophenes, fatty acids and branched hydrocarbons. 

However, the gas chromatogram of the fine fraction of the DR-1 sample was 

dominated by C16 and C18 nitrils and fatty acids, and showed a homologous series of 

alkenes. Because of the paucity of other identifiable compounds, this fraction will not 

be further discussed. The amount of isolate obtained from the coarse fraction of the 

OO-2 sample was insufficient to be analyzed. The total ion current traces of the 

Drente and Oosterhout evaporates/pyrolysates show a significant contribution of 

unidentified compounds present as UCM. The main compounds identified (Table 5.4) 

can be grouped into four classes of compounds and are discussed accordingly: lignin-

derived compounds (LG), long-chain aliphatics (ALK), fatty acids (FA), and 

hopanoids (HOP). 
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Table 5.3 Compounds identified in the evaporate/pyrolysate mixtures 

 

Peaka Compound Name 
Characteristic 

Fragments (m/z) 
M+ (m/z) 

Compound 
Classb 

1 benzene 78 78  

2 toluene 91, 92 92  

3 2-furaldehyde 95, 96 96  

4 C2-alkylbenzene 91, 106 106  

5 C2-alkylbenzene 91, 106 106  

6 styrene 104 104  

7 C2-alkylbenzene 91, 106 106  

8 5-methyl-2-furaldehyde 53, 109, 110 110  

9 phenol 94 94  

10 2-Methylphenol 107, 108 108  

11 2-methoxyphenol (guaiacol) 81, 109, 124 124 LG 

12 3-methyl- and 4-methylphenol 107, 108 108  

13 C4-alkylbenzene 133, 134 134  

14 Naphthalene 128 128  

15 4-methyl-2-methoxyphenol 123+138 138 LG 

16 Dodecene 55+69 168 ALK 

17 Dodecane 57, 71 170 ALK 

18 ethyl-2-methoxyphenol 137, 152 152 LG 

19 C1-naphthalene 127, 162 162  

20 C1-naphthalene 127, 162 162  

21 4-vinyl-2-methoxyphenol 135, 150 150 LG 

22 4-(2-propenyl)-2-methoxyphenol 164 164 LG 

23 1-chloronaphthalene 127, 162 162  

24 4-formyl-2-methoxyphenol 151, 152 152 LG 

25 cis-4-(1-propenyl)-2-methoxyphenol 164 164 LG 

26 butadecene (C14:1) 55, 69 196 ALK 

27 butadecane (C14) 57, 71 198 ALK 

28 
trans-4-(1-propenyl)-2-

methoxyphenol 
164 164 LG 

29 4-acetyl-2-methoxyphenol 151 166 LG 

30 4-(propane-2-one)-2-methoxyphenol 137, 180 180 LG 

31 pentadecene (C15:1) 55, 69 210 ALK 
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32 3,5-di-(tert-butyl)-phenol 191, 206 206 CONT 

33 pentadecane (C15) 57, 71 212 ALK 

34 C18-alkane (branched) 57, 71 254 ALK 

35 hexadecene (C16:1) 55, 69 224 ALK 

36 hexadecane (C16) 57, 71 226 ALK 

37 heptadecene (C17:1) 55, 69 238 ALK 

38 heptadecane (C17) 57, 71 240 ALK 

39 C18-alkane (branched) 57, 71 254 ALK 

40 prist-1-ene (C19:1) 69, 126, 266 266 ALK 

41 prist-2-ene (C19:1) 69, 126, 266 266 ALK 

42 C20-alkane (branched) 57, 71 282 ALK 

43 nonadecene (C19:1) 55, 69 266 ALK 

44 octasulfur (S8) 64, 256 256  

45 nonadecane (C19) 57, 71 268 ALK 

46 methylhexadecanoate 74, 270 270  

47 hexadecanoic acid (C16) 73, 256 256 FA 

48 C24-alkane (branched) 57, 71 338 ALK 

49 octadecanenitrile (C18) 57, 97 265  

50 henicosene (C21:1) 55, 69 294 ALK 

51 henicosane (C21) 57, 71 296 ALK 

52 methyloctadecanoate (C18) 74, 298 298  

53 octadecanoic acid (C18) 73, 284 284 FA 

54 docosene (C22:1) 55, 69 308 ALK 

55 docosane (C22) 57, 71 310 ALK 

56 tricosene (C23:1) 55, 69 322 ALK 

57 tricosane (C23) 57, 71 324 ALK 

58 tetracosene (C24:1) 55, 69 336 ALK 

59 tetracosane (C24) 57, 71 338 ALK 

60 pentacosene (C25:1) 55, 69 350 ALK 

61 pentacosane (C25) 57, 71 352 ALK 

62 hexacosene (C26:1) 55, 69 364 ALK 

63 hexacosane (C26) 57, 71 366 ALK 

64 hepatcosene (C27:1) 55, 69 378 ALK 

65 heptacosane (C27) 57, 71 380 ALK 

66 octacosene (C28:1) 55, 69 392 ALK 
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67 octacosane (C28) 57, 71 394 ALK 

68 nonacosene (C29:1) 55, 69 406 ALK 

69 nonacosane (C29) 57, 71 408 ALK 

70 nor-17(21)-hopene 191, 231, 367 396 HOP 

71 triacontene (C30:1) 55, 69 420 ALK 

72 triacontane (C30) 57, 71 422 ALK 

73 hentriacontane (C31) 57, 71 434 ALK 

74 dotriacontane (C32) 57, 71 448 ALK 

75 tritriacontane (C33) 57, 71 462 ALK 

76 pentatriacontane (C34) 57, 71 476 ALK 
a Peak numbers refer to Figure 5.2 
b lignin-derived compounds (LG), long-chain aliphatics (ALK), fatty acids (FA), and hopanoids 
(HOP), contaminants (CONT) 

 

The types of compounds detected in the evaporate/pyrolysate mixtures are 

similar for the Drente and Oosterhout fractions. However, lignin-derived markers 

dominate the Drente samples, whereas the Oosterhout samples show an equal 

contribution from aliphatics and lignin-derived compounds (Fig. 5.2, Table 5.4). 

5.4.2.2 Lignin-derived Pyrolysis Products 

Lignin-derived 2-methoxyphenol (guaiacol) pyrolysis products are relatively 

abundant in all samples. A small amount of 2,6-dimethoxyphenol (syringol) was 

detected only in the evaporate/pyrolysate mixture of the OO-2 fine fraction. 

As indicated by the summed mass chromatograms m/z 

124+138+150+152+164+166 (Fig. 5.3), 2-methoxyphenol (I; see Fig. 5.3 for 

structures), 4-methyl-2-methoxyphenol (II) and 4-ethyl-2-methoxyphenol (III) are the 

dominant guaiacyl-lignin derivatives in the Drente samples. In the Oosterhout 

samples, 4-vinyl-2-methoxyphenol (IV) is the most important guaiacyl-lignin 

derivative. In addition, 2-methoxy-4-(2-propenyl)-phenol (V) and the 2-methoxy-4-

(1-propenyl)-phenol isomers (VII and VIII) are as important as 2-methoxyphenol (I) 

and 4-methyl-2-methoxyphenol (II). The oxidized lignin derivatives 4-formyl-2-

methoxy-phenol (VI), 4-acetyl-2-methoxyphenol (IX) and 4-(propan-2-one)-2-

methoxyphenol (not shown) were most pronounced in the Drente samples. 
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Figure 5.3 Representative partial mass chromatograms for guaiacyl derivatives (m/z 
124+138+150+152+164+166) of the evaporate/pyrolysate mixtures of (a) the 
Drente samples (b) the Oosterhout samples. *Co-elution of 1-chloronaphthalene 
(M+=164) with 2-methoxy-4-(2-propenyl)-phenol (V). Roman numbers in bold 
refer to compounds, as discussed in section 5.4.2.2 of the text. 

 

5.4.2.3 Alkanes and Alkenes 

In both the Oosterhout and Drente samples, the alkane distribution is 

dominated by long chain (C23-C31) alkanes with a maximum in the C23–C25-range, as 

illustrated by the mass chromatograms m/z 55+57 in Figure 5.4. The relative amounts 

decrease from the C24-alkane towards the longer alkanes. In the distributions of C27-

C31 alkanes, the odd-carbon-numbered alkanes are relatively more pronounced in the 

Oosterhout samples, while alkene counterparts accompany the alkanes less 

prominently as compared with the Drente samples (Table 5.3). 

In the Oosterhout samples, several branched alkanes (C18, C20 and C24) are 

clearly present (Table 5.4, Fig. 5.2). While the overall hydrocarbon content of the 

Drente samples is lower than that of the Oosterhout samples, the relative amounts of 
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prist-1-ene (2,6,10,14-tetramethyl-1-pentadecene) and prist-2-ene (2,6,10,14-

tetramethyl-2-pentadecene) are more pronounced in the Drente samples (Table 5.4, 

Fig. 5.2). 
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    Figure 5.4 Representative partial mass chromatograms for alkenes and alkanes (m/z 55+57) 
of the evaporate/pyrolysate mixtures of (a) the Drente samples (b) the 
Oosterhout samples + = alkane, , = alkene. Numbers above peaks indicate 
number of carbon atoms. 

5.4.2.4 2-Alkanones 

The 2-alkanone distributions, as indicated by the mass chromatograms m/z 59 

(Fig. 5.5) are dominated by the C23 to C31 2-alkanones with a maximum at C29 for the 

Drente samples, while in the Oosterhout samples the 2-alkones are more evenly 

distributed. In the C25- to C31-2-alkanone distributions, the 2-alkanones with an odd 

carbon number are relatively most pronounced in the Drente samples as compared 

with the Oosterhout samples. The odd-over-even predominance can be expressed 

using a carbon preference index (CPI). The following equation was used for the CPI 

calculation (Table 5.3): 
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)C(C

2C

3028

29

+
=CPI

 

Calculated CPI’s for the 2-alkanones in the Drente samples (3.2–4.0) were higher than 

in the Oosterhout samples (2.3–2.8). 
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Figure 5.5 Representative partial mass chromatograms for 2-alkanones (m/z 59) of the 
evaporate/pyrolysate mixtures of (a) the Drente samples (b) the Oosterhout 
samples. Numbers above peaks indicate number of carbon atoms 
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Figure 5.6 Representative partial mass chromatograms for 2-alkanones (m/z 59) of the 
evaporate/pyrolysate mixtures of (a) the Drente samples (b) the Oosterhout 
samples. Numbers above peaks indicate number of carbon atoms 

 
 

Table 5.4 Organic geochemical results for the incubated fine and coarse fractions of the 
Drente (DR) and Oosterhout (OO) sediments 

Sample Fraction 
Initial 

Sample 
(g) 

Removala 
(%) alkene

alkaneb CPIc 
alkanones 

      
DR-1 Fine 0.13 95.7 n.dd n.d. 
DR-1 Coarse 14.47 98.8 2.19 4.04 
DR-2 Fine 0.87 98.8 1.22 3.24 
DR-2 Coarse 14.39 98.2 1.75 3.78 

      
OO-1 Fine 1.42 94.0 3.28 2.55 
OO-1 Coarse 16.29 99.3 5.93 2.31 
OO-2 Fine 13.44 92.9 2.49 2.79 

 
(a) Matrix removal efficiency of the HF/HCl treatment. 
(b) Calculated average for C23–C31 

(c) Calculated as 
)C(C

2C

3028

29

+
=CPI  

(d) Not determined 
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5.4.2.5 Fatty Acids 

Fatty acids, as indicated by the mass chromatograms m/z 60+73 (not shown), 

display a strong even-over-odd predominance and range from C12 to C26. The C16 and 

C18 fatty acids predominate the mixtures. In all Drente samples, the C16 fatty acid is 

relatively less important than the C18 fatty acid, whereas they are equally important in 

the samples from the Oosterhout Formation. Small relative amounts of iso- and 

anteiso-C15 and C17 fatty acids were detected in the Oosterhout samples. Only minor 

amounts of iso- and anteiso-C15 were observed in the Drente samples. 
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Figure 5.7 Representative partial mass chromatograms for hopanoids (m/z 191) of the 
evaporate/pyrolysate mixtures of (a) the Drente samples (b) the Oosterhout 
samples. 

5.4.2.6 Hopanoids 

A number of triterpenoidal hydrocarbons of hopanoid origin were identified in 

all samples. Hopanoid distributions ranged from C27 to C33 (Fig. 5.6). Maxima in the 

hopanoid distributions are at C27 in the Drente samples and at C29 in the Oosterhout 
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samples. The hopanes are present in both the 17α(H),21ß(H) (i.e., αß) as well as the 

less stable natural ßß configuration. The relative amounts of the more stable 22S and 

the natural 22R isomers are variable for the C31- to C33-hopanes. Trisnor-17(21)-

hopene (C27) and nor-17(21)-hopene (C27) prominently accompany C27- and C29-

hopane counterparts. 

