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| ntroduction

1.1 General introduction

A common approach in sedimentary basin analysisisto formul ate conceptsthat explain stratigraphic
patterns observed in outcrop and subsurface as the product of the historical interplay between four
fundamental variables: tectonics, sea-level change, climate and sediment supply. The purpose of
these conceptsisto differentiate the relative importance of the variables, quantify their individual
rates and understand how their interaction controls erosion, transport and deposition of sediment.
Applications of these concepts range from unravelling the geologic history of a specific basin, to
the assessment of stratigraphic trapping mechanisms and reservoir heterogeneity.

At present conceptual models are able to explain the evolution of sedimentary systemsinvolving a
limited number of controlling variablesor asingle dominant one. A well-known, successful concept
issequence stratigraphy, which improved our understanding of the effect sea-level change on passive
margin stratigraphy (Posamentier and Vail, 1988; Galloway, 1989). However, in active-margin
foreland basins, devel oping adjacent to an evolving mountain belt, the dominance of asinglevariable
such as sea level is less evident and likely to vary in space and time (Butler and Grasso, 1993;
Schwans, 1995; Dreyer et al., 1999). Here, the geometries of the sedimentary sequences that fill
the basin and the unconformities that partition them, are governed by the interaction between
variables. The number of interacting variables and the three-dimensional complexity of the basin
filling process and product in these settingsis substantial, and conceptual models are insufficient to
comprehend the complete basin-fill development, due to the wide range of poorly understood
interactions, feedback mechanisms and non-linear effects.

The objective of thisthesisisto gaininsight into the effects of changesin both singleand interacting
variables creating foreland basin stratigraphy, by means of coupling them quantitatively in a
numerical forward model, which produces a three-dimensional stratigraphic record. The focusis
ontwo main variables, repeated tectonic activity and eustatic sea-level variation and their combined
effects on stacking patterns of the depositional systems and the character of the sequence-bounding
unconformities.
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Introduction

1.2 Foreland basins

1.2.1 Foreland basin definition

Foreland basins develop in response to advancing thrust and fold loads by flexural subsidence
(Price, 1973; Dickinson, 1974). They are found in two tectonic settings. as peripheral basinsin
regions of continent/continent collision and as retro-arc basins in locations of ocean/continent
collision. Examples of peripheral foreland basins are the Molasse Basin north of the Alps, the Ebro
Basin formed in response to the Pyrenees, the Po Basin related to the Apennines (Figure 1.1), and
the Indo-Ganges Basin associated with the topographic load of the Himalayas. Retro-arc foreland
basinsarefound east of the Rocky-Mountain front in the Laramide Province, in the Andes orogenic
belt, and in western Taiwan. The basement of both types of basins consists of continental lithosphere.
Thelir basic geometry and large-scale evolution are controlled by the rheological properties of the
underlying lithosphere and itstempora devel opment in responseto loading. Asaresult of lithospheric
adjustment upon thrust loading the basin subsidence is maximum immediately adjacent to the
mountain belt and gradually decreases onto the foreland until eventually uplift occursin the form
of a structure commonly referred to as the foreland or peripheral bulge (Turcotte and Schubert,
1982). Thisasymmetric geometry isreflected in the distribution of the sequencesfilling theforeland
basin. They thicken towards the orogen and show featheredge pinch outs towards the foreland
bulge.

1.2.2 Underfilled versus overfilled foreland basins

The relief created by thrusting in the orogenic wedge is eroded and provides the detritusto fill the
foreland basin. In response to the long-term changing balance between flexural subsidence and
sediment supply delivered by the growing orogen, the basin first goes through an underfilled stage,
followed by an overfilled stage of evolution (cf. Covey, 1986). Underfilled foreland basinstake the
form of turbidite or flysch-filled troughs, reflecting low sediment supply due to limited subaerial
orogenic relief versus high subsidence rates. High subsidence rates are caused by initial thrust
loading upon previoudly rifted lithosphere, which isthinned and therefore weaker (Stockmal et al.,
1986; Desegaulx et al., 1991). During the subsequent stage of overfill, the basin is characterised by
molasse, shallow-marine and alluvial depositional facies, asthe result of increased orogenic relief,
enhanced erosion and, consequently higher sediment supply. The transition from the underfilled to
overfilled foreland basin stage is often envisaged as asimple process, which takes placein asection
perpendicular to the orogenic wedge on a time scale of n x 10 Myr (Figure 1.2). However, the
transition also follows the sediment dispersal pattern parallel to the orogen, due to along-strike
differences in orogenic convergence rate (Matter et al., 1980; Puigdefabregas and Souquet, 1986;
Ricci-Lucchi, 1986).

13
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Configuration
modelled in this thesis

\

overfilled
foreland basin

n x 10 Myr

s

underfilled
foreland basin

Figure 1.2 Block diagrams showing the schematic development of a foreland basin from underfill to overfill.
Thetop block diagramillustrates thetectono-sedimentary configuration investigated in thisthesisusing numerical
modelling experiments.
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1.2.3 Two-phase foreland basin concept

A commonly applied concept in the molasse stage of a foreland basin is that of the ‘two-phase’
foreland basin system, controlled by theinterplay between episodic thrusting and erosional unloading
(Heller et al., 1988; Jordan and Flemings, 1991). In this concept (Figure 1.3) periods of tectonic
activity (phase 1) lead to thrust wedge loading and enhanced flexural subsidence at the rear of the
basin, whereas the frontal forebulge experiences uplift and migrates towards the thrust front. The
associated fluvial pattern in the foreland is that of a longitudinal river interlocked between the
basin margin alluvial fansand the forebulge high. During aperiod of tectonic quiescence (phase 2),
the thrust wedge is eroded and the amplitude of the forebul ge diminisheswhile migrating outward.
As a result of the erosion of the thrust wedge, the lithosphere is unloaded and the sediment
accommodation space in the foreland basin is reduced. Thisis partly a self-sustaining process, as
new material iscontinuously added from bel ow and removed in efficient high-relief drainage basins.
The reduction of basin accommodation space, combined with a high rate of sediment supply leads
to widespread progradation of the aluvial fans, which now establish adominant transversal drainage
system (Burbank, 1992). Renewed tectonic activity results in aretreat of the alluvia fans by the
increase of flexural accommodation space created closeto thetectonic front. In addition, theflexural
response again results in forebulge uplift, temporal erosion of distal foreland basin sediments and
the creation of unconformities. Accordingly a repetitive tectonic activity/quiescence pattern is
reflected as multiple cycles of gravel progradation into the foreland basin alternating with well-
sorted axia sediments and forebulge unconformities.

Phase 1: tectonic uplift and loading Phase 2: tectonic quiescence and erosional unloading

asymmetric foreland subsidence:

~f).Tess lost asymmetric foreland uplift:
wedge-shaped units ’

tabular units

foreland bulge
uplift and migration

outward migration
foreland bulge

isostaticIuplift I

transverse rivers dominant

|

longitudinal rivers dominant

Figure 1.3 Two-phase foreland basin concept. Thrust wedge loading (phase 1) leads to flexural subsidence,
whereasthe frontal forebulge experiences uplift and migratestowardsthethrust front. Thefluvial patterninthe
foreland is that of a longitudinal river interlocked between the basin margin alluvial fans and the forebulge
high. During a period of tectonic quiescence (phase 2), the thrust wedge is eroded and the drainage isdominated
by tranverse alluvial fans (modified after Burbank, 1992).
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A relatively instantaneous, elastic response of the lithosphere upon thrust loading and erosional
unloading is assumed in the ‘two-phase’ foreland basin concept. Yet, another style of lithospheric
behaviour, the visco-elastic response, is frequently advocated in literature and applied in model
studies of foreland basins (Quinlan and Beaumont, 1984; Tankard, 1986). Visco-elastic models
take into account time-dependent lithospheric processes such as thermo-mechanical weakening.
These models are used to explain changes in basin geometry without changes in surface load.
Inherently, visco-elastic models involve arelaxation time between loading of the orogenic wedge
and lithospheric response. As yet, no well-documented case study exists that adequately assesses
the value of the relaxation time in these settings from the stratigraphic record, and discrepancies

exist between observed and modelled gravity anomalies (Watts, 2001).

~ 5 Myr

Figure 1.4 Segmentation of the foreland basin by a laterally propagating thrust front and the creation of a
thrust-sheet top basin. Configurations such as this one are inferred from the thrust-sheet top basins of the
Apennines (Ricci-Lucchi, 1986) and Pyrenees (Hirst and Nichols, 1986; Bentham et al., 1992; Ardevol et al.,
2000). These basins show complex stratigraphic transitions fromflysch (underfill) to molasse (overfill), parallel

thrust-sheet top basin

thrust-sheet top basin

laterally-propagating
thrust front

axial river

overfilled

underfilled

to the strike of the orogen.
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1.2.4 Structural segmentation of the foreland and creation of thrust-sheet top basins.

During both underfilled and overfilled phases the foreland basin sediments are progressively
incorporated into the deformation of the advancing orogenic wedge (Figures 1.1 and 1.4). While
sediment is being accumulated, the foreland basin sediments can be dissected by thrust structures
or decoupled by shallow-dipping detachment faults in the subsurface. Consequently, the foreland
basinisseparated into sub-basins called piggyback basins or thrust-sheet top basins (Ori and Friend,
1984). The process of structural segmentation of the foreland basin during sedimentation resultsin
complex sediment routing patterns where thrust-top basins spill over excess sediment into deeper,
underfilled parts of the foreland basin (Ricci-Lucchi, 1986; Bentham et al., 1992; Ardevol et al.,
2000). Again, therouting trend isparallel to the orogen during this process, but asfinaly all subbasins
fill up, sediment transport patterns change from axial to transverse while cutting through the most
frontal thrust structures at localized positions (Hirst and Nichols, 1986; Gupta, 1997).

1.3 Stratigraphic simulation models

1.3.1 Why stratigraphic modelling?

Stratigraphic simulation model sarewidely used in the academic and applied geological communities
because of several reasons (cf. Waltham, 1992). Firstly, they are ideal teaching tools due to their
interactive nature (Flemings and Grotzinger, 1996). The user gainsinsight into the long-term basin
filling processand stratigraphy just by repeating asimulation whilevarying theintensity of tectonic,
eustatic and climatic controls and comparing the stratigraphic results. Secondly, modelsare used to
estimate unknown parameters (Helland-Hansen et al., 1988). Observed geometries in a seismic
section for example aretheresult of the complex interaction of these controls, most of the quantities
such as sediment supply, subsidence rate, amplitude of sea-level change are partly unknown. The
responsible set of controlling variables can be estimated within the limits of uniqueness by trying
to match the stratigraphic simulation with the observed geometries. Existing field interpretations
can, when quantified, be compared to each other in order to select themost likely of these* conceptual
scenarios’. This approach may result in the recognition of unanticipated scenarios (Cross and
Harbaugh, 1990; Watney et al., 1999; Tipper, pers. com.). Thirdly, stratigraphic ssmulationisapplied
as a clever form of subsurface prediction (Wendebourg and Harbaugh, 1996), sometimes in
combination with stochastic algorithms (Doligez et al ., 1999), or by conditional simulation constraint
to well data (Karssenberg et al., 2001). Combined with hydrocarbon-maturation and migration
modelling it allows an integrated assessment of sedimentary basin exploration potential
(Wendebourg, 1997; Bagirov and Lerche, 1999).

Another important reason is that solely the construction and coding of a forward model forces the
sedimentol ogiststo recogni se and quantify the main processes and variablesinvolved, and to proceed

17
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beyond the historical descriptive nature of their scientific discipline. Nevertheless, quantification
of model input and model construction is not a straightforward task, as both are limited in their
verification and validation (Oreskes et al., 1994).

1.3.2 Overview of modelling methods

Stratigraphic models are either static or dynamic. Static stratigraphic models are the result of the
application of geostatistical methodsin order to quantify and visualize subsurface natural resources.
They are based on interpolation techniques (Deutsch and Journel, 1997), Markov statistics (Lin
and Harbaugh, 1984; Carle et al., 1998), fractals (North and Halliwell, 1994) or combinations of
these stochastic agorithms (Tyler et al., 1992). They have been successful in describing reservoir
heterogeneity (Dubrule, 1989), but lack geologica process-response relationships and temporal
evolution.

Dynamic stratigraphic models in contrast focus on the suite of deterministic time-dependent
processesthat progressively fill abasin with sediment, asafunction of geologically relevant external
processes such as eustasy, tectonic activity and climate change. Dynamic models incorporate
geological time either in aforward or in abackward sense. Forward models predict a stratigraphic
response as function of acollection of interacting processes with a strong dependence on previous
variables and configuration. Backward, or inverse models try to distil these variables or the
evolutionary process from a known stratigraphic architecture in an automated fashion (L essenger
and Lerche, 1999). This has proven to be a difficult task, and many inverse models presented are
actually pseudo-inverse models, by incorporating a forward model (Bornholdt et al., 1999; Cross
and Lessenger, 1999). Pseudo-inverse models try to approximate the suite of controlling variables
withinthelimitsof uniqueness(Heller et al., 1993) by iteratively running and progressively adjusting
aforward model until the model result matches the observation.

Forward stratigraphic simulation modelsaredivided into two categories, geometric and dynamic,
a distinction based on the detail and complexity of the method applied to simulate erosion and
deposition of sediment. Geometric models approximate the net result of many erosion-deposition
events on the basin fill patterns by using empirically determined large-scale geometries of
depositiona surfaces. These equilibrium profile-like geometries are trand ated and stacked asfunction
of the bulk sediment supply and accommodation space. Examples of the geometric approach are
found in two-dimensional models for general basin filling such as SEDPAK (Helland-Hansen et
al., 1988; Strobel et al., 1989) and STRATAGEM (Aigner et al., 1989; Lawrence et al., 1990), and
models for long-term coastal evolution (Cant, 1991; Cowell et al., 1995). In particular, coasta
geometric models are computationally fast, which makes them suitable for running multiple
simulations. They allow extensive sensitivity analysis and quantative comparison of model results
to geological hypotheses (Storms et al., 2002).
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A different type of geometric model used by several workers is the Bridge and Leeder fluvid
architecture model (Bridge, 1979). The original two-dimensional version uses a combination of
empirically determined avulsion frequency and fixed floodplain overbank geometriesto model the
channel belt interconnectedness in alluvial basins. This model has been utilised in exploring the
stratigraphic effects of an asymmetrically subsiding half graben (Alexander and Leeder, 1987) or
to constrain stochastic modelling (Clementsen et al., 1990). In the three-dimensional follow-up
(Mackey and Bridge, 1995), a cellular channel belt positioning routine was incorporated.
Dynamic models have more attention for the process of erosion and sedimentation, and operate at
ascale smaller than the resulting stratigraphic pattern. Again, one can distinguish two approaches,
the fluid-flow models and the dynamic slope models.

Fluid-flow models apply engineering time-scale, sediment transport formulae (Bitzer and Plug,
1989; Syvitski et al., 1998; Haupt et al., 1999). One of the best-known and fully three-dimensional
stratigraphic models in this category is SEDSIM (Tetzlaff and Harbaugh, 1989), which has been
modified for application in hydrocarbon exploration (Griffiths et al., 2001; Tetzlaff and Priddy,
2001). In this model, fluid flow and sediment transport of multiple grainsizes is solved using a
simplification of the Navier-Stokes equation and the marker-in-cell method (Hockney and Eastwood,
1981). It is capable of dynamically adapting to a changing surface morphology and is currently
extended with geostatistical procedures to assess the subsurface hydraulic conductivity of the
generated stratigraphy (Tuttle and Wendebourg, 1999). Yet, this model approach demands very
detailed spatial and temporal discretisation, and consequently the computational power needed to
accumulate a stratigraphy over geologic time spansis substantial, just as the number of transport-
related input variables. Hence, the computationally less demanding dynamic-slope models were
more popular during the last two decades (Kenyon and Turcotte, 1985; Syvitski and Daughney,
1992; Flemingsand Grotzinger, 1996). These model s use diffusion as an approximation for sediment
transport because of the method's ability to produce readlistically looking delta clinoform profiles
(Jervey, 1988; Kaufman et al., 1991; Steckler et al., 1993) and flexibility to work at awide range of
gpatial and temporal scales. As aresult of this flexibility, the published estimates for the apparent
sediment diffusion coefficient vary from 1 x 10* m#yr for degrading fault scarps (Colman and
Watson, 1983) to 5.6 x 10° m?/yr for prograding deltas (Kenyon and Turcotte, 1985). Riveneas
(1992) fundamentally extended the approach by incorporating two grainsizeswith different diffusion
coefficients. Multi-lithological diffusion models and empirical, rule-based models have evolved to
the present generation of commercial simulation packages such as PHIL (2D) (Bowman and Vail,
1999) and DIONISOS (3D) (Granjeon and Joseph, 1999), by adding tectonic and user-friendly
visualization routines.

With the recent progress from two- to three-dimensional stratigraphic modelling, it is recognized
that complex fluid-flow model s and diffusion-based dynamic d ope model sareinadequateto smulate
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the details of channalized sediment transport on a topographic surface. New methods are required
that are, on the one hand, capable of imitating fluvial patterns and sediment transport, and on the
other hand are computationally more efficient than the fluid-flow models.

The transition to three-dimensional stratigraphic modelling is currently taking place by applying
methods devel oped in the geomorphologic and GIS community, such as cellular flow algorithms
(Freeman, 1991; Burrough and McDonnel, 1998) and streampower-based sediment transport,
commonly used in modelsfor long-term landscape evolution (Willgoose et al., 1991; Chase, 1992,
Howard, 1994; Tucker, 1996b) and soil erosion (Kirkby, 1992). Examples are the foreland basin
model of Johnson (Johnson and Beaumont, 1995), delta simulators (Ritchie et al., 1999; Meijer,
2002) and carbonate models (Burgess et al., 2001; Warrlich et al., 2002).

1.4 Model scope and description

1.4.1 Model scope

Only few models coupl e sediment transport and deposition in basins directly with erosionin domains
of tectonic uplift (Johnson and Beaumont, 1995; Coulthard et al., 2002; Tucker et al., 2002). Most
of these coupled modelsthat study foreland basin systems operate on a geodynamic scale (100-500
km, Table 1.1), focussing on the relationships between flexural response upon thrust loading and
large-scale stratigraphic patterns recorded in the basin. (Flemings and Jordan, 1990; Sinclair et al.,
1991; Peper et al., 1992; Johnson and Beaumont, 1995). In addition, there is an increasing number
of small-scale modelsthat investigate the potential of growth stratato record thrust-related process
in foreland basins (~10 km) (Zoetemeijer et al., 1993; Hardy et al., 1996; Den Bezemer et al.,
1998; Bernal and Hardy, 2002). Currently, there is a need for coupled models with a resolution
detailed enough to visualize sedimentary architectural elements, which at the same time address
recurring questions at basin scale. Examples of such outstanding questions, which will be addressed
in thisthesis, are:

» Theresponse time between the onset of tectonic activity and the deposition of alluvial fan
gravels in the basin (Burbank and Raynolds, 1988; DeCelles et al., 1991a; Fraser and
DeCelles, 1992; Dreyer, 1993; Burbank et al., 1996; Whipple and Trayler, 1996).

» Tectonic significance of shiftsand architectural stylesof axia fluvial systems (ribbonsvs.
sheets, Krausand Middleton, 1987; Warwick and Flores, 1987; Marzo et al., 1988; Bentham
et al., 1992; Nijman, 1998; Anderson and Cross, 2001; Ramos et al., 2002).

» The origin of composite sequences and the hierarchical organisation of shallow marine
delta deposits in foreland basins. Examples of composite sequences are found in the
Cenomanian Dunvegan Formation of the Alberta Foreland Basin, Canada (Bhattacharya,
1991; Plint et al., 2001), the Upper Cretaceous Castlegate Sandstone, Utah (Schwans, 1995;
Yoshida et al., 1996), and the Eocene Montanyana Group (Nijman, 1998) and Sobrarbe
Formation in the Spanish Pyrenees (Dreyer et al., 1999). Commonly, these composite
sequences are interpreted to reflect tectonic-controlled increases in accommodation space
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because of their duration (0.2-2.0 Myr), whereas smaller-scale cycles within the sequences
(<0.2Myr) are seen asthe effect of sea-level or climate fluctuations. Theinterplay between
subsidence and eustasy may appear smple (e.g. Posamentier, 1999), but prudenceiscalled
for because subsidence rates are not spatialy invariant at both timescales (Olsen et al.,
1995; Yoshidaet al., 1996; Plint et al., 2001).

Difference between regional flexure-related and thrust-induced reduction of the
accommodation spacein deforming foreland basins. Both are known to create unconformities,
amalgamating sheet sandstones and forced regressions but are difficult to distinguish as
thrust deformation increases in size (Butler and Grasso, 1993; Peper and de Boer, 1995;
Dreyer et al., 1999; Gawthorpe et al., 2000).

1.4.2 Model description and flow chart

The model presented in this thesis is operational at intermediate scales (~75 km, ~3 Myr, Table
1.1), and its capabilities represent acompromise between computational efficiency and stratigraphic
detail. The model differs from existing coupled models by the addition of severa new tectonic,
geomorphic and stratigraphic features:
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Application of the cellular braiding principle (Webb, 1994; Murray and Paola, 1997) besides
the commonly used steepest descent flow algorithm, facilitating the simulation of sediment
dispersal on aluvial fans and deltas.

Flow-tracer-based distinction between erosion and depositional domains and individual
depositional systems (bedrock drainage basin vs. alluvial fans, axia rivers, etc.), in order to
track facies-specific sediment budgets as afunction of the external forcings.

Increased realism of the stratigraphy by active grainsize sorting through the cellular flow
networksand athree-dimensional, high-resol ution discretisation of the subsurface. Grainsize,
afundamental feature in sedimentary sequences, ischosen asmain characteristic visualized
in fence-diagrams.

Visualization of the stratigraphy according to the status of tectonic, eustatic or combined
forcing, such asrate of relative sea-level change at the time of deposition of each individual
layer. This facilitates the recognition of causal relationships between the external forcings
and the stratigraphic patterns recorded in the basin.

Sub-horizontal translation of syn-tectonic sediment accumulated in athrust-sheet top basin.
Low-cost, automated three-dimensional visualization of the foreland basin landscape
evolution and stratigraphy by coupling of the C/C++ source code to Surfer® and Matlab®
scripts.

Automated selection and three-dimensional visualization of geometrically complex
subsurface features of economic interest such as incised valley fills and interconnected
sandstones.
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A simulation starts with initialisation of the basin topography, the subsurface geometry of the fault
planes and reading of theinput variables (Figure 1.5). The main input variables are the coefficients
and exponents of the transport equations and the time-dependent values of the external variables
such as eustasy, rainfall, and fault-specific tectonic activity curves. These curves are read from an
MsExcel® spreadsheet or constructed during the initialisation process. Options are simple on/off
step function, a sine wave, or more complex harmonics representing interference patterns of
Milankovitchinsolation signals. Thesimulation is performed in asequence of timesteps representing
10 or 50 yrs, in which the main components of the creation of accommodation space, eustatic
change and isostatic adjustment are applied incrementally to the landscape surface discretised on a
rectangular grid. Subsequently, the potential water discharge and sediment distribution slopes are
evaluated for every node in the eight surrounding directions. Water discharges are assumed to
represent the effective surface runoff. Depending on the node positions with respect to sea level
they are subjected to a set of marine or continental deterministic sediment transport equations. All
transport equations conserve mass and are solved explicitly in order to facilitate the change of node
elevation simultaneously with the updating of subsurface stratigraphy. At fixed time intervals this
repeating tectonic-geomorphic sequence of events is interrupted by thrust-fault re-activation, an
evaluation of theisostatic equilibrium and writing of the output files. Thefile contentsare visualized
as landscapes and stratigraphic fence diagrams, during run time or at the end of a simulation, by
calls from the model code to Surfer (Golden Software, inc.) and Matlab (The Mathworks, inc.)
scripts.

The geometry of the model and the rates of tectonic and sedimentation processes were tailored to
the Eocene Tremp Basin in the Spanish Pyrenees (Nijman, 1998) in order to be able to compare
model resultsto anatural basinfill. Geological research questions addressed in thisthesis are based
on this setting, and resemblances and differences between the modelled synthetic stratigraphy and
the field observations are discussed. It has not been the intention to reproduce the stratigraphy of
the Tremp Basin, because of the uncertainties involved in estimating the exact timing and rates of
all variablesinanatural setting due do poor dating constraints. M oreover, the problem of convergence
or equifinality, whereby different processes and causes produce similar stratigraphic results may
preclude asingle and unique solution (Heller et al., 1993; Schumm, 1998, p.58). Rather, the model
results are used to offer insight into the effect of fundamental variablesin a comparable setting.

