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C’est ce que nous pensons déjà connaı̂tre

qui nous empêche souvent d’apprendre

It is often what we think we already

know that prevents us from learning

(Free translation from French to English)

Claude Bernard, French philosopher, 1813-1878
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Chapter 1

Introduction and Outline

For theoretical and computational convenience, the Earth has long been modelled as an
isotropic medium for wave propagation. It was assumed that the speed of seismic waves is
not affected by the direction of propagation. There is, however, considerable evidence of
seismic anisotropy at different depths and different scales throughout the Earth, which can
provide insight into Earth’s dynamic processes. Since computational power has greatly
increased during the last decades, it has now become possible to account for seismic
anisotropy in tomographic modelling. Current methods to map seismic anisotropy in-
side the Earth are often based on the inversion of seismological data but these inversions
can be highly non-unique, yielding discrepancies among the models produced in different
studies. Since detection of seismic anisotropy is of great importance for the understand-
ing of mantle mineralogy and deformation processes that take place inside the Earth, it
is necessary to better understand tomographic models and the origin of the differences
among them. In this thesis, we aimed to study seismic anisotropy in a more robust and
systematic way than in previous studies, using a novel technique that describes better the
model space and the complete ensemble of solutions, with reliable uncertainty estimates.

1.1 Anisotropy : generalities

While mineral physics and geology are involved in the investigation of anisotropy at a mi-
croscopic scale, seismology can be used to study large-scale anisotropy (typically 1−104

kilometres). The simplest case of anisotropy, called transverse isotropy, can be described
by only five independent elastic coefficients. It occurs when the elastic medium presents
a symmetry axis. In seismology, it is referred to as radial anisotropy when the symme-
try axis points in the vertical (radial) direction. Azimuthal anisotropy refers to varia-
tions of seismic wave velocities perpendicular to the symmetry axis. These two kinds of
anisotropy can be detected from seismological data. Body waves present the advantage
of providing a very good lateral resolution, but heterogeneities are difficult to locate at
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12 Chapter 1

depth. On the contrary, normal modes and surface waves enable to locate heterogeneities
at depth but they have a weak lateral resolution (several thousands kilometres).

Azimuthal anisotropy was first detected from the azimuthal dependence of Pn waves
in the oceanic lithosphere, beneath the Pacific Ocean (Hess, 1964). Shear-wave splitting,
or birefringence, is also commonly used to infer azimuthal anisotropy. It is the most
unambiguous evidence of seismic anisotropy as the two directions of polarization of the
waves have different arrival times. Azimuthal anisotropy can also be derived from the
azimuthal dependence of the local phase velocity of Rayleigh and Love waves that occurs
in the presence of slightly anisotropic material (Smith and Dahlen, 1973). Surface waves
are not only well suited to study azimuthal anisotropy, but also to study radial anisotropy
in the uppermost mantle. The observation of radial anisotropy is, however, indirect. Dis-
crepancies between isotropic Rayleigh and Love phase velocity maps (Anderson, 1961)
can strongly be reduced by introducing radial anisotropy in the uppermost mantle. PREM
(Dziewonski and Anderson, 1981) was the first reference model to include this kind of
anisotropy in the top 220 km of the Earth. These two manifestations of surface wave
anisotropy were reconciled by Montagner and Nataf (1986) with a general form of the
anisotropy. The presence of seismic anisotropy in the Earth can also be investigated with
normal modes, but their use is not as widespread as the use of shear wave splitting or
surface waves. So far, their most extensive usage in the framework of seismic anisotropy
has been to study inner core anisotropy (e.g. Woodhouse et al. (1986); Li et al. (1991);
Tromp (1993, 1995b); Durek and Romanowicz (1999); Romanowicz and Bréger (2000)).

Although the presence of both radial and azimuthal anisotropy is commonly accepted
in the uppermost mantle, their depth extent and lateral variations are still not clear. Radial
anisotropy for both P-waves and S-waves was found by Montagner and Kennett (1996)
down to 1000 km depth and in the lowermost mantle, in a new reference model. Re-
gional studies of shear-wave splitting were also interpreted in terms of radial anisotropy
in the transition zone beneath Fiji-Tonga (Chen and Brudzinski, 2003) and in the top of
the lower mantle (Wookey et al., 2002), that is beneath the upper mantle transition zone.
Azimuthal anisotropy in the transition zone was recently inferred by Trampert and van
Heijst (2002) from the azimuthal dependence of Love wave overtone measurements. Nu-
merous observations of anisotropy in the D” layer have been reported in regional studies
(Vinnik et al., 1989; Kendall and Silver, 1996) but it has never been observed in the rest
of the lower mantle even though mantle minerals are known to be highly anisotropic at
these depths and temperatures (Chen et al., 1998; Wentzcovitch et al., 1998). Intrinsically
anisotropic minerals can, indeed, lead to the observation of seismic anisotropy, but only
if several conditions are fulfilled. For instance, there has to be an efficient mechanism
orientating the crystals in order to preserve large scale anisotropy, and a strain field, such
as mantle flow, deformation or accretion, must also be present (e.g. McNamara et al.
(2002) and Tommasi (1998)). In addition, the amount of anisotropy detected depends
on the percentage of intrinsically anisotropic minerals in mantle rocks. The absence of
seismic anisotropy in the bulk of the lower mantle could therefore be interpreted in term
of superplastic flow, as proposed by Karato (1995), since preferred alignment of miner-
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als is not possible in deformation by diffusion creep. However, the presence of seismic
anisotropy in the lower mantle cannot be ruled out but it could have remained undetected
with body waves because of their poor depth resolution. Normal modes provide better
vertical resolution and would be more suited to investigate this matter. This has not been
done yet.

Interpreting observations pertaining to seismic anisotropy is generally difficult. It is
now commonly accepted that the mechanism producing seismic anisotropy in the upper-
most mantle is the lattice-preferred orientation (LPO) of olivine crystals (Karato, 1989).
Olivine has, indeed, a high intrinsic anisotropy and shows a high degree of alignment
in an ambient stress field. The observation of large scale seismic anisotropy at shallow
depths is commonly explained as a preferred orientation of the [100] crystallographic
axis of olivine crystals by tectonic processes. The interpretation of seismic anisotropy at
other depths is more difficult. In the asthenosphere, it is often taken as a manifestation
of present day convective flow, as opposed to “frozen-in” anisotropy at shallower depths
(see, for instance, Simons et al. (2002); Gaboret et al. (2003); Becker et al. (2003)). The
detection of seismic anisotropy should, however, not be taken as a direct estimation of
mantle flow as the fast axis of the anisotropy is not necessarily aligned with the flow di-
rection. Ribe (1987) demonstrated that flow direction and LPO are only simply related
in a few places : above subducted slabs, beneath the lithosphere and in boundary layers.
Montagner (1998) therefore proposed to associate the layers of the mantle where seismic
anisotropy is observed with boundary layers. Further complications can also arise from
the water content of olivine-rich crystals, since it can modify the relation between flow
geometry and seismic anisotropy (Jung and Karato, 2001). Another possible source of
seismic anisotropy is shape-preferred orientation (SPO) of (isotropic) secondary phases
in a host material that has different elastic properties than the inclusions. This includes the
anisotropic distribution of melt (as it probably occurs in the crust) and laminated struc-
ture. If the alignment is horizontal, radial anisotropy, but not azimuthal anisotropy, can be
detected. SPO of melt inclusions was proposed by Kendall and Silver (1996) as an expla-
nation for the observed VSH > VSV in D”, but the origin of lowermost mantle anisotropy
is still matter of debate. SPO could also be invoked to explain the observed VSH > VSV
in the upper lower mantle (Montagner and Kennett, 1996; Wookey et al., 2002).

1.2 Method employed and motivation

Seismologists usually model the structure of the Earth by solving a set of linear or lin-
earized equations relating geophysical observables to some model parameters. A common
way of finding a solution that provides a good fit to the data is by minimizing a cost func-
tion (e.g. by minimizing a χ2 misfit and/or a model norm term). However, the solution to
these problems is inherently non-unique as there are typically fewer linearly independent
equations than the number of unknowns. This is due to uneven sampling of the Earth
(the inverse problem is said to be ill-posed). In addition, even when the problem is not
ill-posed, errors in the data tend to propagate and to be magnified through the inverse



14 Chapter 1

operator (the problem is then ill-conditioned), causing instabilities in the solution. From
a mathematical point of view, zero eigenvalues are responsible for the ill-posedness of the
problem, and small or zero eigenvalues imply ill-conditionedness. They also imply the
existence of a model null-space and a data null-space. By definition, the data null-space is
the part of the data space that cannot be explained by any model. The components of the
data that lie in this data null-space correspond to errors in the data and errors in the op-
erator that describes the physical problem. The model null-space is the part of the model
space that is not constrained by the data used and, therefore, it does not affect the data fit.
Damped least-squares inversions give a way to find a solution to an inverse problem by
minimizing a cost function. It implies the introduction of a trade-off parameter that com-
promises between minimizing the data misfit and the size of the model. A more general
regularisation of the problem can also be imposed to deal with the null-spaces. Its intro-
duction allows us to find a stable solution, i.e. a model that is not too sensitive to errors in
the data. Imposing a regularisation can also be seen as a way to reduce the ensemble of
possible models, or to choose a particular solution among all the models compatible with
the data.

Several levels of regularisation, implicit and explicit, are involved when solving in-
verse problems (Trampert, 1998). The physical variables used to describe the Earth are,
strictly speaking, continuous functions of position, and should be expanded in a complete
set of basis functions. The choice of these basis functions should not matter as long as the
expansion is complete. However, for practical reasons, they have to be truncated and this
implies some level of implicit regularisation. More implicit regularisation is introduced
through the choice of the cost function. Choosing a cost function implies choosing norms
for the data space and for the model space. The choice of these norms is arbitrary and
consists in some kind of implicit a priori information. Explicit regularisation is intro-
duced through the choice of a reference model, a trade-off parameter and the data and
model covariance matrices.

Despite the choice of data errors, norms and model parameterization, the solution of
inverse problems can still be highly non-unique. Indeed, in seismology, discrepancies
among different models are often observed, and sometimes they can be large. These dif-
ferences are not necessarily constrained by the data, but they can be due to the presence of
a model null-space (Deal et al., 1999). Comparisons of tomographic mantle P and S mod-
els can be found in Ritzwoller and Lavely (1995) and Becker and Boschi (2002) and the
influence of regularisation on density and velocity models was investigated by Resovsky
and Ritzwoller (1999a,c). Null-spaces are quite significant in highly underdetermined in-
verse problems and can cause strong non-Gaussian behaviour in the distribution of likely
models (see, for instance, the problem of resolving 3-D density anomalies in the man-
tle (Resovsky and Trampert, 2003) or finding models of inner core anisotropy that fit
different kinds of data, as shown in Chapter 8 of this thesis). Due to the assumptions
(smoothness, Gaussian statistics, etc) introduced in the regularisation, an inversion only
explores a small part of the model null-space. Hence, inversions with different regularisa-
tions can include different components of the model null-space and produce discrepancies



1.2 Method employed and motivation 15

among the solutions. One common way of decreasing the model null-space is by jointly
inverting independent data sets (e.g. the joint inversion of seimic and geodynamic data
by Forte et al. (1994)). If available, independent physical information introduced in the
inversion (for instance, via a prior model covariance matrix) can also help reducing the
size of the model null-space, but this is not always possible.

As explained above, in traditional inversions ill-posed problems are regularized by
introducing a priori information on the model space, and it usually implies that the model
space is assumed to have a Gaussian distribution near a chosen starting model. How-
ever, even if they are linear, ill-posed problems can be characterized by several minima in
the cost function (Tikonov and Arsenin, 1977), as opposed to well-posed linear problems
which have, typically, one clear global minimum. For well-posed linear problems, usual
inversion methods, as well as Monte Carlo and genetic algorithms, will find the same
solution. In the case of linear (or linearized) ill-posed problems, the Gaussian hypothesis
imposed on the model space may produce solutions that depend strongly on the starting
model. The method employed in this thesis offers a way to characterize the model space
better and to give a complete description of resolution, trade-offs and uncertainties on the
model parameters. We used the Neighbourhood Algorithm (NA) (Sambridge, 1999a,b),
a direct search approach from which robust information on Earth’s properties can be ob-
tained without having to introduce unnecessary a priori information on the model space.
We can thus deal with ill-posed problems without assuming a priori Gaussian statistics
for the model space.

The NA explores the whole model space (within selected boundaries), including the
null-space, and provides information on its approximate topology, that is, it identifies
regions of relatively low and relatively high misfit, associated with high and low likeli-
hoods, respectively. It differs from traditional inversion techniques as it gives an overview
of all the models compatible with the data rather than choosing one by some subjective
regularisation. It also differs from usual direct search approaches by characterizing the
whole range of models contained in the model space instead of searching for one “best”
solution by optimization of a cost function (e.g. steepest gradient method, etc). Not
only does the NA explore the model space by sampling different regions, which is what
usual direct search approaches do, it also gives posterior probability density functions
(PPDFs) for all model parameters, as explained below. The departure of these PPDFs
from a Gaussian distribution can be used as a diagnostic of the degree of ill-posedness,
hence of the topology of the model null-space. Another advantage of mapping the model
space concerns error analysis. Most linearized inversions give, indeed, a posterior model
covariance smaller or equal to the prior covariance by construction (Tarantola, 1987). If
the cost function to be minimized has a large valley, that is if there is a large model null-
space, the posterior covariance can be seriously underestimated, depending on the prior
covariance (Trampert, 1998). We consider the width of the valley in the cost function as a
realistic representation of the error bars in the absence of true physical prior information.

The NA is composed of two-stages. The first stage consists of the survey of the model
space to identify the “good” data fitting regions. It makes use of a geometrical construct,
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the Voronoi cells, to drive the search towards the best data-fitting regions while continuing
to sample a relatively wide variety of different models. The use of the Voronoi cells makes
this algorithm self-adaptative : with a good choice of some tuning parameters, one can
explore the complete model space, and there is always a possibility to escape from a local
minimum. It also has the advantage of being able to sample several promising regions
simultaneously. During this survey, the sampling density increases in the surroundings of
the good models without losing information on the models previously generated (even the
“bad” ones). The distribution of misfit obtained in the first stage is used to approximate the
real posterior probability density function. An importance sampling of this distribution
is then performed in the second stage of the NA to generate a “resampled ensemble” that
follows the approximate PPD. This resampled ensemble is then integrated numerically to
compute the likelihood associated with each model parameter (also called 1-D marginals),
the covariance matrix and two-dimensional marginal PPDFs. The 2-D marginals can be
used to infer the trade-offs between two variables. The same information can be deduced
from the correlation matrix if a Gaussian approximation of the model space can be made.
The likelihoods obtained for the various model parameters give a powerful tool to estimate
true resolution and uncertainties, since they characterize the entire ensemble of models
compatible with the data.

From these likelihoods, one can also test different hypothesis, such as the probability
of anisotropy or the probability of positive (or negative) velocity or density anomalies at
a given depth, the probability of correlation between two variables, etc. The distributions
of density and velocities obtained can be employed to test models of composition. In-
dependent data sets can be used to “filter” the likelihoods and hence reduce the range of
possible models. This is an alternative to joint inversions as a way to decrease the size of
the model null-space. Compatibility between two data sets can also be examined with this
method. The main drawback of the NA lies in the limited number of model parameters
that can be explored. It is, however, well suited for normal mode problems and can be
applied to phase velocity maps. In these cases, the inverse problem is easily separable into
spherical harmonics and the NA can solve individual inverse problems for each spherical
harmonic coefficient.

1.3 Outline

In Chapter 2, the concepts underlying normal mode theory and the splitting of normal
modes are revisited, and several of the key-equations employed in this thesis are given.

Chapter 3 presents the first application of the Neighbourhood Algorithm to a large
scale tomographic problem. This study consisted in searching the model space for P and
S tomographic models of the entire mantle, using normal mode data and fundamental
normal mode Rayleigh wave phase velocity maps. The search was limited to degree two
structure, since the main purpose of this work was to establish the applicability of the NA
to mantle tomography, with real data (synthetic tests were performed by Resovsky and
Trampert (2002)). In Chapter 3, the reader can also examine examples of posterior one-
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dimensional and two-dimensional marginals. Explanations on how to choose the tuning
parameters required in each stage of the NA are also given in this chapter.

In Chapter 4, we aimed to determine the likelihood of radial anisotropy in reference
mantle models. The NA was applied to a large set of normal mode frequency shift
measurements and degree zero phase velocity maps for fundamental and higher mode
Rayleigh and Love waves. We obtained likelihoods and uncertainties for radial anisotropy
and density perturbations in different layers of the mantle.

Chapter 5 focusses on establishing the robustness of traditional inversion results for
lateral variations of radial anisotropy within the top 220 km of the mantle. The data
employed here are fundamental Love and Rayleigh wave phase velocity maps expanded
into spherical harmonics.

In Chapter 6, we extended the study of Chapter 5 to 1200 km depth, adding overtone
Love and Rayleigh wave phase velocity maps. To reduce the number of unknown param-
eters, we used the models obtained in the previous chapter to correct the data for the effect
of the uppermost mantle.

Chapter 7 deals with azimuthal anisotropy (down to 1200 km depth), inferred from
the 2-Ψ component of Love wave phase velocity maps constructed with overtone mea-
surements.

Finally, Chapter 8 is a study of inner core anisotropy, in which the NA was applied to
the most recent measurements of anomalously split normal modes. The models obtained
from normal modes only can also explain all independent travel-time data, which removes
a longstanding controversy arisen from the use of the two kinds of data.
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Chapter 2

Theoretical background

This chapter reviews the main equations that describe Earth’s free oscillations. It is, how-
ever, not necessary to understand all theoretical developments described here to read the
other chapters because a reminder of the equations used is given in each chapter. In a first
section, we consider the equations that govern the free oscillations of a spherical Earth
model in hydrostatic equilibrium under self-gravitation. The second section deals with the
splitting of Earth’s normal modes due to rotation, ellipticity and asphericities. The effect
of a general perturbation to the elastic tensor is examined, first in the most general case,
and second in the particular case of an isolated multiplet. Equations for radial anisotropy
and isotropy are also given. Finally, the equation relating phase velocities and anisotropy
is rederived by taking the limit towards surface waves. For more details, the reader is re-
ferred to Dahlen (1972, 1973); Dahlen and Smith (1975); Woodhouse and Dahlen (1978);
Tanimoto (1986); Mochizuki (1986); Dahlen and Tromp (1998).

2.1 Free oscillations of a non-rotating spherically sym-
metric Earth model

Let us first consider a model of the Earth which is in mechanical equilibrium under self-
gravitation. This model is supposed to be spherically symmetric, not rotating and per-
fectly elastic. Let x be the position of a point in this static equilibrium, measured in an
inertial reference frame whose origin coincides with the centre of mass of the Earth’s
model. The equilibrium state is described by the mass density ρ0(x), the gravitational
potential field Φ0(x) and the initial static stress tensor T0(x), which are related to one
another through the following equilibrium equations:

∇2Φ0(x) = 4πGρ0(x) (2.1)

ρ0(x)∇Φ0(x) = ∇.T0(x) (2.2)

19
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n̂.T0(x) = 0 (2.3)

The first equation is Poisson’s equation and the second is the momentum equation. The
last equation is valid at the outer surface ∂V of the Earth model, which is assumed to be
traction-free. The unit vector n̂ is the unit outward normal to the surface ∂V at point x
andG is the gravitational constant.

The Earth undergoes elastic-gravitational oscillations if its equilibrium position is
disturbed by external forces. These free oscillations correspond to infinitesimal time-
dependent displacements s(x, t) of a material particle x, whose position in a lagrangian
reference frame can be written as r(x, t) = x+ s(x, t). As in Dahlen and Tromp (1998),
r denotes a fixed position in space (Eulerian approach) and x denotes the position of
a moving particle (Lagrangian reference frame). The oscillations are accompanied by
infinitesimally small perturbations ρ1(r, t) in density, Φ1(r, t) in the gravitational po-
tential and TE1(r, t) in the stress tensor. The Eulerian Cauchy stress TE(r, t) (with
TE(r, t) = T0 + TE1(r, t)) measures a force dfE per unit deformed oriented surface-
area n̂tdΣt (Dahlen and Tromp, 1998) :

dfE = n̂tdΣt.TE (2.4)

The first Piola-Kirchhoff stress tensor TPK(r, t) (Malvern, 1969) is defined as the mea-
sure of a force dfE per unit undeformed oriented surface-area n̂0dΣ0 :

dfE = n̂0dΣ0.TPK (2.5)

Earth’s free oscillations are also accompanied by an increment TPK1(r, t) in the first
Piola-Kirchhoff stress tensor.

To first order, we can write ρ1(r, t) � ρ1(x, t) and Φ1(r, t) � Φ1(x, t). The lin-
earized equations of motion for an elastic-gravitational mode are then given by (Dahlen
and Tromp, 1998) :

ρ0(
∂2s
∂2t

+∇Φ1 + s.∇∇Φ0) = ∇.TPK1 (2.6)

∇2Φ1 = 4πGρ1 (2.7)

ρ1 = −∇.(ρ0s) (2.8)

Equation 2.6 is the linearized momentum equation, 2.7 is the linearized Poisson’s equation
and equation 2.8 is the linearized continuity condition. It can be shown (Hooke’s law, see
Dahlen and Tromp (1998)) that the incremental first Piola-Kirchhoff stress tensor is given
by

TPK1 = Λ : ∇s (2.9)

or

TPK1
ij = Λijkl

∂sl
∂xk

(2.10)
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where the sums over k and l are implicit (Einstein’s convention). The tensor Λ is the sum
of an elastic tensor C and terms depending upon the initial stress T0:

Λijkl = Cijkl +
1
2
(T 0

ijδkl + T
0
klδij + T

0
ikδjl − T 0

jkδil − T 0
ilδjk − T 0

jlδik) (2.11)

If the initial stress tensor is isotropic, T0(r) = −p0(r)I at every point in its equilibrium
configuration (I is the identity matrix). Equation 2.11 is then

Λijkl = Cijkl − p0(δijδkl − δjkδil) (2.12)

The elastic tensor has the following symmetries : Cijkl = Cklij = Cjikl = Cijlk , which
brings the number of independent elastic coefficients to 21 in an arbitrary anisotropic
medium. In the particular case of transverse isotropy only five of these coefficients are
independent, and in the case of isotropy this number reduces to two. The form of elastic
tensor for an isotropic medium is :

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.13)

where µ and λ are the well-known Lamé parameters. Transverse isotropy is the most
general case of anisotropy for a spherically symmetric Earth model (see Section 2.2.3).

For solutions of the type s(x, t) = s(x)eiωt and Φ1(x, t) = Φ1(x)eiωt, the Fourier
transform of equation 2.6 gives

ρ0(−ω2s+∇Φ1 + s.∇∇Φ0) = ∇.TPK1 (2.14)

The boundary conditions for Φ1 at all boundaries may be written

[Φ1]+− = 0 (2.15)

[n̂.((4πG)−1∇Φ1 + ρ0s)]+− = 0 (2.16)

For s and TPK1, the boundary conditions require careful considerations. Details are
given in Woodhouse and Dahlen (1978) and Dahlen and Tromp (1998).

To compute the eigenfrequencies and eigenfunctions of such a model (spherically
symmetric, non-rotating, elastic and (transversely) isotropic), the system of linearized
equations, composed by equations 2.7, 2.8, 2.10, 2.14, 2.12, and the associated boundary
conditions, needs to be solved. Dahlen and Tromp (1998) present three different ways to
convert these equations into an equivalent system of coupled scalar equations : (1) making
use of Rayleigh’s principle; (2) using a generalized spherical harmonic representation of
the tensor fields; (3) seeking separable eigensolutions of the system of equations. It can
further be shown that these scalar equations separate into two sets of completely decou-
pled equations. Thus, this type of Earth model (e.g. PREM (Dziewonski and Anderson,
1981)) has two distinct types of normal modes : the spheroidal modes and the toroidal
modes. They are characterized by three integers : an overtone number n, an angular order
l, both varying between zero and infinity, and an azimuthal orderm, which takes 2l + 1
values between −l and l. They are called fundamental modes if n = 0 and overtones
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otherwise. The angular order is related to their frequency of vibration. At fixed n, the
higher l, the higher the frequency. A spheroidal mode, denoted nSl, has an associated
particle displacement (or eigenfunction) given by

nsml (r) = êr nUl(r)Y m
l (θ, φ) + nVl(r) ∇1Y

m
l (θ, φ) (2.17)

A toroidal mode nTl has an eigenfunction of the form

nsml (r) = −nWl(r) êr ×∇1Y
m
l (θ, φ) (2.18)

∇1 = êθ ∂
∂θ + êφ(sin θ)−1 ∂

∂φ , and Y m
l (θ, φ) are fully normalised complex spherical

harmonic (Edmonds, 1960) in a spherical coordinate system r = (r, θ, φ) whose origin is
at the centre of the Earth. Functions U(r), V (r) andW (r) are the radial eigenfunctions.
Since vertical motion occurs in spheroidal modes and not in toroidal modes, spheroidal
modes alter the shape of the Earth while toroidal modes do not. There are 2l+1 spheroidal
oscillations associated with a given eigenfrequency nω

S
l . They are, therefore, referred

to as 2l + 1−fold degenerated. They form a multiplet, and each eigenfunction within a
multiplet is referred to as a singlet. These singlets are identified by the azimuthal orderm.
Similarly, there are 2l + 1 toroidal modes that share the same degenerate eigenfrequency
nω

T
l . Besides the degeneracy, another important property of these free oscillations is their

orthogonality : the 2l+1 eigenfunctions defined by 2.17 and 2.18 constitute an orthogonal
basis in a 2l + 1-dimensional space.

2.2 Perturbation of a reference Earth model

The type of model described in the previous section (spherically symmetric, non-rotating,
elastic and (transversely) isotropic) is generally taken as a reference and the effect of
asphericities, rotation and ellipticity are accounted for using perturbation theory. If as-
phericities, rotation and ellipticity are considered to be slight perturbations of the refer-
ence model, Rayleigh’s variational principle can be used to compute the resulting per-
turbations in the eigenfrequency of a particular mode (Dahlen, 1972; Woodhouse and
Dahlen, 1978). This has the effect of removing the degeneracy of the eigenfrequencies
and gives rise to multiplet splitting. In other words, the 2l+1 singlets of a multiplet have
slightly different eigenfrequencies nω

m
l .

In the framework of perturbation theory, each multiplet is considered to be isolated
from other multiplets. This assumption, which is valid only when their degenerate fre-
quencies do not overlap, is the basis of the degenerate perturbation theory. In that case,
the eigenfrequencies nω

m
l of the perturbed Earth model are seen as perturbations of the

degenerate eigenfrequencies nωl:

nω
m
l = nωl + δnωml (2.19)

and the eigenfunctions are linear combinations of the eigenfunctions of the reference
model (which constitute an orthogonal basis). When the frequencies of two (or more)
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multiplets are close together, coupling between the multiplets has to be taken into ac-
count. This involves a quasi-degenerate perturbation theory. Coupling can occur through
apshericities, ellipticity and because of Earth’s rotation (through the Coriolis force). Se-
lection rules describe which modes can couple in the different cases. Accounting for
coupling is computationally more expensive, but coupled modes have the advantage of
being sensitive to both even and odd degree structure, as opposed to isolated multiplets
from which only even degree structure can be retrieved (see section 2.2.3). In the next sec-
tions, equations are first given in the general case of normal mode coupling, after which
the limit of isolated multiplets is taken.

2.2.1 Rotation and ellipticity

The effect of rotation and ellipticity on normal mode splitting is well known and can be
calculated exactly. The perturbation, δnωml , of the eigenfrequency of toroidal modes is
given by

δnω
m
l = mβΩ+ αεhω

[
1− 3 m2

l(l + 1)

]
(2.20)

with the Coriolis splitting parameter β = 1/l(l+ 1) and α the ellipticity splitting param-
eter. The perturbation for spheroidal modes is given by

δnω
m
l = mβΩ+

(
αεhω + α′Ω2/ω

) [
1− 3 m2

l(l+ 1)

]
+ [1− l(l+ 1)β] Ω2/3ω (2.21)

Expressions for α and α′ are given in Woodhouse and Dahlen (1978).
As mentioned before, rotation can also cause coupling between multiplets. The selec-

tion rules show that Coriolis coupling can only occur between

1. spheroidal and toroidal modes that differ by one angular order : nSl and n′Tl±1

2. spheroidal modes with the same angular order : nSl and n′Sl

Furthermore, ellipticity causes coupling between

1. two spheroidal or two toroidal modes whose angular orders differ by two : nSl and
n′Sl+2 or nTl and n′Tl+2

2. spheroidal modes or toroidal modes with the same angular order : nTl and n′Tl or
nSl and n′Sl.
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2.2.2 Aspherical structure : general case of the elastic tensor

When dealing with three-dimensional perturbations in Earth’s structure it can be shown
that the 2l+ 1 eigenfrequencies of the perturbed model are the eigenvalues of an Hermi-
tian matrix H with dimension (2l + 1) × (2l + 1). The elements Hmm′ of this matrix
depend linearly on perturbations in the model parameters through sensitivity kernels that
are related to the unperturbed eigenfunctions. Woodhouse and Dahlen (1978) gave the
general equations relating perturbations in the eigenfrequencies to slight perturbations in
the Earth model (perturbations δρ0(r) in the density, δΦ0(r) in the gravitational potential,
δT0 in the initial stress tensor, perturbations h(r) in the location of discontinuities and
perturbations δCijkl in the elastic tensor). The application of Rayleigh’s principle shows
that the perturbation in the eigenfrequencies can be written as the sum of individual con-
tributions.

The case of perturbations in the elastic tensor was treated by Tanimoto (1986) and
Mochizuki (1986). If the elastic tensor C is perturbed by an infinitesimal quantity δC,
the corresponding variation δnωml of the eigenfrequencies nωl of a mode is given by the
eigenvalues of the following so-called splitting matrix (Woodhouse and Dahlen, 1978):

Hmm′ =
1

2nωlI

∫
⊕
∇sm : δC : ∇s∗m′ dV, (2.22)

with the normalisation factor

I =
∫
⊕
ρ0s∗i .si dV, (2.23)

and where the integrations are made over the entire volume ⊕ of the Earth. Equation 2.22
can be rewritten as follows (Tanimoto, 1986):

Hmm′ =
1

2nωlI

∫
⊕
(Em)K : δC : (E∗

m′)K dV (2.24)

Em is the strain tensor with azimuthal order m and index K denotes the multiplet (and
thus the spherical harmonic order l). These equations are valid to first order and for an
isolated multiplet only. In case of coupling of two different multipletsK andK ′ through
three-dimensional perturbations in the elastic tensor equation 2.24 becomes

H ll′

mm′ =
1
2ωI

∫
⊕
(Em)K : δC : (E∗

m′)K′ dV (2.25)

The introduction of a generalized coordinate system (Phinney and Burridge, 1973) is very
useful to evaluate equation 2.25 (see Appendix A). After some algebraic manipulations,
the following relations can be derived from equation 2.25 :

H ll′

mm′ =
1
2ωI

smax∑
s=|N |

s∑
t=−s

(−1)m4πγlγl′
(

l s l′

−m t m′

) ∑
αβγδ

Gαβγδ
st (2.26)
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with smax = l + l′ and

Gαβγδ
st = (−1)α+β

(
l s l′

−α− β N −γ − δ

)∫ a

0

gγ−γ gδ−δ δC
αβγδ
st (r)

× (εαβlm)
∗(r)ε−γ−δ

l′m′ (r)r2 dr (2.27)

Here, α, β, γ and δ are indices that can take the value 0, +1 or -1. N = α + β + γ + δ
and γl =

√
(2l + 1)/4π. We also defined Eαβ

lm (r) = γlε
αβ
lm(r). Expressions for εαβlm(r)

as a function of the degenerate radial eigenfunctions are listed in Appendix A. Explicit
expressions for Gαβγδ

st of equation 2.27 can be found in Table 2.1.

