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1 SCOPE, PROBLEM DEFINITION AND RESEARCH 
QUESTIONS 

 
 
1.1 Introduction 
 
A model of the environment, including landscapes, is a representation or imitation of 
complex natural phenomena that can be discerned by human cognitive processes. Models 
of the landscape are almost always representations in miniature even though the 
representation is physical (an analogue model) or in mathematical equations. Since the 
landscape or environment is a complex system under continuous change, most 
mathematical models can only be run on a computer. This thesis deals with the type of 
mathematical computer models that will be referred to as dynamic spatial environmental 
models. The word ‘spatial’ refers to the geographic domain which they represent, which 
is the two- or three-dimensional space, while ‘dynamic’ refers to models simulating 
changes through time using rules of cause and effect. A more exact definition will be 
given in Section 1.2. Examples of dynamic spatial environmental models are computer 
models simulating the flow of water in an area, the spreading of a species over a 
continent, or the transport of pollutants through the air. 

Dynamic spatial environmental models have a scientific value mainly because they 
can be used to improve the understanding of environmental processes, for instance to test 
hypotheses regarding the driving forces of changes in the environment. These models 
also provide a means to communicate scientific knowledge. Finally, dynamic spatial 
models are all-important for environmental planning and management, since they can be 
used to make predictions for future behaviour of an environmental system, or to evaluate 
the impact of changes in the environment made by people or other organisms. 

As will be explained in the following sections, most dynamic spatial environmental 
models cannot be regarded as all purpose tools that can be applied off-the-shelf. This is 
because each case study has specific conditions to which the model needs to be tailored. 
As will be explained in the following sections, these conditions or constraints include 
among others the aim of modelling, the properties and processes of the study site, the 
available field data and the computer technology that can be used. Model building, which 
is the subject of this thesis, involves finding the optimal model for a specific case study 
given these conditions. In this thesis, the term ‘model building’ refers to the identification 
of all equations in a model and their implementation in a software program, but also the 
identification of appropriate inputs and parameters needed in the model. 

Model building is a difficult issue since it involves the diverse disciplines of computer 
technology, mathematics, and environmental science, and thus environmental experts are 
needed who are trained in all these disciplines. Four central issues related to model 
building are treated in this thesis. These are: 1) programming and tools to program the 
model, 2) estimation of inputs and parameters of a model from field data by upscaling, 3) 
estimation of inputs and parameters from field data by inverse modelling, and 4) training 
researchers in model building. 

Section 1.2 is a short introduction to dynamic spatial modelling providing definitions 
of the most important terms used in this thesis. Section 1.3 defines the problem definition, 
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and section 1.4 gives the research questions. Section 1.5 provides an outline of the 
remaining chapters in the thesis. 
 
 
1.2 Introduction to dynamic spatial environmental models 
 
Environmental models are considered here as a representation of a part of the landscape, 
including things and processes above, at or below the land or water surface. The entities 
represented may be objects or continuous spatial fields as studied by natural sciences 
such as biology, ecology, physical geography, geology, or meteorology. Environmental 
models can be physical or mathematical. Physical and analogue models represent an 
environmental system with a miniature version of that system in a laboratory. An 
example of an analogue model is a tank filled with (flowing) water and sediment to 
mimic sedimentation and erosion on a continental shelf (e.g., Hasbargen and Paola, 
2000). Mathematical models use mathematical equations as a model of the environment. 
Besides other types of mathematical models, such as statistical models, dynamic models 
are widely used in the environmental sciences. The property of a model that makes it 
dynamic is that it is run forward in time, using rules of cause and effect to simulate 
temporal changes in the landscape. For this reason, some people refer to dynamic models 
as forward models. Although dynamic environmental models are often spatial models, in 
the sense that they represent spatial entities in a landscape, for instance a soil layer, it is 
easier to restrict ourselves first to the non-spatial, point model. For this case, the concept 
of dynamic modelling can be represented by the following equation, which is illustrated 
in Figure 1.1. Similar descriptions can be found in Beck et al. (1993), Gurney and Nisbet 
(1998), and Van Deursen (1995): 
 

( ) tttitztz each for     ),(),(f)1( =+        ( 1) 

 
In this equation, a certain property, or attribute, of the landscape is represented by the 
non-spatial state variable z, which can be a continuous variable, for instance temperature, 
or a classified variable, for instance vegetation class. It could also represent an attribute of 
an individual, for instance the height of a tree. This variable z has a value at each moment 
in time t, and the value of z at that moment is written as z(t), while z(t+1) means the value 
of z at a certain moment later in time. Although z changes in a continuous way through 
time, which can be represented by a set of differential equations, a discrete representation 
of time is used here. The letter f represents a functional with associated parameters, 
operating on the variables inside the brackets. It can be either an update rule, explicitly 
specifying the change of the state variable over the time slice (t, t+1), for instance a rule 
based function such as cellular automata (e.g., Toffoli, 1989), a probabilistic function, or 
alternatively a derivative of a differential equation describing the change of the state 
variables as a continuous function (c.f., Gurney and Nisbet, 1998). Equation (1) shows 
that for each moment in time, the value of the attribute at that moment (z(t)) is used to 
calculate that value of the attribute at a later moment in time. This change in z over the 
period (t, t+1)  is  represented by the functional f.  The second term i(t) can be zero for all  
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Figure 1.1. Dynamic non spatial model; ij(t), inputs; zk(t), state variables; fk, functionals. Left, one input 
and one state variable; right, multiple inputs (only one shown) and state variables (three shown). 
 
time steps, representing a dynamic model which is not affected from outside, a closed 
system. But in many cases, the system represented by a dynamic model has external 
inputs, sometimes called disturbances. Think for instance of rain falling on the ground 
surface in a model simulating infiltration of water into the soil, or addition of nutrients 
from agriculture in a model simulating a lake ecosystem. Such inputs are represented in 
equation (1) by i(t), which is, just like z, defined for each moment in time t. Boundary 
conditions needed in a model are regarded here as an input i(t) too. The functional f 
operates on this input and the state variable, as shown in Figure 1.1. Note that some 
models derive z(t+1) from an input only, which means that equation (1) reduces to z(t+1) 
= f(i(t)). These models are also regarded as dynamic models. Finally, the functional f uses 
the time t to calculate z(t+1), which is needed when the processes in the landscape change 
with time, for instance as a result of climate change. 

Equation (1) represents the simple case where one state variable z is used, ignoring 
interaction between different components or processes in an environment, such as 
predator-prey relations, or deposition of sediment controlled by water level, flow speed, 
or sediment type. Models that simulate interaction between different components of an 
environment need to include a set of state variables, as illustrated in Figure 1.1 (right), 
which can be represented by: 

 
( ) ttnjtimktztz jkkk each for       ;..1),( ;..1),(f)1( ===+    ( 2) 

 
For each state variable zk, where k represents one of the 1 to m state variables involved, its 
value at t+1 results from a functional fk on all (or a part of) the state variables zk(t), k = 
1..m. In addition, each variable zk can be determined by a set of j = 1..n inputs ij. While f 
in equation (1) was a relatively simple functional, fk in equation 2 can be rather complex, 
representing a complex set of interactions between state variables and inputs, which is 
called the model structure. 

Although the components of some environmental systems can be described by a non-
spatial, or one dimensional dynamic model, many environmental processes include 
important spatial interactions. For representing these processes, the dynamic model 
becomes a spatial model, and needs to consider the environment as a two or three 
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dimensional spatial system, and the variables need to be represented in a two or three 
dimensional domain D, while the variables have a value at all locations or a part of the 
locations in this domain. Such spatial variables are represented by zk(s,t), where s is the 
spatial index of zk, representing the subset of D where zk exists. In the case that zk 
represents an attribute of a continuous field, for instance the topographical elevation, zk 
has a value for all locations in D, and s is an index which varies continuously. The value 
of the variable zk at t+1 is an integral over the spatial domain D of a functional fk on the 
state variables, inputs, space and time, as illustrated in Figure 1.2: 

 
( ) tdtnjtimktztz

D
jkkk each for      ,;..1),,( ;..1),,(f)1,( 0 ∫ ===+ sssss   ( 3) 

 
When zk represents an attribute of one or more objects, for instance the age of a set of 
birds, s becomes a set of locations si in D, representing the locations of the birds, and (3) 
becomes a summation over these locations instead of an integral. Similar as in the non 
spatial case, each functional fk operates on all (or part of) the variables zk, k = 1..m. For 
each variable, the functional operates on all values zk(s,t) on the spatial index s, and also 
on the location and the moment in time, represented by the additional inputs s and t. The 
same holds for the inputs ij. Note that in the spatial case, many parameters used in the 
functionals will have values changing in the spatial dimension. To illustrate the abstract 
equation 3, think of a dynamic model representing a forest ecosystem. Spatially 
continuous attributes such as soil moisture content, or shrub vegetation biomass, will be 
modelled with continuous field state variables. Individuals, such as animals, will be 
represented by state variables representing objects, which move in space. The dynamic 
model would include many spatial functionals representing the behaviour of such a 
system, where the state variables related to properties of the animals change as a 
functional of continuous fields, such as available biomass, while these continuous fields 
could change as a functional of other continuous fields, or the location and behaviour of 
the animals, for instance by consumption of vegetation. 

In addition to the classification of dynamic models in non-spatial and spatial models, 
dynamic models can be either deterministic or stochastic. A deterministic model has state 
variables which have a single value for each location in space and moment in time. A 
stochastic model deals with state variables which in the non-spatial case are random 
variables, having a certain probability distribution, or in the spatial case, random fields. A 
dynamic model becomes a stochastic model when its inputs ij or parameters are stochastic 
(c.f., Heuvelink, 1998), or when the functional fk involves a probabilistic rule. 

So far, we have mainly looked at how an environmental system works, and how it can 
be represented by a model. In many cases, and always in applied research, studying this 
system is not the main aim of modelling, but the model is merely an instrument to predict 
a specified set of properties of the system. If we look at the example of the forest 
ecosystem, the main aim would be to predict for instance the number of deer or the 
average biomass production in a certain area, as well as understanding the system as a 
whole. In these cases, a model is regarded as a system producing a certain number 
outputs in which the interest lies. This is shown in Figure 1.3, which can be regarded as a 
summary of what is stated in this section: a model has external inputs i1..k, internal state 
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variables z1..m, functionals f1..m with associated parameters p, while it generates a certain 
number of outputs, which are some of the state variables in the model. 

Although dynamic models which are restricted to non-spatial, deterministic 
simulation can sometimes be solved analytically, spatial and/or stochastic dynamic 
models include interactions that in most cases are too difficult to solve without a 
numerical solution scheme. So, in most cases, dynamic spatial models are numerical 
models, which need to be programmed and run on a computer. 
 
 
 

    

��
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Figure 1.2. Dynamic model in two dimensional space; zk(t), state variables; fk, functionals. Inputs ij(t) not 
shown, only two state variables shown, z1(t) a state variable representing objects, z2(t) a state variable 
representing a continuous field. 
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Figure 1.3. Dynamic spatial model as an open system with inputs i1..n, state variables z1..m, functionals f1..m, 
parameters p and output variables o. 
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1.3 Problem definition 
 
1.3.1 Factors involved in model building 
 
The aim of model building is to find the optimal representation of environmental 
processes in the numerical equations (and parameters) of a computer program. The 
qualitative term optimal is used here, since models can only be judged in the context of 
many factors involved in a modelling study (Figure 1.4), and some of these factors can 
only be interpreted in qualitative terms. Since problems related to model building are all 
part of one or more factors, a short discussion of the main factors is given below. 

Theory of natural sciences. The model structure needs to be defined on the basis of 
the knowledge of the environmental system which is to be modelled, and is a synthesis of 
laws known, or hypothesised about, in the natural sciences. There is a large range of 
approaches for achieving a synthesis, with two extremes. On one side of this range is the 
approach that aims at combining laws used, or closely related to, those known in more 
generic sciences such as physics or chemistry. For instance, the kinematic wave equations 
for simulating overland flow can be cut down to general physical laws. I will refer here to 
these kind of models as process driven models, because their equations are derived from 
lower level laws which can be assumed to be valid under all known circumstances. The 
term physically based models, which is often used, is not used here for these kind of 
models, since lower level laws do not always need to be physical laws. Being a synthesis 
of lower level laws, the model structure of a process driven model is a highly complex set 
of interactions, represented by a large number of laws, which mostly need to be given on 
a small spatial and temporal resolution. Consequently, process driven models typically 
include a large number of equations and parameters, using state variables and inputs 
represented at a high resolution (Figure 1.5). Examples of the process driven approach to 
modelling in hydrology are distributed watershed models such as the SHE model (Abbott 
et al., 1986) and the unifying modelling framework for watershed dynamics described by 
Reggiani et al. (1998). 
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Figure 1.4. Factors in dynamic spatial environmental model building. The theory of environmental 
processes is given separate from the other factors, since it is a general factor, while the other factors are site 
specific. 
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Figure 1.5. Process driven (left) and data driven (right) representation of an environmental system; ij, 
inputs; zk, state variables; lines represent functionals fk; small dots represent high resolution, large dots 
represent low resolution. 
 

An equally valid approach on the other side of the range of approaches is to combine 
laws which are valid not because they can be derived from lower level laws, although this 
might still be the case, but mainly because they have, or can be, shown to be valid for 
describing environmental processes. These laws can be derived from process driven 
models, or are empirically derived, using field data of environmental attributes. Their 
scientific value lies not in their derivation from lower level laws, but mainly in the fact 
that they are set up according to rules of logic combined with knowledge of 
environmental processes. For this reason, these laws are sometimes, but not always, only 
valid under certain conditions defined by the properties and processes of the study site 
under consideration. I will refer to these models as data driven models, since their laws 
are mostly derived from environmental data. These models are sometimes refered to as 
empirically based models, in contrast to physically based models, but the term 
empirically based models is not used here, mainly because laws in physics or chemistry 
are also empirically derived. Since data driven models are a synthesis of higher level laws 
each incorporating a large amount of system behaviour, these models typically include a 
small number of equations and parameters, valid at a lower spatial and temporal 
resolution (Figure 1.5). An example of a data driven model is a model simulating 
pollutant transport in a large catchment built upon laws derived from field data at the 
scale of modelling and knowledge of environmental processes at that scale (e.g., de Wit 
and Pebesma, 2001). Another example of model building resulting in data driven models 
is the downward approach to hydrological model development (Klemes, 1983; 
Jothityangkoon et al., 2001). 

 Aim of modelling. The representation of processes in a model also depends on the 
aim of modelling (Jørgensen, 1988). A large group of models can be regarded as being 
built mainly to encapsulate all existing knowledge of the processes being modelled. 
These models are typically process driven models, with a complex model structure in the 
sense that a large number of equations is coupled to represent the whole environmental 
system. In many cases, these models are difficult to run with field data as input, since 
they need a large number of input data to parameterise all the model equations, which is 
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not always available. As a result, these models have mainly a scientific value, meant to 
improve understanding of environmental processes and to communicate this 
understanding. The same holds for simplified models which focus on a small subset of 
processes in a system, using simplified equations. Such models are the key to develop a 
general theory, or help us understand the behaviour of more complex models (c.f., 
Gurney and Nisbet, 1998; Casti, 1998), and they are mostly run without in situ field data. 
Another group of models is built mainly aiming at making predictions for a specific 
purpose, for instance as part of a decision support system (Sprague and Watson, 1982). 
The structure of these models needs to be tailored to the outputs for which predictions 
need to be made, the spatial and temporal resolution for which predictions are needed, 
and the prediction precision which satisfies the aim of the study, under the constraint of 
the model input data available. In many cases, the models used as management tools are 
data driven models, since data driven models are by definition tailored to the available 
input data and the outputs required. But in some cases, process driven models can be used 
too, when their inputs and outputs fit the study under consideration. 

Study site and field data. A model which is meant to represent environmental 
processes at a specific study site, needs to embody processes that are important at the 
study site. The set of processes that is dominant will be different between different study 
sites, which is one of the reasons why in many cases one and the same model cannot be 
applied to a number of study sites (Beven, 2000). In addition, when a data driven model 
is used, the model structure will by definition be dependent on the properties of the field 
data available, where properties refers to the amount, spatial and temporal resolution, and 
precision of field data. The field data are used to find correct values for the inputs and 
parameters in the model. When building a model, a balance needs to be found between 
the properties of the field data and the complexity of the model structure (e.g., Jørgensen, 
1988; Donnelly-Makowecki and Moore, 1999; van der Perk, 1997; Beven, 2000; de Wit 
and Pebesma, 2001). This is another important reason why a model cannot be regarded as 
a fixed thing, with generic application. Instead, it needs to be tailored to the field data 
available. 

The researcher. Although the theory and field data are the main factors determining 
the model structure, the somewhat subjective role of the researcher cannot be neglected, 
since it is the researcher that needs to synthesise theory and field data, for a given aim and 
study site. As noted by Beck et al. (1993), the part of the procedure of developing a 
model without any reference to in situ field data is a function solely of ‘the knowledge 
and imagination of the analyst’. Although all researchers follow the same scientific 
method, the wide range of computer models developed for the same purpose, shows that 
researchers differ in their knowledge and imagination. The properties of a model 
developed by a researcher or a group of researchers, depends on the background 
knowledge of the researchers involved, their niche in the scientific world, and their skills 
to communicate with software engineers. 

Technology. A model representation should be tractable from the technological point 
of view (Casti, 1998). Whether a model is tractable, depends on the model representation, 
the tool used to program it, and the hardware. A complex model, concerning many 
variables defined in multiple dimensions, using a large number of model equations can 
become intractable, because of its long run time. Although computer power still doubles 
every year, while more and more optimisation algorithms become available in the 
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modelling tools, it can be expected that computer power will continue to pose a constraint 
on model building. Technology is also important regarding the tools used in combination 
with the dynamic model. These tools determine how the inputs and outputs of a forward 
model can be analysed, and how field data can be used to optimise the model. Standard 
visualisation tools included in Geographical Information Systems (Burrough and 
McDonnell, 1998) can be used to analyse the data in a spatial context, while statistical 
tools can be used to test hypotheses, to perform interpolations or simulations as input to a 
dynamic model, or to calibrate model parameters. 
 
 
1.3.2 The model development cycle 
 
From this discussion of the factors involved in modelling, it can be concluded that, at 
least in the environmental sciences, a model should not be regarded as a fixed entity, with 
generic application. Instead, it is a tool which needs to be fashioned to all factors 
involved in a modelling study, and these factors are specific for the study problem, the 
technology, and the people involved in a research. So, the activity of model building is 
crucial for environmental modelling. Finding the optimal model is in most cases a trial 
and error procedure, as represented by the model development cycle (see also chapter 2, 
and Jørgensen, 1988) consisting of a sequence of procedural steps (Figure 1.6): 

 
1) model structure identification, involving the selection of the processes governing 

the behaviour of the system to be modelled, and the mathematical representation 
of these processes, 

2) programming the model, involving the conversion of the mathematical 
representation of the processes to a computer program, 

3) estimation of appropriate values of input variables and parameters using field 
data, which can be done by upscaling and/or inverse modelling, 

4) validation. 
 
In the case of unsatisfactory results in one of these steps, the procedure has to be re-done, 
starting at a previous step, until the optimal model has been found. 

This thesis deals with problems involved in three components of the model 
development cycle shown in Figure 1.6: 1) computer programming, i.e. creating a 
computer model according to the concepts defined by the model structure, 2) estimation 
of inputs and parameters by upscaling, 3) estimation of inputs and parameters by inverse 
modelling. In addition, a fourth problem is dealt with, which is 4) how to train people to 
build models according to the model development cycle. Each of these 4 points are 
discussed in the following sections. 
 