1.5Aim and outline of thisthesis

The aim of the numerical experiments presented in thisthesisisto recognize stratigraphic features
diagnostic for single or interacting variables in a three-dimensional foreland-basin record.
Investigated variables include tectonic activity, eustatic sea level, intra-basinal detachment fault
geometry, aswell asthe flexural rigidity of the underlying lithosphere. The quantitative numerical
model was stepwise devel oped and extended during the research. Consequently, the complexity of
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the experiments in terms of tectono-sedimentary setting and interacting variables increases
throughout the successive chapters of thisthesis.

Chapter 2 is an introduction into the origin of the surface process equations applied, and their
numerical implementation in the model. Techniques used to simulate thrusting and basin subsidence
areillustrated. The model set-up consists of abasic orogen/foreland basin system represented by a
linear, advancing thrust front and an asymmetrical subsiding basin being filled by aluvia fans.
Two aspects of the system are explored. First, the effect of bedrock erodability versus thrust
displacement rate on the morphology of the evolving orogenic drainage network. Secondly, the
effect of episodic tectonic activity on the three-dimensional distribution of alluvial fan gravelsin
the basin.

In Chapter 3 the model set-up is modified to a configuration of three depositional elements
commonly observed in present-day and fossi| foreland basins. Transversealuvial fans, alongitudinal
river flowing aong strike of the orogen, and ashallow-marine domain. Theforeland basin is subjected
to smultaneously active episodic tectonism and eustatic sea-level variations to investigate how
thelr interplay determinesthe geographic positions of the depositional elementsand the corresponding
three-dimensional stratigraphic architecture recorded in theforeland basin. In addition, the complex
subsurface distribution of incised-valley fills, which are potential reservoir bodies, isvisualized in
three dimensions and related to the evolution of the accommodation space in the basin.

In Chapter 4 the transformation of aforeland basin into a thrust-sheet top basin is modelled. The
effect of the competition between two variables, the rate of regional flexural subsidence, and the
uplift rate dueto tranglation over the inclined detachment fault, is shown in the model stratigraphy.
Theinterconnectedness of sheet sandstones and the sensitivity to fluvial entrenchment asafunction
of increasing detachment angleis systematically explored. Thisvariableis commonly neglectedin
foreland basin analysis. The resulting experimental stratigraphy is used to explain the character of
the Castissent Formation incised-valley sheet sandstones.

Chapter 5isalook forward towards anew modelling technique. Therectangular grid discretisation
applied in the previous chapters is the most feasible method if one aims to model foreland basin
drainage patterns and stratigraphy at long temporal and spatial scales. However, with the steady
increase in cost-effective computer speed and memory it isto be expected that this approach will be
replaced by an advanced generation of models based on a Triangular Irregular Network (TIN) that
allow more refined representations of tectonic and fluvial patterns. Anticipating on such a
development, examples are shown of stratigraphic simulation of alluvial fans, a meandering river
and anormal fault-bounded basinfill, by using amodified version of the CHIL D landscape evolution
model (Tucker et al., 2002).
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2

Numerical modelling of drainage basin evolution and
three-dimensional alluvial fan stratigraphy

Abstract

A forward numerical model is presented to study the effects of bedrock erodability, thrust
displacement rate, pul sating tectonic activity and sea-level fluctuations on drainage basin morphol ogy
and stratigraphy of large alluvial fan systems. A low value of the bedrock erodability coefficient
(K, =0.5x 10* yr?3) versus thrust rate (R, = 2.0 m/kyr) is associated with a time lag between
cessation of tectonic activity and maximum sedimentation rates observed on the aluvial fans.
Applying higher K, values, ranging between 1.0 and 8.0 x 10 yr??, results in higher sediment
yields dueto more rapid headward catchment erosion and el aborate sideways branching of drainage
networks. Pulsating tectonic activity is reflected in a stratigraphic alternation of prograding and
retrograding alluvial fan gravels. During tectonic activity fan gravel fronts and coastlines retreat
because catchment yields are insufficient to fill the accommodation space created by the flexural
response due to thrust loading. Phases of tectonic quiescence and cessation of flexural subsidence
are indicated by progradation of the gravel front. Depending on the position in the basin, the lag
time for arrival of the gravel associated with tectonic cessation is severa tens to hundred kyrs. A
combination of pulsed tectonic activity with sinuous sea-level fluctuation leads to amore complex
stratigraphic pattern. In that case stratigraphic response to tectonic pulses is masked by a similar
but higher-order frequency-stacking pattern, especially in the more distal parts.

2.1 Introduction

Alluvial fansare sedimentary landformsthat devel op at the base of mountain frontswhere confined
feeder streams emerge from catchments and release their sediment load into unconfined zones of
reduced streampower (Figure 2.1) (Bull, 1977; Blair and McPherson, 1994a; Harvey, 1997).
Spreading their loads in a radiating pattern from a single apex, they form conical bodies with
slightly concave length profiles and convex cross-profiles (De Chant et al., 1999). In regions with
multiple sources, thefanstend to obstruct each other and coal esceinto acontinuousbelt of deposition,
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Figure 2.1 Panamint Range alluvial fans, Death Valley, California, USA (source USGS).

or bajada (Davis, 1912). Basinward fan systemsmay join with axial fluvia systems, aeolian deposits,
lakes or a marine embayment (Hooke, 1968; Baltzer and Purser, 1990; Nijman, 1998).

Typical longitudina fan lengths are in the order of 5 to 15 km and fan slopes range between 0.5°
and 10°, depending on the position on the fan, its size and the dominant depositional process (Rust
and Koster, 1984). Debris-flow-dominated fans reach slopes up to 10°, while the slopes of stream-
flow-dominated fans decrease rapidly with increasing drainage basin size and river stream power
(Blair and McPherson, 1994b; Milana and Ruzycki, 1999). Examples of large-sized end-members
are the fluvial megafans of the present-day Himalayas (Wells and Dorr, 1987), Andes (Horton and
DeCelles, 2001) and stratigraphic records of the Pyrenees (Hirst and Nichols, 1986) and Alps
(Pfiffner, 1986; Schlunegger et al., 1997). Stratigraphic patterns of ancient aluvial fans of various
sizes show repetitive phases of gravel front progradation and retrogradation (Steel et al., 1977;
Blair and Bildeau, 1988; Whipple and Trayler, 1996). A reccurring issue in the sedimentological
literature isthe significance of these progradati on/retrogradation patterns and their relation to tectonic
activity (Burbank and Raynolds, 1988; Nijman, 1998; Anderson and Cross, 2001). Traditionaly,
progradation of coarse sediment is explained as the result of synchronous tectonic uplift of source
areas. Thisrelationship isintuitively very appealing and was already postulated by early geologists
suchasPlayfair (1802) and Barrel (1917). Active uplift of the source areawould in their view result
in arise of the slopes and a general increase in the capacity of the streams to detach and transport
larger-sized clastic material to adjacent depositional basins.
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Modelling drainage basinsand alluvial fan stratigraphy

Throughout the mid-eightiesit wasrealized that gravel progradation isnot exclusively asyn-tectonic
phenomenon (Beck and Vondra, 1985; Blair and Bildeau, 1988; Heller et al., 1988; Paola et al.,
1992). Bedrock erosion and gravel production do increase with created relief, but because these
geomorphic processes generally operate at a lower rate than tectonic uplift, they respond with a
significant time lag (Schumm, 1963). In addition, the potential of alluvial fan progradation is a
function of theratio between the supply rate and the rate of accommodation space creation (Schlager,
1993). Tectonic activity isgenerally associated with an increasing rate of subsidence near the active
fault, inhibiting the progradation of the gravel front into the depositional basin (Heller et al., 1993).
Instead, most sediment is accumulated in this subsiding zone close to the fault.

In the past the gravel-front progradation issue was dealt with using forward models of basin filling
(Jordan and Flemings, 1991; Sinclair et al., 1991, Paola et al., 1992; Bezemer, 1998; Marr et al.,
2000). These model s use diffusion asametaphor for sediment transport and are capabl e of producing
realistic stratigraphic cross sections. However, these model s are two-dimensional and lack drainage
basin excavation and fluvial stream networks.

Fluvia patterns are produced by drainage basin models developed in geomorphology, but usually
ignore sediment transport and deposition in adjacent sedimentary basins. The few models that
combine drainage basin excavation and synchronous deposition of sediment in three dimensions
do not actively sort gravel from sand. Consequently a high-resolution stratigraphic record is not
accumulated (Johnson and Beaumont, 1995; Ellis et al., 1999; Gawthorphe and Hardy, 2002). Two
notable exceptions are the CHILD (Tucker et al., 2002) and CAESAR model (Coulthard et al.,
1999). Thefirst performs coupled erosion and deposition of two grainsize fractions on an irregular
triangular mesh. The second produces very redlistic alluvial fan morphologies (Coulthard et al.,
2002), but they operate at time-scales too small to study the effect of tectonic perturbations.

The landscape evol ution model presented here (Figure 2.2) accumulatesa 3D, alluvia stratigraphic
record of the long-term tectonic evolution of a catchment—fan system at a vertical resolution of
approximately 1 m. Based on asurface processmodel (GOLEM, Tucker, 1996b), it producesdendritic
catchment networks. New features are sediment redistribution on alluvia fan surfacesusing divergent
channel networks, grainsize sorting and deposition of gravel-sand sediment mixtures. In addition,
subsurface stratigraphy is visualized as synthetic wells and fence-diagrams. Using thrusting as a
tectonic process to create topography, the model smoothly translates the drainage networks and
surface sediment properties horizontally on a rectangular grid without disrupting the surface
processes.
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mass advected into the system by thrusting

drainage basins shown
in figures 2.6 and 2.7

fluvial transport
(streampower)

marine transport
(diffusion)

Asymmetric
flexural subsidence

Boundary open to marine
and fluvial sediment flux

Figure 2.2 The model set up consists of a 150 x 150 rectangular grid of 500 mcells. The grid isdivided into a
linear uplifting thrust block and an asymmetric sedimentary basin created by flexural subsidence. Mass enters
the system as bedrock advected over a thrust ramp of 20°. Bedrock is eroded in drainage basins, transported
by streampower-type transport rules and deposited as alluvial fans. Sediment bypassing the alluvial fansis
transported further by diffusion in a marine embayment with a constant sea level of 0 m. Sediment carried by
fluvial and marine transport rules is allowed to leave the system at the left-hand side, whereas all other
boundaries are closed to sediment and water.

2.2 Methodology

2.2.1 Geomorphic and stratigraphic model

Using landscape evolution models has become common practice in geomorphology nowadays.
Thefocus hasremained on erosional processes. Many studiesinvestigate the rel ationshi ps between
uplift rates, drainage patterns, erosional fluxes and parameter sensitivity (Chase, 1992; Kooi and
Beaumont, 1994; Tucker, 1996b). The evolution of the drainage basinisafirst-order control on the
development of the stratigraphic patterns stored in adjacent depositional basins. The importance of
this link is increasingly being recognized, and the number of model-related publications dealing
with the interactions between both systems on geological timescales, is growing steadily (e.g.
Humphrey and Heller, 1995; Johnson and Beaumont, 1995; Elliset al., 1999; Allen and Densmore,
2000). Landscape evolution models designed for large spatial and long geological time-scale
simulations areforced to step away from describing transport processes at asmall scale dueto poor
information on detailed pal eohydraulics and limited computation power. Instead they use amix of
empirical relationships and simplifications of engineering time-scale transport laws (Howard and
Kerby, 1983; Willgoose et al., 1991; Howard et al., 1994; Tucker, 1996b; Whipple and Tucker,
1999). Many engineering bedload transport formulae take the form (Knighton, 1998)
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Modelling drainage basinsand alluvial fan stratigraphy

9, =k (7-7,)" (2.1)

where g, isthe volumetric transport rate per unit channel width (m?s), k, a sediment coefficient, T
is the channel-averaged fluid shear stress (N/m?) performed by the flow, t_ the critical threshold
stress to initiate motion, and p is an empirically determined power (for gravel p~3/2, (Bagnold,
1980; Yang, 1996), for fine sediment p~ 5/2 (Whipple et al., 1998)). In order to go from these
physically-based transport equationsto amore suitabl e, |ong-term description of sediment transport,
shear stress needs to be expressed in accessible quantities such as water discharge and slope. The
following derivation illustrates stepwise the assumptions involved to achieve this (Tucker, 2000).
In steady uniform flow the shear stressis defined as

T = pgRS (2.2
where p isthe density of water, g the gravity constant, R the hydraulic radius of the channel and S
the slope. For wide channelsR isequal to thewater depth h. The volumetric water transport rate per
channel width is

a, =Vh (2.3)
where the velocity V of the water is given by an empirical bed friction relationship such as the
Manning-Strickler or Darcy-Weisbach equation (Knighton, 1998).

€ 1
V=C,RS? (24)
where the values of the coefficient C. and exponent € depend on the resistance equation chosen.

Using the Manning-Strickler C. =1/n (n~0.02, is*‘Manning'sn’) and &= 4/3, while for the Darcy-
Weisbach equation C; =+/(89)/f and e=1 (f isfriction factor). After combining equation 2.3 and
2.4 shear stressis

r=(pgC,")a, s (2.5)
wherea = 0.6 and 3 = 7/10 if Manning-Strickler isused, or a = 3 = 2/3 if Darcy-Weisbach is used.

Shear stressand total sediment transport rate Q_ (m?s) can bewrittenintermsof total water discharge

Q by inclusion of the channel width W.

T:(ngf”)(%) s (2.6)
Q =kW(r-r.)’ (2.7)

where the channel width W (m) is approximated by a well-known empirical relationship, stating
that the channel width is proportional to the square root of the bankful discharge (Leopold and
Maddock, 1953)

W =k, Q” (2.8)
Thevalue of the exponent wis 0.5 for most data, whilek  ranges between 2 and 5 m*/2s'2 (Knighton,
1998). Substituting this width-discharge relationship into equations 2.6 and 2.7, these equations
can be rewritten as
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(2.9)

Q. =k.k,Q°(kQ"S" -7,)’ (2.10)

where k, = pgC,“k,, m, =a(1-w) and n, = £ Equation 2.10 needs to be simplified further

in order to make it applicable on the large grid size computational mesh used in the model (500
m grid cells). Coefficient k, and the threshold term 7_are omitted, k , folded into K, and
exponent p is multiplied with the discharge and slope exponents. The resulting equation for the
sediment transport capacity becomes

Q.=K,Q*(Q™s") (2.11)
Thefluvial transport efficiency coefficient K. is dependent on climate, bed roughness and material
properties such as sediment grainsize and porosity. It can be approximated by substitution (Tucker,
1997 their equation 10 and 11), giving a value between 0.001 and 1.0. In the model K, = 0.01 is
chosen becauseit givesredlistic long-term rates of deposition and equilibrium slopesfor thealluvial
fans on the coarse computational grid. The values of the discharge and slope exponents chosen are
m ~ 0.5 and n. ~ 1.0 using p=3/2, which is appropriate for gravel-dominated systems (Gomez,
1989), such asthe fans modelled here. From sensitivity analysisit can be said that any other choice
of the exponents, not directly dictated by the sediment transport relations, has implications for the
stability and morphology of the channel networks on the modelled alluvial fans. Values for n,
higher or lower than 1.0 may lead to undesired amplifications of channel slope and numerical
instabilities, while m, values higher or lower than 1.0 stimulate bifurcating of channel networks
(Murray and Paola, 1997; Crave and Davy, 2001). The water discharge Q at acell locationisfound
by multiplying the contributing drainage area A with effective runoff rate R.
Q=AR,, (2.12)
This approach is justified because over large time scales, water discharge is dominated by annual
bankful discharges or decadal peak floods and not by short-time variationsin rainfall (Slingerland
et al., 1993). It is possible to substitute equation 2.12 into 2.11 and reformulate the transport law
into verifiable topographic quantities as slope (S) and cumulative drainage area (A) (Howard, 1994;
Tucker, 1996b).
The potential sediment transport capacity Q. ispartly used to transport the sediment flux contributed
by upstream cells (W), leaving a smaller net carrying capacity Q_ to mobilise the local river bed
and add it to the sediment load of the flow.
Q =Q,-y¢ (2.13)
Based on evaluation of thelocal balance between carrying capacity Q. and sediment load ), three
types of fluvial transport behaviour emerge in various parts of the model grid:
1. Detachment-limited bedrock channels
2. Transport-limited aluvial channels
3. Hybrid, aluvial covered bedrock channels
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Modelling drainage basinsand alluvial fan stratigraphy

2.2.1.1 Detachment-limited bedrock channels

If the volume of sediment supplied from upstream cells is small or the thickness of the movable
sediment cover on the channel bed isnegligible, the flow at thislocation may be below its capacity
to transport sediment. The rate of channel lowering by bedrock erosion is then determined by the
rate of bedrock detachment.

dh_ -K,Q™S" (2.14)

dt

wherethevariable K, (yr#?)istheintrinsic bedrock erosion coefficient, which determinesthe time-
averaged incision rate of bedrock lithology. Several studies have attempted to predict parameters
m,,n, and K, using inverse modelling, empirical relationships and measurements of erosionratesin
badlands. K, ranges between 7x10° (mudstones) and 6x10° yr? (granite and basalt) (Stock and
Montgomery, 1999). Theoretically the value of n, isbetween 0.7 and 1.7, but the range is narrowed
by field data (0.6-1.0) (Howard and Kerby, 1983; Stock and Montgomery, 1999; Whipple and
Tucker, 1999; Kirkby and Whipple, 2001). Despite the range in n,, the ratio between the two
exponentsisrestricted between 0.4 and 0.6 by theory and empirical data (Snyder et al., 2000). The
values used are 1/3 and 2/3 for m, and n, respectively, where detachment rate is proportional to bed
shear stress (Howard, 1994). Detachment-limited grid cells are found in regions dominated by
uplift. Under these incisive transport conditions, the cells eventually route the sediment to the
lowest neighbouring cell (Figure 2.3a). The flow networks excavated in the uplifted domains are

dendritic, similar to the flow paths in drainage basins (Goodchild and Mark, 1987; Chase, 1992).

2.2.1.2 Transport- limited alluvial channels

Cdllsthat receive sufficient sediment from upstream sourcesto equal their potentia carrying capacity
arefilled to capacity. Therate of change of thelocal cell elevationislimited by therate of transport
away from thislocation. Most of the time thisrate is minimal and cells aggrade due to oversupply
of sediment. Locally, conditions of increased net transport potential, resulting in alluvia channel
erosion may occur, but are not dominant. An external trigger is required here, such as substrate
steepening, baselevel fall, and water dischargeincrease versus sediment flux decrease. Erosion and
deposition (eg. 2.11 and 2.15) are caused by small divergences around the local balance between
supply and flow capacity.

oh, _ K (oQ"s" aQ"s'
ot W 0x ay

(2.15)

If possible, water fluxes are spread proportional to slope to downward situated neighbour cells
(Figure 2.3b) (Freeman, 1991). This style of bifurcation routing produces flows with braided or
deltaic patterns (Webb, 1994; Murray and Paola, 1997; Coulthard et al., 2002). Evaluation of the
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Figure 2.3 Water and sediment routing schemes used in the drainage basin-fan model. (a) Steepest descent
routing, where material ispassed on to the neighbour cell holding the steepest slope (b) Disperse or bifurcation
routing, where material is distributed proportionally to slope in all down-going directions.

transport capacity Q, is in these cases done by taking the average of all increments of capacity
generated by the flows of water to the different downward directions (eq. 2.11).

Bifurcation routing is also applied to the sediment load leaving a cell where possible. However, if
the cell is eroding long enough, the transit material and the load produced is eventually routed to
the lowest neighbour only, because the cell’s el evation drops below the elevation of its neighbours.
The decision between disperse and steepest descent transport in alluvial areas can aso be made a
function of local slope and drainage threshold values in the model (Lewin and Brewer, 2001) in
order to study the stratigraphic signature of braided/ meander transitions, but thisis not done here.
Calculating the erosion/deposition response of a cell with multiple upstream contributing and
distributive cells is a relatively simple procedure if done explicitly. However, straightforward
eval uating the mass balance by simple bookkeeping can lead to numerical instabilitieson the coarse
computational grid in the form of closed depressions of which the differential elevation with the
neighboursisamplified in successive time steps. Thisisavoided by choosing small timesteps of 10
yr for cal culating geomorphic processes and solving the multidirectional mass-balance using aroot
finding procedure (Press et al., 1992). The root finding procedure fine-tunes the balance between
transport capacity with the upstream sediment supply while ensuring that the resulting slopeis not
reversed.

2.2.1.3 Hybrid, alluvial-covered bedrock channels

If acombination of the above transport conditions is encountered during a geomorphic time step,
the channel cells are called ‘hybrid’ (or mixed-channel systems, Howard, 1994). These are cells
with sufficient net carrying capacity to remove the small veneer of alluvial strata and to incise
bedrock. Thelocal change of elevation isacombination of the ability to removethealluvia sediment
cover and to erode bedrock. Channel cells of this category are found in domains of transition from
drainage basin to depositional basin and alluvium-veneered mountai nous streams such asthe feeder
channels of the alluvial fans.
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2.2.2 Perfect sorting

Bimodal sediment mixturesliberated by bedrock erosion are sorted along the fluvial pathswith the
perfect-sorting method (Paolaet al., 1992), using two grainsizefractions. The gravel fraction carried
by the streamsis selectively deposited in the aluvial bed until it is depleted from the flow. Starting
from this location on the stream’s route, the sand fraction is deposited downstream. The flux of
gravel supplied to the depositional basin isafraction of the total sediment volume supplied by the
drainage basins. Active bedrock erosion in the drainage basinsis set to rel ease a volume fraction of
50% gravel and 50 % sand.

The diffusivity coefficient used in the original perfect-sorting model (Paolaet al., 1992) appliesto
the entire sediment composition, implying that both grainsize fractions are detached from alluvial
beds and moved at equal rates. The rates of down-slope sorting and stratigraphic patterns observed
are therefore controlled only by the rate of deposition through sel ective deposition. Segregation by
size—sel ective entrainment or rel ated phenomenasuch as channel-bed armouring (Gomez and Sims,
1981) and winnowing are not modelled with this technique. The perfect sorting approach used in
our model is complemented with a simple selective entrainment rule. Bimodal sediment mixtures
stored in natural aluvia bedsare organized in aframework of thelarger clastsand smaller sediment
is hidden in it. This protective framework of large clasts collapses if the fine-grained fraction
constitutes more than 40 % of the bed volume (Leeder, 1999). In the model, the finer grained
fraction istherefore preferentially taken up during erosion of an alluvial bed and transported if the
finer fraction constitutes more than 40 % of the alluvial bed because no protective framework is
expected. No distinction in relative mobility is made for beds with less than 40% fine sediment. If
aflow isable to erode the large framework clasts, al smaller grains will be mobilized at the same
rate. Thissegregation ruleissuited for our coarse grid because it isindependent of cell size. Finer-
sized grids should make use of more physically based methods to model armouring and winnowing
(Robinson and Slingerland, 1998; Gasparini et al., 1999).

2.2.3 Handling depressionsin the grid

Instabilities in the morphology of the fluvial network are avoided by solving local erosion and
deposition using aroot-finding procedure. However, small depressions hindering the flow of water
on the grid may occur. Dealing with this type of topographic depressionsis a classic problem in
drainage-modelling literature (Hutchinson, 1989). Extraction of drainage networks from digital
elevation model s often invol ves smoothing or finding outletsfor pits. Many solutions search around
a recognized depression for outlets, by incrementing the size of the depressions until a suitable
drainage is found for continuation of the flow. These are computationally slow procedures and are
not suited for modelling landscape evolution over geologic time. Our method isfast by making use
of sediment carried by the flow to fill the depressions encountered and continue the stream paths
(Figure 2.4).
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1
Figure 2.4 Depressions hindering the
9+ continuation of flow are dealt with by filling
- + &7 them with the sediment transported by the
streams. After identification of a depression

2

three options arise. (1) A stream carrying

&5 sufficient sediment fillsthe depression till the
’ ) level of the second lowest cell surrounding
) the depression. Water and excess sediment

continue downstream. (2) A stream carrying
too littleto fill up to thislevel dropsall load,

3
g and only the water flux continues. (3) If the
' load carried is not sufficient to fill up the
% B % depression, theload isdropped and the stream
stops.