5.4.3 Incubation Experiments 

5.4.3.1 Oxygen Consumption of the Unamended Sediment Fractions 

Sediment fractions were incubated for 106 days under constant atmospheric 

conditions to assess their reactivity towards oxygen. Oxygen consumption rates 

decreased continuously during all unamended incubations. However, two major 

differences in reactivity were observed. Firstly, the fine and total fractions of the 

Oosterhout samples consumed up to 14 times more O2/g than the corresponding 

fractions of the Drente samples. Secondly, the weight-based oxygen uptake of the fine 

fractions was 1.2 to 4.9 times higher than that of the corresponding total fractions 

(Table 5.5). 

Table 5.5 Cumulative results for the incubations of the unamended fine and total fractions, 
and the glucose-amended total fractions 

Fraction 
 

Sample 
code 

 

Total O2 
consumption 
(µmol/g.sed) 

CO2/O2

(molar) 
TOC 

(wt. %) 

TOC-
oxidizeda 
(% initial) 

DR-1 6.1 0.96 0.33 2 
DR-2 6.4 0.71 0.42 2 
OO-1 83.4 0.59 1.08 9b 

< 63 µm 

OO-2 47.3 0.76 0.89 6 
      

DR-1 5.3 0.99 0.10 6 
DR-2 1.9 1.19 0.11 2 
OO-1 16.9 0.64 0.14 14b 

0-2000 µm 

OO-2 11.1 1.17 0.12 11 
      

DR-1 25.9 1.11 0.04c 62c 
DR-2 25.5 1.15 0.04 c 71 c 
OO-1 34.3 0.86 0.04 c 52 c 

0-2000 µm 
+ 

 Glucose 
OO-2 31.1 1.09 0.04 c 60 c 

(a) The initial TOC contents and total oxygen consumptions (RQ=1) were used to calculate the 
amount of organic carbon oxidized. 
(b) Maximum estimate due to the possible contribution of pyrite oxidation. 
(c) Represents the glucose-C added as a calculated sediment weight percentage. 
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5.4.3.2 Oxygen Consumption of the Glucose-amended Sediment Fractions 

In the glucose-amended incubations, oxygen consumption rates were elevated 

during the first 20 days as compared with the unamended incubations (Fig. 5.7). This 

resulted in a 17–24 µmol O2/g higher total oxygen consumption, indicating the 

mineralization of 52–71 % of the glucose added (Table 5.5). Oxygen consumption 

rates of the amended samples equaled those of the unamended incubations towards the 

end of the incubations (Fig. 5.7) and the absolute differences in total O2/g uptake 

between the glucose-amended incubations were similar to the differences between the 

corresponding unamended total fractions (Table 5.5). 

 

 

Figure 5.8 Cumulative oxidation consumption during the incubation of the glucose-
amended    (,) and unamended (+) total fraction of the DR-1 and OO-2 sediment 
samples. Dashed lines represent the glucose-attributed difference between the 
amended and unamended fractions. Arrow on Y-axes indicates the amount of 
glucose added to the amended fractions. 

5.4.3.3 Respiration Quotients of the Incubations 

Molar respiratory quotients (RQ) of CO2 production and O2 consumption of the 

unamended incubations were near unity, ranging between 0.59 and 1.19 (Table 5.5). 

The lowest RQ’s were observed for the incubations of the OO-1 sediment samples. 

The RQ’s of the glucose-amended total fraction incubations were closer to unity than 

the unamended samples. 
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5.5 DISCUSSION 

In this study we have characterized SOM in aquifer sediments from two 

distinct geological formations, assessed its origin and degradation status and measured 

its reactivity towards molecular oxygen. 

5.5.1 “Free” and Macromolecular SOM 

During flash heating of SOM, “free“ LMW compounds evaporate, while 

compounds bound within a macromolecular structure are revealed as degraded 

products upon pyrolysis (Faure and Landais, 2001). The significant presence of 

alkenes relative to their alkane counterparts (Fig. 5.4, Table 5.3) indicates that a 

substantial part of the straight chain hydrocarbons are pyrolysis products released 

from macromolecular structures (Derenne et al., 1991; Lichtfouse et al., 1998a). 

Moreover, the importance of hopenes relative to their hopane counterparts (Fig. 5.6) 

and unsaturated isoprenoids (Table 5.4) indicates that, during early diagenesis, a 

significant fraction of SOM has been incorporated within macromolecular structures 

in both the Drente and Oosterhout samples (Ambles et al., 1996; Lichtfouse et al., 

1998b; Qu et al., 1996; Reiss et al., 1997). 

Since unsaturated counterparts did not accompany the fatty acids and 2-

alkanones, these compounds occur as such in both the Oosterhout and Drente samples 

and therefore simply evaporate. Summarizing, SOM is thus present as 

macromolecules and “free” LMW compounds in both the Drente and Oosterhout 

samples. However, the higher ratio of alkane to alkene counterparts (Table 5.3) as 

well as the dominance of hopane over hopene counterparts (Fig. 5.6) indicates “free” 

LMW compounds are relatively more important in the SOM of the Oosterhout 

samples than in the SOM of the Drente samples. 

5.5.2 Origin of Sedimentary Organic Matter 

The bulk inorganic composition of the Oosterhout sediments is in line with a 

shallow marine depositional environment as opposed to the sediments from the Drente 

formation. The elevated total sulfur and total iron contents in the Oosterhout 

sediments (Table 5.2) is attributed to the presence of iron sulfides, formed under 
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sulfate-reducing conditions. Glauconite (a Fe(II),Fe(III)-silicate mineral) can be an 

additional source of iron. Glauconite is indicative for diagenesis in shallow marine 

environments (Berner, 1971) and is frequently observed in the Oosterhout Formation 

(Griffioen, 2001; van den Berg et al., 2000). Thus, the inorganic geochemical 

composition of the Oosterhout samples is consistent with the near coastal origin of the 

formation. Therefore, an input of marine-derived organic matter to SOM would be 

expected during the deposition of the Oosterhout sediments. 

Despite the coastal depositional environment of the Oosterhout Formation, no 

compounds of an unequivocal marine origin were observed in the Oosterhout samples. 

Instead, the abundance of long chain (C23–C33) alkanes (Fig. 5.4) and 2-alkanones 

(Fig. 5.5) with an odd-over-even predominance of the C27 to C33-alkanes (Fig. 5.4) is 

characteristic for aliphatics derived from the cuticular waxes of higher plants 

(Eglinton and Hamilton, 1967). Finally, the importance of guaiacyl lignin-derived 

markers in the total ion current traces (Fig. 5.2) reflects the input of angiosperm wood 

components (Saiz-Jimenez and De Leeuw, 1986). Thus, the SOM in both the Drente 

and Oosterhout sediments is dominantly of a terrestrial, higher plant origin. 

Besides a higher plant-derived origin, a small input of bacterial biomass to 

SOM is observed. This is indicated by the presence of C27–C33-hopanoids (Fig. 5.6), 

which are derived from C35-bacterial hopanoids and related bacterial lipids 

(Dorsselaer et al., 1974; Kannenberg and Poralla, 1999; Otto and Simoneit, 2001; 

Rullkötter, 1983), as well as by small amounts of iso- and anteiso-C15 and C17 fatty 

acids in the Oosterhout samples (Leo and Parker, 1966; Schmitter et al., 1978). 

Although living biomass is undoubtedly present, hopanoids with functional groups 

attached to their hopanoid skeleton were not observed. Therefore, dead bacterial 

biomass is probably the main source of the microbial-derived SOM with an 

insignificant contribution of active bacterial biomass. 

5.5.3 Diagenetic Effect on the Composition of Sedimentary Organic Matter 

Signs of diagenetic SOM oxidation are found in both the Drente and 

Oosterhout samples, but results indicate that SOM degradation in the Drente samples 

has been more intense. Firstly, side chains of the lignin derivatives are shorter in the 
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Drente samples and lignin derivatives with an oxidized propyl side chain (VI and IX, 

Fig. 5.3) are more abundant in the Drente samples (Fig. 5.3), as compared with the 

Oosterhout samples. These features are typical for aerobic lignin degradation (Dittmar 

and Lara, 2001), and thus indicate a more extensive aerobic oxidation of the propyl 

side chain on guaiacyl-lignin derivatives (Dijkstra et al., 1998; Kuder and Kruge, 

1998) in the Drente samples. Secondly, a higher degree of side chain oxidation of the 

hopanoids is indicated for the Drente samples, where C27-hopanoids are dominant, 

while the longer hopanoids (> C29) are more prominent in the Oosterhout samples 

(Fig. 5.6). The oxidation of linear side chains is thus more pronounced in the Drente 

samples than in the Oosterhout samples. 

The higher degree of side chain oxidation is in line with the aforementioned 

relative importance of macromolecular SOM in the Drente samples. The presence of 

2-alkanones with a high odd-over-even predominance (Fig. 5.4, Table 5.3) indicates 

the partial oxidation of corresponding plant wax-derived alkanes (Ambles et al., 

1993). Since odd-over-even predominance is typical for plant wax-derived alkanes, 

the more pronounced odd-over-even predominance of these 2-alkanones (Fig. 5.4) as 

compared with the long-chain alkanes (Fig. 5.3) indicates that these alkanes are 

preferentially oxidized over macromolecular alkyl moieties. Therefore, the higher 

CPI’s for the 2-alkanones in the Drente samples (Table 5.3) as compared with the 

Oosterhout samples imply that the plant wax derived lipid fraction in the Drente 

samples is more degraded than in the Oosterhout samples. Since macromolecular 

SOM is in general more resistant to oxidation than “free” LMW compounds (e.g., 

(Jenisch-Anton et al., 2000), the greater importance of macromolecular SOM in the 

Drente samples can be explained by a more extensive oxidation of SOM as compared 

with the Oosterhout samples. 

5.5.4 Geochemical Controls on the Reactivity of SOM 

The less degraded status of SOM in the Oosterhout samples is in agreement 

with their high affinities towards molecular oxygen during incubation, as compared 

with the Drente samples. However, verification that mineralization of SOM was the 

most important oxidation reaction during the incubations is needed, because of the 
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potential oxidation of other reduced components such as pyrite or glauconite-Fe(II). 

The observed RQ’s are near unity in the unamended and amended (as expected for 

glucose oxidation) incubations and thus point to the respiration of organic matter as 

dominant oxygen consuming process during the sediment incubations (Table 5.5). The 

lowest RQ’s (0.6) are observed for the unamended OO-1 incubations hint towards the 

oxidation of pyrite as an additional oxygen consuming process (Chapter 3) and would 

suggest that the phosphate present could not fully impede pyrite oxidation. However, 

RQ’s lower than unity can also reflect the oxidation of substrates as aliphatic 

compounds or fatty acids (e.g., (Dilly, 2001). 

Calculations for the unamended incubations indicate that total SOM oxidation 

after 106 days ranged from 2% in the Drente to at most 14% in the Oosterhout total 

fraction samples (Table 5.5), corresponding to first-order degradation constants of 

1.91·10-4/day and 1.42·10-4/day, respectively. In contrast, initial oxygen consumption 

was much faster during the amended incubations. However, rates became similar to 

the corresponding unamended samples after 20 days (Fig. 5.7). An estimated 52% to 

71% of the added glucose was respired after 20 days, which is similar to the 

mineralization observed during glucose-amended soil experiments (Sollins et al., 

1996; Tsai et al., 1997; Witter and Dahlin, 1995). The high initial oxidation rates 

during the glucose-amended incubations indicate that microbial activity could be 

stimulated, despite the reduced nutrient concentrations (Table 5.2). Since a fraction of 

the unrespired glucose was likely transferred into biomass (Tsai et al., 1997), the 

similar final respiration rates of the amended and unamended incubations indicate that 

a more active microbial population did not stimulate the respiration of SOM. 

Therefore, we conclude that the oxidation of SOM towards molecular oxygen was not 

controlled by nutrient, oxidant or microbial limitations, but was instead limited by its 

reactivity (i.e., substrate limited) during the incubations. 

The aerobic degradation rates of SOM observed in the Drente and Oosterhout 

samples are substantially slower than that of fresh organic matter in soils and marine 

sediments (Hedges and Oades, 1997; Henrichs, 1993; Sollins et al., 1996). For 

example, 37 to 47% of the organic matter of fresh plant residues was lost during 85 



Chapter 5 
 

 116

days of incubation (Franchini et al., 2002). This indicates that the organic matter 

present in aquifer sediments studied is already substantially degraded, as was 

confirmed by the absence of readily degradable compounds such as sugars or 

cellulose in the aquifer sediments studied here. Moreover, the significantly lower 

oxygen consumptions during the incubations of the Drente samples and the more 

degraded status of their SOM point to the chemical composition of SOM being a main 

control on its reactivity, as was previously shown for soil humic material (Almendros 

and Dorado, 1999). 