 
1.3.3 Issues involved in programming the model 
 
Programming involves the conversion of the mathematical representation of the processes 
in a dynamic model to a computer program. Equation 3, representing the structure of a 
model,  is  a  generic equation,  encapsulating  a  wide  range  of  different  environmental 
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Figure 1.6. Model development cycle. 
 
models. The type of tool which allows programming of all these different models is a 
system programming language, such as Fortran or C++. Another approach is to use a 
programming language developed for the specific purpose of environmental model 
building, which is a so called environmental modelling language. The main concept of an 
environmental modelling language is that models are constructed using pre-programmed 
building blocks that can be combined in a useful way to construct an environmental 
model. People designing such a language have to choose how much and what kind of 
functionality needs to be included in the building blocks, resulting in building blocks that 
allow many models to be constructed by a competent model builder. This means that a 
balance needs to be found between the advantage of including a lot of functionality in the 
building blocks and the disadvantage that the language becomes less generic; as more 
functionality becomes built in, the modeller has less opportunity to modify the basic 
units. It is clear that the approach defining these building blocks depends on the kind of 
environmental models that need to be constructed with the language, and for this reason, 
a number of languages that could be called environmental modelling languages exist. 
Since most Geographical Information Systems (GIS, c.f., Burrough and McDonnell, 
1998) deal with static data, the modelling languages in these systems are designed for the 
construction of models in the two or three dimensional spatial domain only (e.g. ESRI, 
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2002; EarthVision, 2002), although some standard GIS include functionality for 
analysing time series of maps (e.g., IDRISI 2002, GRASS 2002). Other tools focus on 
dynamic modelling of non spatial data, such as ModelMaker (2002) and STELLA (2002), 
or are mathematical modelling languages lacking standard functions and visualisation 
tools for spatial data (e.g., Matlab 2002). 

The environmental modelling software package PCRaster (PCRaster 2002; Van 
Deursen 1995; Wesseling et al. 1996) is an environmental modelling language for 
building dynamic spatial environmental models, which is here called a dynamic spatial 
environmental modelling language. Since it is both evaluated in this thesis, while new 
concepts are developed for extensions, it is important to summarize the main concepts 
here. Starting from equation 3, the following simplifications, which one could equally 
well call design choices, are made in PCRaster. 

Since the set of functions fk, k = 1..m is too complex to be solved analytically, a 
regular discretisation is made of the two dimensional domain only, the third spatial 
dimension is not considered, and the spatial index becomes an index src, referring to row 
and column numbers of the grid cells with an area |u|. Further, it is assumed that functions 
are used representing the change over a time step t∆ , which is the same for all t. The 
discretised version of the model can be written as 

 
( )tnjtimktztz rcjrckkrck ,;..1),,(;..1),,(f)t,( ssss ===∆+  for each t ( 4) 

 
In addition, it is assumed in the PCRaster software that fk can be represented by a 

combination of standard spatial functions provided by the language, which are the 
building blocks I referred to at the start of this section: 
  
          ( )tnjtimktztz rcjrcknrck ,;..1),,( ;..1),,(g,.g,g)t,( 21 ssss ===∆+ for each t ( 5) 
 
These standard spatial functions can be simple, such as the addition of two variables 
without spatial interaction, or more complicated, such as performing numerical solutions 
of differential equations, including spatial interactions. In this approach of using standard 
spatial functions, model building becomes the activity of combining these functions with 
their proper inputs. In PCRaster, this is done in a sequential so-called dynamic modelling 
script, which is the program of the model. Such a program has a dynamic section, which 
is iterated through time. For each time step, a sequence of the standard spatial functions is 
executed, as shown in Figure 1.7. The environmental model builder needs to define this 
sequence. For a more detailed description of the concepts, the reader is referred to the 
next two chapters.  

Although environmental modelling languages, and more specifically PCRaster, are 
useful tools for programming dynamic spatial models, the use of these languages also 
involves several problems. Two key problems are dealt with in this thesis. First, the 
approach to provide the model builder with a restricted set of pre-programmed building 
blocks, comes with several possible disadvantages related to the activity of programming 
the model, the range of models that can be built with the language, and the performance 
of the models regarding run times. As a result, their value might be limited for 
programming a model. From an evaluation of the PCRaster language done in this thesis, 
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it follows that extensions are needed to provide the modeller with an environmental 
modelling language that is also capable of dealing with three dimensional models and 
stochastic models. The difficulties related to the design of such languages is the second 
problem related to programming a model that is dealt with in this thesis. 
 
 
 

 

z1(t)

z1(t)

z1(t)

z1(t+1)

z1(t+1)

z1(t+1)

intermediate maps

 
 
 
Figure 1.7.  Dynamic model in PCRaster. A combination of standard functions (arrows) on raster maps is 
made describing the change in the model variables between t and t+1. 
  
 
1.3.4 Issues involved in upscaling 
 
The issue of upscaling is related to the step of estimating model inputs and parameters in 
the model development cycle. This step is important, since the model outcome is strongly 
dependent on the value of the inputs and parameters. In many cases the resolution of the 
field data and the resolution applied in the model are different, and an upscaling or 
downscaling procedure needs to be performed in order to use the field data in the model. 
In upscaling, the inputs and parameters are derived from field data without using the 
model itself (Figure 1.8). 

A short description of the main concepts related to upscaling is given here, for details, 
the reader is referred to Bierkens et al. (2000), Blöschl and Sivapalan (1995), Blöschl 
(1996), from which all concepts described here are taken. Upscaling and downscaling 
theory is built around a key concept called support. As noted in section 1.3.3, the spatial 
domain of a dynamic spatial model, is subdivided (i.e., discretised) into a finite number of 
sub-areas, with an area |u|, while the temporal domain is subdivided in sub-intervals, with 
a length t∆ . The area of these sub-areas and the length of these sub-intervals is called the 
support of a model. It is the largest area (or volume) and time interval for which the 
properties represented by a model are considered homogeneous. These sub-areas or sub-
intervals themselves are called support units. The values of the model inputs, variables 
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and parameters are representative for the support used in the model, while the functions 
need to be representative for the change in model variables occurring over a time step, at 
the support of the model. The term support can also be used for field measurements, 
representing the area (or volume) and time interval for which the measured properties are 
considered homogeneous, and for which only the average value is measured and not the 
variation within. The term scale refers to the same concept as support, where a large scale 
refers to a large support. The term scale transfer means changing the support, while 
upscaling and downscaling refer to increasing and decreasing the support, respectively. 
An upscaling or downscaling method refers to the procedure describing how to calculate 
changes in input values, parameters, or a function in a model when the support is 
changed. 

Upscaling and downscaling methods are important for environmental modelling, 
since the values and the spatial pattern of most environmental attributes, when measured 
in the field, depend on the support of measurement. As a result, inputs and parameters in 
environmental models, need to depend on the scale of the model, while in some cases, the 
model structure (i.e., the functions in the model) needs to change with scale too, since a 
description of processes appropriate at one scale, does not need to be appropriate at 
another scale. Many examples illustrating the problem of scale in a wide range of 
environmental studies and upscaling and downscaling methods to solve this problem are 
given in Bierkens et al. (2000),  Blöschl and Sivapalan (1995), Burrough and McDonnell 
(1998).  

In this thesis, the issue of scale is dealt with in two case studies concerning the 
process of infiltration. To illustrate the problem of scale in infiltration modelling, a small, 
highly simplified, steady state, example is given. At a small support, typically 0.04 m2, a 
reasonable model to describe actual infiltration (A, mm/h) is:  
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Figure 1.8. The need for scaling when estimating model inputs (i) and parameters (p) from field 
data. z, model variables; f, model functions; o, model outputs. 
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Figure 1.9. Input (I, mm/h) and actual infiltration (A, mm/h) in an infiltration model. 
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Figure 1.10. (A) Measured infiltration capacity (mm/h) for four neighbouring areas, (B) resulting actual 
infiltration and inflow fluxes from upstream neighbours with 40 mm/h rain. All units are mm/h. 
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with, I, the input of water to the soil surface (mm/h) – think of this as rainfall – and, C, 
the infiltration capacity of the soil (mm/h), which is a parameter, see also Figure 1.9. 
Now, let us assume we have measured the infiltration capacity at one specific location, 
resulting in C = 30 mm/h. With an input I = 40 mm/h, the actual infiltration can be 
calculated as 30 mm/h, using equation 6. Now, let’s assume the infiltration capacity is 
known for neighbouring areas of 0.04 m2, on a small transect, see Figure 1.10A. Is the 
model given by equation 6 also valid to calculate A for the larger support of this transect? 
If so, how? The first approach would be to take the average value of the three 
measurements, assuming that this value can be used at the larger support. With the input I 
= 40 mm/h, we have A = C = (10+90+10)/3 = 36.33 mm/h. But this is not correct, as 
shown in Figure 1.10B, because at this larger support, the process of flow of water 
between the support units needs to be taken into account: equation 6 needs to be applied 



 27

for each support unit separately, where I becomes the sum of rainfall (mm/h) and inflow 
from the areas upstream. If we do this, we find an average actual infiltration of 30 mm/h 
(Figure 1.10B), and we conclude that C needs to be 30 mm/h when we want to apply 
equation 6 at the larger support. It is said that this value for C is the effective (or 
representative) value, valid at this larger support. But the problem is not solved yet. 
Doing the same calculation for the larger support using the same infiltration capacity 
values for the three areas and including the inflow from upstream, but a different value 
for the rainfall, results in a different effective value for C. So, strictly speaking, C cannot 
regarded as a constant parameter anymore. Instead, it needs to be regarded as a variable 
when I becomes variable in time, which is always the case with a rainstorm. This means 
that under transient conditions, a process description different from equation 6 is needed 
at the larger scale, which includes this relation between C and I. This shows that, in 
addition to change of parameter values with change of scale, the process description may 
also need to change with scale. 

Scale dependency is a general problem with environmental modelling, particularly for 
the case of dynamic rainfall-runoff modelling. A dynamic rainfall-runoff model simulates 
the processes involved in rainfall interception by the trees, surface storage of water, 
infiltration, and drainage of water to an outflow point of a catchment. In the part of the 
thesis dealing with upscaling, focus is on the development of upscaling methods for 
upscaling of infiltration measured at a scale corresponding to the small support of 0.04 m2 

(like in the example above) to the support of the rainfall-runoff model used. The number 
and applicability of upscaling methods currently available is limited, and there is a need 
for new and better upscaling methods for infiltration (Beven, 1989; Binley et al., 1989; 
Blöschl et al, 1995; Blöschl and Sivapalan, 1995; Harms and Chansyk, 2000). Two                
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Figure 1.11. Upscaling from the support of field measurements (left) to the support of a rainfall runoff 
model (right). (A) upscaling to the support corresponding to the area of the catchment in the rainfall-runoff 
model, one support unit, (B) Upscaling to the support of grid cells used in the rainfall-runoff model, 
multiple support units. 
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possible approaches to develop an upscaling method for a dynamic rainfall-runoff model 
will be followed in this thesis (Figure 1.11). In the first approach, a rainfall-runoff model 
is used with a support regarding infiltration corresponding to the size of the whole 
catchment, and the model includes only one support unit, which is the catchment. This 
means that the parameter(s) regarding infiltration are assumed to be homogeneous within 
the catchment, although other processes in the model can still be spatially variable. In this 
approach, an upscaling procedure needs to be developed that scales from the small 
support of the field measurements, to the support corresponding to the size of the 
catchment. In the second approach, a rainfall-runoff model is used with a support 
regarding infiltration corresponding to the size of a grid cell used in the model, and the 
number of support units corresponds to the number of grid cells in the model. Here, an 
upscaling procedure needs to be developed that ranges from the support of the field 
measurements to the support of the grid cells used in the model, for each support unit. 
Both approaches are expected to suffer from problems caused by the fact that the process 
of rainfall-runoff is highly transient (Blöschl and Sivapalan, 1995). 
 
 
1.3.5 Issues involved in inverse modelling for spatial interpolation 
 
When field data on inputs and parameters or appropriate upscaling procedures to estimate 
inputs and parameters of a dynamic model are not available, inverse modelling is the only 
method that can be used to estimate inputs and parameters of a dynamic model. In 
upscaling, model inputs and parameters of a dynamic model are estimated with an 
upscaling method which is run independently of the dynamic model, using field data on 
inputs and parameters. Unlike upscaling, inverse modelling estimates the inputs and 
parameters using field measurements of output variables of the dynamic model and the 
dynamic model itself, as shown in Figure 1.12. In inverse modelling, it is assumed that 
the best set of values for the inputs and parameters of a dynamic model corresponds to the 
set of values resulting in the smallest possible difference between the output of the 
dynamic model and field measurements of the same output variable(s) (McLaughlin and 
Townley, 1996). The difference between the output and field measurements is reflected 
by an objective function (sometimes called goal function) which is a mathematical 
procedure to calculate the aggregated difference between a vector of model outputs and 
field data, where the lowest outcome of the objective function mostly represents the 
smallest difference between outputs of the dynamic model and field data. 

A procedure of inverse modelling comprises an iteration of three steps: 1) select a set 
of inputs and parameters for the dynamic model, 2) run the dynamic model with this set 
of inputs and parameters, 3) calculate the value of the objective function. The iteration is 
stopped when the set of inputs and parameters is found with the lowest value of the 
objective function. The number of iterations needed can be reduced when results of 
previous iterations are used in a better selection (i.e., expected to result in a low value of 
the objective function) of inputs and parameters in step 1. Different procedures to do so 
are described in Beasley et al. (1993), Falkenauer (1998). When inverse modelling is 
restricted to finding parameter values only instead of both inputs and parameters, it is also 
known as calibration. When the aim of inverse modelling is mainly to make model                
.                                                                                       
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Figure 1.12. Estimating model inputs (i) and parameters (p) from field data by inverse modelling. z, model 
variables; f, model functions; o, model outputs. 
 
outputs exactly fit field data, the term conditioning or data-assimilation is widely used for 
inverse modelling. 

One of the issues in inverse modelling is to minimise the computer time required in 
an inverse modelling procedure. Computer run times can be large, since the dynamic 
model needs to be run for each iteration in the procedure of inverse modelling. In general, 
the computer time needed for an inverse modelling procedure can be expected to be 
dependent on a wide range of issues: the amount of field data used for inverse modelling, 
the objective function and the minimisation of its outcome required, the capability of the 
dynamic model to simulate environmental processes at the study site in a proper way, the 
size of the input and parameter space in which the optimal input and parameter values 
need to be found, the run time of the dynamic model, and the inverse modelling 
procedure applied. These issues are related to most of the factors in environmental model 
building (Figure 1.4), and inverse modelling will only be successful when all these 
factors are dealt with, in an integrated approach.  

The issue of computer run time needed in an inverse modelling procedure is 
important in a case study (Chapter 7) dealt with in this thesis. This case study tries to 
predict the sedimentary architecture in three dimensions using an inverse modelling 
procedure with a dynamic model simulating the erosional and depositional processes in a 
river system occurring over time spans of thousands of years. The main output of the 
dynamic model is a prediction of the sediment type for each location in three dimensions. 
The field data used are observations of the sediments in a number of wells (boreholes) 
and the aim is to find the input values for the dynamic model resulting in a sediment type 
predicted by the model that corresponds to the field data at the observational locations. 
Running the model with these input values results in a prediction of the sedimentary 
architecture in three dimensions, where the predicted sediment type at observational 
locations corresponds to the measured type. Nowadays, this prediction (or interpolation) 
of sediment type in between wells is accomplished mainly using methods that imitate the 
structure of the deposit, without direct use of the knowledge of the processes that formed 
the deposit, resulting in predictions that are not always realistic. When the issue of 
computer run time related to inverse modelling with a dynamic model can be overcome, 
it is expected that predictions can be made which are more realistic. 
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1.3.6 Issues involved in training model building 
 
While model building itself comes with many difficulties, as has been pointed out in the 
previous sections, teaching model building to people who are more or less unfamiliar 
with environmental models might even be more difficult. This is mainly because training 
involves many different subjects and people to be trained, under different learning 
environments. The subjects of training comprise all procedural steps of the model 
development cycle (Figure 1.6), in all phases of learning, while the people to be trained 
are heterogeneous regarding their background knowledge, disposition, culture, and 
method of education they are used to. The learning environment can be a class room 
situation with lectures by experts, computer practicals with back up from tutors, or 
distance learning, with support of students provided at a distance, through the world wide 
web. A good training programme needs to reckon with all these situations of training. 

This is only possible with adequate tutors, and appropriate learning materials and 
tools, which need to be maintained and updated by their authors. The learning materials 
need to include standard textbooks, software manuals, and computer exercises. In 
addition, software tools are needed that can be used by students in each of the procedural 
steps of the model development cycle (Figure 1.6). This is an important issue, since 
students in the environmental sciences are mostly not experienced in programming. As a 
result, they may encounter problems when using software that requires users with a lot of 
background in informatics. So, tools are needed matching the conceptual thought 
processes of environmental scientists, which allows students to focus on learning model 
building, instead of learning informatics. For instance, in the procedural step of 
programming the model in the model development cycle (Figure 1.6), the use of 
environmental modelling languages is likely to be efficient, since these provide easy to 
use building blocks for construction of models. For distance learning over the internet, 
additional tools are needed providing alternatives for direct evaluation and 
communication between the student and the tutor in a class room situation. 

The environmental modelling language PCRaster (see Section 1.3.3) comes with 
course material and tools (PCRaster, 2002) for teaching dynamic spatial environmental 
model building, both in a classroom situation, and through distance learning. In this 
thesis, the question will be answered how efficient this material is for training model 
building, and which improvements are needed. 
 
 
1.4 Research questions 
 
1.4.1 Central research question 
 
In order to guarantee that dynamic models built in the future will fulfil all requirements of 
good science, all steps in the model development cycle (Figure 1.6) need to be supported 
by appropriate methods and theories from science and technology, while training tools 
are needed to teach people how to perform all steps in the model development cycle. 
From this viewpoint, a central question is: does existing technology and/or science 
provide sufficient means for (training) all steps in the model development cycle for 
construction of dynamic spatial environmental models? To answer this question, all steps 
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in the model development cycle would need to be evaluated, for all factors in involved in 
dynamic modelling (Figure 1.4), and for all types of dynamic spatial models, which is not 
feasible in the framework of a thesis. Instead, a restriction will be made to dynamic 
spatial models simulating spatially continuous fields only, while a selection of issues 
related to the model development cycle is studied, evaluating only the issues of 1) 
programming, 2) upscaling, 3) inverse modelling, and 4) training, as shown in Figure 
1.13. The central research question is: 
 
Is the current state of computer technology and science sufficient for executing the steps 
of programming, upscaling, and inverse modelling in the model development cycle, and 
for teaching all steps in the model development cycle, with respect to dynamic spatial 
environmental models simulating continuous fields? 
 
The first three issues of programming, upscaling and inverse modelling are procedural 
steps in the model development cycle. They are all important, since a weakness in one of 
these steps will affect the model development cycle as a whole, resulting in a model with     
. 
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Figure 1.13. Model development cycle. Issues of programming, scaling, inverse modelling and teaching (in 
bold type) represent those dealt with in this thesis. 
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a quality below the quality it could have had. The fourth issue of training the model 
development cycle involves teaching the steps of programming, upscaling, and inverse 
modelling, but also teaching the other steps in the model development cycle, which are 
the steps of model structure identification and validation (Figure 1.13). 

For all issues studied in the thesis, there is a need for technology and science, apart 
from other needs which are not considered here, such as the need for human intelligence, 
or the need for field data. Although the issues of programming, upscaling, inverse 
modelling and training all need technology and science, the role of technology and 
science is different for each issue. Although a full separation between technology and 
science is not always possible, since they overlap, the research questions are grouped in 
those mainly related to science, and those mainly related to technology. 

The research questions related to the model development cycle are given in a 
somewhat arbitrary order, since there is no hierarchy in these steps: programming, 
upscaling, inverse modelling. The questions related to the issue of training model 
building are given thereafter, since they can only be answered after answering the 
research questions regarding the model development cycle itself. In the research 
questions defined below, the term model refers to a dynamic spatial environmental model 
simulating spatially continuous fields. 
  