2.2.4 Tectonic mass translation

On the rectangular grid the surface development above a single thrust ramp is modelled as fault-
bend folding inthe simplest possibleway. Other geometrically correct methodsweretested (Suppe,
1983; Zoetemeljer, 1991), but led to instabilitiesin combination with the sensitive surface process
algorithms on the relatively coarse computational grid. In our model the mass transglation during
fault-bend folding is ssimulated by moving grid positions according to the tectonic deformation
field, and subsequently interpolating new hanging-wall thicknesses for the stationary grid cells
(Figures 2.5a and b). This fault-bend folding technique is comparable to methods used by others
(Jones and Linsser, 1986; Chaleron and Mugnier, 1993; Hardy and Poblet, 1995; Bezemer, 1998).
The advantage is that mass is explicitly conserved, a requisite not always met by more complex
thrusting methods which consider the hanging wall as a compressible entity (Erslev, 1991,
Zoetemeijer, 1991). Conservation of massismoreimportant than mechanical realismwhen erosion
and sedimentation are to be cal culated during thrusting. The hanging-wall translation routinein the
model is called in time intervals of 5 kyr, which are larger than the geomorphic time steps. Thisis
done out of computational considerations because the hanging-wall displacement is a time-
consuming procedurein themodel. A more complex variant of thrusting involving the overthrusting
of basin margin sediment is shown in Chapter 3 (Figures 3.10 and 3.11).

2.2.5 Flexure and basin subsidence

Themodel presented in thisstudy incorporates two-dimensional elastic flexure response of abroken
plate typically used for foreland basins, in spite of the limited size of the ssimulated area with
respect to flexural wavelength. Possible boundary effects are avoided by temporarily extending the
spatial dimensions of the grid during computation of the flexural isostatic adjustments. Uplift of
the flexural bulge takes place outside the model boundaries and is not visible in the simulated
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Chapter 2

landscape surface. The noticeable response is that of an asymmetric subsiding basin. Subsidence
rates decrease with increasing distance from the thrust fault. The two dimensional flexural isostatic
response to aload in atwo dimensional model is defined by (Turcotte and Schubert, 1982):

a D dzw(x)
dx? dx?

] +(on =20 ) o =Ly, (2.16)

where D is the flexural rigidity, p_ and p, the density of mantle and the materia filling in the
depression, L the load as afunction of the position x along the plate and w the resulting lithosphere
deflection. The flexural rigidity used is low and corresponds with an effective elastic thickness
(EET) of 10 km. A simple 2-D analytical Green Function solution for broken-plate flexure is
incorporated in the model (Slingerland et al., 1993) to limit computational effort. The state of
bending due to thrust and sediment load is calculated in two N-S sections every 5 kyrs. Next, the
predicted deflection is averaged and applied to the entire model space incrementally during the
smaller geomorphic time-steps. Flexure is a three-dimensional problem and should be calculated
as such (Wees and Cloetingh, 1994; Hodgetts et al., 1998). However, the moving thrust load in the
model islinear, and afull 3D solutionwould resultinasimilar linear depression asthe one generated
by the current method.

2.3 Numerical Experiments
A set of experimentswas carried out to study the devel opment of drainage basinsand the synchronous
deposition of aluvial fans associated with an uplifting thrust block (see Table 2.1 for parameter
values). Vertical uplift rates corresponding to lateral movement over a 20° thrust-ramp ranged
between 0.65 and 2.6 m/kyr (Figure 2.5). The alluvial fans are deposited in an asymmetrical basin
created by flexural subsidence. Basin subsidence rateis highest near the faulted margin and has an
average of 0.2 m/kyr during tectonic activity. Created accommodation spaceisfilled by thealuvial
fans and a shallow marine embayment. Geol ogic simulation times cover 0.5to 1.5 Myr, depending
onthetypeof external forcing used in the experiment. In the next section the effects of thefollowing
factors are discussed:

1. Bedrock erodability and tectonic displacement rate (experiments 1-7)

2. Pulsating tectonic activity (experiment 8)

3. Sealeve fluctuation superimposed on pulsating tectonic activity (experiment 9)

2.3.1 The effect of variable bedrock erodability and tectonic displacement rate

The erodability of bedrock has been derived by inverse modelling of fluvia profiles (Stock and
Montgomery, 1999) and approximates time-averaged denudation rates found in fishion-track field
studies (Morris and Sinclair, 1997; Meigs et al., 1999; Kirky et al., 2002). Bedrock erodability is
represented in the model equations by the bedrock erodability coefficient K, (eq. 2.14). The effect
of different K, values on drainage development in the catchment-fan system was studied (from 0.5
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parameter unit 1 2 3 4 5 6 7 8 9

final time kyr 900 900 900 900 900 900 900 1800 1800

tectonic history kyr 0-200 0-200 0-200 0-200 0-200 0-200 0-200 pulses pulses
200 kyr  200kyr

baselevel m 0 0 0 0 0 0 0 0 sine, 100

kyr/ 20m

displacement rate | m/kyr 2.0 2.0 2.0 2.0 2.0 4.0 8.0 2.0 2.0

erodability K, x10*yr? | 0.5 1.0 2.0 4.0 8.0 8.0 8.0 4.0 4.0

timestep size yr 10 10 10 10 10 10 10 10 10

tectonic timestep kyr 5 5 5 5 5 5 5 5 5

rainfall rate myr 1 1 1 1 1 1 1 1 1

thrust ramp angle | degrees 20 20 20 20 20 20 20 20 20

Table 2.1 Parameters used in the experiments. Shaded columns represent experiments with pulsating tectonic
activity.

x 10*yr23t08.0x 10 yr?3 Figures 2.6 and 2.7, exp.1-5). The catchment-fan system was subjected
to asingle tectonic uplift pulse of 2.0 m/kyr horizontal thrust displacement during a period of 200
kyr. The corresponding vertical uplift rate was 0.65 m/kyr and flexural subsidence response had a
maximum rate of 0.2 m/kyr at the basin margin. The tectonic pulse was followed by along period
of tectonic quiescence (200 to 900 kyr) and consequent cessation of basin subsidence. In order to
study the effect of displacement rate, the experiment with K = 8.0 x 10*yr2° was repeated with
R, Of 4.0 m/kyr and 8.0 m/kyr (Figure 2.7, exp. 6 and 7).

In al experiments the main drainage channels initiate at the same locations along the fault front
(Figures 2.6 and 2.7, upper row of illustrations). This is because al experiments had the same
topographic surface asastarting condition. Theflat surfaceis complemented with 1.0 m amplitude,
randomly distributed noisein order to stimulate theinitial development of drainage channels. Once
these drainage channels are established by incision, they are hardly ever abandoned during further
evolution of the networks. The initial surface noise is etched out by continuous incision during
progressive network evolution. Changes in the drainage networks are accomplished by stream
capture (= piracy by neighbouring channels).

After 100 kyr of simulation, a difference in drainage-pattern development is found between
experiment 1 with the lowest K, value (0.5 x10* yr?3) and experiments 2 to 5 with K, = 1.0 x 10*
yr??or higher (Figures 2.6 and 2.7). For thelow K value, the landscape shows only small incisions,
whereas the higher K experiments show four juvenile catchments. In these catchments headward
erosion migrate into the bedrock aslinear valleys with minor side branches. In addition, thereisan
increasing tendency for sideways branching from the main valleyswith increasing K, value. These
branches continue to expand farther at the end of the tectonic pulse (time= 200 kyr, Figures 2.6 and
2.7) at K, values 2.0, 4.0 and 8.0 x 10* yr?3, It is remarkable that these three landscapes do not
show much difference in the geometry of the catchments at this time-interval. The low K value
landscape is very different from the others; it shows limited branching and headward erosion, less
far into the hangingwall block. Astime progressesthe drainage patternsin the different catchments
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Thrust rate

Modelling drainage basinsand alluvial fan stratigraphy

experiment 7
Rihrust=8.0 m/kyr

experiment 6
Rinrust=4.0 m/kyr

experiment 5
Rinrust=2.0 m/kyr

Activity
Activity
Quiescence
Quiescence

184 00T 184 002 181 0GP 1A 006
S >

Figure 2.7 Results of experiments 5-7, showing successive stepsin drainage networ k devel opment under different
values of R, . (2.0, 4.0 and 8.0 mvkyr) and a constant erodability coefficient K, (8.0 x 10 yr#?). Tectonic
activity lasted 200 kyrs, followed by 700 kyrs of quiescence.

Figure 2.6 (previous page) Results of experiments 1-4, showing successive stepsin drainage network devel opment
under different values of the bedrock erodability coefficient K, (0.5 - 4.0 x 10*yr-2%) and constant thrust rate
(R,,.q = 2.0 m/kyr). Tectonic activity lasted 200 kyrs, followed by 700 kyrs of quiescence.
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converge to asimilar configuration at 900 kyr (Figures 2.6 and 2.7). A four-fold increase in the K |
value has no significant effect on the long-term channel pattern of the model catchments. The same
applies for the grain-size trends in the aluvial fan subsurfaces. Therefore only the stratigraphy of
K, 8.0x10*yr#3isshown (Figure 2.8, |eft column). The section shows vertical stacking of fine and
coarse sediment followed by an expansion of the coarse sediment into the basin. Thevertical stacking
iscorrelated to tectonic activity, whereasthe gravel progradation correlatesto the phase of quiescence.
Viewed in asection paralel to the fault front, the fan deposits are represented by sideward fining,
coarse-grained bodies (Figure 2.8c). The velocity of the prograding gravel front during tectonic
guiescence is approximately 0.30 m/kyr.

Juvenile fans (time = 200 kyr) are completely covered by coarse-grained sediment. As the fans
prograde into the basin the coarse veneer becomes interrupted and coarse-grained lobes spatially
aternate with finer-grained inter-fan deposits (Figure 2.8). Thissituation isachieved earlier in case
of the high K, landscapes. The coarse-grained lobes change their position on the fan surfaces every
20 to 60 kyr. Animations of the landscape development reveal that this lobe switching is a non-
periodic, semi-regular process. Transitions of the depositional |obes over the fan surfaces are both
gradual and abrupt, depending on the location of the upstream avulsion.

Experiment 5 with K, 8.0 x10* yr?® was repeated with higher tectonic displacement rates of 4.0
and 8.0 m/kyr, corresponding to avertical uplift rate of 1.3 m/kyr and 2.6 m/kyr (Figure 2.7, exp. 6
and 7). Subsidence rate and sediment accommodation space are larger due to increased flexural
response (0.4 to 0.8 m/kyr). Interaction between the configuration of the thrust fault, kink axes and
flexure on the rectangular grid results in alinear bulge behind the fault (Figure 2.7, exp. 7). This
bulge captures drainages and results in trident-shaped drainage network, feeding three outlets. The
exact nature of thistectonic interaction is not understood, but the geomorphic response shows that
the fan feeder channels are capable of forming antecedent drainages. Small incisions at the fault
front are more pronounced in comparison to the lower displacement rate experiments (Figures 2.6
and 2.8). Thisis dueto the larger offsets created at the fault front, which gives the incisions more

Figure 2.8 (previous page) Discharge patterns, landscapes and stratigraphic sections for two of the modelled
catchment-fan systems (exp. 5 and 7) at final time = 900 kyr. Dark brown and red represent coarse-grained
surface sediments, light brown and blue are fine-grained. Final discharge patterns in both experiments are
characterised by dendritic catchment drainages and braided streams on the alluvial fan surfaces (a,b). The
right-hand system was subjected to a higher thrust rate (8.0 vs. 2.0 m/kyr) resulting in more closely spaced
linear catchment channels and a coalescing sheet of gravel on the fans (d) instead of individual coarse lobes
(c). Sratigraphic sections (e,f) reveal fault-perpendicular progradation of coarse-grained facies during
quiescence (200-900 kyr). The difference in stratigraphic thickness between sections e and f is due to the
increased flexural accommodation space created by the higher thrust load of exp. 7. Fault-parallel sections g
and h illustrate the coarse-grained subsurface alluvial fan bodies, which are more pronounced on the low
tectonic rate experiment. Timelines in the sections (white) are drawn every 50 kyr.
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potential to grow. Incisions continue to grow during the quiescent phase, and migrated as alinear
front through the hanging wall. Eventually this migrating front captures the drainages of the more
complex upstream networks. As a consequence, the few large outlets delivering sediment to the
basin decreasein sediment yield and are replaced by arow of smaller, closely spaced outletsfeeding
abgada (Figure 2.8). Thishasimplicationsfor the subsurface sediment grain-size distribution near
the fault front. Instead of discrete bodies of sideways fining gravel, a thick laterally connected
sheet of the gravel bajadais formed (Figure 2.8f).

2.3.2 The effect of pulsating tectonic activity on alluvial fan stratigraphy

In experiment 8 the catchment-fan system was subjected to a succession of tectonic pulses of 200
kyr duration alternating with quiescent intervals of the same duration throughout a period of 1.4
Myr. The experiment was ended with alonger quiescent interval of 400 kyr (1.4 -1.8 Myr). The
general evolution of the catchment-fan system is illustrated by two figures of fluvia discharge
patterns and the general landscape evolution coloured according to the surface layer grainsize
distributions (Figures 2.9 and 2.10). Asbasin filling isin progress, the surface area occupied by the
shallow marine embayment diminishes and the fans change from small fan-deltasto major alluvial
fans. Fan surfaces develop rapid switching of braided networks, while the catchments show clear
dendritic, converging channels (Figure 2.9). Transgression of the coastline and the retrogradation
of the gravel front towards the fault correspond to the periods of tectonic activity, whereas
progradations correspond to periods of tectonic quiescence (Figure 2.10). This behaviour is stored
as athree-dimensional, alternating grainsize pattern in the final basin fill (Figures 2.11 b,c,d). In
the section perpendicular to the fault, the general vertical trend at every location along the section
iscoarsening-up (Figures2.11c and d). Superimposed on thisgeneral trend are at least four intervals
of gravel progradation. Progradation is associated with closely spaced timelines at the left-hand
side of the section, indicating reduced sedimentation ratesin the fan apices. Identical to the single-
pulse experiments, the gravel progradation intervals correspond with periods of tectonic quiescence.
Laterally, the quiescence gravel progradations are distributed as coarse sheets (Figure 2.11b). These
sheets become coarser and more pronounced astime progresses. During every following quiescence
interval the associated sheet progradesfarther into the basin and itslateral connectivity and thickness
increase. Tectonic activity intervals are reflected in the section (Figures 2.11b, ¢ and d) by gravel
front retrogradation and vertical stacking of dominantly fine-grained strata. The transition from
activity to quiescenceischaracterised by gentle progradation of the coarse sediment. The stratigraphic

Figure 2.9 (next page) Devel opment of the water discharge patternsin the drainage basins and on the alluvial
fan surfaces during experiment 8. Drainage basin networ ks are dendritic and rigid features whereas the braided
channelsonthealluvial fansfrequently split, avulse and merge. The fan sediment progressively fillsthe shallow
marine embayment, of which theintensity of grey indicateswater depth. Final confluences of the stream patterns
at the grid edges are boundary effects.
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1400 kyr

progradation of the coastline,
connection of the gravels

1600 kyr

retreat of the coastline and gravel front,
change to lobate gravel distribution

Figure 2.10 Perspective views of successive stages of the landscape subjected to tectonic pulsations (exp. 8).
Phases of tectonic activity (A) are reflected by faultward retreat of the coastline and the gravel front and by
changesto |lobate gravel patches. Quiescence (Q) isassociated with their progradation and lateral connection
of the gravels.

Figure 2.11(next page) Sectionsvisualizing thegravel distribution resulting from experiment 8 with a history of
tectonic pulsation (exp. 8, 200 kyr on/off). Progradations of gravel are synchronous with phases of tectonic
guiescence and are reflected in the subsurface as three-dimensional continuous sheets (b). Some differencesin
the basinward reach of the syntectonic gravel front (c,d) aretheresult of thelocal devel opment of fan topography.
Snusoidal sea-level fluctuation (exp. 9, period 100 kyr, amplitude 20 m) superposed on tectonic pulsation
complicates the progradation-retrogradation pattern (€). In time-space (f) the quiescence gravel progradation
isdistinguished more clearly fromthe higher frequency sea-level fluctuation. Timelinesare drawn every 50 kyr.
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response to a transition from quiescence to activity is more abrupt. Within a period of 100 kyr,
finer-grained sediments, deposited by the retrograding fans, cover the coarse quiescence sediments.

2.3.3 The effect of pulsating tectonic activity and sinuous sea-level variation

In experiment 9, the alluvial fan setting was again subj ected to a pul sating tectonic signal. In addition,
asinusoidal sea-level signal was superimposed on the tectonic pulses. This sea-level variation had
aMilankovitch period of 100 kyr and amplitude of 20 m. Landscape evolution is characterised by
dendritic excavation of the catchmentsand progradation of thefan deltas. The stratigraphic response
to tectonic pulses in the section is obscured by the smaller scale sealevel cycles, athough 3 major
progradations can be recognised (Figure 2.11€). Plotting the section in a time-space (Wheeler,
1958, 1964) makesit is easier to distinguish the forcing signalsin the stratigraphic record (Figure
2.11f). Progradations associated with tectonic quiescence consist of thicker sequences with gravel
fronts reaching farther into the basin. These sequences aso show layer stretching in time-space,
indicating along lifetime of the strata. (Figure 2.11f). During quiescence, stratain fan apices are
continuously rejuvenated by small increments of erosion and deposition because the fluvia slope
is closeto its equilibrium value and most material is bypassed. The layer’s top age information is
therefore permanently updated, resulting inalong lifetime of thislayer. If thelayer’sbaseisremoved
by erosion the layer is represented in time-space as a hiatus. Obvioudly the sea-level signal is
recognisable in the alluvia stratigraphy. Some authors have even postulated that a fluctuating
baselevel signal can be transmitted as transient knickpoint and depositional waves to the bedrock
floored catchment (e.g. Humphrey and Heller, 1995). In order to investigate whether thisisaso the
casein our model, time-seriesfrequency analysis of the average bedrock erosion rate was done. No
frequencies close to the sea-level signal are present in the time series. Most likely the sea-level
signal is subdued in our model due to the high rate of in accommodation space creation and the
large differences between the detachability of bedrock and alluvial sediment.

2.3.4 Lag timein the depositional response

The dynamics of the systems are partially reflected by the shape of the sedimentation rate response
curves (Figure 2.12). All curves show a gradual increase in the volumetric alluvial sedimentation
rate in response to tectonic uplift, followed by an exponentia decline after uplift cessation. The
gradually rising curve of experiment 1 (R, . 2.0 m/kyr, K 0.5 x 10*yr??) showsits maximumin
sedimentation rate 40 kyr after the end of uplift (Figure 2.12a). The higher K, value experiments
have their maximum alluvial fan sedimentation rate the moment activity stops at 200 kyr. The
values of the maximasdlightly vary. The shapes of the exponential decline curvesareamost identical,
just as the post-tectonic geometric evolution of the catchments (Figure 2.6).

The experimentswith ahigher displacement rate (exp. 6and 7, R, 4.0 and 8.0 m/kyr, respectively)

reveal higher average sediment accumul ation rates during decline. The maximashown for experiment
7 aremainly theresult of temporary ponding and subsequent rel ease of sediment behind the ‘ bulge’
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at the fault front (Figure 2.7). Pulsed tectonic activity is reflected as a succession of shark-fin-
shaped response curves with increasing maximum sediment accumulation rate values (Figure 2.12c,
exp. 8). A superposed sea-level fluctuation modifies the tectonic response curves to a more
symmetrical form (Figure 2.12d, exp. 9).
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Figure2.12 Volumetric sedimentation rates (km*kyr) onthealluvial plain asafunction of timefor all experiments.
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Another form of delayed sedimentary response, more useful to the field stratigrapher isthe gravel

arrival time, whichisquantified for experiments 1-8. Thearrival timeisdefined asthetimedifference
between cessation of tectonic activity and thetime of arrival of the gravel front at aspecific position
along a section perpendicular to the thrust fault. A number of synthetic logs are used to evaluate the
lag time becausethey carry detail ed ageinformation about every deposited layer facilitating accurate
dating of vertical changesin gravel fraction (exampleof logsin Figure 2.13). Thereisaresemblance
inthearrival time response shown by experiments 2-6, indicated by the clustering of thetrend lines
(Figure 2.14a). The spread between the lines reflects the time-scale observed in repetitive lobe
switching events on the fan surfaces (20~60 kyr). Again, experiments 1 and 7 are exceptionsto the
general behaviour, and are characterised by longer lag times (Figure 2.14aand b). In experiment 1
thisis due to the slow rate of sediment creation by bedrock incision, whereas in experiment 7 it is
due to the larger accommaodeation space that has to be filled before the fan is allowed to prograde.
The arrival time is also quantified for the quiescence gravel progradations in the pulsed activity
experiment. Successive phases of progradations show equal sloping trend lines, so comparable
rates of gravel advance for every quiescent phase (~ 30 m/kyr). Note that the time lag in the distal
regions of the basin is on the order of 200 kyr, so the presence of a gravel sheet in the distal
stratigraphy can be deceiving. After al, agravel sheet belonging to a previous tectonic quiescence
phase can reach a certain geographic position at the moment a new tectonic pulse initiates.
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Figure 2.14 Time elapsed after tectonic cessation that the quiescence gravel front reaches a certain positionin
the basin.

2.4 Discussion

The number of catchmentsdraining the up-thrusted fault block and the spacing between their outlets
feeding thedlluvia fansisapproximately the samein thefinal stagesof the experiments 1-7 (Figures
2.6 and 2.7). Average catchment lengths are 35 km whereas widths are 12.5 km, resulting in a
length/width ratio of 2.8. Thisratio isin the range found for natural uplifting fault block systems
(1.4-4.1), (Taling et al., 1997), but dlightly higher than ratios determined for simplelinear-shaped
mountain belts (1.9 —2.2) (Hovius, 1996). No physical explanation for this natural regularity has
been suggested so far. Most likely the responsible mechanism is the same as the one underlying
Horton's law of channel networks and the power law relationships between catchment length and
area(Horton, 1945; Hack, 1957). The branching of the catchments networksin the model is caused
by the convergent, steepest descent routing rule, which isthe dominant water and sediment routing
ruleinthe eroding areas (Figure 2.3a). The geometries of the catchments and the spacing of outlets
can deviate from the above average value due to model parameter changes (Tucker, 2000; Tucker,
2003). From sengitivity experiments not shown here it is clear that initial conditions are also an
important factor. If initial slopes between cells due to the surface noise are larger than the slope
created by tectonic displacement, the networks grow slower. In addition, the final networks are
wider, because sideward extension isfavourabl e above landward extension. A higher tectonic offset
rate increases the potential of cells at the faulted front to form elongated catchments by vigorous
headward erosion. Consequently the outlets are more closely spaced and a continuous depositional
apron or bgjada is formed (Figure 2.8). Tectonic style is also important. Drainage networks are
persistent features, once established they hold their position and only incise. As thrust activity
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trandates the hanging wall towards the depositional basin and channel erosion keeps pace with
uplift in the zone of frontal deformation, the outlet channel is stretched in the direction of the
displacement. Thisenhancesthetypical wine glass shape of the catchments (Schumm, 1977, 1981).
If this model behaviour is analogous to a natural situation, settings bounded by normal faults are
expected to have more and shorter outlets feeding alluvial fans.

The networks respond in an unexpected manner to changesin bedrock erodability (experiment 1-
6). A change from K, 0.5 x 10“ to 2.0 x 10* yr?®results in faster network growth and different
configurations at 0.9 Myr. Changing erodability from 2.0 and 8.0 x 10 yr?® does not result in
noticeable changes in network evolution, its final state or the response of the fan deposition rate
curves (Figure 2.12). The explanation isfound in the size of the incremental tectonic displacement
step versusthe general erodability of the bedrock substratum. Theincremental vertical displacement
is 3.2 m. Bedrock catchments with erodabilities of 2.0 to 8.0 x 10 are all able to counteract this
incremental offset with an equivalent incision. Asaresult the morphological responseandyield are
limited by the offset size and not by the erodability. Even if this behaviour is an artefact of the
incremental callsto thethrust displacement routine, it could mean that erodability versusincremental
offsets created by single seismic events is important in shaping natural systems. Adding more
material per tectonicincrement by increasing the displacement rate again leadsto different network
configurations, higher sedimentation rates and even post-tectonic highs in sedimentation rates.

A long-term dynamic equilibrium between uplift and erosion is not reached in al experiments.
Levelling of theresponse curves, characteristic of an achieved dynamical equilibriumisnot observed
(Figure 2.12). If one extrapolates the trends, equilibrium is expected to occur after 2.0 Myr of
constant uplift. Therefore, dynamic equilibriumisavery exceptiona geomorphic situation, especially
in natural situations which are prone to climatic and tectonic perturbations with higher frequencies
than the time needed to reach equilibrium in the model (Whipple, 2001).