N δCαβγδ
st

(
l s l′

−α − β t −γ − δ

)
Integrand

0 δC0000
st

�
l s l′

0 0 0

�
r2UU̇ ′

0 δC+−00
st

�
l s l′

0 0 0

�
−r2(FU̇ ′ + F ′U̇)

0 δC+−+−
st

�
l s l′

0 0 0

�
r2FF ′

0 δC+0−0
st

�
l s l′

−1 0 1

�
r2Ω0

l Ω0
l′ [(XX′ + ZZ′)(1 + (−1)l+l′+s)

+i(1 − (−1)l+l′+s)(XZ′ − ZX′)]

0 δC++−−
st

�
l s l′

2 0 −2

�
Ω0

l Ω0
l′Ω

2
l Ω2

l′ [(V V ′ + WW ′)(1 + (−1)l+l′+s)

+i(1 − (−1)l+l′+s)(W ′V − V ′W )]

1 δC+000
st

�
l s l′

−1 1 0

�
−r2Ω0

l (X − iZ)U̇ ′

�
l s l′

0 1 −1

�
−r2Ω0

l′ (X
′ − iZ′)U̇

1 δC++−0
st

�
l s l′

−2 1 1

�
−rΩ0

l′Ω
0
l Ω2

l [V X′ + WZ′ + i(V Z′ − WX′)]�
l s l′

1 1 −2

�
−rΩ0

l′Ω
0
l Ω2

l′ [V
′X + W ′Z + i(V ′Z − W ′X)]

1 δC+−+0
st

�
l s l′

0 1 −1

�
r2Ω0

l′F (X′ − iZ′)

Table 2.1 Coefficents Gαβγδ
st of equation 2.27 (continued on next page)
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N δCαβγδ
st

(
l s l′

−α − β t −γ − δ

)
Integrand

�
l s l′

−1 1 0

�
r2Ω0

l F ′(X − iZ)

-1 δC−000
st

�
l s l′

1 −1 0

�
−r2Ω0

l U̇ ′(X + iZ)�
l s l′

0 −1 1

�
−r2Ω0

l′ U̇(X′ + iZ′)

-1 δC−−+0
st

�
l s l′

2 −1 −1

�
−rΩ0

l Ω0
l′Ω

2
l [V X′ + WZ′ + i(WX′ − V Z′)]�

l s l′

−1 −1 2

�
−rΩ0

l Ω0
l′Ω

2
l′ [V

′X + W ′Z + i(W ′X − V ′Z)]

-1 δC+−−0
st

�
l s l′

0 −1 1

�
r2Ω0

l′F (X′ + iZ′)�
l s l′

1 −1 0

�
r2Ω0

l F ′(X + iZ)

2 δC++00
st

�
l s l′

−2 2 0

�
rΩ0

l Ω2
l (V − iW )U̇ ′

�
l s l′

0 2 −2

�
rΩ0

l′Ω
2
l′ (V

′ − iW ′)U̇

2 δC+0+0
st

�
l s l′

−1 2 −1

�
r2Ω0

l Ω0
l′ [XX′ − ZZ′ − i(ZX′ + XZ′)]

2 δC+++−
st

�
l s l′

−2 2 0

�
−rΩ0

l Ω2
l (V − iW )F ′

�
l s l′

0 2 −2

�
−rΩ0

l′Ω
2
l′ (V

′ − iW ′)F

-2 δC−−00
st

�
l s l′

2 −2 0

�
rΩ0

l Ω2
l (V + iW )U̇ ′

�
l s l′

0 −2 2

�
rΩ0

l′Ω
2
l′(V

′ + iW ′)U̇

-2 δC−0−0
st

�
l s l′

1 −2 1

�
r2Ω0

l Ω0
l′ [XX′ − ZZ′ + i(ZX′ + XZ′)]

-2 δC−−−+
st

�
l s l′

2 −2 0

�
−rΩ0

l Ω2
l (V + iW )F ′

�
l s l′

0 −2 2

�
−rΩ0

l′Ω
2
l′ (V

′ + iW ′)F

Table 2.1 Coefficents Gαβγδ
st of equation 2.27 (continued on next page)
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N δCαβγδ
st

(
l s l′

−α − β t −γ − δ

)
Integrand

3 δC+++0
st

�
l s l′

−2 3 −1

�
−rΩ0

l Ω0
l′Ω

2
l [V X′ − WZ′ − i(WX′ + V Z′))]�

l s l′

−1 3 −2

�
−rΩ0

l Ω0
l′Ω

2
l′ [V

′X − W ′Z − i(W ′X + V ′Z))]

-3 δC−−−0
st

�
l s l′

2 −3 1

�
−rΩ0

l Ω0
l′Ω

2
l [V X′ − WZ′ + i(WX′ + V Z′))]�

l s l′

1 −3 2

�
−rΩ0

l Ω0
l′Ω

2
l′ [V

′X − W ′Z + i(W ′X + V ′Z))]

4 δC++++
st

�
l s l′

−2 4 −2

�
Ω0

l Ω0
l′Ω

2
l Ω2

l′ [V V ′ − WW ′ − i(WV ′ + V W ′))]

-4 δC−−−−
st

�
l s l′

2 −4 2

�
Ω0

l Ω0
l′Ω

2
l Ω2

l′ [V V ′ − WW ′ + i(WV ′ + V W ′))]

Table 2.1: Coefficents Gαβγδ
st of equation 2.27. Ωn

l is defined as
√
(l + n)(l − n+ 1)/2

and U(r), V (r) and W (r) are the degenerate radial eigenfunctions of the mode con-
sidered. F (r) = (2U(r) − l(l + 1)V (r))/r, X(r) = V̇ (r) + (U(r) − V (r))/r and
Z(r) = Ẇ (r) −W (r)/r. The dot stands for the derivative with respect to the radius r.

To derive these last expressions from equation 2.25 the components of the elastic and
strain tensors in the generalized coordinate system have to be decomposed on a gener-
alized scalar spherical harmonic basis (Phinney and Burridge, 1973). The properties of
these generalized scalar spherical harmonics Y Nm

l (θ, φ) are listed in Appendix B. For
the elastic tensor we have

δCαβγδ(r, θ, φ) =
∞∑

s=|N |

s∑
t=−s

δCαβγδ
st (r)Y Nt

s (θ, φ) (2.28)

The Wigner 3-j symbols (Edmonds, 1960) were introduced to derive the triple integral of
equation 2.25 :∫ ∫

Y Nt
s (θ, φ)Y (α+β)m

l (θ, φ)Y −(γ+δ)m′

l′ (θ, φ) dΩ

= 4π(−1)α+β−m

(
l l′ s

−α− β −γ − δ N

)(
l l′ s

−m m′ t

)
(2.29)

The properties of these symbols (given in Appendix C) show that equation 2.29 is non-
zero if |l− l′| ≤ s ≤ l+ l′ andm = m′ + t. Examples of explicit expressions forGαβγδ

st
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are :

G0000
st =

(
l s l′

0 0 0

)∫ a

0

U̇(r)U̇ ′(r)δC0000
st (r)r2 dr (2.30)

and, using the symmetry properties of the elastic tensor, we can show thatG+0−0
st is given

by :

G+0−0
st = Ω0

lΩ
0
l′

(
l s l′

−1 0 1

) ∫ a

0
[XX ′ + ZZ ′

+ i(XZ ′ − ZX ′)]δC+0−0
st (r)r2 dr (2.31)

2.2.3 Particular case of an isolated multiplet

The imaginary parts of the integrands on whichGαβγδ
st depends characterize normal mode

coupling (they are the product of toroidal and spheroidal eigenfunctions). Therefore, they
all disappear in the case of an isolated multiplet (l = l′), in which case Table 2.1 (hence
equation 2.27) becomes much simpler. The resulting Gαβγδ

st are given in Table 2.2 for
toroidal modes and Table 2.3 for spheroidal modes.

It can be demonstrated that all Wigner 3-j symbols of Tables 2.2 and 2.3 are propor-

tional to

(
l s l
0 0 0

)
(Mochizuki, 1986), which is non-zero only for even values of s

(see equation C.4). This has important consequences : isolated multiplets are sensitive
to even degree structure only. The coupling of modes has to be taken into account to get
information on the odd degree structure of the Earth. Equation 2.26 can now be written
as :

Hmm′ =
1
2ωI

∑
αβγδ

2l∑
s=|N |

s∑
t=−s

(−1)m (2l + 1)
(
l s l

−m t m′

)

×
(
l s l
0 0 0

)
cst (2.32)

whereN = α+ β + γ + δ and

cst =
∫ a

0

δCαβγδ
st (r)Kαβγδ

s (r) dr (2.33)

Functions Kαβγδ
s (r) are the sensitivity kernels of a given mode for model perturbation

δCαβγδ
st (r). These kernels are listed in Table 2.4 for toroidal modes and in Table 2.5 for

spheroidal modes, in the most general case of anisotropy. Different modes have different
sensitivity kernels : they “see” Earth’s structure in their own way. Examples are given
below for the case of radial anisotropy (Figures 2.1 and 2.2). The sensitivity kernels and
the radial eigenfunctions become more oscillatory and penetrate deeper if the overtone
number n increases (at fixed angular order l). Overtones (n �= 0) are thus, in general,
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sensitive to deeper parts of the Earth than fundamental modes. At fixed overtone number,
if l (hence the frequency) increases, the sensitivity will become more and more concen-
trated at shallow depths. In the high frequency limit, that is when l 	 s, normal modes
correspond to surface waves (see section 2.3 for more details). For degrees s �= 0, the cst
are called structure coefficients. At degree zero there is no actual splitting but a shift of
the degenerate eigenfrequency of the multiplet. Coefficients cst can be seen as the degree
s and order t spherical harmonic component of a “splitting function” η(θ, φ) which can be
retrieved from free oscillation spectra. It is defined on the surface of the Earth as follow :

η(θ, φ) =
2l∑
s=0

t=s∑
t=−s

cstY
t
s (θ, φ) (2.34)

This splitting function represents a local radial average of Earth’s structure underneath a
point at the surface of the Earth. It can be seen as the normal mode equivalent of phase
velocity maps.

In the most general anisotropic medium the elastic tensor has 21 independent coeffi-
cients. However, in practice, when modelling seismic anisotropy, the number of model
parameters is reduced by assuming some symmetries. The simplest case of anisotropy
is called transverse isotropy or polarization isotropy. It involves only five independent
elastic parameters. If the axis of symmetry is aligned in the radial direction it is called
radial anisotropy. In that case, the independent elastic parameters are the five coefficients
δCαβγδ for whichα+β+γ+δ = 0. They are related to the well-known Love coefficients
A,C,L,N, F (Love, 1927) as follow :

δC0000 = δC (2.35)

δC++−− = 2δN (2.36)

δC+−+− = δA− δN (2.37)

δC+−00 = −δF (2.38)

δC+0−0 = −δL (2.39)

CoefficientsA andC (N andL) are related to the velocity of P-waves (S-waves) travelling
horizontally and vertically, respectively. If radial anisotropy is assumed, spheroidal mode
structure coefficients (s �= 0) and central frequency shifts (s = 0) are given by :

cst =
∫ a

0

[δAst(r)KAs(r) + δCst(r)KCs(r)

+ δNst(r)KNs(r) + δLst(r)KLs(r) + δFst(r)KF s(r)] dr (2.40)
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with

KAs(r) = (2U − l(l + 1)V )2 (2.41)

KCs(r) = (rU̇ )2 (2.42)

KNs(r) =
1
2
[2l2(l + 1)2 − 4l(l+ 1)− 4l(l+ 1)s(s+ 1)

+ s2(s+ 1)2 + 2s(s+ 1)]V 2 − (2U − l(l + 1)V )2 (2.43)

KLs(r) = [l(l + 1)− 1
2
s(s+ 1)](rV̇ + U − V )2 (2.44)

KF s(r) = 2rU̇(2U − l(l + 1)V ) (2.45)

Figure 2.1 gives examples of kernels for three spheroidal modes. Only the sensitivity to
δL(r) is shown for the case s = 0. For toroidal modes

0 1000 2000 3000 4000 5000 6000 7000

1 S 5

Sensitivity to δ L
Spheroidal modes

0 1000 2000 3000 4000 5000 6000 7000

23 S 5

0 1000 2000 3000 4000 5000 6000 7000

depth (km)

1 S 124

Figure 2.1: Sensitivity to δL(r) for different spheroidal modes for the case s = 0. N.B. :
the vertical scale (not shown here) is not the same for all modes.
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cst =
∫ a

0

[δNst(r)KNs(r) + δLst(r)KLs(r)] dr (2.46)

with

KNs(r) =
1
2
[2l2(l + 1)2 − 4l(l+ 1)− 4l(l+ 1)s(s+ 1)

+ s2(s+ 1)2 + 2s(s+ 1)]W 2 (2.47)

KLs(r) = [l(l + 1)− 1
2
s(s+ 1)](rẆ −W )2 (2.48)

Figure 2.2 shows the sensitivity of three toroidal modes to δN(r) for s = 0, Thus, central

0 1000 2000 3000 4000 5000 6000 7000

0 T 4

Sensitivity to  δ N
Toroidal modes

0 1000 2000 3000 4000 5000 6000 7000

2 T 4

0 1000 2000 3000 4000 5000 6000 7000

depth (km)

0 T 22

Figure 2.2: Sensitivity to δN(r) for different toroidal modes for the case s = 0. N.B. :
the vertical scale (not shown here) is not the same for all modes.

frequency shifts give constraints on spherically averaged radial anisotropy and structure
coefficients can constrain its lateral variations. Equations 2.40 and 2.46 can be rewritten
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in various ways, depending on the chosen parameterization (e.g. δVpv , δVph, δVs, δVsh
and δη, with η = F/(A− 2L), or δφ, δξ, δη, δL and δA, with φ = C/A and ξ = N/L),
and the corresponding sensitivity kernels change accordingly. Note that the anisotropic
parameter η defined here is different from the splitting function η(θ, φ) defined in equation
2.34.

Another particular case is the case of an isotropic medium, which has only two in-
dependent elastic parameters : µ and κ (or µ and λ with κ = (3λ + 2µ)/3). In the
generalized coordinate system of Phinney and Burridge (1973) the two coefficients are
related to δCαβγδ by the following relations :

δµ = δL = δN = −δC+0−0 =
1
2
δC++−− (2.49)

δA = δC = δκ− 4
3
δµ = δC0000 (2.50)

δF = δκ− 2
3
δµ = δC+−00 (2.51)

δκ +
1
3
δµ = δC+−+− (2.52)

The structure coefficients for spheroidal modes are thus

cst =
∫ a

0

r2[δκst(Y + U̇)2 + δµst[
1
3
(2U̇ − Y )2

+ X2(l(l + 1)− s(s+ 1)) + V
2

r2
(l(l + 1)(l(l + 1)− 2)

− s(s+ 1)(2l(l+ 1)− s
2
(s+ 1)− 1))]] dr (2.53)

For toroidal modes we have :

cst =
∫ a

0

r2δµst[Z2(l(l + 1)− 1
2
s(s+ 1))

+
W 2

r2
l(l + 1)[l(l+ 1)− 2− 2s(s+ 1)

+
1
2
s(s+ 1)
l(l+ 1)

(2 + s(s+ 1))] dr (2.54)

with

Y (r) =
1
r
(2U(r)− l(l + 1)V (r)) (2.55)

X(r) = V̇ (r) +
1
r
(U(r) − V (r)) (2.56)

Z(r) = Ẇ (r) − W (r)
r

(2.57)

The dot stands for the derivative with respect to r and U(r), V (r) andW (r) are the radial
eigenfunctions of a given mode (see equations 2.17 and 2.18). Note that function Y (r) is
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usually named F (r), but we renamed it in this section to avoid any confusion with elastic
parameter F . However, the usual notation was kept in Tables 2.1 to 2.5. Note again that,
by using the relations Vs =

√
µ/ρ and Vp =

√
(κ+ 4µ/3)/ρ, the equations for the

isotropic case can also be written in terms of velocity and density perturbations instead of
perturbations in the elastic parameters.
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N δCαβγδ
st

(
l s l′

−α− β t −γ − δ

)
Integrand

0 δC+0−0
st

(
l s l
−1 0 1

)
2r2Ω0

lΩ
0
lZ

2

0 δC++−−
st

(
l s l
2 0 −2

)
2Ω0

lΩ
0
lΩ

2
lΩ

2
lW

2

1 δC++−0
st

(
l s l
−2 1 1

)
−2rΩ0

lΩ
0
lΩ

2
lWZ

-1 δC−−+0
st

(
l s l
2 −1 −1

)
−2rΩ0

lΩ
0
lΩ

2
lWZ

2 δC+0+0
st

(
l s l
−1 2 −1

)
−r2Ω0

lΩ
0
lZ

2

-2 δC−0−0
st

(
l s l
1 −2 1

)
−r2Ω0

lΩ
0
lZ

2

3 δC+++0
st

(
l s l
−2 3 −1

)
2rΩ0

lΩ
0
lΩ

2
lWZ

-3 δC−−−0
st

(
l s l
2 −3 1

)
2rΩ0

lΩ
0
lΩ

2
lWZ

4 δC++++
st

(
l s l
−2 4 −2

)
−Ω0

lΩ
0
lΩ

2
lΩ

2
lW

2

-4 δC−−−−
st

(
l s l
2 −4 2

)
−Ω0

lΩ
0
lΩ

2
lΩ

2
lW

2

Table 2.2: CoefficentsGαβγδ
st of equation 2.27 for isolated toroidal multiplets (l = l ′ and s

is even). To derive these relations from Table 2.1, one has to use the symmetry properties
of the 3-j symbols (Appendix C). Ωn

l is defined as
√
(l + n)(l − n+ 1)/2, W (r) is the

degenerate radial eigenfunction of the mode considered and Z(r) = Ẇ (r) −W (r)/r.
The dot stands for the derivative with respect to the radius r.
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N δCαβγδ
st

(
l s l′

−α− β t −γ − δ

)
Integrand

0 δC0000
st

(
l s l
0 0 0

)
r2UU̇

0 δC+−00
st

(
l s l
0 0 0

)
−2r2FU̇

0 δC+−+−
st

(
l s l
0 0 0

)
r2F 2

0 δC+0−0
st

(
l s l
−1 0 1

)
2r2Ω0

lΩ
0
lX

2

0 δC++−−
st

(
l s l
1 0 −1

)
2Ω0

lΩ
0
lΩ

2
lΩ

2
l V

2

1 δC+000
st

(
l s l
−1 1 0

)
−2r2Ω0

lXU̇

1 δC++−0
st

(
l s l
−2 1 1

)
−2rΩ0

lΩ
0
lΩ

2
l V X

1 δC+−+0
st

(
l s l
0 1 −1

)
2r2Ω0

lFX

-1 δC−000
st

(
l s l
1 −1 0

)
−2r2Ω0

l U̇X

-1 δC−−+0
st

(
l s l
2 −1 −1

)
−2rΩ0

lΩ
0
lΩ

2
l V X

-1 δC+−−0
st

(
l s l
0 −1 1

)
2r2Ω0

lFX

2 δC++00
st

(
l s l
−2 2 0

)
2rΩ0

lΩ
2
l V U̇

Table 2.3 Coefficents Gαβγδ
st of equation 2.27 for isolated spheroidal multiplets

(continued on next page)
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N δCαβγδ
st

(
l s l′

−α− β t −γ − δ

)
Integrand

2 δC+0+0
st

(
l s l
−1 2 −1

)
r2Ω0

lΩ
0
lX

2

2 δC+++−
st

(
l s l
−2 2 0

)
−2rΩ0

lΩ
2
l V F

-2 δC−−00
st

(
l s l
2 −2 0

)
2rΩ0

lΩ
2
l V U̇

-2 δC−0−0
st

(
l s l
1 −2 1

)
r2Ω0

lΩ
0
lX

2

-2 δC−−−+
st

(
l s l
2 −2 0

)
−2rΩ0

lΩ
2
l V F

3 δC+++0
st

(
l s l
−2 3 −1

)
−2rΩ0

lΩ
0
lΩ

2
l V X

-3 δC−−−0
st

(
l s l
2 −3 1

)
−2rΩ0

lΩ
0
lΩ

2
l V X

4 δC++++
st

(
l s l
−2 4 −2

)
Ω0
lΩ

0
lΩ

2
lΩ

2
l V

2

-4 δC−−−−
st

(
l s l
2 −4 2

)
Ω0
lΩ

0
lΩ

2
lΩ

2
l V

2

Table 2.3: Coefficents Gαβγδ
st of equation 2.27 for isolated spheroidal multiplets (l = l ′

and s is even). To derive these relations from Table 2.1 one has to use the symmetry
properties of the 3-j symbols (Appendix C). Ωn

l is defined as
√
(l + n)(l − n+ 1)/2.

U(r) and V (r) are the degenerate radial eigenfunctions of the mode considered. F (r) =
(2U(r)− l(l+1)V (r))/r andX(r) = V̇ (r) + (U(r)− V (r))/r. The dot stands for the
derivative with respect to the radius r.
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N δCαβγδ
st Kαβγδ

s (r)

0 δC+0−0
st −[l(l+ 1)− 1

2s(s+ 1)](rẆ −W )2

0 δC++−−
st

1
4 [2l

2(l + 1)2 − 4l(l+ 1)− 4l(l+ 1)s(s+ 1)
+s2(s+ 1)2 + 2s(s+ 1)]W 2

1 δC++−0
st − 1

2

√
s(s+1)

2 [3l(l+ 1)− s(s+ 1)]W (rẆ −W )

-1 δC−−+0
st − 1

2

√
s(s+1)

2 [3l(l+ 1)− s(s+ 1)]W (rẆ −W )

2 δC+0+0
st − 1

2 l(l+ 1)
√

s(s+1)
(s+2)(s−1) (rẆ −W )2

-2 δC−0−0
st − 1

2 l(l+ 1)
√

s(s+1)
(s+2)(s−1) (rẆ −W )2

3 δC+++0
st − 1

2 l(l+ 1)
√

s(s+1)(s+3)(s−2)
2(s+2)(s−1) W (rẆ −W )

-3 δC−−−0
st − 1

2 l(l+ 1)
√

s(s+1)(s+3)(s−2)
2(s+2)(s−1) W (rẆ −W )

4 δC++++
st − 1

4 (l − 1)l(l+ 1)(l + 2)
√

s(s+1)(s+3)(s−2)
(s+2)(s−1)(s−3)(s+4)W

2

-4 δC−−−−
st − 1

4 (l − 1)l(l+ 1)(l + 2)
√

s(s+1)(s+3)(s−2)
(s+2)(s−1)(s−3)(s+4)W

2

Table 2.4: Sensitivity kernels of equation 2.33 for toroidal isolated multiplets (l = l ′ and
s is even). The only non-zero degenerate radial eigenfunction is W (r). The dot stands
for the derivative with respect to the radius r. To derive these expressions from table 2.2
one has to use the properties of the 3-j symbols (Appendix D, equations D.22 to D.29).



38 Chapter 2

N δCαβγδ
st Kαβγδ

s (r)

0 δC0000
st (rU̇ )2

0 δC+−00
st −2rU̇(2U − l(l+ 1)V )

0 δC+−+−
st (2U − l(l + 1)V )2

0 δC+0−0
st −[l(l+ 1)− 1

2s(s+ 1)](rV̇ + U − V )2

0 δC++−−
st

1
4 [2l

2(l + 1)2 − 4l(l+ 1)− 4l(l+ 1)s(s+ 1)
+s2(s+ 1)2 + 2s(s+ 1)]V 2

1 δC+000
st

√
s(s+1)

2 (rV̇ + U − V )rU̇

1 δC+−+0
st −

√
s(s+1)

2 (rV̇ + U − V )(2U − l(l + 1)V )

1 δC++−0
st − 1

2

√
s(s+1)

2 [3l(l+ 1)− s(s+ 1)]V (rV̇ − V )

-1 δC−000
st

√
s(s+1)

2 (rV̇ + U − V )rU̇

-1 δC+−−0
st −

√
s(s+1)

2 (rV̇ + U − V )(2U − l(l + 1)V )

-1 δC−−+0
st − 1

2

√
s(s+1)

2 [3l(l+ 1)− s(s+ 1)]V (rV̇ − V )

2 δC++00
st

1
2

√
s(s+1)

(s+2)(s−1) [(s+ 2)(s− 1)− 2l(l+ 1)]rU̇V

2 δC+++−
st − 1

2

√
s(s+1)

(s+2)(s−1) [(s+ 2)(s− 1)− 2l(l+ 1)](2U − l(l+ 1))V

2 δC+0+0
st − 1

2 l(l+ 1)
√

s(s+1)
(s+2)(s−1) (rV̇ + U − V )2

-2 δC−−00
st

1
2

√
s(s+1)

(s+2)(s−1) [(s+ 2)(s− 1)− 2l(l+ 1)]rU̇V

-2 δC−−−+
st − 1

2

√
s(s+1)

(s+2)(s−1) [(s+ 2)(s− 1)− 2l(l+ 1)](2U − l(l+ 1))V
Table 2.5 Sensitivity kernels for spheroidal isolated multiplets (continued on next page)
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N δCαβγδ
st Kαβγδ

s (r)

-2 δC−0−0
st − 1

2 l(l+ 1)
√

s(s+1)
(s+2)(s−1) (rV̇ + U − V )2

3 δC+++0
st

1
2 l(l + 1)

√
s(s+1)(s+3)(s−2)

2(s+2)(s−1) V (rV̇ + U − V )

-3 δC−−−0
st

1
2 l(l + 1)

√
s(s+1)(s+3)(s−2)

2(s+2)(s−1) V (rV̇ + U − V )

4 δC++++
st

1
4 (l − 1)l(l + 1)(l + 2)

√
s(s+1)(s+3)(s−2)

(s+2)(s−1)(s−3)(s+4)V
2

-4 δC−−−−
st

1
4 (l − 1)l(l + 1)(l + 2)

√
s(s+1)(s+3)(s−2)

(s+2)(s−1)(s−3)(s+4)V
2

Table 2.5: Sensitivity kernels of equation 2.33 for spheroidal isolated multiplets (l = l ′

and s is even). U(r) and V (r) are the degenerate radial eigenfunctions of the mode
considered. F (r) = (2U(r) − l(l + 1)V (r))/r and X(r) = V̇ (r) + (U(r) − V (r)/r).
The dot stands for the derivative with respect to the radius r. To derive these expressions
from table 2.3 one has to use the properties of the 3-j symbols (Appendix D, equations
D.22 to D.29).

2.3 Limit towards surface waves

Although no synthetic seismogram was computed in this thesis, we present some related
equations in the next section because it constitutes a good starting point to derive the high
frequency limit of free oscillations, i.e. the effect of anisotropy on surface waves (see
section 2.3.2). Equations given in section 2.3.1 were taken from Woodhouse (1996), to
whom the reader is referred for more details and literature references. Papers by Tanimoto
(1986),Romanowicz and Snieder (1988) and Montagner (1996) are particularly relevant
for section 2.3.2 where Rayleigh-Love coupling is neglected.

2.3.1 Synthesizing seismograms

Long-period seismograms and spectra can be computed by normal-mode summation.
Since the singlet eigenfunctions nsml described in section 2.1 form an orthonormal ba-
sis, any response of the Earth to an earthquake in a spherically symmetric Earth model
can be expressed as a superposition of normal modes :

u(xr , t) =
∑
k

ak(t)sk(x), (2.58)
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where k denotes the multiplet. It can be shown that, in the case of a point-source, ak(t)
depends on the source moment tensor M . Woodhouse and Girnius (1986) rewrote the
previous equation in terms of the individual singlets composing each multiplet :

u(xr , t) =
∑
k

l∑
m=−l

Smk (xs)s
m
k (xr)e

iω̃kt, (2.59)

where the complex frequency ω̃k is defined by ω̃k = ωk(1 + i/2Qk), Qk being the
quality factor, xr is the position of the receiver, xs is the position of the source, and
Smk (xs) depends on the source moment tensor. A particular seismogram is then obtained
by operating the “instrument vector” v to the displacement u.

v.u =
∑
k,m

Smk (θs, φs)R
m
k (θr, φr)e

iω̃kt (2.60)

v is a unit vector in the direction of motion sensed by the instrument. Smk (θs, φs) and
Rm
k (θr, φr) involve the source and the receiver, respectively, and are given by :

Smk (θs, φs) =
2∑

N=−2

SkNY
Nm
l (θs, φs) (2.61)

Rm
k (θr, φr) =

2∑
N=−2

RkNY
Nm
l (θr, φr) (2.62)

Complete expressions for SkN and RkN can be found in Woodhouse and Girnius (1986).
An isolated multiplet in an aspherical Earth is characterized by a splitting matrix

Hk
mm′ , and the eigenfunctions of the aspherical Earth model are given by a superposi-

tion of the eigenfunctions sk of the unperturbed model. It was shown by Woodhouse and
Girnius (1986) that the perturbed seismogram is then given by :

v.u =
∑
k,m

Amk (t)R
m
k (θr, φr)e

iω̃kt (2.63)

Amk (t) is a function whose time-derivative is expressed as :

d

dt
Amk (t) = i

∑
m′

Hk
mm′Am

′

k (t) (2.64)

with the initial condition that Am
k (t = 0) = S

m
k (θs, φs). The splitting of the spectrum of

the seismogram in the frequency domain results from this time dependence. In the “short
time approximation”, Woodhouse and Girnius (1986) expandedAm

k (t) into

Amk (t) = S
m
k (θs, φs) + it

∑
m′

Hk
mm′Am

′

k (t) (2.65)
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which yields

v.u =
∑
k,m

Smk (θs, φs)R
m
k (θr, φr)(1 + iλkt)e

iω̃kt (2.66)

with

λk =

∑
m,m′ Rm

k (θr, φr)H
k
mm′Sm

′

k (θs, φs)∑
mR

m
k (θr, φr)S

m
k (θs, φs)

(2.67)

λk, first introduced by Jordan (1978), is called the location parameter. It expresses the
amount by which the frequency of a mode is shifted due to the effect of heterogeneities.
This shift of the average frequency of a multiplet is a function of source-receiver geome-
try. In the asymptotic limit of high frequency it is the average of the local perturbation in
the eigenfrequency over the great circle path defined by the source and the receiver. This
subject will be treated in the next section.

The contribution of three-dimensional perturbations in the elastic tensor to this shift
can be written as :

λk = δω =
∑

α,β,δ,γ

δωαβδγ (2.68)

with

δωαβδγ =
1

2ωID

∑
m,m′

Rm
k S

m′

k

∑
s,t

(−1)m(2l+1)
(
l s l

−m t m′

)
Gαβγδ
st (2.69)

and

D =
∑
m

Rm
k (θr, φr)S

m
k (θs, φs) (2.70)

I was defined in equation 2.23.

2.3.2 High frequency limit

In the asymptotic limit l 	 s, the sensitivity kernels of an isolated multiplet for which
N = α+ β + γ + δ is odd become an order of magnitude smaller than the other kernels.
Indeed, the kernels of Tables 2.2 and 2.3 with odd values of N can all be shown to be
proportional to s/l (Tanimoto, 1986). As mentioned in section 2.2.3, the remaining 3-j

symbols (withN even) are all proportional to

(
l s l
0 0 0

)
. At the limit l	 s

(
l s l
0 0 0

)
� (−1)l 1√

2l+ 1
Ps(0) = (−1)l

1√
2l+ 1

P 00
s (0) (2.71)
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and (
l s l

−m t m′

)
� (−1)l+m′ 1√

2l + 1

√
(s− t)!
(s+ t)!

P t
s(cosβ) (2.72)

where Ps and PNt
s are Legendre and generalized associated Legendre polynominals as

defined in Phinney and Burridge (1973), P t
s are associated Legendre polynominals and

cosβ � (m +m′)/(2l + 1). P t
s(cosβ) is proportional to P 0t

s (cosβ) = Y
0t
s (β, 0). All

the δωαβδγ are therefore related to
∑

m,m′ Rm
k S

m′

k Y
0t
s (β, 0). After introducing equa-

tions 2.71 and 2.72 into equation 2.69 and Tables 2.4 and 2.5, it can be demonstrated
that δωαβδγ depends only on

∑
s,t,m,m′ PN0

s (0)Rm
k S

m′

k Y
0t
s (β, 0), multiplied by depth

integrals of the three-dimensional Earth’s structure at degree s and order t. To do so,
one has to use the symmetry properties of the generalized associated Legendre polynom-
inals given in Phinney and Burridge (1973) (e.g. P Nt

s (x) = (−1)N+tP tN
s (x)), and the

following relations :

Ps(0) = P 00
s (0) (2.73)

P 20
s (0) = −

√
s(s+ 1)

(s− 1)(s+ 2)P
00
s (0) (2.74)

P 40
s (0) = −

√
s(s+ 1)(s+ 3)(s− 2)

(s− 1)(s+ 2)(s− 3)(s+ 4)P
00
s (0) (2.75)

Finally, it can be shown (Jordan, 1978) that
∑

m,m′ Rm
k S

m′

k Y
0t
s (β, 0) = Y

0t
s (Θ,Φ),

where (Θ,Φ) denotes the pole of the great circle path defined by the source and receiver.
Further algebraic manipulations (Tanimoto, 1986) allow us to write the total eigenfre-
quency shift, for a particular source-receiver pair in the limit s/l� 1, as :

δω =
1
2π

∫
(Θ,Φ)

∑
α,β,δ,γ

δωαβδγlocal (θ, φ, ψ) dl (2.76)

ψ represents the azimuth of the great circle path, as defined by Tanimoto (1986). δωαβδγlocal

are depth integrals over δCαβγδ(θ, φ, ψ) multiplied by sensitivity kernels which are inde-
pendent of s (the functions of s in Tables 2.4 and 2.5 are “absorbed” in P Nt

s , as shown by
relations 2.73 to 2.75).