Besides the chemical composition as a control on the degradability of SOM, 

results suggest a small particle size effect. The similar chemical composition of the 

SOM present in the fine and coarse fractions, the significantly higher amounts of 

SOM in the fine fractions (Table 5.1) and the smaller average extent of SOM 

degradation (Table 5.5) in the fine fractions (4.8%) compared with that in the 

corresponding total fractions (8.3%) suggests that the degradation of SOM is 

hampered in the fine fraction samples (Anderson et al., 1981; Christensen and 

Sørensen, 1985). However, this particle size effect is less apparent than that of 

chemical composition. 

5.5.5 Geological Controls on the Degradation Status of SOM 

A general decrease in SOM reactivity with increasing sediment age would be 

expected at first sight, since reactive organic compounds are degraded preferentially. 

In contrast, our results show that absolute age is not controlling the degradation status 

of SOM since the reactivity of SOM is significantly higher in the samples from the 

Oosterhout Formation than in those from the Drente Formation, despite the age 

difference of over 3 My. Thus, although a generally lower reactivity in older aquifer 

sediments is expected (Jakobsen and Postma, 1994), differences in conditions during 

or after burial must have overridden the effect of age with respect to SOM reactivity 

in the sediments studied. 

As indicated by the oxidized lignin-derivatives (Fig 3.) and 2-ketones (Fig. 

5.5), a more severe aerobic degradation of SOM is responsible for the less preserved 

status of SOM in the Drente samples, as compared with the Oosterhout samples. The 
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importance of oxygen availability in microbial SOM degradation is related to the 

enzymatic ability of most aerobic microorganisms to perform a total mineralization of 

complex organic substrates like lignin (Benner et al., 1984; Miki et al., 1987; Odier 

and Monties, 1983) and recent studies have pointed to the oxygen exposure time 

(OET) of sediments as the dominant control on the degradation status of SOM 

(Gélinas et al., 2001; Hartnett et al., 1998; Hulthe et al., 1998). A significantly higher 

OET of the Drente sediments can therefore explain its more degraded and less reactive 

SOM, as compared with the Oosterhout sediments. This would suggest that the OET 

of the Oosterhout sediments during and after deposition was sufficiently shorter to 

preserve reactive organic matter. The different depositional environments for the 

Drente and Oosterhout Formation are a likely cause for different OET’s. Higher 

sediment deposition rates and less reworking of the sediments in the shallow marine 

Oosterhout Formation as compared with the fluvio-glacial Drente sediments can have 

resulted in shorter sediment OET’s (Betts and Holland, 1991; Gélinas et al., 2001; 

Hartnett et al., 1998). In line with this interpretation, Routh et al. (1999) observed 

more intensive degradation of SOM in terrestrially deposited regressive sediments as 

compared with offshore-deposited transgressive sediments. 

Moreover, marine-derived organic matter is more prone to oxidation, since 

recalcitrant biomacromolecules (as lignin) are less abundant in organic matter derived 

from marine microorganisms (Aller, 1998; Colombo et al., 1996). Therefore, the input 

of marine-derived organic matter may have enhanced relative preservation of 

terrestrial SOM, additional to the effect of shorter exposure of oxygen to the shallow 

marine Oosterhout sediments. 

In addition to aerobic oxidation during deposition or early diagenesis, re-

exposure to oxygen following a period of anoxia will affect the degradation status of 

SOM (Hulthe et al., 1998). Various changes in hydrogeological conditions, from 

intensified drainage to tectonic uplift, can cause a return to oxic conditions. Specific 

examples for the area studied are the development of push-moraines (van den Berg et 

al., 2000) during the Saalian glaciation, which strongly affected regional groundwater 
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pressures and velocities (van Weert et al., 1997) and the fluvio-glacial incisions (Fig. 

5.1b) that may have increased oxygen exposure of adjoining sediments. 

After primary deposition and diagenesis, SOM can be eroded and redeposited. 

Especially fluvio-glacial deposits, such as the Drente Formation, frequently include 

sediments that are reworked by glacial erosion. Expectedly, the reworking of 

sediments increases OET (Binger et al., 1999), and thus affects the reactivity of SOM. 

Reworked SOM has been found to be the dominant form of SOM in several fluvio-

glacial sediments (Allen-King et al., 1997; Binger et al., 1999; Buckau et al., 2000; 

Keller and Bacon, 1998; Postma et al., 1991). For example, SOM in Pleistocene 

aquifer sediments contained organic components that were reworked from Miocene 

deposits within a braided river system (Postma et al., 1991). Also in the Drente 

sediments, the presence of reworked organic matter is likely, since reworked fluvial 

sediments from the Pleistocene Urk Formation (Fig. 5.1b) contributed to the 

Pleistocene Drente sediments (van Beek and Vogelaar, 1998; van den Berg et al., 

2000). Thus, sediment re-exposure to oxic conditions during sediment reworking 

likely resulted in further degradation of SOM in the Drente sediments as compared 

with the Pliocene Oosterhout sediments. 

The sediments studied were taken from stratigraphic depths that are under iron 

reducing conditions (van Beek and Vogelaar, 1998). Therefore, these sediments are 

presumably under anoxic conditions for the greatest part of their burial history as the 

groundwater system studied is largely anoxic (Griffioen, 2001; van Beek and 

Vogelaar, 1998). However, if anaerobic degradation would have a predominant effect 

on the preservation status of SOM, age would be expected to negatively relate with 

SOM reactivity. In contrast, since aerobic SOM degradation is orders of magnitude 

faster than anaerobic degradation of SOM (Canfield, 1994; Kristensen and Holmer, 

2001), the exposure of SOM in aquifer sediments to oxic groundwater significantly 

diminishes its reactivity during anaerobic degradation by, for instance, nitrate, iron 

(III) or sulfate reducers. 
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5.5.6 Sedimentary Organic Matter as a Reactive Component in Aquifers 

Several studies on SOM in aquifer sediments have focused on its role as the 

principal sorbent of organic contaminants (Murphy and Zachara, 1995; Pignatello, 

1998) and have shown that its bulk chemical composition controls its sorption 

capacity (Karapanagioti and Sabatini, 2000; Kleineidam et al., 1999; Weber Jr. et al., 

1998). Few studies have characterized organic matter present in groundwater systems 

on a molecular level. Routh et al. (2001) characterized the molecular composition of 

solvent-extractable OM in transgressive and regressive sediments within an 

aquitard/aquifer system, while others have used the chemical composition of dissolved 

organic matter (DOM) in groundwater as an indication of the composition of SOM in 

its source aquifer (Grøn et al., 1996; Sukhija et al., 1996; Wassenaar et al., 1990). 

In addition to the sorption capacity of SOM, its reactivity towards oxidants is 

controlled by the molecular composition of SOM as shown in this study. To date, the 

reactivity of SOM in aquifer sediments is generally considered ‘low’ (Christensen et 

al., 2000). However, SOM degradation rates range in several orders of magnitude 

(Jakobsen and Postma, 1994; Korom, 1992). Our results bring forward that this range 

in SOM reactivity may reflect the compositional variety of SOM in aquifer sediments 

due to both its origin and OET. Overall, the chemical composition is an important 

property of aquifer sediments and more research is needed to better define the control 

of SOM composition on its reactivity. 

5.6 CONCLUSIONS 

Organic compounds with a terrestrial, higher plant origin dominate the 

composition of SOM in the aquifer sediments from the fluvio-glacial Drente and near 

coastal Oosterhout Formation. No indications for an input of marine-derived organic 

matter in SOM were found. While SOM is present both as high- and low-molecular-

weight components, the macromolecular fraction of SOM is more important in the 

Drente samples. The dominance of resistant macromolecular compounds is in line 

with the more degraded status of the SOM in the Drente samples as indicated by its 

more degraded hopanoid and lignin side chains and the more extensive oxidation of 



Chapter 5 
 

 120

its long chain alkanes. These oxidation features point to the effect of aerobic 

degradation on the diagenetic status of SOM in aquifers. In the Pliocene Oosterhout 

sediments SOM is up to an order of magnitude more reactive towards oxygen than in 

the Pleistocene Drente formation, despite the age difference of over 3 My. Hence, 

syn- and post-depositional conditions are more important than absolute age in 

controlling the degradation status of SOM. Especially the oxygen exposure time 

during and after sediment deposition is considered a controlling factor. 
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6.1 INTRODUCTION 

A number of common groundwater contaminants, such as nitrate, chromate or 

chlorinated hydrocarbons, are susceptible to reductive transformations that may affect 

their solubility or toxicity (Blowes, 2002; Bradley et al., 1998; Postma et al., 1991; 

Smith and Duff, 1988). Sedimentary reductants represent the predominant pool of 

reduction capacity as compared to dissolved reduced species for most aquifers 

(Amirbahman et al., 1998; Barcelona and Holm, 1991; Heron and Christensen, 1995; 

Pedersen et al., 1991), thus their reactivity largely controls the fate of these 

contaminants in groundwater systems. 

Sedimentary organic matter (SOM) is an ubiquitous reductant in aquifers and 

numerous groundwater field studies have identified the coupling of SOM oxidation 

with the reduction of oxygen, nitrate, iron(III) and sulfate (Jakobsen and Postma, 

1994; Lovley et al., 1990; Morris et al., 1988; Puckett and Cowdery, 2002; Smith and 

Duff, 1988). Furthermore, it has been demonstrated that the degradabillity of SOM 

controls these reduction rates (Chapter 5, Bradley et al., 1995; Desimone and Howes, 

1996; Hill et al., 2000; Jakobsen and Postma, 1994; Pfenning and McMahon, 1996; 

Starr et al., 1996). Sedimentary organic matter is made up by a wide variety of 

organic compounds and its reactivity towards oxygen can be related to its molecular 

composition (Chapter 5). 
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Clearly, SOM plays a central role in the redox chemistry of groundwater 

systems. While SOM may act as a reactive reductant itself, the anaerobic degradation 

of SOM drives the diagenetic formation of reactive iron(II)-, manganese(II)- or 

sulfide-bearing minerals in aquifers (Jakobsen and Postma, 1999; Magaritz and 

Luzier, 1985). These secondary reductants, such as pyrite (FeS2) or siderite (FeCO3), 

may also react with introduced oxidants. Pyrite oxidation coupled to oxygen and 

nitrate reduction is frequently reported in field studies (Kelly, 1997; Molenat et al., 

2002; Pauwels et al., 2001; Postma et al., 1991), while experimental studies on 

isolated reductants have shown that siderite and other Fe(II)-bearing minerals, such as 

detrital silicates, are also potentially important (Hofstetter et al., 2003; Lee and 

Batchelor, 2003; Postma, 1990; Weber et al., 2001). For example, (Böhlke and 

Denver, 1995) concluded that the oxidation of SOM, glauconite and pyrite were 

responsible for denitrification observed in a coastal plain aquifer. 

Depending on the provenance, depositional environment and diagenetic history 

of aquifer sediments, several reductants may react concurrently upon oxidation 

(Chapter 3). In Chapter 5 the molecular composition of SOM in aquifer sediments 

from two contrasting geological formations was characterized and it was concluded 

that the total amount of oxygen exposure controls the degree of SOM preservation. In 

the current study, aquifer sediments from a wide variety of geological formations are 

investigated. An integrated approach is used by characterizing the molecular 

composition of SOM and assessing the presence of other potentially reactive 

reductants in 0.01–20 My old sediments from various depositional settings. This 

approach helps to relate aquifer reduction capacity to the distribution and reactivity of 

sedimentary reductants. Knowledge of this relationship is required to assess the 

dominant reduction processes occurring in groundwater systems. 
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6.2 SITE DESCRIPTION 

6.2.1 Geohydrology 

The study area is located in the eastern part of The Netherlands near drinking 

water production site 't Klooster (Fig. 6.1). Thick unconsolidated sedimentary deposits 

of Pleistocene and Miocene origin form a complex of sandy layers, locally separated 

by clay layers to form interconnected aquifers. The hydrogeological base is formed by 

Miocene marine clays of the Breda Formation at 100–120 m below surface (Figs. 6.1 

and 6.2). Within the aquifer system studied, the glauconitic Breda and Oosterhout 

Formations form the oldest deposits. These are of marine and near-shore origin. The 

continuous uplift of the hinterland in the East caused the coastal zone to gradually 

shift to the west. Towards the end of the Tertiary, the area was situated in the coastal 

zone with an influx of continental sands (Scheemda Formation). Fluvial sediments 

were deposited from the early Pleistocene onward. First, these fluvial deposits had a 

Baltic origin, but during the Middle Pleistocene Rhine–Meuse sediments (e.g., the 

Urk Formation) became dominant. Glacial and fluvio-glacial sediments (Drente 

Formation) were deposited during the Saalian, when push moraines were formed and 

severe fluvio-glacial erosion occurred. Locally, the infill of deeply incised valleys 

(core 34-C104, Fig. 6.1) largely consists of eroded older strata. Fluvial sedimentation 

(Kreftenheye Formation) returned at the start of the Eemian interglacial. Additionally, 

local fluvio-aeolian sediments (Twente Formation) were deposited during the 

Weichselian periglacial period. Holocene aeolian deposits of the Kootwijk Formation 

are locally present (van den Berg et al., 2000). 