The model behaviour as result of pulsating tectonic activity is in agreement with model results
obtained by Paola et al. (1992) and Marr et al. (2000), although they do not incorporate uplift and
drainage basin excavation. Gravel front progradation correspondswith phases of tectonic quiescence,
whereas retrogradation reflects (renewed) tectonic activity. Catchment yieldsincrease during phases
of active uplift but are of insufficient volumeto fill the accommodation space created. Consequently,
the coastline and the gravel front retreat. Asthe creation of accommodation space due to subsidence
stops, the fans are forced to prograde into the basin in order to disperse their sediment while
maintaining an equilibrium slope. Intervals of tectonic activity are recognised in stratigraphic section
by vertica stacking of layerswith comparable grain-sizefractions. Active creation of accommodation
space near the faulted margin preventsfansfrom prograding. The catchments are not able to supply
enough sediment to fill the accommodation space that has been created. Thetransition from activity
to quiescence is characterised by gentle progradation of coarse sediment. The fans first try to
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accommodate the sediment by increasing their slope, and when the ideal slope is reached, they
prograde. Thistransition takes at least 100 to 150 kyr in the model. The stratigraphic response to a
transition from quiescence to activity is more abrupt. As new accommodation space is created
along the entire section line, fansretrograde. Within 100 kyr, finer-grained sediments deposited by
the retrograding fans, cover the coarse quiescence deposits. Using atime-dependent, visco-elastic
flexure equation to create accommodation space would modify the genera pattern, depending on
the viscosity value chosen.

One of the most tangible results from our modelling exercises is the quantification of the gravel
arrival time (Figure 2.14). Although we think that the magnitude of the response is of the right
order, prudenceiscalled for if applying these valuesdirectly to field situations. The model lag time
is very dependent the local accommodation space and on the choice of the fluvial coefficient K.
(eg.15) inthe model. K. should be calibrated better using well-dated fan stratigraphic patterns and
simple forcing histories, but such data are sparse in the coarse-grained sedimentary record. The
chosen K, valueresultsin an average propagation velocity of the gravel front (30 m/kyr) whichisin
good agreement with those observed in natural aluvial fan systems in rapidly subsiding basins
(Eocene Tremp Basin 25-40 m/kyr, Nijman 1998; Himalayan foreland basin 30 m/kyr, Brozovic
2000). Perhaps the dual-lithology system is described more appropriately using two values for K.,
onefor the coarse and onefor thefinefraction, e.g. Riveneas (1997) and Marr et al. (2000). However,
this would complicate the computational effort.

Natural, comparable settings of our modelled fans are, for example, the large fan-deltas along the
Catalan Coastal Ranges because of the resemblances in average drainage basin erosion rate (0.15
m/kyr), fan size (> 100 km?), fan deposition and episodic progradation rate (0.30 m/kyr and 0.10 to
5.0 m/kyr, respectively, Lopez-Blanco, 2000). Of course, the model does not capture the facies
detail described for these fans, or the complete suite of interfering external forcings and processes
responsiblefor their formation. However, basin-wide retraction of the gravel front and fine-grained
sedimentation in these settings isinterpreted as non-periodic variations (10°-10° yr) of subsidence
and sediment supply (Burns et al., 1997; Lopez-Blanco et al., 2000). Often these retractions are
accompanied with onlap of carbonate sediment and abrupt changes of the clast composition close
to the thrust front. These additional depositional features are often used for unravelling therelative
contributions of climatic and tectonic control on the stratigraphic record and are partly added to the
model version shown in Chapter 3 and 4.

53



Chapter 2

2.5 Conclusions

Experiments show that it is possible to capture the main morphological and stratigraphic features
of drainage basin excavation and synchronous alluvial fan deposition with a three-dimensional
forward model. Drainage basin networks developed are dendritic and, when established, show a
tendency to incise without shiftsin location. Channel re-organization occurs solely by occasional
drainage basin capture events. In contrast to drainage basins, the alluvial fan surfaces are
characterized by rapidly shifting braided stream patterns. Repetitive switching of coarse-grained
depositional lobes on the fan surfaces is non-periodic and occurs every 20 to 60 kyr.

The balance between bedrock erosion rate and tectonic uplift determinesthe geometrical evolution
of the catchments and possible time lags between the end of tectonic activity and fan sedimentation
rate highs. Pulsed tectonic activity isreflected in the alluvial fan stratigraphy as a stacking pattern
of prograding and retrograding gravel fronts. Progradation phases are synchronous with tectonic
quiescence, whereas retrogradation phases are synchronous with tectonic activity. Progradation of
thefront during quiescenceisatransient process. The greater the distance from thetectonic boundary,
the larger the lag time before arrival of the front. The order of magnitude of the gravel arrival time
after tectonic cessation is severa tens to hundred kyrs. The stratigraphic response to the onset of
tectonic pulsesisarapid retrogradation due to the surplusin accommodation space created compared
to the catchment yields. Due to the basin-wide character of the subsidence, retreat is faster than
progradation and noticeable in the entire basin. Simultaneous variation in sea level resultsin a
more complex stratigraphic record. The tectonic response is then masked by smaller-scale
progradation sequences synchronous with sea-level fall.
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Differentiating the effect of tectonic pulsation and
eustatic sea-level fluctuation in foreland basinsfilled by alluvial fans
and axial deltaic systems

Abstract

Many studies of foreland basins have recognized a hierarchical organisation in the stacking of
sequences deposited by axial-deltaic and alluvial fan systems. The hierarchy is often explained in
terms of the competing control of eustasy and pul sed tectonic subsidence and the different frequencies
at which these processes operate. Unravelling the relative contributions of tectonic and eustatic
control on the sequence stacking pattern is a fundamental question in foreland basin analysis, yet
difficult because of the lack of independent stratigraphic evidence. In this study we present a 3D
numerical tool, which aids in the interpretation of alluvial successionsin foreland basinsfilled by
both depositional systems, under conditions of variable tectonism and eustatic sea-level change.
The tectono-sedimentary model is capable of simulating the hierarchical stratigraphic response to
both external forcings, and is of higher resolution compared to previous models of foreland basin
filling. Numerical resultsindicate that the onset of tectonic activity isreflected by rapid retrogradation
of both depositional systems, widespread flooding and onlap of marine sediments. Syntectonic
fluvial patternson the axial-delta plain are dominated by bifurcating channels, swiftly relocatingin
response to the genera rise of relative sea level induced by flexural subsidence. The resulting
surface morphology of the axial deltais conical. Syntectonic eustatic sea-level fluctuations result
in parasequence-scal e packages of retrograding and prograding fan and deltai ¢ sediments bounded
by minor flooding surfaces and Type-2 unconformities. Incised channels are rare within the syn-
tectonic parasequences and are formed only during phases of tectonic quiescence when eustatic
falls are not longer compensated by the subsidence component in the rise of relative sea level.
Suitesof amalgamating axial channels corresponding to multiple eustatic fallsdelineatetheresulting
Type-1 unconformities. Coarse-grained, incised channel fills are found in the zone between the
dluvial fan fringes and the conical body of the axia delta, as the axial streams tend to migrate
towards this zone of maximum accommodation.
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3.1 Introduction

Foreland basins are commonly filled by a combination of two depositional elements: transverse
aluvia fansandlongitudina structure-parald rivers(Kuenen, 1957; Miall, 1981). Modern examples
of this association are found on the Po, Indo-Gangetic and Mesopotamian plains (Geddes, 1960;
Allen, 1965; Baltzer and Purser, 1990; Ori, 1993; Sinha and Friend, 1994; Gupta, 1997), while
Ancient examples are well-studied in the sedimentary records of the Alpine Molasse Basin (Figure
3.1) (Jin et al., 1995; Schlunegger et al., 1997; Zweigel et al., 1998) and the Pyrenean Foreland
Basin (Bentham et al., 1992; Dreyer and Falt, 1993; Nijman, 1998). A fundamenta problem in
interpreting the stratigraphy of these foreland basinsisto understand and differentiate the relative
importance of tectonism and eustasy on sequence development and architectural stacking patterns
of both depositional systems (Bhattacharya, 1991; Schwans, 1995; Nijman, 1998; Robinson and
Slingerland, 1998; Zweigel et al., 1998; Dreyer et al., 1999).

Sequences in these basins contain both depositional elements and are often bounded by
unconformities and carbonate horizons. The sequences usually reflect continuous deposition at
rates of 0.2-0.6 m/kyr (Mutti et al., 1988; Bentham and Burbank, 1996; Brozovic and Burbank,
2000), while the bounding horizons that indicate tempora flooding, low sedimentation rates or
erosion.

A well-studied example of theinternal fluvial architecture of such sequencescomesfrom the Eocene
Montanyana Group of the Pyrenean Foreland Basin (Marzo et al., 1988; Nijman, 1998). Here

Figure 3.1 Example of the foreland basin configuration modelled in this chapter. The German Molasse
basin during the Oligocene, occupied by transverse alluvial fans and an axial river, draining into a
marine embayment. Redrawn after Jin et al. (1995).
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sequences are characterised by retrogradational and progradational changing positionsof thealluvial
fan gravel fronts, accompanied by shifts of axial-channel deposition. Both systems move in phase
with each other, amost in a tandem-like fashion. Abrupt changes in the architectural stacking
pattern are found around the sequence unconformities. The basin-wide sequence unconformities
are marked by sudden shiftsof both depositional systemsand their relative positions, often concurrent
with onlap of shallow marine sediments, such as carbonates. The distribution of the unconformities
through time is a-cyclic and their re-occurrence interval in the order of 0.2 to 2.0 Myr. Therefore,
both the unconformities and the observed architectural patterns are often explained in terms of
pulsating tectonic activity (Puigdefabregas and Souquet, 1986; Mutti et al, 1988; Kamola and
Huntoon, 1995; Nijman, 1998).

During the late eighties it was recognized that the above-mentioned depositional systems respond
differently to the onset of tectonic activity (Blair and Bildeau, 1988; Heller et al., 1988). Thrust-
load emplacement causes rapid flexural subsidence in the proximal regions of the basin; the newly
created accommodation space is occupied first by the finer-grained axial-depositiona system and
subsequently by aluvial fans. The expected response of the alluvial fansin terms of gravel front
progradation will 1ag behind the onset of atectonic activity because these systems depend on the
relatively slow denudation of the newly created topography for their sediment supply (Schumm,
1963). In addition, their progradation isinhibited by the high rates of syn-tectonic subsidence close
to thefault front. In most casesthe rate of proximal accommodation space created exceedstherate
of sediment supply from the rgyuvenated hinterland, and the alluvial fansretreat towards the thrust
front (Heller et al., 1988; Schlager, 1993). The externally sourced axial depositional system can
take advantage of the sluggish aluvia fans by occupying the newly created depression swiftly
because of their low depositional slope and continuous high supply of sediment. The onset of
subsidence results in a punctuated, basin-wide flooding, marked by the deposition of coals, marls
or carbonates, depending on the basin configuration. Later, during ongoing tectonic activity the
bal ance between the rate of subsidence and therate of alluvial fan progradation controlsthe position
of the axial system asthe axial streams preferably occupies the depression between fan fringes and
the previoudy deposited convex body of theaxia delta. The stratigraphic architecturein the Pyrenean
example can therefore be interpreted in terms of tectonic pulsation, thrust emplacement-induced
subsidence and the differential velocities of the depositional systems occupying the accommodation
Space created.

The stratigraphic response to tectonic processes in this and in other foreland basins is often
complicated by a higher-order stratal pattern with afrequency closeto 100 kyr. These are patterns
of repetitive growth of the fans (Nijman, 1998), or in case of the axial deltaic deposits, upward
coarsening and upward-shallowing, clastic progradational packages bounded by minor flooding
surfaces (i.e., parasequences). The parasequences could reflect short-term variations in thrust
propagation (Houston et al., 2000) or climate-induced fluctuations in sediment supply (Weltje et
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al., 1996), but are often explained by eustatic sea-level change (Bhattacharya, 1991; Chen et al.,
2001; Plint et al., 2001). Interpreting foreland basin stratigraphy is therefore difficult because the
relative importance of tectonism and eustasy on sequence development and architectural stacking
patternsis not always apparent.

Therefore, a three-dimensional stratigraphic forward model is constructed to facilitate the
interpretation of ancient alluvial successions generated under these two external forcings. The
guantative model simulates the interaction between pulsating thrust activity, sea-level change,
flexural response, orogenic denudation and sediment transport acrossalluvia fansand axial channels
towards a shallow marine realm. The modelled foreland basin fill is visualized and studied by
means of fence diagrams, individual cross-sections, Wheeler diagrams, synthetic wells and voxel
representations of subsurface sediment characteristics. Animations of the landscape evolution,
recorded time series of the denudation and deposition rates, facilitate to rel ate geomorphic processes
and the associated stratigraphic response. Limited by computational capacity the model only applies
to the proximal section of aforeland basin.

3.2 Modelling method

3.2.1 Earlier modelling studies

During the previous decade, process-based model s of long-term sedimentation have become widely
used toolsin theoretical and applied basin studies. A thorough overview of the developmentsin the
field is provided by Paola (2000). The early generation of two-dimensional foreland basin models
increased our understanding of sedimentation responsesto tectonic loading and unloading (Flemings
and Jordan, 1990; Sinclair et al., 1991; Peper, 1993). The following three-dimensional models
echoed their conclusions and added along-strike variation in tectonic convergence rate, subsidence,
drainage patterns and stratigraphy (Johnson and Beaumont, 1995; Garcia-Castellanos et al., 1997,
Garcia-Castellanos, 2002). Despite the numerical complexity involved in these models the spatial
and vertical resolution of the synthetic stratigraphic sections generated is often poor and they show
no discrimination in depositional facies or grain sizes. Consequently, these model results are only
suitable for illustrating large-scale, geodynamic concepts, and are difficult to compare directly
with sedimentological field studies that gather data on a smaller scale.

3.2.2 Model used in this study

In this study we present amodel developed to bridge the gap between both spatial scales of interest
by increasing resolution and realism of the stratigraphic record. Due to computational limitations
the modelled time span and spatial extensions are smaller than those in the larger foreland basin
models. The model operates on a 150 x 150 rectangular grid with a spatia resolution of 500 m,
using timesteps of 10 yrsfor the geomorphic processes (Figure 3.2). Consequently, workable time
gpans of basin-fill simulations are on the order of 2.0-3.0 Myr. The three-dimensional model
incorporates several geomorphic processes to produce, transport and deposit sediments (Figure 3.3
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Parameter value equation/figure

Ax 500 m Figure 3.2 Table 3.1 Constants used in the foreland
At 10 yr 31 basin model in this chapter. For time-
K- axial delta 0.1 m-3/2yr1/2 31 dependent variables see Figure 3.5.
Kfalluvial_fans 0.01 m_3/2yr1/2 3.1

mg,Ng 3/2 and 1 3.1

K, 1.0x 10 * yr*? 32

Mp, Ny 1/3 and 2/3 3.2

Riegolith 1.0 x 10° myr™ Figure 3.3

0. 30° 3.7

C 6 x 10* kgm™'s™ 3.7

Kimarine 0.1km’kyr'at15m  3.10

Carbyay 0.1 mkyr™ 3.11

Thrust fault ramp 20° Figure 3.2

EET e 15 km 2.16

and Table 3.1). Orogenic denudation isperformed by bedrock collapse, bedrock incision, and bedrock
to regolith conversion (i.e., weathering). The released sediment is distributed over aluvia fans
following steepest descent and bifurcating routing schemeswhile using streampower-type equations
for stream transport capacity. An important additional sediment source entersthe spaceintheform
of an axial fluvio-deltaic system. Water and sediment supply rates to this system are held constant
throughout the scenario presented below at 4000 km®/kyr and 0.4 km®/kyr. As a basis for these
values, the time-averaged volumetric sedimentation rates of the Montanyana Group (Tremp Basin)
are used, because the basin’s size matches the dimensions of the model. The ratio is derived from
the general notion that the average sediment / water dischargeratiosfor largeriversfluctuate around
1:10,000 (Milliman and Syvitski, 1992). The axia sediment entering the system is composed of 10
% sand and 90 % finer-grained sediment (Burgess and Hovius, 1998). Both alluvial fan and axial
sediments are routed toward the marine area where they are deposited in the delta or leave the
western grid boundary, which operates as a sediment sink. Marine cells, deprived of clastic input
simulate carbonate production in situ.

3.2.3 Surface Processes
3.2.3.1 Sreampower law sediment transport
Sediment transport in both alluvial fan and axial channels is evaluated with a streampower-type
equation, which states that the capacity to carry sediment is proportional to the product of slope S
and water discharge Q in the channel (Howard, 1994; Tucker, 1996b). In absence of tectonic
subsidence or uplift, the change of height of achannel cell isafunction of the changesin carrying
capacity along the transport path

ohy, _ _ﬁ[anf s* ,9Q"s" ]

a W 0x oy

(3.1)

where W is the channel width, which can be approximated using an empirical equation (Leopold
and Maddock, 1953), and K, the fluvia transport coefficient. Based on a study of extensional
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basinsitisargued that aten-fold differencein diffusivity coefficient issuited to model the difference
in transportability between coarse fan deposits and finer axial sediments (Marr et al., 2000). Their
approach is adopted in this study by applying two valuesfor K., onefor the aluvial fans (0.01) and
one for the axia fluvio-deltaic system (0.1). Analogue to diffusion-based stratigraphic modelling,
thereis most likely awide range in applicable values of the transport coefficient K, depending on
the spatial and temporal discretization used (Anderson and Humprey, 1990; Quiquerez et al., 2000).
The form of equation 3.1 is derived from engineering time-scale formulae for bedload transport,
and the values of m, and n, are determined empirically. Severa recent publications give athorough
theoretical background of the method (Whipple, 1999; Tucker, 2000; Whipple and Tucker, 2002).
Here, aslope exponent of n.= 1.0, ensuring numerically stabletransport while distributing sediment
over multiple downstream cell directions and m = 1.5, because it enhances channalisation and
incision of flow at emerged delta break-in-slopes and stream confluences (Murray and Paola, 1997,
Crave and Davy, 2001). Each fluvial system carries a sediment load composed of two grainsize
fractions. During the multiple evaluations of erosion and deposition along the stream paths through
the computational grid the coarse fractions are segregated from the finer ones using the perfect
sorting principle, which is based on selective deposition of the least transportabl e fractions (Paola
et al., 1992).

3.2.3.2 Bedrock incision

In the absence of a sediment cover, the change of height of a cell is determined by the rate of
bedrock incision, which is again afunction of discharge and slope (Howard, 1994)
M-k, Qrst (32)

ot
wherethe K isthe bedrock erodability coefficient (1.0x10 yr?®). Exponentsm,_ and n_are 1/3 and
2/3 respectively, as these values resulted in a well calibrated fit between modelled and observed
topography of the Zagros fold-and-thrust belt (Tucker, 1996a). Sediment produced by bedrock
incision is composed of 50% coarse and 50% fine grain size fraction and distributed further
downstream by fluvial transport (eg. 3.1).

3.2.3.3 Bedrock collapse

In actively deforming regions bedrock landsliding is an important contributor to the volumes
denudated (Hovius et al., 1997). However, landslides are complex sporadic events for which it is
hard to derive a time-average denudation rate. It depends on the interaction between hillslope
gradient, rock strength, internal friction, and the occurrence of seismic events (Schmidt and
Montgomery, 1995; Densmoreet al., 1998). Thelocal potential failureisassessed using the Culmann
slope stability criterion (Spangler and Handy, 1982) (Figure 3.4). This criterion states that the
maximum stable slope of ahillslopewill be reached when the effective weight (F;) onthe potential
failure plane is balanced by the shear resistance on this plane (F):
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Where F isthe weight of the material, 6 the slope of the failure plane, L the length of the failure
plane, C the cohesion and @ the friction angle on the plane (Spangler and Handy, 1982; Densmore
etal., 1998). Failurewill occur at the critical fault planeif F, = F . Inthissituation the cohesion on
the failure planeis expressed as:

1 sin(IB—Hc)sin(é’c—@

c :Eng sin(B) cos( @)

where p isthe density of the rock, g the gravitation constant, H isthe elevation difference between
astable cell and the collapsing cell and 3 the surface slope of thelandslide envel ope (Figure 3.4).The
derivative of the cohesion with respect to the failure plane slopeis:

(3.5)

oC 1 sin(B-26, +¢)

~5-5PY .

00 2 sin( B)cos( ¢)
so that C is maximized at 8 =1/2(3+¢). The stable maximum height of the hillslope is found by
substituting 6_into equation 3.6:

(3.6)

_4C  sinfcosg
™ oo [1-cos(p-4)] @)
The probability of failure and the resulting landslide can now be expressed as the ratio actual
hillslope height versus the maximum critical height according to equation. 3.7.

H

Pcollapse = H_ (38)

c

Thislandslide probability ranges between 0 and 1, and isevaluated using arandom number routine.
A positive test for a single hillslope cell results in application of the criterion on surrounding
potentialy unstable hillslope cells. The size of the landslide is determined by accumulating all
failed mass around the trigger cell of the landslide. The receiving cell of the landslide is the cell
holding the steepest slope with the triggering cell (Figure 3.4). The landslide is distributed further
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downstream as a sediment mass flow. The shape of the mass-flow deposit is determined by an
empirical determined run-out length (~ 5 km, Blair, 1999) and the possibility to spread in multiple
directions. During mass-flow routing over the grid, the debris fills in irregular topographies and
subsequently increases the amount of sediment on valley floors and alluvial fan apices. Mass flow
sediments are subsequently reworked by fluvial erosion and deposition.

3.2.3.4 Bedrock to regolith conversion

Regolithisproduced by in situ chemical weathering of bedrock. Recent studies based on the decay
of cosmogenic nuclides indicate that regolith production rates are around 1.0 x 10°t0 5.0 x 10° m/
yr for semiarid areas, e.g Western United States (Bierman, 1994), and 5.0 x 10° m/yr for Alpine
areas (Small et al., 1999). These studies confirmed that weathering rates are faster beneath acertain
regolith cover (Heimsath et al., 1997), but decay with increasing cover thickness. Following
Densmore et al. (1998) the regolith production curve in the model starts with a bare bedrock
production rate, increasing linearly to amaximum rate at the regolith thickness optimum, followed
by an exponential decrease with increasing regolith thickness (Figure 3.3). Regolith isproduced in
model cells, which do not act asdrainage outletsfor upstream cells. The composition of theregolith
produced is 10% coarse and 90% fine-grained sediment.

3.2.3.5 Marine deposition

In the model afluvia channel entering the marine realm isinstructed to dump all its bedload until
the local accommodation space below sea level is filled. Excess sediment is distributed to
neighbouring marine cells proportional to gradient. Within the marine realm sediment transport is
modelled by diffusion because of its ability to produce redlistic looking clinoform profilesin delta
fronts (Kenyon and Turcotte, 1985; Syvitski and Daughney, 1992). Making the diffusivity coefficient
K water-depth dependent enhances this property, simulating the decrease of erosive energy in the
coastal area with increasing water depth. The values of K are maximum above wavebase depth
(0.2 km3¥/kyr at 15m) and decreaseslinearly below this depth. The marine sediment flux isafunction
of the water depth-dependent diffusion coefficient K and thelocal slopein three-dimensions, [IS:

Qu =K, (wd)OS (3.9

Combined with the continuity equation, this transport equation gives the rate of elevation change
for amarine cell:

dh 0°h  0°h
Emme =K, (wd)[*S= - Km(Wd)(a?"' a—yzj (3.10)
3.2.2.6 Carbonate deposition

Carbonate producing organisms are dependent for their growth on theintensity of light penetrating
through the water column and are hindered by the presence of clastic sediment. Therefore, adepth-
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dependent carbonate production law (Demicco, 1998) is applied to the marine model cells, but
only to those that do not receive any clastic input during the specific time step. The carbonate
production rate P decreases exponentially with increasing water-depth wd
P, =Mmax, e" (3.12)

Thereisahigh variability in the maximum carbonate production rate (max_,, ) proposed by various
authors (see Boscher and Schlager, 1992, for an overview). In our experimentswe adapt therelatively
low , average sedimentation rates obtained from the Morillio and Guarra Limestone (0.1 m/kyr,
Eocene Pyrenean foreland) as these are formed in a basin with high clastic supply rates (Bentham
et al., 1992; Molenaar and Martinius, 1996; Nijman, 1998).