The location parameter can also be expressed as a surface integral of the product of
the splitting function η(θ, φ) (equation 2.34) and two-dimensional sensitivity kernels. We
do not give detailed algebraic manipulations here. The reader is referred to Woodhouse
and Girnius (1986) or Tanimoto (1986) instead. The two-dimensional sensitivity kernels
present a peak that is more and more concentrated along the great circle path as the angular
order l increases (see examples in Woodhouse and Girnius (1986)). For large values of
l, δω is thus the great circle average of the splitting function, which in turn expresses the
change in eigenfrequency corresponding to the local radial structure at each point of the
globe.
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A recombination of the terms in the sum over α, β, γ, δ can yield the following well-
known relation for perturbation δc/c in the local phase velocity of Love and Rayleigh
waves (δc/c is related to δω/ω through the ratio between the phase and group velocities
in the reference model) :

δc/c(θ, φ, ψ) = A1 +A2 cos 2ψ +A3 sin 2ψ +A4 cos 4ψ +A5 sin 4ψ (2.77)

with

Ai(θ, φ) =
∑

α,β,γ,δ

∫ a

0

δCαβγδ(r, θ, φ)Kαβγδ(r) dr (2.78)

The Ai differ for spheroidal modes (or normal mode Rayleigh waves) or toroidal modes
(normal mode Love waves). A1 does not depend on ψ (it corresponds to the average over
all azimuths) and results from terms for which N = α + β + γ + δ is zero. It involves
the five elastic coefficients that describe radial anisotropy. Expression for A1 can easily
be obtained simply by taking equations 2.40 to 2.48 for s = 0. The other terms (i �= 0)
describe the effect of azimuthal anisotropy. The 2−ψ terms depend on three parameters,
B, G and H which describe the 2− ψ azimuthal variations of the Love parameters A, L
and F . An example of sensitivity to these parameters is given in Figure 2.3. The 4 − ψ
terms depend on one parameter, E, which gives the 4 − ψ azimuthal variations of N .
Love waves are only sensitive to G and E, while Rayleigh waves are sensitive to all four
parameters. The cos 2ψ-terms are related to the following parameters :

Bc = −2(δC−−−+ + δC+++−) = δCφφφφ + δCθθθθ (2.79)

Gc = δC0+0+ + δC0−0− = (δCθrθr − δCφrφr)/2 (2.80)

Hc = δC−−00 + δC++00 = δCθθrr − δCφφrr (2.81)

The sin 2ψ-terms are related to :

Bs = −i(δC−−−+ − δC+++−) = −(δCθθθφ + δCθφφφ) (2.82)

Gs = i(δC0+0+ − δC0−0−)/2 = δCθrφr (2.83)

Hs = −i(δC−−00 − δC++00)/2 = δCθφrr (2.84)

The cos 4ψ-term is related to

Ec = (δCθθθθ + δCφφφφ)/8− δCθθφφ/4− δCθφθφ/2 (2.85)

and sin 4ψ-term is related to

Es = (δCθθθφ − δCθφφφ)/2 (2.86)

We also have 2Ec + 2iEs = δC++++ = δC−−−−. For Love waves, kernels forGc and
Gs are given by −l(l+ 1)Z2 and kernels for Ec and Es are −(l(l + 1))2W 2.



44 Chapter 2

0 500 1000 1500

depth (km)

KG
KB
KH

Sensitivity kernels for the 2-Ψ -terms
Mode 3 S 92

Figure 2.3: Sensitivity to G, B andH for mode 3S92

2.4 Conclusion

We saw in sections 2.2.3 and 2.3.2 that the equations relating Earth’s structure to nor-
mal mode structure coefficients (equation 2.33) and to perturbations in phase velocities
of Love or Rayleigh waves (equation 2.78) are very similar, which facilitates the simul-
taneous use of the two types of data. Earth’s structure at degree s and order t can be
constrained by normal mode structure coefficients and by the corresponding spherical
harmonic coefficient of phase velocity maps.

Equations such as 2.40 and 2.46 are employed in most chapters of this thesis. In
Chapter 3 we focus on degree two isotropic structure in the whole mantle. Therefore, we
have δAst = δCst, δLst = δNst and δFst = δAst − 2δLst. Kernels for normal modes
are calculated for s = 2, while kernels for the phase velocity maps are independent of s
(and correspond to normal mode kernels for which s = 0). In Chapter 4, we search for
radial anisotropy in reference Earth models, which implies that equations 2.40 and 2.46
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are used for degree zero structure. In that case, the sensitivity kernels are identical for
normal mode and phase velocity data. Chapters 5 and 6 deal with lateral variations in
radial anisotropy in the mantle, up to degree s = 8. The sensitivity kernels are identical
for each degree because the data set used is the isotropic part of azimuthally anisotropic
surface wave phase velocity maps (Coefficient A1 in equation 2.78). Chapter 7 is a study
of azimuthal anisotropy at degree two using the 2 − Ψ part of phase velocity maps for
Love waves, which gives constraints on elastic parameter G. Finally, transverse isotropy
is also assumed in the study of inner core anisotropy with normal modes (Chapter 8), and
therefore only five independent elastic coefficients need to be considered. However, be-
cause of the symmetry of the problem (cylindrical symmetry about Earth’s rotation axis),
the equations employed differ from equations 2.40 and 2.46. It can be shown (Tromp,
1995a) that degree zero structure coefficients give constraints on the radial dependence of
two elastic parameters, degree two structure coefficients constrain two other parameters,
and degree four depends on the fifth parameter. The data used in that study (degrees two
and four structure coefficients) are therefore related to only three variables that describe
the depth dependence of seismic anisotropy in the inner core (see section 8.2 for details).
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Chapter 3

P and S tomography using
normal mode and surface wave
data with a Neighbourhood
Algorithm

Abstract

Traditionally P and S wave tomography is based on the inversion of data which are sen-
sitive to the desired Earth structure, and model covariance is estimated from imperfect
resolution and data error propagation. This analysis ignores the usually large null-spaces,
and hence significant non-uniqueness of the solution, encountered in seismic tomography
problems. Here, we performed a model space search for P- and S-velocity structure to find
acceptable fits to recent normal mode splitting and fundamental mode phase velocity data.
The survey of the model space employed the Neighbourhood Algorithm of Sambridge
which preferentially samples the good data-fitting regions. A Bayesian approach was
used subsequently to extract robust information from the ensemble of models. We par-
ticularly focussed on posterior marginal probability density functions and covariances for
the various model parameters. The covariance matrix obtained is very useful in providing
insights on the trade-offs between the different variables and the uncertainties associated
with them. We stay in the framework of perturbation theory, meaning that our emphasis
is on the null-space of the linear inverse problem rather than the neglected non-linearity.
The whole model space (including the null-space) was sampled within reasonable param-
eter bounds, and hence the error bars were determined by all fitting models rather than

The content of this is chapter was published in Beghein,C., Resovsky,J. & Trampert,J., Geophysical Jour-
nal International, 149, 646-658 (2002)
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subjective prior information. We estimated P and S models for spherical harmonic degree
two only. The uncertainties are quite large and corresponding relative errors can exceed
100 % in the mid-mantle for Vp. We found a good correlation between our most likely
S model and previous models, with some small changes in amplitude. Our most likely
P model differs quite strongly from the recent P model SB10L18 and the correlation be-
tween our most likely P and S models is small. However, among all the good data-fitting
models, many have a significant Vp − Vs correlation. We computed dlnVs/dlnVp from
those models that correlate significantly. We found an increase with depth in the top 1500
kilometres. Deeper in the mantle, normal mode data prefer modest values compared to
travel time data.

3.1 Introduction

Several tomographic models of the Earth’s mantle were produced over the past 15 years,
using different kinds of data, parameterizations and inversion techniques. Although there
are some robust patterns, the models present large discrepancies (Resovsky and Ritz-
woller, 1999b). This is partly due to the propagation of data errors through the inversion
operator and imperfect resolution. Tomographic inverse problems are generally ill-posed
(uneven and inadequate sampling of the Earth and inadequate model parameterization)
and ill-conditioned (small errors in the data can lead to large variations in the model es-
timation owing to very small eigenvalues), resulting in large data and model null-spaces.
These null-spaces are usually dealt with by employing some kind of regularisation, i.e.
choosing one particular model out of many which are compatible with the data. Different
authors use different regularisation schemes and hence produce discrepancies in the ob-
tained models. We propose to sample the model space to have an overview of all models
compatible with the data rather than choosing one by some subjective regularisation.

An example of how a model null-space component can change the resulting model
was shown by Deal et al. (1999). They were able to incorporate additional, independent
information in a tomographic image without affecting the misfit. They added a thermal
model of a subducting plate to a high-resolution, three-dimensional tomographic study of
the Tonga-Fiji region. Since the thermal model did not fit the seismic data, they added
only the component of the theoretical slab insensitive to the seismic data using their null-
space shuttle. Vectors of the null-space having no effect on the data prediction, the new
tomographic model was in equally good agreement with the data. Unless the employed
regularisation is derived from true physical information, it can add artefacts to the tomo-
graphic model.

A second advantage of mapping the model space concerns error analysis. Most lin-
earized inversions give a posterior model covariance smaller or equal to the prior covari-
ance by construction (Tarantola, 1987). If the cost function to be minimized has a large
valley, i.e. there is a large model null-space, the posterior covariance can be seriously
underestimated, depending on the prior covariance (Trampert, 1998). We argue that the
width of the valley in the cost function is a realistic representation of the error bars in the
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absence of true physical prior information.
We propose, here, to use a forward modelling approach to explore the model space, in-

cluding the null-space. We suppose that perturbation theory is valid for our forward mod-
elling. This means that the estimated error bars take the null-space of the linear inverse
problem into account, but cannot account for the neglected non-linearity in the forward
problem. Since we do not make an inversion, our results are not biased by the introduction
of damping or any other non-physical a priori information, and since we stay within the
linear theory the starting model is irrelevant. We applied the Neighbourhood Algorithm
(hereafter referred to as NA) developed by Sambridge (1999a,b) to survey the parameter
space and to find an ensemble of mostly “good” data-fitting models. This method is a
novel direct search technique, conceptually very simple and able to exhibit a self-adaptive
behaviour by sampling preferentially the regions of lower misfit. Once the survey of the
parameter space is achieved, robust information on the ensemble can be extracted using a
Bayesian approach, giving valuable indications on the errors and correlation of the model
parameters. We applied this method to recent normal mode splitting measurements and
fundamental mode surface wave phase velocity maps. The normal modes provide con-
straints on the long-wavelength structure of the Earth for compressional and shear wave
anomalies in the mantle. Fundamental mode Rayleigh waves were included to constrain
the upper mantle. The main purpose of this work is to establish the feasibility of our
approach to mantle tomography. As a consequence we concentrate only on degree two
structure.

An ensemble of “good” data-fitting joint shear and compressional wave velocity mod-
els were produced with the present set of normal mode and phase velocity data, and prob-
abilistic information was retrieved. Error bars were then assigned to tomographic models.
Having obtained most likely dlnVs, dlnVp models and their respective error bars, we ex-
amined their correlation and their ratio, a quantity widely discussed in the mineral physics
community and which is of particular interest for geodynamists.

3.2 Data and parameterization

The data set we used was composed of normal mode splitting functions and fundamental
mode phase velocity models, corrected with the crustal model CRUST5.1 (Mooney et al.,
1998). The free oscillations of a spherically symmetric, nonrotating and (transversely)
isotropic Earth model have specific degenerate frequencies. The addition of asphericities
and slight general anisotropy (under the conditions of application of perturbation theory)
generates the splitting of multiplets into singlets with eigenfrequencies close to the de-
generate eigenfrequency. Let us represent these three-dimensional model perturbations
δm(r, θ, φ) from the reference model in terms of spherical harmonic components :

δm(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δmt
s(r)Y

t
s (θ, φ) (3.1)
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where Y t
s are fully normalised and orthogonal spherical harmonics as defined in Edmonds

(1960), with harmonic degree s and azimuthal order t. The structure coefficients kc
t
s of

a particular isolated multiplet (denoted by k) characterize the way the eigenfrequencies
split. If we neglect boundary perturbations, except for the crustal correction, we are left
to first order with a single linearized relation between Earth structure and structure coef-
ficients :

kc
t
s =

∫ a

0

δmt
s(r)kMs(r)r2 dr (3.2)

where a is the radius of the Earth and kMs(r) is the volumetric structure kernel for
perturbation δmt

s (with respect to PREM (Dziewonski and Anderson, 1981)). For more
details about normal modes theory, the reader is referred to chapter 2 of this thesis or to
Woodhouse and Dahlen (1978) or Dahlen and Tromp (1998).

Normal mode splitting measurements below 3mHz were recently made by Resovsky
and Ritzwoller (1998) for coupled and uncoupled multiplets with good sensitivity to
S and P velocity anomalies everywhere in the mantle. In addition to structure coeffi-
cients, they also estimated corresponding error bars using Monte Carlo simulations of
the effect of theoretical errors and noise. The structure coefficient measurements were
used to create synthetic seismograms that were first perturbed with “errors” and noise
of the appropriate statistical characteristics, and then inverted for new coefficient esti-
mates. The results of multiple calculations was observed to produce approximately Gaus-
sian coefficient distributions whose widths provided the uncertainties. Also, the coef-
ficients of different angular and azimuthal orders were observed to vary independently.
Both measurements and estimated error bars can be found on the internet (http ://phys-
geophys.colorado.edu/geophysics/nm.dir/). We used their degree two structure coeffi-
cients, determined from uncoupled normal mode multiplets, but we excluded modes with
sensitivity to the inner core. We kept measurements for 82 uncoupled mode multiplets, in
particular 51 spheroidal modes and 31 toroidal modes.

To constrain the uppermost mantle, we added eight fundamental mode Rayleigh wave
phase velocity models between periods of 40 and 275 seconds. For periods between 40
and 150 seconds, the models and errors are the average and standard deviation obtained
from different studies : Trampert and Woodhouse (1995, 1996, 2001), Ekström et al.
(1997), Laske and Masters (1996), Wong (1989) and van Heijst and Woodhouse (1999).
For larger periods, we used the models of Wong (1989). Three dimensional models of
phase velocity perturbations δc/c (δc is the phase velocity perturbation relative to a ref-
erence phase velocity c, PREM in this case) can be expanded into spherical harmonics

and their coefficients δct
s

c are related to the Earth’s three dimensional structure in a way
similar to structure coefficients :

l(
δcts
c
) =

∫ a

0

δmt
s(r) lK(r)r

2 dr (3.3)

Note that kernels for phase velocity perturbations are independent of degree s (they all
correspond to kernels with s = 0), unlike the kernels relative to structure coefficients,
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and neither of them depends on t. l is an index that discriminates between different
frequencies.

Unlike for normal mode splitting data, error bars on phase velocity maps are hard to
obtain. Trampert and Woodhouse (2001) showed that the quality of published phase ve-
locity models vary widely with the period. At each selected period, we took all existing
models, averaged each spherical harmonic coefficient and estimated its standard devia-
tion. This should account for different measuring techniques of phase velocity, different
data coverage and different regularisation-schemes in the construction of the maps. The
error bars determined for normal mode structure coefficients by Resovsky and Ritzwoller
(1998) have the characteristic of being almost constant at a given degree. There is not
much variation between the different orders of spherical harmonic coefficient. By anal-

ogy, we decided to assign average uncertainties to l(
δct

s

c ) independent of the order t of
spherical harmonic and defined by :

σl
2 =

1
2s+ 1

2s+1∑
t=1

lσ
t
s
2

(3.4)

where s is the degree of the spherical harmonic (degree two in this study) and lσ
t
s
2 is

the variance estimated for one particular spherical harmonic coefficient. Fig. 3.1 shows
σl as a function of the period of the surface waves considered. It appears that the error
decreases almost linearly between 40 and 100 seconds and the curve flattens between
100 and 150 seconds. We decided thus to assign a constant uncertainty to models with
periods between 150 and 275 seconds, the value computed at 150 seconds (the model
of Wong (1989) being the only one available to us at longer periods). We assumed, for
convenience, that the errors have a Gaussian distribution, but there are far too few models
to test this hypothesis.

To implement the first part of the NA (sampling the parameter space), we need to
define the fit of a model to the data. We chose the χ2 misfit, which is a measure of the
average data misfit compared to the size of the error bar. It is defined by

χ2 =
1
N

[
Nm∑
k=1

(kct,ths − kc
t,obs
s )2

σk2
+

Ns∑
l=1

(l(
δct

s

c )
th − l(

δct
s

c )
obs)2

σl2

]
(3.5)

where N is the total number of data, Nm is the number of normal mode data, Ns is
the number of surface wave data. The upper index “th” stands for theoretical structure
coefficients and phase velocity perturbations, predicted by equations 3.2 and 3.3, and
“obs” refers to the measurements. σk (σl) is the estimated error bar corresponding to the
kth (lth) data.

We parameterized our models with independent isotropic perturbations of the elastic
coefficients δA and δL (with A = κ + 4

3µ = ρV
2
p and L = µ = ρV 2

s ) with respect
to PREM. Where PREM is transversely anisotropic (at depths between 24 and 220 kilo-
metres), we used the equivalent isotropic PREM. The notation A and L was introduced
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Figure 3.1: Estimated errors for degree two fundamental mode Rayleigh wave phase
velocity perturbations.

by Love (1927) and is usually used to describe radially anisotropic medium. The corre-
sponding anisotropic sensitivity kernels are given in section 2.2.3 of this thesis (see also
Tanimoto (1986), Mochizuki (1986) or Dahlen and Tromp (1998)), and were combined to
derive the appropriate isotropic kernels. Finally δm corresponds to (δA, δL, δρ). How-
ever, with the present set of normal mode data, it is not possible to resolve 3-D density
perturbations in the mantle. Several authors have confirmed this (Resovsky and Ritz-
woller (1999c), Romanowicz (2001), Resovsky and Trampert (2002)). Instead of taking
density as one of our model parameters, we decided to scale density anomalies δρ and
shear wave velocity perturbations using dlnV s/dlnρ = 2.5 (Anderson et al., 1968). This
constraint, together with the size of the model space, introduces some prior information
in the problem. Our models were parameterized radially in 7 layers. The bottom and
top depths of these layers are, in kilometres, (2891, 2609), (2609, 2018), (2018, 1526),
(1526, 1001), (1001, 670), (670, 220), (220, 24). They correspond to radial knots of
PREM and are based on the layers defined in Resovsky and Ritzwoller (1998), which in
turn are based on a Backus-Gilbert style resolution analysis (Backus and Gilbert, 1968).
We gathered some of their layers into one new layer in order to decrease the number of
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variables. Equation 3.2 reduces consequently to a sum over these seven layers :

kc
t
s =

7∑
i=1

δmt,i
s kM

i

s (3.6)

with

kM
i

s =
∫ rsup

i

rinf
i

kMs(r)r2 dr (3.7)

rinfi and rsupi are the lower and upper radii respectively of layer i and δmt,i
s is an average

perturbation of parameter mt
s on layer i. A similar relation holds for fundamental mode

phase velocity perturbations (equation 3.3). The lateral parameterization is in spherical
harmonics :

δA(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δAts(r)Y
t
s (θ, φ) (3.8)

δL(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δLts(r)Y
t
s (θ, φ) (3.9)

These expansions allow us to solve the problem spherical harmonic coefficient by spher-
ical harmonic coefficient. Because of the scaling relationship between dlnVs and dlnρ,
we were left with only two parameters in each layer, thus 14 model components for each
structure coefficient or phase velocity coefficient.

3.3 Results

3.3.1 Sampling and appraisal

We applied the NA using a linearized forward problem (equations 3.2 and 3.3). We wanted
to survey the model space to find combinations of parameters δAt

s(r) and δLts(r) that give
an acceptable fit to the data (equation 3.5). Because there is assumed to be no covariance
among the data of different angular or azimuthal order, each of the five spherical harmonic
coefficients at degree two could be treated independently. In other words, we could ex-
plore five parameter spaces separately, with 14 unknowns in each of them.

First, we had to fix the boundaries of the model space. We computed the equiva-
lent degree two parameters δLts(r) for six different S models (MM2-L12D8 (Resovsky
and Ritzwoller, 1999b), SKS12-WM13 (Su et al., 1994), S20RTS (Ritsema et al., 1999),
SAW12D (Li and Romanovwicz, 1996), S16B30 (Masters et al., 1996) and SB10L18
(Masters et al., 2000)). In each layer, we chose to search twice the range of the largest
absolute amplitude obtained from those six models. Because model SB10L18 is a joint
P and S model, we had a P model we could use to fix the range of parameter δAt

s(r).
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We compared the amplitude of the coefficient δAt
s(r) corresponding to model SB10L18

and those obtained by scaling (factor of two) the other S models. We fixed our range for
parameter δAt

s as twice the absolute amplitude of the largest δAt
s found. The final result

depends on the chosen range (even if the model space is completely sampled, because
there is a possibility that a good fitting model exists outside the range), but because of
fear of violating perturbation theory, we decided not to increase the range any further. At
the same time, we ensured that these six S models were included in the model space we
sample, as well as their corresponding P models. Fixing the boundaries is equivalent to
taking a boxcar function as prior density probability distribution. This introduces bound-
ary effects and the posterior probability density function is not necessarily Gaussian when
the most likely model is close to the edge.

We refer the reader to Sambridge (1999a,b) for details about the NA. The first stage
of the algorithm, the sampling, makes use of a geometrical construct, the Voronoi cells,
to approximate the misfit function and to drive the search towards the best data-fitting
regions while continuing to sample a relatively wide variety of different models. It is
relatively easy to tune since only two parameters have to be set : ns, the number of
models generated at each iteration, and nr the number of “best” data-fitting Voronoi cells
in which random walks are performed at each iteration. We were careful with the choice
of these values, since it is very important to have a good initial sampling in order to
make a meaningful Bayesian interpretation (which is the second stage of the NA). We
had to avoid directing the search towards a local minimum and we had to sample the
posterior probability density (PPD) with the highest possible accuracy, to sample all the
good fitting regions of the model space. A way to do so is by increasing the values of the
tuning parameters. As both tuning parameters increase together, the algorithm is more
explorative as a sampler but also less efficient at mapping details of the most important
(the best fitting) parts of the model space. It is not possible to draw general conclusions on
the tuning parameters since every problem is different and requires specific parameters.
We had to find their most appropriate values by trial and error. Sambridge explained
that the minimum sample size required is very sensitive to the dimension of the problem
(Sambridge, 1998). His experiments showed that, to get a good enough approximation of
the posterior probability density, the required sample sizes have to be increased when the
dimension of the problem becomes larger. We decided to have ns equal to nr, which is
the minimum value ns can take, in order to broaden the survey. We started to sample the
model space with some relatively low values of ns and nr (10 or 20), and we increased the
tuning parameters successively and compared the different results. For some variables,
we got different results if we used such small values. This indicates that for these tuning
parameters, the results are not independent of the tuning. The chosen values of nr are
not large enough to identify all the models compatible with the data. After some trials
with nr ranging up to 200, we decided to use nr = 50. It was the smallest value above
which the results appeared to be independent of the tuning and that explored all the good
fitting regions. The algorithm is very effective in finding the regions of lowest misfit. To
choose the number of iterations, we looked at the evolution of the misfit with time. χ
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decreased very rapidly, the sampling being directed towards the cells having the best fit.
We decided to stop the survey when the misfit has “flattened”, and the model distribution
was observed to approximate a likelihood sampling. The latter condition indicates that the
sampling is adequate for analysis using the NA Bayesian resampling (see below). When
nr is increased, more models must be generated and hence the survey requires more time.
The sampling was completed in about two hours on a SUN Ultrasparc machine (400
MHz) for nr = 200 and 300 iterations and it only took half an hour for nr = 50 and 600
iterations.
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Figure 3.2: Results of the sampling using the real part of c12 (δc12/c). The scale represents
the χ misfit as defined in equation 3.5. Parameters on the horizontal axis correspond
to perturbations in elastic coefficient A (= δ(ρV 2
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As an example, we show in Fig. 3.2 the result using the real part of c12 in four of our
seven layers. It is a way to depict the shape of the model space with regions of higher
misfit (light grey) and regions of better fit (dark), where the sampling density is larger. We
see that there is a clear global minimum in the upper mantle. For some other variables, the
best fitting region is more elongated. This shows that, within the boundaries of our model
space, a large range of values for these variables are compatible with the data. It is the
case of perturbations in δA = δ(ρV 2

p ) in the mid-mantle and deeper in the mantle. Several
variables have their global minimum situated at the edges of the model space. Increasing
the range of the survey has the effect of reducing the minimum misfit somewhat but,
because of the trade-offs among the model parameters (visible in the correlation matrix,
Fig. 3.3), moving the global minimum of one of them implies that other variables move
as well and may, in turn, be directed towards the edge. Therefore we believe that, as long
as there are trade-offs between model parameters, the model space cannot be surveyed
guaranteeing that no solution is on the edge of the model space. This is not a major
problem though, because we can quantify the trade-offs as explained below. Further,
increasing the range of search substantially will violate perturbation theory and require a
complete new set-up of the problem.

We then needed to extract quantitative information on the models previously gen-
erated. Sambridge (1999b) provides an approach to the appraisal problem, based on a
Bayesian point of view. This is the second stage of the algorithm. This appraisal of the
ensemble is the most time-consuming part of the algorithm. In most model space search
techniques, inferences are drawn from the good fitting part of the ensemble only, and
sometimes even from a single member. What is new in this algorithm is that the entire en-
semble is used, the “bad” data-fitting models as well as the “good” ones, and an efficient
summary of the sampled models is provided. In a Bayesian approach, the information
contained in the models is represented by a posterior probability density function (PPD).
In the absence of restrictive prior information on the models, the model that maximizes
the PPD is the model with the best data fit. The PPD can be used to compute quantities
such as the posterior mean model, the posterior model covariance matrix and marginal
posterior probability density functions. An integration over the parameter space is per-
formed using a “likelihood sampling” whose density corresponds to the PPD. To do this,
the algorithm uses the misfit of the sampling to create a likelihood sampling. This requires
a new ensemble of points to be generated (the “resampled” ensemble) whose distribution
follows the approximate PPD. This is one of the main factors influencing the computation
time. Once the resampling is done, computing the Bayesian integrals requires only simple
averages over the resampled ensemble.

For the resampling of the model space, tuning parameters have to be set : the num-
ber of random walks to perform and the number of steps per random walk. Finding the
parameters that optimize the coverage of the Gibbs sampler is a trial and error process,
which is time-consuming but it is characteristic to every direct search technique. It is
preferable to use multiple random walks instead of a single one, and the number of steps
per walk must be large enough to insure the convergence. After each trial, convergence
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Figure 3.3: Correlation matrix corresponding to the real part of c12 (δc12/c).

can be checked, numerical errors evaluated and the length and number of random walks
can be adjusted accordingly. For ensembles generated with 50 cells and 600 iterations,
we needed between 6000 and 10000 steps per walk, depending on the coefficient treated,
and four to six walks in order to achieve the convergence of the integrals. It took ap-
proximately seven hours on a SUN Ultrasparc (400 MHz) to compute 1-D marginals, 2-D
marginals and the correlation matrix. We also computed Bayesian integrals for some of
the ensembles generated with 200 cells, to make sure the results were the same as the
ones obtained with 50 cells. Since their sampling required more iterations, more points
were needed for the computation of the integrals. The appraisal then required three to
four days.

When the PPD is Gaussian, the trade-off between model parameters can be repre-
sented by the correlation matrix, which is derived from the off-diagonals of the posterior
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model covariance matrix. The correlation matrix corresponding to our problem is differ-
ent for each spherical harmonic coefficient. The one obtained for the real part of c12 is
represented in Fig. 3.3. We can see that variables of the mid-mantle and lower mantle are
highly correlated to one another. They are also correlated to model parameters of the up-
per mantle, for instance δA between 2018 and 2609 km of depth (layer 2) with δL in the
uppermost layer. There are, to some extent, trade-offs among all the model parameters.
In order to improve these results, we would need to add independent data sensitive to one
or the other of a given pair of correlated model parameters. The correlation matrix is an
excellent tool to see what is actually resolvable and what additional data is most desirable.

The covariance matrix can also be used to get the variances of the model parame-
ters (obtained from its diagonals). However, the use of a covariance matrix only makes
sense when the PPDF is a Gaussian distribution. A more general way of looking at vari-
ances and trade-offs is given by marginal distributions. A one-dimensional marginal is
the probability of each value of a particular model parameter, given all possible variations
of the others. The width of those posterior marginals gives a further indication on the con-
straint we have on each variable, and can be assimilated to error bars. A two-dimensional
marginal shows the likelihood of each combination of values for a pair of model param-
eters. Computing the joint marginal of two model parameters implies an integration over
all the other parameters. Fig. 3.4 shows 2-D marginals of some pairs of variables for the
real part of c12. These marginals are a robust way to look at model parameter trade-offs.
The diagonal elongated shape observed for some pairs of variables shows the trade-off
between them. For instance, the top-left marginal of Fig. 3.4 shows a trade-off between
δA in the lowermost layer (layer 1) and the layer above (layer 2, between 2018 and 2609
kilometres of depth) and the bottom middle marginal shows a trade-off between P anoma-
lies (δA) in layer 4 (between 1000 and 1526 kilometres of depth) and S anomalies (δL)
in layer 3 (at depths between 1526 and 2018 km). Even with the additional constraints
provided by surface waves, the upper and the lower mantle are not completely indepen-
dent. The bottom-left marginal shows a trade-off between δL in the upper mantle (layer
7) and δA between 2018 and 2609 kilometres of depth (layer 2) . We also show two
pairs of model parameters that almost do not correlate in Fig 3.3 : δA and δL between
2018 and 2609 kilometres of depth (bottom-right) and δA and δL at depths between 670
and 1000 km (top-right). Neither shows the elongated diagonal pattern characterizing a
trade-off.

In Fig. 3.5, we show the 1-D marginals for a few model parameters. δA at depths be-
tween 2018 and 2609 kilometres can take a large range of values compatible with the data.
The width of the 1-D marginal is large. In this particular case, the sign of the perturbation
is barely constrained. On the contrary, in the upper layers, between 220 and 1000 km of
depth, both P and S anomalies are better determined. If we compare the 1-D marginal
and Fig. 3.2 for δA between 1000 and 1526 km of depth, we observe a difference. From
Fig. 3.2, one could expect a wide range of possible values for that parameter and thus
a 1-D marginal with a shape similar to the one obtained for δA between 2018 and 2609
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kilometres of depth. Its width is relatively large but it clearly peaks towards the edge, at
a positive value. This difference between the sampling and the Bayesian interpretation of
this sampling comes from the resampling of the ensemble that has to be made in order to
evaluate an approximate PPD. These marginals also show that all the parameters in the
model space do not exactly have a Gaussian distribution. When a most likely parameter
is located towards the edge of the model range, boundary effects destroy the Gaussian
shape. Another strong influence on the Gaussian distribution comes from the null-space.
If the model parameters are Gaussian distributed, the PPD is Gaussian. In the presence
of a null-space the PPD will show an elongated valley and appear non-Gaussian. Away

la
ye

r 
5

2-D  M argin als

0.0

 layer 1                                                             

0.0

                                                                        

p
2]

 la
y

er
 2

   
   

   
   

   
   

   
   

   
   

   
   

   
                     

[
V

p
2 ]

 la
y

er
 3

   
   

   
   

   
   

   
   

   
   

   
   

   
                     

0.0

[ Vp
2]  layer 2                                                            

0.0

0.0

[
V

p
2 ]

 la
y

er
 4

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 layer 3                                                            

[
V

s2 ]

 
 

   
   

   
   

   
   

   
   

   
   

   
   

   
                     

0.0

0.0

[
V

s2 ]
 la

y
er

 2
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   

0.0

0.0

Vp
2]  layer 5                                                           

Vp
2]  layer 2                                                            

0.0

0.0

V
s2 ]

 la
y

er
 7

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

[ Vp
2]  layer 2                                                            

[
V

p
2 ]

s
2]

δ

δ
ρ

[ρ

δ[ρ

δ
ρ

δ ρ

δ
ρ

δ
ρ

δ V[ρ

δ V[ρ

δ
ρ

δ[
ρ

δ ρ

Figure 3.4: 2-D marginals corresponding to the real part of c12 (δc12/c). The white triangle
denotes the values for model SB10L18. and 90 % (blue) confidence levels. Going from
inside towards the edges, the solid lines represent the 30 % (white), 50 % (grey) and 90 %
(black) confidence levels. Parameters on the horizontal axis correspond to perturbations
in elastic coefficient A (= δ(ρV 2

p )) and parameters on the vertical axis correspond to
perturbations in L (= δµ = δ(ρV 2

s )), with respect to PREM. The full range of the models
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24-220 km depth.
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from the edges of our sampling range, the 1-D marginals are thus a measure of the size of
the null-space. The 2-D marginals and the off-diagonal elements of the correlation matrix
compare qualitatively well, but the amplitudes of the correlations are affected by large
non-Gaussian distributions. Using a Gaussian assumption for the PPD will underestimate
the posterior uncertainties on the model parameters in the presence of a large null-space.

We did not test different parameterizations. Choosing another parameterization would
probably slightly modify the results since, as shown by the correlation matrix, all model
parameters are to some extent correlated to one another. The layers we chose were based
on those of Resovsky and Ritzwoller (1998), which approximate the optimal depth layers
that can be resolved for the given depth kernels. Modifying the layers would thus only
degrade the posterior covariance. The important point is that the results should only be
considered with the correlation matrix.
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3.3.2 Shear and compressional wave velocity models and error bars

This section, deals mainly with the most likely models. These are the models correspond-
ing to the maximum of the 1-D marginals and not the mean model as calculated directly
by the NA. The reason for this is that the mean model is only meaningful when the PPD
is Gaussian and it is not exactly the case for all the parameters in the model space, as
discussed in section 3.3.1. For the same reason, we preferred estimating the width of the
1-D marginals instead of reading them directly in the covariance matrix. We took this
width as the largest distance where the amplitude of the most likely models has decreased
by a factor 1/e. It usually gives slightly larger variances than those read in the covariance
matrix.
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Figure 3.6: Root mean square amplitudes of our most likely models, their robust part and
model SB10L18 as a function of depth. Fig. 3.6a (left) corresponds to S anomalies. Fig.
3.6b (right) corresponds to P anomalies.
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In Fig. 3.6, we compare the root mean square (rms) amplitude of our most likely
velocity models, their robust part (the most likely model from which we subtract the
uncertainties) and the rms of model SB10L18, as a function of depth. SB10L18 is a joint
P and S model derived from the inversion of body waves, surface waves and normal mode
splitting data. The rms of the robust part of our models corresponds to a lower limit
for S and P model amplitudes. The size of the anomalies in SB10L18 and in our most
likely model is similar. They differ the most between 220 and 670 km depth and in below
1000 km for Vs. For Vp, the amplitudes are close in the top 670 kilometres and between
1000 and 1526 kilometres of depth. The differences are partly due to the presence of body
wave data in SB10L18.