 
1.4.2 Programming: research questions 
 
The step of programming involves the conversion of the mathematical representation of 
the processes in a model to a computer program of the model (Section 1.3.3). Since it 
involves the use of computer software, it is strongly related to existing software 
technology, and the first research questions evaluate how good this technology is for the 
purpose of programming the model. From the limitations that follow from the evaluation 
of existing technology, research questions are posed regarding possible solutions offered 
by scientific concepts for development of new software. The research questions are: 
 
Questions related to software technology: 
 
Are the concepts included in dynamic spatial environmental modelling languages better 
than those of system programming languages, for programming the model? 
 
What are the restrictions of existing dynamic spatial environmental modelling languages 
for executing the procedural step of programming in the model development cycle? 
 
Questions related to science: 
 
Can we extend dynamic spatial environmental modelling languages with (concepts for) 
functions for efficient programming of three dimensional models? 
 
Can we extend dynamic spatial environmental modelling languages with (concepts for) 
functions for efficient programming of stochastic models in order to calculate error 
propagation in dynamic spatial models? 
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1.4.3 Upscaling: research questions 
 
Field data are used to estimate inputs and parameters in a model. Upscaling involves 
scaling methods needed to change the support of field data to appropriate values of inputs 
and parameters at the support used of the model (Section 1.3.4). The issue of upscaling is 
not dealt with in a general way, treating all methods of upscaling, for all possible 
situations. Instead, upscaling is evaluated using two case studies involving upscaling 
methods for infiltration. Apart from research questions related to the specific issue of 
upscaling infiltration, some research questions are posed related to the general issue of 
upscaling. The answers to these questions will be inferred from the knowledge and 
experience gained from the study into infiltration. As a result, the answer to these more 
general research questions related to upscaling will be somewhat restricted. 

The issue of scientific methods for upscaling is still a major research question in 
science, and the research questions to science are posed first. Since it may be possible, 
that scientific methods for upscaling are, or will become available as standard software 
tools, technological issues are treated in the second group of research questions. 

  
Questions related to science: 
 
As noted in section 1.3.4, scaling of infiltration is dealt with by upscaling to 1) the 
support of a catchment (Figure 1.11A) and, 2) the support of the units in a rainfall-runoff 
model (Figure 1.11B). The research questions related to these issues are given in this 
order, followed by one research question regarding upscaling in general: 
 
Upscaling to the support of a catchment: 
 
Is it possible to define an upscaling method to scale infiltration measured at a small 
support (appr. 0.04 m2) to effective values of infiltration for catchments (1-7500 m2), 
which correspond to values derived from measurements at that larger scale, under steady 
state conditions of rainfall, runoff and infiltration? 
 
Does an upscaling method, which scales infiltration measured at a small support (appr. 
0.04 m2) to effective values of infiltration for catchments (1-7500 m2), give better results 
when applied to a dynamic rainfall-runoff model than using the same model without the 
transfer function? 
 
Upscaling to the support of the units in a rainfall-runoff model: 
 
When an upscaling method scaling infiltration measured at a small support (appr. 0.04 
m2) is used to derive effective values of infiltration for model units (appr. 100 m2)  in a 
dynamic rainfall-runoff model, does this rainfall-runoff model give better results 
regarding discharge from a hillslope (appr. 7500 m2) and a catchment (appr. 0.4 km2) 
than these found when the upscaling method is not used? 
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Upscaling in general: 
 
Is the existing software technology sufficient for solving problems of upscaling related to 
estimating inputs and parameters of a rainfall-runoff model, and in other upscaling 
situations? 
 
Questions related to technology: 
 
Is the existing software technology sufficient for solving problems of upscaling related to 
estimating inputs and parameters in a rainfall-runoff model, and in other upscaling 
situations? 
 
  
1.4.4 Inverse modelling: research questions 
 
Inverse modelling is a means to estimate inputs and parameters of a model by comparison 
of a set of outputs of a model with measurements of these outputs. As was noted in 
section 1.3.5, one of the important issues in inverse modelling is to minimise the 
computer time required in an inverse modelling procedure. This issue involves both 
science, for instance the methodology of inverse modelling procedures, and technology, 
for instance computer run time needed to run a model in an iteration of the inverse 
modelling procedure. Just like upscaling, inverse modelling is dealt with in a case study, 
to which most research questions relate. The results of this case study are put in a general 
context, by answering research questions regarding inverse modelling in general. 
  
Questions related to science: 
 
Does existing scientific knowledge provide sufficient means to make predictions of three 
dimensional sedimentary architecture with a dynamic spatial model, conditioned to 
observations? 
 
Does existing scientific knowledge provide sufficient means to do inverse modelling with 
dynamic spatial environmental models? 
 
 
Questions related to technology: 
 
Does existing computer technology provide sufficient means to make predictions of three 
dimensional sedimentary architecture with a dynamic spatial model, conditioned to real-
world observations? 
 
Does existing computer technology provide sufficient means to do inverse modelling with 
dynamic spatial environmental models, in practice? 
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1.4.5 Training: research questions 
 
Training model building involves teaching all steps of the model development cycle 
(Figure 1.13) to people with some background in environmental sciences, but without, or 
with little, background in model building. As noted in section 1.3.6, teaching can only be 
done with appropriate course materials, modelling software, and, in the case of distance 
learning, software for running courses over the internet. These software tools and course 
materials are included in the PCRaster environmental modelling software. It is this set 
which is evaluated in the thesis, aiming at answering the following research question: 
 
Does the existing PCRaster environmental modelling language, its associated course 
material and tools for distance learning, provide an efficient means for teaching dynamic 
spatial model building in all phases of education, for a wide range of people? 
 
 
1.5 Thesis outline 
 
The thesis consists of four parts, where each part focuses on one of the four issues 
explained above. The first part covers the step of programming in the model development 
cycle. Chapter 2 evaluates existing dynamic spatial environmental modelling languages, 
by a comparison with other programming languages. I try to resolve two of the 
restrictions of existing dynamic spatial modelling languages in Chapter 3 and 4. These 
chapters describe a new prototype dynamic spatial modelling language with extra 
functionality, in addition to the functionality of existing dynamic spatial modelling 
languages. Chapter 3 describes the concepts used for three dimensional modelling in this 
language, while Chapter 4 describes how error propagation using a stochastic modelling 
language is done. 

The second part of the thesis deals with the issue of upscaling, by describing two case 
studies into upscaling of infiltration. Chapter 5 describes upscaling of infiltration from the 
local scale to the catchment scale, while Chapter 6 deals with upscaling from the local 
scale to the scale of individual model units of a dynamic spatial model. The third part of 
the thesis covers inverse modelling, dealt with in the case study of Chapter 7, which is a 
dynamic spatial model simulating sedimentary disposition and erosion. 

The fourth part of the thesis focuses on training model building, with a review chapter 
on the PCRaster software and course materials, and their use in training students (Chapter  
8). Chapter 9 gives the conclusions. 
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2 THE VALUE OF ENVIRONMENTAL MODELLING 
LANGUAGES FOR BUILDING DISTRIBUTED 
HYDROLOGICAL MODELS 

 
Derek Karssenberg 
 

 
Abstract: An evaluation is made of the suitability of programming languages for 
hydrological modellers to create distributed, process-based hydrological models. Both 
system programming languages and high level environmental modelling languages are 
evaluated based on a list of requirements for the optimal programming language for such 
models. This is illustrated with a case study, implemented using the PCRaster 
environmental modelling language to create a distributed, process-based hydrological 
model based on the concepts of KINEROS-EUROSEM. The main conclusion is that 
system programming languages are not ideal for hydrologists who are not computer 
programmers because the level of thinking of these languages is too strongly related to 
specialised computer science. A higher level environmental modelling language is better 
in the sense that it operates at the conceptual level of the hydrologist. This is because it 
contains operators that identify hydrological processes that operate on hydrological 
entities like 2D maps, 3D blocks and time series. The case study illustrates the advantages 
of using an environmental modelling language as compared with system programming 
languages in fulfilling requirements on the level of thinking applied in the language, the 
reuse-ability of program code, the lack of technical details in the program, a short model 
development time, and learnability. The study shows that environmental modelling 
languages are equally good as system programming languages in minimising 
programming errors but are worse in generic application and performance. It is expected 
that environmental modelling languages will be used in future mainly for development of 
new models which can be tailored to modelling aims and available field data. 
 
Published as: Karssenberg, D., The value of environmental modelling languages for 
building distruted hydrological models. Hydrological Processes, in press. Reproduced 
with permission. 
 
 
2.1 Introduction 
 
Since the 1980s several major hydrological research groups have been developing 
distributed process-based hydrological models for simulating the transport of water, soil, 
nutrients and pollutants. Examples are groundwater transport models (e.g. AQUA3D, 
2001; Harbaugh and McDonald, 1996; Zheng, 1990), rainfall-runoff models (e.g. SHE, 
Abbott, 1986a,b; TOPMODEL, Beven, 1997; LISFLOOD, De Roo et al., 2000), rainfall-
runoff models including erosion (e.g. Grayson et al., 1992; EUROSEM, Morgan et al., 
1998; Tucker et al., 1999), and rainfall-runoff models with nutrient or pollutant transport 
(e.g. Mackay and Ban, 1997). A single internet search on hydrological + modelling 
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delivers hundreds of responses. Clearly, hydrologists have a continuing need for new and 
better models, since concepts on how to represent hydrological processes in computer 
simulation models are still evolving. This change of ideas in modelling is being driven by 
new observation techniques, including remote sensing, and data storage and presentation 
technology such as Geographical Information Systems (GIS), that provide larger volumes 
of useful data than ever before. As with other areas of science such as astronomy or 
biology, new methods of data collection and processing may improve scientific 
understanding in ways that were not possible before they were introduced. 

The development of new numerical models has always been restricted by the 
functionality of programming languages and computer power. This will continue to be so 
in the future, since model demands on computers and programming languages increase, 
due to a further refinement of model concepts, larger data sets, and a wider application of 
calculation intensive methods such as Monte Carlo simulation. Although computers have 
opened up new research fields in hydrology, at the same time they pose restrictions, and 
the history of hydrological modelling has been influenced by the capacity of computers 
and the languages to program them. 

In the 20th century, we saw a gradual transition from stand alone programs for 
hydrological modelling, developed by small research groups who were at the same time 
developers and users, towards off-the-shelf computer programs with a user friendly 
interface, linked to GIS, for a generic wide application. Initially, there was little unity in 
hydrological modelling and every research group wrote their own software, in system 
programming languages such as C++ or FORTRAN. 

As time went by, the number of models that was worked on reduced as hydrologists 
selected a small set of models that embodied good science and straightforward 
implementation. These are the models that have been linked to GIS. As noted above, GIS 
can be used to supply much information for hydrological modelling, ranging from digital 
elevation models of the land surface to time series of groundwater levels and river flows. 
Hydrologists started to link these GIS databases to their models so that the input and 
output aspects of hydrological modelling could be simplified and visualised, and the 
results placed in a spatial and temporal context. Standard models were coupled to GIS 
following the loose coupling or tight coupling approach (Burrough, 1996). Loose 
coupling involved ad hoc, manual exchange of data between a model with a proprietary 
GIS. Since manual data exchange is susceptible to errors, software for automatic data 
exchange was written and some GIS firms began to hard-wire the hydrological models 
into their systems, which was called tight coupling. This provided hydrologists with a 
ready-to-use modelling tool which was much favoured by consultants, but not by 
scientists. The reason for the disfavour by scientists is that the process-understanding and 
algorithms are rarely state-of-the-art and also that the program code is usually 
inaccessible or difficult to change in such systems. 

Since these standard hard-wired models are of limited value for scientific research, 
hydrologists wishing to develop new models are left with two options. The first approach 
is to develop new models from scratch, or to use blocks of code from others, via a system 
programming language, and to link it to an existing GIS. The second, more recent 
approach, is to use an environmental modelling language (EML) running inside a GIS, 
which is known as embedded coupling (Burrough, 1996). Unlike system programming 
languages, which are generic purpose languages, EML are higher level programming 
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languages with a specific application domain, in our case hydrological model 
construction. The approaches adopted by EML are along the following lines (Wesseling 
et al, 1996a): 

 
1) provide a set of operators operating on spatio-temporal data in which widely 

accepted generic hydrological processes have been coded using accepted, clearly 
understood algorithms, 

2) provide these operators in a suitable way that they can be glued together in a 
model by a hydrologist using his or her hydrological understanding, rather than 
computer expertise, 

3) embed this set of tools for model construction in a GIS-like software environment 
providing data base management and generic visualisation routines for the spatio-
temporal data read and written by the model, 

4) provide standard interfaces to other programming languages so that new or 
alternative operators can be added by the user in ways that are fully compatible 
with the EML. 

 
The range of responses to the challenge of developing EML has been large, although 
most of them do not fulfil all four concepts given above. Some hydrologists (e.g. 
Olsthoorn, 1998) have used spreadsheet programs for modelling, a step that Campbell 
(1985) termed a “revolution in groundwater modelling”, or technical computing 
languages such as MATLAB (MATLAB, 2001). Although very powerful, such languages 
lack an embedded coupling with a GIS. Others developed graphical modelling languages 
with an easy to use interface for model construction (ModelMaker, 2001; STELLA, 
2001). These are very powerful for process modelling, but their non-spatial operators do 
not provide sufficient functionality for hydrological modelling. Modelling languages 
included in many GIS have the advantage that they come with powerful database and 
visualisation tools and that they are per definition spatial. On the other hand, the 
modelling languages of proprietary GIS (e.g. ESRI, 2001) are too much focused on 
database management and static operations, to fulfil the requirements for spatio-temporal 
hydrological modelling. The most interesting developments, however, have been those 
made by specialist groups who have created languages along the four concepts of EML 
given above. These include products such as GRASS (GRASS, 2001), PCRaster 
(PCRaster, 2001; Van Deursen, 1995) and Simile (Simile, 2001). The number of 
hydrologists using these EML is small compared to those using system programming, 
partly because of their more recent development. But EML have proven their usefulness 
in model building, and it is time for an objective evaluation of this addition to the 
hydrologists’ tool box. 

Therefore, this chapter will evaluate the concepts and application of EML for 
hydrological model building. The outline is as follows: first, a set of requirements of a 
programming language for hydrological model construction is defined. Second, a case 
study  illustrates the creation of a runoff model similar to the hydrological component of 
KINEROS-EUROSEM (Morgan et al., 1998), and demonstrates how EML differ from 
system programming languages. The construction of the case study model in EML is 
described using PCRaster. By evaluating this software implementation of the runoff 
model, EML are compared with system programming languages on the basis of the 
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requirements of a programming language for hydrologic model construction given in the 
first part of the chapter. 
 
 
2.2 A programming language for hydrological model building: requirements 
 
There is a continuous need for new and better models, since concepts on how to represent 
hydrological processes in computer simulation models are still evolving. Models evolve 
partly because of changing ideas in hydrology, but also because of the expanding 
availability of input data, and the increasing capability to handle them using GIS, as noted 
in the introduction. Since field data are important inputs to models, but also crucial for 
model calibration and validation, it is necessary that the process descriptions in the model 
are tailored to the available data. Models ignoring important processes which can be fed 
with input data will be too simple, while models representing processes for which no data 
are available will be unnecessarily complex (Van der Perk, 1997). In addition, the model 
process descriptions need to be tailored to the aims of modelling. Modelling the peak 
discharges of a river system could be done with a lumped, or simple spatial model in 
many cases, while predicting surface runoff and erosion needs a more complex spatial 
model. Since both the data available and the aim of the model will be different for each 
study, it could be said that each study needs a new model, or at least a model which can 
be modified compared to models developed for previous studies. This does not mean that 
each model is unique in all its details, since there are concepts in hydrology which have 
proven their generic application, like interception equations or surface water routing 
techniques, which are applicable in many models. The main challenge in model building 
is to find the optimal generic process representations and an appropriate way to combine 
these for a specific purpose. 

If we look at model building in more detail, model development can be regarded as a 
process whereby different candidate model structures are evaluated until an optimal 
model formulation is found (Van Deursen et al., 2000). Most modelling studies involve 
such a model development cycle (Figure 2.1), although it is mostly not described in 
reports. But there are examples of studies describing or explicitly focusing on such a 
comparison between different model structures (e.g., Van der Perk, 1997; Donelly-
Makowecki and Moore, 1999; Grayson et al., 1992). The model development cycle 
involves three phases per candidate model (Figure 2.1). In the first phase, the 
mathematical description of the model is defined, based on knowledge of hydrological 
processes and how they interact in the study area. It contains the mathematical equations 
simulating the set of hydrological processes. The computer program of the model, written 
in the second phase, is the numerical representation of this mathematical description. In 
the third phase, this computer model is tested by evaluating whether it fulfils the aim of 
the study or not. This involves mostly calibration of the model with field data. This phase 
may reveal weaknesses in the model. If weaknesses are found, attempts are made to 
improve the next candidate model structure: the mathematical description of the model is 
redefined, and a new program is written and tested against field data. Evaluating better 
and better candidate models is continued until a model is found which fulfils the aims of 
the modelling study. 
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Figure 2.1. Model development cycle. 
 

The second phase in the model development cycle involves programming. It is here 
that the choice of the programming language becomes important. The choice of the 
programming language is currently not a key issue in scientific literature, probably 
because model implementation is regarded as a technical detail, unrelated to hydrology. 
But if we look at Figure 2.1, we see that the language used for model implementation 
may have major impact on the results of a modelling study since it affects the whole 
model development cycle. For instance, if it is possible with the language to change the 
model without too much programming, it allows evaluation of a larger number of 
different, candidate models, simply because it is practically more feasible. Also, the 
efficiency of converting the mathematical description of processes to a program code of 
the computer model is highly dependent on the computer language used. If the computer 
language is difficult to handle by hydrologists, specialist programmers are needed for 
software implementation, and evaluating different candidate models becomes the work of 
a team of programmers and hydrologists, where the hydrologist has to explain to the 
programmer how each candidate model should be programmed. Instead, a modelling 
language that can be used by the hydrologist would permit prompt software 
implementation of a new mathematical description of a process by the hydrologist, 
allowing for interactive changing the model and evaluating its output. Other issues related 
to the choice of the language are also important here, such as performance of the model, 
or the chance of errors in the code. 

For judging between different programming languages, a list of requirements for the 
optimal computer programming language for hydrological model development is needed. 
Based on a list of criteria for computer languages in Highman (1967), and with the model 
development cycle in mind, the following list of requirements for a language for 
hydrologic model construction has been formulated. 
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1) Level of thinking of hydrologists. The level of thinking of a hydrologist should be 
represented in the model program code of models. If the concepts of the computer 
language represent those of hydrology, it allows easy conversion of the mathematical 
description of processes to program code. Also, if the program code resembles 
hydrological concepts, the language is more accessible to hydrologists. As a result, 
hydrologists can program models themselves, without the need for specialist 
programmers. In addition, a language operating at the level of thinking of hydrologists 
enables easy exchange of program code between researchers since programs can be read 
by hydrologists. 
 
2) Reuse of program code. Different hydrological models use similar standard operations 
and algorithms for the simulation of processes. For each process there are many programs 
that perform the same computations according to identical equations and algorithms 
described in the literature. For making a new model that needs a different combination of 
processes it should be possible to re-use and combine the program code of existing 
models. A programming language is needed that allows reuse of blocks of already written 
code simulating specific processes (e.g., GMS, 1998; Harbaugh and McDonald, 1996; 
Leavesley et al., 1998). For model development, it should be easy to link these blocks 
together without the burden of complex programming. 
 
3) Generic approach to common problems. It should be possible to make any type of 
distributed process-based model with the language, including (sub-) models for 
simulating environmental processes related to process-based hydrological modelling such 
as plant growth, received solar radiation and land degradation. 
 
4) No technical computer details. Most developers of hydrological models are 
hydrologists, not computer programmers. So a programming language for model 
development should relieve the researcher from technical computer details that would 
distract her or him from scientific research. 
 
5) Short development time. A programming language resulting in shorter development 
times would allow modifications to existing models or construction of completely new 
models within the framework of one modelling study, thereby tailoring the model to the 
modelling aims and available data. From the viewpoint of the model development cycle 
(Figure 2.1), a short development time is even more important. If it were possible to 
construct a new candidate model by changing an existing candidate model without too 
much programming work, it would allow evaluation of more different candidate models. 
 