3.2.4 Tectonic processes

Thrusting of the orogenic block over the developing foreland is modelled by using a velocity
description of deformation (Figure 2.5) (Hardy and Poblet, 1995). Flexural subsidence upon thrust
and sediment loading is calculated in multiple sections using a 2D analytical solution of broken
plate flexure (Slingerland et al., 1993).

3.2.5 Tectonic and eustatic forcing

During the scenario modelled the foreland basin setting was subjected to a periodic tectonic forcing
composed of alternating intervals of tectonic activity and quiescence, both having aduration of 250
kyr (Figure 3.5). Although there are no indications from the stratigraphic record that tectonic activity
is periodic, it is applied as such in the model in order to facilitate recognition of the related
stratigraphic response. The horizontal displacement rate of the thrust fault is5.0 m/kyr, whichisin
therange of average Eocene convergence rates obtained from bal anced cross-sectionsin the Pyrenees
(Burbank et al., 1992; Meigs, 1997). The corresponding vertical uplift rate over the 20 degrees
dipping thrust ramp is about 1.6 m/kyr. The flexural adjustments upon thrust-load emplacement
result in asubsidence rate of 0.23 m/kyr in the proximal basin area. Oscillations of the eustatic sea
level with afrequency of 100 kyr and amplitude of 7.5 m are superimposed on the pul sating tectonic
activity. The eustatic and tectonic component together givetherelative sealevel or the basin average
development in accommodation space (Figure 3.5). Many authors suggest that the rate of relative
sea-level changerather than the absoluterel ative sealevel isakey factor in controlling the formation
of sequence-bounding unconformities and incised valleys (Posamentier and Vail, 1988; Shanley
and McCabe, 1994). This value as function of timeis therefore also depicted for comparison with
the modelled stratigraphy (Figure 3.5). From thiscurveitisclear that the most rapid risesinrelative
sealevel arefound during intervals of tectonic activity combined with eustatic rise, while the most
rapid decreasesin relative sealevel arelimited to eustatic falls during tectonic quiescence (-0.5 m/

kyr).
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Figure 3.5 Curves of the external forcing applied to the model space as a function of simulation time (~2.0
Myr). The stepped flexural subsidence curve isthe effect of pulsed thrust-load emplacement with a periodicity
of 250 kyr (a). The superposed eustatic sea-level fluctuation had a periodicity of 100 kyr and amplitude of 7.5
m (b). The resulting composite curve of the relative sea level isdepicted in (c) but also its derivative, the rate of
relative sea-level change (d). Compare to Figures 3.9-3.11.

3.3 Experimental results

3.3.1 Geomorphic response to tectonic and eustatic change

The main geomorphic processes respond to a different degree to the tectonic and eustatic
perturbations applied to the model space (Figure 3.6.a-d). The number of bedrock collapse events
shows a good correlation with the history of alternating tectonic activity and quiescence intervals.
Collapses start after approximately 10 kyr, because at the beginning of the run there wasinsufficient
relief to initiate slide events. Immediately after the first transition of activity to quiescence the
number of collapses in the system is reduced to a few events per kyr. In the successive activity-
guiescence couplets the distribution of the number of collapse event takes the shape of typical
response curve, with a gradual increase during activity, followed by a more rapid decline during
quiescence (Figure 3.6a). The form of these asymmetric response curves slightly changes during
the experiment. The maximum number of events rises per successive activity interval, due to the
cumulative growth in relief of the thrusted hangingwall block. For the first two tectonic intervals
the maximum number of events coincides with the transition from tectonic activity to quiescence,
whilein the last two activity intervals the maximum is already reached at % of the pulse. Also, the
decrease in events is more gradual during the last quiescence intervals, and the number of events
rises, as a signature of accumulated relief.
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Figure 3.6 Response of the main surface processes to tectonic and eustatic forcing applied. The volumes
transported by the different processes areincreasingly a reflectance of eustasy while thetectonic signal losesin
importance.

The rate of fluvial bedrock erosion is aso influenced by the tectonic pulses, but to alesser degree
(Figure 3.6b). Again tectonic activity-quiescence coupl ets are responded by increases and decreases
in the eroded volume. The shape of the curveis more symmetrical than that for the collapse events,
indicating a more transient response. A notable feature of the curve is the sharp fal directly after
the transitions to tectonic activity. Intuitively arise is expected but the response is explained by
interaction with the bedrock collapse events. The sediment liberated by the collapsesis distributed
through the catchment valleys as mass-flow sheets. Consequently, their sediment temporally blankets
thevalley floorsduring (renewed) tectonic activity and protectsthe bedrock temporally from exposure
and removal by fluvial incision.

The control of sea-level variation on the geomorphic response varies. Neither bedrock collapse
events nor bedrock incision show influence of the fluctuations in eustatic sea level (Figures 3.6a
and b). In order to verify this quantatively both time series were subjected to frequency analysis.
Hence, in contrast to the model results obtained by Humphrey and Heller (1995), thereisno evidence
that sea-level-induced, transient waves of erosion and deposition are transmitted to the catchments.
The processes operating in the adjacent sedimentary basin are, of course, influenced by the eustatic
sea-level fluctuations (Figures 3.6¢ and d). The large-scale, undulating trend in the curve of the
volumetric alluvial deposition rate corresponds to the tectonic history, and has a similar symmetry
as the bedrock incision. Superimposed on the curve are smaller variations, reflecting the eustatic
sea-level fluctuations. Responsesto the sea-level fluctuations are dominant in the marine deposition
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curve. Single responses often have asharp base, followed by adeclinereflecting rapid flooding and
gradual filling of the new marine accommodation space.

3.3.2 Response of the axial-alluvial system to tectonic and eustatic change

The axial-alluvia system in the foreland basin is sensitive to the tectonic pulses and the eustatic
sea-level variations (Figure 3.7). During tectonic activity, theincreasein flexural subsidence causes
arise of the relative sea level and basinwide retreat of the shoreline. Channels on the axial-delta
plain respond to the relative sea-level rise by rapid backfilling, frequent abandonment of positions
and splitting of flow in order to spread the carried sediment |oad as efficient as possible. Consequently,
many short-lived, shallow, braided channels dominate the delta plain, which eventually takes the
form of acone. During tectonic quiescence no accommodation spaceis created by flexural subsidence
and the deltaiis forced to prograde rapidly in order to keep its preferred equilibrium depositional
slope (~0.0025 m/m). Initially, during this progradation phase the system is still covered by many,
unstable channels and the surface of the deltaic cone is everywhere close to its equilibrium slope.
Asaconsequence, the prograding deltasystem s critical with respect to any changeslocal discharge
(Q) or surfaceslope S(eg.3.1). Occasiona confluencesof streamslead tolocal increasesin capacity,
incision and the formation of asingle channel out of the widespread channel pattern. Thisautomatic
evolution of the modelled delta from disperse to single channel sediment distribution is analogous
to the phased transitions described for flume fans (Bryant et al., 1995; van Heljst and Postma,
2001) and isin the model caused by applying a discharge exponent m. higher than unity (eq.3.1).
Most of the time channalisation during the delta’s quiescence progradation is achieved beforehand.
Incorporation of steep sloping terrain such as clinoforms by the delta flow during progradation,
possibly accelerated by emergence of the structures during eustatic sea-level falls, may change the
state of coastal cellsfrom aggradational to erosive. Oncetriggered, the erosion propagates hindward
asatransient wave and focuses the deltaic flow in one or two major streams. The rate of knickpoint
retreat is dependent on local discharge and sediment load carried by the flow and ranges between
1.0-100.0 m/yr. These rates are in agreement with values derived from Quaternary deltaic systems
(van Heijst and Postma, 2001, their figure 18). The axial channels preferably form during tectonic
guiescence in the depression between the fringes of the alluvial fans and the slightly conical delta
body, which was shaped by the diffusive channel pattern during a previous phase of active flexural
subsidence.

3.3.3 Foreland basin landscapes

Two snapshots (0.9 Myr and 1.9 Myr) in the devel opment of the foreland basin landscape belonging
to the scenario are shown in Figure 3.8. Both landscapes represent eustatic lowstands simultaneous
with a phase of tectonic quiescence, but in different stages of filling of the basin. At 0.9 Myr
(Figure 3.8a) the axial channel is deflected toward the fault front and located in the depression
adjacent to the aluvial fan fringes. Downstream the axial system changes in fluvial morphology
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Figure 3.7 Time steps in the water discharge patterns of the axial delta and the alluvial fans draining into the
shallow marine embayment of the foreland basin. Tectonic phases of active flexural subsidence (A) are
characterised by a dominance of braided channel patterns on the axial delta plain as a result of the rise of
relative sea level. During tectonic quiescence (Q) phases, fluvial patterns are more diverse and show single
channels in the proximal deltaic plain. Sngle channels and funnelling of the flow at the delta front are the
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result of incision triggered by simultaneous eustatic sea-level lowstands.
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Figure 3.8 Two examples of the modelled foreland basin landscape at 0.9 Myr (a) and 1.9 Myr (b). Both show
the configuration of the main depositional elementsfilling the basin; transverse alluvial fansand an axial river
discharging into the marine embayment as a delta. The main axial channel has a fixed inlet position but is
drawn to the zone of high accommodation space creation close to the fan fringes. Eventually the fans deflect
this channel basinward. See text for discussion and explanation of the numbers. Positions of the stratigraphic
cross-sections, figures 3.9-3.11, are indicated along the edges of the landscape.
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from a single channel, via a confined braidplain to a true delta distributary (Figure 3.8a"23). Two
types of response to eustatic fall during quiescence are recognisable on the aluvial plain. First,
small dendritic networks are formed on a part of the alluvia plain were the sediment supply is
insufficient to dampen the erosive wave (Figure 3.8&%) triggered by eustatic fall. Secondly, the delta
system reacts by propagation due to the high sediment load. However, alarge portion of the water
discharge is locally funnelled into a straight channel suggesting some incision on the deltaic
distributary (Figure 3.82°%). At 1.9 Myr, the marine embayment isalmost entirely filled by sediment
and the alluvial fans have prograded further onto the alluvial plain, whiletheir apices show signs of
fan-head entrenchment in the proximal regions (Figure 3.8bt). The transport regime on the fans
changes downstream from erosive or bypassing to depositional and the feeder channels bifurcate
while depositing lobes. On the axial-deltaic plain, the main channel is deflected to the right-hand
side by the progradation of the alluvial fans but still shows a preference for a position close to the
fan fringes (Figure 3.8b?). An earlier but now abandoned delta distributary system isfound in the
continuation of this axial direction The new distributary has formed in a more basinward position
by a complex of upstream avulsions (Figure 3.8b%%). Four eustatic lowstand-induced channels,
funnelling the drainage to the coastline, mark the new deltafront (Figure 3.8b°).

3.3.4 Three-dimensional basin fill

The modelled basin-fill stratigraphy can be visualized asindividual sections (Figures 3.9 and 3.10)
or as fence-diagrams (Figure 3.11). Rendered animations of such a fence-diagram give a good
impression of the 3D stratigraphic variability in the synthetic basin fill. However, for a thorough
generic analysis, individual cross-sections are preferred because of the stratigraphic detail present
in the dataset. The sections are complemented with timelines, which can be drawn at user-defined
time intervals, here 50 kyr.

3.3.4.1 longitudinal section

A longitudinal stratigraphic section, parallel to the basin axis, is selected to describe the difference
between tectonic and eustatic dominated sequences (Figure 3.9). This section resembles that of a
classic prograding delta where the timelinesin the alluvial delta-top facies change into shingles of
marine clinoforms, and where their inflection point reflects the position of the shoreline (Figure
3.9a) (Postma, 1995). Inthetop of thissection theinterfering alluvial fan depositsare recognisable
(Figure 3.929).

Within this section two types of axial-deltaic progradational sequences can be distinguished, both
corresponding to adifferent intensity of tectonism. Thefirst type correspondsto tectonic quiescence
(Q) intervals and is characterised by, 1) a large shift of the shoreline position together with
superposition of coarse alluvial over fine-grained sediments (Figure 3.92°%), 2) entrenchment of the
relatively coarse alluvium (Figure 3.9a%) and, 3) coarsening-up trends in the marine delta lobes
(Figure 3.92°). Three of these progradational sequences are recognisable before the aluvia fan
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deposits enter the plane of the section. The second type of sequencesis stacked in between these
large-scale progradational sequences. They are deposited during tectonic activity (A) and consist
of coarsening-up trends without down-cutting channel s, alternated with marine onlap (Figure 3.92°).

The signature of eustatic variation on both types of sequencesisexplained using figure 3.5d and its
graphical derivative, figure 3.9c, were the section is coloured according to rate of relative sea-level
change during deposition of theindividual strata. Three individual progradational sequences of the
second type are recognised in the base of the section each corresponding to successive eustatic sea-
level lowstands during the first interval of thrusting and related flexural subsidence (0-250 kyr,
Figure. 3.5). Their deposition is synchronous with moderate rate of fall of relative sealevel (Figure
3.9¢Y) Periodically these aluvial plain deposits submerge due to a combination of eustatic and
subsidence-induced sea-level rise (Figure 3.9¢?). The resulting maximum flooding surfaces are
indicated by thin bands of onlapping carbonate sediments, often occupying a position at the
clinoforms-topset transitions (Figure 3.9a°%). Because here therelative sealevel does not fall below
the clinoform breaks during the deposition of these sequences and consequently no fluvial incision
istriggered, their boundaries are of Type-2 (Van Wagoner et al., 1988).

The channalized deltatop progradations are deposited concurrently or shortly after the most rapid
decreasesintherelative sea-level curve (Figure 3.9¢%). They are coeval with the tectonic quiescence
intervals, which involve a cessation of flexural subsidence and therefore areduction in the creation
of accommodation space. As a result, the axial deltais forced to prograde in order to spread the
sediment load carried under its preferred equilibrium slope conditions. Fluctuations in the eustatic
sealevel areno longer compensated by subsidence-induced sea-level rise, and eustatic falls stimulate
theformation of incised channels by knickpoint retreat. Indicative of thisincisive, channel-forming
process are the colours of the channel lags in the section; they are coincident with the most rapid
falls in relative sea level (Figure 3.9¢%), which reached a level well below the clinoform break.
Therefore, and because of the grain size facies dislocation, the horizon of composite incision
represents a Type-1 unconformity (Van Wagoner et al., 1988). So, both progradation types reflect
phases of low accommodation space during basin evolution, controlled by the changing relation
between eustatic oscillation and tectonic subsidence.

Multiple generations of axial channelsamalgamate (Figure 3.9a") and arefilled with coarse sediment,
because the approximate channel positionisreused during thetwo cycles of eustatic change present
in oneinterval of tectonic quiescence. Alternatively, channel positions may relocate by increased
active bifurcation and avulsion during eustatic sea-level highs, leaving apreviously incised channel
abandoned and filled with fine-grained, shallow marine sediments (Figure 3.9a’). Which type of
channel fill the modeller observes depends on the relative positions of the successive channels and
the cross-section drawn through the synthetic basin fill. Animations of multiple surface drainage
evolutions and stratigraphic cross-sectionsindicate that the zone close to the alluvial fan toes offer
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the best chance of finding a suite of incised, axial channelsfilled by coarse-grained sediment. This
is because during tectonic quiescence and associated progradation the axial stream preferably
migratesinto the topographical depression between the alluvial fan fringes and the slightly conical

axial delta body. Locked in this position and connected to the break in slope to deeper water, the
axial channel isvery susceptibletoincision triggered by eustatic lowstands. During theselowstands,

most of the sediment load isbypassing the alluvial plain and dumped at high sedimentation rates as
deltalobes in marine waters (Figure 3.9d"). The coarsening-up grain-size trend visible in some of

these deltalobesisthe result of grain size sorting by progressive selective deposition (Posamentier
and Vail, 1988) as these structures build up and emerge (Figure 3.92°).

Renewed onset of subsidence during tectonic activity causes active sedimentation to rapidly retreat
over the delta plain and subsequently the delta lobes starve and become covered by athin sheet of

carbonate. During the syn-tectonic fallsin eustatic sealevel that follow, the axial system periodicaly
progrades, resulting in aforeset-like pattern in the sedimentation rate cross-section (Figure 3.9d%).

Inevitably the alluvia fan lobes overwhelm the delta plain. During their advance they use the
incised channels created by the delta streams (Figure 3.9a’). Indicative for this process is
superposition of coarse aluvial fan sediment over channel lags of axial-deltaic provenance. The
dluvial fan lobes are marked by sideward decreasing grain sizes and sedimentation rates (Figure
3.922 and 3.9d°). Delta flows curving around the fan bodies result in intercalated patches of delta
sediment in between the fan bodies while both systems are competing for the same zone of high
subsidence, especially during tectonic quiescence.

3.3.4.2 Thrust-perpendicular section

In the section perpendicular to the strike of the thrust front, the basin is asymmetric due to the
differential subsidence rate across the basin, which is increasing towards the thrust fault (Figure
3.10). The stratigraphic patterns indicated by the time lines in the basin centre show a transition
from |lobate to tabular stratification. Thistransition from marine delta-1obe clinoformsto horizontal
deltatopsreflectsthe decrease in accommodation space at the location of the section by progressive
infilling of the basin with sediment. In thelower half of the section coarse-grained sediment isonly
found in the tops of lobes or in the incised channels (Figure 3.10a). The upper half of the sectionis
marked by intercal ations of sandier, channalized alluvium with fine-grained sediment and carbonate
onlaps, reflecting the eustatic sea-level fluctuations.

Coalescing aluvia fans form a line source that is are marked by a continuous but indented
progradation of gravel and sand into the basin. The small-scale growth and retreat patterns of the
fans (Figure 3.10&%) are the result of the successive eustatic sea-level falls and rises, whereas the
large fan progradations occur during intervals of tectonic quiescence (Figure 3.10&°). Identical to
the behaviour of the axial delta, the main reason for fan progradation is the decrease in
accommodation space during quiescence. Competition between the two depositional systems for
thelimited accommodation space during quiescenceisfierce. Coeval axial stream patterns preferably
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follow the basin axis and occasionally trim the fan toes, which is visible stratigraphicaly as a
steepening and merging of the fan time lines (Figure 3.10&). Normally, fans tend to react more
slowly to a decrease in accommodation space, because they are able to store sediment under their
steeper-sloping profiles. Consequently, they prograde dlightly later and overlie the axia alluvium,
which was initially deposited close to the thrust front (see inset of the fence diagram Figure 3.11).

3.3.5 Three-dimensional visualization of subsurface channel belts

In order to illustrate the potential of forward models for applied reservoir studies a second basin
filling experiment by transverse and axial sources was conducted, focusing at the analysis and
visualization of the main axial-channel stacking pattern (Figure 3.12). The scenario variables
consisted of 400 kyr tectonic pulses and a high-frequency sea-level fluctuation of 40 kyr, in order
to create multiple incised channels. These sea-level oscillations are rare in the sedimentary record
but they are inferred, for example, from the Quaternary deposits of Taiwan (Chen et al., 2001). In
this particular foreland basin their preservation in the stratigraphy is facilitated by high rates of
subsidence and sediment supply.

After 2.5 Myr of simulation time the axial channel strata are selected from the 3D synthetic
stratigraphic dataset and visualized using two criteria. First, they have to be deposited by the axial
system at water discharge conditionsthat approximate the discharge of the axia inlet cell. Secondly,
they have to be composed of more than 50 % sand. The resulting 3D distribution of coarse-grained
channel voxels delineates the successive positions of the main axia-deltaic channel belt in the
subsurface (Figure 3.12). Three channel belt horizons are visible, all corresponding to periods of
axial-delta progradation due to limited accommodation space during phases of tectonic quiescence
(0.4-0.8 Myr, 1.2-1.6 Myr and 2.0-2.4 Myr). They originate from a vertical stack of voxels at the
left hand side of the figure that indicates the location of the fixed inlet cell. The lower channel belt
is relatively thick (~ 20 m) but thins distally by branching. These distributaries are the result of
successive deflections of the axial streams due to the emergence of offshore delta lobes.
Chronologically, theindividual branches are younging towardsthe foreland because the obstructing
lobes fill-up the high-subsidence zone close to the thrust fault first, and then relocate to a more
basinward position as the offshore accommodation space fills up (see aso Figures 3.7 and 3.8).

Figure 3.11(previous page) Fence diagram of the foreland basin fill coloured according to grain size fraction
present in the individual strata, viewed from two different angles. Timelines are spaced 50 kyr. Alluvial fan
gravel and sands are clearly recognisable by the stacked and shifting |obate bodies. They progressively cover
the axial-delta deposits as part of their general progradation. Thin, near-horizontal delta-top sheet sandstones
alternate with shallow marine clays and thin carbonates represent axial-deltaic deposits. Incised channels
mar k widespread progradations of these sandy delta-top horizons during phases of tectonic quiescence together
with simultaneous deposition of coarsening-up offshore lobes. The inset shows the covering of incised axial
channels by alluvial fan toe sands during a phase of tectonic quiescence. Thisis indicative of the differential
response times of both systems upon reduction of accommodation space.

77



Chapter 3

78

100

50

elevation (m)
o

n
o

-100

-150

10 km

thrust front

100

50

elevation (m)

o
o

-100—

-150




Foreland basins

Figure 3.12 (previous page) Changing subsurface position of the main channel belt deposited by the axial—
delta system. Three channel belts are recognisable (1, 2 and 3), all formed during tectonic quiescence phases
of low accommodation space generation. They are situated spatially between dominantly fine-grained sediments
corresponding to phases of higher subsidence rates during tectonic activity. The upper channel belts are
successively displaced basinward with respect to the lower one due to the progradation of the alluvial fan front
(Figure 3.8). Multiple deflections and branching of thelower channel belt are theresult of progressive basinward
deflection by emerging delta lobes.

The second and third channel belt are progressively located in amore basinward position but thisis
due to the deflection of the entire axial system by the continuous progradation of the alluvial fans.

3.4 Discussion

The here presented high-resolution model of foreland basinfilling resemblesthat of anatural foreland
basins in three ways (cf. Bentham et al., 1992; Remachaet al., 1998; Ramos et al., 2002). Firstly,
the basinis progressively filled by an axial delta due to the long-term dominance of clastic supply
over the accommodation space created, causing aregression (Bentham et al., 1992; Remachaet al .,
1998). Secondly, transverse aluvial fans become more important as a source of clastics with time,
and they push away the axial system and bury the sediments previously deposited by the axial delta
during the final overfilled basin phase (Brozovic and Burbank, 2000; Ramos et al., 2002). In the
model the small size of the computational grid ultimately limits the distal position of the axial
system. In natural foreland basins the axial system is expected to relocate in a more basinward
position, following thelength axis of thewidening flexural depression (Puigdefabregas and Souquet,
1986; Jin et al., 1995). Thirdly, the final stratal patterns have a wedge-shape geometry due to the
asymmetrical generation of accommodation space by flexural subsidence, just asin natural foreland
basins.

One of the fundamental issues addressed in this model study is the question what controls gravel
advancein foreland basins. Theinitial advance of fan gravelsin foreland basinsisadirect function
of the interaction between proximal accommaodation space generation and the increasing orogenic
supply from nearby catchments. In this early phase vertically-stacked fan (delta) bodies with a
progradation pattern, reflecting the bal ance between both components, will dominate the basin fill.
However, in afollowing, overfilled basin stage care should betaken in interpreting the stratigraphic
pattern directly in terms of competing local flexural accommodation and orogenic supply. The
externally sourced axial system is volumetrically an important component in filling the local
accommodation space, and its supply ismost likely unrelated to the intensity of tectonic activity at
this position. Consequently, axial-induced overfill and conditions of constant local supply and
subsidence could cause fan progradation to accelerate, resulting in thin gravel sheetsin the distal
foreland without any change in tectonic activity.
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Thelong-term rate of gravel advanceinthe modelled basin fillsis100-150 m/kyr, whichisrelatively
high, compared to natural fan gravels deposited under similar subsidence rates (Tremp Basin, 40
m/kyr, (Nijman, 1998) ). Thisis partly dueto therapid infilling of the basin by axial sediments but
also the result of the technique that was used to simulate thrusting in the model. From several
synthetic sections it is concluded that this horizontal component in the tectonic displacement
contributes for 20 % to the long-term fan gravel propagation rate. This is because the thrusting
algorithm employed incorporates active ramping of syn-tectonic sediment, and consequently the
fan apicesincreasein elevation and propagate basinward (Figures 3.10 and 3.11). Many conceptual
modelsof basin filling neglect this obvious component in their explanations of gravel progradation,
although it is an important contributing factor.