0 1000 2000 3000

depth (km)

0

0.2

0.4

0.6

0.8

1

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

MM2-L12D8
S16B30
S20RTS
SAW12D
SKS12-WM13

Correlation between our most likely

S model and other S models (degree 2)

0 1000 2000 3000

depth (km)

0

0.2

0.4

0.6

0.8

Vs
Vp

Correlation with model SB10L18
(degree 2)

Figure 3.7: Correlation coefficient between our most likely models and other models as
a function of depth. Fig. 3.7a (left) represents the correlation between our most likely
S model with 5 other S models. Fig. 3.7b (right) represents the correlation between our
most likely models with the joint P and S model SB10L18.
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We show in Fig. 3.7a the geographical correlation of our dlnVs model with other S
models (degree two) : MM2-L12D8 (Resovsky and Ritzwoller, 1999b), SKS12-WM13
(Su et al., 1994), S20RTS (Ritsema et al., 1999), SAW12D (Li and Romanovwicz, 1996)
and S16B30 (Masters et al., 1996). These models were derived from linearized inversions.
For most models, in some layers, the correlation is above the 90 % confidence level for
degree two maps (corresponding to a correlation coefficient of 0.73 (Eckhardt, 1984))
and there are two layers, in the mid-mantle, where the correlation is very low, with any
other model. One could expect it to be better for models MM2-L12D8 and S20RTS that
incorporated the same set of normal mode data as we used. This poor correlation is related
to the trade-off between Vp and Vs in the mid-mantle (Fig. 3.3). We searched for a joint
P and S model, whereas MM2-L12D8 and S20RTS assume a scaling between dlnVp and
dlnVs. These very different constraints on Vp lead to different Vp models and, in the
mid-mantle, the trade-offs imply that Vs can also be very different. Fig. 3.7b shows the
geographical correlation for degree two of our most likely models with model SB10L18,
for both P and S since SB10L18 is a joint P and S model. It is interesting to see that the
correlation coefficient between our S model and the S model of SB10L18 is above the
90 % confidence level in most layers. For the P models, the correlation is not as good,
especially in the lowermost mantle where the correlation coefficient is close to zero. They
correlate reasonably well between depths of 220 and 670 kilometres and between 1000
and 1526 km.

In Fig. 3.8, we plotted the maps corresponding to our most likely degree two S and
P models in the seven layers we used. A robust feature from all tomographic models to
date is that the degree two structure dominates the two lowermost layers (2609 km ≤
d ≤ 2891 km and 2018 km ≤ d ≤ 2609 km) and in the transition zone (Resovsky and
Ritzwoller, 1999b). These maps are thus good approximations to complete tomographic
models only at those depths. As we see from the correlation coefficient in Fig. 3.7b, both
S models agree quite well at most depths. On the contrary, the two P models differ much
more.

In Fig. 3.9 we plotted the correlation between our most likely P and S models. The
correlation is significantly high (above the 90 % confidence level) only between depths
of 220 and 670 km. The lowest correlations are situated in the lowermost and uppermost
layers. This is not representative in the uppermost mantle because degree two structure is
not dominant there. On the contrary, the lowermost mantle is believed to be dominated
by that degree. We cannot, however, conclude directly that there is no correspondence
between P and S anomalies in the lowermost mantle. One of the advantages of using the
NA is that it provides error bars on the models. Within these error bars, there may be
models compatible with the data that have a higher dlnVs − dlnVp correlation. Thus, a
better way to look at that correlation is by taking into account the uncertainties on the
models.
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Figure 3.8: Degree two maps of our most likely S (left) and P (right) models compared to
degree two maps of models SB10L18.
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Figure 3.9: S-P correlation as a function of depth.

To take into account all the models, we sampled δAt
s(r) and δLts(r) within their

estimated error bars with a random number generator, we deduced the corresponding
dlnVs

t
s(r) and dlnVp

t
s(r) and we computed the correlation coefficient for all the models

generated. Note that we can easily compute dlnVs
t
s(r) and dlnVp

t
s(r) from δAt

s(r) and
δLts(r), because we imposed a scaling relationship between δρ and δVs. The distribu-
tions of correlation values can be plotted as histograms. It is interesting to note that the
histograms are largely independent on how we sampled the models (uniformly, Gaussian
or corresponding to the actual 1-D marginals). We took the median of the correlation co-
efficient and we estimated its uncertainty. The uncertainty of the median was obtained by
computing its scaled median absolute deviation (SMAD) (Bevington, 1969). We used the
SMAD as uncertainty on the overall correlation coefficient. In Table 3.1 are listed the me-
dian correlation coefficients and their uncertainty at different depths, and Fig. 3.10 gives
the histograms for different depths. In our lowermost layer, where our most likely P and
S models do not correlate (the correlation coefficient was -0.417), we see that that the me-
dian value is also very low (-0.45) and lots of models are anticorrelated. The uncertainty
is, however, very large and there are a few models compatible with the data that correlate
well. There are models, in the layers above, that correlate well and some that correlate



66 Chapter 3

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
correlation coefficient

-1 -0.5 0 0.5 1

correlation coefficient

-1 -0.5 0 0.5 1

correlation coefficient

-1 -0.5 0 0.5 1

correlation coefficient

2609 km < d < 2891 km

(layer 1)

2018 km < d < 2609 km

(layer 2)

1526 km < d < 2018 km

(layer 3)

1001 km < d < 1526 km

(layer 4)

670 km < d < 1001 km

(layer 5)

220 km < d < 670 km
(layer 6)

24 km < d < 2200 km

(layer 7)

dlnVs-dlnVp correlation

Figure 3.10: Distribution of dlnVs−dlnVp correlation coefficient between all the models
compatible with the data as a function of depth.

significantly. In the uppermost layer, correlation is poor again, but there, degree two is
far from dominant. This is one illustration of the importance of error bars in tomographic
models.

Error bars on the spherical harmonic components of dlnVs and dlnVp can easily be
derived from those on dAt

s and dLts because of the scaling between dlnρ and dlnVs. In
Fig. 3.11, we show the relative error bars for the rms amplitude, d(rms)/rms, for both
shear and compressional wave velocities. This represents the size of the error bars on
the rms relative to the size of the most likely model. The error bars are large, especially
for Vp. These uncertainties are mainly due to the large null-space associated with our
problem. It shows what can be determined by the data alone. Prior information can
of course reduce the nullspace, but we argue that choosing a model should be based on
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Depth (km) median SMAD
2609 < d < 2891 -0.535 0.425
2018 < d < 2609 0.36 0.30
1526 < d < 2018 0.205 0.36
1001 < d < 1526 0.20 0.27
670 < d < 1001 0.003 0.42
220 < d < 670 0.62 0.18
24 < d < 220 -0.29 0.36

Table 3.1: Correlation between all models generated within their error bars. The second
column gives the median of the distribution and the third column gives its robustness.

physical information rather than a subjective damping parameter. Unless such a physical
prior information exists, it is preferable to consider all models compatible with the data.
Another way to reduce the size of the null-space is of course by adding more data. We
expect that including body wave data will significantly reduce the uncertainties.

Perturbations in Vs are believed to be larger than perturbations in Vp. The value of
their ratio R = dlnVs/dlnVp is commonly used as a diagnostic whether the hetero-
geneities in the mantle have a chemical or thermal origin. The value of R in the deep
mantle is still a controversy. A low ratio could be explained by a thermal origin of the
anomalies and a high value (above 2.5) could indicate a chemical component in the het-
erogeneities. Looking at various studies, there is a large variety of values for R. A good
review on the subject can be found in Masters et al. (2000). Because different authors
compute R in different ways, Masters et al. (2000) recalculated a spherical averaged R
for various models. Generally, studies using body wave travel time data only prefer a high
value ofR in the lowermost mantle. Robertson and Woodhouse (1996) used ISC data and
found a ratio slowly increasing from 1.7 to 2.5 for depth between 600 and 2000 km of
depth. Bolton (1996) used long period body waves data and his results also showed an
increase of R with depth up to a value slightly below 3.5 at the bottom of the mantle.
Both studies were constrained inversions, i.e. a perfect proportionality between P and S
anomalies at every depth was imposed but R was allowed to change. Su and Dziewonski
(1997) used ISC data, long period body wave data and surface wave data to perform an
unconstrained inversion for bulk sound and shear wave speed. They obtained a value of
R of almost 3.5 in the lowermost mantle. Saltzer et al. (2001) employed ISC data to pro-
duce P and S models of the mantle. They distinguished between regions where there has
been subduction in the last 120 million years and where there has not. They found a peak
value of R = 3 around 2200 km of depth in non-slab regions and a ratio smaller than 2 at
all depths in slab regions. There are two models using ISC data that show a low ratio at
all depths. These are the models of Vasco and Johnson (1998) and Kennett et al. (1998).
Their values of R are smaller than 1.5, and even smaller than 1 for Vasco and Johnson
(1998). When normal modes are included in the data set, the tendency observed in joint
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Figure 3.11: Relative uncertainties for the root mean square amplitude of our most likely
S model (dashed line) and our most likely P model (solid line) as a function of depth.

inversions is to have a more modest ratio in the lowermost mantle (model SB10L18), ex-
cept for Romanowicz (2001) who found a value between 1 and 2 everywhere but at depths
greater than 2000 km where R is larger than 2.5. Model SB10L18 was obtained from
the joint inversion for bulk sound and shear wave speed, whereas Romanowicz (2001)
performed inversions for Vp and Vs directly. In their paper, Masters et al. (2000) also
observed that constrained inversions for bulk sound and shear wave speed usually give P
and S models that correlate significantly, while there is less correlation in inversions for
Vp and Vs.

We computed R on a 10◦ × 10◦ grid. We took into account all the models obtained
for Vs and Vp, in the same way we did to compute the correlation between all our P and S
models. We generated a series of values of δAt

s(r) and δLts(r) within their estimated error
bars, recombined the five spherical harmonic coefficients to get δA(θ, φ) and δL(θ, φ) on
each grid point, and we computed the corresponding dlnVs(θ, φ), dlnVp(θ, φ) and R for
all the possible combinations. The distributions obtained expressed the variation of R for
various (θ, φ) and various models generated within the posterior model uncertainties. We
determined the median of these distributions, which we took as the spherically averaged
estimate of R. The SMAD is used to derive the uncertainty on R (as in Masters et al.
(2000)). We found that R takes modest values in the lowermost mantle (see Fig. 3.12,
dotted line). The question is whetherR is low in the lowermost mantle (where degree two
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Figure 3.12: Ratio between degree two dlnvs and dlnvp as a function of depth.

structure is dominant) because the correlation is low or because the normal mode data
generally prefer a lower ratio. To answer that, we computedR by only taking the models
which correlate significantly (above 0.73) in one particular layer. The values are plotted
in Fig. 3.12 (solid line). We observe an increase of R with depth in the top 1500 km
of the mantle, taking values between 1 and 1.75, and modest values in the lowermost
mantle. This shows that normal mode data favour low values for R in the deeper mantle,
in contradiction with Romanowicz (2001), who found R up to 3.5 at depths > 2000 km,
using degree two normal mode splitting data and a layered parameterization. The possible
reasons for this difference are that Romanowicz does not include surface wave measure-
ments in her data and introduces strong prior information in the inversions (the damping
was chosen so that dlnVs/dlnVp matches the range 1.5 - 2 in the top 1500 km, slightly
higher than what we find).
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3.4 Conclusion

The aim of this paper was to explore a model space with a direct search method to identify
good data-fitting isotropic Earth models. We used the Neighbourhood Algorithm devel-
oped by Sambridge (1999a,b), which is a new derivative-free direct search technique that
preferentially samples the good data-fitting regions of a model space. A Bayesian ap-
proach was used subsequently in order to extract robust information from the ensemble of
models generated. We examined the posterior marginal probability density functions, the
variances of the various model parameters and the correlations among them. The whole
model space, including the null-space, was sampled within reasonable bounds, and the
error bars are consequently more realistic than traditional inversion error estimates. This
new technique appears to be very efficient in finding the best data-fitting regions in a high
dimensional space (provided the size of the model space has been established). It is easy
to tune since there are only two tuning parameters but they have to be chosen carefully to
avoid the search being trapped in a local minimum and to importance sample the entire
parameter space, while not reducing the efficiency of the algorithm. The optimal val-
ues have to be found by trial and errors. The subsequent use of the Bayesian algorithm
does not require any further solutions of the forward problem. The parameter space is
resampled instead, using only information from the initial survey of the model space. The
accuracy of the Bayesian integrals will depend on the way the model space was initially
sampled.

We applied the Neighbourhood Algorithm to the search of isotropic mantle shear and
compressional wave velocity models, using recent normal mode splitting measurements
and fundamental mode phase velocity data. We found an ensemble of joint P and S mod-
els (spherical harmonic degree two only) for which posterior marginal probability density
functions, correlation and covariances were computed. 1-D marginals give information on
how well a parameter is constrained, and show whether it is Gaussian distributed or not.
They are used to infer error bars on the various model parameters. 2-D marginals show
the trade-offs among pairs of model parameters. The posterior covariance matrix obtained
under a Gaussian assumption gives fair representation of the correlation, although error
bars may be underestimated in case of strong non-Gaussian distribution. The uncertain-
ties and correlations constitute essential information in order to make meaningful analysis
of the models obtained. We see, for instance, that there is a correlation between parame-
ters of the lower mantle and parameters of the upper mantle. This implies that we could
improve our models by adding data, sensitive exclusively to either the upper or lower
mantle in order to decorrelate those parameters. Our most likely S model is highly corre-
lated with other S models, such as MM2-L12D8, SKS12-WM13, S20RTS, SAW12D or
S16B30, except where there is a high trade-off between P and S perturbations. The corre-
lation with the recent S model SB10L18 is very high at most depths, but our most likely
P model is very different from the P model of SB10L18 in most layers. Degree two er-
ror bars on the rms velocity perturbations of our mean models are quite large, especially
for P. The correlation between our most likely P and S model is low but among all the
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models generated and compatible with the data, there are some that have a high Vp − Vs
correlation. We calculated the ratio R = dlnV s/dlnV p, and we found an increase with
depth in the top 1500 kilometres up to a value of 1.75. Deeper in the mantle, there is a
decrease and R oscillates between 0.8 and 1.3. Many models using body wave data alone
seem to find a high value for R in the deep mantle. This is, however, not always the case,
as shown by the ratios found by Saltzer et al. (2001) in slab regions. Our study, for which
only surface wave and normal mode data have been employed, tends to favour low values.
The model of Masters et al. (2000) obtained from surface waves, normal mode and body
wave data gives an intermediate ratio at these depths.

We have a powerful new tool to explore a model space, including the null-space, and to
estimate ranges of “good” data-fitting models. In the absence of true physical information,
we prefer considering the full range of models consistent with the data. Correlations
between model parameters can be computed and give valuable indications on what kind of
independent data should be added to constrain the models better. Because our problem can
be solved spherical harmonic coefficient by spherical harmonic coefficient, it is trivial to
parallelize the procedure resulting in huge timesavings for computing a full tomographic
model.
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Chapter 4

Radial anisotropy in mantle
reference models

Abstract

The Neighbourhood Algorithm of Sambridge was applied to normal mode and surface
wave phase velocity data to determine the likelihood of radial anisotropy in mantle refer-
ence models. This full model space search technique provides probability density func-
tions for each model parameter, and therefore reliable estimates of resolution and uncer-
tainty, without having to introduce unnecessary regularization on the model space. Our
results show a fast decrease of S-wave anisotropy (described by parameter ξ) and of inter-
mediate parameter η in the top 220 km of the mantle, and they do not seem to deviate sig-
nificantly from PREM at any depth. The data do not require strong deviations from PREM
for P-wave anisotropy except in the lowermost mantle and between 220 and 400 km depth,
which indicates that P-wave anisotropy extends deeper than S- or η-anisotropy. The sign
change in the anisotropic parameters across the 670-discontinuity found by other authors
is not warranted by our data. Because of the trade-off between P-wave related parameters
and density anomalies, it is important to resolve density to make reliable assessments on
P-wave anisotropy from traditional inversions. S-wave anisotropy and η are less affected
by density. A well-resolved negative density anomaly was found in the uppermost mantle,
and a density excess was observed in the transition zone and the lowermost mantle.

The content of this chapter was submitted in Beghein,C., Trampert,J. & van Heijst,H.-J., Geophysical
Journal International, 2003
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4.1 Introduction

It is now commonly accepted that the Earth’s uppermost mantle is anisotropic. Labo-
ratory experiments show that the most abundant minerals in the uppermost mantle pos-
sess high intrinsic anisotropy, and seismology reveals that anisotropy is present at these
depths. This indicates the existence of an efficient mechanism capable of aligning upper-
most mantle minerals over large scales. Seismological evidence for radial anisotropy at
these depths was first inferred from the discrepancy between isotropic Love and Rayleigh
wave phase velocity maps (Anderson, 1961). This was confirmed by many other seismo-
logical studies. PREM (Dziewonski and Anderson, 1981) was the first reference model
to incorporate radial anisotropy in the top 220 km of the mantle. Spherically averaged
radial anisotropy was also found at larger depths by Montagner and Kennett (1996), in
an attempt to reconcile body-wave and normal mode observations. They derived a new
reference model that contained a small amount of radial anisotropy down to 1000 km
depth and in the lowermost mantle. The rest of the lower mantle appears to be devoid of
any seismic anisotropy, although both experimental (Chen et al., 1998; Mainprice et al.,
2000) and theoretical studies (Oganov et al., 2001a,b; Wentzcovitch et al., 1998) demon-
strate that lower mantle minerals are highly anisotropic. This can be understood in terms
of superplastic flow (Karato, 1998), since deformation by diffusion creep does not result
in any preferred orientation of minerals.

To reconcile body-wave and normal mode data, Montagner and Kennett (1996) in-
verted free oscillation data for attenuation, density and three of the five parameters char-
acterizing radial anisotropy, using Vp and Vs from body wave models as constraints on
the two other parameters. The inclusion of attenuation in the inversion helped reduce the
discrepancy between the two types of data, but remained insufficient. The addition of
radial anisotropy down to 1000 km depth diminished this difference a lot. On the con-
trary, releasing the constraint on Vp and Vs improved the fit to the eigenperiods, but it
was at the expense of a degradation of the fit to the travel-time data. Their final one-
dimensional mantle models contained a few percents of anisotropy down to a depth of
1000 km, and they reported a possible change in the sign of the anisotropic parameters
at the 670-discontinuity. Karato (1998) interpreted these sign changes as the signature
of a horizontal flow above the discontinuity and a vertical flow in the top of the lower
mantle. Clearly, the presence or absence of global radial anisotropy at large depths has
large consequences for our understanding of geodynamics and mineralogy, and it should
be investigated more thoroughly.

The goal of the present research is to assess the robustness of this 1-D anisotropy
and to determine whether it is constrained by the current normal mode and surface wave
data. We did not want to fix any model parameter, such as Vp or Vs, because the possi-
ble trade-offs with other parameters could affect the results for anisotropy. We did not
include attenuation in the parameterization, or any prior information coming from body-
waves. The Neighbourhood Algorithm (NA) (Sambridge, 1999a,b) was used to survey
the parameter space and to find an ensemble of good data-fitting 1-D models of the man-
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tle. This method provides posterior probability density functions (PPDFs) for each model
parameter and returns valuable indications on their resolution and trade-offs. Since the
entire model space, including the model null-space, is sampled and since we do not per-
form an inversion, our results are not biased by the introduction of damping or any other
unnecessary a priori information on the model space. Another advantage of this tech-
nique, compared to inversions, is that a much larger part of the valley of the cost function
is explored, yielding reliable posterior model variances. The method was applied to a
large data set composed of normal mode central frequency shifts and to the degree zero
of surface wave phase velocity maps for fundamental and higher modes.

4.2 Data

Phase velocity maps can be expanded into spherical harmonics and, like normal mode
central frequency shifts, their degree zero can be linearly related to perturbations in the
one-dimensional structure of the Earth. The relation between Earth’s structure and these
data is given by (Dahlen and Tromp, 1998) :

kdf =
∫ a

0

δm(r)kK(r)r2 dr (4.1)

where kdf represents normal mode central frequency shift measurements or the degree
zero of a phase velocity maps, k discriminates between different surface wave frequencies
or different multiplets and a is the radius of the Earth. kK(r) is the volumetric structure
kernel for perturbation δm(r) with respect to PREM (Dziewonski and Anderson, 1981).

The data we used included the degree zero of various surface wave phase velocity
maps and central frequency shift measurements of mantle-sensitive normal modes ob-
tained from the Reference Earth Model Website (http://mahi.ucsd.edu/Gabi/rem.html).
They constitute a large set of published and unpublished measurements for various types
of motion (Rayleigh and Love waves, spheroidal and toroidal modes) for fundamental
modes and for the first few overtone branches. Error estimates were also available with
the measurements. We added eight fundamental mode Rayleigh and Love wave phase ve-
locity models for periods between 40 and 275 seconds. At each selected period between
40 and 150 s, the models and assigned errors resulted from the averaged degree zero coef-
ficient and its standard deviation calculated from different phase velocity maps (Trampert
and Woodhouse, 1995, 1996, 2001; Ekström et al., 1997; Laske and Masters, 1996; Wong,
1989; van Heijst and Woodhouse, 1999). This should account for different measuring
techniques of phase velocity, different data coverage and different regularisation-schemes
in the construction of the maps at these periods. The models obtained by Wong (1989)
were used for periods larger than 150 s. The obtained errors for Love and Rayleigh wave
data decrease almost linearly between 40 and 100 seconds and the curves flatten between
100 and 150 seconds, as shown in Chapter 3 (Figure 3.1) for degree two Rayleigh wave
phase velocity maps. The model of Wong (1989) being the only one available to us at
longer periods, we decided to assign a constant uncertainty to models with periods greater
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than 150 seconds. We assumed for convenience that the errors have a Gaussian distribu-
tion, but there were far too few models to test this hypothesis. Finally, we added the
degree zero of the overtone surface wave measurements made by van Heijst and Wood-
house (1999) for toroidal modes up to overtone number n = 2 and spheroidal modes up
to overtone number n = 5. Owing to the absence of corresponding variance estimates,
we used the same error bars as those estimated for the fundamental mode surface wave
phase velocity maps as a function of frequency.
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Figure 4.1: Ensemble of data (without the crust) and estimated errors for the fundamental
surface wave and normal mode data (left) and for the first overtone branche (right) at
different periods. The horizontal axis is a logarithmic scale.
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As displayed in Fig. 4.1 for the fundamentals and the first overtone branche, an analysis
of the entire data set, error bars included, showed a good agreement between the data
published on the Reference Earth Model Website, our averaged degree zero phase velocity
data and the overtone measurements. In total, the data set employed was composed of 237
measurements for Rayleigh waves and spheroidal modes and 294 measurements for Love
waves and toroidal modes. All data were corrected with the crustal model of Mooney
et al. (1998).

4.3 Parameterization and method

An anisotropic medium with hexagonal symmetry is characterized by five independent
elastic coefficients A, C, N , L and F , in the notation of Love (1927). Radial anisotropy
occurs when the symmetry axis points in the radial direction. This type of anisotropy is
usually described by three anisotropic parameters (φ = 1 − C/A, ξ = 1 − N/L and
η = 1 − F/(A − 2L)) and one P and one S velocity. Note that these definitions vary
from author to author. The elastic coefficients are related to the wavespeed of P-waves
travelling either vertically (VPV =

√
C/ρ) or horizontally (VPH =

√
A/ρ), and to the

wavespeed of vertically or horizontally polarized S-waves (VSV =
√
L/ρ or VSH =√

N/ρ, respectively). Parameter F is related to the speed of a wave travelling with an
intermediate incidence angle. We parameterized the models with perturbations of these
five elastic coefficients and perturbations of density with respect to PREM (Dziewonski
and Anderson, 1981). The corresponding sensitivity kernels are given in Tanimoto (1986),
Mochizuki (1986) and Dahlen and Tromp (1998). The relation between the data kdf and
the structure of the Earth is then :

kdf =
∫ a

rcmb

[ kKA(r)δA(r) + kKC(r)δC(r) + kKL(r)δL(r)

+ kKN(r)δN(r) + kKF (r)δF (r)kKρ(r)δρ(r)]r2 dr (4.2)

In this equation, rcmb is the radius of the core-mantle boundary and a is the radius of the
Earth. The mantle is radially divided in six layers. The bottom and top depths of these
layers are, in kilometres, (2891, 2609), (2609, 1001), (1001, 670), (670, 400), (400, 220),
(220, 24). This coarse parameterization was dictated by computational resources and,
consequently, the results should be seen as an indication of the presence of anisotropy
rather than a detailed model. Conservation of the mass of the Earth and its moment of
inertia was imposed following Montagner and Kennett (1996).

In the first stage of the NA, the model space is surveyed to identify the regions that
best fit the data. A measure of the data fit must therefore be defined. We chose the χ2

misfit which measures the average data misfit compared to the size of the error bar. The
NA iteratively drives the search towards promising regions of the model space and simul-
taneously increases the sampling density in the vicinity of these good data-fitting areas.
One of the characteristics of the NA, which makes it different from usual direct search
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approaches, is that it keeps information on all the models generated in the first stage, not
only the “good” ones, to construct an approximate misfit distribution. This distribution
of misfit is used as an approximation to the real PPDF and as input for the second stage
of the NA, where an importance sampling of the distribution is performed. It generates a
resampled ensemble which follows the approximate PPD and which is integrated numeri-
cally to determine the likelihood associated with each model parameter and the trade-offs.
Parameters have to be tuned for each stage of the NA. The optimum values of these tuning
parameters have to be found by trial and error as explained below. The two tuning param-
eters required for the first stage of the algorithm are ns, the total number of new models
generated at each iteration, and nr, the number of best data-fitting cells in which the new
models are created (the model space is divided into Voronoi cells). We chose ns = nr
to broaden the survey as much as possible. Tuning parameters have also to be chosen to
insure the convergence of the Bayesian integrals in the second stage.

The degree zero of the five elastic coefficients were perturbed up to 5 % of their ampli-
tude in PREM. Because our problem is linearized we have to stay within the framework
of perturbation theory, which implies that we should not take too large perturbations of
the elastic coefficients. On the other hand, we do not want these perturbations to be too
small to avoid excluding possible anisotropic good mantle models. Two sets of experi-
ments were performed : one where no density variations were allowed and one where we
searched for degree zero density anomalies up to 2 % in addition to perturbations in the
five elastic coefficients.

4.4 Results

In the first experiment, we fixed the density anomalies δρ to zero in each layer, and in the
second experiment we released the constraint on density and performed a model space
search for perturbations of the five elastic coefficients that describe radial anisotropy and
density. In this second case we assumed that the layer situated between 1001 and 2609 km
depth, which constitutes most of the lower mantle, is isotropic. This assumption was
mainly motivated by computational resources, but we believe it to be reasonable because,
so far, seismic anisotropy has never been observed at these depths.

We thus studied a 30-dimensional model space in the first experiment and a 33-
dimensional model space in the second experiment. The limit of the NA on a single
processor is reached with approximately 24 parameters (Sambridge, 1999b). Otherwise,
it becomes highly time-consuming. The most reliable way to use the NA is by succes-
sively increasing the tuning parameters ns and nr (kept equal to broaden the search) in
the first stage of the NA, computing the corresponding likelihoods associated with each
model parameter, and comparing the different results. Stability is achieved once the solu-
tion is independent of the way the model space was sampled. It is also a way to obtain all
the models compatible with the data, without being trapped in a local minimum. How-
ever, we could not afford to run the NA with high tuning parameters within reasonable
time. Instead, we performed several surveys with relatively small tuning parameters (by
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resampling between 5 and 20 best data-fitting cells at each iteration). By comparing the
results of the different small size surveys, we could determine which parameters were
well-constrained and which were not.

Although the decrease of the χ misfit was very slow, the NA found best data-fitting
models with χ � 1.5 in all experiments, while the highest misfit found could be as high as
15 when density was included and 20 to 25 when δρ was zero. Fig. 4.2 shows examples
of how the data are explained by one of the best data-fitting models. Data are plotted with
the corresponding error estimates for some of the fundamental modes and the first and
second overtone branches. Fundamental modes and the first overtone branche are well
explained for both Rayleigh and Love wave phase velocity anomalies (most predictions
fall within data errors, except for a few low period data), but the second overtone branches
present more descrepancies between predictions and observations.
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Figure 4.2: Predicted and observed frequency shifts and degree zero phase velocity per-
turbations (without the crust) for fundamental modes and the first two overtone branches.
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From the individual distributions of ξ, φ, η and δρ obtained with ns = nr = 15,
we deduced a mean model and a standard deviation. Fig. 4.3 displays the depth vari-
ation of the mean perturbation dξ = ξ − ξprem, together with two standard deviations,
which represent about 95 % of the acceptable models (the distributions were approxi-
mately Gaussian). Table 4.1 gives the probability, in each layer, that dξ is negative, based
on the integration of the normalized likelihoods. These results for S-wave anisotropy are
reasonably independent of the tuning parameters employed, even though small changes
occurred in δL and δN . Our models show no significant deviation from PREM in S-wave
anisotropy required by the data at any depth. The probability of a departure from PREM
is small in every layer, as shown in Table 4.1.
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Figure 4.3: Range of dξ models compatible with the data. The solid line represents the
mean model and the two surrounding dotted lines correspond to two standard deviations.

Our results are also robust with respect to density anomalies (they did not strongly depend
on the presence of δρ in the model space) except in the lowermost mantle. The signal for
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dξ was clearly negative at these depths when density anomalies were neglected, but it
shifted towards zero when δρ was part of the unknowns (the changes occurred in elastic
parameter δN and not in δL). In the first experiment, where δρ was zero, anisotropy was
allowed in the bulk of the lower mantle (in the depth range 1001-2609 km), but no S-wave
anisotropy was detected.

Parameter p Depth (km) P (|p| > |pprem|)
ξ = N/L 24 < d < 220 0.52

220 < d < 400 0.53
400 < d < 670 0.64
670 < d < 1001 0.59
2609 < d < 2891 0.65

φ = C/A 24 < d < 220 0.44
220 < d < 400 0.80
400 < d < 670 0.51
670 < d < 1001 0.62
2609 < d < 2891 0.74

η = F/(A− 2L) 24 < d < 220 0.52
220 < d < 400 0.68
400 < d < 670 0.69
670 < d < 1001 0.44
2609 < d < 2891 0.57

Table 4.1: Probability of having more anisotropy than in PREM

P-wave anisotropy was more affected by the introduction of density in the model space
than S-wave anisotropy, indicating a higher trade-off between P-wave related parameters
and δρ. Fig. 4.4 shows that the mean dφ model, obtained including density variations
in the parameterization, does not significantly deviate from PREM in the top layer (from
24 to 220 km depth) or between 400 and 1000 km depth. However, there is a strong
probability of dφ > 0 between 220 and 400 km and dφ < 0 in the lowermost mantle
(Table 4.1), similarly to what Montagner and Kennett (1996) found. This means that we
can expect about 1 % of P-wave anisotropy in these two layers, and that P-wave anisotropy
extends deeper than S-wave anisotropy. The trade-off with density is, however, high in
the two top layers, since the sign of dφ changed according to the presence or absence of
density anomalies in the model space. A high trade-off was also observed in the transition
zone between dφ and δρ. Fig. 4.4 does not display any change in dφwith respect to PREM
in the depth range 400-670 km, but when no density variations were allowed we obtained
a clear dφ > 0, which corresponds to the results of Montagner and Kennett (1996) if their
models are expressed in our parameterization. This is could be an indication that their φ
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models were contaminated by unresolved density anomalies at these depths.
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Figure 4.4: Range of dφ models compatible with the data. The solid line represents the
mean model and the two surrounding dotted lines correspond to two standard deviations.

Similarly, our results do not show any significant P-wave anisotropy in the top of the
lower mantle, but its presence is not completely unlikely (Table 4.1). We also noticed that
dφ was more clearly positive at these depths when no density anomalies were included
(not shown here). In the first experiment, we obtained a high probability (0.86) of dφ > 0
between 1001 and 2609 km depth, but the amplitude was very small (around 0.5 %).
Keeping in mind that the trade-off between P-wave related parameters and density was
high, this reinforces the validity of the assumption of isotropy in that layer, imposed in the
second experiment. The results for dφ in the lowermost mantle did not reveal a high trade-
off with density. The amplitude of the mean dφ was higher when no density anomalies
were included, but the sign did not change.

The η models (Fig. 4.5) were generally not as highly affected by δρ as models of
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Figure 4.5: Range of dη models compatible with the data. The solid line represents the
mean model and the two surrounding dotted lines correspond to two standard deviations.

P-wave anisotropy. The NA produced η � ηprem at most depths. The most likely places
where we could have dη > 0 are between 220 and 400 km depth and in the transition
zone. The probability is small because the distributions are wide, but their peaks are close
to 1 %, similar to model AK135-F of Montagner and Kennett (1996). These two layers are
also where the strongest trade-off with density was detected. When we imposed δρ = 0,
dη was clearly centred on zero at these depths. The introduction of density seems to push
the signal towards slightly positive values, but the robustness of these perturbations in η
is not easy to assess. Also, with δρ = 0 we obtained a positive dη between 1001 and
2609 km depth but the amplitude was so small that we believe the assumption dη = 0
imposed in the second experiment is valid.