6) Minimising programming errors. The possibility of making programming errors in 
hydrological model development should be as low as possible. Errors easily occur since 
hydrological models are large and complex; having many different processes being 
simulated by complicated numerical solution schemes. It should be easy to detect these 
errors. 
 
7) High performance. Since distributed hydrological models use large data sets and 
computationally intensive algorithms,  execution times can be a problem and a 
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programming language is needed that minimizes computation time. This requirement 
does not have the highest priority since the performance of computers is still doubling 
every 2 years. 
 
8) Easy to learn for hydrologists. The programming language should be easy to learn for 
hydrologists who do not necessarily have programming experience. 
 
 
2.3 Mathematical definition of the runoff model 
 
The case study used in this chapter for the evaluation of different programming languages 
is a runoff model aiming at simulating the effect of different patterns and directions of 
runoff pathways in agricultural catchments on the shape of the hydrograph at different 
locations. The model should describe the processes of interception, surface storage, 
infiltration and runoff with process-based equations, since detailed, spatially and 
temporally distributed, field data are available, including maps of preferential runoff 
pathways over fields. Most of these processes are included in KINEROS-EUROSEM 
(Morgan et al., 1986) but this model does not simulate preferential runoff directions on 
fields caused by agricultural operations. So a new model has been constructed that 
includes data on the pattern of runoff pathways over fields. All other process descriptions 
are taken from EUROSEM, schematised in Figure 2.2. 

For each time step, the net rainfall (Pn, m per time step) reaching the ground is: 
 
 CcPPn ⋅−=          (1) 
 
with; P, the open field rainfall in meters per time step; c, percentage cover of the 
vegetation (m2/m2); and C, the amount of water transported to the interception store, in 
meters per time step for the area covered with vegetation. C is (Merriam, 1973): 
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with; Sm, maximum content of interception store (m); Pc, t-1 , cumulative precipitation 
since start of the rainfall, at preceding time step (m); Pc,t, cumulative precipitation (m) 
since start of the rainfall, at current time step. Potential infiltration is simulated with the 
Smith and Parlange equation (Smith and Parlange, 1978) additionally accounting for rock 
fragments in the soil (Woolisher et al., 1990): 
 

1−
⋅= /BF

/BF

c

c

e
eKF ,        (3) 

 
with; K, effective saturated hydraulic conductivity of the field (m per time step); Fc, 
cumulative infiltration since start of the rain (m); B, saturation deficit parameter modified 
for rock fragments (m); F, potential amount of infiltration in a time step (m per time 
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step). Water is routed through rill areas with the kinematic wave using the Manning 
equation (Li et al., 1975; Chow et al., 1988). 
 
 

 
 
Figure 2.2. Flow diagram of the runoff model. 
 
 
 
2.4 Environmental modelling language for hydrological modelling 
 
What is the best programming language to construct an event based runoff model for the 
case study described above? For answering this question, languages can be compared by 
looking at the entities that are changed by the principal statements (operators) of the 
language and the type of functionality that is provided by the operators. Both the kind of 
entities and the functionality of the operators should 1) be compliant to the kind of 
objects that will be changed by the language and what changes need to be made to them, 
and 2) represent the thinking level of the user of the language. Table 2.1 gives the entities 
and the functionality of some widely used programming languages. It shows that some 
languages represent most aspects of the computer in their entities and operators, so called     
. 
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Table 2.1. Entities and functionality of operators of some programming languages. Top: lower level 
languages, bottom: higher level languages. 
 
Language Entity Functionality of operators 

Assembly languages bits changing bits 

System programming languages 
(e.g. Fortran, C++) 

integers, floating points, arays 
 

adding, summing, looping 

General purpose scripting 
languages (e.g. Tcl/Tk, Python) 

strings, integers, arrays adding, summing, looping 

Standard Query Language tabular data selecting data from a table, 
ordering 

Technical computing languages 
(e.g. Splus, Matlab) 

matrices, floating points matrix inversion, adding matrices, 
calculating statistics 

Graphical modelling systems 
(e.g. ModelMaker, Stella) 

non spatials 
states, fluxes 

fluxes between states 

Environmental modelling 
languages (e.g., PCRaster, Idrisi) 

maps, timeseries, blocks summing maps, iterating through 
time, topological links, transport 
of water, visualisation 

 
 
low-level languages, while others deal with entities and operators that are specific for a 
certain application field, so called high-level languages. Assembly languages, being low-
level languages, are not efficient for environmental model construction since virtually 
every aspect of the computer has to be defined in the program. System programming 
languages and generic scripting languages are at a higher level, since each operator 
represents several machine instructions that would need a block of program code if 
written in an assembly language. 

The entities of system programming languages such as strings and floating points are 
not at the level of thinking of a hydrologist, neither do they represent the objects of study 
in hydrology. In a program for a hydrological model, entities are needed that represent 
hydrological objects such as landscapes (maps), below surface composition (3D blocks), 
and time (time series), while operations at these entities are needed that represent 
hydrological processes. To illustrate this, assume that the interception equation (1) has to 
be implemented with a system programming language. Much program code would be 
needed for defining data structures and file formats of spatio-temporal data, iterations for 
defining the time, a spatial 'multiply' operator operating for each map unit. It would be 
more convenient to use a programming language that sets the loop and the operations in 
just two statements: 
 

timer 100 
 save I = P * c 
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where timer defines iterations saying that the statement below the timer has to be 
executed for 100 time steps. The variables I, P, c are spatial (maps) or non-spatial 
entities defined implicitly in the language. The operator '*' multiplies two spatial entities 
and the 'save' operator means the result should be saved for each time step. So the 
statements mean multiply map P with map c resulting in the map I, and do this for each 
time step. Another example is the kinematic wave transport of water needed for the 
model. Kinematic wave transport with the Manning equation is a more complicated 
operation than multiplication but it is also generic and involves only a few input map 
entities (see Li et al., 1975; Chow et al., 1988): 
 
 Qt = f(Dir, Qt-1, QIn, α, β, T, D),        
 
with: 
 
f kinematic wave operator, 
Dir map with directions of flow, 
Qt-1 map with water discharge in direction Dir in previous time step (e.g., m3/s), 
QIn map with addition or subtraction of water to/from the flow (e.g., m3/s), 
α map with coefficient (Li et al., 1975; Chow et al., 1988), 
β map with coefficient (momentum or Boussinesq coefficient, Chow et al., 1988), 
T time step (e.g., s), 
D map with distance of flow to downstream unit in direction Dir, 
Qt map with water discharge in direction Dir at current time step (e.g., m3/s). 
 
In a system programming language, this operation takes several pages of code to be 
implemented since it is a spatial operation that needs a numerical solution of the 
kinematic wave equations. The higher level definition in an EML is one line of code as 
one operation operating on spatial entities (maps) as shown above. This use of higher 
level entities and operators is the main concept of EML.  

The practical application of this depends upon the generic nature of the entities and 
operators in the EML. A relatively limited number of entities and operators should 
support a wide range of models to be constructed, for many different hydrological 
situations. Simple operations like loops and mathematical operations on maps make up 
the main part of most models and are generic. The same seems to hold for more complex 
operations like kinematic wave transport or groundwater flow. Stable numerical solution 
techniques for most of these operations have been described in papers and standard 
textbooks (e.g. Bear and Verruijt, 1987; Chow, 1988; Zheng, 1993; Olivera and 
Maidment, 1999) and can be regarded as methods that have proven their general 
application. 

High level statements for hydrological modelling can only be made with EML that 
have built in knowledge of both spatial and temporal entities, supported by hydrological 
operators such as kinematic wave transport. Examples of such EML are GRASS 
(GRASS, 2001), PCRaster (Van Deursen, 1995; Wesseling et al., 1996a; PCRaster, 
2001), Simile (Simile, 2001) and concepts described by Takeyama (1997). 
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2.5 Implementation of the runoff model with PCRaster 
 
PCRaster has been used to illustrate how the runoff model can be implemented in an 
EML. Entities in PCRaster are series of raster maps for spatio-temporal attributes, time 
series for temporal non-spatial data and lookup tables. Map entities are assigned a type 
according to their content in hydrological/geographical context. Types used are Boolean, 
nominal and ordinal for classified data, scalar and directional for continuous data, and 
local drain direction representing drainage networks (Figure 2.3). The PCRaster language 
contains 125 operators operating on these entities. Operators included are non-spatial 
(point) operations, spatial operations (Burrough and McDonnell, 1998) and spatio-
temporal time operations for reading and writing temporal data, e.g. hydrographs at 
specific locations. The concept of the language is similar to mathematical thinking and 
notation. As in mathematics, each operator in PCRaster solely affects the resulting 
variable of that operator and has no side effects on other variables in the program, which 
might be the case in system programming languages. Additionally, the syntax obeys 
mathematical notation. For example, creating a map containing for each cell the total          
. 
 

 
 
Figure 2.3. Input and output maps of IUpstreamArea = catchmenttotal(I,Ldd); 
IUpstreamArea, infiltration in upstream area; I, infiltration per cell; Ldd, local drain direction map 
(zoomed area), lines represent flow directions. 
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amount of a variable in its upstream area is done with the 'catchmenttotal' operator of 
PCRaster. For infiltration: 
 

report  IUpstreamArea = catchmenttotal(I,Ldd); 
 
where the 'catchmenttotal' operator has two inputs, the map I with the amount of 
infiltration for each cell and the map Ldd, the local drain direction map defining the 
drainage pattern. The operator generates a new map (here named IUpstreamArea) 
containing for each cell the total amount of infiltration in its catchment (Figure 2.3). In 
the implementation of the runoff model budget checks on catchment scale are performed 
by applying this operation on all water fluxes (e.g. precipitation, infiltration, surface 
storage) and summing results. 

A PCRaster program (script) is structured in different sections (Table 2.2). The 
binding is a list of program variables linked to filenames. The initial section initialises the 
model by setting initial states and constant values of variables using the PCRaster 
operators. In the case study model, operations in this section calculate constant 
parameters like channel dimensions and roughness, interception parameters, infiltration 
parameters and initial states like soil water content. The dynamic section is an iterative 
sequential section and loops for the number of time steps defined in the timer section. It 
contains operations for the temporal behaviour of the model: interception, infiltration, 
surface storage, kinematic wave transport. The result of each separate operation can be 
saved with the report keyword for each time step or a selection of time steps. 

GIS-like database and visualisation software for spatio-temporal data using the file 
formats of the PCRaster language is integrated with PCRaster in one system. The case 
study model uses this software for scenario studies in cultivated land in the Ouvèze river 
basin (S. France). The database consists of rain time series files, 10 maps and 35 lookup 
tables that are directly read by the EML program. PCRaster supports prompt visualisation 
of its entities with map and time series display programs. Model results were significantly 
different for different patterns of runoff pathways, as Figure 2.4 shows (cf. Van Dijck, 
2000). An extensive description of the model is available at WWW 
http://www.geog.uu.nl/pcraster/runoff/. 
 
 
2.6 Evaluation of environmental modelling languages 
 
Based on the example of implementing the runoff model with PCRaster, it is possible to 
make a judgement about the usefulness of such an EML for hydrological model 
construction. This assessment is done per requirement given in the introduction and a 
comparison is made with system programming. Table 2.3 provides a judgement based on 
the discussion below. 
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Table 2.2. Program script of the model, text behind # are remarks. A selection of code is shown, code left 
out is indicated with '...' . Text in blocks describes left out or partly shown program code. 



 54

 

 
 

 
 
Figure 2.4. Runoff for one rain event, effect of drainage pattern on discharge. Top: runoff after 3 hours; 
left, natural drainage pattern; right, artificial drainage pattern. Bottom: runoff at outflow point left on maps, 
natural drainage pattern and artificial drainage pattern. 
 
1) Level of thinking of hydrologists 
Unlike system programming languages using entities and operators at the level of a 
computer, the EML uses entities and operators representing hydrological attributes, 
dimensions and processes. In addition, hydrologists are familiar with the mathematical 
notation used. This higher level of thinking of EML opens two possibilities. Unlike 
system programming languages, the EML can quickly teach environmental researchers 
without specialist programming knowledge to develop models. Additionally models can 
be easily worked on by different researchers because they can read each other’s 
programs. This is more difficult for system programs that generally can be read only by 
the specialist programmer in a research team. 
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Table 2.3 Fulfilment of requirements for distributed hydrological modelling by system programming 
languages and PCRaster: +, mainly fulfilled; +/– partly fulfilled; –, not fulfilled. 
 

 System programming languages PCRaster environmental 
modelling language 

Level of thinking  of hydrologists 
Reuse-able 
Generic  
No technical computer details 
Short development time 
Minimising programming errors 
High performance 
Easy to learn for hydrologists 

– 
+/– 
+ 
– 
– 

+/– 
+ 
– 

+ 
+ 
– 
+ 
+ 

+/– 
+/– 
+ 

 
 
2) Reuse of program code 
The EML consists of higher level generic operators simulating hydrological processes 
which are combined to program the model. The development of these operators has been 
done in a system programming language by specialist programmers. So, from the 
technical point of view, combining operators in an EML means gluing together and 
reusing the program code that is behind these operators. The case study illustrates that 
this reuse is large. The model in the PCRaster language is only 340 lines of code while 
the amount of C++ code behind the PCRaster operators used is at least 15,000 lines. 

Combining different blocks of code in a system programming language (e.g., 
Leavesley et al., 1998) is in principle also possible, but needs the use of a style guide 
which should exactly be followed by the programmer. Instead, an EML program 
implicitly provides standardisation of the components combined, such as standard 
discretization of time and space in standard file formats. This implicit standardisation 
allows automatic checks performed by the EML if operators are combined. 
 
3) Generic approach to common problems 
As noted in the introduction, an EML captures generic aspects of the hydrological 
processes in a standard set of operators. The PCRaster language, for instance, provides a 
means to write models for other fields of hydrology and geomorphology (Eleveld, 1999; 
Van Deursen and Kwadijk, 1993; De Roo et al., 2000), and fields such as radio ecology 
(Van der Perk et al., 2000), plant ecology (Van Deursen and Heil, 1993; Kessel, 1999), 
ornithology (Van Langevelde, 2000) and veterinary science (Brama et al., 2000). 
Development of distributed models in PCRaster allows integrated modelling of (sub-) 
systems of the environment. Integration of different spatial-temporal processes, whether 
human, hydrological, ecological, geomorphologic, toxicological, is possible in one 
orderly computer program  (e.g. Van der Perk et al., 2000). 

A major restriction of EML is that the model builder is restricted by the concepts of 
the language and the operators provided. The PCRaster language, for instance, can be 
regarded as generic for simulating hydrological processes in 2D space, although the user 
has to submit him or herself to the raster based approach in modelling. In addition, the 
current language has many restrictions that are not shown by our case study. It does not 
support three-dimensional spatial entities and operations such as groundwater flow 
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neither does it include standard functionality for stochastic modelling. This is also not 
supported by other EML. Since the development of EML still continues, it can be 
expected that such restrictions will be solved in the next 10 years, since concepts for these 
kinds of extensions exist (e.g., Pebesma et al., 2000; Karssenberg et al., 2000; chapter 3 
and 4). But even with these additions, there will be always models that cannot be built 
with an EML, simply because its set of operators provided is not extensive. To solve 
these problems, users need to be able to program their own functions operating on maps 
in a system programming language, which can be made available as a standard operator 
in the EML. This increases the application range of the language. This plugging in of user 
made operators is already possible in systems like GRASS and PCRaster.  
 
4) No technical computer details 
Since EML are high level languages, technical computer details do not need to be defined 
in an EML program. For instance, storing maps for each time step is done by preceding a 
standard statement with the 'report' keyword in PCRaster, something that would take 
more code and format definitions if a system programming language would be used. 
 
5) Short development time 
Evaluating different model structures and finding the optimal model for a specific 
research project is possible with EML, since alternative models can be built by 
recombining the standard operators of the language. Immediate post-modelling 
visualisation of model results is possible with the standard visualisation routines 
operating on the entities (e.g., maps) used in the language. As a result, models can be 
reconstructed, run, and visualised in an almost interactive way, where it is easy to 
evaluate the model results for different alternative model structures. System programming 
languages do not support this interactive approach since these do not provide the scripting 
framework of EML to recombine and glue together operations. The short development 
time is illustrated by our rainfall-runoff model which took one environmental researcher 
without specialist programming knowledge two weeks to program in the PCRaster 
language, with testing. Including and testing different interception equations and 
removing the interrill-rill process description for another modelling study took us 2 days. 
These development times are short compared to model development in a system 
programming language. This difference is mainly caused by the high level character of 
the EML. Operators tested by developers and users of the EML are applied that would 
take weeks to be developed from scratch in a system programming language. 
 
6) Minimising programming errors 
An EML embodies methods for reducing programming errors that are not in system 
programming languages. By programming in an EML high level operators are combined 
that have been developed by professional programmers and tested in past research 
projects. For instance, the numerical solution implemented in the kinematic wave 
operator of PCRaster has been improved several times throughout the past 5 years, 
resulting in a stable, reliable operation with generic application. Someone who writes a 
model using this operator implements 5 years of research experience in the program. The 
data typing mechanism in PCRaster prevents the user from carrying out nonsense 
operations since each operator is checked on its input and output. In preventing errors, it 
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is important that the programmer has a good overview of the complete program and its 
inputs and outputs, which is guaranteed by the relatively short PCRaster scripts. In 
addition, intermediate model results in a scripting program can easily be stored on hard 
disk, by adding a save operator to a line, and these can be visualised with the embedded 
visualisation tools. So models can be checked step by step by reporting such intermediate 
results. 

This immediate visualisation is the main debugging mechanism provided. 
Environmental modelling languages do not come with an automatic debugger, which is 
provided by system programming languages. This is a major disadvantage of EML, and it 
would be a useful addition, especially if it provides an automatic mechanism to check 
budgets in hydrological models, too. Currently, the modeller has to define budget checks 
explicitly in the environmental modelling program. This is quite well possible using the 
standard operators, but may involve quite an amount of work. The case study model 
includes 40 lines of code for checking all budgets. 
 
7) High performance 
Programs written by professional programmers in system programming languages will 
usually have shorter execution times than those written in EML. This is mainly because 
EML are scripting languages that have to perform more run time checks than system 
programming software (Ousterhout, 1998). In addition, programs written in system 
programming languages can be optimised, where EML do not have many possibilities for 
optimisation since fixed operators are glued together. On the other hand, the performance 
of an environmental modelling application tends to be dominated by the performance of 
the separate operators, which are typically implemented in a system programming 
language by professional programmers. This means that in some cases an EML program 
may be almost equally fast as a system programming language program. Still, EML 
models will generally be slower than models developed in system programming 
languages. Optimisation of a system programming language version of a model originally 
developed in PCRaster decreased run times by a factor 8 (Wesseling et al., 1996b). 
 
8) Easy to learn for hydrologists 
An EML can be easily learned because the level of thinking of the language corresponds 
to the way of thinking of hydrologists (chapter 8, published as Karssenberg et al., 2001). 
The functionality of each of the operators in the language can be taught by using these 
operators from the command line, without using the iterative program. The next step, 
modelling in time, is to combine the operators in a program. By following this learning 
path, scientists can learn to use these languages in one or two weeks. This is a short 
learning curve compared to system programming languages, since for using these, 
understanding is needed of computer details. 
 
 
2.7 Future implications for hydrological modelling 
 
Since EML are easy to learn for people without knowledge of programming, the 
threshold is low for hydrologists who wish to use them. But many researchers will still 
prefer system programming languages. The choice of the programming language will 
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mainly depend on the kind of model that needs to be constructed. It can be expected that 
development of existing models will be done in the programming language (mostly a 
system programming language) in which these were originally developed, since rewriting 
these models in an EML would be inefficient for developers feeling at ease with the 
language they have always been using, and there is not much reason for rewriting these 
models in a different language anyway. Also for new models, system programming 
languages can be more efficient than EML. This holds mainly when performance of the 
model is important or when models need to be developed with concepts and functions 
which are not supported by an EML, although most EML come with a facility to plug in 
new operators, as noted above. 