Pulsating tectonic activity in the model resultsin a pattern of repetitive alluvial fan retrogradation
and progradation, where the latter corresponds to phases of tectonic quiescence, in coherence with
other forward model studies if gravel dispersal in foreland basins (Paola et al., 1992). Onset of
tectonic activity ismarked by retrogradation of gravelsand onlap of finer-grained marine or axially
sourced sediment on the fan surfaces. Syn-tectonic alluvial fan bodies show a higher density of
landslide over streamflow deposited strata (Figure 3.10b), due to the good correlation of bedrock
collapse events with the phases of active tectonic uplift (Figure 3.6a). Together with fan retreat and
trangitionsin clast provenancethisisprobably adiagnostic feature of active uplift and (re-) juvenation
of source terrains (Heller and Jones, 2001).

The model has shown to be able to simulate a hierarchical sequence stacking arrangement of the
axial-delta system by simultaneously applying tectonic pul sation and eustatic sea-level variation as
forcing. Many authors have identified such hierarchical arrangementsin the stacking of sequences
and facies patternsin the shallow marineto deltaic deposits of foreland basins (Plint, 1991; Nijman,
1998; Dreyer, 1999; Chen 2001). Although the model results cannot be seen as a direct proof for
any of the conceptual interpretations in these field situations, it illustrates a possible mechanism
and the diagnostic features of the sequences and their unconformities. The synthetic 100-kyr
sequences, which are controlled by eustatic sealevel in the model, lack basal incision if deposited
during active tectonic phases. The bounding unconformities are of Type-2 due to the simultaneous
subsidence component intherelative sealevel, causing decreasesin eustatic sealevel to be suppressed
and not to fall below the clinoform breaks. The Type-2 sequence boundaries are hard to recognise
in the model though the consequent carbonate onlaps corresponding to syn-tectonic eustatic sea-
level highsarewell developed. Therefore, carbonate onlaps are probably good markersto delineate
sequences deposited in high-subsidence rate foreland basins as aresult of high-frequency sea-level
variations.

The eustatic-controlled pattern is less observable in the sequences deposited during tectonic
quiescence phases when limited accommodation space inhibits their recording in the stratigraphy.
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However, the major 3 order progradation of the delta-top facies during quiescence is punctuated
by phases of basal incision as result of simultaneous eustatic sea-level lowstands. The resulting
unconformity is defined by these incised channels and appears on cross section similar to the Type-
1 unconformities of the classic Exxon model of sequence stratigraphy (Van Wagoner et al., 1988;
Emery and Myers, 1996). Note that these Type-1, 3 order unconformities in the model are of
compositeorigin, generated by multiple sea-level lowstands during quiescence. Further, theresulting
unconformity horizons are discontinuous because their intensity is dependent on the distance to the
incising axial-deltaic channel. Therefore, these unconformities are of limited value in delimitating
the large-scale sequences or putting exact time-constraints on sequence boundaries. The major
flooding surfaces, asaresult of renewed tectonic activity and subsidence, are better discriminators
because of their basin-wide character and rel ative i nstantaneous devel opment (e.g. Galloway, 1989).

The relatively high stratigraphic resolution of the modelled basin fill facilitates correlation of the
stratigraphic patterns with the external forcing but also allows visualization of sediment bodies of
high reservoir potential in aforeland basin setting, such as the axial channel belts. Their general
position always follows the zone of maximum subsidence. However, in order to investigate the
model’s predictive capabilities, severa channel belt locations, generated in more than one model
experiment should be evaluated statistically. Exact channel positions may vary slightly throughout
multiple runs under conditions of identical model input due to internal random behaviour of the
cellular model approach (cf. Meijer, 2002).

3.5 Conclusions

It is shown that it is possible to capture the basi ¢ tectono-geomorphic evolution and simultaneous
filling of a proximal foreland basin by independent axial and transverse sediment sourcesin a 3D
forward numerical model. The synthetic stratigraphy accumulated inthe basinis of relatively high
resolution when compared to existing foreland basin models. A scenario of tectonic pulsation and
superposed eustatic sea-level oscillation produces ahierarchical stacking pattern of axial-deltaand
aluvial fan sequences separated by thin carbonate onlap and unconformities, patterns which are
characteristic of many natural foreland basins.

Basic controlling mechanism behind the large-scale stacking of these sequences is the balance
between supply and flexural-created accommodation space. Due to the elastic flexure solution
applied and the constant axial-delta and the increasing aluvial fans sediment supply, aternating
phases of tectonic activity and quiescence in the scenario correspond to retrogradation and
progradation of both systems. Syntectonic eustatic sea-level fluctuations result in a set of internal,
parasequence-scale packages of prograding and shallowing-upward delta sediments bounded by
Type-2 unconformities. Incised channels are rare within these sequences, but are characteristic
features of tectonic quiescence phaseswhere eustatic fall are not longer dampened by the subsidence
component intheriseof relative sealevel. Suitesof amalgamating, axial channelsmark theresulting
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Type-1 unconformities. Coarse-grained incised channel fills are preferentially formed in the zone
of maximum accommodation space between the aluvial fan fringes and the slightly conical body
of theaxial delta. These potential reservoir bodies can be easily distilled from the subsurface dataset
and visualized in 3D, illustrating an application of stratigraphic forward modelling in foreland
basin settings.
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Sratigraphic signatures of trandation of thrust-sheet top basins over
low-angle detachment faults

Abstract

L ow-angle detachment faults and thrust-sheet top basins are common features in foreland basins.
However, in stratigraphic analysistheir influence on sequence architectureis commonly neglected.
Usually, eustatic sealevel and changing flexural subsidence get al attention, and when deformation
is considered, the emphasis is on the generation of local thrust-flank unconformities. This study
focuses on the effects of detachment angle and repetitive detachment activation on stratigraphic
stacking patternsin alarge thrust-sheet top basin by applying athree-dimensional numerical model.
Model experiments show that displacement over low-angle faults (2~6°) with moderate rates (~5.0
m/kyr) results in a vertical uplift component sufficient to counteract the background flexural
subsidence rate. Consequently, the basin-wide accommodation space is reduced, fluvio-deltaic
systems carried by the thrust sheet prograde and part of the sediment supply is spilled over towards
adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet
sandstones increases with the dip angle of the detachment fault. In addition, the delta plain is
susceptible to the formation of incised valleys during eustatic falls because these events are less
compensated by regional flexural subsidence.

4.1 Introduction

Foreland basins are often envisaged as asymmetric systems experiencing maximum subsidence
rate and accommaodation space generation adjacent to the main thrust front, decreasing away from
the deformation front (Heller et al., 1988). This view is too simplistic to explain stratigraphic
patterns in the proximal domains of such basins, as subsidence patterns are often complicated by
local tectonic deformation and the activity of thrust-sheet top basins (Ori and Friend, 1984; Ricci-
Lucchi, 1986).
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Thrust-sheet top basins are very common features in foreland basins (Beer et al., 1990;
Puigdefabregas, 1992; Talling et al., 1995; Hogan and Burbank, 1996), and are large phenomena,
which sometimes affect more than 75% of the entire foreland basin (Vergez and Burbank, 1996;
Wagreich, 2001).

Temporal variationsin sealevel and therefore the stratigraphic stacking patternsin these basins are
controlled by eustatic and tectonic processes, of which the latter is a combination of thrust
displacement and regional flexural subsidence. To unravel the relative contribution of each process
on the sequence architectureisdifficult, becauseindividual rates and frequencies of the components
cannot be estimated independently. Thisinterplay in thrust-sheet top basinsis suited for evaluation
by numerical forward modelsthat couple the important processes, where the rel ative importance of
a single component on basin architecture is highlighted by systematic variation. However, thrust-
sheet top basin stratigraphy isnot commonly addressed in model ling studies because of the numerical
complexity involved in coding horizontal thrust-sheet translation and erosion at the same time.
This is rapidly changing due to the increasing interest in tectono-geomorphic interaction, the
availability of new dating methods (luminescence dating) in convergent neo-tectonic settings, and
new model ling techniques sufficiently flexibleto simulate thrusting and surface processes (Chaleron
and Mugnier, 1993). A notable example is a recent study in which the TIN-based CASCADE
model (Braun and Sambridge, 1997) is used to explain drainage diversion or incision along the
Nepal Himalayan foothillsasafunction of detachment angle and lateral differencesin displacement
rate along the deformation front (van der Beek et al., 2002). They conclude, that the direction and
slope of the transverse drainage is primarily a function of lateral differences in propagation rate
over aninclined detachment. Minor differencesin convergence rate and detachment angle determine
whether downstream fault-bend foldsin the foothills are safeguarded from fluvial incision and the
formation of wind gaps or not. In their study, the thrust-sheet top basin is fully continental and
dominated by erosion of the frontal fault-bend fold and the basin itself. However, thrust-sheet top
basins are known to develop early in immature foreland basins and to accommodate sediment due
to their position below (Ricci-Lucchi, 1986; Huyghe et al., 1999) or closeto base level (Talling et
al., 1995; Ramos et al., 2002). The balance between two fundamental processes: regional flexural
subsidence and basin-wide uplift created by horizontal translation over ashallow hinterland-dipping
detachment fault (Talling et al., 1995) has a major impact on their stratigraphy.

Aim of thischapter isto investigate the effect of alternating activity and quiescence of adetachment
fault on the evolution of a thrust-sheet top basin as a function of the detachment-fault angle. The
consequent evol ution of accommodation space, fluvial drainage directions, and stratigraphic patterns
recorded in the basin are investigated with a numerical model. The influence of the detachment-
fault angleis critically evaluated. This fundamental variable is commonly overlooked in foreland
basin analysis, which traditionally focusses on rates of tectonic displacement and subsidence.
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The results of the numerical model are compared to the Eocene Tremp thrust-sheet top basin of the
Spanish Pyrenees(Marzo et al., 1988; Nijman, 1998). Intheinterpretation of thealluvia stratigraphy
inthissetting therole of detachment fault dip has been fully neglected up to now. The basic structural
geological geometry used in the model set-up is analogousto the one observed in the Tremp Basin
in order to facilitate the comparison of the modelled stratigraphy with this field situation, and the
re-evaluation of existing theories.

4.2 Numerical model

4.2.1 Basin geometry

A quantitative three-dimensional model has been developed to gain insight into tectono-
geomorphological interaction and the stratigraphic response in foreland basins. The standard version
of the model incorporates uplift by thrusting of an orogenic wedge and simultaneous erosion by
bedrock collapse and fluvial bedrock incision. Erosional products are routed downstream and
deposited in aflexurally created foreland basin by transverse alluvial fans and an axially flowing
fluvio-deltaic system. In this study the model is adapted by incorporating a frontal fault-bend fold
and a shallow hinterland-dipping sole-thrust detaching the foreland basin, creating a thrust-sheet
top basin. (Figure 4.1). The model set-up consists of agrid of 150 x 150, 500m cellsin which both
thrust structures are bounded to the left by a marine basin, which is not experiencing deformation,
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only flexural subsidence. The configuration of the modelled thrust-sheet top basin is based on
Tremp-AinsaBasin in the Spanish Pyrenees (Figure 4.2 and 4.3). This basin has been filled by the
Eocene fluvio-deltaic Montanyana Group, which was deposited by southwestward prograding
aluvia fans merging with an axial fluvial system, flowing parallel to juvenile Pyrenean Orogen
(Friend et al., 1981; Marzo et al., 1988). The Montanyana Group passes into the turbidite systems
of the Hecho Group deposited in the adjacent marine Ainsa Basin (Multti, 1985). A considerable
fraction of the material constituting these turbidite systems has been derived from the nearby
structurally oversteepened deltafront, positioned above a lateral ramp of the underlying Cotiella
Montsec thrust sheet (Nijman, 1998).
In stratigraphic cross section, the Montanyana Group is partitioned into several megasequences
characterised by unconformitiesalong the basin margins. These unconformitiespassinto conformable
stratigraphic relationships, axial sheet sandstones or marine flooding surfaces in the basin centre
(Figure 4.3).
As aresult of the complexity of the selected set-up, three routines had to be added to the existing
foreland basin model (Chapter 2 and 3) handling the:

e syn-sedimentary horizontal trandation of the detailed stratigraphic fill of the thrust-sheet

top basin.
« three-dimensional flexural response upon thrust, sediment and water loading.
» deltadope collapse, delivering sediment to the adjacent marine basin.

Section | Figure 4.3

SUBMARINE FAN DELTAFRONT LOWER & UPPER E FLUVIAL
DELTAIC PLAIN !

Figure 4.2 Planview of the drainage organisation in the Eocene Tremp thr ust-sheet top basin (Spanish Pyrenees)
during the deposition of the Montanyana Group. The basin is occupied by two depositional systems, transverse
alluvial fans and an axial fluvio-delta system, which converge in the axis of the basin. The basin is bounded in
the west by the lateral ramp of the carrying Coteilla-Montsec thrust-sheet, which marks the facies transition to
the turbidite systems of the Hecho Group in the Ainsa Basin (modified after Nijman, 1989).
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thrust flank unconformities

basin axis,
brackish-marine clay

longitudinal
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Figure 4.3 Schematic representation of the Montanyana Group sequence architecture in the Tremp thrust-sheet
top basin. The fine-grained basin fill is partitioned into megasequences by pronounced unconformities at the
basin margins, which passinto conformable stratigraphic relationshipsin the basin centre. Here, amalgamating
sheet sandstones and marine flooding surfaces mark the boundaries. The sequences are subdivided into fan/
axial-fluvial couplets bounded by flooding surfaces, each representing approximately 100 kyr (modified after
Marzo et al, 1988). For a thorough 3D analysis of the basin fill architecture see Nijman (1998).

4.2.2 Horizontal trandation of thrust-sheet top stratigraphy

Thetectono-sedimentary model is based on astatic rectangular grid (Figure 4.4). Asaconsequence
trandlation of geologic structures always involves spatial interpolation, because the displacement
during a single tectonic step is usually smaller than the grid discretisation. A simple interpolation
method is used to model the topographic development of a single fault-bend fold (Figure 2.5). The
same technique is applied here to simulate the frontal thrust structure in the foreland basin. The
frontal thrust ramp isconnected to the orogenic wedge by a hinterland-dipping solethrust, detaching
the foreland basin and transforming it to a thrust-sheet top basin (Figure 4.1). The stratigraphic fill
of the detached basin istrand ated using acomparabl e, but more computational intensive technique,
which isamodification of the routine originally developed for relocating individual nodes during

87



Chapter 4

j++

A

T a Scd2 “'
> .
2’3 A 1—1’— L
N R B 500] - 5001
400 6. 400 A" 1
O ! 200
200] o 10—
T } 140
! 5 150 T
150 > R
R wl | 1]
4 5ol 501 50 1 4

Create a new stack of layers for the static grid cell centre
position j-1 by interpolation between the properties
of two displaced stacks

Figure 4.4 Smplified explanation of the stratigraphic interpolation routine used to translate the stratigraphic
information of the piggyback basin fill. 1) New node positions are calculated as function of the tectonic
displacement field. 2) The distances between the new node positions and the static grid are cal culated. 3) These
distances are used in weighted interpolation of layer properties. 4) Comparison of the layers, starting at the
base of the stratigraphy 5) If layersfall in the same age range (arbitrary value of 10), new layer propertiesare
calculated using weighted inter polation between two matching layers. The age of the composite layer is set to
the yougest value. 6) If layers do not match in age range the new layer is advected into pile, so that the
sequence of layersin of the column is till in chronologic order.
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the creation of ameander bend (Tucker et al., 1999). Instead of afew nodes, here an entire mesh of
nodes needs to be moved.

Each of the grid nodes representing the basin landscape is connected to alinked-list data structure
(Oualine, 1997) which stores the stratigraphic stack of layers at the specific location (Figure 4.4).
Every layer in such alinked list carries lithological information about its texture and provenance
(marine, aluvial fan or axia delta) and chronological information about depositional ageand if the
layer wasrecently involved in an erosion or sedimentation process. Thischronological information
isused in the tranglation of the thrust-sheet top basin fill. The tectonic displacement field predicts
new positionsfor the piggyback basin nodes, but because the model isbased on afixed, equidistant
grid, they are not allowed to move. The solution is to assign new locations to the stratigraphic
linked lists, temporally, and to interpolate a new stack of layers for the static node positions by
weighted distance interpolation between two displaced locations. Interpolation, and averaging of
properties between layers is allowed if they fall in the same age range, which is a user-defined
variable. If thisrequisiteisnot fulfilled, the layersare advected into the newly created stack, according
to chronologica age (Figure 4.4). The technique is here applied to simulate the trandation of a
thrust-top basin fill. Of course it is applicable to other tectonic processes involving a horizontal
component, such as strike-slip or normal faulting.

4.2.3 Three-dimensional flexure

The activation of intra-foreland basin thrust structures results in spatially highly variable loading
of thelithosphere dueto the discontinuous nature of thefrontal thrust (Figure 4.1) and the subsequent
redistribution of the sediment. The pseudo three-dimensional flexure solution adapted in aprevious
model version proved to be inadequate to adapt to this more complex structural setting. The model
istherefore extended with afull three-dimensional flexure solution based on the Fourier Transform
method (Karner, 1982; Wees and Cloetingh, 1994; Hodgetts et al., 1998; Watts, 2001). The two-
dimensional theory (equation 2.16, Chapter 2) is extended to three dimensions:

2 2 2
(62 62 jD(a V\/(X'y) N 20 V\/(ny) +a \N(x,y)

NG ¥ ay? ay’ ox*ay* x> +(Pn =P) Moy "Ly (42)

where D isthe flexura rigidity, W) is the lithospheric deflection resulting from the load L, both
being afunction of spatial coordinatesx andy. Expressed in the wave number domain, equation 4.1
becomes

Wiy = Rin S (4.2)
WhereW(iJ.) isthe Fourier transform of W) and L(i,j) the Fourier transform on L(x,y) whilei isthe
wave number in the x-direction and j the wave number in the y-direction. The response function
R(i,j) defines the isostatic compensation for a certain load
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The equations are solved using a 2D Fast Fourier Transform algorithm (FFT) (Press et al., 1992).
Such algorithms are developed for signal processing studies and are not directly applicable for
solving the flexure problem, because the method assumes that the input data seriesis periodic. Of
course this does not hold for the spatial distribution of atectonic load, which is non-periodic and
spatially confined. Boldly applying a FFT agorithm could result in series of interference patterns
because deflections are felt at large distance from the load (n x 10 km) and will interfere. One way
solving thisFFT ‘artefact’ isto wrap up the actual load in asynthetic load, which on average equals
the minimum load. Thistechniqueiscalled ‘ copy padding’ (Hodgetts et al., 1998). The expanded
data series used for padding should have dimensions larger than the wavelength A over which the
lithosphere flexes due to the load itself.

1 =21 (4.9
where a is the flexural parameter defined as
o VA (4.5)
a=| ——
(on-p)

This large area (n x 100 km) is not entirely modelled with the surface process equations due to
computational limitations. Flexure-related phenomena such as forebulge uplift and migration are
calculated but occur outside the area addressed by surface processes and are therefore not
recognisable in the model results. An assumption in the lithospheric response agorithm isthat the
isostatic adjustment upon an increment of thrust or sediment loading is applied to the model space
for 90-95 % within a time-span of 10 kyr. This rate of lithospheric response is comparable to the
pace of crustal rebound associated with postglacial ice cap melting (Forman, 1990; Peltier, 1990),
and is therefore a good assumption.

4.2.4 Submarine slope collapse and mass-flow deposition

A ssmplemarine slope collapse routine is added to the surface process equationsin order to simulate
sediment supply from the structurally oversteepened delta front to the deeper marine part of the
basin configuration (Figure 4.1 and 4.2). A relevant question isto what extent the number of collapse
events and the spatial distribution of mass-flow deposits correspond with the timing of thrust sheet
trandation and eustatic sea-level variation. In the model, gravity-flow transport to deeper water is
predicted using an adapted version of the Cullman slope-stability criterion, wherein the probability
of slidesis dependent on the cohesion of the deltafront sediments (600 Kp) and their critical slope
of 1° (Loseth, 1999). Assuming that remobilisation of shoreface sediment ismost effective at depths
around the wave base, the collapse criterion is active below a water depth of 15 m. The material
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supplied by the collapsing deltafront is distributed to deeper water according to arunout length of
10 km. This distance is chosen because it results in the bulk of the mass flows to be deposited

within the model set up and to be visualized.

4.2.5 Model scenarios
Four scenarios are modelled in order to analyse the influence of the balance between regiond
flexural subsidence and displacement-induced uplift along the detachment fault on the stratigraphic
patterns recorded in the thrust-top basin (Table 4.1 and Figure 4.5). In the first three experiments
the angles of the detachment fault are 2, 4 and 6°, while keeping the effective elastic thickness
(EET) constant at 15 km. The corresponding regional subsidencerateis approximately 0.35 m/kyr.

Time (Myr)

Exp. Effective Elastic Average flexural Detachment Vertical uplift
Thickness, EET subsidence (m/kyr) angle component
(km) detachment angle
1 15 0.35m/kyr 2° 0.16 m/kyr
2 15 0.35m /kyr 4° 0.32 m/kyr
3 15 0.35 m /kyr 6° 0.48 m/kyr
4 30 0.18 m/kyr 4° 0.32 m/kyr

Table 4.1 Flexural subsidence rate and displacement-induced vertical uplift in the thrust-top basin applied

in the model experiments.
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Figure 4.5 The combined effect of flexural subsidence, detachment activity and eustatic sea-level fluctuation on
the thrust-top basin accommodation space and the rates of relative sea-level change. A stepwise increase in
detachment angle (exp.1-3) results in reduced accommodation space and higher rates relative sea-level fall,
promoting incision of the thrust-top basin fill.
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In the fourth experiment, a detachment angle of 4° is applied, and double the value of the flexural
rigidity, resulting in alower average subsidence rate of ~ 0.18 m/kyr. The activity history of both
thrustsisidentical inall scenarios. The activity of the structures alternates; the thrust separating the
orogenic wedge from the thrust-sheet top basin is active from 0 to 0.2 Myr and 0.5to 1.0 Myr. The
frontal thrust emerging in the foreland basin is active twice during the simulation, first between 0.2
and 0.5 Myr, secondly between 1.0 and 1.5 Myr. Both thrust structures accommodate a shortening
rate of 5.0 m/kyr during activity. A eustatic sea-level variation is added with an amplitude of 7.5 m
and awavelength of 100 kyr.

Theangles of the detachment fault, displacement and subsidence rates generated are comparable to
valuesinferred from the Eocene Tremp Basin. The duration of the tectonic intervals (~0.3-0.5 Myr)
isan averagefor thetime span covered by the mega-sequencesin the Montanyana Group. Individual
units in the architectural stacking pattern have an approximate duration of 100 kyr (Figure 4.3)
(Marzo et al., 1988; Nijman, 1998). In thismodel study thisfrequency component isintroduced as
sinusoidal sea-level variations.

Analysis of balanced cross sections indicates that displacement rates over the basal detachment
during the deposition of the Montanyana Group range from 2.0 to 20.0 m/kyr (Munoz, 1992; Holl
and Anastasio, 1995; Bentham and Burbank, 1996; Poblet et al., 1998). The average, long term
trandation rate proposed is5 m/kyr (Vergez et al., 2002). These displacement rates, in combination
with a 3-4° slope of the Cotiella-Montsec detachment fault (Munoz, 1992), are able to generate a
vertical uplift component of tectonic trand ation, which is sufficient to reduce the accommodation
space created by background flexural subsidence (0.2-0.6 m/kyr Nijman, 1998).

4.3 Experimental results

4.3.1 Thrust-sheet top basin landscape evolution

The landscape evolutions of two of the four thrust-sheet top basins, experiment 2 and 3, are shown
in figures 4.6 and 4.7. Initially, the basin is relatively shallow (~30 m) in both experiments and
occupied by a conical delta body characterized by a disperse, braided channel pattern (0.2 Myr).
During subsequent activation of the detachment fault and displacement of the basin, the delta
progrades, while showing linear drainage structures on the lower deltaplain (Figure 4.6, 0.5 Myr).
The transition from these linear drainages on the lower deltaic plain to bifurcating channels on the
upper deltaic plain marks the change in erosion/aggradation balance in the channels. The linear
channels are dominated by sediment bypass or channel-bed erosion, while the bifurcating channels
accumulate sediment. Geographically, the transitions delineate the position of a knickpoint front,
triggered by the 0.45-0.50 Myr fall in eustatic sealevel. The rate of migration of the knickpoint
front is 5.0 km/kyr and diminishes in the basin centre (Figure 4.6, 0.5 Myr), where it represent a
balance between incision, sediment supply and net accommodation space created. The front does
not migrate further towards the inlet position of the axial delta, due to the sight dominance of
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regional flexural subsidence over detachment-induced uplift, which compensatestheincisive effect
of eustatic sea-level fall. In experiment 3, the detachment-induced uplift component is larger, and
activation of the detachment fault results in rapid formation (10-20 km/kyr) of a single incised
channel connecting the deltato the axial inlet. The bulk of the axially fed materia is bypassing the
upper deltaic plain and deposited as a small deep-water delta.