Groundwater levels are 2–6 m below surface (bs) and occur in the Twente and 

Kreftenheye deposits. Large-scale abstraction of phreatic groundwater (5 Mm3·yr–1) 

for drinking water production and intensified drainage have resulted in the 

disappearance of local seepage areas. At the site studied (Fig. 6.1), groundwater flow 

direction is NW (Uffink and Römkens, 2001).
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Figure 6.1 Location of the study area near Doetinchem, The Netherlands, showing 1) the 
position of the cores used (filled circles), 2) location of the drinking water 
production site (open circle) 3) general groundwater flow direction (arrow). 
Profile shows the main geological formations within the cores studied. Depth is 
indicated in meters below sea level (m-bsl). Shaded area represents the depth 
range of samples that were selected for incubation experiments (Fig. 6.7). 
Numbers refer to the samples selected for Py-GC/MS analyses (Table 6.1). 
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6.2.2 Hydrochemistry 

The groundwater chemistry of the area studied is well documented (Griffioen, 

2001; van Beek and Vogelaar, 1998). Dissolved oxygen is depleted within the first 

two meters below surface, leaving the largest part of the sedimentary sequence 

presently under anoxic conditions. Locally, shallow groundwater is influenced by 

agricultural activities as illustrated by nitrate concentrations up to 200 mg/l at mini-

screen well WP4 (core location: 34C-105, Fig. 6.1a). Denitrification takes place 

within the first 15 m below surface, while sulfate disappears in the depth interval 

between 30 and 55 m-bs. Methane is observed (Griffioen, 2001; van Beek and 

Vogelaar, 1998). 

6.3 MATERIALS AND METHODS 

6.3.1 Sediment Sampling 

Sediment samples were selected from various cores around the drinking water 

production site ‘t Klooster (Fig. 6.1). Sediment cores were obtained in 40 cm long 

stainless steel tubing with a 65 mm inner diameter, using a hollow stem auger. 

Sediment samples collected were stored in glass bottles at 8°C until they were sieved 

into a 0–2000 µm fraction. The >2000 µm fraction (<5 wt.%) was discarded. 

Fractions were stove-dried (40°C) and sub-samples were taken for isotope analysis, 

sedimentary organic matter isolation and batch incubation experiments. 

6.3.2 Sediment Analysis 

6.3.2.1 SOM: Isolation and Molecular Characterization 

Samples were selected from the major geological formations within the aquifer 

system studied (Figs. 6.1 and 6.2). All selected samples were sandy, except one 

sample taken from a clay layer in the Kreftenheye Formation. To minimize the 

influence of reworked SOM, no samples were selected from the sediment-filled 

erosion valleys. 
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To concentrate the organic matter present, samples were treated with excess 

10% HCl to remove carbonates and settled overnight, after which the samples were 

centrifuged at 2200 rpm for 7 minutes and the supernatant was decanted. Samples 

were then treated with excess 38% HF to dissolve the silicate mineral matrix, shaken 

at 250 rpm for two hours, after which the samples were centrifuged at 2200 rpm for 7 

minutes and the supernatant was decanted. Then, the samples were washed three times 

with distilled water by centrifugation and decantation as described above. 

Subsequently, the HCl and HF procedure as described above was repeated. Finally, 

samples were treated with 30% HCl to remove any potential fluoride gels and were 

washed as described above until the samples were diluted to pH 7. Isolates were 

freeze-dried and weighed. The HCl/HF treatment removed 81–99 % of the mineral 

matrix. The dried isolates were stored in glass at 8 °C in the dark until analysis by 

pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). 

Curie-point Py-GC/MS was used to characterize SOM at a molecular level. The 

organic matter isolates were pressed onto a ferromagnetic wire with a Curie 

temperature of 610°C. Py-GC/MS analyses were carried out using a Hewlett-Packard 

5890 gas chromatograph (GC) equipped with a FOM-3LX unit for pyrolysis. The GC 

was interfaced to a VG Autospec Ultima mass spectrometer operated at 70 eV with a 

mass range of m/z 50–800 and a cycle time of 1.7 s (resolution 1000). The GC, 

equipped with a cryogenic unit, was programmed from 0°C (5 min) to 300°C (10 min) 

at a rate of 3°C/min. Separation was achieved using a fused silica capillary column 

(25 m × 0.32 mm) coated with CP Sil-5CB (film thickness 0.4 µm). Helium was used 

as a carrier gas. 

6.3.2.2 Carbon and Oxygen Isotope Analysis 

Inorganic carbon was removed before analysis by shaking the sample for 24 

hours in 1 M HCl. Stable carbon isotope analyses of bulk SOM (δ13Corg) were 

obtained by on-line combustion of decalcified samples using a Fisons Instruments NA 

1500 Elemental Analyser (EA) coupled via a ConFlo II interface to a Finningan MAT 

Delta Plus isotope ratio mass spectrometer (IRMS). Laboratory standards NBS-21 and 

NBS-22 were processed to check for systematic errors of δ13Corg analysis. Overall 
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analytical errors were better than ± 0.1‰ (2σ). Anomalously heavy δ13Corg-values (> 

–10‰) were recorded for some carbonate-rich samples. To remove recalcitrant 

carbonates, samples were re-exposed to acid for two weeks with dilute HCl (0.4 M) 

together with control samples. This additional acid treatment did not have a significant 

effect on the δ13Corg as indicated by the unaltered isotopic value of the control 

samples. 

Oxygen and carbon isotopic ratios of carbonates (δ18Ocarb, δ13Ccarb) were 

measured on freeze-dried sediment samples. Samples were transferred to an 

automated carbonate preparation unit (IsoCarb). The samples were transferred into 

glass reaction tubes that were evacuated for 14 h. Subsequently, 100% phosphoric 

acid was added at 25°C under high vacuum for 6 hours. The CO2 released was 

cryogenically separated from other gases and isotope values were measured on an 

isotope ratio mass spectrometer (VG SIRA 24). Values are reported relative to the 

PeeDee Belemnite in standard δ notation. Precision for δ18O and for δ13C 

measurements was better than 0.5‰. 

6.3.3 Incubation Experiments 

Sediment samples with a dry weight of 34–41 gram were incubated with 50 ml 

of vitamin and trace elements solution (Chapter 3), under dark conditions for 7.5 

days. The reaction chambers (100-ml bottle, Duran) were connected to the closed 

circuit of a respirometer (Micro-Oxymax, Columbus Instruments). Water-saturated 

gases were used to prevent evaporation in the reaction chambers. Oxygen (pO2 = 10–

0.68±0.002 atm) and carbon dioxide (pCO2 = 10–3.51±0.11 atm) levels in the headspaces were 

kept at atmospheric conditions at 25°C (± 1°C). The O2 consumption and CO2 

production were measured every 3 hours using an infrared sensor and an oxygen 

battery (fuel cell), respectively. The reaction chambers were shaken (100 rpm) to 

ensure a well-mixed chemical system and prevent gas transfer limitations. 

Directly after incubation, pH was measured with a standard pH meter (Orion) 

and alkalinity was determined by acid titration. Dissolved cations and sulfate were 

analyzed using ICP-AES (Perkin-Elmer ICP-optima 3000). Speciation calculations 
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were performed using PHREEQC (Parkhurst and Appelo, 1999). The saturation index 

(SI) is defined as the logarithmic value of the ratio between the ion activity product 

and the solubility constant for a given mineral. 

 

6.4 RESULTS 

First, the molecular composition and carbon isotope composition of SOM in 

aquifer sediments from various geological formations is presented. Then, the variation 

in and relationships between carbon and oxygen isotopic values of the carbonate 

phase are shown. Finally, the oxygen consumption and the relationship with carbon 

dioxide production during incubation of aquifer sediments from core 34C-105 are 

investigated. 

6.4.1 Sediment Chemistry 

6.4.1.1 Molecular Composition of SOM 

Curie point pyrolysis-GC/MS was used as a qualitative method to characterize 

the molecular composition of SOM in selected aquifer sediments (Table 6.1). 

Evaporate/pyrolysate mixtures all revealed the presence of relatively abundant 

aromatic compounds, homologous series of n-alk-1-enes and n-alkanes and C16 and 

C18 fatty acids (24–25, Fig. 6.3). These compounds dominate the chromatograms of 

Figure 6.1 Bulk characteristics of the sediment samples used for Py-GC/MS analysis 

Core 
Sample 
Code 

Formation 
Depth 
(m-bs) 

Depth 
(m-NAP) 

TOC 
(wt.%) 

Carbonate
(wt.%) 

Fe 
(wt.%) 

S 
(wt.%) 

Mn 
(wt.%) 

δ18Ocarb 
(‰ PDB) 

δ13Ccarb 
(‰ PDB) 

δ13Corg 
(‰ PDB) 

4C-102 694 SC 39.2 –23.1 0.14 0.62 4.70 0.15 0.02 NA NA –24.9 
4C-102 695 SC 49.2 –33.1 0.36 6.25 5.18 0.18 0.03 0.91 0.94 –25.8 
4C-103 706 OO 68.2 –52.1 0.40 1.79 3.27 0.16 0.01 1.58 1.08 –25.0 
4C-103 707 OO 74.2 –58.1 0.31 0.80 4.15 0.1 0.01 1.97 –0.15 –24.7 
4C-104 712 KR 20.2 –2.7 0.76 6.74 2.25 0.1 0.07 –4.76 –0.74 –26.7 
4C-105 722 TW 3.2 12.0 0.19 5.42 1.32 ND 0.03 –3.10 –7.96 –24.4 
4C-106 735 KR 10.2 5.9 0.2 10.27 1.31 ND 0.04 –2.41 –7.30 –24.3 
4C-106 744 BR 76.2 –60.1 0.24 0.73 3.85 0.16 0.01 2.42 1.98 –26.7 

NA: not analysed 
ND: not detected 
TOC (Total Organic Carbon), Carbonate, Fe, Mn and S data from (van Beek and Vogelaar, 1998) 
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the pyrolysates of the sandy Twente (722, Fig. 6.3) and Kreftenheye (735) samples. In 

contrast, phenolic and guaiacyl-lignin derived compounds with minor contributions 

from fatty acids (24–25) and branched hydrocarbons (e.g. 23) dominate the 

evaporate/pyrolysate mixtures of the marine and coastal sands and the fluvial 

Kreftenheye clay sample (712). 
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Alkane/alkene doublets form the dominant aliphatic contribution in all samples 

(Fig. 6.3). Alkenes dominate the alkane counterparts in the short-chain range (C<20). 

However, long-chain alkanes become more pronounced with increasing carbon 

number. Especially between C25 and C29, the alkanes dominate their alkene 

counterparts. For these alkanes, a distinct odd-over-even predominance is observed, as 

illustrated by the mass chromatograms m/z 55+57 (Fig. 6.4). 