The strongest aspect of EML, and the main reason why they will have impact on 
future hydrological research, is their ease of use for constructing new models and to 
quickly modify existing models. In addition to currently existing standard models with 
fixed process equations, models worked on by many people will be developed that are 
under continuous change, since an EML provides code that can easily be read and 
changed by many people who wish to tailor models to their research. Working on a model 
with several people is also possible with system programming languages, but these 
languages do not provide an explicit standardization of how to represent hydrological 
processes in computer code. Such standardization is provided by EML. 

Also, EML are a strong tool in the process of finding the optimal model, represented 
by the model development cycle (Figure 2.1), since modification of the model takes little 
time, and multiple models can be tried out in a certain research study. This opens the 
possibility to tailor a hydrological model to the available input data and aims of a 
modelling study. Such model adjustment is also possible using a system programming 
language, although it would take much more time. 
 
 
2.8 Conclusions 
 
Environmental modelling programming languages are conceptually attractive for 
hydrological model construction because they use entities and operators pitched at the 
level of thinking needed for writing numerical hydrological models. The case study with 
PCRaster shows that, compared to system programming, existing EML are better in 
reuse-ability of program code, lack of technical details in the program, short development 
time and learnability. They are equally good or worse than system programming 
languages in minimising programming errors, generic application and performance. In 
future, it is expected that the application of system programming languages will move to 
more specialised models, while EML will be used to construct continuously evolving 
models where tailoring to study aims and field data is important. 
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3. A PROTOTYPE DYNAMIC ENVIRONMENTAL MODELLING 
LANGUAGE FOR MODELLING IN TWO AND THREE 
SPATIAL DIMENSIONS 

 
Derek Karssenberg (with Kor de Jong) 

 
 
Abstract: Environmental modelling languages are programming languages developed as 
a tool for building computer models simulating environmental processes. They come with 
database and visualisation routines for the data used in the models. Environmental 
modelling languages provide the possibility to construct dynamic models, also called 
forward models, which are simulations run forward in time, where the state of the model 
at time t is defined as a function of its state in a time step preceding t. Nowadays, these 
modelling languages can deal with simulations in two spatial dimensions, but existing 
software does not support the construction of models in three dimensions. We describe 
concepts of an environmental modelling language supporting dynamic model 
construction in two and three spatial dimensions. The lateral dimension is represented by 
gridded maps, with a regular discretisation, while the vertical dimension is represented by 
an irregular discretisation in voxels. Universal spatial functions are described with these 
entities of the modelling language as input. Dynamic modelling through time is possible 
by combining these functions in structured script sections, providing a section which is 
executed repetitively, representing the time steps. The concepts of the language are 
illustrated with an example model, built with a prototype of the language. 
 
 
3.1 Introduction 
 
In the environmental sciences, numerical computer models are a powerful means to 
represent and communicate our understanding of the environment, and have a wide 
application in predicting future changes in natural processes, often as a result of human 
impact. Since most natural processes have spatial components that change through time, 
these environmental computer models are typically spatial, with a flow of information in 
two or three dimensional space, and over time. The temporal behaviour is mostly 
simulated by dynamic modelling, using rules of cause and effect in time. Dynamic 
modelling involves a simulation which is run forward in time, where the state of a model 
at time t is defined as a function of its state in a period or time step preceding t, mostly 
represented as t-1. The function representing the transition of the state of a model 
between t-1 and t can be a deterministic, empirical, or probabilistic function, or a set of 
interrelated functions. Examples of environmental models are found in research fields 
such as hydrology, ecology, crop science, soil science, sedimentology, climatology, 
glaciology. 

Environmental models have been and still continue to be  programmed using system 
programming languages such as C++ or Fortran, because most environmental modellers 
are used to building models this way, and also because these languages enable almost any 
model to be programmed. Although not widely used, modelling languages included in 
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many Geographical Information Systems (GIS) are a potential alternative for developing 
environmental models, since their concepts provide advantages over system programming 
languages, when applied for environmental model construction (Chapter 2). Unlike 
system programming languages, modelling languages in GIS 
 

- provide pre-programmed functions in which commonly used spatial algorithms 
have been pre-programmed, 

- provide these functions in a suitable way such that they can be glued together in a 
model by a modeller using his or her understanding of environmental processes 
rather than computer expertise, 

- provide generic tools for database management and visualisation of data read and 
written by the model. 

 
The reasons why standard GIS (e.g. ESRI 2001, IDRISI 2001) have so far failed to 
become important tools for environmental model construction is mainly because of their 
limited set of spatial functions and a lack of efficient interfaces for spatio-temporal model 
construction, such as scripting environments, to glue these together in temporal model 
scripts. In addition, most proprietary GIS lack visualisation tools and database 
management for temporal data, such as rain time series or time series of vegetation 
patterns. Even though standard GIS provide insufficient functionality for environmental 
model construction, the three conceptual advantages of GIS modelling languages over 
system programming languages, as noted above, still exist. This has driven specialist 
research groups to develop new modelling languages with sufficient functionality for 
spatio-temporal model building, embedded in GIS (e.g. Takeyama and Couclelis 1997, 
GRASS 2001, PCRaster 2001). For environmental model building, these so called 
environmental modelling languages now provide an alternative to system programming 
languages. For instance, the PCRaster language (Van Deursen 1995, Wesseling et al. 
1996, PCRaster 2001)  includes 120 spatial and non spatial functions on gridded maps. 
Their syntax follows mathematical notation: 
 

ResultMap = function(InputMap1..n)     (1) 
 
where function is a pre-programmed function, ResultMap is its output and InputMap1..n 
are the input maps. For model building, these functions are glued together in a model 
script (Figure 3.1), structured in sections. The functions in the ‘initial’ section derive a set 
of maps Map1..n from base maps available in the database. Each map contains values 
representing a spatial variable used in the model, where the initial section results in 
attribute values representing the state of the model at the start of the model run, at t=0. 
The temporal behaviour is represented by the set of operations in the ‘dynamic’ section. 
This same set of operations calculates for each time step the attribute values on Map1..n 
for that time step. For each time step t+1, the operations in the dynamic section use the 
values on Map1..n at time step t as their input or maps read from the data base, for each 
time step. 

This simple approach of gluing together spatial operations in a model script section 
which   is   repeatedly   executed,   has   proved   to   be   powerful   for   dynamic   spatial 



 65

   

���

�������������	

��� �����

����
���


���

�������
����	
�	��	�
����������������
��
����
����

��������������	��	���������
����	
�	��	�
����������������
��
����
����

���

 
 
Figure 3.1. (A) Concepts and (B) modelling script for spatio-temporal modelling in GIS. 
 
environmental model building in a wide range of fields, which is shown by the case 
studies described in Chapter 2, and Chapters 5-8, and many other research studies (e.g., 
De Roo et al. 2000, De Wit, 2001, Eleveld 1999, Van der Perk et al. 2001, Van Deursen 
and Heil 1993, Kessel 1999, Van Langevelde 2000). An evaluation of the PCRaster 
modelling software for hydrologic model building in Chapter 2 (published as 
Karssenberg 2002), showed that its successful, wide, application is mainly because the 
pre-programmed functions can easily be glued together in a model script, without the 
need of specialist programmers. But the same evaluation revealed many weaknesses of 
environmental modelling languages. The main disadvantage lies in the restricted 
functionality. In particular, the existing spatio-temporal environmental modelling 
languages do not provide functionality for dynamic modelling in three dimensions nor for 
handling error propagation in dynamic modelling. This chapter focuses on modelling in 
three dimensions, while chapter 4 will deal with error propagation modelling. 

In addition to the two lateral dimensions, the third, vertical dimension, has an obvious 
relevance in many environmental models that are used to simulate forward in time. Three 
dimensional models are found in fields such as hydrology and soil science (e.g., 
groundwater flow modelling, Harbaugh and McDonald 1996), sedimentology (e.g., 
Chapter 7, published as Karssenberg et al. 2001), marine and lacustrine sciences (e.g., 
water circulation modelling, Mason et al. 1994), crop and vegetation science (e.g., 
canopy modelling, Song et al. 1997), and meteorology. These models are generally 
developed in system programming languages with a restricted application of GIS for 
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visualisation of model inputs and outputs. Although three dimensional GIS exist (e.g., 
EarthVision 2002, LYNX 2002), these are not used for dynamic modelling, since their 
functionality is focused on database management, static (non temporal) operations, such 
as volume modelling, and visualisation. There is a strong need to extend existing 
environmental modelling languages, such as the PCRaster language described above, 
which do provide functionality for dynamic modelling, with three-dimensional 
functionality, in addition to their two dimensional functions on maps. 

This chapter describes how environmental modelling languages can be extended with 
functionality for three-dimensional modelling, and provides a prototype environmental 
modelling language encapsulating these concepts, which is partly developed using 
functions from the PCRaster software (Van Deursen 1995, PCRaster 2002). The outline is 
as follows. First, the application field of the developed language is described. Second, the 
concepts of the language itself, its entities and functions, and the syntax is described 
while a prototype language developed following these concepts is used in an example 
model to illustrate its application. Finally, the results are discussed. 
 
 
3.2 Application field 
 
3.2.1 Spatial dimension 
 
The environmental modelling language is meant to simulate environmental processes 
occurring within a three dimensional block of material such as rock, air, and/or 
vegetation. The focus is on spatially continuous phenomena. Processes dealing with 
individuals moving in space, such as animals (e.g., Westervelt and Hopkins 1999, Bian 
2000), is not dealt with, since this needs a different approach which is beyond the scope 
of this research. Within the three dimensional block, different units, such as rock layers, 
can be distinguished, each with their specific properties for the process simulated. The 
shape of the units and the block may be fixed or changing. It is fixed, when flow of 
material or information within the block is modelled (Figure 3.2A). Examples of such 
models are found in hydrology, oceanography, geochemistry, climatology, meteorology, 
pedology, ecology. For instance, in groundwater modelling (e.g., Harbaugh and 
McDonald 1996), flow is simulated in and between aquifers that mostly do not change in 
form and location in time spans represented by the model. 
 The shape of the block will change when flow of material is simulated resulting in a 
change in shape of existing units, removal, or addition of units (Figure 3.2B). Models in 
fields such as geomorphology (e.g., Ahnert, 1987), sedimentology (e.g., Tetzlaff and 
Harbaugh, 1989; Mackey and Bridge 1995),  petroleum engineering (Chapter 7, 
published as Karssenberg et al. 2001), glaciology, use a block of solid earth or ice where 
erosion and deposition of material causes addition or abstraction of layers of material on 
the top side of the block. Processes such as compaction, faulting, soil creep, will cause a 
change in shape of the units inside the block. In plant growth models, the block of units 
could represent a canopy, and growth of new layers of plants could extend the block with 
new plant layers on the top side. Our focus is on changes in the shape of the block by 
movement, deposition, or compression in vertical direction, ignoring changes in the block 
in lateral direction, such as caused by folding. 
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Figure 3.2. (A) Processes in a three-dimensional block with a constant shape, (B) processes changing the 
shape of a three dimensional block. 
 
 
3.2.2 Temporal dimension 
 
The focus is on process simulating environmental models that use the rules of cause and 
effect forward in  time, with a discretisation of time in time steps. The state of the model 
variables, which are attributes in one, two, or three dimensional space, at time t+1 is 
defined by their state at t and a function f, with associated parameters P1..k: 
 
 A1..m(t+1) = f(A1..m(t), B1..n(t), t, P1..k)      (2) 
 
The model variable(s) A1..m belong to coupled processes, and therefore have feedback in 
time, for instance stream water level. The model variable(s) B1..n for all time steps and 
A1..m at t=0 are simple inputs to the model, for instance incident rainfall in a runoff model 
and initial plant distribution, respectively. Without B1..n the model would represent a 
closed system. The function f models the change in the state of all model variables over 
the time step t to t+1, and it mostly represents a numerical solution of a set of differential 
equations, such as groundwater flow equations or plant growth equations. Alternatively,  
or additionally, the function f may represent transitions in the state of the model 
simulated as empirical functions, an abrupt transition, or cellular automata (e.g., 
Miyamoto and Sasaki 1997). It may also include probabilistic rules when model 
behaviour is better described as a stochastic process, which will be covered by Chapter 4. 
 
 
3.3 Entities of the language 
 
3.3.1 Introduction 
 
Entities are the basic objects that carry the data which are changed by the modelling 
functions. Although the function f in equation 2 principally operates at all locations in 
three dimensional space, some processes typically represent only the flow of material or 
information in the lateral direction, while other processes are truly three dimensional, 
such as groundwater flow. For this reason, two entities are used in the language: two 
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dimensional ‘maps’, with a spatial discretisation in ‘cells’, and three dimensional 
‘blocks’, with a spatial discretisation in ‘voxels’, see Figure 3.3. Both entities use the 
same discretisation of the temporal dimension. In addition, the discretisation of the lateral 
spatial dimension is the same for maps and blocks. This correspondence in discretisation 
between maps and blocks guarantees efficient exchange of information between the 
entities, in the same modelling environment. 
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Figure 3.3. Entities of the language. Left, map and block; centre, list of map and block variables; right, one 
dimensional matrix with values for each time step, stored for each map variable, for each cell or voxel. 
 
 
3.3.2 Maps 
 
A map discretises the lateral space with a regular grid, as applied in many GIS’s. Other 
possible approaches would be a vector approach or an irregular grid discretisation but 
their advantages do not compensate for the advantages of a regular grid discretisation. 
Advantages of a regular grid are 1) its fixed neighbourhood for each cell, which makes 
numerical solution schemes more straightforward, 2) its constant ‘support’ of one grid 
cell, implying that cell values and functions used in a model represent the average state or 
behaviour in an area of a constant cell size, 3) the availability of many numerical solution 
schemes, including cellular automata. A vector approach would be needed for change of 
shape in lateral direction (Raper 2000), caused by for instance folding inside the three 
dimensional block, but these processes are not meant to be modelled with the language. 
 Each raster cell on a map has a spatial location (x,y), and contains the same map 
variables M1..m (Figure 3.3). For each map variable, the temporal dimension is represented 
by a one dimensional array which is filled with cell values during a model run. At the end 
of a model run, each field in this array contains an attribute value for time step t, for the 
cell at (x,y). Each map variable is assigned a data type (Boolean, nominal, ordinal, 
directional or local drain direction). Advantages of such a data typing mechanism for 
spatial data in a raster modelling language were described by Van Deursen (1995) and 
Wesseling et al. (1996). 
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3.3.3 Blocks 
 
A block discretises the lateral direction with the same regular grid of the maps used in a 
model, providing a tight link between maps and blocks. For representing the vertical 
direction in a block, there are at least three different approaches to choose from. The first 
approach shown in Figure 3.4A, using a regular discretisation of the vertical direction, 
has the advantage that each voxel has the same, fixed, set of neighbouring cells, which 
provides a straightforward framework for implementing spatial operations. In spite of this 
advantage, this approach is not used here, because, 1) in often occurring cases of units 
with a very small thickness, such as thin depositional units, it would require a small voxel 
thickness in the whole block to represent these units, resulting in an unacceptably large 
number of voxels in the block, 2) the fixed vertical thickness of voxels would result in 
unacceptably large numerical errors when a certain amount of volume (e.g. sediment) is 
added on the top of the block, or in the case of a decrease in thickness of existing units in 
the block (e.g. compaction). 

The second approach (Figure 3.4B), with a fixed number of voxels at each x,y 
location, each with a different thickness, is very efficient for representing laterally 
continuous layers. As such, it is widely used in groundwater flow modelling (e.g. 
Harbaugh and McDonald 1996) or meteorological modelling, but it is inadequate when 
layers are discontinuous, for instance in the case of complex geological formations. The 
third approach with a variable voxel thickness and a variable number of voxels per x,y 
location (Figure 3.3) is used here. It assumes a strong relation between the discretisation 
and the thickness of units, such as volumes with a specific rock type, or trees with a 
certain property (see Figure 3.1). Preferably, the thickness of a voxel corresponds with 
the thickness of a certain unit at that location, although exceptions may occur, when 
multiple voxels on top of each other are used to represent the same unit. Note that the 
discretisation in vertical direction is analogue to a vector (polygon) representation of 
different units in two dimensions, for instance applied on a soil type map, where the 
boundary between polygons is defined by an abrupt change in a certain property. The 
same holds for boundaries between voxels in the vertical direction, applied here. 
Advantages of the approach used here are 1) an exact representation of the vertical 
position and thickness of units, 2) the possibility to add volumes of material or to change    
. 
 
 

������

 
 
Figure 3.4. Discretisation of the vertical dimension, A) regular discretisation, and B) fixed number of 
voxels at each x,y location, each with a different thickness. 
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thickness of units inside the block within acceptable ranges of error, 3) minimization of 
the number of voxels, since each unit is represented by one voxel, independent of the 
thickness of the unit, 4) generality, since the discretisations described in the first two 
approaches above are subsets of this discretisation. The main disadvantage of this 
approach is that the number and location of neighbouring voxels will be different for each 
voxel. As a result, spatial operations requiring a topology in three dimensions will be 
complicated compared to spatial operations on a map, with a regular discretisation. But 
this disadvantage is considered of minor importance, mainly because the use of 
operations requiring a topology in three dimensions is expected to be less frequent than 
the use of other operations, such as recoding voxel values or operations requiring just the 
topology in vertical direction (e.g. vertical fluid flow), which is constant for all voxels. 

In the approach applied here, each location (x,y) on a regular grid contains a stack of 
voxels with a temporally variable number of i voxels V(x,y,v), with v=1…ix,y (Figure 3.3). 
Each voxel V(x,y,v) has its own temporally variable voxel thickness VT(x,y,v) and the 
bottom elevation of each voxel stack is the voxel stack bottom VB(x,y). The top elevation 
of each voxel stack is VB(x,y) plus the sum of VT(x,y,v) over v=1..ix,y. Each voxel 
contains the same block variables B1..b with an array representation of attribute values in 
the temporal dimension also used for map variables. 
 
 
 
3.4 Functions of the language 
 
3.4.1 General concepts 
 
The function f (eq. 2) is represented by one or several functions on the map or block 
entities of the modelling language. Functions are chosen representing universal functions 
on spatial entities, which can be applied in a wide range of models. Many operations 
make sense in both the two dimensional and three dimensional domain, think for instance 
of distance calculation. For this reason, most functions work both on map and block 
entities, and the operation is modified according to the input entity. For instance, a 
distance calculation function on a map results in distances in two dimensions, given on a 
map, while the same calculation on a block would result in a block entity with distances. 
This polymorphic behaviour cannot be used for all functions, and a small set of functions 
is provided that work only on either maps or blocks. All functions check the data type of 
input entities, and might change their behaviour according to the data type of the inputs 
(Van Deursen 1995, Wesseling et al. 1996). 

One group of functions results in a change of cell or voxel values on a map or in a 
block, respectively. These are referred to as ‘functions on maps and blocks, no change of 
form in spatial dimension’.  In addition, a group of functions may change the thickness of 
voxels or add or remove voxels from a block. These are referred to as ‘functions on 
blocks, change of form in spatial dimension’. This group of functions is not used for map 
entities, since the size and number of cells on a map is constant. 
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3.4.2 Functions on maps and blocks, no change of form in spatial dimension 
 
1) point functions 
The point functions derive attribute value(s) of a cell or voxel from one or more attribute 
value of the cell or voxel itself only (Figure 3.5A). Examples are mathematical functions 
such as addition, subtraction, logical selection on attributes of the cell or voxel, or 
functions returning the thickness of a voxel. 
 
2) direct neighbourhood functions 
The direct neighbourhood functions derive attribute value(s) of a cell or voxel from 
attribute value(s) in a spatially restricted neighbourhood. Examples are two- or three-
dimensional moving filters, computing a new value of the centre cell or voxel of a 2D or 
3D window as a function of attribute values in the window. An example of a direct 
neighbourhood function provided for blocks only, is a function assigning for each voxel 
an attribute value of the voxel immediately above it (Figure 3.5B, right), which could be 
used for simulating infiltration. 
 