After cessation of detachment activity at 0.5 Myr, regional subsidenceisno longer counteracted by
detachment-induced uplift (Figures 4.6 and 4.7, 0.75 Myr and 1.0 Myr). Consequently, the lower
deltaplainisflooded and the active deltaretreats towardsitsinlet position, while showing bifurcating
channel patterns again.

Subsequent activity of the detachment fault at 1.0 Myr resultsin decreased thrust-top accommodation
space and renewed progradation of the axial delta (Figure 4.6, 1.25 Myr). Again experiment 2 is
characterised by multiplelinear drainages on thelower deltaic plain, but at 1.5 Myr asingle, incised
axial valley is created, implicating that all sediment is bypassing to deeper water (this already
occurs at 1.25 Myr in experiment 3, Figure 4.7). In both experiments, the basin-margin aluvial
fans prograde due to the gradual increase of orogenic topography and supply. Progradation is
interrupted by shallow marine transgressions during detachment quiescence. During detachment
fault activity and basin emergence, a collector river is formed at the toes of the alluvial fansin
experiment 2, which is susceptible for incision by syn-tectonic eustatic sea-level fall (Figure 4.6,
0.5 and 1.25 Myr).

4.3.2 Evolution of the accommodation space

The competition between regional flexural subsidence and local thrust-induced uplift controls the
evolution of accommodation space in the thrust-sheet top basin (Figure 4.5). Theresulting trend is
modulated by the sinuous sea-level fluctuation. During activity of the frontal thrust, the
accommodation space on the thrust-top platform is stepwise reduced with increasing detachment
angle in the experiments (experiment 1, 2 and 3), or even periodically destroyed (experiment 4).
During quiescence of the detachment, the flexural subsidence induced by thrust loading of the
orogenic wedge predominates, increasing the accommodation space generated on the thrust-top
basin.

During activity, a larger detachment angle results in increased incision susceptibility of the delta
front by eustatic sea-level fals, asthese are less compensated by regional flexural subsidence. The
maximum rate of relative sea-level fall increasesfrom 0.25 (experiment 1) to 0.45 m/kyr (experiment
3) with increasing detachment angle (Figure 4.5).

Indirectly, sea-level forcing does also influence the accommodation space trend by isostatic
adjustment upon (sealevel-induced) delta progradation and loading. However, this contribution is
small, approximately 10 % of the flexural subsidence, and is therefore not visible in the curve of
figure 4.5.

93



Chapter 4

0.20 Myr, detachment quiescence

1.0 Myr, detachment quiescence

0.50 Myr, detachment activity knickpoint front

1.25 Myr, detachment activity

0.75 Myr, detachment quiescence

1.5 Myr, detachment activity

Figure 4.6 Successive steps in the landscape evolution of the exp.2 thrust-sheet top basin, applying a 4°
detachment angle. Initially, the basin is occupied by a single delta cone (0.2 Myr). Upon activation of the
detachment, the delta system progrades and becomes susceptible for eustatic-induced incision on the lower
deltaic plain (0.5, 1.25 and 1.5 Myr). Detachment quiescenceresultsin dominance of regional flexural subsidence
and retreat of the delta across the thrust-top platform (0.75 and 1.0 Myr).
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0.20 Myr, detachment quiescence

1.0 Myr, detachment quiescence

1.25 Myr, detachment activity

0.75 Myr detachment quiescence

1.5 Myr, detachment activity

Figure 4.7 Successive steps in the landscape evol ution of the exp.3 thrust-top basin, applying a 6 ° detachment
angle. Evolution is similar to exp.2. although now syn-tectonic eustatic sea-level fall isable to carve a single
incised valley into the delta plain. Much of the sediment fed to the system during the interval of detachment
activity is bypassing to the adjacent marine basin.
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Figure 4.8 (previous two pages) Fence diagrams illustrating the stratigraphic response to a shifting balance
between regional flexural subsidence and detachment-induced uplift. A stepwise increased detachment angle
(exp.1,2,3), or larger flexural rigidity resultsin enhanced delta progradation, increased interconnectedness of
sandy fluvio-deltaic facies at the cost of fine-grained intervals, and susceptibility for incision by thelongitudinal
river. Nb. different vertical scales are used.

4.3.3 Thrust-sheet top basin sequence architecture

The sequence architecture of the thrust-sheet top basin fills is shown as a fence-diagram of two
orthogonal lithological sections, selected from the 3D dataset at simulation time step 1.5 Myr
(Figures 4.8). It is evident that the sediment thickness accumulated in the thrust-top platform
decreases with increasing detachment angle or flexural rigidity (exp.1 ~400 m, exp.2 ~250 m,
exp.3 ~175 m and exp.4 ~80 m).

The stratigraphy of experiment 1 is marked by multiple stacks of prograding, coarsening-up
clinoforms overlain by delta-top sands and thin carbonate onlaps, reflecting the eustatic sea-level
fluctuations. Timelines corresponding to initiation and cessation of activity of the underlying
detachment fault are highlighted in red (Figure 4.8). In experiment 1, activity of the detachment
fault isdifficult to read from the stratigraphic pattern, because the eustatic signature dominates the
stratigraphy. However, minor decreases in thickness of syn-tectonic eustatic-controlled cycles are
recognisabl e together with enhanced progradation of coarsening-up clinoforms, implying reduction
of the accommodation space on the thrust-sheet top basin. During the second phase of detachment
activity, the clinoform break progrades within 0.5 Myr towards a fina position above the strike-
dlip fault to the adjacent marine basin.

In experiment 2, the syn-tectonic strata clearly account for the decrease in general thickness. The
eustatic cycles are thinner and the sea-level falls are characterised by increase of the sand content
and high interconnectedness of the sandy delta-top layers at the expense of the fine-grained marine
intervals. However, they are partly separated by thin marine carbonate onlaps, indicating acontinuous
marine influence into the delta-plain of the thrust-sheet top basin (~ 20 km) during syn-tectonic,
eustatic sea-level highs. This type of response is comparable to the observations in parts of the
Montanyana Group, where sheet sandstones are well developed but interleaved by thin marine
intervals (Marzo et al., 1988). The syn-tectonic timelines merge locally in the sandy intervals, due
to erosion and incised-valley formation. Theincisionisdeveloped at the transition from detachment
quiescence to activity, marked by a Type-1 unconformity, developed during the first syn-tectonic,
eustatic sea-level low.

Incisions are better developed in experiment 3, where timelines bend down in the basin centre,
implying that the basin axis positionisrepeatedly used for incision, in particular during syn-tectonic
intervals, were timelines merge. No carbonate onlaps are recognisable within the syn-tectonic
sequences, implying that the deltaplain is not influenced by sea-level highstands, only by the sea-
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level fall-induced incisions. Note that at the end configuration of experiments 3 and 4 the complete
thrust-sheet top basinis on average some 50 m above baselevel, dueto the last phase of detachment-
induced uplift.

4.3.4 The delta-slope stratigraphy in the adjacent basin

Figure 4.9 shows the three-dimensional relationship between the incised valley fill systems of the
thrust-sheet top basin (experiment 3) and the corresponding delta slope deposits in the adjacent
basin. Two incised systems, alower and an upper one, are represented as a string of voxels. Both
are formed during phases of detachment fault activity. The lower fill (0.2-0.5 Myr) consists of two
to three obliquely stacked channel belts, an amount that corresponds to the number of eustatic sea-
level fallsduring thefirst syn-tectonic phase. The upper incised valley fill (1.0-1.5Myr) also consists
of multiple channel belts, but these are stacked vertically and only split in the downstream direction
where they crosscut the cross-section. With respect to the lower valley fill, the upper one has been
shifted to the left over adistance of 10 km. Vertical channel stacking and the shift areindicative of
theaxial river being locked in the thrust-sheet top basin axis during the second phase of detachment
fault activity (see also figure 4.6 for the channel shift). Both valley fills are connected over the
lateral ramp of the thrust-sheet top basin to a coarsening-up deltalobe, deposited in the deep-water
sub-basin. Inthisbasin, the successive phases of detachment activity and quiescence arerecognisable
as lobate bodies characterised by high sedimentation rate (> 0.5 m/kyr, Figure 4.9b) separated by a
condensed section of closely stacked timelines (0.5-1.0 Myr, Figure 4.9b).

4.3.5 Correlation of mass-flow events to the eustatic signal

A synthetic well (Figure 4.10) through the deep marine basin fill illustrates the relation between
mass-flow events and eustatic sea-level fluctuations. Thewell iscomplemented by agraph showing
the eustatic sea level at the time of deposition of each individual layer. As a result the derived
eustatic curve is not symmetrical, but stretched or compressed by differences in the sedimentation
rate of the deposited stratigraphy. Asin the fence diagram (Figure 4.9), the bulk of the deep-marine
sedimentation in the well is synchronous with the phases of detachment activity, separated by a
condensed section corresponding to detachment quiescence. The first interval (=575 to —450 m)
represents a coarsening-up section through the lowermost deep-water deltalobe, topped by one of
the axial channel lags and two carbonate-rich beds, indicating the transition from forced regression
by detachment activity to transgression during detachment quiescence. In the second stratigraphic
interval (-450 to —100 m) there isacorrelation between the presence of mass-flow sand bedsin the
well and rises of the eustatic sealevel.
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Figure 4.9 Lithological fence diagram of experiment 3 showing the connection between the thrust-sheet top
basin and the deep-water sub basin. Two incised valley fills, corresponding to the phases of detachment
activity, pass over the lateral ramp into deep-water delta lobes. These |obes are dominated by mass-flow
beds and high sedimentation rates (~0.5 nvkyr), and are deposited during intervals of detachment activity. A
condensed section represents the quiescence phase of the detachment fault (0.5-1.0 Myr).
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Figure 4.10 Synthetic well taken from the deep marine sub-basin, showing two intervals of syn-tectonic
sedimentation, separated by the condensed section. Comparison of the well to the eustatic curve indicates
that the timing of mass-flow deposition corresponds to syn-tectonic eustatic rise in the well top. Note that the
curve is not symmetrical. Thisis due to the construction method of strata-specific age substitution into the
eustatic-forcing curve (Figure 4.5).

4.4 Discussion

4.4.1 Fluvial patterns

Itisclear from the above experimentsthat thefluvial drainagein thrust-sheet top basinsisinfluenced
by the angle and activity pattern of the detachment fault. During quiescence therise of relative sea
level due to regional flexural subsidence results in rapid backfilling, relocating fluvial channels
and the formation of asingle deltacone. During translation aong the detachment, accommodation
space is reduced, the fluvial system progrades and the clinoform break becomes a line source of
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small deltas fed through a row of small, incised valleys. Alternatively, at a steeper detachment
angleand faster fall of relative sealevel (Figure4.5and 4.7) asingledeltaisformed at the clinoform
break fed by a magjor incised valley system, which is locked between basin-margin alluvia fan
profiles (Figure 4.7 and 4.8).

The syn-tectonic aluvia fan and longitudinal river progradation observed in the model, has an
implication for the simplistic ‘two-phase’ concept of foreland basin fluvial patterns (Heller et al.,
1988). In this concept longitudina flow close to the thrust front is associated with syn-tectonic
subsidence, while dominance of transversal flow is indicative for quiescence or isostatic rebound
by erosional unloading. In a foreland basin underlain by active hinterland-dipping detachments,
transversal and longitudinal progradation of alluvial systems is rather due to a reduction of
accommodation space along a considerable length of the foreland basin by trandation over the
detachment fault, instead of isostatic rebound.

4.4.2 Sratigraphy

The accommodation space in the modelled thrust-sheet top basin is sensitive to small increasesin
the detachment angle. The basin-scal e stratigraphi ¢ stacking patternisthusafunction of the balance
between regional flexural subsidence and thrust sheet displacement-induced uplift. Displacement
results in sand-sheet amalgamation, unconformities or even incised valleys, the intensity of the
response depending on the steepness of the angle of the detachment fault. This sedimentary response
of detachment activity phases, punctuates the overall basin subsidence and fine-grained
sedimentation, just as observed in the Montanyana Group (Figure 4.3).

A well-studied but controversial section of the Montanyana Group is the Castissent Formation or
megasequence (Figure 4.3). Characterised by amalgamating sheet sandstones and pronounced
progradation into the lower deltaic plain and the Ainsa Basin it has been interpreted as an incised
valley-fill sequence(Marzoet al., 1988), related to the Ypresian sea-level fall at 51.3 Myr. However,
severa characteristics of the Castissent Formation do not validate this interpretation. Improved
dating constraints on existing correl ations set the base of the formation at 51.7 Myr instead of 51.3
Myr (Nijman, 1998). There is no clear Type-1 unconformity at the base but a marine onlap that
correlates with thrust-flank unconformities. The average sedimentation rate is only reduced, and
not very different with respect to the underlying megasequence. Moreover, the individual sheet
sandstones are sandwi ched between widespread brackish-marine onlaps (Marzo et al., 1988; Nijman,
1998), indicating a continuous marineinfluence throughout deposition. Theseinconsistencieswithin
the incised valley interpretation were recognised earlier and the formation was interpreted as
highstand progradation in response to a previous phase tectonic loading and subsidence (Nijman,
1998). Considering the model results, the Castissent Formation more likely represents a phase of
displacement-induced reduction of accommodation space, resulting in forced regression and an
increased i nterconnectedness of sandstones at the cost of fine-grained interval's, but without excluding
marine influence.
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Other basins controlled by the same mechanism ?

Paleomagnetic work in the late Cretaceous to Eocene Axhandle Piggyback Basin (Central Utah)
indicates that sedimentation rates alternated between times of rapid (0.05 - 0.25m/kyr) and low (<
0.02 m/kyr) accumulation, while also periods of non-deposition or even incision occurred (Talling
et al., 1995). Lawton and Robinson (Lawton, 2003) identify two longitudinal fluvial systems
supported by a detachment ramp and also characterised by ahigh net to gross aspect. These arethe
Santonian Straight Cliffs Formation in Southern Utah and the Mid-Late Campanian Price River
Formation, which were both deposited during rapid advance of the thrust front. More extreme end
members of the mechanism are probably found in the Plio-Pleistocene thrust-sheet depozones of
the western Taiwan foreland basin, where accommodation space was not only reduced by tectonic
trandation, but even actively destroyed. Here, deposits are punctuated by phases of deep incised
valley formation and creation of basin-wide unconformities every 200-700 kyr, which do not
correspond to fallsin eustatic sealevel (Chen et al., 2001).

4.4.3 Temporal sediment storage on thrust-sheet top basins

In segmented foreland basins, the timing of accumulation on the thrust-top basin and bypass to
adjacent marine basins (Multti, 1985; Ricci-Lucchi, 1986; Pickering et al., 1995) is much debated
Inthemodel experiments, bypass of the thrust-sheet top depozone occurs during detachment activity
and isrecognised by increased sedimentation in the deep-water subbasin (Figure 4.9). Thisbehaviour
of the model is conform the interpretation for tectonic-controlled sediment patitioning between the
Tremp and Ainsabasins according to Mutti (1985). He concluded, based on correl ation of sequence
boundaries between both basins, that the Ainsa turbidite lobes are synchronous with phases of
activity along the Tremp-Ainsa lateral ramp (Figure 4.2). The deep-water sediment geometries
calculated by themodel areastarting point for modelling thisfamousfield-analoguefor tectonically-
influenced deep-water turbidite lobes. Adjustments need to be made in the model in order to
incorporate the syn-sedimentary, blind thrusts which influence the orientation of the lobesand their
stacking pattern.

The superimposed eustatic fluctuation in the model experiment leads to repetitive deposition of
mass-flow beds. The timing corresponds to phases of syn-tectonic eustatic rise. This behaviour is
easily explained. The collapse routine is only active at water depths over 15 m. During a phase of
eustatic sea-level fall, an oversteepened deltafront is created above thisthreshold depth. It becomes
subject to drowning and collapses only during the subsequent eustatic rise. Obviously, changing
the value of the water depth threshold or applying another, more sophisticated triggering threshold
will lead to a change in timing of the mass flow events.

Despite the syn-tectonic spilling of sediment into the adjacent basin, the supply isinsufficient to
fill this continuously subsiding basin in experiments 1, 2 and 3. In experiment 4 the regional
subsidencerateisreduced from 0.32 ~ 0.18 m/kyr by doubling the effective el astic thickness of the
lithosphere. The resulting thrust-sheet top stratigraphy resembles that of experiment 3, showing
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pronounced incisions, syn-tectonic sheet sandstones. Except that now a more complete delta
stratigraphy is developed in the subbasin.

4.5 Conclusion

Model results show that the competition between rates of regional flexural subsidence, and local
detachment-induced uplift controlsthe accommodati on space evol ution and the stratigraphi c patterns
in amarine-influenced thrust-sheet top basin. During activation of the detachment fault, the fluvio-
deltaic system carried by the thrust sheet progrades and part of the sediment supply is spilled over
into adjacent basins. The intensity of the progradation, the interconnectedness of fluvial sheet
sandstones and the sensitivity to the formation of incised valleys increase with the angle of the
detachment fault. The mechanism explains the Castissent Formation as a phase of reduced
accommaodation space by trandlation over the detachment, instead of anincised valley fill sequence
formed by eustatic sea-level fall. During quiescence of the detachment fault, the flexural subsidence
becomes the predominant component in the accommodation space balance above the thrust-sheet
top basin. Sediment is temporally stored on the thrust-sheet as the deltaic system retreats, while
leaving the adjacent deep-water basin starved.
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5.1 Triangular irregular network

Surface process models are widely used in geomorphology and geology, and the developmentsin
the field follow each other rapidly. Much of the progress consists of the improvement of existing
models, such as the addition of new surface processes (Densmore et al., 1998), new sediment
transport algorithms (Gasparini et al., 1999), the recording of stratigraphy (Johnson and Beaumont,
1995) or complex scenarios such as stochastic rainfall (Tucker, 2000; Karssenberg, 2002).
Alternatively, effort is put in changing the backbone of the surface process model by changing the
gpatial discretization of the model landscape and the method by which water and sediment are
routed downward over the surface. This resulted in a new generation of models based on a self-
adapting irregular triangular network (TIN) instead of the commonly used static rectangular grid.
Two notable exampl es applicabl e on the geol ogic timescale are CASCADE (Braun and Sambridge,
1997) and CHILD (Tucker et al., 2002). In these models the nodes representing the landscape
surface are connected to each other using Delauney triangulation (Fortune, 1995) (Figure 5.1).
Delauney triangulation itself isnot anew technique; it isapplied in modelling of solid objects, fault
surfaces and drainage basins. However, al these applications apply triangulation in arather static
way, in a sense that the object of interest is discretisised only once or a limited number of times
during a simulation. Thisis not the case in the two surface process models referred to here. They
constantly update their landscape representation over geologic time by active remeshing. The
triangulated |andscape representation and the remeshing technique have several advantages above
the‘classical’ rectangular grid (Braun and Sambridge, 1997):

1) Reduction of the artificial symmetry in stream networks

2) Easy discretisation of complex geometries
3) Handling horizontal tranglation
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Figure 5.1 lllustration of the TIN
framework used in the CHILD model.
Indicated are the steepest descent flow
routing over the nodes and the Voronoi
areas represented by the nodes.

—3P» Flow lines

O Voronoi cell

5.1.1 Reduction of artificial symmetry in stream networks

A routing scheme for water and sediment on a rectangular grid always involves 8 potential flow
directions. Consequently, inter-node drainage paths make angles of 45 degrees, which is of course
not realistic considering natural drainage situations. Commonly modelled drainage networks suffer
from this geometrical bias, dictated by the rectangular grid, by showing an artificial symmetry in
their organization. This does not affect models using a self-adapting triangular mesh, because their
nodes have no fixed positions and nodes can be added anywhere during a simulation. The number
of drainage directionsisunlimited dueto the ability of themodel to ‘remesh’ by adding, deleting or
re-locating individual nodes in between surface process timesteps.

5.1.2 Representation of complex geometries

Theflexibility to add nodes at any position facilitates an improved representation of complex surface
geometries by locally using a higher density of nodes. Thisis memory efficient in contrast to the
classic rectangular grid models were resolution improvement is only achieved by increasing the
number of nodes over the entire surface. In the TIN models a ssimple flat surface is adequately
represented with afew widely-spaced nodes, whereas a more complex geometry such asadendritic
drainage network or afault front is represented by a higher density of nodes.

5.1.3 Horizontal trandation

An important advantage of moving nodes and remeshing is the capability to model complex
geological problemsthat demand ahigh degree of geometrical flexibility, such ashorizontal tectonic
transport (thrusting and strike-dlip) and river meandering. One of the first examples of thrusting
simulated by aTIN based model is given by van der Beek et al. (2002) . In this study the drainage
development in response to active fault-propagation folding and variable detachment dip in the
Himalayan foreland is addressed using CASCADE (Braun and Sambridge, 1997).
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5.2 Channel Hilldope Integrated L andscape Development model, CHILD

Fascinated by these capabilities of the new meshing technique | visited Dr. Greg Tucker’s group at
MIT in the autumn of 1999 in order to work with their recently developed CHILD model (seethe
CHILD website: http://platte.mit.edu/~child/). CHILD (Channel Hillslope Integrated Landscape
Development) is a unique triangular mesh-based surface process model, due to its modular design
and the range of geomorphic processes that can be modelled (Tucker et al., 2002). It addresses
drainage basin evolution at different spatial scales, incorporates groundwater flow, transports and
sorts multiple grainsize fractions, performs meandering and is capable of accumulating stratigraphy.
Initially | intended to use CHILD as a basis for modelling foreland basins, but unfortunately this
turned out to be practically impossible due to the complexity of CHILD and the long computer run-
time involved for long geological scenarios. Part of the functions demonstrated in this thesis such
asthrusting, 3D flexure and perfect sorting are already coded into CHILD, but wait on a computer
potent enough to allow for geological timescale sensitivity analysis. It isto be expected that due to
the steady increasein available computer power, TIN-based modelswill becomethe future standard
for geologic time-scale modelling presented in this thesis. In order to illustrate the versatility and
potential of CHILD, three examples of stratigraphic modelling using CHILD are shown at different
temporal and spatial scales: 1) Alluvia Fans, 2) River Meandering, and 3) Basin Fill.

5.2.1 Alluvial fans

The aluvial fans modelled with CHILD (Figure 5.2) differ in three aspects from the fans shown in
previous chapters. They are based on theirregular triangular mesh, use solely steepest descent flow
paths on the aluvial fan surfaces (no bifurcation flow) and size-sel ective sediment transport along
these stream pathsis performed using a shear stress-based technique (Wilcock, 1998; Gasparini et
al., 1999). Withinthe simulation afault block isuplifted at a steady rate, eroded by bedrock incision
and the debris is deposited as aluvia fan cones. The exhumed bedrock is instructed to produce
sediment with a composition of 50 % gravel (> 2mm) and 50 % sand (< 2mm). The sediment
fractions are transported downstream according to individual transport rates of the two grainsizes

C f r 15 T 4.5
— w g crit_gravel
qgravel - (S _ 1) g (;J |:1 _f (51)
—45
C f T L Tarit_sand
q y = w s - 1- -
= (s-1)glp r (5.2)
where Oyrave and g_, , are the transport rates of gravel and sand (kg/ms), C,, a constant, fg andf_are

the fractions gravel and sand in the stratigraphic toplayer, T the bed shear stress, p the density of
water and T, ..o Toi ena the Critical entrainment shear stresses for gravel and sand. The sorting

method is computationally very demanding because it requires very small timesteps (~1 yr) in
order to maintain numerical stability. Therefore the simulation presented and the corresponding
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Figure5.2 (a) Perspective view of TIN-based alluvial fans. Material for the aggradation of the fansis supplied
by a set of switching feeder channels. The surface of the fans is coloured according to the fraction of gravel in
the top layer of the stratigraphy. (b) Sratigraphic fence diagram trough the alluvial fans after 0.6 Myr of
aggradation. Timelines (black) represent 0.1 Myr each. Gradual progradation of the coarse gravel isthe result
of constant hangingwall uplift and erosion and steepening of the fan profile.

fence-diagram only represents atimespan of 60 kyrs. Thefence diagram showsagradual progradation
of the coarse gravel fraction deposited by the alluvial fans as the result of steady uplift of the
hangingwall block, subsequent erosion and steepening of the fan profile. Baselevel is kept at a
constant level at al grid boundariesbounding thealuvial plain. TIN-based remeshing isnot exploited
in this example, but could be used to differentiate between floodplain and alluvial fan, or to study
whether fan avulsion frequency is affected by differences in feeder stream and inactive fan cone
resolution.