 
Figure 6.3 Total ion current traces of the evaporate/pyrolysate mixtures of SOM samples from the 

Twente (722), Oosterhout (707) and Breda (744) Formation. Key: 1 Benzene, 2 Toluene, 3 
C2-Alkylbenzene (AB), 4 C2-AB, 5 Styrene, 6 C2-AB, 7–9 C3-AB, 10 Phenol, 11 Guaiacol, 12 
Methylphenol, 13 C4-AB, 14 Naphthalene, 15 C4-AB, 16 Methylguaiacol, 17 Vinylphenol, 
18–19 Methylnaphthalene, 20 Vinylguaiacol, 21 trans-Isoeugenol, 22 3,5-di(tert-
butyl)phenol (contaminant), 23 Prist-1-ene, 24 Elemental sulfur (S8), 25 C16-Fatty Acid, 26 
C18-Fatty Acid,    + = alkane, , = alkene. 
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Figure 6.4 Representative partial summed mass chromatograms for alkenes and alkanes (m/z
55+57) of the evaporate/pyrolysate mixtures of SOM samples from the Twente 
(722), Oosterhout (707) and Breda (744) Formation.     + = alkane, , = alkene. 
Numbers above peaks indicate number of carbon atoms. 
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Figure 6.5 Representative partial summed mass chromatograms for guaiacyl derivatives 
(m/z 124+138+150+152+164+166) of the evaporate/pyrolysate mixtures of SOM 
from the Kreftenheye Clay (712), Scheemda (695) Oosterhout (707) and Breda 
(744) samples. Roman numbers in bold refer to the following compounds: I 2-
methoxyphenol (Guaiacol), II  4-methyl-2-methoxyphenol (Methylguaiacol), III  4-
ethyl-2-methoxyphenol (Ethylguaiacol), IV  4-vinyl-2-methoxyphenol 
(Vinylguaiacol), V 4-(2-propenyl)-2-methoxyphenol (Eugenol), VI  4-Formyl-2-
methoxyphenol (Vanillin), VII  cis-4-(1-propenyl)-2-methoxyphenol (cis-
Isoeugenol), VIII  trans-4-(1-propenyl)-2-methoxyphenol (trans-Isoeugenol), IX  4-
acetyl-2-methoxyphenol (Acetylguaiacol). 
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All samples reveal the presence of guaiacyl-derived lignin units with various 

degrees of side-chain degradation as illustrated by the mass chromatograms m/z 

124+138+150+152+164+166. In the pyrolysate/evaporate mixtures of the 

Kreftenheye sand (735) and Twente (722, Fig. 6.3) samples only a minor signal from 

guaiacol (I) was observed. All other samples showed guaiacyl components with 

various side chain lengths (Fig. 6.5) ranging from methylguaiacol (II) to the eugenol 

isomers (V, VII, VIII). Guaiacol was the dominant lignin derivative in the Scheemda 

samples, while 4-vinyl-2-methoxyphenol (IV) and the eugenol isomers were of equal 

importance in the Oosterhout and Breda samples. The guaiacyl side chains were 

remarkably well preserved in the Kreftenheye clay (712, Fig. 6.5) sample when 

compared with the Kreftenheye sand (735) sample. The oxidized lignin derivatives 4-

formyl-2-methoxyphenol (VI) and 4-acetyl-2-methoxyphenol (IX) were observed in 

all samples except 722 and 735. 

Parallel to the guaiacyl-derived lignin components, pentacyclic triterpenoid 

hydrocarbons of hopanoid origin showed sidechain degradation features, as illustrated 

by the mass chromatograms m/z 191 (not shown). Hopanoid distributions range from 

C27 to C33. No hopanoid-derived compounds were observed in the Twente (722) and 

Kreftenheye (735) samples. 

6.4.1.2 Organic Carbon and Carbonate Isotope Chemistry 

The δ13Corg-values of 28 SOM samples ranged between –23 and –27‰ 

(average –25.1‰ ± 1.1). No consistent variation over depth or with various geological 

formations was observed (Table 6.1). 

All seven marine sediment samples (Oosterhout and Breda Formation) show 

δ18Ocarb and δ13Ccarb values close to the reference value of zero (Table 6.1, Fig. 6.6). 

Similarly, all six samples from the fluvio-glacial Drente Formation show only small 

(± 1.5‰) excursions from the reference value. Three out of thirteen samples from the 

Kreftenheye Formation show strongly depleted δ18Ocarb values (–6‰) with δ13Ccarb 

values depleted less than 1‰. In addition, five samples from this formation and all 

three samples from the Twente Formation show strongly depleted δ18Ocarb and δ13Ccarb 
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values down to –3‰ and –8‰, respectively (Fig. 6.6). These strongly correlated dual 

depletions are locally present in sediment samples from the first 15 meters below 

surface and are associated with anomalously high carbonate contents of 5–20 wt.%. 

6.4.2 Sediment Incubations 

Aquifer sediments were selected from core 34C-105 (Fig. 6.1) for the 

incubation experiments (Table 6.2). Sediment samples were incubated for 7.5 days 

under aerobic conditions to determine the reduction activities of the aquifer sediments 

and to assess the dominantly reactive reductants (Fig. 6.7). 

 

Figure 6.6 Bulk chemistry (a) and incubation results (b) of sediments from core 34C-105 
(Fig. 6.1). In (a) TOC, carbonate, and pyrite-S data from (van Beek and 
Vogelaar, 1998). In (b) vertical lines represent the molar CO2/O2 ratios for the 
oxidation of pyrite (0.533) and SOM (1). Oxidation of ferrous carbonate yields a 
CO2/O2 ratio of 4 (Chapter 3). 

The first two shallow sediments showed high (>0.05 µmol/g.day) oxygen 

consumption rates (Fig. 6.7b). The lowest rates (<0.02 µmol/g.day) were observed for 

the Kreftenheye sample at 9 m below surface level. Highest rates (up to 0.07 

µmol/g.day) were observed for the deeper Drente and Oosterhout sediments. 

The ratios of CO2 production and O2 consumption were considerably larger 

than unity (>1.5) for the two shallowest sediments (Fig. 6.7b) and were associated 

with high calcium concentrations in the supernatants at the end of the incubations 
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(Table 6.2). The CO2/O2 ratio was near unity for the Kreftenheye sample at 9 m below 

surface level. For the incubation of the deeper sediments, CO2/O2 ratios ranged from 

0.55 to 1.0. Here, an equimolar increase of calcium and sulfate concentrations in the 

supernatants of the sediments was observed. Final pH values were slightly alkaline in 

all sediment incubation waters (Table 6.2). All final incubation waters were saturated 

(SI˜0) with respect to calcite and undersaturated (SI<–0.9) with respect to gypsum 

(Table 6.2). 

Table 6.1 Chemical composition of the incubation waters and the ratio between CO2 
produced and O2 consumed after 7.5 days of sediment incubation. 

Sample 
Code 

Depth 
(m-bs) 

pH Alkalinity 
(mmol/l) 

Caa 
(mmol/l) 

Sb 
(mmol/l) 

SI 
Calcite 

SI 
Gypsum 

CO2/O2 
(molar) 

722 3.2 7.44 2.7 3.75 0.43 0.35 –1.69 1.51 
723 5.2 7.43 2.6 3.20 0.34 0.27 –1.38 1.80 
724 9.2 7.39 2 1.25 0.36 –0.24 –2.08 1.10 
725 12.2 7.51 1.8 1.55 0.36 –0.08 –2.01 0.65 
726 17.1 7.42 2.8 NA NA   0.60 
727 24.6 7.49 3 NA NA   0.55 
728 29.2 7.52 2.3 2.04 1.15 0.10 –1.47 0.64 
729 35.2 7.41 2.4 3.96 2.95 0.20 –0.92 0.76 

(a) initial calcium concentration: 1.1 mmol/l 
(b) initial sulfur concentration: 0.21 mmol/l 
NA: not analysed 

6.5 DISCUSSION 

6.5.1 SOM: Source and Preservation Controls 

Both molecular and isotopic results point to a terrestrial source for the SOM 

present in the fluvial and coastal as well as in the marine formations. The observed 

range of δ13Corg isotopic values (~ –25‰) is characteristic for organic matter derived 

from higher land plants (Tyson, 1995). In addition, the observed long-chain alkanes 

(Figs. 6.3 and 6.4) with an odd-over-even predominance are typical for aliphatics 

derived from the cuticular waxes of higher plants (Eglinton and Hamilton, 1967). 

Also, the dominance of lignin-derived guaiacyl components and aromatics in the 

evaporate/pyrolysate mixtures (Figs. 6.3 and 6.4) reflect the contribution of plant 

debris (Saiz-Jimenez and De Leeuw, 1986). The terrestrial signature of SOM in the 
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aquifer sediments with a marine origin is in line with the predominance of terrestrial 

SOM in other aquifers (Routh et al., 1999; Schulte, 1998). 

The higher plant-derived SOM has been degraded at least to some extent in all 

samples analyzed, as indicated by the lack of more labile carbohydrate-based 

polymers (Tyson, 1995). However, as lignin is selectively preserved during the early 

stage of diagenesis (Hatcher et al., 1989), the dominance of guaiacyl units with 

preserved side-chains in the marine Oosterhout and Breda sand samples (Figs. 6.3 and 

6.5) and the fluvial Kreftenheye clay sample indicates an early stage of SOM 

degradation. In contrast, the high degree of lignin side-chain oxidation in the 

Scheemda sand samples (695, Fig. 6.5) and the near absence of guaiacol in the Twente 

(722, Fig. 6.3) and Kreftenheye sand samples reflect progressed SOM oxidation in 

these aquifer sediments. 

Instead of a dominance by lignin-derived moieties, the samples with more 

degraded SOM exhibit a pronounced aliphatic signal derived from macromolecular 

structures (722, Fig. 6.3), as indicated by the distinct presence of alkanes with 

important alkene counterparts (Baas et al., 1995; Mosle et al., 1998; Van Smeerdijk 

and Boon, 1987). This is in line with the observation that macromolecularly-bound 

aliphatics are a relatively stable pool of SOM (Almendros et al., 1996; Leinweber et 

al., 1996). In addition to the dominance of the macromolecular aliphatic component, 

the odd predominance of long-chain n-alkanes is more pronounced in the Twente 

(722, Fig. 6.3) and Kreftenheye (735, Fig. 6.4) samples, illustrating the selective 

preservation of fossil leaf waxes (Logan et al., 1995). Thus, the dominance of the 

aliphatic signal in these sediment samples reflects the most progressed degradation of 

SOM. 

As SOM is the principal sorbent of organic contaminants (Pignatello, 1998), the 

molecular composition of SOM not only controls its degradability, it also affects the 

sorption capacity of aquifer sediments. The predominance of aliphatic components not 

only predicts orders of magnitude lower SOM degradability in the sediments with the 

most degraded SOM (Chapter 5), but also suggests a higher relative sorption capacity 
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for hydrophobic organic contaminants in these aquifer sediments (Johnson et al., 

2001; Salloum et al., 2002; Weber Jr. et al., 1998). 

Several factors may be responsible for the observed differences in SOM 

preservation. Clearly, age is an influencing factor, since labile components are 

degraded preferentially over time. However, SOM from the oldest analyzed Breda 

Formation (Fig. 6.2) is relatively well preserved, while SOM from the youngest 

analyzed Twente and Kreftenheye Formations is more degraded. Therefore, the age 

difference of 20 My is not a dominant control on the degradation status of SOM in the 

aquifer sediments studied. 

Alternatively, the degree of SOM preservation may reflect differences in 

oxidation prior to its deposition with the sediment. However, the lignin signal in the 

Kreftenheye clay sample (712, Fig. 6.5) is remarkably preserved, while lignin-derived 

components are insignificant in the sandy Kreftenheye (722, Fig. 6.3) and Twente 

(722) samples This suggests that the lower degree of SOM preservation in the 

Kreftenheye sand (735) is not due to a source effect. 

Therefore, the observed range in SOM preservation is most likely generated by 

differences in deposition and burial conditions, instead of by differences in age or 

source. Since the observed lignin degradation features are typical for aerobic 

oxidation (Dijkstra et al., 1998; Dittmar and Lara, 2001; Kuder and Kruge, 1998), the 

duration that sediments are exposed to oxygen seems to be a controlling factor 

(Canfield, 1994; Hartnett et al., 1998). 

Various factors, such as the oxicity of bottom waters and sedimentation rate, 

have been linked to the oxygen exposure time (OET) of sediments in marine 

environments (Canfield, 1994; Gélinas et al., 2001; Hartnett et al., 1998). Gélinas et 

al. (2001) showed that high sedimentation rates caused shorter OETs for sediments 

deposited in coastal environments, which led to more preserved SOM when compared 

with deep-sea sediments, which are exposed to oxygen continuously. 

The aquifer sediments studied originate from a wide range of depositional 

environments. The steady deposition of sediments in a shallow marine environment 

(Gélinas et al., 2001; van den Berg et al., 2000) probably resulted in limited OETs, 
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which led to the observed preservation of SOM in the Tertiary Oosterhout and Breda 

Formations (Figs. 6.3 and 6.5). Similarly, low energetic flow conditions, that enabled 

the deposition of Kreftenheye clay (Van Huissteden and Kasse, 2001), prevented 

extensive aerobic SOM degradation (Fig. 6.5). In contrast, the sandy sediments of the 

Kreftenheye Formation and Twente Formation were deposited in a dominantly 

braided river system and an ephemeral fluvio-aeolian system, respectively (Van 

Huissteden and Kasse, 2001; Van Huissteden et al., 2000) These systems are 

characterized by repeated sediment remobilization and consequently frequent 

exposure to atmospheric oxygen. Therefore, the highly dynamic character of these 

depositional environments likely resulted in long OETs and allowed for extensive 

degradation of SOM in these sandy aquifer sediments. 