3) entire neighbourhood functions 
The entire neighbourhood functions derive attribute value(s) of a cell or voxel from 
attribute values(s) in all cells on a map or block (Figure 3.5C). All functions involving the 
solution of flow equations in two or three dimensions belong to this group, e.g. 
groundwater flow. Other functions belonging to this group are calculators of Euclidean or 
relative distances to specific voxels. 
 
4) functions with a neighbourhood defined by a given topology 
This group of functions derives for each cell or voxel an attribute value from attribute 
values in a neighbourhood defined by an explicitly given topology. This topology defines 
connections between cells or voxels. An example of such a topology is a local drain 
direction network, representing flow directions over a map (Figure 3.5D). Functions 
using such a topology calculate catchment characteristics such as catchment area or slope 
length, or transport material in downstream direction over the network (Van Deursen 
1995). 
 
 
3.4.3 Functions on blocks, change of form in spatial dimension 
 
These are functions that change the form of the block as a whole, but only in the vertical 
direction. This implies that the neighbourhood in the lateral direction around voxels 
changes. The following groups are distinguished. 
 
1) top side block form functions 
The top side block form functions remove or add material at the top of the block, in 
vertical direction. In the case of addition of material (Figure 3.6A), the attribute values of 
the volume added are specified. Addition is done in two ways. If the added volume has 
attribute properties similar to these of the voxel at the top of the block, the voxel 
thickness of this existing voxel is increased. If the added volume is different from the top 
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voxel regarding attribute properties, a new voxel is added to represent the addition. 
Removing volume means that voxels are completely or partially removed at the top side 
of the block (Figure 3.6B). 
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Figure 3.5. A) point functions, B) direct neighbourhood functions, C) entire neighbourhood functions, and 
D) functions with a neighbourhood defined by a given topology. 
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Figure 3.6. Functions on blocks, change of form in spatial dimension. A) top side block form functions, 
addition of material, B) top side block form functions, removal of material, C) inside block form functions, 
D) bottom side block form functions. 
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2) inside block form functions 
The inside block form functions change the thickness of existing material inside the 
block, in vertical direction (Figure 3.6C). This is done by changing the thickness of 
existing voxels inside the block, without changing their attribute values. A change of 
thickness can be caused by 1) change of thickness of volume that is already inside the 
voxel itself, e.g. compaction or decompaction of rock in situ, or compression of air, 2) 
addition or abstraction of volume from the voxel as a result of flow of material between 
neighbouring voxels in lateral direction, e.g. soil creep. 
 
3) bottom side block form functions 
The bottom side block form functions change the location of volume in the block per x,y 
location, in a vertical direction, as a result of change of elevation of the bottom of the 
block (Figure 3.6D). If the block represents the subsurface, it could be caused by faults in 
the block. 
 
4) resampling functions 
A resampling to another discretisation in the vertical dimension is needed 1) when a 
regular discretisation is needed for solving a numerical algorithm in another function, 
e.g., for groundwater flow, while the available data for that algorithm are available in a 
block with an irregular discretisation, or 2) when two blocks with a different 
discretisation are combined in a function that needs blocks with a corresponding 
discretisation as input, for instance when spatial statistics are calculated for different 
realisations of a three dimensional block. 
 
 
3.5 Syntax 
 
3.5.1 Introduction 
 
The framework provided by the language for invoking and combining operations in a 
model is mainly important for the activity of model building. While building a model, the 
modeller is forced to work in this framework and his or her way of thinking will be 
influenced by it. Existing environmental modelling languages use either a framework 
with a graphical representation (e.g., MODELMAKER 2002, STELLA 2002, ESRI 2002) 
or one with a written representation of a model, being a program or script (e.g. PCRaster 
2002, GRASS 2002, ESRI 2002). Since the graphical representation represents functions, 
and their inputs or outputs as graphical entities, it has the advantage that it is very easy to 
use for inexperienced users. While building a model, the researcher simply connects these 
entities on the screen, resulting in a flow diagram similar to graphical representations of 
models often used in scientific reports (Forrester 1968). In spite of this advantage of 
graphical modelling languages, a written representation is proposed here. This is mainly 
because a written representation has the advantage of an exact definition of the model in a 
model script, while the functionality of a model represented by a flow diagram of a 
graphical representation is not always unambiguous. Apart from this, experienced 
modellers are not expected to prefer a graphical above a written representation of a 
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model, since they are familiar with the mathematical notation which is often applied by 
written modelling languages. 

The syntax of the language should follow common concepts of mathematical notation 
and reasoning applied in scientific environmental modelling. The natural language 
approach to modelling which was used by Tomlin (1990) is convenient for simple spatial 
problems, but it cannot be used for more complex modelling. The operations of the 
language are better represented as functions with one or more inputs and one output, 
which can be nested. This results in programs or scripts of a model which look similar to 
a theoretical, mathematical description of the model, enhancing readability of the model 
code. In addition, the language should be understandable and easy to use for 
environmental model builders, who do not necessarily need to be experienced 
programmers. Technical details such as read/write definitions and storage allocation, 
should be avoided as much as possible, since they distract the modeller from constructing 
the model. 
 
 
3.5.2 Syntax of functions 
 
The syntax of the functions follows algebraic notation (like in Wesseling et al. 1996): 
 

Result=function(Input1..n) 
 
with one of the functions of the language, function, having the input map or block 
variables Input1..n, resulting in the output map or block variable Result. In most cases, all 
input and output variables are either maps or blocks, although exceptions occur,  for 
instance when an input map adds information to a block, in which case Input1..n are a 
block and a map, while the output is a block. The functions which make sense both in two 
and three dimensions show polymorphic behaviour, which means that their behaviour is 
adapted to the input(s). For instance, a point function sqrt with a map variable as input 
calculates the square root for each cell on a map, giving a map as Result, while the same 
function on a block would result in square roots for each voxel in a block. In addition, all 
functions check the data type of their inputs, and might change their behaviour depending 
on the data type of the input variable (c.f., van Deursen, 1995). The functions can be 
nested in a statement, where the result of one or more functions function1..l is the input 
variable to another function: 
 

Result=function(function1..l(Input1..m), Input1..n) 
 
 
3.5.3 Script structure 
 
The functions are combined in a script or program, structured in sections, see Figure 3.7. 
The concept of the script is similar to the concept of the script for spatio-temporal              
.           
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Figure 3.7. (A) Concepts and (B) modelling script for temporal, two- and three-dimensional modelling in 
GIS. 
 
modelling in two dimensions (Figure 3.1), although both maps and blocks can be used 
now. Each section contains a list of operations which are sequentially executed. The 
functions in the initial section are executed only once, at the start of the model run. These 
read data from the data base, generating map or block variables for the first time step. The 
dynamic section, representing the temporal change, is a section which is run for each time 
step. The functions in the dynamic section represent the change in the state of model 
variables over one time step (eq. 2). 
 
 
3.6 3D spatial and temporal example model 
 
A prototype implementation of the modelling language proposed here has been created by 
extending an existing scripting language (Python, 2001) with our 3D modelling domain 
specific data structures (maps and blocks) and functions. The data structures and 
algorithms were written in a system programming language (C++), using existing code 
from the PCRaster modelling language (Van Deursen 1995, PCRaster, 2001). An 
example model was made predicting the three dimensional architecture of river deposits, 
simulating the formation of a series of deposits formed by the river channel, with 
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associated overbank deposits next to these channel belt deposits. Table 3.1 gives the 
script for a simplified version of the model described by Mackey and Bridge (1995) and 
in Chapter 7 (published as Karssenberg et al. 2001). Figure 3.8 gives the set of maps 
created for one time step in the model, representing the formation of one channel belt, 
and its associated deposits. 

For each of the 20 time steps, first, a local drain direction map (Ldd) is derived from 
the topographical elevation at that time step (Dem), using the eight point pour algorithm 
implemented in the lddcreate function (Van Deursen 1995; Burrough and McDonnell 
1998). The path operator calculates the centre of the channel belt (Centre) by 
following the downstream path over Ldd, starting at the channel inflow location at the 
top of the map, which is the map In. The channel belt (Belt) consists of all cells with a 
distance less than half the width of the channel belt, which is 750 m in this case. This map            
. 
initial 
  Depos=depos.map       # deposition rate at channel belt 
                        # (m/timestep) 
  In=inflow.map         # inflow location 
  Dem=dem.map           # initial elevation model 
 
  dynamic (nrtimesteps=20) 
    # create a local drain direction map 
    Ldd=lddcreate(Dem) 
    # centre of channel belt, path downstream from the inflow  
    # point 
    Centre=path(Ldd,In) 
    # distance to the channel belt centre line (m) 
    Dist=spread(Centre,0,1) 
    # channel belt with width of 1500 m 
    Belt=Dist < 750 
    # deposition (m/timestep) 
    Add=if(Belt then Depos else (Depos*exp((750-Dist)/1500)))  
 
    Erosion=if(Belt then 10 else 0) 
    Deposition=if(Belt then 10+Add else Add) 
 
    Lith=remove(Erosion) 
    Lith=add(Deposition, Belt) 
 
    Dem=top() 
 
Table 3.1. Alluvial architecture modelling script, remarks are behind a #. 
 
 
Figure 3.8 (next page). Alluvial architecture model, one realization at time step 20, flow direction is from 
top to bottom on the maps. (A) zoomed area of local drain direction map (Ldd in Table 3.1), (B) channel 
belt centre cells (Centre), (C) distance to the channel belt centre (Dist), (D) channel belt (Belt), (E) 
deposition (Add, m/time step), and (F), topographical elevation (Dem, m) after erosion and deposition, used 
for the next time step. 
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is calculated by the two spread operations, which calculate the distance from the TRUE 
cells on Centre, resulting in the map Dist, and a ‘less than’ (<) function operating on 
Dist. The pattern of deposition (Add) is derived from the channel belt map, assuming a 
negative exponential decrease of deposition with distance from the channel belt. The 
variable Lith is the three dimensional block with the lithology, containing channel belt 
deposits in a matrix of overbank deposits. This block is for each time step updated by the 
remove function, resulting in incision in the old deposits at the location of the channel 
belt, and the add function, resulting in filling of this incised band with channel belt 
deposits, and additional deposition next to the channel. Figure 3.9 gives a three 
dimensional output of one realisation of the model. Since deposition decreases with 
downstream distance, each new channel belt diverges from the previous one at the inflow 
location, which is called nodal avulsion (Mackey and Bridge, 1995). 
 
 

 
 
Figure 3.9. Example output of alluvial architecture model, timestep 20, three-dimensional picture of 
channel belt deposits, Lith in Table 3.3. Inflow point at top of image, lateral extension corresponds to 
Figure 3.8, thickness of individual channel belts is 10 m. 
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3.7 Discussion and conclusions 
 
The goal of this study is to provide new concepts to extent existing dynamic spatial 
environmental modelling languages with functionality for modelling in three spatial 
dimensions. It was possible to implement an example model with the prototype language, 
built according to these concepts, while Chapter 7 provides a more complicated example. 
This does not mean that we have arrived at a final version of the language. Many steps 
need to be taken before a new grown up tool for construction of multi-dimensional 
models will be available. Below, a short discussion is given of the main weaknesses of 
the current prototype language. 

Compared to two dimensional static or dynamic models, the amount of data related to 
the type of models worked with here, is enormous, since three spatial dimensions need to 
be represented. This is a problem both from the data storage point of view, but also with 
regard to the run times of models. Since this chapter focuses on the concepts of the 
language and its entities, these problems are not dealt with in the prototype language. So, 
optimisation routines need to be developed. Regarding data storage, the main 
optimisation possible is to reduce the number of voxels in three dimensional blocks until 
acceptable degrees of resolution, by built-in resampling. This would also decrease run 
times of the models, since the data volume decreases. 

In order to be useful for environmental researchers, the language needs to match their 
way of thinking. It should be possible for these people to understand the concepts 
intuitively. Although different approaches are possible, the approach regarding the script 
structure and syntax of the functions used here is similar to concepts of other existing 
environmental modelling languages (e.g., PCRaster, 2002). Since these languages have a 
wide application, it is expected that researchers will understand the concepts of the 
language proposed here, too. 
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4 ADDING FUNCTIONALITY FOR MODELLING ERROR 
PROPAGATION IN A DYNAMIC, 3D SPATIAL 
ENVIRONMENTAL MODELLING LANGUAGE 

 
Derek Karssenberg (with Kor de Jong) 

 
 
Abstract: Environmental modelling languages provide the possibility to construct 
models in two or three spatial dimensions. These models can be static models, without a 
time component, or dynamic models. Dynamic models are simulations run forward in 
time, where the state of the model at time t is defined as a function of its state in a period 
or time step preceding t. Since inputs and parameters of environmental models are 
associated with errors, environmental modelling languages need to provide standard 
techniques to calculate how these errors propagate to the output(s) of the model. As these 
techniques are not yet available, this research describes concepts for extending an 
environmental modelling language with functionality for error propagation modelling. 
The approach models errors in inputs and parameters as stochastic variables, while the 
error in the model outputs is approximated with Monte Carlo simulation. A modelling 
language is proposed which combines standard functions in a structured script (program) 
for building environmental models, and calculation of error propagation in these models. 
A prototype implementation of the language is used in three example models to illustrate 
the concepts. 
 
 
4.1 Introduction 
 
Chapter 3 showed that it is possible to extend existing two-dimensional dynamic 
environmental modelling languages with an additional spatial dimension, resulting in a 
tool for dynamic model construction in two and three spatial dimensions. The language 
described in Chapter 3 is restricted to the case when inputs, parameters, and the model 
structure are exactly known. In many situations of modelling this is not the case, because 
of for instance measurement errors, or insufficient field data. Also, it may be difficult to 
identify the model structure, since many different model structures can be used to 
represent a process. For these cases, it is said that the inputs, parameters, and the model 
structure are associated with uncertainty or errors, and it is important to know the effect 
of this uncertainty or errors on the output of the model. 

Error propagation modelling, also referred to as uncertainty analysis, allows the 
researcher to assess the error in the model output variables resulting from propagation of 
model input errors through the model, or resulting from uncertainty in the model structure 
with its associated parameters (Heuvelink 1998, Crosetto and Tarantola, 2001). It is an 
important issue in environmental modelling, since input data of environmental models 
have many different sources, with a wide range of errors associated with them (Thapa and 
Bossler, 1992). The propagation of these errors through complicated dynamic spatial 
environmental models can only be assessed with powerful computational techniques. 
Most of these techniques model errors as stochastic variables (e.g., Heuvelink, 1998). 



 84

Analytical solutions for error propagation as a result of spatial functions on stochastic 
variables exist, but these are only available for a limited number of relatively simple 
functions. As a result, error propagation in dynamic spatial environmental models is 
mostly calculated by Monte Carlo simulation modelling (Heuvelink, 1998). Although 
error propagation modelling has long been a subject of concern in the GIS research 
community, a framework to implement it, let alone the implementation itself, in a 
dynamic spatial environmental modelling language such as described in Chapter 3, is not 
yet provided. Including a standard Monte Carlo simulation modelling tool in dynamic 
spatial environmental modelling languages, would make it much easier for researchers to 
analyse the errors associated with model outputs, as well as performing sensitivity 
analysis (Crosetto and Tarantola, 2001). 

This chapter focuses on the development of a dynamic spatial environmental 
modelling language that uses Monte Carlo simulation for error propagation modelling. 
The set-up of the chapter is as follows. First, the main concepts of error propagation 
modelling and Monte Carlo simulation are described. Second, a description is given of 
the extensions which need to be made to the language described in Chapter 3, in order to 
model error propagation. These extensions involve the entities and functions of the 
language, and its syntax. Finally, three example models built with a prototype of the 
language are given to illustrate how it can be applied, followed by a discussion.  
 
 
4.2 Error propagation modelling in spatial environmental models 
 
Although the emphasis here is on dynamic spatial environmental models, having a time 
component, error propagation modelling is as important for static spatial environmental 
models. A static spatial environmental model does not have a time component. It can be 
described by: 

 
A1..m = f(B1..n, P1..j)        (1) 

 
with, B1..n, the inputs, A1..m, the model variables, and a model structure defined by a 
function or set of functions f, with associated parameters P1..j. Note that B1..n, A1..m and 
P1..j, are defined in two or three spatial dimensions. An example of a static model is the 
derivation of infiltration capacity from a soil type map, or the calculation of distance from 
a vegetation island. As noted in Chapter 3, a dynamic spatial model is described in an 
analogous way: 
 
 A1..m(t+1) = f(A1..m(t), B1..n(t), P1..k, t)      (2) 
 
with the same meaning of the symbols as in equation 1, and t, the time, while the inputs 
and model variables have a value for each time step, here. 

For both types of spatial environmental models, model output error is caused by input 
error and model error. The input error is associated with uncertainty in model input 
variables (B1..n(t) in equation 1 and 2) for a given computational model, which are unique 
for a specific study site or period, such as elevation data, conductivity values or 
temperature time series data. The model error is associated with the discrepancy between 
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the computational model, defined by f and P1..j in equations 1 and 2, being an 
approximation of reality. Model error refers to an incorrect choice of model equations and 
parameters for the representation of real world processes. Since the analysis of model 
error is still in development, we focus on the propagation of input error, although the 
theory and prototype software proposed here can, and will, be used for the analysis of 
errors in the model parameters, too. 

Most studies model error by representing model inputs, parameters, and variables as 
stochastic (random) fields in two or three dimensions. By doing so, the inputs and 
parameters of a model (B1..m(t) and P1..j in eq. 1 and 2) become stochastic, and also most 
of the model variables A1..n(t) (eq. 1 and 2), because these are derived from the inputs. 
This kind of model, having stochastic model variables as a result of stochastic inputs 
and/or parameters, is referred to as a stochastic model. The aim of error propagation 
modelling, is to derive the probability distributions (or parameters describing these) of the 
stochastic model variables A1..n(t) from the stochastic inputs B1..m(t) and parameters, and 
to store the probability distributions of these model variables of interest, i.e. the model 
output variables. For complex environmental models, this can only be approximated with 
Monte Carlo simulation modelling (Heuvelink 1998). Monte Carlo simulation involves 
two steps (Hammersley and Handscomb 1979, Heuvelink 1998): 
 
Step (1). For each Monte Carlo run s, s=1..K (below, lower case letters represent 
realizations of random variables given as upper case letters in equation 1 and 2):  
(a) generate realizations p1..j of each stochastic model parameter, and realizations b1..m for 
each stochastic input variable, for each time step t (in the case of a dynamic model), 
(b) with these realizations, run f(·) (eq. 1 or 2), and store the realizations of the model 
output variables a1..n, in the case of a dynamic model for all time steps. 
 
Step (2). Compute sample statistics (e.g., mean, variance, skewness) from the K model 
outcomes, for each model variable 1..n and each time step t, or for a selection of model 
variables and time steps. 
 

This approach needs a stochastic description of model input variables with their 
associated errors, and a methodology to draw realizations from these stochastic model 
inputs, needed in step 1a of the Monte Carlo procedure. A review of the different types of 
error associated with the input data stored in GIS is given by NCDCDS (1988), Thapa 
and Bossler (1992), and Lanter and Veregin (1992). For most types of error, stochastic 
error models and associated numerical techniques for drawing realizations are available. 
Attribute error for a continuous variable without spatial correlation (assuming a constant 
attribute value over an area) can be simulated as a random variable with a specified 
probability density functions using standard algorithms (e.g., Press et al. 1986), while 
standard geostatistical software tools (e.g. Deutsch and Journel 1998, Pebesma and 
Wesseling 1998) provide algorithms for generating spatially correlated random fields. 
The same standard tools for geostatistics can be used to generate spatially correlated 
fields for categorical (classified) attributes, using indicator simulation (e.g., Bierkens and 
Burrough 1993). Other approaches to model errors in categorical attributes as stochastic 
variables are provided by Fisher (1991), Goodchild et al. (1992), Veregin (1994, 1995). 
These are mostly based on the classification error matrix (e.g., Lanter and Veregin 1992). 
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Positional accuracy is mainly important for environmental modelling as a source of class 
boundary uncertainty, and several stochastic methods have been described to deal with 
this (Davis and Keller 1997, Kiiveri 1997, Leung and Yan 1998). Another important type 
of error in environmental modelling is related to uncertainty caused by interpolation of 
time series data, which seems to be underexposed in research, although it is expected that 
techniques similar to these used for spatial data apply. 
 