The sensitivity tests of Resovsky and Trampert (2002) suggest that the data we em-
ployed can resolve the density variations correctly. Given the existing trade-offs with
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Figure 4.6: Range of relative density perturbation models compatible with the data. The
solid line represents the mean model and the two surrounding dotted lines correspond to
two standard deviations.

density, we believe that our anisotropic models shown here including density are the clos-
est to reality. The models of density anomalies we obtained (Fig. 4.6, Table 4.2) clearly
show a smaller density than in PREM in the top 220 km (−0.5 %) and an increase in δρ
in the transition zone and in the lowermost mantle. At other depths, no significant depar-
ture from PREM is required by the data, but δρ is not quite as well resolved in the depth
ranges 220-400 km and 670-1000 km, as shown by the individual likelihoods (not dis-
played here). The negative perturbation in density in the uppermost mantle is inconsistent
with Montagner and Kennett (1996). They, however, found a signal close to ours in the
lowermost mantle. The equivalent isotropic dlnVs and dlnVp were computed as well, but
no strong deviations from PREM were required by the data, as the probability of positive
dlnVs and dlnVp was close to 0.5 in all layers.
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Depth (km) P (δρ/ρ > 0)
24 < d < 220 0.28
220 < d < 400 0.50
400 < d < 670 0.71
670 < d < 1001 0.57
1001 < d < 2609 0.40
2609 < d < 2891 0.72

Table 4.2: Probability of having positive density anomalies.

4.5 Discussion and conclusion

A direct search method was applied to normal mode central frequency shift measurements
and to the degree zero of surface wave phase velocity maps to assess the likelihood of
radial anisotropy and density anomalies in one-dimensional mantle models. A high trade-
off was found between P-wave related parameters and density perturbations in most of
the mantle, but S-wave or η-anisotropy were less affected by the presence of density
anomalies in the parameterization.

Where appropriate, we compare the solutions with independent studies which employ
fundamental mode data (see Chapter 5 for the method) and overtone data (see Chapter
6) alone. We did not find any significant deviation from PREM in shear-wave anisotropy
anywhere in the mantle, which questions the results of Montagner and Kennett (1996).
Their models showed a few percents of anisotropy down to 1000 km depth, with a change
of sign in parameter ξ across the 670-discontinuity and possibly at 410 km depth. Al-
though their models are not totally incompatible with our range for ξ, they do not corre-
spond to our most likely solution. From our probabilities, we conclude that the changes of
sign in ξ below and above the transition zone are not constrained by the data. The trade-
off we observed between ξ and density might be responsible for the anisotropy found by
Montagner and Kennett (1996) in the lowermost mantle. A finer parameterization, as in
Montagner and Kennett (1996), will of course show more details, but because we find all
models compatible with the data, the averages from our thick layers are representative of
the finer details. Indeed, in Chapter 5, a thinner parameterization of the uppermost mantle
was employed and a positive degree zero dξ was found in the upper 100 km and dξ < 0
between 100 and 220 km depth. This results in a decrease of S-wave anisotropy with
depth within the uppermost mantle, with slightly less anisotropy than in PREM in the top
100 km and a little more anisotropy than in PREM below, as predicted by Montagner and
Kennett (1996). Our results here simply average over these two layers and overall there
is no perturbation.

A strong trade-off was observed between P-wave related parameters and density anoma-
lies at most depths. Departure from PREM in P-wave anisotropy is required by the data
between 220 and 400 km depth, with dφ > 0, and in the lowermost mantle, with dφ < 0.
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This indicates deeper P-wave anisotropy than S-wave anisotropy. It is worth noting that
this feature is not constrained by the overtone data of van Heijst and Woodhouse (1999)
but by the normal mode data (comparison with the degree zero obtained in the study
of Chapter 6). The negative dφ in the lowermost mantle was also found by Montag-
ner and Kennett (1996), but it is the only signal of P-wave anisotropy compatible with
ours. The change of sign in φ observed by Montagner and Kennett (1996) across the
670-discontinuity is not confirmed by our data.

Parameter η did not deviate strongly from PREM, except maybe between 220 and
670 km depth, where the probability of dη > 0 is close to 0.7 (Table 4.1). This might
indicate that η-anisotropy goes deeper than P-wave or S-wave anisotropy, but this is not
supported by the overtone data alone (study of Chapter 6, degree zero). We did not find
any clear sign of η-anisotropy in the lowermost mantle, but the uncertainty is very large.

It was demonstrated by several authors that inversions of normal mode and surface
wave data do not produce reliable lateral variations in density anomalies, due to poor res-
olution (Resovsky and Ritzwoller, 1999c; Resovsky and Trampert, 2002; Romanowicz,
2001). In addition, damped inversions generally underestimate model amplitudes, the
more so if the sensitivity is small. In such cases, the NA is the best tool to put robust
bounds on density anomalies inside the Earth. Resovsky and Trampert (2002) clearly
showed that our data set could resolve density variations using the NA. The density
models we obtained were very different from those derived by Montagner and Kennett
(1996), and, because of trade-offs with the other parameters, differences in the models
of anisotropy were produced. We obtained a clear deficit in density in the uppermost
mantle and an excess of density in the transition zone and the lowermost mantle. An in-
crease of density with respect to PREM (Dziewonski and Anderson, 1981) will result in an
increase of Bullen’s parameter ηB , which is a measure of the deviation from the Adams-
Williamson equation, i.e. from adiabaticity and homogeneity. In PREM (Dziewonski
and Anderson, 1981), ηB is smaller than unity in the upper mantle, which is indicative
of a large temperature gradient (Anderson, 1989). Our results for the uppermost mantle
suggest thus an even larger temperature gradient at these depths. The PREM value of
ηB is close to unity in the lowermost mantle. The excess of density obtained in the deep
mantle corresponds therefore to ηB > 1 and could be related to the compositionally dis-
tinct dense layer proposed by Kellogg et al. (1999). In the transition zone, ηB is already
greater than 1 in PREM. This departure from unity at these depths could be caused by
phase transitions of material more compressible than in homogeneous adiabatic condi-
tions (Anderson, 1989), but we speculate that it could also be the global signature of slabs
deflected in the transition zone as observed by van der Hilst and Kárason (1999) (see also
the review by Fukao et al. (2001)).

The minimum χ misfit found by the NA was close to 1.5, which shows that on aver-
age the data employed are relatively well explained, without requiring radial anisotropy
in the transition zone, a change of sign in the anisotropic parameters across the 670-
discontinuity or attenuation.
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Probability density functions for
radial anisotropy in the
uppermost mantle

Abstract

We applied Sambridge’s Neighbourhood Algorithm to degree eight fundamental mode
Love and Rayleigh wave phase velocity maps between 40 and 150s to find models of
radial anisotropy in the upper 220 km of the mantle. The Neighbourhood Algorithm is
a powerful tool to explore a multi-dimensional model space and to retrieve an ensemble
of models from which statistical inferences (posterior probability density functions and
trade-offs) can be made. We sought solutions for density anomalies and perturbations
in the five elastic coefficients that describe transverse isotropy. We found robust depar-
tures from PREM in S-wave anisotropy (ξ) under cratons and oceans alike, with a clear
change of sign in the anomalies with respect to the reference model at about 100 km
depth. No significant difference was observed between cratons and oceans, both in the
amplitude and depth variation of ξ. The signal within continents is clearly age-related,
with platforms and tectonically active regions characterized by a rapid decrease in ξ with
depth, while cratons display a more constant signal. A similar age dependence in S-
wave anisotropy is also observed beneath oceans with a strong and rapidly decreasing
anisotropy for young oceans and a more constant anisotropy for older oceans. Perturba-
tions in P-wave anisotropy (φ) are small and limited to the shallowest part of the con-
tinents. A small age-dependent signal for φ is observed beneath oceans. Anomalies
in intermediate parameter η are similar to those in φ, but the deviation from PREM is

The content of this chapter was submitted in Beghein,C. & Trampert,J., Geophysical Journal International,
2003

87



88 Chapter 5

stronger for η than for φ. A similar depth dependence is observed for η and for ξ in var-
ious age related regions. The two parameters show a rapid decrease with depth in young
oceanic and young continental areas while older regions display a more constant signal.
η and ξ also share the same behaviour in the top 100 km, since their values increase from
old to young continental and oceanic lithosphere. Cratons appear to be devoid of any η-
anisotropy in the top 100 km. There is no obvious global correlation between deviations
in φ and deviations in ξ, and the ratio between dη and dξ is clearly regionally variable,
which cautions against the use of commonly used proportionality factors between these
variables in inversions. In all regions, we found a good correlation between the equiva-
lent isotropic P- and S-wave velocity anomalies, with a ratio dlnVs/dlnVp close to 1. The
density anomalies obtained with fundamental mode data alone are likely to be not robust,
but did not influence the results for anisotropy.

5.1 Introduction

Upper mantle seismic anisotropy can be observed using different kinds of seismological
data : body waves, normal modes and surface waves. Direct observations of anisotropy
are provided by body waves through shear wave birefringence and through the azimuthal
dependence of propagation of Pn waves, first observed by Hess (1964) in the Pacific
ocean. The dispersion of surface waves can also be used to study azimuthal anisotropy
(Forsyth, 1975), but it also provides information on radial anisotropy. Radial anisotropy,
or polarization anisotropy, describes the anisotropic behaviour of a cylindrically symmet-
ric medium whose symmetry axis is in the radial direction. Its observation is not direct. It
was first introduced by Anderson (1961) to explain the incompatibility between isotropic
Rayleigh and Love phase velocity maps, known as the Love-Rayleigh discrepancy. There
is now a general agreement that upper mantle anisotropy is due to the preferred alignment
of olivine crystals, a highly anisotropic mineral very abundant at these depths, which is
possibly oriented by a plastic flow in the oceans (Tanimoto and Anderson, 1984) and
orogenic deformation in continents (Silver and Chan, 1991).

It is clear that surface waves require the uppermost mantle to be radially anisotropic on
average (e.g. PREM (Dziewonski and Anderson, 1981)), but lateral variations are found
in many studies. Oceanic regions appear highly anisotropic as shown by Lévêque et al.
(1998) for the Indian Ocean, by Silveira and Stutzmann (2002) for the Atlantic Ocean and
by Lévêque and Cara (1983), Nataf et al. (1984), Montagner (1985, 2002), Nishimura
and Forsyth (1989), Montagner and Nataf (1988) and Ekström and Dziewonski (1998)
for the Pacific. Radial anisotropy under continents was also observed for Africa (Ha-
diouche et al., 1989), North America (Cara et al., 1980), Australia (Debayle and Kennett,
2000) and Western Europe (Lévêque and Cara, 1983). A global study (Montagner and
Tanimoto, 1991), based on the inversion of surface wave data, showed an upper mantle
anisotropy more pronounced beneath oceans than beneath continents. In a simultaneous
waveform inversion of surface waves, overtones and body waves, Gung et al. (2003) re-
cently confirmed the existence of anomalous radial anisotropy under the Pacific ocean, as
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observed by Ekström and Dziewonski (1998), but they also showed significant variations
of anisotropy under the Indian ocean and under most continents. This seems to indicate
that deviations of upper mantle anisotropy from PREM are not confined to the Pacific
Ocean, as previously claimed (Ekström and Dziewonski, 1998). The precise depth extent
of this anisotropy is still not fully clear, although its amplitude appears to decrease with
depth. Differences among the various studies could simply arise from different resolutions
and different inversion schemes. The strength of anisotropy could vary both laterally and
with depth and it could be a signature of the depth extent of continental roots, as first
mentioned by Montagner and Tanimoto (1991).

The robustness of these models is difficult to assess. Some result from the difference
between two tomographic models obtained from separate inversions (e.g. Ekström and
Dziewonski (1998)). As explained by Lévêque and Cara (1983) separate inversions gen-
erally provide models that average Earth’s properties in different ways (with different res-
olution kernels). It is therefore quite dangerous to make inferences about the anisotropic
properties of the Earth simply by subtracting two models. Problems also arise in inver-
sions made simultaneously for several parameters. It is well-known that inverse problems
are generally non-unique, which means that the model parameters cannot be uniquely
determined by observations. Imposing a regularisation is a way to reduce the ensemble
of possible solutions or to choose a particular solution among all the models compatible
with the data. However, this introduces many hidden problems that can make both the
interpretation and the uncertainty assessment of tomographic models less straightforward
than usually assumed (Trampert, 1998). Several levels of regularisation are involved when
solving inverse problems. The physical variables used to describe the Earth are, strictly
speaking, continuous functions of position, and should be expanded in a complete set of
basis functions. The choice of these basis functions should not matter as long as the ex-
pansion is complete. However, for practical reasons, they have to be truncated and this
implies some level of regularisation. More implicit regularisation is introduced through
the choice of the cost function that is minimized to find a solution (e.g. a χ2 misfit and/or
a model norm term). A general form of the cost function is (Tarantola, 1987) :

Cλ = ∆D(d,Am) + λ∆M(m,m0) (5.1)

where ∆D and ∆M are measures of the distance between observation d and prediction
Am in the data space and between the solution m and a reference model m0 in the model
space, respectively. The choice of these norms is arbitrary and is some kind of a priori
information. Common examples are :

∆D(d,Am) = (d −Am)†C−1
d (d −Am) (5.2)

and

∆M(m,m0) = (m−m0)†C−1
m (m−m0) (5.3)

† stands for the transpose of a matrix. Cd and Cm are data and model covariance oper-
ators, respectively, and m0 is a reference model. By minimizing the cost function, one
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simultaneously tries to reduce the data misfit and some information in the model space. A
compromise between these two properties is reached by choosing an optimum (arbitrary)
value for the trade-off parameter λ. The data covariance matrix Cd is often reduced to a
diagonal matrix containing estimates of data uncertainties. The model covariance matrix
Cm should be chosen using independent prior information on the model space (Tarantola,
1987). The choice of λ, Cd, Cm and the reference model m0 are explicit regularisation
on both the model space and the data space. Many levels of regularisations are thus im-
plicitly and explicitly introduced when solving an inverse problem. It is, therefore, easily
understandable that the resulting model could be dominated by such prior information.

Despite the choice of model parameterization, norms and data errors, the solution
of inverse problems is still highly non-unique. This is why additional constraints on
the model parameters need to be introduced. In studies of lateral variations of mantle
anisotropy from surface wave data, only two (S-wave related) parameters can be resolved
reasonably well from inversions. Two approaches are then usually taken to reduce the
number of parameters : introducing scaling relations between the different unknowns
or neglecting the parameters whose partial derivatives have the smallest amplitude. The
first approach (e.g. Gung et al. (2003) or Montagner and Tanimoto (1991)) makes use
of petrological considerations (Montagner and Anderson, 1989) to choose the scalings
between the parameters describing seismic anisotropy. However, the ratios between these
parameters vary among the different studies (Nataf et al., 1986; Montagner and Tanimoto,
1991). Authors also often introduce the assumption that thermal effects are dominant
in the mantle by imposing a (positive) scaling between density and equivalent isotropic
velocity perturbations. In the second approach (Montagner, 1985, 2002; Montagner and
Nataf, 1988; Silveira and Stutzmann, 2002), three of the six model parameters are not
taken into account, which introduces errors in the amplitude of the models recovered, but
might also have stronger effects, more difficult to see.

Direct search approaches offer a way to obtain robust information on Earth’s proper-
ties without having to introduce unnecessary a priori information on the model parameters
(i.e. λ = 0 and equation 5.3 is not used). Here, we applied the Neighbourhood Algorithm
(NA) (Sambridge, 1999a,b) to the isotropic part of azimuthally anisotropic phase velocity
maps for fundamental Love and Rayleigh modes (Trampert and Woodhouse, 2003) to find
models of radial anisotropy in Earth’s upper mantle. With the NA, all the models com-
patible with a given data set are found and robust probabilistic information on the model
parameters (probability density functions and trade-offs) are obtained. We did not assume
any scaling between the model parameters or neglect parameters whose sensitivity ker-
nels have small amplitudes. This research was, first and foremost, aimed to determine
whether lateral variations of upper mantle anisotropy are constrained by the data and sta-
tistically robust. In addition, we could verify whether seismological data are compatible
with traditional scalings between model parameters.
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5.2 Data and parameterization

The data set was composed of the isotropic part of fundamental mode Rayleigh and Love
wave phase velocity maps at 40, 50, 60, 70, 80, 90, 100, 115, 130 and 150 seconds (Tram-
pert and Woodhouse, 2003), corrected for the crustal model of Mooney et al. (1998).
These phase velocity models were developed on a spherical harmonic (SH) basis up to
degree 40. A local perturbation δc/c(θ, φ) in the phase velocity, with respect to a spher-
ically symmetric reference model, is given by a depth average of perturbations in the
Earth’s structure (e.g. Dahlen and Tromp (1998)) :

k

(
δc

c

)
(θ, φ) =

∫ a

0

δm(r, θ, φ) kK(r)r2 dr (5.4)

where a is the radius of the Earth, (θ, φ) is a point at the surface of the Earth and kK(r)
is the partial derivative, also called sensitivity kernel, for model parameter m(r). k dis-
criminates between different surface wave frequencies. Both the phase velocity maps and
the perturbations of the model parameters are developed on a spherical harmonic basis
(Edmonds, 1960) :

k

(
δc

c

)
(θ, φ) =

smax∑
s=0

s∑
t=−s

k

(
δc

c

)t

s

Y t
s (θ, φ) (5.5)

δm(r, θ, φ) =
smax∑
s=0

s∑
t=−s

δmt
s(r)Y

t
s (θ, φ) (5.6)

and therefore

k

(
δc

c

)t

s

=
∫ a

0

δmt
s(r)kK(r)r

2 dr (5.7)

We used degrees 0 to 8 only. The reason for this limitation is that the derivative damping
chosen by Trampert and Woodhouse (2003) hardly affects the lower degrees.

To determine the fit of a model to the data, we decided to use a χ2 misfit (equation 5.2),
which measures the average data misfit compared to the size of the error bar. An estimate
of uncertainties on the phase velocities was thus needed. The same approach as in Chapter
3 was used here. Models from different studies were employed for periods of 40, 60, 80,
100 and 150 seconds : Trampert and Woodhouse (1995, 1996, 2001, 2003), Ekström et al.
(1997), Laske and Masters (1996), Wong (1989) and van Heijst and Woodhouse (1999).
At each selected period, a standard deviation was estimated for every SH coefficient. By
analogy to error bars determined for normal mode structure coefficients (Resovsky and
Ritzwoller, 1998), we decided to assign averaged uncertainties to k( δcc )

t
s independent of

the azimuthal order t and defined by :

kσs
2 =

1
2s+ 1

s∑
t=−s

kσ
t
s
2

(5.8)
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where s is the degree of the spherical harmonic and kσ
t
s
2 is the variance estimated for

one particular SH coefficient. This should account for different measuring techniques of
phase velocity, different data coverage and different regularisation-schemes in the con-
struction of the maps between 40 and 150 seconds. At intermediate periods, we made a
simple interpolation of the uncertainties obtained at 40, 60, 80, 100 and 150 seconds. We
assumed, for convenience, that the errors were Gaussian distributed, but there were too
few models to test this hypothesis.

Radial anisotropy is described by five independent elastic coefficients, A, C, N , L
and F in the notation of Love (1927). In seismology the following five parameters are
often used to represent this anisotropy : φ = 1−C/A, ξ = 1−N/L, η = 1−F/(A−2L)
and one P and one S velocity. Note that the definitions of the first three parameters
vary from author to author. The elastic coefficients are related to the wavespeed of P-
waves travelling either vertically (VPV =

√
C/ρ) or horizontally (VPH =

√
A/ρ), and

to the wavespeed of vertically or horizontally polarized S-waves (VSV =
√
L/ρ or

VSH =
√
N/ρ, respectively). Thus, φ describes P-wave anisotropy and ξ describes

S-wave anisotropy. Parameter η describes the anisotropy of waves travelling with an in-
termediate incidence angle. We parameterized the models as perturbations of the Love pa-
rameters and perturbations of density with respect to PREM (Dziewonski and Anderson,
1981). The corresponding sensitivity kernels are given in Tanimoto (1986), Mochizuki
(1986) or Dahlen and Tromp (1998). The model parameters are expanded on a spherical
harmonic basis, as in equation 5.6. The relation between the data and the structure of the
Earth is then :

k

(
δc

c

)t

s

=
∫ a

rcmb

[ kKA(r)δAts(r) + kKC(r)δCt
s(r)

+ kKN (r)δN t
s(r) + kKL(r)δLts(r)

+ kKF (r)δF t
s (r) + kKρ(r)δρts(r)]r

2 dr (5.9)

where rcmb is the radius of the core-mantle boundary and a is the radius of the Earth. The
problem thus naturally separates into individual SH components. We could have chosen a
parameterization in terms of velocity perturbations δVPV , δVPH , δVSH , δVSV instead of
A, C, N and L, or in terms of δφ, δVPV , δξ, δVSV and δη, but the choice of the param-
eterization does not matter when using the NA, since the entire model space is explored
and all the models compatible with the data are represented in the end. In case of an
inversion, if no special care is taken, different parameterizations can lead to inconsistent
results (Lévêque and Cara, 1983; Tarantola, 1987). With the NA, any information on the
trade-offs among the model parameters, which changes the results of a classical linear in-
version, is directly available through correlation matrices and two-dimensional posterior
probability functions, as described by Sambridge (1999a,b). Examples specific to long
wavelength tomography can also be found in Resovsky and Trampert (2002) and Beghein
et al. (2002) (or Chapter 3).

No relation was assumed between δρ and equivalent isotropic shear-wave velocity
perturbations, or between δφ, δξ and δη. We further did not use any explicit regulari-
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sation in the model space via the cost function (no ∆M(m,m0) term in equation 5.1).
We employed a layered parameterization, with layers delimited by 24 and 100 km depth,
100 and 220 km depth and 220 and 670 km depth. The choice of this layered division
was not based on the depth resolution of the data, but was mainly motivated by compu-
tational resources. Our parameterization is still sufficient to analyze the robustness of the
anisotropic signal. Earlier studies showed that upper mantle radial anisotropy decreases
rapidly with depth and the sensitivity of fundamental mode surface waves at depths larger
than 220 km is relatively small. The deepest layer was thus assumed to be isotropic. This
is a strong assumption, but the correlation matrices obtained from the NA showed a pos-
teriori that it did not have a large effect on the solution at depths shallower than 220 km
(there were very little trade-offs among the different model parameters). We finally had a
total of 15 model parameters.

5 % deviation for the elastic coefficients and 2 % deviation for density were allowed
from PREM. The choice of these boundaries is arbitrary and constitutes, together with
the layered parameterization and the assumption of isotropy in the deepest layer, the only
prior information introduced in the model space. However, because the problem is lin-
earized, we have to stay within the framework of perturbation theory, which implies that
perturbations in the model parameters should not be too large. On the other hand, we
do not want these perturbations to be too small, since it would exclude possible “good”
models. This is a trial and error part of the algorithm where the stability of results needs
to be checked by changing the boundaries.

5.3 Method

Sambridge’s Neighbourhood Algorithm was employed to identify the regions of the model
space that best fit the data. For details about the method, the reader is referred to the two
original papers (Sambridge, 1999a,b). Different from usual direct search approaches, the
NA characterizes the whole range of models contained in the model space (defined by its
bounds) instead of searching for one “best” region. The NA is a two-stage procedure. The
first stage consists in an efficient survey of the model space to identify the “good” data
fitting regions. The interpolation in the model space using the Voronoi cells makes this
algorithm self-adaptative and it allows a complete survey of the model space, provided the
right tuning parameters have been chosen. Another advantage is that it can also sample
several promising regions simultaneously. During this survey, the sampling density in-
creases in the surroundings of the good models, without loosing information on the mod-
els previously generated (even the “bad” ones). The second stage of the NA makes use
of the entire ensemble of models generated in the first stage to construct an approximate
posterior probability density (PPD) function. This approximate PPD is then integrated to
obtain statistical inferences on all the model parameters (1-D, 2-D marginals, etc). PPD
functions can be associated with each parameter, giving an estimate of their likelihood,
and the trade-offs among the different parameters are readily available.

Each stage of the NA requires the tuning of parameters whose optimum values have
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to be found by trial and error. Their influence on the survey of the model space and on the
Bayesian interpretation of the results was described by Sambridge (1999a,b) in general
and by Resovsky and Trampert (2002) in a normal mode problem. To broaden the survey
as much as possible, the two tuning parameters required for the first stage of the algorithm
were kept equal. These two parameters are ns, the total number of new models generated
at each iteration, and nr, the number of best data-fitting cells in which the new models
are created. The NA was applied to each SH coefficient of the selected phase velocity
maps up to degree eight (81 coefficients). After a few tests, we took ns = nr = 100 and
the number of iterations varied between 300 and 700, depending on the SH coefficient
treated. For the second stage of the NA, a few random walks of about 6000 steps were
enough to insure the convergence of the integrals. In total, solving the problem for one
SH coefficient took about one day.

The application of the NA to each SH component of the phase velocity maps pro-
vided PPD functions for each SH component δmt

s of the model parameters : δAt
s, δCt

s,
δN t

s , δLts, δF t
s and δρts in the top layers, and δAt

s, δN t
s and δρts in the third layer. Ran-

dom values of these δmt
s were generated, according to their exact PPD functions, to get

random three-dimensional models of δA, δC, δN , δL, δF and δρ using equation 5.6.
Data-compatible tomographic maps of the anisotropic parameters φ, ξ and η, density
anomalies and perturbations in the equivalent isotropic S- and P-wave velocities were
then generated. Rather than representing the thousands of tomographic models created,
we decided to look at them from a statistical point of view. Histograms were computed to
determine whether the seismological data employed can put robust constraints on radial
anisotropy and density anomalies, under continents and oceans. To look at the distribution
of parameter δm over a given area A, we divided this area into N cells of area Ai and
integrated δm over each cell, for all the models generated :

δmi =
∫ ∫

celli

δm(θ, φ) dΩ (5.10)

The δmi were then added to one another and the resulting sum was divided by the total
area A to get :

δm =
1
A

N∑
i=1

δmi (5.11)

Histograms were constructed by accumulating the average δm obtained for each model.
These distributions represent thus the range of data-compatible values of δm, averaged
over area A, and do not account for variations within the area considered.

5.4 Results

Fig. 5.1 shows the likelihoods for the spherically averaged ξ, φ and η obtained with
the NA for the top layers. Shear-wave anisotropy deviates significantly from PREM
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(Dziewonski and Anderson, 1981) in the uppermost layer, with less anisotropy than in
PREM, and there is slightly more S-wave anisotropy than in PREM between 100 and
220 km depth. Some changes in η are also visible in the two layers, showing a little more
anisotropy than in the reference model. This is in agreement with the results of Chapter 4
where more data were employed.

24 km < d < 100 km

100 km < d < 220 km

 -0.150 0.000  0.150

 -0.150 0.000  0.150

 -0.100 0.000  0.100  -0.100 0.000  0.100

 -0.100 0.000  0.100  -0.100 0.000  0.100

=1 - N/L =1- C/A =1- F/(A-2L)

      

   

ηξ φ

Figure 5.1: Likelihoods for the spherically averaged ξ, φ and η. The vertical line repre-
sents the value of PREM averaged over our layers.

Fig. 5.2 to 5.4 show the distribution of values for parameter ξ in the two upper layers,
obtained by randomly sampling each δLts and δN t

s according to their PPD functions, and
averaging the resulting ξ over a selected region. The histograms have been normalized to
1 to represent PPD functions. The distinction between continents and oceans was made
using the 3SMAC model (Nataf and Ricard, 1996). The vertical lines correspond to the
PREM values of ξ, averaged over our layers. Fig. 5.2 displays the PPD functions of the
average ξ under the Pacific, the Atlantic and the Indian Ocean, and under all the oceans
combined. From these PPD functions, we computed the probability of having less S-
wave anisotropy in absolute value than in PREM in the different areas (Table 5.1). The
distributions for the Pacific, the Atlantic and the Indian Ocean are very similar, and their
peaks show a very slight decrease of ξ with depth, except maybe under the Atlantic. This
rather uniform S-wave anisotropy had already been observed by Montagner and Tanimoto
(1991). A robust feature also visible is that ξ is smaller than PREM between 24 and
100 km depth and larger than PREM between 100 and 220 km depth. This shows that
the variation of S-wave anisotropy with depth beneath oceans is not as strong as in the
reference model. This characteristic, well resolved by our data, was observed earlier by
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Ekström and Dziewonski (1998) under the Pacific Ocean, but we show that this departure
from PREM is typical of other oceans as well.
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Figure 5.2: Likelihood of S-wave anisotropy beneath oceans. The vertical line indicates
the value of ξ in PREM. The upper and the lower panels have the same scale.

Model 3SMAC (Nataf and Ricard, 1996) allows to distinguish oceans according to
their age. Montagner (1985) observed an increase of the depth extent and of the strength
of shear-wave anisotropy with the age of the ocean floor. Nishimura and Forsyth (1989)
also observed an increase of ξ with age in the Pacific and reported a transition, situated
at 20 Ma, between young and old oceans, with older regions characterized by a sort of
equilibrium. Our lateral resolution of degree eight is not sufficient to make such a precise
age distinction. Therefore, we generated histograms of ξ for oceans younger than 50Ma,
for oceans aged between 50 and 100 Ma, and for oceans older than 100 Ma. Inspection
of Fig. 5.3 reveals a clear departure from PREM for ξ beneath oceans older than 50 Ma,
in the two layers, with a change of sign as observed in Fig. 5.2. A similar signal is
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Figure 5.3: Likelihood of S-wave anisotropy beneath oceans according to their age. The
vertical line indicates the value of ξ in PREM. The upper and the lower panels have the
same scale.

observed for young oceans, but the deviation from PREM is not as strong as for older
oceans. There is no observable difference between oceans older than 100 Ma and oceans
situated in the age range 50-100 Ma, similar to the observations of Nishimura and Forsyth
(1989). However, both Montagner (1985) and Nishimura and Forsyth (1989) obtained ξ
increasing with the age of the sea floor, while our models show a decrease in the top
100 km. Between 100 and 220 km depth, we find results in closer agreement with theirs.
The probability that ξ is smaller than PREM in absolute value is given in Table 5.1.
We find, in the top layer, a probability of 0.84 for oceans younger than 50 Ma, and a
probability of 0.99 both for oceans aged between 50 and 100 Ma and for oceans older
than 100 Ma. The deviation from PREM has thus a slightly smaller probability for young
oceans than for older ones. The same is true for the deeper layer.

Fig. 5.4 displays the values of ξ under continents. No significant deviation in S-wave
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Figure 5.4: Likelihood of S-wave anisotropy beneath continents. The vertical line indi-
cates the value of ξ in PREM. The upper and the lower panels have the same scale.

anisotropy from PREM was observed under continents taken as a whole. However, we
found a clear age-related signal (see also Table 5.1). Platforms and tectonically active
regions are similar, and moderate change relative to PREM is observed. On the contrary,
cratons display less S-wave anisotropy than the world average in the top 100 km, and
more anisotropy at depths between 100 and 220 km, like most oceans. The strength of
the anisotropy beneath cratons does not change much with depth, similarly to what is
observed beneath old oceans. This is very different for younger continental lithosphere
where the depth variation is rather strong. S-wave anisotropy is therefore most likely
the strongest beneath young continental lithosphere in the top 100 km. It is also less
pronounced beneath cratons and old oceans than in young oceanic lithosphere.

Our data do not have as much sensitivity to P-wave related parameters (δC t
s and δAt

s)
as to S-wave related parameters. If the data were to be inverted, the resulting δC and
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Figure 5.5: Likelihood of P-wave anisotropy beneath oceans. The vertical line indicates
the value of φ in PREM. The upper and the lower panels have the same scale.

δA models would be highly coupled by regularisation. Using the NA and imposing no
explicit regularisation in the model space, we found all models compatible with the data,
independent of the sensitivity. Inspection of the posterior covariance matrices (not dis-
played here) showed, indeed, little trade-offs between parameters with high and small
sensitivity. To show the P-wave anisotropy signal, we computed the overal distribution
of φ, by randomly resampling the PPD functions associated with each δC t

s and δAt
s,

as described earlier. The PPD functions obtained do not show any significant departure
from PREM under oceans (Fig. 5.5 and Table 5.1), but there seems to be a slight age-
dependence (Fig. 5.6 and Table 5.1). In the top 100 km, the deviation from PREM goes
from positive values for young oceans towards negative values for older oceans, and op-
posite in the deepest layer. The upper 100 km beneath continents are characterized by a
smaller P-wave anisotropy than in PREM (Fig. 5.7 and Table 5.1). No clear age related
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Figure 5.6: Likelihood of P-wave anisotropy beneath oceans according to their age. The
vertical line indicates the value of φ in PREM. The upper and the lower panels have the
same scale.

signal is seen. The PPD functions for parameter η do not show any significant deviation
from PREM under oceans as a whole (Fig. 5.8 and Table 5.1), but a clear age depen-
dence is visible in Fig. 5.9 and Table 5.1. Like for ξ, young oceanic lithosphere shows
a rapid decrease of η with depth while older oceans are characterized by a more constant
η. It is also interesting to note that, like for S-wave anisotropy, old oceans are most likely
characterized by less η-anisotropy than young oceans in the top 100 km. The PPDs of
Fig. 9 clearly display less anisotropy than in PREM under continents in the top 100 km
(see also Table 5.1). It is also most likely that cratons do not have any η-anisotropy in
the uppermost layer (we computed P (η > 0) = 0.52), and that the level of η-anisotropy
increases for younger continental lithosphere, similarly to what was observed for oceanic
lithosphere. There might be some positive departure from PREM for η beneath cratons
in the depth range 100-220 km, but the signal is weak. Elsewhere, PREM gives a good
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Figure 5.7: Likelihood of P-wave anisotropy beneath continents. The vertical line indi-
cates the value of φ in PREM. The upper and the lower panels have the same scale.

approximation for η.