5.2.2 River meandering

Themain processresponsiblefor the morphology of ameandering river isgradual channel migration
by erosion of the outer banks and deposition in the inner part of the channel loops (Allen, 1965).
Thisprocessisappropriately s mulated using the remeshing technique present in CHILD (Lancaster,
1998). For example, nodes representing the main thalweg channel are shifted gradually to shape
meander bends, and obstructing outer bank nodes are del eted while additional nodes are created to
form point bars. The rate at which the main channel is allowed to migrate (R ) is defined by

migration
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the rate of bank erosion as function of the bank shear stress (Ikeda et al., 1981; Odgaard, 1986;
Lancaster, 1998):

Rigraion = EZ,N (5.3)
where E isthe bank erodability coefficient, T the bank shear stressand 3 the unit vector perpendicular
to the downstream direction. Besides active channel meandering, CHILD simulates a second process
characteristic for thefluvial system, i.e. floodplain deposition (equation 5.4). The modelling method
applied for floodplain deposition is geometrical and based on the observation that floodplain
sedimentation rate decreases exponentially with distance from the main channel (Mackey and Bridge,
1995; Howard, 1996).

= (Hue ~Hy)Ruw 00(~9/) (5.4)
The change in elevation of a single floodplain node is a function of the difference in elevation
between the floodplain node (pr) and the bankful channel height (H,, ), its distance to the main
channel (d), amaximum sedimentation rate at the levees close to the channel (R ), and the decay
distance (A) at which the sedimentation rate decreases to zero.
Figure 5.3 showsthe evolution of ameandering river, encased in anarrow valley, during aperiod of
5000 yrs. The river is subjected to a general trend of baselevel rise, interrupted by two phases of
baselevel lowering, thefirst at t=2000 yrs and the second at t=4000 yrs. During the simulation the
baselevel riseisresponded by aluviation of thevalley by the combined effect of channel aggradation
and floodplain deposition. Such phase of alluviation is associated with unrestricted meandering of
the channel in the valley. An encounter of the channel with avalley wall resultsin carving out the
meander bends and widening of the valley. During events of baselevel fall theriver straightens by
incision into itsown floodplain. The resulting stratigraphy at the end of the smulationisillustrated
infigure 5.4. The stratigraphy is visible through the transparent floodplain surface as three parallel
sections, coloured according to the deposition age of the sediment. The oldest sediment occupies
themargins of thefloodplain asterraces (blue), whilevalley centreisdominated by younger sediment
positioned upon older channel 1ags (red).

5.2.3 Basin fill

The last example of a modelled stratigraphy is of relatively large temporal and spatial scale for a
CHILD smulation (10 x 10 km, 40 x 40 nodes, smulationtime~ 2.0 Myr, Figure5.5). Themodel led
setting consists of a depositional basin confined by two uplifting fault blocks. The fault blocks are
eroded and deliver two grainsize fractions to the small inter-montane basin. During the steepest
descent routing of the sediment into the basin the sediment carried by the flow is sorted using the
two-fraction model of Wilcock (1998). An extrasediment sourceis entering the basin in the form of
an axia flowingriver, whichisinstructed to spread fine-grained floodplain sediments (blue). Initialy
the river occupies the centre of the intermontane basin, but its position gradually shifts by the
progradation of the right-hand side alluvial fans (Figure 5.5).

109



Chapter 5

/

VA
N AN,
{

T = 4000 yr

o))
c
=
)
2
o

T_
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Figure 5.4 TIN representation the floodplain occupied by the meandering channel. The TIN is made transparent
inorder to visualizethree stratigraphic sections of the floodpl ain subsurface. The sectionsare coloured according

to the depositional age of the strata, showing older sediment at the sides of the valley as fluvial terraces, and

younger strata occupying the valley centre.
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Figure 5.5 (a) Surface TIN showing the uplifted fault blocks and the axial river in the inter-montane basin. (b)

Fence diagram through the inter-montane basin fill accumulated after 2.0 Myr. It shows the progradation of
the alluvial fan gravels (red) and the gradual shift of the axial floodplain sediments (blue).

5.3 Conclusions

The above model examples demonstrate that it is possible to ssimulate alluvial fans, a meandering
river and a small basin including their 3D stratigraphy using the TIN-based CHILD software. At
present, evaluation of the effect of multiple variables or model development at geologic time scales
(> 0.5 Myr) is limited by the capacity of today’s computers. It is to be expected, that due to the
steady increase in available computer speed and memory, and the advantages TINs havein solving

geological problems, this discretisation method will be the standard for stratigraphic ssimulationin
5to 10 yearstime.
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Conclusions

In thisthesisatectono-sedimentary forward model has been presented, devised to simulate sediment
erosion and deposition in a coupled drainage basin - foreland system, as well as accumulating a
three-dimensional stratigraphy.

Theam of theresearch wasto investigate which featuresrecorded in the foreland basin architecture
are diagnostic of the balance and interplay between two main external forcings: repeated tectonic
activity and eustatic sea-level variation.

Special attention has been paid to differences in stacking patterns of the depositional systems and
the character of the sequence-bounding unconformities. Throughout the chapters of thisthesis, the
complexity of thetectono-sedimentary foreland configuration was stepwiseincreased, fromalinear
thrust front to a segmented foreland containing a thrust-sheet top basin, while the intensity and
frequency of tectonic activity and sea-level variation remained similar. The general conclusions
resulting from the numerical ssmulationsin this thesis are presented in this chapter.

6.1 Drainage basins

The aspect ratios of modelled drainage basins on an actively deforming fault—bend fold and the
consequent spacing between alluvial fans approximate those of natural basinsaong linear mountain
fronts. Thisresemblanceistheresult of the steepest-descent cellular routing scheme that dominates
the catchments during active erosion and which leads to convergent drainage patterns. The
experiments described in Chapter 2 also indicate that this spacing is not just a static characteristic,
but is influenced by change of the tectonic displacement rate and to a lesser degree by bedrock
erodability.

Higher erodability of the bedrock substratum resultsin amore rapid and el aborate sideways drainage
network development, and increased synchronization of the catchments yield curves during the
interval of tectonic activity (Figures 2.6 and 2.12). Directly after cessation of tectonic activity,
catchments with higher erodability are more mature and closely spaced. During subsequent
guiescence, drainage basins strive to a comparable configuration (Figure 2.6).
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Tectonic displacement rate is the more important factor influencing the spacing. Rapid
propagation of the thrust-tip onto the foreland leads to ponding of hinterland drainage and results
in larger fan spacing (Figure 2.7).

6.2 Alluvial fans

The sediment yield generated by fluvial bedrock erosion in the drainage basins has the typically
asymmetrical shape of aresponse curve (Figures 2.12 and 3.6). Yield gradually increases during
tectonic activity, and declines exponentially during tectonic quiescence. Syn-tectonic yields are
increasing, but they are not sufficient to completely fill the accommodation space created in the
adjacent foreland basin dueto flexural response upon active tectonic thrust loading. Asaresult and
counter-intuitively, deposition of aluvial fan gravelsin the foreland basin retreats during tectonic
activity, whereas progradation is characteristic of phases of tectonic quiescence and reduced flexural
subsidence. A history of pulsating tectonic activity is reflected in the alluvia architecture of the
basin as a succession of coarsening-up, prograding gravel sheets that laterally connect during
quiescence, and alternate with basin-wide onlap of fine-grained sediments marking renewed tectonic
activity (Figures 2.11 and 3.10).

6.3 Axial fluvio-deltaic system

Alternating phases of tectonic activity and resulting variationsin accommodation space arereflected
in the sequences deposited by axial fluvio-deltaic systemsin theforeland basin model (Figure 3.9).
Here, progradation is also characteristic of tectonic quiescence with the difference that the
progradation of the axial system upon reduction of accommodation space isafactor 10 faster than
that of the alluvial fans. Asaconsequence, the axial system first occupiesthe zone around the basin
margin fans during transition from activity to quiescence, followed by a delayed progradation and
offlap of the aluvial fans over the axia-fluvial sediments (Figures 3.10 and 3.11)

During renewed tectonic activity (and subsidence) the basin is rapidly flooded within afew kyrs.
Thetransgression encroachesthealluvia plaininthearea, closeto thethrust front, now characterized
by maximal flexural subsidence. Therefore, the best time marker for the onset of tectonic activity is
the fine-grained, marine onlap found here. The retreating syn-tectonic axial system takes the form
of aconical delta surface constructed by bifurcating channel belts that swiftly relocate in response
totheriseinrelative sealevel (Figure 3.7).

Themodel experimentsof Chapter 3 show that there are two contrasting types of sequence boundaries
developed in the alluvia stratigraphy when an eustatic sea-level variation is superposed upon the
aternation of tectonic activity and subsidence (Figures 3.9, 3.10 and 3.11).

A) During intervalsof tectonic activity, eustatic fall and rise of sealevel form prograding, shallowing-
up sequences, which are bounded by Type-2 unconformities and subsequent flooding surfaces. The
syn-tectonic, high flexural subsidence rates prohibit the sealevel to drop below the delta break in
slope, safeguarding the stratigraphy from severe incision.
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B) During intervals of tectonic quiescence, Type-1 unconformities are formed, because eustatic
fallsnow drop below the delta break in slope, asthey are no longer compensated by the subsidence
component in relative sea level. Because multiple eustatic sea-level cycles may occur during a
guiescence interval, the resulting Type-1 unconformity at the base of the delta-top sheet sandstone
can be a composite and therefore poor time marker.

The suites of amalgamating, axial channel belts that characterise this delta top sheet sandstone
have a preference for the depression between the basin-margin alluvial fans and the conical delta
surface that was formed during a previous tectonic phase (Figure 3.12).

Similar suites of amalgamating axial channel belts are created when the foreland basin is detached
from its substratum by a hinterland-dipping sole thrust and transformed into a thrust-sheet top
basin (Figures 4.5 and 4.6). In contrast to channel belts in the asymmetrical foreland basin of
Chapter 3, the beltsin this configuration show no clear preference for alocation close to the thrust-
fault front. Thisis because the trangdlation of the basin over the detachment fault causes equal uplift
along the entire width of the basin. The experiments show that displacement over low-angle faults
(2~6°) with moderaterates (~ 5.0 m/kyr) resultsin avertica uplift component sufficient to counteract
the background flexural subsidence rate. Consequently, the evolution of accommodation space and
therefore the basin architecture are extremely sensitive to the dip angle of the detachment fault. The
interconnectedness of the channel belts, therate of the tectonically forced regression, the sensitivity
toincised valley formation and bypass of sediment to adjacent basins increases with the dip angle
of the detachment fault. In the light of these model results the Eocene Castissent Formation in the
Pyrenean Tremp Basin, previously interpreted as a classical incised valley system (Marzo et al.,
1988) or highstand sequence (Nijman, 1998), is explained as a phase of moderate tectonic reduction
of the accommodation space. This mechanism explains the continuous marine influence on the
delta plain smultaneous with a forced regression and increased sandstone interconnectedness at
the cost of fine-grained intervals.
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Samenvatting

Gebergteketens ontstaan als gevolg van plaattektoniek. Delen van de aardkorst botsen tegen elkaar
of schuiven onder elkaar waardoor gebergtes als grootschalige kreukelzones worden gevormd.
Gebergteketens worden omringd door depressies in de aardkorst, zogenaamde voorlandbekkens.
Deze voorlandbekkens ontstaan tegelijk met de gebergteketen door het doorbuigen van de aardkorst
onder het gewicht van het zich vormende gebergte. Voorbeelden van voorlandbekkens zijn het
zuid-Duitse Mol asse Bekken geassocieerd met deAlpen, het Ebro Bekken alsgevolg van het ontstaan
van de Pyreneeén, de Po Vlakte behorende tot de A pennijnen en het Indo-Ganges Bekken gerelateerd
aan de Himalaya.

Voorlandbekkens zijn asymmetrisch in doorsnede en worden gevuld met afbraakmateriaal van het
gebergte. Dit afbraakmateriaal (sediment) wordt doorgaans aangevoerd door fluviatiele puinwaaiers
en door parallel aan het gebergte lopende riviersystemen. De hoeveelheid en de korrelgrootte van
het sediment worden beinvloed door de opheffingsgeschiedenisvan het gebergte, de erodeerbaarheid
van het gesteente en het klimaat.

Deze factoren en ook de daling van het voorlandbekken, sturen de afzetting van dit sediment in het
voorland bekken. Verschillen tussen en veranderingen van deze factoren maken dat de aard en de
ruimtelijke verdeling van de sedimentlagen en de korrelgroottes voor ieder bekken andersis. Een
fase van actieve gebergtevorming en daarmee belasting van de aardkorst leidt tot een toename van
de bodemdaling in het bekken en daarmee tot een toename van de ruimte waarin sediment kan
worden opgesl agen, de accommodatie ruimte. | ndien het voorlandbekken grenst aan een zee, wordt
de ruimte om sediment op te slaan mede bepaald door veranderingen van de zeespiegel. De
opeenstapeling van sedimentlagen in het voorlandbekken is dus een af spiegeling van de verhouding
tussen en interactie van de factoren tektoniek in de vorm van groei van het gebergte en daling van
de bekkenbodem en zeespi egel bewegingen.

Een klassieke benadering binnen de geologie is om op basis van de geometrie van fossiele
sedimentaire afzettingen in voorlandbekkens te herleiden wat de relatieve invlioed van ieder van
deze factoren is geweest. Aldus wordt de geschiedenis van gebergtevorming gereconstrueerd en
worden conceptuele (denk)modellen ontwikkeld. De moeilijkheid is dat de sedimentlagen niet
volledig in drie dimensies kunnen worden bestudeerd en dat de geoloog conclusies moet baseren
op boringen (1D), seismiek (2D) en/of veldstudies (2.5D). Verder is vaak niet duidelijk of de
waargenomen geometrieén het unieke resultaat zijn van één dominante factor of van een combinatie
van factoren. De verhoudingen en snelheden van de factoren, en processen die tot de sediment
geometrieén hebben geleid, zijn moeilijk te kwantificeren op basis van enkel een geologische
reconstructie.
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Samenvating

In dit proefschrift wordt een computermodel gepresenteerd waarin de genoemde factoren en de
daaraan gerelateerde processen experimenteel kunnen worden gevarieerd. In het model wordt het
complexe samenspel van tektoniek, zeespiegelbewegingen en sediment transport, dat zich in
werkelijkheid voltrekt op eentijdschaal van miljoenen jaren, gessimuleerd in enkele dagen tot weken.
Dit wordt gedaan in vel e duizenden rekenstappen. De morfol ogi sche ontwikkeling van het gebergte,
rivier patronen en de driedimensionale architectuur van de sedimentlagen in het voorlandbekken
kunnen worden gevisualiseerd, gekwantificeerd en vergeleken met natuurlijke voorlandbekkens.
Zodoendewordt een interactief en dynamisch beeld gegeven van de evol utie van een voorlandbekken
systeem. Vel dconcepten kunnen daarmee worden getest en aangescherpt. Met het model kunnen de
driedimensionale verdeling en de volumesvan grofkorrelige sedimentlichamen voor uiteenlopende
geologische scenario’s worden voorspeld. Grofkorrelige lichamen zijn van economisch belang
vanwege hun functie als reservoir voor olie, gas en water.

Het doel van dit onderzoek is het bepalen van kenmerkende patronen in de ontwikkeling van
puinwaaiers, riviergordels en de driedimensionale architectuur van de sedimentaire vulling van
voorlandbekkens. In hoeverre zijn dergelijke patronen diagnostisch voor de onderlinge verhouding
van de factoren pul serende tektonische activiteit en zeespiegel beweging?

Drainage bekkens (Hoofdstuk 2)

De gemodelleerde lengte-breedte verhoudingen van drai nage bekkensin een actief, omhoog komend
gebergte en de resulterende spatiéring van fluviatiele puinwaaiersin het voorlandbekken zijn goed
vergelijkbaar met diein echtelineaire gebergte ketens. Het cellulaire, steil ste-pad-transport algoritme,
dat in het model dominant actief is tijdens erosie in de drainage bekkens, geeft dus een goede
representatie van dewerkelijkheid. De experimenten |laten zien dat deze spatiéring niet een statische
eigenschap van drainage bekkensis, maar wordt beinvioed door veranderingen in de snelheid van
tektonische verplaatsing en in mindere mate door de erodeerbaarheid van het gebergte. Een grotere
erodeerbaarheid resulteert in een snellere en bredere vertakking van de zich ontwikkelende drainage
netwerken en in een toenemende synchronisatie van tektonische activiteit en sediment productie.

Gedurende tektonische rust worden drainage bekkens in gemakkelijk te eroderen gebergtes
geometrisch snel volwassen en zijn ze dicht gespatieerd. Drainage bekkens die ontstaan in moeilijker
te eroderen gebergtes bereiken veel later een vergelijkbare configuratie.

De tektonische verplaatsingssnelheid van het overschuivingsfront is belangrijker voor de
ontwikkeling van het drainage gebied en voor de spatiéring van de individuele drainage bekkens
dan de erosiegevoeligheid.

Een snelle propagatie van het overschuivingsfront over het voorlandbekken leidt tot een omkering
van de gradient in de zone direct achter de breuk. Daardoor worden kleine drainage netwerken aan
het front gehinderd in hun ontwikkeling en de spatiéring van puinwaaiers in het voorlandbekken
groter.

128



Summary in Dutch

Fluviatiele puinwaaiers (Hoofdstuk 2 en 3)

Uitgezet tegen detijd laten de sediment volumes geproduceerd in de drainagebekkens een typisch
asymmetrische ‘respons curve’ zien. De volumes nemen asymptotisch toe tijdens fases van
tektonische activiteit en exponentieel af tijdens tektonische rust. Volumes geproduceerd tijdens
tektonische activiteit nemen weliswaar toe, maar zijn onvol doende om de sediment-accommodatie
ruimte gecreéerd door flexurele bodemdaling te compenseren. Geheel tegen de verwachting trekken
daarom grofkorrelige puinwaaier afzettingen in voorlandbekkens zich terug tijdens fases van
tektonische activiteit. Progradatie is daarentegen karakteristiek voor fases van tektonische rust en
daarmee samenhangend afnemende flexurele bodemdaling.

Doorgaande pul serende tektoni sche activiteit wordt in sedimentaire sequentiesin voorlandbekkens
gekenmerkt door verticaal grover wordende en prograderende gravel eenheden. Deze maken
zZijdelings contact waar ze synchroon zijn met fases van tektonische rust. In de verticale sequentie
worden de distale delen gescheiden door fijnkorrelige afzettingen die fases van hernieuwde
tektonische activiteit markeren.

Het axialerivier systeem (Hoofdstuk 3)
Afwisselingen van tektonische activiteit en fases van rust en deresulterende variatiesin de toename
van sediment-accommodatie ruimte zijn herkenbaar in de af zettingen van het axialerivier systeem
in het model. Progradatie van het rivier/delta systeem kenmerkt fases van tektonische rust. De
progradatie snelheid van dit systeem tijdens tektonische rust is een factor 10 groter dan die van de
puinwaaiers. Gedurende een overgang van tektonische activiteit naar rust wordt daarom de zone
rondom de puinwaaiers eerst bezet door het axiale rivier systeem. De af zettingen daarvan worden
vervolgens afgedekt door de trager prograderende puinwaaiers.
Gedurende fases van hernieuwde tektonische activiteit en bodemdaling ondervindt het
voorlandbekken een mariene transgressie die in enkele duizenden jaren plaats vindt. De zee komt
het eerst binnen in de zone vlak voor de puinwaaiers, waar de bodemdaling het grootst is. Een
dergelijke tektonische reactivatie kan dus het best worden gedateerd op basis van de bijbehorende
mariene fijnkorrelige af zettingen die de puinwaaiers afdekken.
Het axialerivier systeem trekt zich terug onder invlioed van de transgressie en neemt de vorm aan
van een delta met een patroon van actief splitsende en lateraal verplaatsende riviergordels. Het
verwilderde gedrag van de riviergordels is een reactie op de stijging van de relatieve zeespiegel.
Het sediment kan aldus efficiént worden verdeeld.
De experimenten in hoofdstuk 3 laten zien dat twee contrasterende sequentie overgangen worden
gevormd wanneer eustati sche zeespiegel bewegingen worden gesuperponeerd op pulserende fases
van tektonische activiteit en bodemdaling.
A) Gedurende fases van tektonische activiteit leiden dalingen en stijgingen van de eustatische
Zeespiegel tot prograderende en verondi epende sequenties, begrensd door Type-2 unconformities
en het daaropvolgende transgressie interval. De syn-tektonische, grote flexurele bodemdaling
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verhindert dat de zeespiegel daalt tot onder het kritische niveau waar de deltatop overgaat in het
deltafront. Insnijding van het deltafront door de rivier vindt daarom niet plaats.

B) Gedurendefasesvan tektonische rust worden Type-1 unconformities gevormd, omdat dalingen
van de eustati sche zeespiegel nu wel onder het kritische niveau komen. Eustati sche zeespiegel
dalingen worden dan niet gecompenseerd door een stijging van de relatieve zeespiegel als
gevolg van de bodemdalings component. Meerdere eustatische zeespiegeldalingen kunnen
optreden tijdens een fase van tektonische rust. Daarom is het mogelijk dat de resulterende
Type-1 unconformity aan de basis van de deltatop zandsteenl aag van samengestel de oorsprong
is. Dit type unconformity is daarom een slechte tijdsindicator. De zandsteenlaag in de deltatop
wordt gekenmerkt door clusters van in elkaar snijdende axialerivier lichamen. Deze lichamen
hebben een preferente positie tussen de puinwaaiers en de conische delta die werd gevormd
tijdens een voorafgaande fase van tektonische activiteit.

Dekblad-top bekken (Hoofdstuk 4)

Vergelijkbare clusters van dergelijke ama gamerende axia e rivierlichamen worden gevormd wanneer
het voorlandbekken van zijn substraat wordt geschei den door een overschuivingsbreuk en het bekken
wordt getransformeerd tot een dekblad-top bekken. In tegenstelling tot de lichamen gevormd in het
asymmetrische voorlandbekken uit hoofdstuk 3, hebben deze lichamen geen duidelijke voorkeur
voor een locatie dichtbij de begrenzende overschuivingsbreuk en de daar liggende puinwaaiers.
Dit komt omdat de trangdlatie van het bekken over de hellende overschuivingsbreuk leidt tot een
uniforme stijging van bekken. Verplaatsing over een licht hellende breuk (2-6°) met gemiddelde
snelheden (~5.0 m/kyr) resulteert in een verticale opheffingscomponent die voldoende is om de
flexurele bodemdaling te compenseren. De ontwikkeling van de accommodatie ruimte en de
stratigrafische architectuur zijn extreem gevoelig voor de hoek van de onderliggende
overschuivingsbreuk. De mate van amalgamatie, de onderlinge verbondenheid van derivierlichamen,
de snelheid van de tektonisch geforceerde regressie, de gevoeligheid voor incisie en transport van
sediment naar aangrenzende bekkens nemen toe met een toename van de hoek van de onderliggende
overschuivingsbreuk. In het licht van deze model resultaten wordt de Eocene Castissent Formatie
in het Tremp Bekken, Spaanse Pyreneeén, die voorheen werd geinterpreteerd als een klassiek
voorbeeld van een opvulling van een ingesneden riviervale die werd gevormd als gevolg van een
daling en opvolgende stijging van de eustati sche zeespiegel, verklaard a s het resultaat van tektonisch
gereduceerde accommodatie ruimte. Dit tektonische mechanisme verklaart de combinatie van
doorgaande marieneinvloed op de dluviaevlakte, geforceerde regressie en toenemende onderlinge
verbondenheid van grove zandsteen lichamen ten koste van het aandeel fijnkorrelige af zettingen.
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Summary in Dutch

In het laatste hoofdstuk wordt geillustreerd hoe, door gebruik van een triangulair in plaats van een
rechthoekig grid, modellen zoal s gepresenteerd in de eerdere hoof dstukken kunnen worden verbeterd
en verfijnd. De capaciteit en snelheid van computersis hiervoor op dit moment nog te gering, maar
zal over 5 a 10 jaar naar verwachting voldoende zijn om de modellen van een triangulair grid te
voorzien.
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