 
4.3 Extensions to the entities and functions of the language 
 
4.3.1 Entities 
 
As noted in Chapter 3, two entities are used in the language: two dimensional maps, with 
a spatial discretisation in cells, and three dimensional blocks, with a spatial discretisation 
in voxels. Each cell on a map contains the same map variables while each cell in a block 
contains the same block variables. For deterministic dynamic modelling, Chapter 3 
proposes a fixed discretisation of time in time steps, with a fixed length of time steps, for 
all variables. This is represented by a one dimensional array of time steps in which each 
field contains a value of a variable for a certain map or block. For dealing with Monte 
Carlo simulation, the same approach is followed, while adding an additional dimension to 
the array (Figure 4.1). At the end of a model run, each field (t, s) in this array contains an 
attribute value for time step t and Monte Carlo sample s, for the cell at (x,y), or the voxel 
V(x,y,v). Note that, in the case of a static model, the two dimensional array with values 
shown in Figure 4.1 reduces to a one dimensional array, with Monte Carlo samples only. 
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Figure 4.1. Entities of the language. Left, map and block; centre, list of map or block variables; right, 
matrix with values for each time step and each Monte Carlo sample, stored for each map or block variable, 
for each cell or voxel. 
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4.3.2 Functions of the language 
 
Chapter 3 described functions of the language which can be used to represent the function 
f in equation 1 or 2. For Monte Carlo simulation, stochastic functions and functions 
calculating descriptive statistics are needed in addition to these functions. 
 
1) stochastic functions 
The stochastic functions assign a realization of a random variable to a map or block 
variable (for step 1a in the Monte Carlo simulation procedure). Different types of model 
input error are represented by different types of random variables with their associated 
realizations, as noted in section 4.2. 
  
2) functions calculating descriptive statistics 
These functions calculate descriptive statistics of values within a certain group of values 
in the matrices attached to each cell or voxel (Figure 4.1). Statistics to be calculated 
include for instance average, quartiles or variance (c.f. Pebesma et al. 2001). As shown in 
Figure 4.2, these statistics can be calculated as an aggregated value 1) over two- or three-
dimensional space, for instance average pollutant concentration of a lithological unit,  per 
 

 
 
 
Figure 4.2. Functions calculating descriptive statistics, aggregating over A) space, B) time, C) the 
stochastic dimension, i.e., Monte Carlo samples. 
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time step and Monte Carlo sample; 2) over time, for instance the maximum pollutant 
concentration during a model run, per cell/voxel and per Monte Carlo loop; or 3) over 
Monte Carlo samples, for instance the variance in pollutant concentration per cell/voxel 
and time step. 
 
 
4.4 Syntax 
 
4.4.1 Functions 
 
The syntax of the stochastic functions and the functions calculating descriptive statistics 
is similar to the syntax of the other functions provided by the language (Chapter 3). The 
stochastic functions assign a realization of a two or three dimensional random field to a 
map or block variable, respectively. Their input arguments define the statistical properties 
of the random field to draw the realizations from. For instance, a realization of a random 
field with spatial autocorrelation is defined by:  
 
 Result=spatcor(Variogram, Input1..n, Options1..n) 
 
with, Result, the output map or block variable containing a realization of a random field, 
Variogram, a code defining the variogram type and parameters of the random field, 
Input1..n, conditioning data, and Options1..n, options (e.g. as applied in Gstat, Pebesma and 
Wesseling 1998). For other types of random fields, similar notations can be developed. 

The functions calculating descriptive statistics aggregate over space, time or the 
Monte Carlo dimension (Figure 4.2) by calculating statistics such as average, standard 
deviation, quartiles, for a map or block variable. The statistical functions aggregating 
over space calculate statistics of cell or voxel values belonging to the same spatial class 
(Figure 4.2A), for each time step and each Monte Carlo sample. These functions use two 
inputs: the map or block variable for which the statistical value is calculated, and a map 
or block variable with classes defining the areas over which statistics need to be 
calculated. For instance, 
 
 AveZincLith=spatialaverage(Zinc, Lith) 
 
calculates the average zinc concentration (block variable Zinc) over each lithological 
unit (block variable Lith), and assigns these average values to the block variable 
AveZincLith. This is done for each time step and each Monte Carlo sample. Using the 
same syntax, spatialsd would calculate the standard deviation of the Zinc values per 
lithological unit. For aggregating over time, functions are provided calculating statistics 
over periods in time (Figure 4.2B). For instance, 
 
 AveZincMonth=temporalaverage(Zinc, Month) 
 
calculates the average zinc concentration over periods defined by Month, which is a 
block variable containing different identifiers for each month. This monthly average is 
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calculated for each voxel, and each Monte Carlo sample. The same operation could be 
done on map variables. Aggregating over the Monte Carlo dimension (Figure 4.2C) is 
done in a similar way, by calculating statistics over the K model outcomes (step 2 in the 
Monte Carlo simulation procedure), for each time step and each cell or voxel. For 
instance, 
 
 ZincQuartile=mcperc(Zinc, 25) 
 
calculates the first quartile (defined by the second argument 25) of the zinc concentration 
Zinc, for each time step and voxel, based on all Monte Carlo samples. 
 
 
4.4.2 Script structure 
 
The script structure described in Chapter 3 is extended to provide an additional loop, 
generating the K Monte Carlo samples, representing step 1 in the Monte Carlo simulation 
procedure. Figure 4.3 gives the concepts of the extended script, structured in sections. 
Each section contains a list of operations which are sequentially executed. The operations 
in the preloop section are executed only once, at the start of the model run. These read 
data from the data base, generating map or block variables that are the same for each 
Monte Carlo loop. The initial and dynamic sections represent the temporal behaviour of 
the model. The initial section defines the initial state of the model at time step 0, reading 
data from the data base or results of the preloop section. The dynamic section, 
representing the temporal change, is a section with functions which are run for each time 
step. The operations in the dynamic section represent the change in the state of model 
variables over one time step (eq. 2). For error propagation modelling, the initial section 
and the dynamic section (for all timesteps) are run for each Monte Carlo simulation loop. 
The statistical operations in the postloop section aggregate over the spatial, the time, 
and/or the stochastic (Monte Carlo simulation) domain. Note that a script does not always 
need to contain all these sections. For instance, in the case of a static model, the dynamic 
section is not used, as will be shown by the first example model. 
  
 
4.5 Example models 
 
4.5.1 2D spatial model 

 
The prototype implementation of the language described in Chapter 3 is extended 
according to the concepts described in this chapter. Table 4.1 shows a script for a model 
simulating clonal growth of vegation, made with the prototype implementation of the 
language. Figure 4.4 gives the most important variables used in the script. A plant species 
occupies the area given as Boolean TRUE on the map variable Ini (Figure 4.4A), read 
from the database in the preloop section. By clonal growth, the plant spreads over the 
whole area, resulting in a larger area occupied by the plant after 50 years, which is 
calculated in the initial section. The first operation in the initial section creates a map 
containing for each cell the time (yr) needed for the plant to spread  one  metre.   The  
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value  and  the  error  associated  with  this  input  parameter depends on the soil type. 
From a field investigation, the value of the spreading time could be estimated as 0.1 year 
(standard deviation 0.001) for peat, and 0.5 (standard deviation 0.02) for other soil types. 
The two lines using the mapnormal function, drawing a value from a normal distribution 
with zero mean and standard deviation one, generate for each Monte Carlo loop a 
realization of a spreading time map with these statistical properties, independently for 
peat and for the other soil types, see Table 4.1.  These  realizations  are  combined  in  one  
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Figure 4.3. (A) Concepts and (B) modelling script for temporal, two or three dimensional, and error 
propagation modelling. 
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preloop 
  Ini=distr.map            # initial distribution of plant 
 
initial (nrloops=500) 
  # spreading time for peat (years) 
  PeatYears=0.1+mapnormal()*0.001 
  # spreading time for other soil types (years) 
  OtherYears=0.5+mapnormal()*0.02 
  # number of years needed to move the vegetation front 1 m 
  Years=if(Peat then PeatYears else OtherYears) 
  # time to colonization (yr) 
  ColTime=spread(Ini,Years) 
  # colonized after 50 years 
  Col=ColTime < 50 
 
postloop 
  # probability of colonization after 50 years 
  ColProb=mcprob(Col) 
 
 
Table 4.1. Script for modelling clonal growth of vegetation, remarks behind #. 
 
 
map with an if..then function, assigning PeatYears to the peat areas having a TRUE 
on the map variable Peat (Figure 4.4B), and OtherYears to the other soil types, 
having a FALSE on the map variable Peat. The spread function calculates a total 
spreading time map from the locations occupied with the plant on Ini, multiplying the 
distance between cells and the ‘friction’ values on Years. The last operation in the 
initial section assigns a Boolean TRUE to all cells colonized within 50 years. The 
sequence of operations in the initial is executed 500 times, representing 500 Monte Carlo 
loops (samples), resulting in 500 realizations of the map variable Col. The operation in 
the postloop section derives from these 500 realizations of Col, for each cell the 
probability that it is occupied by the plant after 50 years, resulting in the map variable 
ColProb (Figure 4.4C). 
 
 
4.5.2 2D spatial and temporal stochastic model 
 
An example of a temporal model with error propagation analysis is given in Table 4.2. It 
concerns a hypothetical two dimensional groundwater flow model meant to estimate the 
depth of the groundwater level below the surface, and the number of days that the 
groundwater level is in the root zone, which is assumed to be vulnerable for the 
vegetation. Figure 4.5 gives the most important map variables used in the model. The 
preloop section reads constant data from the database. These include the digital elevation 
model of the area, with elevation differences of only a few metres. The transmissivity is 
the only model input that is not exactly known, but its statistical properties are known. As 
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Figure 4.4. Clonal growth model. (A) initial distribution of plant, variable name Ini in Table 4.1, Boolean 
1 (TRUE) represents growth location, 0 (FALSE) other locations, (B) distribution of peat in the area 
(Peat), Boolean 1 (TRUE) represents peat, o (FALSE) other soil types, (C) probability of colonization 
after 50 years, ColProb. 
 
such, it is the only source of error or uncertainty in the model input, and it is modelled as 
a two dimensional random field with spatial autocorrelation, described by a variogram. 
For each Monte Carlo loop, the spatcor function in the initial section generates a 
realization of this random field, using a combined nugget and exponential semivariogram, 
with a spatial autocorrelation range of 2000 m. The exp function calculates the base e 
exponent of this random field, resulting in a lognormal distribution of hydraulic 
conductivity (Figure 4.10A). 

The dynamic section is run for 1600 time steps, with a length of a time step of 0.1 
days, explicitly defined with the map variable T in the preloop section. The transient 
function at the bottom of the dynamic section simulates transient groundwater flow in an 
unconfined  layer  (Crank-Nicolson method,  Wang and Anderson  1982).  For  each  time 
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preloop 
  Dem=dem.map             # topographical elevation (m) 
  FlowCond=cond.map       # flow conditions, flow or fixed         
                          # head 
  H=hini.map              # head at start of model run (m) 
  T=scalar(0.1)           # timestep (days) 
  EvapMax=0.001           # maximum evapotranspiration (m/day) 
  S=0.2                   # specific yield 
  
initial (nrloops=500) 
  # hydraulic conductivity m/day 
  K=exp(2.4957+spatcor(0.2Nug(0) + 0.8 Exp(750))) 
 
  dynamic (nrtimesteps=1600) 
    # depth of water table (m) 
    WTDepth=Dem-H 
    # head in root zone 
    Wet=WTDepth < 0.45 
    # evapotranspiration (m/day) 
    Evap=max(EvapMax-0.001*WTDepth,0) 
    # recharge (m/day) 
    Recharge=max(Rain-Evap,0) 
    # head (m) 
    Head=transient(Head,Recharge*T,K,FlowCond,S,T) 
 
postloop 
  # duration of groundwater in root zone (days) 
  Dur=temporaltotal(Wet,1)/T 
  # duration of groundwater in root zone, 5% percentile 
  Dur5P=mcperc(Dur,5) 
  # duration of groundwater in root zone, 95% percentile 
  Dur95P=mcperc(Dur,95) 
  # significantly above threshold duration of 150 years 
  AboveTh=Dur5P > 150 
  # significantly below threshold duration of 150 years 
  BelowTh=Dur95P < 150 
 
 
Table 4.2. Script for groundwater flow modelling, remarks behind #. 
 
step, it calculates a map with groundwater heads (Head, Figure 4.5B), derived from its 
input maps read from the database in the preloop section, the groundwater recharge 
(Recharge, m), the hydraulic conductivity (K, m/day), the flow conditions  
(FlowCond, Figure 4.5A), the specific yield (S, dimension less), and the time step (T, 
days). The first function in the dynamic section calculates the depth of the water table 
below the soil surface, for each time step. The second function creates a map with a 
Boolean TRUE if the ground water level is closer than 0.45 m below the surface, 
assumed to be the root zone, otherwise a FALSE. The third function calculates the 
evapotranspiration as a function of the depth of the water table. The resulting map 
variable   (Evap)   is   used   in   the   fourth  operation  to  calculate  the recharge  to   the 
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Figure 4.5. Groundwater flow model. (A) realization of the hydraulic conductivity (grey scales, K in Table 
4.2, m/day), and flow conditions (FlowCond, black: river cells with a fixed head, other: flow) (B) 
realization of the groundwater head (Head, metres) at the last time step, (C) realization of the duration of 
groundwater in root zone (Dur, days), (D) areas with duration of groundwater in root zone significantly 
below or above threshold duration (150 years), and areas for which it is not possible to determine whether 
the critical level is exceeded or not. Combination of AboveTh and BelowTh in Table 4.2. 
 
groundwater. The postloop section aggregates over time and over the Monte Carlo 
dimension. The temporaltotal function calculates the total duration (days) that the 
groundwater level has been in the root zone, for each Monte Carlo sample, resulting in 
the map variable Dur (Figure 4.10C). The next two lines calculate the 5 and 95 
percentiles of Dur, for each grid cell, using the mcperc function. These percentiles 
define the lower and upper boundary of the 90% confidence interval. For each cell, the 
probability is 0.90 that the duration of the groundwater in the root zone lies between the 
Dur5P value and the Dur95P. By comparing these lower and upper boundaries of the 
confidence interval with a critical duration of 150 days, maps can be made where the 
duration of water in the root zone is certainly above (AboveTh) or below (BelowTh) 
the critical duration, at a confidence level of 90% (Figure 4.5D). 
 
 
4.5.3 3D spatial and temporal model 
 
Chapter 3 describes a three dimensional model simulating deposition and erosion in an 
environment dominated by rivers. It was assumed that all model inputs were exactly 
known,  which  is not  the  case.  Table  4.3  shows  an  extension  to  the  script  given  in 
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preloop 
  Depos=depos.map       # map with deposition rate at 
                        # the channel belt (m/timestep) 
  In=inflow.map         # inflow location 
  Dem=dem.map           # initial elevation model 
 
initial(nrloops=500) 
 
  dynamic (nrtimesteps=20) 
    # create a local drain direction map 
    Ldd=lddcreate(Dem) 
    # centre of the channel belt, 
    # path downstream from the inflow point 
    Centre=path(Ldd,In) 
    # distance to the channel belt centre line (m) 
    Dist=spread(Centre,0,1) 
    # channel belt with width of 1500 m 
    Belt=Dist < 750 
    # deposition as a function of distance 
    # to channel belt (m/timestep) 
    DepCB=if(Belt then Depos else 
                       (Depos*exp((750-Dist)/1500))) 
    # deposition caused by local scale processes (m/timestep) 
    DepLocal=0.05+spatcor(0.01Nug()) 
    # total deposition (m/timestep) 
    Add=DepCB+DepLocal 
 
    Erosion=if(Belt then 10 else 0) 
    Deposition=if(Belt then 10+Add else Add) 
 
    Lith=remove(Erosion) 
    Lith=add(Deposition,Belt) 
 
    Dem=top() 
 
postloop 
  # probability of a channel belt 
  BeltProb=mcprob(Lith) 
 
 
Table 4.3. Script for alluvial architecture modelling, remarks behind #. 
 
chapter 3, which includes one additional (hypothetical) input  associated with uncertainty: 
local scale deposition. It is assumed that the total deposition (Add, m/timestep, see Table 
4.3) for each time step is equal to the sum of deposition determined by large scale 
processes (DepCB, m/timestep) plus deposition determined by small scale processes 
(DepLocal, m/timestep). The large scale deposition is modelled in the same way as in 
chapter 3, as a function of distance to the channel belt. The small scale deposition is 
represented by a stochastic variable with a (hypothetical) average value of 0.05, with a 
spatial pattern defined by a pure nugget variogram with a nugget variance of 0.01, for 
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which realizations are drawn with the spatcor function, also described in Section 4.5.2. 
This is done independently for each timestep, which means that the pattern of local scale 
deposition is different for each timestep. 

Apart from the lines representing the deposition, the dynamic section of the script in 
Table 4.3 corresponds to the one given in Chapter 3. The nrloops keyword in the initial 
section sets the number of Monte Carlo loops to 500, which means that the dynamic 
model, defined in the dynamic section and consisting of 20 time steps, is run 500 times, 
resulting in 500 realizations of all model variables, for all time steps. As a result of the 
uncertainty in the deposition, each realization results in a different pattern of channel 
belts (not shown). The effect of this uncertainty is calculated in the postloop section, by 
calculating for each voxel the probability of occurrence of channel belt deposits, stored in 
the block variable BeltProb. A two dimensional picture of this block variable is given 
in Figure 4.6, showing well distinguished zones of low and high probabilities of 
occurrence of channel belt deposits. The location of the zones with high probability are 
determined by a fixed pattern of elevation values on the the initial elevation model (Dem) 
and the processes included in the model. Figure 4.10 in chapter 7 gives three dimensional 
pictures generated with a similar, but more complicated, model. 
 
 

 
 
Figure 4.6. Alluvial architecture model, probability of occurrence of a channel belt, BeltProb in Table 
4.3. Plan view of the block variable BeltProb, showing the highest probability found below each x,y 
location. 
 
 
 
4.7 Discussion and conclusions 
 
Although the example models demonstrate that modelling error propagation is possible 
using the language, many improvements need to be made for a wider, and better, 
application. Compared to the language described in Chapter 3, the amount of data that 
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have to be managed by this language is even larger, because an additional Monte Carlo 
dimension has been added. Also, the sections in the script are executed in a fixed order, 
from top to bottom. This results in large amounts of (sometimes) unused data stored on 
hard disk, while calculation times may become excessively high. Optimisation algorithms 
need to be developed that manage data storage, restricting data storage to 1) variables for 
which the model builder explicitly defines in the script that they need to be stored, and 2) 
those variables, time steps or Monte Carlo samples for which the results need to be stored 
since they are needed in a later phase script execution. In addition, algorithms need to be 
developed that find the optimal order of calculation of dynamic models in a Monte Carlo 
simulation scheme, e.g., whether the time steps should be nested in the loops of the 
Monte Carlo simulation or vice versa. The optimisation schemes regarding data storage 
and calculation order need to parse the whole script before it is executed. 