Montagner and Anderson (1989) investigated the correlations between parameters φ,
ξ, η for two different petrological models (pyrolite and piclogite). They found strong cor-
relation betweenN/L− 1 (−ξ in our notation) and η and between 1− C/A (our φ) and
N/L − 1, independent of the two petrological models employed. They proposed to use
these correlations to derive scaling factors between dξ, dφ and dη, in order to reduce the
number of parameters in inversions of seismological data. They also noticed that most
seismological models of upper mantle anisotropy do not fall within their estimates of ξ, φ
and η, and that there were large regional variations among these models. They proposed
that scaling relationships from petrological models should be used as a priori constraints
in tomographic inversions. Our study provides unbiased and independent constraints on
the regional variations of the three parameters ξ, φ and η. We computed the overal corre-
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Figure 5.8: Likelihood of η-anisotropy beneath oceans. The vertical line indicates the
value of η in PREM. The upper and the lower panels have the same scale.

lation between dξ = ξ − ξprem and dφ = φ − φprem, but it did not see any significant
correlation or anticorrelation (Fig. 5.11) between the two variables. The distributions
are centred on zero, which is easily understandable, since either φ or ξ shows no devi-
ation from PREM for a given tectonic province. The overal correlation between dξ and
dη = η−ηprem is slightly negative (around -0.3) in the two layers. These correlations are
indeed small and do not necessarily justify an overal scaling between these parameters.
To make a more regional analysis of the behaviour of dφ relative to dξ we computed the
distribution of their ratios beneath oceans, cratons, platforms and tectonically active re-
gions. Fig. 5.12 shows the PPD functions for the ratios of the average dφ over the average
dξ (not the average of dφ/dξ). The ratio is slightly negative beneath cratons (the peak is
situated around −0.5) and slightly positive (around 0.5) beneath platforms and tectoni-
cally active regions, in the upper 100 km of the mantle. At larger depths the distributions



5.4 Results 103

0

5

10

15

20

Age < 50 Ma

24 km < d < 100 km

0

5

10

15

20

50 Ma < age < 100 Ma

24 km < d < 100 km

0

5

10

15

20

Age > 100 Ma

24 km < d < 100 km

-0.1 -0.05 0 0.05 0.1 0.15

η

0

5

10

15

20
100 km < d < 220 km

-0.1 -0.05 0 0.05 0.1 0.15

η

0

5

10

15

20
100 km < d < 220 km

-0.1 -0.05 0 0.05 0.1 0.15

η

0

5

10

15

20
100 km < d < 220 km

L
ik

el
ih

oo
d

Figure 5.9: Likelihood of η-anisotropy beneath oceans according to their age. The vertical
line indicates the value of η in PREM. The upper and the lower panels have the same scale.

are centred on zero. The ratios of the averaged dη over the averaged dξ (Fig. 5.13) are
clearly age-related beneath continents in the depth range 24-100 km and suggest more
lateral variations in parameter η than in S-wave anisotropy. The ratio is negative beneath
cratons in the top layer, with a peak at -2.5. It is positive beneath platforms (around 2)
and no significant signal is observed for tectonically active regions and oceans. Between
100 and 220 km depth the distributions of ratios are more uniform, slightly negative for
cratons, and centred on zero elsewhere. All distributions are wide, and most commonly
used scalings (−1.5 � dφ/dξ � −0.5 and −2.5 � dη/dξ � −1.75) fall within our PPD
functions (sometimes meaningfully). However, if we believe that the seismological data
contain information on these parameters, and one might be better off neglecting dφ and dη
altogether in inversions with the risk of biasing the uppermost mantle beneath continents
through η. Our preferred approach would be to use the PPD functions of Fig. 11 and 12
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Figure 5.10: Likelihood of η-anisotropy beneath continents. The vertical line indicates
the value of η in PREM. The upper and the lower panels have the same scale.

together with the method of Montagner and Anderson (1989) to put bounds on regional
petrological variations.

The models obtained for the equivalent isotropic perturbations in S- and P-wave ve-
locity (dlnVs and dlnVp) in the two upper layers are very similar to those usually found :
continents are fast and oceans are slow on average. There is a good correlation between S
and P anomalies down to 220 km depth, as demonstrated in Fig. 5.14. This figure shows
distributions of correlations between dlnVs and dlnVp in the top two layers. Models for
dlnVs and dlnVp were randomly generated from the PPD functions of each model param-
eter, as described earlier, and the correlation between S and P anomalies was computed
for each model, yielding the PPDs of Fig. 5.14. The same procedure can be applied to get
ratios between dlnVs and dlnVp. The ratios peaked at dlnVs/dlnVp = 1, but some of the
distributions are sufficiently large that they cannot be used to discriminate between ther-
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Figure 5.11: Likelihood of correlation between dφ and dξ (left) and between dη and dξ
(right). The upper and the lower panels have the same scale.

mal or compositional effects (see Chapter 6 for a little more details). Fig. 5.15 displays
the variation of dlnVs with the age of the ocean floor. There is a clear age dependence
in the two top layers beneath oceans. As first observed by Zhang and Tanimoto (1991),
while young oceans display slow velocity anomalies, older oceans are characterized by
fast velocities. The time variation in the top layer appears to correspond to the t1/2 law
proposed by Zhang and Tanimoto (1991), where t is the age of the ocean floor, but the
age dependence seems more linear deeper.
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Figure 5.12: Likelihood of dφ/dξ in various tectonic regions. The upper and the lower
panels have the same scale.
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Figure 5.13: Likelihood of dη/dξ in various tectonic regions. The upper and the lower
panels have the same scale.
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Parameter p Area Depth (km) P (|p| < |pprem|)
ξ = 1−N/L All oceans 24 < d < 100 0.99

100 < d < 220 0.06

Pacific 24 < d < 100 0.96
100 < d < 220 0.10

Indian Ocean 24 < d < 100 0.90
100 < d < 220 0.13

Atlantic 24 < d < 100 0.98
100 < d < 220 0.09

All oceans 24 < d < 100 0.69
younger than 50Ma 100 < d < 220 0.31

All oceans 24 < d < 100 0.87
50 < age < 100Ma 100 < d < 220 0.18

All oceans 24 < d < 100 0.83
older than 100Ma 100 < d < 220 0.19

All continents 24 < d < 100 0.49
100 < d < 220 0.46

All cratons 24 < d < 100 0.86
100 < d < 220 0.20

All platforms 24 < d < 100 0.32
100 < d < 220 0.61

All tectonically 24 < d < 100 0.26
active regions 100 < d < 220 0.61

φ = 1− C/A All oceans 24 < d < 100 0.52
100 < d < 220 0.55

Pacific 24 < d < 100 0.63
100 < d < 220 0.45

Table 5.1 Probability of having less anisotropy than in PREM (continue on next page)
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Parameter p Area Depth (km) P (|p| < |pprem|)

Indian Ocean 24 < d < 100 0.48
100 < d < 220 0.48

Atlantic 24 < d < 100 0.42
100 < d < 220 0.63

All oceans 24 < d < 100 0.27
younger than 50Ma 100 < d < 220 0.81

All oceans 24 < d < 100 0.56
50< age < 100Ma 100 < d < 220 0.35

All oceans 24 < d < 100 0.74
older than 100Ma 100 < d < 220 0.33

All continents 24 < d < 100 0.83
100 < d < 220 0.50

All cratons 24 < d < 100 0.73
100 < d < 220 0.39

All platforms 24 < d < 100 0.80
100 < d < 220 0.49

All tectonically 24 < d < 100 0.68
active regions 100 < d < 220 0.60

η = 1− F/(A− 2L) All oceans 24 < d < 100 0.46
100 < d < 220 0.73

Pacific 24 < d < 100 0.98
100 < d < 220 0.42

Indian Ocean 24 < d < 100 0.93
100 < d < 220 0.53

Atlantic 24 < d < 100 0.78
Table 5.1 Probability of having less anisotropy than in PREM (continue on next page)
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Parameter p Area Depth (km) P (|p| < |pprem|)
100 < d < 220 0.54

All oceans 24 < d < 100 0.14
younger than 50Ma 100 < d < 220 0.87

All oceans 24 < d < 100 0.70
50 < age < 100Ma 100 < d < 220 0.47

All oceans 24 < d < 100 0.75
older than 100Ma 100 < d < 220 0.45

All continents 24 < d < 100 0.99
100 < d < 220 0.51

All cratons 24 < d < 100 0.98
100 < d < 220 0.42

All platforms 24 < d < 100 0.93
100 < d < 220 0.53

All tectonically 24 < d < 100 0.78
active regions 100 < d < 220 0.54

Table 5.1: Probability of having less anisotropy than in PREM (continued)

A last parameter is density. Most density models were anticorrelated to the veloci-
ties, and our mean dlnρ model was very similar to Ishii and Tromp (2001)’s model at
the corresponding depths. The signal clearly showed a negative ratio dlnρ/dlnVs, in all
regions, especially beneath old oceans and cratons, indicative of strong chemical hetero-
geneities, but this signal might not have any physical meaning. Indeed, while Resovsky
and Trampert (2002) demonstrated that NA applied to a data set composed of fundamen-
tal and overtone surface waves and normal modes can resolve lateral variations in density
anomalies, more tests are needed here to know whether fundamental mode surface waves
alone can resolve density. However, we ran tests which showed that the results for density
do not affect the results for anisotropy. For several SH coefficients, we did not allow any
density anomaly (i.e. δρts = 0), and we did not observe any significant change in the other
model parameters, that is to say the five elastic coefficients. This indicates a low trade-off
between elastic coefficients and density anomalies.
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5.5 Discussion and conclusion

The application of the NA to degree eight fundamental mode Love and Rayleigh wave
phase velocity maps allowed us to retrieve robust information on the lateral variations
of radial anisotropy in the upper 220 km of the mantle. The method employed was a
derivative-free model space search technique which presents the advantages of not requir-
ing any unnecessary regularisation on the model space. The results showed that ξ was
negative in the two layers down to 220 km, below oceans and below continents, which
means that horizontally polarized shear waves travel faster that vertically polarized shear
waves (VSH > VSV ).

Cratons can be distinguished from younger continental regions using the depth varia-
tion of S-wave anisotropy. Our results showed that S-wave anisotropy is almost constant
beneath cratons down to at least 220 km depth, as opposed to platforms and tectonically
active regions where a strong decrease of ξ was observed with depth. This could be as-
sociated with the depth of continental roots, with a continental lithosphere thicker in old
regions than young regions. Our results also suggest that cratons have somewhat less S-
wave anisotropy than younger continental regions in the top 100 km, and the departure
from PREM is generally stronger beneath cratons. No significant age-dependence was
observed within continents for P-wave anisotropy. η appears to be most likely zero be-
neath cratons in the top 100 km and increases for younger continental regions, similarly
to ξ. No changes relative to PREM was visible in the deepest layer, both for φ and for η.

S-wave anisotropy beneath oceans is rather uniform (no difference was observed from
one ocean to another) and similar to the signal for cratons. The data clearly require
less S-wave anisotropy than in PREM in the top 100 km beneath oceans and cratons,
and more anisotropy in the depth range 100-220km. A strong age-related signal is,
however, observed in oceanic lithosphere, similar to the age-dependent signal in con-
tinental lithosphere. S-wave anisotropy decreases with depth beneath young oceans,
while older oceans display less depth variation, suggesting deeper anisotropy and possibly
thicker lithosphere in old oceanic regions. From the point of view of S-wave anisotropy,
this means that cratons and old oceans are much more alike than commonly thought.
Young continental and young oceanic lithospheres have a similar depth pattern of S-
wave anisotropy, within the limits of our layered parameterization. The depth depen-
dence of ξ beneath oceans is compatible with Gung et al. (2003)’s general observation
of VSH > VSV between 80 and 200 km depth under ocean basins and down to at least
200 km depth under cratons. Parameter η follows a similar age-dependence as ξ within
oceans, with less anisotropy beneath old oceanic lithospheres than beneath younger ones
in the top 100 km. The trend is reversed between 100 and 220 km depth. We also observe
an age variation of dlnVs in the upper 100 km of the oceans that could correspond to the
a+ bt1/2 law proposed by Zhang and Tanimoto (1991), but we do not have enough points
to confidently estimate a and b. A more linear age-related signal is observed deeper.
These observations for dlnVs in the oceans are compatible with a thickening of oceanic
lithosphere with age, more rapid for young oceans than older ones. Parameter ξ could,
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therefore, characterize the depth extent of the oceanic lithosphere, although the layered
parameterization we adopted does not allow us to make a precise interpretation of our
results in term of lithosphere-asthenosphere. Karato (1992) proposed that the Lehmann
discontinuity results from a change in the deformation mechanism. This means that the
depth of the discontinuity varies locally and could be detected by a change in anisotropy.
Our results are compatible with such a proposition and the depth dependence of our S-
wave anisotropy is largely in agreement with the discontinuity observation of Deuss and
Woodhouse (2002).

P-wave anisotropy shows little deviation from PREM. With the NA, we have been
able to retrieve valuable information on these two parameters that is lost in traditional
inversions. We propose that the distribution obtained for ξ, φ and η could be used as
constraints on the mineralogical composition of the uppermost mantle.

The correlations and ratios between dφ and dξ and between dη and dξ were com-
puted for different regions to test the assumption of proportionality between these vari-
ables commonly used in inversions. Our results showed that fundamental mode surface
wave data do not favour any particular ratio between perturbations in P-wave and S-wave
anisotropy. The ratio dη/dξ is highly dependent on the regions considered. It is different
for oceans and for continents and it is clearly age-related within continents. This infor-
mation should be used to constrain the mineralogy regionally, rather than prescribe global
proportionality factors in inversions.

Lateral variations in the location of the 220-discontinuity were neglected in this study.
They can be related to phase velocity perturbations through boundary factors that are
derived from a linearized perturbation theory approximation. However, we believe that
the effect of the crust is more important for the fundamental mode phase velocity data
employed here. Levshin and Ratnikova (1984) showed that, if not accounted for properly,
large scale inhomogeneities can give rise to apparent anisotropic signals such as shear
wave splitting or Love-Rayleigh discrepancy. In this work, we accounted for the effect
of the crust in the most precise way possible with exact non-linear computations rather
than a linearized perturbation theory. In addition, the type of data used here puts weak
constraints on the internal discontinuities (e.g. Ishii and Tromp (2001) or Resovsky and
Trampert (2003)), which would probably translate in terms of flat posterior distributions
with the NA. More tests would be needed to verify this.
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Chapter 6

Probability density functions for
radial anisotropy in the upper
1200 km of the mantle

Abstract

The presence of radial anisotropy in the upper mantle, transition zone and the top of the
lower mantle is investigated using a model space search technique with Rayleigh and
Love wave phase velocity models constructed from overtone measurements. Probabil-
ity density functions are obtained for S-wave anisotropy, P-wave anisotropy, intermediate
parameter η, Vp, Vs and density anomalies. Shear wave anisotropy with VSH > VSV is
found down to the transition zone, most likely occurring beneath oceans (and stronger for
young oceanic areas than for old ones) and not beneath continents. P-wave anisotropy and
η are similar : they both change sign below 220 km depth beneath old oceans and conti-
nental regions. For young oceans the positive signal for φ and η observed in the uppermost
mantle extends slightly deeper than beneath older oceans. The ratio R = dlnVs/dlnVp
suggests that there is good evidence that a chemical component is responsible for the
anomalies in most places at depths greater than 220 km. More tests are needed to infer
the robustness of the results for density, but they did not affect the results for anisotropy.

The content of this chapter was submitted in Beghein,C. & Trampert,J., Earth and Planetary Science
Letters, 2003
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6.1 Introduction

Radial anisotropy in the uppermost mantle was first proposed to simultaneously explain
fundamental Love and Rayleigh wave phase velocity maps (Anderson, 1961). PREM
(Dziewonski and Anderson, 1981) was the first reference model to include this type of
anisotropy in the upper 220 km of the mantle. Isotropy was assumed deeper. Since then,
numerous surface wave studies showed that this anisotropy varies laterally (Montagner
and Tanimoto, 1991; Cara et al., 1980; Lévêque et al., 1998; Debayle and Kennett, 2000;
Silveira and Stutzmann, 2002) and might extend slightly deeper than 220 km in some
areas (Montagner and Tanimoto, 1991; Lévêque et al., 1998), but the exact depth extent
is still not clear. It is usually believed that radial anisotropy decreases rapidly with depth.
Its presence in the transition zone and in the top of the lower mantle is, however, not
excluded, as shown from normal mode data (Montagner and Kennett, 1996) and in a re-
gional study based on shear-wave splitting measurements (Wookey et al., 2002; Chen and
Brudzinski, 2003). Higher mode data appear to require radial anisotropy down to about
300 km depth beneath the Indian ocean (Lévêque et al., 1998) and the Pacific (Montag-
ner, 1985), but not deeper than 220 km depth beneath the Atlantic ocean (Silveira and
Stutzmann, 2002). Some level of shear-wave anisotropy was also detected in the range
200-400 km depth beneath cratons and 80-200 km under ocean basins in a global study
(e.g. Gung et al. (2003)).

Current models of radial anisotropy are usually derived from the inversion of surface
wave data (fundamental and higher modes). Because these problems are highly non-
unique, additional constraints on the model parameters need to be introduced. The number
of unknowns is often reduced by either neglecting model parameters to which the data
have the least sensitivity and inverting only for two S-wave related parameters and density
(Montagner, 1985), or by imposing global scalings between perturbations in the different
anisotropic parameters (Gung et al., 2003).

In this chapter, we investigate lateral variations in radial anisotropy in global models
using the Neighbourhood Algorithm (NA) (Sambridge, 1999a,b). The method is applied
to surface wave phase velocity maps constructed from overtone measurements (van Heijst
and Woodhouse, 1999), which have sensitivity down to approximately 1200 km depth.
The NA does not require neglecting parameters or scaling relations and returns probability
density functions for all model parameters with reliable uncertainty estimates.

6.2 Method

The NA (Sambridge, 1999a,b) is a direct search approach from which robust information
on Earth’s properties can be obtained without having to introduce unnecessary a priori
information in the model space. The NA consists of two stages. During the first stage,
the model space is surveyed and regions that best fit the data are identified. Provided
the right tuning parameters, the NA finds all models compatible with the data. One can
explore different parts of the model space simultaneously and there is always a possibility
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to move towards more promising regions. The number of models generated automatically
increases in the vicinity of the good fitting areas. After the sampling of the model space, a
“misfit map” is obtained, and models of high misfit are associated with a small likelihood,
while models with lower misfit are associated with a higher likelihood. An importance
sampling of this ensemble of models is then performed in the second stage of the NA
to generate a resampled ensemble whose distribution follows the distribution of misfit
previously obtained. This resampled ensemble is integrated numerically to compute the
likelihood, or 1-D marginal, associated with each model parameter and the covariance
matrix that gives the trade-offs among the different variables. Because the second stage
is highly time-consuming, the NA limits the size of the model space that can be studied
in a reasonable amount of time. It can, however, be easily applied to phase velocity maps
as they can be expanded into spherical harmonics. The inverse problem is then solved
separately for each spherical harmonic (SH) coefficient of Earth’s structure.

6.3 Data

The data set employed is composed of the isotropic part of azimuthally anisotropic phase
velocity maps constructed from higher mode measurements (van Heijst and Woodhouse,
1999) for Rayleigh and Love waves of overtone number n = 1 and n = 2. The technique
to obtain these phase velocity maps is described by Trampert and van Heijst (2002) and
Trampert and Woodhouse (2003). The isotropic part of the phase velocity models were
developed on a spherical harmonic basis up to degree 40 and coefficients up to degree
eight are employed here to constrain Earth’s structure. It can be shown that the degree s
and order t of the phase velocity perturbation k

(
δc
c

)t
s

is linearly related to perturbations
in Earth’s structure at degree s and order t :

k

(
δc

c

)t

s

=
∫ a

0

δmt
s(r)kK(r)r

2 dr (6.1)

where k discriminates between different surface wave frequencies, a is the radius of the
Earth and kK(r) is the partial derivative, or depth sensitivity kernel, for model parameter
δmt

s(r).
Errors in phase velocity models are best evaluated by comparing different models.

Due to the lack of other overtone phase velocity maps, data errors are assumed to be
identical to errors previously determined for fundamental Love and Rayleigh wave phase
velocity maps at the corresponding periods (see Chapter 3). The study of Chapter 4
showed that this assumption is reasonable for degree zero. We assume here that it is
also valid for other SH coefficients. For periods of 40, 60, 80, 100 and 150 seconds,
fundamental mode surface wave phase velocity models from different studies (van Heijst
and Woodhouse, 1999; Trampert and Woodhouse, 1995, 1996, 2001, 2003; Ekström et al.,
1997; Laske and Masters, 1996; Wong, 1989) were averaged and a standard deviation was
computed for each SH coefficient. As in previous chapters, data uncertainties at degree
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s and azimuthal order t are assumed to be independent of t, and an average over t is
calculated. At intermediate periods, we made a simple interpolation of the uncertainties
obtained at 40, 60, 80, 100 and 150 seconds. At periods higher than 150 seconds, we
imposed the same error as the one estimated at 150 seconds (see Chapter 3, section 3.2,
for explanations).

The data are corrected with the crustal model CRUST5.1 (Mooney et al., 1998). Since
the size of the model space that can be surveyed with the NA is limited, we reduced the
number of unknowns by further correcting the data with models of radial anisotropy pre-
viously obtained for the uppermost mantle (Chapter 5). These models were derived by
applying the NA to fundamental mode Love and Rayleigh wave phase velocity models
to constrain radial anisotropy in the top 220 km of the mantle. The likelihoods obtained
for each model parameter, at each SH coefficient up to degree eight, were resampled to
compute distributions of predictions of overtone measurements for the uppermost mantle
(UUM). From each distribution (approximately Gaussian) we calculated a mean contri-
bution dUUM and a standard deviation σUUM which were employed to correct the data :

dres = d0 − dCRUST5.1 − dUUM (6.2)

σres = σ0 + σUUM (6.3)

d0 and σ0 represent the original data and data uncertainty. dCRUST5.1 represents the
contribution of the crust. Original errors were incremented to account for the uncertainties
on the models of uppermost mantle anisotropy. We thus inverted residual data dres and
associated errors σres with the NA to find models of radial anisotropy between 220 and
1200 km depth.

6.4 Parameterization

Radial anisotropy can be described by five independent elastic coefficients A, C, N , L
andF (Love, 1927). C andA are related to the wavespeed of P-waves travelling vertically
and horizontally, respectively. L andN give the wavespeed of vertically and horizontally
polarized S-waves and F describes waves travelling with an intermediate incidence angle.
We parameterized the models as perturbations of the Love parameters and perturbations of
density with respect to PREM (Dziewonski and Anderson, 1981). The model parameters
are expanded on a spherical harmonic basis, and the relation between the data and the
structure of the Earth is :

k

(
δc

c

)t

s

=
∫ r220

rcmb

[ kKA(r)δAts(r) + kKC(r)δCt
s(r)

+ kKN (r)δN t
s(r) + kKL(r)δLts(r)

+ kKF (r)δF t
s (r) + kKρ(r)δρts(r)]r

2 dr (6.4)

where the integration is done between the core-mantle boundary (rcmb is the radius of
core-mantle boundary) and 220 km depth. A layered parameterization is adopted with
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three layers delimited by the following depths : 220-400 km, 400-670 km and 670-
1230 km. We therefore have 18 model parameters (six parameters in three layers) for
each SH component. The choice of this layered division was not based on the depth
resolution of the data but it was mainly motivated by computational resources. Our pa-
rameterization is still sufficient to analyze the robustness of the anisotropic signal, but a
detailed geodynamical interpretation will clearly need a more refined analysis.

6.5 Retrieving anisotropy, velocity and density anomalies

The same procedure as in Chapter 5 is applied. The NA provides PPD functions asso-
ciated with each SH component of the model parameters : δAt

s, δCt
s, δN t

s , δLts, δF t
s

and δρts. Random values of these δmt
s are generated, using to their exact PPD functions,

and the SH coefficients are recombined to get δm(r, θ, φ). The parameters describing
radial anisotropy are then recovered by computing ξ = 1 − N/L, φ = 1 − C/A and
η = 1 − F/(A − 2L) at each point (r, θ, φ) in the Earth. Parameter ξ describes the
anisotropy of shear waves, φ P-wave anisotropy and η intermediate anisotropy. Equiv-
alent isotropic P-wave and S-wave velocity anomalies, together with density anomalies,
are also calculated at (r, θ, φ). Histograms are then computed by repeating the procedure
described above several thousand times and, for every model generated, the function of
interest (anisotropy, velocity or density anomalies) is averaged over a particular area (e.g.
continents, oceans,...). The distributions represent thus the range of data-compatible val-
ues of this function averaged over a certain area, and they do not account for structure
variations within the area considered.
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6.6 Results
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Figure 6.1: Likelihoods for the spherically averaged ξ, φ and η. The vertical line repre-
sents the value of PREM (zero at these depths).

Figures 6.1 gives the likelihoods obtained for the spherically averaged ξ, φ and η. It shows
that these parameters do not significantly deviate from PREM (Dziewonski and Anderson,
1981) in the three layers. This is in agreement with the results of the whole mantle study
of Chapter 4, where more data were employed, but not with φ between 220 and 400 km
depth. The presence of normal mode data in Chapter 4 favoured slightly positive values
for this parameter at these depths.

Figures 6.2 to 6.7 represent the likelihoods for parameter ξ, φ and η in various tec-
tonic regions, selected with model 3SMAC (Nataf and Ricard, 1996). Note that the de-
gree zero perturbation of the elastic coefficients was included in the calculation of the
anisotropic parameters. On top of the three layers employed here, we plotted the results
obtained in a previous study for the uppermost mantle (Chapter 5). Table 6.1 displays
the probability that a given parameter is negative, computed by integration of the normal-
ized likelihoods. Different tests showed that anomalies in S-wave related parameters (L
and N ) have very little trade-offs with other model parameters and that they are well re-
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solved (narrow marginals) by the data, indicating the robustness of the results for S-wave
anisotropy. More caution is necessary for the other model parameters since not all SH
coefficients are well constrained (wide marginals) for δA, δC, δF and δρ.

0

20

40

60

Cratons

0

20

40

60

Platforms

0

20

40

60

Tectonically
active regions

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

L
ik

el
ih

oo
d

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

-0.1 0 0.1

ξ

0

20

40

60

-0.1 0 0.1

ξ

0

20

40

60

-0.1 0 0.1

ξ

0

20

40

60

d=[24-100]km

d=[100-220]km

d=[220-400]km

d=[400-670]km

d=[670-1230]km

Figure 6.2: Likelihood of S-wave anisotropy beneath continents. The vertical line repre-
sents the value of PREM averaged over the layers.

Figure 6.2 shows the likelihood of S-wave anisotropy in the different layers, beneath
continents. The data do not require S-wave anisotropy below 220 km depth in most
continental regions, except maybe beneath cratons where the probability to have ξ < 0 is
0.65 between 220 and 400 km depth (see Table 6.1). This possibly indicates that shear-
wave anisotropy, with fast horizontally polarized shear waves, extends a little deeper than
the Lehmann discontinuity in PREM (Dziewonski and Anderson, 1981) beneath cratons,
but not beneath younger continental areas. There is further a small probability that ξ
becomes positive in the transition zone beneath cratons.

The signal is much clearer beneath oceans, as shown in Figure 6.3 where oceanic
regions are separated according to the age of the overlying ocean floor. We see that there
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Figure 6.3: Likelihood of S-wave anisotropy beneath oceans. The vertical line represents
the value of PREM averaged over the layers.

is a strong probability of VSH > VSV between depths of 220 and 400 km and in the
transition zone. The anisotropy between 220 and 400 km depth is smaller than on top, but
its presence is still likely (see also Table 6.1). In the transition zone, we clearly observe
ξ < 0, therefore VSH > VSV , beneath young oceans, with amplitudes comparable to the
ones obtained between 100 and 220 km depth. An age-dependent signal is also detected in
the transition zone since the probability of ξ < 0 decreases towards older oceanic regions.
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Figures 6.4 and 6.5 give the likelihoods associated with P-wave anisotropy beneath
continents and oceans, respectively. There is a high probability of φ negative beneath
continents in the depth range 220-400 km and possibly in the transition zone. This corre-
sponds to fast vertically travelling P-waves (VPV > VPH ) and indicates a change of sign
in φ with respect to the uppermost mantle. An age-related signal is observed for oceanic
regions, between 220 and 400 km depth. φ seems most likely positive beneath young
oceans and it tends to become most likely negative in older regions. φ < 0 also appears
to extend in the transition zone beneath old and intermediate oceans, but not as clearly as
at shallower depths.
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In Figure 6.6, η clearly changes sign between the uppermost mantle and larger depths,
in continental areas. It stays negative down to 1230 km depth beneath platforms and
tectonically active regions, and maybe beneath cratons but with a smaller probability.
Similar to φ, parameter η is most likely positive beneath young oceans and becomes most
likely negative in old regions (Figure 6.7). A strong signal with η < 0 is also observed at
depths between 670 and 1230 km. However, as mentioned above, parameters δA, δC and
δF are less well determined (wider marginals) than δL and δN . The likelihoods obtained
for φ and η by recombining individual likelihoods for different elastic parameters could
therefore be dominated by only a few well resolved SH coefficients.
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.

Figure 6.8 shows the correlation matrix for the imaginary part of
(
δc
c

)2

4
. It demon-

strates that there is a low trade-off between the different layers, indicative of a depth
resolution approximately equal to the width of the layers.

Histograms for the likelihood of correlation between dlnVp, dlnVs and dlnρ were
also computed and showed a good global correlation between dlnVp and dlnVs, but poor
correlation between density and velocity anomalies in the three layers. Resovsky and
Trampert (2002) demonstrated with synthetic tests that density anomalies could be re-
covered using normal mode data, overtone and fundamental surface wave data together.
Further tests are needed to see whether fundamental mode and overtone phase velocity
data alone can determine density. We thus refrain here from a further interpretation of
density results. Importantly, extensive tests showed that density did not influence any
elastic parameter in this study. If the anomalies in dlnVs and dlnVp would be thermal in
origin, one would expect the highest probability for dlnVs/dlnVp to be between 1 and 2
(Karato and Karki, 2001). This is clearly not the case below 220 km depth (Tables 6.2 and
6.3), and in most places in the uppermost mantle. We therefore suggest that a chemical
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component is responsible for the observed signal.

Depth (km) Area P (ξ < 0) P (φ < 0) P (η < 0)
220 < d < 400 All cratons 0.65 0.79 0.79
400 < d < 670 0.35 0.60 0.60
670 < d < 1230 0.46 0.55 0.63
220 < d < 400 All platforms 0.54 0.79 0.79
400 < d < 670 0.39 0.60 0.75
670 < d < 1230 0.31 0.60 0.77
220 < d < 400 All tectonically 0.59 0.80 0.80
400 < d < 670 active regions 0.48 0.77 0.77
670 < d < 1230 0.52 0.61 0.72
220 < d < 400 All oceans 0.71 0.37 0.38
400 < d < 670 younger than 50 Ma 0.93 0.53 0.53
670 < d < 1230 0.62 0.59 0.78
220 < d < 400 All oceans 0.80 0.62 0.65
400 < d < 670 50 Ma<age<100 Ma 0.83 0.65 0.66
670 < d < 1230 0.54 0.57 0.84
220 < d < 400 All oceans 0.73 0.72 0.75
400 < d < 670 older than 100 Ma 0.66 0.66 0.66
670 < d < 1230 0.58 0.61 0.73

Table 6.1: Probability of having negative ξ = 1 − N/L, φ = 1 − C/A and η = 1 −
F/(A− 2L)
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6.7 Discussion and conclusion

Our results suggest an age-related anisotropic signal beneath oceanic areas going as deep
as the transition zone. Indeed, we observe shear wave anisotropy with horizontally po-
larized shear waves faster than vertically polarized shear waves down to 670 km beneath
oceans. The anisotropy in the transition zone is stronger and more likely beneath young
oceans than beneath older ones. It is also characterized by a minimum between 220 and
400 km depth for oceans younger than 50 Ma, and P-wave anisotropy and η display an
age-dependent signal. A depth pattern similar to the one observed for ξ beneath young
oceans was found for azimuthal anisotropy by Trampert and van Heijst (2002). Both η
and φ are positive in the uppermost mantle and in the depth range 220-400 km beneath
young oceans with amplitudes decreasing with depth, whereas a clear change of sign is
observed for old oceans and continents between the uppermost mantle and the underlying
layers. While no S-wave or P-wave anisotropy is detected below the transition zone, η ap-
pears to be most likely negative between 670 and 1230 km depth, but caution is required
here since the signal might be dominated by only a few well-resolved parameters. There
is no systematic relation between perturbations in parameters η, φ and ξ, as sometimes
assumed in inversions (e.g. Gung et al. (2003)), which implies that the data do not support
any particular scaling relationship between dη, dφ and dξ.