6.5.2 Source of Isotopic variation of Sedimentary Carbonates 

The small excursions of less than 2‰ in δ18Ocarb and δ13Ccarb isotopic values in 

the Tertiary marine Oosterhout and Breda sediments indicate the syngenetic origin of 

their carbonate phase (Fig. 6.6). Syngenetic carbonate formation during the cold 

Saalian or Weichselian glacial periods is suggested by the strongly depleted δ18O and 

only slightly depleted δ13C values of the three Kreftenheye samples (Beets and Beets, 

2003; Mayer and Schwark, 1999). However, the carbonate phase in other Kreftenheye 

samples have a marine isotopic signature. As for the Drente carbonate samples in 

particular, isotopic values plot close to zero with only a slight tendency towards more 

depleted δ18Ocarb-values. Since these sediments (Fig. 6.2) were partly deposited under 

fluvio-glacial conditions (Saalian), more depleted δ18O-values would be expected for 

syngenetic carbonates. Therefore, the observed isotopic signature for these samples is 

at least in part caused by the presence of allogenic marine carbonates. These are likely 

derived from eroded marine sediments of the Oosterhout or Breda Formations (van 

den Berg et al., 2000). 

A diagenetic overprint is suggested by the strongly depleted δ13Ccarb-values of 

the carbonate-enriched shallow Twente and Kreftenheye sediments (Fig. 6.6). Carbon 

isotope values of dissolved inorganic carbon (DIC) in present-day groundwater at the 
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site studied are strongly depleted and show an average δ13C-value of –11.9‰ at depth 

(>10 m-bs) (Van der Grift et al., 2000), indicating that the oxidation of organic matter 

contributed to DIC (Mook, 1972; Saunders and Swann, 1992). A δ13C/δ18O end 

member for groundwater-derived carbonates (Fig. 6.7) is derived from the carbon 

isotope value for DIC and the average δ18O-value of –6.3‰ for present-day 

precipitation (IAEA, 2000). Moreover, these depleted δ13Ccarb and δ18Ocarb values 

compare favorably with the range of those observed for carbonate precipitation in 

groundwater-fed lake sediments (Kallis et al., 2000; Mayer and Schwark, 1999) and 

gyttja deposits (Hoek et al., 1999). 
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Figure 6.7 Cross plot of carbonate isotopic values (δδδδ18Ocarb vs. δδδδ13Ccarb) of the bulk 
carbonate phase present in the aquifer sediments studied. Codes correspond to 
samples from the following formations: T=Twente, K=Kreftenheye, D=Drente, 
O=Oosterhout and B= Breda Formation. Square depicts isotopic signature of 
dissolved inorganic carbon in present-day groundwater. Line represents the 
trend due to the diagenetic overprint of groundwater-driven carbonate 
precipitation. 

6.5.3 Reactivity Distribution of Observed Reductants 

The final composition of the incubation waters together with the range of 

observed ratios of CO2 production to O2 consumption show that various reactive 

reductants are present in the sediment core studied. Not only do these reductants 
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oxidize concurrently, their relative importance varies with depth. During the 

incubation experiments (Table 6.2), SOM oxidation was dominant for the Kreftenheye 

sediment sample 724 as indicated by the CO2/O2 ratio close to unity (Fig. 6.7b), 

according to: 

C9H10O5 + 9 O2 � 9 CO2 + 5 H2O 

Here, syringate (C9H10O5) is used as a labile model compound for lignin-

derived components in SOM (Chapter 3, Chapelle and Bradley, 1996). The relatively 

unchanged calcium and sulfur concentrations in the final incubation water imply that 

iron sulfide oxidation was negligible in this sample (Table 6.2). Therefore, the low 

oxygen consumption rate of this sample illustrates the low reactivity of SOM in the 

Kreftenheye Formation, as suggested by its poor preservation. 

The incubated sediments from greater depth revealed the concurrent oxidation 

of SOM and iron sulfides, as indicated by the CO2/O2 ratios lower than one and the 

equimolar increases of calcium and sulfur, according to: 

FeS2 + 3¾ O2 + 1½ H2O + 2 CaCO3 � Fe(OH)3 + 2 Ca2+ + 2 SO4
2– + 2 CO2 

While pyrite content increases below 25 m-bs (Fig. 6.7a), the increased CO2/O2 

ratios indicate a decrease in its relative importance of oxygen consumption. In other 

words, the increasing CO2/O2 ratio suggests that SOM oxidation is more important 

due to the higher relative reactivity of SOM in the marine Oosterhout sediments. This 

interpretation is in line with the higher preservation and reactivity of SOM in 

sediments from the marine Oosterhout Formation when compared with SOM in 

sediments from the fluvio-glacial Drente Formation (Chapter 5). A more degraded 

status of SOM in the Drente sediments may have resulted from increased oxygen 

exposure during the reworking of marine sediments, as indicated by their carbonate 

isotope signatures (Fig. 6.6) suggest. Although speculative, the importance of pyrite 

oxidation during the incubations of Drente sediments (Fig. 6.6) suggests that the 

reworking of adjoining sediments from the Oosterhout and Scheemda Formation (Fig. 

6.1) had a stronger impact on SOM than on pyrite reactivity. This suggestion is 
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supported by the observed predominance of pyrite oxidation and the lack of reactive 

organic matter in aquifer sediments of reworked origin (Postma et al., 1991). 

The CO2/O2 ratios higher than 1 during the incubation of the two shallowest 

sediments and the elevated final calcium concentrations indicate the oxidation of 

ferrous iron bearing calcium carbonate under slightly alkaline conditions (Table 6.2), 

according to (McMillan and Schwertmann, 1998): 

Fe1-xCaxCO3 + {
4
x1− }·O2 + {

2
x1+ }·H2O � 

{1-x}·Fe(OH)3 + x·Ca2+ + 2x·HCO3
- + (1-2x)·CO2 

Oxidation of the siderite end member (FeCO3) yields a CO2/O2 ratio of 4 

(Chapter 3). Similarly, the aerobic oxidation of MnCO3 results in a CO2/O2 ratio of 2 

and would thus also yield elevated CO2/O2 ratios. While the presence of manganous 

carbonate cannot be excluded, its oxidation is not considered because of the two 

orders of magnitude lower total manganese contents in sediments as compared with 

iron (Table 6.1, van Beek and Vogelaar, (1998)). However, SOM oxidation must be 

held partly responsible for the total oxygen consumption, since the CO2/O2 ratios for 

these samples are lower than expected for the sole oxidation of ferroan calcite (i.e. 

four). The slightly increased sulfur concentrations indicate only a minor contribution 

by the oxidation of iron sulfides. 

The resistance to acid attack of part of the carbonate phase that interfered with 

the δ13Corg determinations is further evidence for the presence of a diagenetic 

carbonates in the two shallowest sediments samples. The refractory nature of 

diagenetic Fe(II)-containing carbonates as compared with calcite is well known (Al-

Aasm et al., 1990; Jensen et al., 2002; Moore et al., 1992; Morin and Cherry, 1986). 

Finally, the depleted δ13Ccarb-values of these samples together with elevated carbonate 

contents (Fig. 6.7a) confirm a diagenetic origin (Saunders and Swann, 1992). 

Therefore, the diagenetic precipitation of a ferrous carbonate phase in these aquifer 

sediments likely occurred under past alkaline and iron-reducing conditions (Morin and 

Cherry, 1986). In contrast with the precipitation of ferrous carbonates in organic-rich 

strata (Aslan and Autin, 1996; Postma, 1982; Postma, 1983; Taylor, 1998), the 
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exfiltration of deep anoxic groundwater (Chae et al., 2001; Hem and Lind, 1994; 

Hendry, 2002) may have provided these conditions in these sandy sediments. Since 

the Kreftenheye and Twente aquifer sediments contain highly degraded SOM (Figs. 

6.3 and 6.5) and insignificant amounts of reduced sulfur (Table 6.1, Fig. 6.7a), the 

expected reduction potential of these sediments is generally low. However, the past 

diagenetic precipitation of a reactive ferroan calcite has locally resulted in a profound 

increase of the reduction capacity of the shallow Kreftenheye and Twente sediments 

in the area studied (Fig. 6.7b). 

6.5.4 Controls on the Reactivity of Sedimentary Reductants in 
Groundwater Systems 

The geochemical composition of sediments varies with provenance, 

depositional environment and paleohydrological conditions (Galloway and Hobday, 

1983; Pettijohn, 1975). Consequently, when assessing the reduction capacity of 

aquifer sediments, the presence of a variety of sedimentary reductants has to be 

considered. In fact, field studies frequently reveal the oxidation of several sedimentary 

reductants (Böhlke and Denver, 1995; Pauwels et al., 2001). Obviously, the 

importance of these reductants during sediment oxidation is determined by their 

relative abundance and reactivity. In the aquifer sediments studied, SOM, pyrite, and 

Fe(II)-bearing carbonates represent the most reactive phases (Fig. 6.7). In addition, 

glauconitic-Fe(II) may contribute to the reduction capacity of the Pliocene marine 

Breda sediments (van den Berg et al., 2000; Weibel, 1998), as glauconite weathering 

presently affects groundwater chemistry in these deposits (Griffioen, 2001). 

The overall reactivity of SOM critically depends on the chemical preservation 

of reactive organic compounds, since labile compounds are degraded preferentially 

over stable compounds. An order of magnitude difference in SOM reactivity was 

related to less pronounced side-chain oxidation of lignin-derived components in 

Oosterhout sediments as compared with Drente sediments (Chapter 5). Similarly, 

lignin side-chains are more preserved in SOM from the marine Oosterhout (707) and 

Breda (744) sediments than in SOM from the coastal Scheemda (695) sediments (Fig. 

6.5), whereas lignin-derived components are depleted in the sandy Kreftenheye and 
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Twente (722, Fig. 6.3) sediments. Thus, the aquifer sediments studied show a wide 

range in SOM preservation that predicts degradation rates that differ in orders of 

magnitude. Therefore, the orders of magnitude range found for in-situ SOM oxidation 

rates in other sedimentary aquifer systems may reflect similar differences in molecular 

SOM preservation (Chapelle and Lovley, 1990; Jakobsen and Postma, 1994). 

The relative preservation of SOM (Fig. 6.5 and Chapter 5) in the marine 

Oosterhout sediment coincides with increase of pyrite contents (Fig. 6.7a). The burial 

of degradable SOM and the supply of sulfate facilitated diagenetic pyrite formation in 

this marine sediment. Here, iron and sulfate reduction coupled to the oxidation of 

relatively preserved SOM resulted in the transfer of sediment reduction capacity from 

organic carbon to pyrite. Consequently, pyrite is an important reductant in the marine 

Oosterhout sediments (Fig. 6.7b). Under carbonate buffered conditions, the oxidation 

rate of pyrite is mainly controlled by the amount of reactive surface and impeded by 

the precipitation of iron hydroxide coatings. Therefore, the reactivity of pyrite 

decreases with progressive oxidation (Nicholson et al., 1988; Nicholson et al., 1990). 

While previous studies have shown that Fe(II)-bearing carbonates in aquifer 

sediments are potentially reactive towards oxygen and nitrate (Chapter 3, Weber et 

al., 2001), the precipitation of iron hydroxide coatings may also decrease the 

reactivity of ferroan carbonates (Chapter 3), such as identified in the shallow 

sediments of the Kreftenheye and Twente Formations (Fig. 6.7). 

The relative importance of reductants may change with progressive oxidation 

as SOM becomes more recalcitrant and reactive mineral reductants are oxidized. In 

the final stage of aquifer oxidation, when labile SOM components and reactive 

mineral pools have been oxidized, relatively stable Fe(II)-bearing detrital silicates 

may represent the main source of reducing activity (Hofstetter et al., 2003; Postma, 

1990). Under these conditions, the diffusion of labile organic compounds from 

adjoining strata rich in preserved SOM, such as clay aquitards (712, Table 6.1, Fig. 

6.5) or peat layers, may significantly fuel oxidation processes in aquifers (Detmers et 

al., 2001; McMahon, 2001; McMahon and Chapelle, 1991). 
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6.6 CONCLUSIONS 

Biomass derived from higher land plants is the dominant pool of SOM in the 

studied aquifer sediments of fluvial and marine origin. This terrestrial dominance is 

evidenced by 1) the bulk δ13Corg-values around –25‰, 2) the dominance of lignin-

derived components and 3) the occurrence of long chain alkanes with an odd-over-

even predominance. 

Sedimentary organic matter is chemically best preserved in aquifer sediments 

from the Tertiary marine depositional environments, as illustrated by the dominance 

of lignin-derived components with preserved side-chains. In contrast, SOM in the Late 

Pleistocene fluvial sediments showed the strongest degradation, as demonstrated by 

insignificant amounts of remaining lignin-derived components and dominance of 

recalcitrant macromolecular aliphatic structures. The higher dynamics of fluvial 

depositional environments as compared with marine may have led to prolonged 

exposure to atmospheric oxygen and hence longer and more intense aerobic 

degradation of SOM. 