The fact that the anisotropy varies with the age of the ocean floor in the transition
zone, and that the anisotropic signal observed in the uppermost mantle seems to extend
deeper beneath young oceans but not beneath old ones, could be an indication that ridges
have some deep connection. This connection is most likely chemical in origin as inferred
from Table 6.3. A better resolution of the anomalies at these depths is, however, required
to draw more robust conclusions.

No strong S-wave anisotropy is required by the data beneath continents. There is,
however, some evidence for shear-wave anisotropy (with ξ < 0) deeper than 220 km
beneath cratons, but not beneath platforms or tectonically active regions. The signals for
P-wave anisotropy and for η are stronger and they display a change of sign between the
uppermost mantle and the deeper layers down to the transition zone. This could be a
strong indication of a change of mechanical behaviour of the materials beneath continents
and the oldest oceans.

Interpreting this deep anisotropy in terms of flow is delicate. Upper mantle anisotropy
can be related to horizontal or vertical flow through the sign of ξ because anisotropy at
these depths is believed to result from the lattice preferred orientation (LPO) of olivine
crystals (Karato, 1989). However, at larger depth there is no a priori reason to favour LPO
over shape preferred orientation of inclusions (SPO). Among all phases present in the
transition zone wadsleyite has the largest intrinsic anisotropy and it is therefore the most
likely candidate for seismic anisotropy due to LPO at these depths. Other phases such
as majorite or ringwoodite are nearly isotropic at transition zone conditions (Mainprice
et al., 2000). SPO with VSH > VSV can occur at large scale in horizontally laminated
structures or in partially molten rocks (Karato, 1998). While partial melting is considered
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unlikely in most of the mantle, horizontal layering could be partly responsible for the
detected anisotropy in the transition zone if the contrast in elastic moduli between the
different phases is large enough. However, it would not result in the observed azimuthal
anisotropy (Trampert and van Heijst, 2002).



Chapter 7

Azimuthal anisotropy down to
1200 km depth from Love wave
overtone measurements

Abstract

The presence of azimuthal anisotropy from the top of the mantle down to 1200 km depth is
investigated with the Neighbourhood Algorithm. The data employed is the 2−ψ terms of
Love wave phase velocity maps constructed from measurements for the first and second
overtone branches. We focus on the degree two of parameter G, which describes the
azimuthal dependence of VSV . The likelihoods obtained show that the models resulting
from an independent study using a Backus-Gilbert inversion scheme are very close to the
most likely model found by the Neighbourhood Algorithm. This is especially visible in
the top 100 km of the mantle, where G is best resolved. At larger depth the distributions
are wider, showing the difficulty to constrain the amplitude of azimuthal anisotropy from
Love wave phase velocity models alone.

7.1 Introduction

Azimuthal anisotropy is commonly observed from shear-wave splitting and from the az-
imuthal dependence of Rayleigh and Love wave phase velocities. Shear-wave splitting is
the most unambiguous manifestation of azimuthal anisotropy. It is widely used in seismol-
ogy but it has the disadvantage of providing poor depth resolution (see Savage (1999) for
a review). Surface waves have a better vertical but less lateral resolution than body waves.
Numerous surface wave studies have revealed the presence of azimuthal anisotropy in the
uppermost mantle, both at the regional scale (Lévêque et al., 1998; Silveira and Stutz-
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mann, 2002; Simons et al., 2002) and in global models (Tanimoto and Anderson, 1985;
Montagner and Tanimoto, 1990, 1991). On the other hand, only a few studies have found
evidence for azimuthal anisotropy in the transition zone. It was inferred in a few regional
studies from body wave data (Fouch and Fischer, 1996; Vinnik and Montagner, 1996;
Vinnik et al., 1998) and the first global model of azimuthal anisotropy at these depths
was recently derived by Trampert and van Heijst (2002). They constructed azimuthally
anisotropic phase velocity models for Love waves along the first and second overtone
branch, and using a Backus-Gilbert approach (Backus and Gilbert, 1968) they inverted
the anisotropic part of these maps to make a depth interpretation of azimuthal anisotropy.

In this chapter, we aimed to determine the probability of azimuthal anisotropy in the
transition zone using the same azimuthally anisotropic Love wave phase velocity maps as
those used by Trampert and van Heijst (2002). We employed the Neighbourhood Algo-
rithm (NA) of Sambridge (Sambridge, 1999a,b) to obtain likelihoods for parameter G at
degree two.

7.2 Data and method

Azimuthally anisotropic phase velocity maps can be written as the sum of five terms as
follow (e.g. Smith and Dahlen (1973)) :

δc

c
(θ, φ, ψ) = A1 +A2 cos 2ψ +A3 sin 2ψ +A4 cos 4ψ +A5 sin 4ψ (7.1)

where δc/c is the relative phase velocity perturbation with respect to PREM (Dziewonski
and Anderson, 1981) at a point (θ, φ) at the surface of the Earth and ψ is the azimuth of
propagation. A1 is the isotropic part of the phase velocity map. It is linearly related to the
five elastic parameters that describe radial anisotropy. The other terms describe azimuthal
anisotropy.

We applied the NA to the degree two of the 2−ψ terms of the azimuthally anisotropic
phase velocity maps constructed by Trampert and van Heijst (2002) for toroidal mode
surface waves with overtone number n = 1 and n = 2. These data are only sensitive to
parameter G =

√
G2
c +G2

s, which describes the 2 − ψ variation of vertically polarized
shear wave velocity. The relation between data and unknowns is then :

A2(θ, φ) =
∫ a

0

Gc(r, θ, φ)KG(r) dr (7.2)

A3(θ, φ) =
∫ a

0

Gs(r, θ, φ)KG(r) dr (7.3)

(7.4)

where KG(r) are sensitivity kernels computed in a spherical Earth. These kernels were
averaged over five layers delimited by the following bottom depths : 100 km, 220 km,
400 km, 670 km and 1200 km. The phase velocity maps were expanded on a basis of
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generalized spherical harmonics, as explained by Trampert and Woodhouse (2003). We
applied the NA to the first 10 spherical harmonic coefficients corresponding to the degree
two only of the 2 − ψ maps. 5-dimensional model spaces were surveyed to identify the
regions of best data-fit for each coefficient. Likelihoods were obtained for each model
parameter in the second stage of the NA, as explained in previous chapters and by Sam-
bridge (1999b).

The misfit chosen to drive the model space search is the χ2 misfit, which requires an
estimate of data uncertainties. Due to the lack of other azimuthally anisotropic overtone
phase velocity maps, we could not determine data errors by comparing different models.
We therefore assumed the errors were identical to those previously determined for de-
gree two fundamental Love and Rayleigh wave phase velocity maps at the corresponding
periods (see, for instance, Chapter 6, section 6.2, for details). The assigned errors were
much larger than the data (sometimes a factor 10) but this is not completely unrealistic.
Indeed, to obtain the azimuthal terms of the phase velocity maps, Trampert and van Heijst
(2002) adopted a conservative point of view and chose the smallest significant amount of
azimuthal anisotropy required by the data. The full procedure of obtaining azimuthally
anisotropic phase velocity maps is described in Trampert and Woodhouse (2003). We
believe that taking large uncertainties for these terms is reasonable. No crustal correction
was applied to the data since it was demonstrated by Trampert and Woodhouse (2003)
and Trampert and van Heijst (2002) that it does not affect the azimuthally anisotropic part
of the phase velocity maps.

7.3 Results

Figures 7.1 and 7.2 represent the 1-D marginals (or likelihoods) obtained for the ten spher-
ical harmonic coefficients of parameterG at degree two in generalized spherical harmon-
ics. The top 100 km are obviously better resolved than deeper layers and the solution
obtained by Trampert and van Heijst (2002) is always close to the most likely solution
(the peak of the distributions), which shows the efficiency of the Backus-Gilbert method.
At larger depths, we see that the range of possible values for G is wide, which con-
firms the difficulty to determine the amplitude of the anisotropy with phase velocity data,
as explained by Trampert and Woodhouse (2003) for fundamental mode surface waves.
However, although the distributions are large, a slight peak is usually visible, and in most
cases the solution of Trampert and van Heijst (2002) is situated nearby.

A factor that could influence the obtained likelihoods is data uncertainties. We chose
to impose large data errors because of the incapacity of inversions to constrain the ampli-
tude of azimuthally anisotropic terms in phase velocity maps (Trampert and Woodhouse,
2003). We tested the influence of data uncertainties on the solution by dividing all data
errors by five. This number was chosen arbitrarily but it should give an idea of how much
change more confidence in the data would bring to the models. Modifying all data errors
in the same way does not affect the sampling stage of the NA since the survey of the model
space made to identify the regions of acceptable data-fit is driven by the relative χ2 misfit
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0.0 0.0 0.00.00.0

Top 100 km

d=[100-220] km

d=[220-400] km

d=[400-670] km

d=[670-1230] km

Figure 7.1: Likelihoods obtained for the first five spherical harmonic coefficients of pa-
rameter G at degree two. The vertical lines in the top four layers represent the values
obtained by Trampert and van Heijst (2002). Between 670 and 1230 km, the reference
value was set to zero.

between two models. On the contrary, the likelihoods obtained from the second stage of
the NA might change because the Bayesian interpretation of the model space search is be-
ing done with the absolute values of the misfit. If the misfit values of two adjacent models
is not very different, as it might occur when data errors are large, these models are seen
by the NA as two equivalent solutions, with similar likelihoods. If data errors are smaller
the difference in misfit between the two models is clearer and different likelihoods will
be associated with them. Reducing all data errors did not modify the position of the peak
or the shape of the likelihoods obtained for the top 100 km of the mantle but changed the
likelihoods obtained at greater depths (Figure 7.3). However, it either produced multiple
peaks instead of rather flat distributions or produced narrower peaks centred on the slight
peaks observed in Figures 7.1 and 7.2. This is particularly visible in Figure 7.3 in the
transition zone, where the main peak narrowed around the solution found by Trampert
and van Heijst (2002).
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0.0 0.0 0.00.00.0

Top 100 km

d=[100-220] km

d=[220-400] km

d=[400-670] km

d=[670-1230] km

Figure 7.2: Likelihoods obtained for the last five spherical harmonic coefficients of pa-
rameter G at degree two. The vertical lines in the top four layers represent the values
obtained by Trampert and van Heijst (2002). Between 670 and 1230 km, the reference
value was set to zero.
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Figure 7.3: Likelihoods obtained for the first spherical harmonic coefficient of parameter
G at degree two with smaller data errors. The vertical lines in the top four layers represent
the values obtained by Trampert and van Heijst (2002). Between 670 and 1230 km, the
reference value was set to zero.

7.4 Concluding remarks

From this first study of azimuthal anisotropy with the application of the NA to overtone
Love wave phase velocity maps, we can conclude that the Backus-Gilbert inversion tech-
nique employed by Trampert and van Heijst (2002) can find solutions very close to the
most likely model found by the NA, even when the peak of the likelihood is only slightly
visible. Assessments of azimuthal anisotropy would certainly benefit from better data
uncertainties, hence the need for more overtone measurements.



Chapter 8

Inner core anisotropy

Abstract

Discrepancies among existing seismological models of inner core anisotropy could be in-
troduced by the regularisation of the inverse problem, needed to force a solution in the
presence of non-uniqueness. The influence of regularisation, mantle correction and data
quality on the models of inner core anisotropy resulting from the inversion of anomalous
normal mode measurements was first tested . We found that regularisation and data qual-
ity had a significant influence on the final model, while the chosen mantle model was less
crucial. Second, a full model space search technique was applied to recent measurements
of anomalously split normal modes, to obtain all possible models of inner core anisotropy
compatible with free oscillation data, and to circumvent regularisation, The models ob-
tained show a robust pattern of P-wave and S-wave anisotropy in the inner core. The
parameter describing P-wave anisotropy changes sign around a radius of 400 km, while
S-wave anisotropy is small in the upper two-thirds of the inner core and becomes negative
at greater depths. Our results agree with observed travel time anomalies of rays travelling
at epicentral distances varying from 150◦ to 180◦. The models may be explained by pro-
gressively tilted hexagonal close-packed iron in the upper half of the inner core, but could
suggest a different iron phase in the centre.

8.1 Introduction

The concept of inner core anisotropy is generally accepted as an explanation for the di-
rectional dependence of PKIKP travel-times and the anomalous splitting of core-sensitive
free oscillations (Morelli et al., 1986; Woodhouse et al., 1986). Masters and Gilbert
(1981) were the first to measure modes sensitive to the inner core that were split much

The content of this chapter was published in Beghein,C. & Trampert,J., Science, 299, 552-555 (2003)
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more than predicted from Earth’s rotation, ellipticity or any three-dimensional mantle
model. These modes are qualified as anomalous. Poupinet et al. (1983) observed that
PKIKP body waves propagating along paths parallel to Earth’s spin axis were faster than
waves travelling along equatorial paths. Inner core anisotropy was advanced to explain
these observations for the first time by Morelli et al. (1986) and by Woodhouse et al.
(1986), who simultaneously proposed a cylindrically symmetric model, with the fast di-
rection aligned with the rotation axis.

Several models have tried to explain both kinds of data, but the amplitude and depth
dependence of the anisotropy is still a matter of debate (Morelli et al., 1986; Wood-
house et al., 1986; Tromp, 1993, 1995b; Durek and Romanowicz, 1999; Romanowicz and
Bréger, 2000; Creager, 2000). In particular, models derived from the inversion of normal
mode data cannot explain the large travel time anomalies observed for body waves trav-
elling at high epicentral distances (Su et al., 1995; Song, 1996; Sun and Song, 2002).
Even joint inversions of normal mode and travel time data fail to reconcile all observa-
tions (Tromp, 1995b; Durek and Romanowicz, 1999; Ishii and Dziewonski, 2002). Outer
core structure was even suggested to explain all existing data but could not account for
the strong splitting of modes highly sensitive to inner core structure (e.g. mode 3S2) (Ro-
manowicz and Bréger, 2000). Differential travel-times between rays turning in the liquid
outer core (PKP(BC) and PKP(AB)) and rays turning in the solid inner core (PKIPK or
PKP(DF)) suggest an increase in anisotropy with depth, with a maximum in the innermost
500 km of the inner core (Morelli et al., 1986; Creager, 1999). This is also supported by
the large travel-time anomalies observed for rays travelling almost vertically, at epicentral
distances of 170◦− 180◦ (Vinnik et al., 1994; Su et al., 1995; Song, 1996; Sun and Song,
2002). On the contrary, the top 100 to 250 kilometres of the inner core seem to be isotropic
or very slightly anisotropic. This was first shown by Song and Helmberger (1995) from
differential travel times, and several studies tend to confirm these observations (Song and
Helmberger, 1998; Ouzounis and Creager, 2001; Sun and Song, 2002).

The inner core is believed to be mainly composed of solid iron, with some unknown
light elements (Birch, 1964; Stixrude et al., 1997; Mao et al., 2001; Lin et al., 2002;
Gessman and Wood, 2002). Although the stable phase of iron at inner core conditions is
not known, mineralogical studies tend to favour a hexagonal close-packed (h.c.p.) struc-
ture. Nevertheless, the possibility of another stable phase is not excluded, especially in
the presence of lighter elements (Lin et al., 2002). Estimates of the elastic properties of
h.c.p. iron at high pressure and temperature (Steinle-Neumann et al., 2001) suggest that
the basal plane of one third of the crystals would have to be aligned with Earth’s spin axis
to match travel time observations. It is therefore important to reconcile normal mode and
body wave data in term of inner core anisotropy. It would help to shed new light on the
phase diagram of iron at inner core conditions.

Discrepancies among existing seismological models of inner core anisotropy could
be introduced by the regularisation that stabilizes the inverse problem. Regularization
or damping is needed to force a solution in the presence of non-uniqueness, because of
bad model sampling or contradictions in the data. It can, however, have a large effect on
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the resulting model, and the solution can be largely dominated by subjective, unphysi-
cal a priori information. In addition, inversions do not provide realistic posterior model
uncertainties, because of a complete trade-off between variance and resolution (Backus
and Gilbert, 1970). To obtain all possible models of inner core anisotropy compatible
with free oscillation data, we employed a forward modelling approach, the Neighbour-
hood Algorithm (Sambridge, 1999a,b), hereafter referred to as NA. With such a method,
the entire model space is explored, no unnecessary regularisation is introduced, and the
model parameter uncertainties and correlations can be obtained. Since normal mode data
are not only sensitive to the core, but also to the overlying mantle, another possible source
of uncertainty is the three-dimensional mantle model used to correct the measurements.

In the first part of this research, we studied the effects of the mantle correction and
data quality on the inferred inner core structure, when normal mode data are inverted. The
influence of the regularisation on the solution was also investigated. In the second part
of the paper, we applied the NA to the latest measurements of anomalously split normal
modes, in order to circumvent regularisation and to determine the robust constraints that
normal mode data can put on inner core anisotropy. The whole ensemble of models was
then tested against travel time data at various epicentral distances.

8.2 Parameterization

The inner core is generally modelled as a cylindrical medium with a symmetry axis paral-
lel to Earth’s rotation axis (Woodhouse et al., 1986; Morelli et al., 1986). Such a transverse
isotropic medium produces normal mode splitting of isolated spheroidal mode multiplets
of angular degree l of the form

δωm = ω(a+ cm2 + dm4) (8.1)

where coefficients a, c, d are related to structure coefficients c20 and c40 and to pertur-
bation c00 of the degenerate eigenfrequency ω. m varies between −l and +l. In the
geometry considered, all expansion coefficients of the elastic tensor with azimuthal or-
der t �= 0 are zero (Tromp, 1995a). Non-zonal terms could be produced by a tilt of the
symmetry axis relative to the spin axis, for instance.

A transversely isotropic medium is described by five independent elastic parameters.
In the case where the symmetry axis is aligned along Earth’s rotation axis, it can be
demonstrated (Tromp, 1995a) that degree zero coefficients c00 are sensitive to perturba-
tions in two elastic parameters, namely λ1 and λ2. Degree two structure coefficients c20
are determined by two other elastic parameters, λ3 and λ4, and c40 depends only on the
fifth parameter λ5.

c00 =
∫ b

0

(δλ1K1(r) + δλ2K2(r)) dr (8.2)

c20 =
∫ b

0

(δλ3K3(r) + δλ4K4(r)) dr (8.3)
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c40 =
∫ b

0

δλ5K5(r) dr (8.4)

FunctionsKi(r) (i = 1, ..., 5) are the sensitivity kernels of a given mode to Earth’s struc-
ture and b is the radius of the inner core. The five independent elastic parameters λi are
different from the elastic parameters defined by Love (1927), but they are related by the
following relations :

λ1 = 6A+ C − 4L− 10N + 8F (8.5)

λ2 = A+ C + 6L+ 5N − 2F (8.6)

λ3 = −6A+ C − 4L+ 14N + 5F (8.7)

λ4 = A+ C + 3L− 7N − 2F (8.8)

λ5 = A+ C − 4L− 2F (8.9)

The anisotropic parameters employed for inner core anisotropy are usually defined by
α = (C − A)/A0, β = (L−N)/A0 and γ = (A− 2N − F )/A0, with A0 the value of
A = κ+ 4µ/3 at the centre of the Earth. α, β and γ describe P-wave anisotropy, S-wave
anisotropy and the anisotropy of waves that do not travel along the vertical or horizontal
directions, respectively.

It is straightforward to show that λ3, λ4 and λ5 are functions of α, β and γ only. λ1

and λ2 do not share that property and are dependent on all five elastic coefficients A, C,
N , L and F . Equations 8.3 and 8.4 can therefore be written as :

c20 =
∫ a

0

(δα(r)Kα(r) + δβ(r)Kβ(r) + δγ(r)Kγ(r)) dr (8.10)

c40 =
∫ a

0

(δα(r)K ′
α(r) + δβ(r)K

′
β(r) + δγ(r)K

′
γ(r)) dr (8.11)

The primed sensitivity kernels depend onK5(r) only and the unprimed kernels are func-
tions ofK1(r) andK2(r).

The three model parameters (α(r), β(r) and γ(r)) were expanded on a series of five
cubic spline functions with knots equally spaced through the inner core. The anisotropic
models are found by inverting or solving the equations 8.10 and 8.11 for the spline coef-
ficients.
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8.3 Data

The data consisted of zonal degree two and degree four structure coefficients and their
error estimates. No covariance was assumed between degree two and degree four data.
Data errors were given by the authors of the measurements, and were assumed to be Gaus-
sian distributed. Two data sets were tested : the first one consisted of older normal mode
splitting measurements (Ritzwoller et al., 1988; Widmer et al., 1992) (with 15 degree two
and 7 degree four structure coefficients), and the second one consisted of the most recent
splitting measurements that followed the great Bolivia and Kuril Islands earthquakes in
1994 (Tromp and Zanzerkia, 1995; He and Tromp, 1996; Resovsky and Ritzwoller, 1998)
(with 22 degree two and 16 degree four data). The choice of data set one was based on the
modes employed by Tromp (1993) to derive his first model of inner core anisotropy. How-
ever, we decided to remove mode 6S3, due to a possible overlapping with mode 3S8, and
13S2, since it has been demonstrated (Durek and Romanowicz, 1999) that different split-
ting functions could explain the spectrum of mode 13S2 equally well. We also discarded
the measurements made by Giardini et al. (1988) because their degree two splitting coef-
ficients were systematically smaller than coefficients determined in other studies (Tromp
and Zanzerkia, 1995; He and Tromp, 1996; Resovsky and Ritzwoller, 1998; Ritzwoller
et al., 1988; Widmer et al., 1992). In the end, data set one was composed of degree two
measurements for modes 2S3, 3S2, 8S5, 9S3, 11S4, 11S5, 13S3, 15S3, 16S6, 18S4, 20S5,
21S6, 23S5, 25S2 and 27S2; degree four data were modes 2S3, 3S2, 8S5, 9S3, 11S4, 11S5

and 13S3. Data set two was composed of degree two measurements for modes 2S3, 3S2,
5S3, 7S4, 7S5, 8S1, 8S5, 9S3, 11S4, 11S5, 13S1, 13S3, 16S5, 16S7, 17S1, 18S3, 18S4, 21S6,
21S7, 21S8, 23S5 and 27S1, and degree four measurements for modes 2S3, 3S2, 5S3, 7S4,
7S5, 8S5, 9S3, 11S4, 11S5, 13S3, 16S5, 16S7, 18S3, 21S7, 21S8 and 23S4. Original error
bars for degree four data of mode 2S3 were increased in data set two to account for dis-
crepancies between the measurements. Modes 3S8, 6S3 and 13S2 were discarded as in
data set one together with 3S1 which is also difficult to measure. All data were corrected
with crustal model CRUST5.1 (Mooney et al., 1998).
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8.4 Results

8.4.1 Inversions

In this section, inversions by singular value decomposition (Matsu’ura and Hirata, 1982)
were performed in various cases. We used different levels of damping and the two sets
of data described in the previous section. We also tested several mantle corrections
(Resovsky and Ritzwoller, 1999a; Resovsky and Trampert, 2003; Beghein et al., 2002;
Masters et al., 1996; Ritsema et al., 1999; Li and Romanovwicz, 1996; Masters et al.,
2000; Su et al., 1994) to assess their effect on the final model. In two recent studies
(Beghein et al., 2002; Resovsky and Trampert, 2003), a model space search technique
was employed to find families of mantle models that fit normal mode splitting measure-
ments. These ensembles of mantle models were randomly sampled, according to their
associated probability density functions, to correct the data. They gave rise to a family of
inner core models, represented by the shaded grey areas in Fig. 8.1 (the limits correspond
to two standard deviations). Six mantle models (Resovsky and Ritzwoller, 1999b; Mas-
ters et al., 1996; Ritsema et al., 1999; Li and Romanovwicz, 1996; Masters et al., 2000;
Su et al., 1994) resulting from the inversion of seismological data were also employed,
yielding the models represented in colour.

For all data sets, we observed that the choice of the mantle model does not have a
profound effect on the solution : it affects the amplitude of the anisotropy, but not the
depth pattern. The regularisation, however, changes the models significantly. In general,
a higher damping pushes the anisotropic signal into shallower parts of the inner core.
We further observed that inversions of the older measurements produced models with the
maximum of P-wave anisotropy situated at the top of the inner core, whereas including
more recent data shifts this maximum to greater depths. All models obtained by damped
inversions showed small amplitudes in the innermost inner core because of the nature
of the sensitivity kernels. Therefore, they cannot predict the large travel time anomalies
observed for waves travelling in a North-South direction (Su et al., 1995; Song, 1996; Sun
and Song, 2002).

The models of inner core anisotropy resulting from those inversions fit the recent
normal mode data set with a χ misfit between 3.5 and 5.5 (depending on the mantle
model and the damping). For comparison the inner core model obtained by Tromp (1993)
gives χ � 5.6when data are corrected with SKS12WM13 (Su et al., 1994). Without inner
core anisotropy the χ misfit varies between 9.1 and 10.9, depending on the mantle model.
Without mantle correction and without inner core anisotropy χ � 12.2.
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Figure 8.1: Models resulting from the inversion of older data are shown in panels (A)
and (B), those resulting from the inversion of recent data are shown in panels (C) and
(D). Two levels of damping were applied. The upper panels correspond to highly damped
models, the lower panels are models for which the constraint of the damping was lower.
The solid lines represent P-wave anisotropy, the dotted lines S-wave anisotropy and the
dashed lines parameter γ. Different mantle models were used to correct the data, yielding
the inner core models in colour and in the grey areas.
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8.4.2 Model space search

The strong dependence of the obtained anisotropic model upon damping indicates the
presence of a large model null-space (the part of the model space not constrained by
the data). We therefore employed the NA (Sambridge, 1999a,b) to obtain all possible
models of inner core anisotropy compatible with free oscillation data. In addition, the NA
provides realistic posterior model parameter uncertainties and correlations. Because the
free oscillations were best excited by the Bolivia and Kuril Islands earthquakes of 1994,
we applied the NA to the most recent anomalous splitting measurements only.
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Figure 8.2: Models resulting from the application of the NA, using a mantle model from
Resovsky and Trampert (2003). The thin dotted line represents the mean model and the
thick surrounding lines correspond to two standard deviations taken from the posterior
probability density functions obtained from the NA. A0 is the value of elastic parameter
A at the center of the Earth.

The resulting models of inner core anisotropy are shown in Fig. 8.2. We used differ-
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ent mantle corrections : SB10L18 (Masters et al., 2000), SKS12WM13 (Su et al., 1994)
and the most likely Vp, Vs and density mantle model derived with the NA (Resovsky and
Trampert, 2003). Our results did not strongly depend on the mantle correction. Only for
mantle model SKS12WM13 (Su et al., 1994) our analysis produced a significant propor-
tion of inner core models with a negative P-wave anisotropy at the inner core boundary
not supported by 150◦ travel time data. We only show the models obtained using the
mantle model of Resovsky and Trampert (2003). It was not derived from an inversion
(the solution is, therefore, not contaminated by any regularisation) and, in contrast with
most mantle models, no scaling was assumed between density and velocity anomalies.

The results present several robust characteristics (Fig. 8.2). Firstly, for most models,
α is positive in the upper half of the inner core (radius r = 500 − 1200 km), with am-
plitude increasing down to the middle of the inner core and becoming negative at greater
depths. The fast direction for P-waves is thus along the rotational axis in the middle of
the inner core, but becomes parallel to the equatorial plane at greater depths. Secondly,
β is small and slightly positive in the upper two-thirds of the inner core and becomes
negative in the lower 400 km of the core. Thus, shear waves sampling the innermost inner
core are expected to move faster along the rotational axis than along the equatorial plane.
Thirdly, γ is negative at the inner core boundary and undergoes two successive changes
of sign around r = 1100 km and r = 600 km. All these features are robust and inde-
pendent of the mantle correction. The most interesting finding is that many models show
an anisotropic signal at large depths, as opposed to inversion results where the damping
drives the innermost core anisotropy to zero. There are some features that are not as well
constrained : α and γ have much larger error bars at the very bottom of the inner core and
their sign is not robust. Their values at large depths are not independently constrained by
our data, as can be seen on the correlation matrix (Fig. 8.3).

The models fit the data with a χ misfit slightly lower than 3, regardless of the mantle
correction applied. In particular, the fit to the strongly split mode 3S2 is remarkably very
good, both at degree two and degree four (the observations are explained within data
errors). Including complementary measurements of Widmer et al. (1992) didn’t change
our results. It is interesting to note that removing 3S2 from the data does not change
the results for α, but does increase the uncertainties on β and γ at a radius of 300 km.
We also tested that the introduction of zonal degree two and four density perturbations
in the parameterization did not alter the results. The correlation between the anisotropic
parameters and the fit to the data did not change either.

We finally tested the compatibility of this family of inner core models with observed
differential travel time anomalies. P-wave velocity anomalies associated with inner core
anisotropy are given by (Morelli et al., 1986)

δv

veq
= (2β − γ) cos2 ξ + (1

2
α− 2β + γ) cos4 ξ (8.12)

where ξ is the angle between the ray and Earth’s rotation axis and veq is the equatorial
velocity. Random deviates were drawn from the marginal posterior probability density
functions of each model parameter obtained from the NA to make predictions of travel
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Correlation matrix

 -0.90   0.90

 0 km

 305 km

 610  km

 915 km

 ICB

 0 km

 305 km

 610  km

 915 km

 ICB

 0 km

 305 km

 610  km

 915 km

 ICB

 0 
km

 30
5 

km

 61
0 

 k
m

 91
5 

km

 IC
B

 0 
km

 30
5 

km

 61
0 

 k
m

 91
5 

km

 IC
B

  0
km

 30
5 

km

 61
0 

 k
m

 91
5 

km

 IC
B

α

α

α

α

α

β

β

β

β

β

γ

γ

γ

γ

γ

γγγγγβββββααααα

Figure 8.3: Correlation matrix corresponding to the family of models in Fig. 8.2. Indices
correspond to the radius of the different spline knots. The off-diagonal elements in the
matrix describe how the data link the different model parameters.

time anomalies. One hundred thousands models were randomly generated, and predic-
tions of travel time anomalies were computed for all of them, with different ray angles.
We thus had a distribution of predictions for each ray angle, and the width of these distri-
butions, corresponding to 95% of the predictions, was used to plot the range of travel time
predictions displayed in Fig. 8.4. Predictions were computed for waves travelling at about
153◦ epicentral distance, which sample the upper 290 km of the inner core, and for rays
travelling at 170◦ epicentral distance, which turn at a radius of about 350 km. We also
computed predictions in the epicentral range 168◦−180◦. All models produced, irrespec-
tive of the mantle correction, are compatible with the observed travel time anomalies of
rays sampling the upper quarter of the core, and most of them predict anomalies between
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Figure 8.4: Predictions of differential travel time anomalies PKP(BC)-PKP(DF) at epi-
central distances of 153◦ (A) and PKP(AB)-PKP(DF) at 170◦ (B) and in the range
168◦ − 180◦ (C). ξ is the angle between Earth’s rotation axis and the direction of prop-
agation of the wave. The dots in the upper and lower panels are data points for waves
travelling in the epicentral distance range 147◦ − 153◦ and 167◦ − 173◦, respectively
(Creager, 2000). The diamonds of the third panel are binned AB-DF data between 168◦

and 180◦, with two standard deviations (Sun and Song, 2002). These estimations are
based on random predictions from the family of models shown in 8.2. The solid vertical
lines represent two standard deviations of our predictions.

four and six seconds for rays travelling in a N-S direction, which confirms the estimates
made from mantle corrected travel time data (Sun and Song, 2002). Interestingly, tests
including modes 6S3 and 13S2 in the NA produced models that highly degraded the fit to
mode 3S2 and to travel-time data at high epicentral distances. The splitting measurements
for these two modes are, however, controversial : it was shown that the splitting function
of mode 13S2 is highly unstable (Durek and Romanowicz, 1999), and the same seems to
apply to mode 6S3. This suggests that modes 13S2 and 6S3 are incompatible with other
mode data and with travel time data.
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8.5 Conclusion

We established that discrepancies among existing seismological models of inner core
anisotropy are mainly due to regularisation that stabilizes the inverse problem defined by
Equations 8.10 and 8.11. Regularisation and data quality have a significant influence on
the final model, whereas the chosen mantle model is less crucial. This high dependence of
the results on the regularisation showed the presence of a large model null-space. More-
over, due to the nature of the sensitivity kernels at large depths, inversions of normal mode
alone were not capable of reproducing the large travel-time anomalies observed for rays
travelling in the N-S direction. The signal was damped towards zero at large depths. The
use of a direct search method, however, gave us the possibility to circumvent these prob-
lems. The full model space search identified solutions previously unknown from damped
inversions and produced models using normal mode data alone, which agree with the
observed differential travel time anomalies of rays travelling through the inner core at
epicentral distances varying between 150◦ and 180◦. Our results, issued from the latest
normal mode splitting measurements applied to the NA, are robust and independent of the
mantle model used to correct the data. More detailed than a division between bulk and
innermost inner core (Ishii and Dziewonski, 2002), a simple model of radially varying
cylindrical anisotropy is sufficient to explain both splitting and travel time data. Also,
the ability of our models to fit the high splitting of mode 3S2 within data errors shows
that outer core structure is not required to explain anomalously split normal modes (Ro-
manowicz and Bréger, 2000).

A comparison with the latest determination of the elasticity of h.c.p. iron at inner
core conditions (Steinle-Neumann et al., 2001) shows that some of our models can be
explained by progressively tilted h.c.p. iron in the upper half of the inner core, with their
symmetry axis oriented at 45◦ from Earth’s rotation axis at radius r = 900 km and at 90◦

in the middle of the inner core. In the deepest inner core (r = 0− 400 km), none of our
models is compatible with published data of h.c.p. iron. This might suggest the presence
of another phase from these depths. Such a phase of iron could indeed be stable in the
presence of impurities (Lin et al., 2002).
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In this thesis, we investigated the necessity for seismic anisotropy in global tomographic
models using a new technique to solve inverse problems. We adopted the Neighbourhood
Algorithm (NA) developed by Sambridge (1999a,b), which is a model space mapping
technique that characterizes the entire ensemble of models that fit a given data set. The
whole model space can be surveyed, null-space included, and likelihoods can be assigned
to each model parameter. Information on the trade-offs among the variables is also di-
rectly available. This technique provides more reliable uncertainty estimates than con-
ventional inversions, especially in the presence of a large model null-space or in case of
a strongly non-Gaussian likelihoods. The likelihoods can then be used to test different
hypotheses (e.g. composition, correlation between variables, etc), and with independent
data sets one can try to reduce the range of possible solutions. Although limited by the
size of model space that can be surveyed within a reasonable time, the NA is well suited
for normal mode problems or for investigating Earth’s interior using surface wave phase
velocity maps. This is due to the fact that these problems naturally separate into individual
inverse problems for each spherical harmonic components of the structure.

After applying the NA to the large scale tomographic problem of obtaining degree
two isotropic P and S models of the whole mantle (Chapter 3) we focused on the pres-
ence of radial anisotropy inside the Earth. Using the normalized likelihoods obtained
with the NA, the probability of having a change in the anisotropic parameters with re-
spect to PREM (Dziewonski and Anderson, 1981) was calculated for various cases, using
the normalized likelihoods obtained with the NA. Chapter 4 deals with radial anisotropy
in mantle reference models from a large data set of normal modes and surface waves,
whereas Chapter 5 and Chapter 6 investigate the likelihood of lateral variations in radial
anisotropy down to a 1200 km depth using phase velocity models derived from funda-
mental and overtone Love and Rayleigh wave measurements. In Chapter 4 we found that
the current set of normal mode and surface wave data does not favour any significant de-
viation from PREM in reference model anisotropy, except for P-wave anisotropy between
220 and 400 km depth and perhaps for parameter η between 220 and 400 km depth and
in the transition zone. The probability that the anisotropic parameters change sign across
the 670-discontinuity, as observed earlier by Montagner and Kennett (1996), is small. If
there are any deviation from PREM in anisotropy, other than the one found in Chapter
4, it cannot be resolved by the data currently available. In this one-dimensional study of
the mantle we also found evidence for a deficit of density in the uppermost mantle and
an excess of density in the transition zone and in the lowermost mantle, which may be
the signature of slabs deflected between 400 and 670 km depth or accumulated atop the
core-mantle boundary (see, for instance, van der Hilst and Kárason (1999) and Fukao
et al. (2001)). The positive density anomaly above the core-mantle boundary could be as-
sociated with the compositionally distinct dense layer proposed by Kellogg et al. (1999).
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An alternative explanation to the excess of density in the transition zone is the presence
of phase transitions at these depths. Inded, an increase of density implies that the Bullen
parameter is larger than one, which can result from phase transitions of material more
compressible than in homogeneous adiabatic conditions (Anderson, 1989). Lateral varia-
tions in radial anisotropy were also found in the upper 1200 km of the mantle (Chapters
5 and 6). Clear age-dependent signals were observed in the top 220 km for the various
anisotropic parameters, both in oceanic and continental regions. Shear-wave anisotropy
and parameter η are characterized by a faster decrease with depth beneath young oceans
and young continental areas than beneath old oceans and cratons. Shear-wave anisotropy
might extend slightly deeper than 220 km beneath cratons, but not elsewhere in conti-
nental areas. S-wave anisotropy with VSH > VSV was also found in the transition zone
beneath young oceans but not beneath older ones, which could indicate that ridges have
some deep signature. Parameters η and φ both change sign at about 220 km depth, and
our results suggest P-wave and η-anisotropy between 220 and 400 km depth beneath con-
tinents. In general, no particular relation between perturbations in ξ, φ or η is favoured
by the data and in the uppermost 100 km, the ratio between dη and dξ is clearly laterally
variable, which cautions against the use of global ratios in tomographic inversions for
radial anisotropy.

Our study of azimuthal anisotropy in Chapter 7 investigated the results from the
Backus-Gilbert inversion method employed by Trampert and van Heijst (2002). We
showed that it can find the most likely solution of an inverse problem, as found by the
NA, even if the likelihood is wide. Finally, the study of inner core anisotropy in Chap-
ter 8 showed that the NA can find solutions to an inverse problem that were previously
unknown from conventional inverse methods and which can reconcile different types of
data. We found a whole family of models of inner core anisotropy that fit the most recent
normal mode measurements and which also predict the observed travel-time anomalies
at all epicentral distances. The models obtained present a rather complicated depth pat-
tern and a change of sign in the anisotropic parameters is observed at a radius of about
300-400 km. This could reflect a change of phase of iron at these depths and/or different
stages in the history of formation of Earth’s core.

The NA is thus a powerful tool to solve small size inverse problems. We obtained
probability density functions for seismic anisotropy in different regions and at different
depths inside the Earth, which yield better uncertainty estimates than traditional inver-
sions. These probability density functions can be used to calculate probabilities for vari-
ous anisotropic parameters and for the equivalent isotropic velocities. These probability
density functions can now be employed in future research to test compositional models
and to investigate how these models of anisotropy relate to mantle flow. The models of
inner core anisotropy obtained will help understanding core formation and constraining
its mineralogical composition. The limitation imposed by the size of the model space
that can be surveyed with the NA could certainly be relaxed by parallelizing the code. It
will then become possible to infer Earth’s structure by applying the NA directly to nor-
mal mode or surface wave spectra rather than inverting “secondary” data such as phase
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velocity models or normal mode structure coefficients.
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G. D., Gillan, M. J., Schwoerer-Böhning, M.,
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Appendix A

Strain tensor in generalized
coordinates

Phinney and Burridge (1973) introduced a generalized coordinate system, very useful in
normal mode theory. This orthogonal basis (ê−, ê0, ê+) is related to the unit vectors
(êr, êθ, êφ) pointing in the direction (r, θ, φ) by :

ê− =
1√
2
(êθ − iêφ) (A.1)

ê0 = êr (A.2)

ê+ = − 1√
2
(êθ + iêφ) (A.3)

The corresponding metric is given by

gαβ = 0 ifα+ β �= 0 (A.4)

g+− = g−+ = −1 (A.5)

g00 = 1 (A.6)

Any vector u can be expanded into :

u =
∞∑
l=0

l∑
m=−l

uαml Y
αm
l eα (A.7)

where Y αm
l are generalized spherical harmonics (see Appendix B) and eα stands for

ê−, ê0 and ê+, the sum over α being implicit. Similarly, the strain tensor is given by :

E =
∞∑
l=0

l∑
m=−l

Eαβm
l Y

(α+β)m
l eαeβ (A.8)
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Its components in the new basis are related to its components in the old basis through :

Ekl = Rkγ′Rlδ′(Eγ′δ′) (A.9)

E∗
ij = R

∗
iα′R∗

jβ′(Eα′β′
)∗ (A.10)

with

RiαR
∗
iα′ = δαα′ (A.11)

RiαRiα′ = gαα′ (A.12)

The ∗ sign stands for the complex conjugate. For the elastic tensor, we have :

δCijkl = RiαRjβRkγRlδδC
αβγδ (A.13)

If we write Eαβ
lm (r) = γlε

αβ
lm(r) with γl =

√
(2l+ 1)/4π, it can be shown (Phinney and

Burridge, 1973; Tanimoto, 1986) that :

ε00lm(r) = U̇(r) (A.14)

ε++
lm (r) =

1
r
Ω0
lΩ

2
l (V (r) + iW (r)) (A.15)

ε−−
lm (r) =

1
r
Ω0
lΩ

2
l (V (r) − iW (r)) (A.16)

ε+−
lm (r) = ε−+

lm (r) =
1
2
F (r) (A.17)

ε0+lm(r) =
1
2
Ω0
l (X(r) + iZ(r)) (A.18)

ε0−lm(r) =
1
2
Ω0
l (X(r) − iZ(r)) (A.19)

with Ωnl =
√

(l+n)(l−n+1)
2 and U(r), V (r) andW (r) are the radial eigenfunctions of a

given mode (see equations 2.17 and 2.18).
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Generalized spherical harmonics

The generalized scalar spherical harmonics (Phinney and Burridge, 1973) are defined by :

Y Nm
l (θ, φ) = PNm

l (cos θ)eimφ (B.1)

with the associated Legendre function

PNm
l (x) =

(−1)l−N

2l(l −N)!

√
(l −N)!(l +m)!
(l +N)!(l −m)!

× (1− x)−(m−N)/2(1 + x)−(m+N)/2

× dl−m

dxl−m

[
(1− x)l−N (1 + x)l+N

]
(B.2)

They are normalised :∫ ∫
Y Nm
l (θ, φ)Y Nm′

l′ (θ, φ) dΩ =
4π
2l + 1

δll′δmm′ (B.3)

In the particular caseN = 0 we have :

Y 0m
l (θ, φ) =

√
4π
2l+ 1

Ym
l (θ, φ) (B.4)

with

Y m
l (θ, φ) = P

m
l (cos θ)e

imφ (B.5)

The components of any tensor can be decomposed on a generalized scalar spherical har-
monic basis :

Λα,β,γ,...(r, θ, φ) =
∞∑

s=|N |

s∑
t=−s

Λα,β,γ,...st (r)Y Nt
s (θ, φ) (B.6)

withN = α+ β + γ + ...
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Appendix C

Wigner 3-j symbols

The Wigner 3-j symbols (Edmonds, 1960) have the following properties ;(
l1 l2 l3
m1 m2 m3

)
=

(
l2 l3 l1
m2 m3 m1

)
=

(
l3 l1 l2
m3 m1 m2

)
(C.1)

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l2 l1 l3
m2 m1 m3

)
(C.2)

= (−1)l1+l2+l3

(
l1 l2 l3

−m1 −m2 −m3

)
(C.3)

(
l1 l2 l3
0 0 0

)
�= 0 if l1 + l2 + l3 is even (C.4)

And

(
l1 l2 l3

−m1 m2 m3

)
�= 0 if li ≥ |mi|, |l1− l2| ≤ l3 ≤ l1+ l2 andm1 = m2+m3.

They are also related to one another by the following recursion relations (Dahlen and
Tromp, 1998) :

−
√
(l1 −m1)(l1 +m1 + 1)

(
l1 l2 l3

−m1 − 1 m2 m3

)

=
√
(l2 +m2)(l2 −m2 + 1)

(
l1 l2 l3

−m1 m2 − 1 m3

)

+
√
(l3 +m3)(l3 −m3 + 1)

(
l1 l2 l3

−m1 m2 m3 − 1

)
(C.5)
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−
√
(l1 +m1)(l1 −m1 + 1)

(
l1 l2 l3

−m1 + 1 m2 m3

)

=
√
(l2 −m2)(l2 +m2 + 1)

(
l1 l2 l3

−m1 m2 + 1 m3

)

+
√
(l3 −m3)(l3 +m3 + 1)

(
l1 l2 l3

−m1 m2 m3 + 1

)
(C.6)

Using these recursion relations, we can show the following :

(
l1 l2 l3
−1 −1 2

)
= −

√
(l1 − 1)(l1 + 2)
l2(l2 + 1)

(
l1 l2 l3
−2 0 2

)

−

√
(l3 − 1)(l3 + 2)
l2(l2 + 1)

(
l1 l2 l3
−1 0 1

)
(C.7)

(
l1 l2 l3
−2 3 −1

)
= −

√
(l1 − 1)(l1 + 2)
(l2 − 2)(l2 + 3)

(
l1 l2 l3
−1 2 −1

)

−

√
l3(l3 + 1)
l2(l2 + 1)

(
l1 l2 l3
−2 2 0

)
(C.8)

(
l1 l2 l3
−2 4 −2

)
= −

√
(l1 − 1)(l1 + 2)
(l2 + 4)(l2 − 3)

(
l1 l2 l3
−1 3 −2

)

−
√
(l3 + 2)(l3 − 1)
(l2 + 4)(l2 − 3)

(
l1 l2 l3
−2 3 −1

)
(C.9)
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Wigner 3-j symbols : recursion
relations for even l + l′ + s

In this appendix, we treat the case where l + l′ + s takes even values. Let us write

L = l(l+ 1) (D.1)

L′ = l′(l′ + 1) (D.2)

S = s(s+ 1) (D.3)

α(l′, s, l) = −1
2
L′ + L− S√

LL′
(D.4)

β(l′, s, l) =
(L′ + L− S)(L′ + L− S − 2)− 2LL′

2
√
L′(L′ − 2)L(L− 2)

(D.5)

(D.6)

It is easy to see that α(l′, s, l) and β(l′, s, l) are symmetric with respect to permutations
between l and l′ (α(l′, s, l) = α(l, s, l′) and β(l′, s, l) = β(l, s, l′)). We can derive the
following identities, using the properties of the 3-j symbols listed in appendix C :(

l′ s l
−1 0 1

)
= α(l′, s, l)

(
l′ s l
0 0 0

)
(D.7)

(
l′ s l
−2 0 2

)
= β(l′, s, l)

(
l′ s l
0 0 0

)
(D.8)

(
l′ s l
−1 1 0

)
=

(
l′ s l
1 −1 0

)
= α(l′, l, s)

(
l′ s l
0 0 0

)
(D.9)

(
l′ s l
0 1 −1

)
=

(
l′ s l
0 −1 1

)
= α(l, l′, s)

(
l′ s l
0 0 0

)
(D.10)
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(
l′ s l
−2 2 0

)
=

(
l′ s l
2 −2 0

)
= β(l′, l, s)

(
l′ s l
0 0 0

)
(D.11)

(
l′ s l
0 2 −2

)
=

(
l s l′

−2 2 0

)
= β(l, l′, s)

(
l′ s l
0 0 0

)
(D.12)

Let us now define the following functions :

Γ(l) =
√
(l + 2)(l − 1) (D.13)

δ(l) =
1√

(l − 2)(l + 3)
(D.14)

λ(l) =
1√

(l − 3)(l + 4)
(D.15)

Using the recursion relations C.7 to C.9, we can show the following :

(
l′ s l
−2 1 1

)
=

(
l′ s l
2 −1 −1

)

= −Γ(l
′)√
S

(
l s l′

−1 0 1

)
− Γ(l)√

S

(
l s l′

−2 0 2

)
(D.16)

= − [Γ(l
′)α(l, s, l′) + Γ(l)β(l, s, l′)]√

S

(
l′ s l
0 0 0

)

= − [Γ(l
′)α(l′, s, l) + Γ(l)β(l′, s, l)]√

S

(
l′ s l
0 0 0

)
(D.17)

(
l′ s l
−1 2 −1

)
=

(
s l′ l
−2 1 1

)
=

(
s l′ l
2 −1 −1

)

= − [Γ(s)α(s, l
′, l) + Γ(l)β(s, l′, l)]√
L′

(
l′ s l
0 0 0

)
(D.18)

(
l′ s l
1 1 −2

)
=

(
l s l′

−2 1 1

)

= − [Γ(l)α(l
′, s, l) + Γ(l′)β(l′, s, l)]√

S

(
l′ s l
0 0 0

)
(D.19)

Similarly, it is easy to show that

(
l′ s l
−2 3 −1

)
=

(
l′ s l
2 −3 1

)
= −δ(s)Γ(s)

(
l′ s l
−1 2 −1

)

− δ(s)
√
L

(
l′ s l
−2 2 0

)
(D.20)
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and

(
l′ s l
−2 4 −2

)
=

(
l′ s l
2 −4 2

)
= − λ(s)Γ(l′)

(
l′ s l
−1 3 −2

)

− λ(s)Γ(l)
(
l′ s l
−2 3 −1

)
(D.21)

In the particular case of an isolated multiplet, l = l′ and s is even. The following
relations can easily be deduced :(

l s l
−1 0 1

)
= −

[
1− s(s+ 1)

2l(l+ 1)

] (
l s l
0 0 0

)
(D.22)

(
l s l
−2 0 2

)
=

1
2(l + 2)(l + 1)l(l− 1) [2l

2(l + 1)2 − 4l(l+ 1)

− 4l(l+ 1)s(s+ 1) + s2(s+ 1)2 + 2s(s+ 1)]

×
(
l s l
0 0 0

)
(D.23)

(
l s l
−1 1 0

)
= −1

2

√
s(s+ 1)
l(l+ 1)

(
l s l
0 0 0

)
(D.24)

(
l s l
−2 1 1

)
=

√
s(s+ 1)

(l + 2)(l − 1)
3l(l+ 1)− s(s+ 1)

2l(l − 1)

(
l s l
0 0 0

)
(D.25)

(
l s l
−1 2 −1

)
=

√
s(s+ 1)

(s+ 2)(s− 1)

(
l s l
0 0 0

)
(D.26)

(
l s l
−2 2 0

)
=

1
2

√
s(s+ 1)

(s+ 2)(s− 1)(l + 2)(l + 1)l(l− 1)

× [(s+ 2)(s− 1)− 2l(l+ 1)]
(
l s l
0 0 0

)
(D.27)

(
l s l
−2 3 −1

)
= −1

2

√
(s+ 3)(s− 2)s(s+ 1)

(l + 2)(l − 1)(s+ 2)(s− 1)

(
l s l
0 0 0

)
(D.28)

(
l s l
−2 4 −2

)
=

√
(s+ 3)(s− 2)s(s+ 1)

(s+ 4)(s− 3)(s+ 2)(s− 1)

(
l s l
0 0 0

)
(D.29)
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Samenvatting (Summary in
Dutch)

In dit proefschrift werd de noodzaak voor seismische anisotropie in globale tomografis-
che modellen onderzocht door middel van een nieuwe inversie techniek. Wij gebruik-
ten het door Sambridge (1999a,b) ontwikkelde Neighbourhood Algorithm (NA). Dit is
een zoekalgoritme in de model ruimte dat de modellen karakteriseert die bij een data set
passen. De gehele model ruimte, inclusief de model nulruimte, kan doorzocht worden, en
waarschijnlijkheden van elke model parameter kunnen berekend worden. Informatie over
de trade-offs tussen variabelen is ook per direkt beschikbaar. Dergelijke technieken geven
betere schattingen van de onzekerheden dan inversies, vooral in aanwezigheid van een
grote model nulruimte, of in het geval van een sterke niet-Gaussische waarschijnlijkheid.
De waarschijnlijkheden kunnen gebruikt worden om verschillende hypotheses (bijv. com-
positie, correlatie tussen variabelen, enz) te testen, en met onhafhankelijke data sets kan
men proberen het bereik van mogelijke oplossingen te verminderen. Hoewel de grootte
van de model ruimte die binnen een redelijke tijd onderzocht kan worden begrensd is, is
het NA geschikt voor eigentrillingen problemen en voor het onderzoeken van de aarde
met behulp van fase snelheid kaarten. De reden hiervoor is dat deze problemen geschei-
den kunnen worden in individuele inversie problemen voor elke sferisch harmonische
component van de structuur.

Na een eerste applicatie van het NA aan een tomografisch probleem van graad twee
isotropische P en S modellen van de gehele mantel (Hoofdstuk 3), concentreerden wij
ons op de aanwezigheid van radiale anisotropie in de aarde. De waarschijnlijkheid van
een verandering in de anisotrope parameters met betrekking tot PREM (Dziewonski and
Anderson, 1981) werd in verschillende gevallen, met de genormaliseerde waarschijnli-
jkheden van het NA, uitgerekend. Hoofdstuk 4 behandelt radiale anisotropie in referentie
modellen van de mantel met een groot data set van eigentrillingen en oppervlaktegolven.
Hoofdstuk 5 en Hoofdstuk 6 onderzoeken de waarschijnlijkheid van laterale variaties in
radiale anisotropie tot een diepte van 1200 km met gebruik van snelheids modellen die
afgeleid zijn van metingen van fundamentele en boventonen van Love en Rayleigh gol-
ven.

Het actuele set van eigentrillingen en oppervlaktegolven geeft geen betekenisvolle
afwijking van PREM in referentie model anisotropie, behalve voor de anisotropie van
P-golven tussen een diepte van 220 en 400 km, en misschien voor parameter η tussen
een diepte van 220 en 400 km en in de transitie zone. De teken verandering voor de
anisotrope parameters bij de 670 km discontinuı̈teit, die eerder door Montagner and Ken-
nett (1996) gevonden werd, wordt niet met een grote waarschijnlijkheid door onze data
gesteund. Als er andere afwijkingen van PREM voor de anisotropie zijn, kunnen deze
niet door de data die tegenwoordig beschikbaar is opgeslot worden. Naast onze één-
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dimensionale studie van de anisotropie, hebben wij een bewijs gevonden voor een tekort
aan dichtheid in het bovenste deel van de mantel en een overschot aan dichtheid in de
transitie zone en het onderste deel van de mantel. Dit laatste kan verklaard worden door
een laag met hoge dichtheid die verschilt in compositie met de rest van de mantel, zoals
voorgesteld door Kellogg et al. (1999). Laterale variaties van radiale anisotropie wer-
den ook gevonden in de bovenste 220 km van de mantel. Duidelijke leeftijdsafhankelijke
signalen werden in de bovenste 220 km geobserveerd voor de verschillende anisotropie
parameters, zoals in de oceanische en in de continentale gebieden. S-golf anisotropie en
de parameter η worden gekarakteriseerd door een snellere afname met de diepte onder
jonge oceanen en jonge continentale gebieden dan onder oude oceanen en cratons. S-golf
anisotropie kan iets dieper zijn dan 220 km onder cratons, maar niet in ander continena-
tel gebieden. Anisotropie van S-golven met VSH > VSV werd ook in de transitie zone,
onder jonge oceanen en niet onder oude oceanen, gevonden. Dit zou een indicatie kun-
nen zijn voor diepe kenmerken van oceanische ruggen. Zowel parameter η als parameter
φ hebben een tekenverandering op een diepte van ongeveer 220 km. Onze resultaten
suggeren anisotropie voor P-golven en voor η tussen diepten van 220 en 400 km onder
continenten. In het algemeen wordt er geen bijzondere relatie tussen afwijkingen in ξ, φ
of η door de data ondersteund. In de bovenste 100 km is de verhouding tussen dη en dξ
duidelijk lateraal variabel. Dit waarschuwt tegen het gebruik van globale verhoudingen
in tomografische inversies voor radiale anisotropie.

Onze studie van “azimuthal” anisotropie in Hoofdstuk 7 onderzocht de resultaten van
een Backus-Gilbert inversie methode die door Trampert and van Heijst (2002) gebruikt
werd. Wij hebben laten zien dat deze methode de meest waarschijnlijke oplossing voor
een inversie probleem kan vinden, net als het NA, zelfs als de waarschijnlijkheid breed
is. Tot slot, de studie van anisotropie in de binenkern in Hoofdstuk 8 heeft laten zien dat
het NA oplossingen kan vinden die eerder onbekend waren met het gebruik van normale
inversie methoden, en dat het NA verchillende types van data simultaan kan verklaren.
Wij hebben een hele familie modellen van anisotropie in de binenkern gevonden die vol-
doen aan de meeste recente metingen van eigentrillingen, en die ook onafhankelijk de
geobserveerde reistijd anomalien van alle epicentrale afstandenvoorspelen. De modellen
hebben een ingewikkeld patroon in de diepte en een tekenverandering voor de anisotrope
parameters op een straal van 300-400 km. Dit zou verklaard kunnen worden door een
faseverandering van ijzer op deze dieptes en/of een overgang in de formatie van de kern
van de aarde.

Het NA is dus een krachtig gereedschap om kleine inversie problemen op te lossen.
Wij hebben “probability density functions” voor seismische anisotropie in verschillende
gebieden en diepten in de aarde verkregen die een betere onzekerheid geven van de
anisotropie dan traditionele inversies. Deze “probability density functions” kunnen ge-
bruikt worden om waarschijnlijkheden te berekenen voor verschillende anisotrope param-
eters en voor de equivalente isotropische snelheden. Deze “probability density functions”
kunnen nu in andere onderzoeken gebruikt worden om compositie modellen te testen en
om te onderzoeken hoe deze anisotropie modellen gerelateerd kunnen worden aan mantel
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convectie. De modellen voor anisotropie in de binenkern zullen het begrip van de formatie
en compositie van de kern verbeteren. De beperkingen van het NA door de grootte van de
model ruimte die onderzocht kan worden kan gereduceerd worden door de code parallel te
maken. Het zal dan mogelijk worden om de structuur van de aarde te bestuderen door het
NA direkt op de spectra van eigentrillingen of oppervlaktegolven te gebruiken in plaats
van secundaire data zoals fase snelheid modellen of eigentrillingen structuur coëfficienten
te inverteren.
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Résumé (Summary in French)

Le sujet de cette thèse concerne l’anisotropie sismique à l’intérieur de la Terre, c.à.d. la
dépendence de la vitesse des ondes sismiques en fonction de leur direction de propaga-
tion. Nous avons évalué à quel point il est nécessaire d’introduire de l’anisotropie sis-
mique dans les modèles tomographiques globaux en utilisant une nouvelle technique de
résolution des problèmes inverses. La méthode adoptée s’appelle “Neighbourhood Algo-
rithm” (NA) et fut récemment développée par Sambridge (1999a,b). C’est un algorithme
qui explore l’espace des modèles et qui caractérise tous les modèles compatible avec un
certain ensemble de données. L’entièreté de l’espace des modèles, espace nul inclus, est
échantillonnée et une densité de probabilité peut être associée à chaque inconnue. De
plus, des informations sur les corrélations entre les différents paramètres sont fournies
directement par l’algorithme. Cette technique présente l’avantage, par rapport aux in-
versions traditionnelles, de procurer des estimations d’incertitude sur les modèles plus
fiables, surtout lorsque l’espace nul est important ou lorsque les densités de probabilité
sont fortement non-gaussiennes. Ces densités de probabilité peuvent être employées a
posteriori afin de tester différentes hypothèses (p.ex. composition, corrélation entre vari-
ables, etc), et il est possible de réduire le nombre de modèles de Terre en utilisant des
données indépendantes. Bien que limité par la taille de l’espace des modèles pouvant être
exploré en un laps de temps raisonable, le NA convient bien pour étudier l’intérieur de la
Terre à partir de données provenant des oscillations libres de la planète et à partir de cartes
de vitesse de phase. Ceci est en effet possible parce que ce type de problèmes peut facile-
ment être divisé en plusieurs problèmes inverses de plus petite taille, par décomposition
de la strucure en harmoniques sphériques.

Le NA a d’abord été appliqué à un problème tomographique à grande échelle, pour
trouver un ensemble de modèles de vitesse d’ondes P et S de degré deux dans le manteau
(Chapitre 3). Nous nous sommes ensuite concentrés sur la présence d’anisotropie radiale
dans la Terre. Ce type d’anisotropie est décrit par cinq paramètres élastiques indépendants
et survient quand un milieu élastique présente un axe de symmétrie pointant dans la di-
rection radiale. Le modèle PREM fût le premier modèle de référence (1-D) à inclure de
l’anisotropie radiale dans le manteau supérieur jusqu’à une profondeur de 220 km. Nous
avons calculé la probabilité pour que les paramètres anisotropes diffèrent de PREM dans
différents cas, en intégrant les densité de probabilté obtenues avec le NA. Le Chapitre 4
traite de la présence d’anisotropie radiale dans des modèles de manteau de référence, à
partir d’un ensemble de données composé de nombreux modes propres et ondes de sur-
face. Les Chapitres 5 et 6 s’occupent des variations latérales de cette anisotropie jusqu’à
une profondeur de 1200 km, en utilisant des cartes de vitesse de phase de mode fonda-
mentaux et d’harmoniques pour des ondes de Rayleigh et de Love. Nous avons trouvé que
l’ensemble actuel de données d’ ondes de surface et de modes propres ne favorise aucune
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déviations significative des paramètres anisotropes par rapport à PREM, dans les modèles
de référence, excepté pour les ondes P entre 220 et 400 km de profondeur et, peut-être
pour le paramètre η entre 220 et 400 km de profondeur et dans la zone de transition.
Les données employées ne cautionnent pas, avec une grande probabilité, les changements
de signes des paramètres anisotropes observés précédemment par Montagner et Kennett
(Montagner and Kennett, 1996) à 670 km de profondeur. Si des déviations par rapport
à PREM, autres que celles décrites dans le Chapitre 4, sont effectivement présentes à
l’intérieur de la Terre, elles ne peuvent pas être résolues par les données actuellement
disponibles. Dans le Chapitre 4, en plus des résultats pour l’anisotropie, nous avons trouvé
un déficit de densité dans les 220 premiers kilomètres du manteau et un excès de densité
dans la zone de transition et dans le manteau profond (couche D”). Cet excès de densité
dans le manteau profond pourrait correspondre à la couche dense, compositionellement
différente du reste du manteau, proposée par Kellogg et al. (1999). Des variations latérales
d’anisotropie radiale ont également été trouvée dans les 1200 premiers kilomètres du man-
teau. Nous avons observé un signal dépendant clairement de l’âge de la région considérée
jusqu’à 220 km de profondeur pour les différents paramètres anisotropes, dans les régions
océaniques et dans les régions continentales. L’anisotropie des ondes S et le paramètre η
sont tous deux caractérisés par une décroissance en fonction de la profondeur plus rapide
sous les “jeunes” océans et les “jeunes” continents que sous les océans plus vieux et sous
les cratons. L’anisotropie des ondes S pourrait s’étendre à des profondeurs supérieures à
220 km sous les cratons, mais pas sous les autres régions continentales. De l’anisotropie
S, avec VSH > VSV , a aussi été détectée dans la zone de transition sous les jeunes océans,
mais pas sous les océans plus âgés, ce qui pourrait indiquer que les rides océaniques ont
une origine relativement profonde. Aussi bien le paramètre η que le paramètre φ changent
de signe entre 220 et 400 km de profondeur et nos résultats suggèrent de l’anisotropie P
et η non nuls sous les continents, à des profondeurs comprises entre 220 et 400 km. De
manière générale, aucune relation préférentielles entre les perturbations de ξ, φ ou η n’est
soutenue par les données dans les premiers 100 km du manteau et, visiblement, le rapport
entre dη and dξ varie latéralement, ce qui devrait inciter à la prudence quant à l’utilisation
de facteurs de proportionnalité globaux dans les inversions.

Le Chapitre 7 traite d’anisotropie azimuthale, qui correspond à la dépendance de la
vitesse des ondes sismiques en fonction de l’azimuth de propagation. Nous avons com-
paré nos résultats à ceux obtenus par Trampert et van Heijst (Trampert and van Hei-
jst, 2002) à partir d’une inversion de type “Backus-Gilbert”. Nous avons ainsi montré
que cette méthode d’inversion est capable de trouver la solution la plus probable d’un
problème, telle celle trouvée par le NA, même si la densité de probabilité est large. Enfin,
l’étude d’anisotropie dans le noyau interne de la Terre (Chapitre 8) a démontré qu’avec
le NA, on peut obtenir des solutions à un problème inverse qui n’avaient encore pu être
trouvées par les méthodes traditionnelles d’inversion. Nous avons pu, par la même occa-
sion, réconcilier différents types de données. Nous avons, en effet, trouvé une famille de
modèles anisotropes de la graine à partir de mesures de modes propres de la Terre, et ces
modèles prédisent indépendamment les temps de trajets d’ondes de volume traversant le
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noyau interne à toute distance épicentrale. La dépendance en profondeur des modèles est
relativement compliquée, et nous avons obtenu un changememnt de signe des paramètres
anisotropes à un rayon d’environ 300-400 km. Ceci pourrait être expliqué en terme d’un
changement de phase du fer à ces profondeurs et/ou refléter l’histoire de la formation du
noyau terrestre.

Le NA est donc un outil très puissant pour résoudre des problèmes inverses de petites
tailles. Nous avons pu obtenir des densités de probabilité pour l’anisotropie sismique dans
différentes régions du globe et à différentes profondeurs, qui procurent de meilleures
estimations de l’incertitude sur cette anisotropie que les inversions traditionnelles. Ces
densités de probabilité peuvent être utilisées pour calculer des probabilités pour chaque
paramètre anisotrope et pour les vitesses isotropes équivalentes. Elles pourront également
être employées dans de futures recherches pour tester des modèles de composition de
la Terre et pour tenter d’incorporer cette anisotropie dans des modèles de convection.
Les modèles d’anisotropie dans le noyau que nous avons trouvés aideront peut-être à
comprendre la formation du noyau et à déterminer sa composition. La limitation du NA
imposée par la taille de l’espace des modèles qui peut être explorée en un temps raisonable
pourrait être fortement réduite en parallèlisant le code. Il sera dès lors possible d’étudier
la structure de la Terre en appliquant le NA directement au spectre des modes propres et
des ondes de surface plutôt que d’inverser des données “secondaires” telles que des cartes
de vitesses de phase ou des coefficients de splitting.
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