Ferrous carbonates were recognized as reactive reductants, besides SOM and 

pyrite. The reactive ferroan carbonate phase that was locally observed in the shallow 

fluvial sediments, most probably originated from past carbonate precipitation during 

the exfiltration of Fe(II)-containing anoxic groundwater. This diagenetic overprint 

resulted in elevated reduction activities in the shallow part of the aquifer studied. 
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 Synthesis  
Synthesis 

7.1 INTRODUCTION 

Redox reactions have a strong impact on the overall biogeochemistry of 

groundwater systems. In particular, several common oxidizing groundwater 

contaminants (e.g. nitrate, chromate or chlorinated ethenes) are susceptible to 

reductive transformations. Aquifer sediments are the foremost source of the reduction 

capacity in groundwater systems (Barcelona and Holm, 1991a; Barcelona and Holm, 

1991b). Therefore, the fate of these contaminants in aquifers strongly depends on the 

amounts and reactivity of sedimentary reductants present in the aquifer matrix. 

Sedimentary reductants in aquifers mainly comprise organic compounds, 

ferrous iron, manganous and sulfide bearing minerals. To quantify the sum of their 

reducing capacity, Pedersen et al. (1991) oxidized aquifer sediments using an acid 

dichromate treatment. They introduced the term “total reduction capacity” (TRC) for 

the maximum amount of oxidant consumed by the aquifer sediments and used the 

change of TRC within a sediment profile to explain the disappearance of oxygen, 

nitrate and sulfate (Pedersen et al., 1991). In the context of contaminated site 

remediation, others have studied aquifer sediments for their natural background TRC 

(Barcelona and Holm, 1991a; Barcelona and Holm, 1991b) and for increases of TRC 

due to the precipitation of ferrous iron bearing minerals in landfill leachates 

(Christensen et al., 2000; Heron and Christensen, 1995). The use of dichromate 

oxidation under very acid conditions allows a rough estimate of the reductive capacity 

of aquifer sediments, but this aggressive abiotic method likely overestimates the 

microbially utilizable reduction capacity of aquifer sediments in field situations where 

weaker oxidants (such as O2 and NO3) dominate (Barcelona and Holm, 1991a; 

Barcelona and Holm, 1991b; Pedersen et al., 1991). Therefore, the extent to which the 

TRC of aquifer sediments will be available depends on the strength and specificity of 

the oxidant and the reactivity of the sedimentary reductants present (Barcelona and 

Holm, 1991a; Barcelona and Holm, 1991b). 
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7.2 REACTIVITY OF SEDIMENTARY REDUCTANTS 

This study focuses on the reduction reactivity of sedimentary reductants in 

aquifers. The controls on the oxidation rates of sedimentary reductants in aquifer 

sediments were assessed during sediment incubation experiments. In particular, the 

reactivity and molecular composition of sedimentary organic matter (SOM) was 

investigated. The ability to identify the most reactive reductant(s) is important since 

changes in groundwater chemistry strongly depend on the type of reductant being 

oxidized. However, due to the general co-occurrence of several potentially reactive 

sedimentary reductants, the assessment of their separate reactivities could not be 

assessed by the sheer measurement of oxidant consumption during sediment exposure. 

In Chapter 3, a new experimental approach enabled the separation between the 

oxygen consumption due to SOM, pyrite and siderite oxidation based on differences 

in reaction stoichiometries. The continuous measurement of oxygen (O2) consumption 

and carbon dioxide (CO2) production allows the determination of the relative 

contribution of these sedimentary reductants during experimental exposure to 

atmospheric conditions, using the observed CO2/O2 ratios and the chemical 

composition of the supernatants. While the reductants identified were frequently 

oxidized concurrently, their relative importance as well as the total rate of oxygen 

consumption of the aquifer sediments varied between the geological formations of 

different sedimentological origins (Chapter 3 and 6). This observed heterogeneity in 

reactivity indicates that reactive transport models not only require model layering in 

its physical properties of an aquifer but in its geochemical reactivity as well (Islam et 

al., 2001). 

Ferrous iron turned out to be a dominant reductant in shallow aquifer sediments 

that were diagenetically enriched in ferroan carbonate (Chapter 6). While SOM and 

pyrite are long recognized as important sedimentary reductants in aquifers, the 

reduction potential of ferrous iron bearing carbonates has been largely overlooked in 

aquifers. This expectably coheres with the inability of current techniques to quantify 

this type of carbonates at the low contents expected in aquifer sediments. However 

ferroan carbonates are likely an important source of reducing capacity since 
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groundwaters are frequently supersaturated with respect to siderite (FeCO3) (Jensen et 

al., 2002; Magaritz and Luzier, 1985; Nicholson et al., 1983; Ptacek, 1998; Stuyfzand, 

1989). In addition, the presence of ferroan, as well as manganous carbonates has been 

shown in both pristine (Chapter 3, (Fredrickson et al., 1998; Saunders and Swann, 

1992) and contaminated aquifer sediments (Morin and Cherry, 1986; Tuccillo et al., 

1999). While the need for a sensitive quantification method remains, the CO2/O2 

method can be used to assess whether ferroan carbonates are an important source of 

reducing activity. 

To date, the reactivity of sedimentary reductants, has been mainly studied 

during the experimental oxidation of pure mineral phases such as Fe(II)–bearing 

silicates (Ernstsen et al., 1998; Hofstetter et al., 2003; Lee and Batchelor, 2003; 

Postma, 1990; Weber et al., 2001). The experiments on these potentially reactive 

minerals yielded useful information on the mechanisms and controls of the oxidation 

of their sedimentary counterparts, but did not allow the assessment of their actual 

importance during the oxidation of a given aquifer sediment. Moreover, the 

determined reactivity of these model reductants may not represent that of sedimentary 

reductants, as their reactivity varies with differences in their sediment history 

(Chapter 3 and 6). Therefore, the determination of important reductants in aquifer 

sediments can only be assessed within their sedimentary context. 

As the geological history of aquifer sediments affects the types, amounts and 

characteristics of the reductants present, this sets an intrinsic limit to their reactivity 

and relative importance. However, changes in environmental conditions may affect 

the rate by which reductants are oxidized due to changes in microbial activity or the 

accessibility of the reductant. For example, pyrite oxidation was impeded by the 

precipitation of iron hydroxides on its surface at near neutral pHs (Nicholson et al., 

1990). However, after the depletion of reactive carbonate buffer, pyrite oxidation was 

accelerated, probably by the dissolution of iron hydroxide coatings on the mineral 

surface around pH 4–5 (Chapter 3), a pH-range also known to favor microbial ferrous 

iron oxidation (Roychoudhury et al., 1998). These low pHs, however, inhibited the 

microbial oxidation of SOM (Chapter 3). The strong opposite effects of pH on the 
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reactivity of SOM and pyrite implies that the presence of sufficient reactive 

carbonates to buffer pH is a key factor that controls the extent of their oxidation. 

In contrast with the instant microbial response during aerobic oxidation, slow 

microbial adaptation played a key role in reaching full denitrifying activity during 

sediment incubation experiments(Chapter 4). Moreover, observed nitrate reduction 

rates were two times lower those observed for oxygen reduction by the same aquifer 

sediments. While pyrite and SOM were both important reductants with respect to 

oxygen (Chapter 3), SOM was oxidized preferentially over pyrite during 

denitrification experiments (Chapter 4). Although preferential SOM oxidation has 

been observed during field experiments (Stuyfzand, 1998), other numerous other field 

studies have coupled the occurrence of denitrification to the oxidation of pyrite 

(Molenat et al., 2002; Moncaster et al., 2000; Pauwels et al., 2000; Postma et al., 

1991). So far, results suggest that pH is an important control in the coupling of pyrite 

oxidation and nitrate reduction, but further experimental verification is needed to 

obtain detailed knowledge on the mechanism by which these processes are connected. 

7.3 MOLECULAR COMPOSITION AND REACTIVITY OF SOM 

The factors that control the molecular composition, preservation and reactivity 

of SOM were assessed in aquifer sediments from geological formations with Pliocene 

to Holocene ages and with marine, fluvial, fluvio-glacial and aeolian depositional 

origins. The molecular characterization of SOM in aquifer sediments was complicated 

by the small amounts of organic compounds present as compared to surface soils. 

Therefore, the mineral phase of the aquifer sediments was dissolved using an HF/HCl 

procedure to concentrate SOM before pyrolysis-GC/MS analysis (Chapter 5 and 6). 

Regardless of depositional environment or age, SOM was primarily derived from 

higher land plants as indicated by the bulk stable carbon isotope values, the 

importance of lignin-derived components and the odd-over-even predominance for the 

C23−C27 alkanes. 

The absence of more labile compounds, such as cellulose, indicates that SOM 

had degraded to a considerable extent from its biomass precursor in all aquifer 
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sediments studied. A macromolecular aliphatic SOM component was present in all 

aquifer sediment studied, but was particularly pronounced in the fluvial and aeolian 

sediments (Chapter 6). In contrast, lignin-derived compounds were more dominant 

and more preserved in sediments from marine depositional environments than 

terrestrial aquifer sediments (Chapter 5 and 6). While lignin generally represents a 

recalcitrant compound compared to other original biopolymers in soils (Kogel-

Knabner, 2002), the dominance of lignin in preserved SOM suggests that it represents 

one of the most degradable SOM component in the aquifer sediments studied. This is 

in line with the orders of magnitude lower reactivity of organic matter in aquifers than 

the rates in surface sediments from marine and limnic environments (Jakobsen and 

Postma, 1994; Jakobsen and Postma, 1999). 

The reactivity of molecularly characterized SOM was determined in 

carbonaceous aquifer sediments of marine Miocene and fluvio-glacial Pleistocene 

origins (Chapter 5). The CO2/O2 approach was used to verify that SOM was the most 

important reductant in these sediments during incubations. The reactivity towards 

oxygen of SOM in the Miocene sediments was almost an order of a magnitude higher 

than that of SOM in the Pleistocene sediment, demonstrating that sediment age did not 

significantly affect SOM reactivity. As the higher reactivity of SOM in the older 

marine sediments is in keeping with its more preserved status, this indicates that the 

molecular composition of SOM is the overall control on its oxidation rate (Chapter 5). 

Molecular characteristics, such as the side-chain oxidation of ligin, indicates 

that the degradation status of SOM was mainly controlled by aerobic oxidation. 

Therefore, sediment oxygen exposure time (OET) is probably a key variable. 

Recently, OETs have been used to explain the observed differences in preservation 

and reactivity of SOM in marine surface sediments (Gélinas et al., 2001; Hartnett et 

al., 1998). In contrast with marine sediments, the higher dynamics of terrestrial 

depositional environments result in a more frequent exposure to subaerial conditions 

due to resuspension and reworking of sediments. The increased OET in these 

environments likely explains the more degraded nature of SOM in the aquifer 
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sediments of fluvial, aeolian and fluvio-glacial origins as compared to aquifer 

sediments of marine origin (Chapter 5 and 6). 
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 Samenvatting 

INTRODUCTIE 

Reductie-oxidatie reacties hebben een sterke invloed op de algehele 

biogeochemie grondwatersystemen. Van bijzonder belang is dat verscheidene 

verontreinigende stoffen, zoals nitraat, chromaat en gechloreerde koolwaterstoffen 

door reductieprocessen van toxiciteit veranderen. Aangezien het grootste deel van de 

reductiecapaciteit van grondwatersystemen voor rekening komt van 

aquifersedimenten (Barcelona and Holm, 1991a; Barcelona and Holm, 1991b), is de 

mate waarin deze grondwatercontaminanten veranderen sterk afhankelijk van de 

reactiviteit van de sedimentaire reductoren die zich in de aquifermatrix bevinden. 

Sedimentaire reductoren bestaan voornamelijk uit organische verbindingen en 

mineralen die gereduceerd ijzer, mangaan of sulfide bevatten. Om de totale 

reductiecapaciteit (TRC) van aquifers, behandelden Pedersen et al. (1991) 

aquifersedimenten met een zure dichromaat oplossing. De totale hoeveelheid 

verbruikt dichromaat is een maat voor het vermogen van de aanwezige sedimentaire 

reductoren om te reageren met oxidatoren. Aan de hand van veranderingen in de TRC 

met de diepte konden Pedersen et al. de verdwijning van zuurstof, nitraat en sulfaat in 

grondwater beschrijven. Anderen hebben dezelfde TRC-bepaling gebruikt om het 

natuurlijk reductie vermogen van aquifersedimenten te kwantificeren (Barcelona and 

Holm, 1991a; Barcelona and Holm, 1991b) en de vorming van gereduceerde 

mineralen in een verontreinigde aquifer te achterhalen (Christensen et al., 2000; Heron 

and Christensen, 1995). Beide toepassingen zijn van groot belang bij het bepalen van 

de saneringsstrategie voor verontreinigde bodems. De TRC die bepaald wordt met de 

zure dichromaat behandeling is echter slechts een grove schatting van de werkelijke 

reductiecapaciteit van aquifersedimenten, omdat dichromaat veel aggresiever is dan de 

oxidatoren die gewoonlijk in grondwater gevonden worden. Hierdoor is het 

aanemelijk dat de beschikbare reductiecapaciteit, voor bijvoorbeeld zuurstof of nitraat 
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reducerende bacterieën, onderschat wordt (Barcelona and Holm, 1991a; Barcelona 

and Holm, 1991b; Pedersen et al., 1991). De mate waarin de TRC van 

aquifersedimenten gebruikt kan worden hangt dus af van de aggresiviteit van de 

oxidator enerzijds en de reactiviteit van de sedimentaire reductoren anderzijds 

(Barcelona and Holm, 1991a; Barcelona and Holm, 1991b). 

REACTIVITEIT VAN SEDIMENTAIRE REDUCTOREN 

Dit promotieonderzoek heeft zich vooral gericht op de reactiviteit van 

sedimentaire reductoren en in minder mate op de TRC. Doel van het onderzoek was 

om de factoren die van invloed zijn op de oxidatie snelheden van sedimentaire 

reductoren vast te stellen. Hiertoe werden er technieken ontwikkeld en toegepast die 

de reactiviteit van sedimentaire reductoren kunnen karakteriseren en helpen 

voorspellen. Incubatieexperimenten, waarbij aquifersedimenten werden blootgesteld 

aan zuurstof of nitraat, werden uitgevoerd om een koppeling te leggen tussen 

sedimentaire geochemie en reactiviteit. Middels pyrolyse GC/MS werd de variatie in 

moleculaire samenstelling van SOM in kaart gebracht en gerelateerd aan de 

geobserveerde afbreekbaarheid. 

Doordat er in aquifersediment in het algemeen meerdere sedimentaire 

reductoren samen voorkomen konden de afzonderlijk reactiviteiten niet bepaald 

worden door tijdens sediment incubaties louter oxidatorconsumptie te meten. In 

Hoofdstuk 3 wordt een nieuwe experimentele methode geïntroduceerd die het 

mogelijk maakt onderscheid te maken tussen de oxidatie van verschillende reductoren 

door zuurstof. Door tijdens de sedimentincubaties de zuurstofconsumptie (O2) en 

koolstofdioxideproductie (CO2) te meten kon de oxidatie van SOM, pyriet en sideriet 

van elkaar worden onderscheiden. Deze reductoren werden vaak parallel geoxideerd 

maar de totale zuurstof-consumptiesnelheid en het relatieve aandeel van elk daarin 

wisselde, afhankelijk van de geologische oorsprong van de sedimenten (Hoofdstuk 3 

en 6). Deze variatie in de reductiereactiviteit geeft aan dat geochemische transport 

modellen voor aquifers gelaagdheid dienen aan te brengen in zowel de fysische als 

reactiviteitseigenschappen (Islam et al., 2001). 



 

 169

Gereduceerd ijzer in een diagenetisch gevormde carbonaatfase bleek een 

dominante bron voor reductiecapaciteit te zijn in ondiepe aquifersedimenten. Terwijl 

SOM en pyriet algemeen bekende reductoren in aquifers zijn, is de rol van ijzer(II)-

houdende carbonaten als sedimentaire reductor tot nu toe onderbelicht gebleven. Dit 

houdt logischerwijs verband met het onvermogen van huidige meettechnieken om dit 

soort carbonaten met voldoende nauwkeurigheid te kwantificeren op de voor 

aquifersedimenten noodzakelijke lage meetniveaus. Echter, grondwater is dikwijls 

oververzadigd voor zowel sideriet (FeCO3) als rhodochrosiet (MnCO3) (Jensen et al., 

2002; Magaritz and Luzier, 1985; Nicholson et al., 1983; Ptacek, 1998; Stuyfzand, 

1989) en hun aanwezigheid is aangetoond in zowel natuurlijke (Hoofdstuk 3, 

Fredrickson et al., 1998; Saunders and Swann, 1992) als vervuilde aquifersedimenten 

(Morin and Cherry, 1986; Tuccillo et al., 1999). Hoewel de behoefte aan een techniek 

die voldoende gevoelig kan kwantificeren blijft, kan de CO2/O2 methode gebruikt 

worden om te bepalen of ijzerhoudende carbonaten een belangrijke bron van reductie 

activiteit zijn. 

Tot nu toe is de reactiviteit van sedimentaire reductoren vooral bestudeerd 

gedurende de oxidatie van pure mineraalfases, zoals Fe(II)-silicaten (Ernstsen et al., 

1998; Hofstetter et al., 2003; Lee and Batchelor, 2003; Postma, 1990; Weber et al., 

2001). Het gebruik van deze mogelijk reactieve mineralen bruikbare informatie 

verschaft over de mechanismen en factoren die een rol spelen bij hun oxidatie. Echter 

het blijft bij deze aanpak onduidelijk wat het belang is van de verschillende redutoren 

bij de oxidatie van een bepaald aquifersediment, aangezien die reactiviteit afhangt van 

variabele eigenschappen zoals, kristaliniteit, reactief mineraal oppervlak en coating 

daarop. Bovendien is de vastgestelde reactiviteit van deze modelreductoren wellicht 

niet representatief voor dat van sedimentaire reductoren, aangezien die reactiviteit 

afhangt van hun geologische voorgeschiedenis (Hoofdstuk 3 en 6). Daarom kunnen de 

bepaling het belang van verschillende sedimentaire reductoren en hun reactiviteit 

alleen worden uitgevoerd binnen een sedimentologisch kader. 

Omdat het type, de hoeveelheid en eigenschappen van de aanwezige reductoren 

beinvloed wordt door de geologische voorgeschiedenis van aquifersedimenten, 
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bepaald dit in grote mate hun reactiviteit en relatieve belangrijkheid. Wanneer echter 

de omgevingsfactoren veranderen (bijvoorbeeld pH of temperatuur) dan kan de 

reactiviteit van reductoren veranderen door effecten op de microbiële activiteit of 

veranderingen in de toegankelijkheid van de reductor (Hoofdstuk 3). De snelheid van 

pyriet oxidatie, bijvoorbeeld, neemt af naar mate er meer ijzerhydroxides neerslaan op 

het mineraal oppervlak (Nicholson et al., 1990). Echter toen tijdens incubatie 

expererimenten de kalkbuffer verbruikt was nam de snelheid weer toe, waarschijnlijk 

door het oplossen van de ijzerhydroxideneerslag bij een pH van 4–5. Dit is tevens het 

optimale pH-bereik voor de microbiële oxidatie van gereduceerd ijzer (Roychoudhury 

et al., 1998). Deze lage pHs echter hadden echter een remmende werking op de 

microbiële oxidatie van SOM. Veranderingen in pH hebben dus een tegengesteld 

effect op de reactiviteit van SOM en pyriet. Dit geeft aan dat het wel of niet aanwezig 

zijn van voldoende kalkbuffer de reductiecapaciteit voor beide reductoren bepaald. 

In tegenstelling tot instantane microbiële respons tijdens de aerobe sediment 

incubaties, ontwikkelde de denitrificeerders zich pas volledige na meer dan een maand 

tijd (Hoofdstuk 4) Bovendien werd nitraat twee keer langzamer gereduceerd dan 

gemeten voor zuurstofreductie door de zelfde aquifersedimenten. Terwijl pyriet en 

SOM beide belangrijke reductoren waren voor zuurstof (Hoofdstuk 3) werd SOM 

preferent geoxideerd tijdens de denitrificatie experimenten. Alhoewel denitrificatie 

tijdens kunstmatige infiltratie experimenten ook voornamelijk gekoppeld was aan 

SOM oxidatie (Stuyfzand, 1998), hebben vele andere veldstudies het optreden van 

denitrificatie vooral gekoppeld aan de oxidatie van pyriet (Molenat et al., 2002; 

Moncaster et al., 2000; Pauwels et al., 2000; Postma et al., 1991). Studies tot dusver 

suggereren dat pH een belangrijke factor is die de koppeling tussen nitraatreductie en 

pyrietoxidatie bepaald (Hoofdstuk 4, Schippers and Jørgensen, 2002). Verdere 

experimentele studie is echter nodig om het reactiemechanisme te ontrafelen. 

MOLECULAIRE SAMENSTELLING EN REACTIVITEIT VAN SOM 

In deze studie zijn de factoren die de moleculaire samenstelling en reactiviteit 

bepalen van sedimentair organisch materiaal (SOM) in aquifers beschouwd voor 
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sedimenten van Pliocene tot Holocene ouderdomen met mariene,fluviatiele, fluvio-

glaciale en eolische oorsprongen. 

De moleculaire karakterisatie van SOM in aquifersedimenten wordt bemoeilijkt 

door de lage gehaltes aan organische componenten vergeleken met bodems. Om SOM 

te concentreren werden daarom de minerale bestanddelen zoveel mogelijk opgelost 

middels een HF/HCl behandeling. Vervolgens werden de SOM bestandelen 

geanalyseerd middels pyrolyse-GC/MS (Hoofdstuk 5 en 6). De stabiele koolstof 

isotoopwaarden voor SOM, de duidelijk aanwezige ligninecomponenten en de 

oneven–even verhoudingen voor de C23−C27 alkanen gaven aan dat hogere 

landplanten de voornaamste bron voor SOM waren, ongeacht het afzettingsmilieu van 

de aquifersedimenten (Hoofdstuk 5 en 6). De afwezigheid van labielere componenten, 

zoals cellulose, gaf aan dat SOM reeds behoorlijk gedegradeerd was ten opzichte van 

het organische moedermateriaal. Een macromoleculaire component was aanwezig in 

alle bestudeerde aquifersedimenten maar was prominent aanwezig in de fluviatiele en 

eolische sedimenten (Hoofdstuk 6). Daarentegen waren de lignine afgeleide 

fragmenten dominanter en beter gepreserveerd in de mariene sedimenten dan in de 

terrestische (Hoofdstuk 5 en 6). Alhoewel lignine in het algemeen, in vergelijking to 

andere biopolymeren, als een moeilijk afbreekbaar wordt beschouwd, (Kogel-

Knabner, 2002), suggereert de dominantie van lignine-afgeleide componenten in 

gepreserveerd SOM dat het een van de beter afbreekbare componenten is. Dit kan een 

verklaring zijn voor het feit dat de reactiviteit van SOM in aquifers ordes van grootte 

lager is dan in ondiepe mariene en lacustrine sedimenten (Jakobsen and Postma, 1994; 

Jakobsen and Postma, 1999). 

Om na te gaan of de afbraaksnelheden van SOM daadwerkelijk bepaald 

worden door de degradatiestatus van de organische verbindingen, werd de reactivteit 

van SOM bepaald in carbonaathoudende mariene Miocene en fluvio-glaciale 

Pleistocene sedimenten. (Hoofdstuk 5). Middels de CO2/O2 methode werd geverifiëerd 

dat SOM hoofdreductor was gedurende de incubatie van deze sedimenten. De 

reactiviteit van SOM in de Miocene sedimenten was bijna een orde van grootte hoger 

dan in de Pleistocene sedimenten. De hogere reactiviteit van SOM in de oudere 
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mariene sedimenten is in overeenstemming met de betere preservatie van de 

moleculaire bestandelen (Hoofdstuk 5). 

Moleculaire karakteristieken, zoals de zijketen-oxidatie van lignine, duidden er 

op dat de degradatie van SOM vooral word bepaald door aerobe oxidatie. Daarom is 

de duur van sedimentblootstelling aan zuurstof waarschijnlijk cruciaal. Recentelijk, 

zijn die deze blootstellingstijden gebruikt om verschillen in SOM-preservatie en -

reactiviteit in mariene oppervlaktesedimenten te bepalen (Gélinas et al., 2001; 

Hartnett et al., 1998). In tegenstelling tot mariene sedimenten, de hogere dynamiek 

van terrestrische afzettingsmilieus resulteert in een frequentere blootstelling aan 

atmosferisch zuurstof door de resuspensie en het omwerken van sedimenten 

(Hoofdstuk 6). De langere blootstellingstijd aan zuurstof ten tijde van depositie 

verklaart waarschijnlijk de aanwezigheid van meer gedegradeerd SOM in de 

aquifersedimenten van fluviatiele, eolische en fluvio-glaciale origine in vergelijking 

tot de marine sedimenten (Hoofdstuk 5 en 6). 
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And evolving from the sea 
Would not be too much time for me 

To walk beside you in the sun 
 

(The Pixies-Sad Punk) 
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