The multidimensionality of the data dealt with has also a major impact on the 
visualisation routines needed to explore model inputs and outputs. Exploratory data 
analysis techniques and software for temporal, multidimensional data associated with 
environmental models hardly exist. It might be needed to apply visualisation techniques 
that go beyond these known in cartography or standard statistics, such as glyphs, which 
are graphical objects whose elements (e.g., position, size, shape, colour, orientation) are 
bound to data (Foley and Ribarsky, 1994). 
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5. UPSCALING OF SATURATED CONDUCTIVITY UNDER 
STEADY STATE HORTONIAN RUNOFF 

 
Derek Karssenberg 

 
Abstract: A stochastic scaling model is described for calculating effective saturated 
conductivity of the topsoil under steady state conditions of rainfall, infiltration and 
Hortonian runoff. The model predicts an increase in effective saturated conductivity of a 
model domain with 1) an increase in rain intensity, 2) increasing mean and decreasing 
variance, skewness and spatial scale of saturated conductivity within the model domain, 
3) increasing size of the model domain and, 4) decreasing bifurcation of the drainage 
pattern in the model domain. Using saturated conductivity derived from ringinfiltrometer 
measurements, the scaling model predicts values of effective saturated conductivity for 
larger plots (1 m2) which are comparable with effective saturated conductivity values 
derived from rainfall simulations on these plots. It is shown that the effective saturated 
conductivity values predicted by the scaling model for a hillslope (7500 m2) can be used 
in a simulation of runoff from that hillslope with reasonable results. The differences 
between simulated and measured cumulative discharge from the hillslope are mainly 
caused by periods of rainfall-runoff conditions deviating from the steady state conditions 
assumed by the scaling model. 
 
 
5.1 Introduction 
 
The actual infiltration under Hortonian overland flow depends on the flow process in the 
soil with a boundary condition at the surface set by the water available on the surface. 
The flow process in the soil is determined by hydraulic properties of the soil having 
considerable spatial variation, at all scales (Blöschl and Sivapalan, 1995). The water 
available at the surface consists of water from rain which is spatially and temporally 
variable as a result of variable rain and interception, and run-on, with spatial variation 
determined by surface flow patterns, and temporal variation during a storm event. 

Because of this spatial variation in the processes of infiltration, the conceptualization, 
and/or the associated inputs, outputs, state variables and parameters in a model of 
infiltration need to change with the size of the spatial and temporal domain for which the 
process is represented by the model, also called the scale of the model (Blöschl and 
Sivapalan, 1995). A scaling rule for this change would allow comparison of results from 
different measurement techniques of infiltration at different sizes of the domain, ranging 
from 0.002-0.05 m2 when ring infiltrometers are used (e.g., Sharma et al., 1980; Sullivan 
et al., 1996; Smettem, 1987), up to 0.5-10 m2 for plot experiments under artificial or 
natural rainfall (e.g., Sharma et al., 1980; Sullivan et al., 1996; Smettem, 1987; Yu et al., 
1997). In addition, such a scaling rule is needed to parameterize model conceptualizations 
of infiltration applied in catchment models, using the above mentioned small scale field 
measurements of infiltration. This is because the size of the model domain of the 
infiltration model in a catchment model is in most cases larger than the size of the domain 
represented by field measurements. Typically, the size of the model domain represented 
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by the infiltration equations in a catchment model is either a hillslope or field unit (e.g., 
Knisel and Williams, 1995; Smith, 1995), or a grid cell on a hillslope with run-on from 
upstream cells (e.g., de Roo, 1996). 

A scaling rule for infiltration needs to quantify the variability of small scale processes 
occurring within the larger scale model domain (Blöschl and Sivapalan, 1995; Blöschl, 
1996, Bierkens et al., 2000). The first approach, applied in perturbation techniques and 
parameterisation, assumes that the conceptualization of the process of infiltration needs to 
change from a smaller to a larger model domain. This will also involve a change in model 
inputs, outputs, state variables and/or parameters. The second approach is to use the same 
conceptualization of infiltration at all scales, with a scale rule involving only a change in 
the parameter value(s) with scale. This approach uses either distribution functions of 
parameter values or effective parameter values at the larger scale. An effective parameter 
is the single value assigned to all locations within a model (sub-) domain such that the 
model based on that value yields the same average output as the model based on the 
actually occurring heterogeneous parameter field (Blöschl and Sivapalan, 1995).  

The concept of effective parameters will be applied in this study mainly because of its 
simplicity. Other research indicates that effective parameters can be applied to steady 
state situations with constant model inputs, outputs and state variables. Both with ring 
infiltrometer measurements and plot experiments with artificial rainfall, a steady state of 
infiltration is reached since inputs of water at the top boundary can be kept constant 
throughout the experiment, resulting in a steady state situation, with constant matrix and 
macro-pore flow, referred to as the saturated conductivity for the steady state situation 
under consideration. Because of this, it can be expected that the effective parameter 
concept provides a scale rule between ring infiltrometer and plot experiments. For natural 
rainstorms and catchments, steady state conditions do not hold, and the effective 
parameter concept can only be applied under the assumption that effective parameters 
derived for steady state conditions are also valid under transient conditions. 

Existing methods dealing with effective parameters (e.g., Russo, 1992; Hendrayanto 
et al., 2000) mostly ignore the interaction between surface runoff and infiltration or do 
not deal with spatially variable runoff (e.g., Grant et al., 1991; Yu et al., 1997; Corradini 
et al., in press), although this interaction is known to be important (Smith and Hebbert, 
1979; Woolhiser et al., 1996; Merz and Plate, 1997; Corradini et al., 1998; Binley and 
Beven, 1989). Merz et al. (in press), comparing different approaches for modeling plot 
scale infiltration, find best results when spatial variation of runoff within the plot is taken 
into account. The method described here derives an effective saturated conductivity for 
steady state infiltration under Hortionian overland flow, representative for a model 
domain as a function of 1) the spatial probability distribution of saturated conductivity 
within the model domain, 2) the spatial pattern of surface flow within the model domain, 
under steady state conditions, 3) the size and shape of the model domain, and 4) the rain 
intensity. 

The setup of the paper is as follows. First, the model for deriving values of effective 
saturated conductivity is developed. Next, the fundamental behavior of the model is 
illustrated with simple artificial catchments and a comparison with trends found in other 
studies. After that, in a case study, using data from the Ouvèze river basin (S. France), the 
validity of the model in field studies will be evaluated. First, ring infiltrometers are used 
in the model to estimate values of effective saturated conductivity for model domains 
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with the size of plot experiments. These effective values are compared with saturated 
conductivity values derived from measurements at that plot scale, using artificial rainfall 
plot experiments. Second, different approaches are evaluated to apply the effective 
saturated conductivity values in a transient simulation of runoff from a hillslope, in order 
to test the hypothesis that effective values derived with a steady state model can be 
applied in transient simulations. The paper ends with conclusions and recommendations. 
 
 
5.2 Scaling model for steady state infiltration  
 
5.2.1 Introduction 

 
For a small area ∈u ℜ 2 of the modeling domain, with |u| typically 0.04 m2, it can be 
assumed that water available for infiltration, rain (Pu, mm/h) and run-on (Qu, mm/h), is 
evenly spread over the modeling domain and the actual infiltration Iu (mm/h) under 
steady state conditions can be conceptualized as: 
 

Iu = min(Pu + Qu, Imax)       (1) 
 
with Imax, the maximum infiltration rate (i.e., infiltration capacity) of the area u. The 
function min(a,b) is defined as assigning the minimum value of a and b. Under steady 
state conditions, the soil is saturated for the case when the term Pu + Qu is greater than 
Imax, and Imax equals the saturated conductivity of the top soil of the area u. So, under 
steady state conditions, equation (1) can be rewritten as: 
 

Iu = min(Pu + Qu, Ku)        (2) 
 
with Ku the saturated conductivity of the area u. In many cases, the model inputs are not 
exactly known, and need to be represented as random variables, represented here by 
upper case letters. At larger spatial scales, i.e. a plot or a hillslope with an area l, it is 
assumed that the same conceptualization of infiltration is valid, although the small scale 
saturated conductivity Ku needs to be replaced by the effective saturated conductivity Ke 
(mm/h) at the larger scale l: 
  

Il = min(Pl + Ql, Ke)        (3) 
 
with Il, the steady state actual infiltration (mm/h) at the larger scale l, and Pl, the rain 
(mm/h), Ql the run-on (mm/h) at the larger scale. The aim is to develop a model deriving 
Ke from the following information: 1) parameters describing the spatial probability 
distribution of Ku within the area l, 2) parameters describing the surface flow pattern 
under steady state conditions within the area l, 3) the size |l| and shape of the area l, and 
4) the rain intensity. 
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5.2.2 Stochastic representation of saturated conductivity and flow pattern 
 
A landscape with spatial variation in saturated conductivity is represented by the random 
field (i.e. random function) {K(s):∈ ℜ 2}, where s is a spatial coordinate in the two 
dimensional domain. In the model, flow over the surface and infiltration are assumed to 
occur over square units u(s). Since the area |u| (m2) of each unit is chosen to be very 
small, typically 0.04 m2, it is assumed that rain on a unit and inflow from upstream to the 
unit is evenly distributed over the whole unit, as noted above. Under this assumption, the 
saturated conductivity at the support of a unit Ku(s) is the average of K(s) over the unit u: 
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At the scale of the modeling domain with an area |u|, the plausible assumption can be 
made that Ku(s) has a lognormal distribution (Russo and Bresler, 1981; Ragab and 
Cooper, 1993; Buttle and House, 1997; Mallants et al., 1997): 
 

.)( )(ss Z
u eK =         (5) 

 
The random field {Z(s):∈ ℜ 2} with a normal distribution has the following properties: 
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The quantity mZ(s) is the expectation (mean) of Z(s). The quantity )(hγ  which is a 
function only of the separation vector h, is called the semivariogram defining the spatial 
structure of Z(s). In the absence of other information, a spherical model is assumed for 
the semivariogram:   
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with; a, range of the semivariogram defining the spatial scale of variation (m); b, 
maximum value of the covariance. The expectation (mean) of Ku(s) is (Aitchison and 
Brown, 1957): 
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Increasing b results in a probability distribution of Ku(s) with a higher skewness.  
In this paper, surface flow is represented by flow over a rectangular grid of units u(si), 

with s1,…,sn, the locations of the center of the units at a regular grid, with a grid spacing 
corresponding to the length and width of the units. At this grid, realizations of Ku(si) are 
generated by sequential Gaussian simulation with Latin hypercube sampling (Pebesma 
and Heuvelink, 1999). The model assumes that the exact flow pattern between units is not 
known, although general characteristics will be known, such as the large scale change in 
topography and the presence or absence of micro relief such as furrows. The model 
generates realizations of the flow pattern derived from a digital elevation model defined 
as a random field with characteristics representing the large scale topography as a 
deterministic surface and micro relief added as a random component with specified 
spatial correlation characteristics. For each realization, the model derives the runoff 
pattern by assigning to each unit a flow direction to the neighboring unit resulting in the 
steepest downstream slope, removing small, local depressions (8-point pour algorithm, 
Burrough and McDonnell, 1998). 
 
 
5.2.3 Process model 
 
For determining effective saturated conductivity, a steady-state process model is used 
with the stochastic inputs described above. Any unit draining to a unit u(si) is called a 
neighboring upstream unit u(si,n), n=1..m (Figure 5.1). Assuming a known rain intensity p 
(mm/h), equation 2 becomes: 
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with (see also Figure 5.1) I(si), the actual infiltration of the unit u(si) (mm/h); Qout(si,n), 
outflow received by unit u(si) from a neighboring unit (mm/h); Qin(si), total inflow (i.e., 
runon) from neighboring units 1..m to unit u(si) (mm/h); and Ku(si) saturated conductivity 
of unit u(si) (mm/h). All fluxes are stochastic variables, apart from the rain intensity, 
denoted with a lower case letter p. Outflow (Qout(si), mm/h) from a unit is: 
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For each unit u(si) its catchment is defined as the unit itself and all its upstream units. The 
Ke value (eq. 3) for the catchment of a unit is: 
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Figure 5.1. Rain p and surface flow between square units. Each unit drains to one neighboring unit. 
Example unit u(si) in the center receives runoff Qout(si,1..3) from neighboring units u(si,1..3). 
 
with N(si), number of units in catchment of u(si); Ke(si), effective saturated conductivity 
of the catchment of u(si) (mm/h). 

For the outflow point u(sout) of a catchment, Ke(sout) is derived from: (1) the model 
given by equations (10-13), (2) the distribution of the input random field Ku(si) given by 
equations (4-9) and the random surface flow pattern; (3) the rain intensity, constant in 
space and time. The Monte Carlo simulation approach solves this in two steps 
(Hammersley and Handscomb, 1979; Heuvelink, 1998). Step 1. Repeat M times: a) 
generate a realization of the input random field Ku(si) and the flow pattern between the 
units u(si), b) with this realization of Ku(si) and the flow pattern run the model given by 
equations (10-13) for a given rainfall intensity p and store the model outcome 
(realization) of Ke(sout).  Step 2. Compute sample statistics (e.g., median, percentiles) of 
Ke(sout) from the M model realizations of Ke(sout). Both steps can be repeated for different 
distributions for Ku(si), different flow patterns and different rain intensities. All 
calculations described were done with a value of M higher than needed to retrieve sample 
statistics (Step 2) at the precision required. 
 
 
5.3 The fundamental behavior of the scaling model 
 
5.3.1 Evaluating one realization 
 
To illustrate how the model behaves, it is applied to a domain consisting of a simple 
linear catchment of 50 units following each other. For the sake of clarity, one realization 
of Ku(si) is taken to illustrate the effect of increased rain intensity on infiltration (Figure 
5.2A) and effective saturated conductivity (Figure 5.2B). At lower rainfall intensities not 
all units infiltrate at the rate of the saturated conductivity since the total input to these 
units, rainfall plus inflow from upstream cells, is less than the saturated conductivity. At 
these lower rainfall intensities, the effective infiltration rate of the catchment is lower 
than the mean saturated conductivity of the catchment.  With increasing rain intensity, the  
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Figure 5.2. Model input and outputs for one realization of Ku(si) for a linear catchment of 50 units. (A) 
Fluxes (mm/h per unit area) per unit from upstream to downstream at different rain intensities p, Ku, 
saturated conductivity; I, actual infiltration; Qout, outflow. (B) Effective saturated conductivity (Ke(sout), 
mm/h) at different rain intensities (p, mm/h) for the catchment of the outflow point. 



 108

infiltration rate increases since more water is available for infiltration. This increase stops 
at rain intensity pat_sat where all units infiltrate at the saturated conductivity (Figure 5.2B). 
Above this rain intensity, the effective saturated conductivity corresponds to the mean of 
the saturated conductivity of the catchment. For this example realization, the value of 
pat_sat and the increase of ke with p depends on the distribution and spatial pattern of the 
saturated conductivity. The Monte Carlo simulation applied in the model permits the 
calculation of the full probability distribution of the effective saturated conductivity, as 
described below. 
 

 
 
Figure 5.3. Example realizations of flow patterns, plan view. (A) Catchment of 10 x 50 units, used for 
base, less skewed and larger range scenarios; (B) catchment of 10 x 500 units, used for larger catchment 
scenario; (C) network catchment of 10 x 50 units, used for network scenario. 
 
 
5.3.2 Sensitivity analysis 
 
Although effective saturated conductivity is a function of several parameters, the focus in 
this paper is on its value as a continuous function of rain intensity (p, mm/h). This 
relationship is shown for different values for other input parameters using an artificial 
data set. All distances are given here in ‘units’ length, where one unit length is the length 

u  of a model unit. Different scenarios of input parameters are compared with a base 
scenario which calculates the effective saturated conductivity of a model domain 
(catchment) consisting of 50 x 10 units of ‘unit’ length. This catchment has a constant 
slope in the longest direction plus a very small amount of spatially uncorrelated random 
noise, resulting in parallel flow paths in one preferential direction, with locally some 
convergent flow (Figure 5.3A). The probability distribution of the saturated conductivity 
within this model domain is defined by the expected value of saturated conductivity 
(E{Ku(si)} = 50 mm/h) and its skewness defined by the b parameter (b = 2.0, eq. 9), 
having values that could also occur in the field. The spatial distribution of saturated 
conductivity is defined by the range parameter a of the semivariogram (eq. 8), which is 
for the base scenario 3 units length, meaning that the scale of variation in the ‘base’ 
scenario is much smaller than the length of the catchment for which the effective 
saturated conductivity is calculated. Although this standard catchment is scale free, we 
could think of it as a hillslope  with parallel  sheet flow  and spatial variation  in  saturated  
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Table 5.1. Model parameters. For each scenario, the parameter mZ(s) is derived with equation 7. Bold letters 
are parameter values different from the base scenario. 
 
Scenario a 

nr. unit 
lengths 

b E{ Ku(si)} 
mm/h 

Nr. units 
- 

Flow pattern 
- 

base   3 2.0 50 10 x 50 sheet 
less skewed   3 0.5 50 10 x 50 sheet 
larger range 15 2.0 50 10 x 50 sheet 
larger catchment   3 2.0 50 10 x 500 sheet 
network   3 2.0 50 10 x 50 network 
 
 

 
 
Figure 5.4. Example realizations of Ku(si) for the scenarios in Table 5.1, shown as transects of 50 units. 
 
conductivity over a distance of several meters. This base scenario is compared with 4 
other scenarios, each of which has one parameter changed compared to the base scenario. 
Inputs for all scenarios are given in Table 5.1 and Figure 5.3. The results are based on a 
Monte Carlo with M=999 loops. Figure 5.4 gives example realizations of Ku(si) shown as 
a transect over 50 units. 

The results in Figure 5.5 show the relationship between effective saturated 
conductivity Ke(sout) and rainfall intensity for the different scenarios. Since Ke(sout) is a 
random variable, both the median and the 45th and 55th percentiles are given. A large 
difference between these percentiles implies that Ke(sout) shows much variation, which 
means that model domains (catchments) having the same properties with respect to the 
model input parameters have large differences in Ke(sout). The following factors 
determine Ke(sout), other simulations (not shown) with different changes in input 
parameters give comparable results: 
1. Rain intensity. Increasing the rainfall intensity results in an increase in effective 
saturated conductivity for all scenarios. At rain intensity values below 20 mm/h, which is 
much lower than the expectation of saturated conductivity in the catchment (E{Ku(si)} = 
50 mm/h), the effective saturated conductivity is very close to, but lower than, the rain 
intensity. At higher rain intensities, the effective saturated conductivity is lower than the 
rain intensity  and  approaches  E{Ku(si)}.  An increase in effective saturated conductivity   
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Figure 5.5. Effective saturated conductivity of a model domain (Ke(sout), mm/h) against rain intensity (p, 
mm/h). Each figure compares the base scenario with two other scenarios: (A) less skewed, base, and larger 
range scenarios, (B) larger catchment, base, and network scenarios. Solid line, median; gray area, values 
between 45th and 55th percentile. Dashed line represents effective saturated conductivity without spatial 
variation in Ku(si) within the model domain. 
 
with rain intensity up to a maximum of E{Ku(si)} was also found in the model of Binley 
and Beven, 1989 and in measured and modeled saturated conductivity of Yu et al. (1997) 
and Merz et al. (in press). Fields studies by Burt (1998), Harms and Chanavsky (2000), 
and Joel et al. (in press) also suggest an increase in effective saturated conductivity with 
rain intensity. 
2. The probability distribution of saturated conductivity Ku(si). The effective value of the 
saturated conductivity approaches E{Ku(si)} if p goes to infinity. Decreasing the value of 
b (eq. 7), implying a decrease in variance and skewness of Ku(si), results in an increase of 
effective saturated conductivity at all rain intensities, as shown by the less skewed 
scenario (Figure 5.4B, 5.5A). A further decrease in b, would cause the line of effective 
saturated conductivity to approach and finally (at b = 0) overlap the dashed line in Figure 
5.5, representing the effective saturated conductivity without any variation of Ku(si) 
within the model domain. The model of Corradini et al. (1998) also predicted a decrease 
in effective saturated conductivity with decreasing variation and skewness in Ku(si). 
Several field studies showed effective values of saturated conductivities to be 
significantly lower than the mean of Ku(si) within a natural or artificial catchment (e.g., 
Williams and Bonnel, 1988), which corresponds with the model simulations presented 
here. An additional effect of decreasing the variance and skewness of Ku(si) is a decrease 
in variation in Ke(sout), as shown by the decreased difference between the 45th and 55th 
percentiles. 
3. Spatial distribution of saturated conductivity Ku(si). An increase in the scale of spatial 
variation results in a decrease in effective saturated conductivity as shown by the larger 
range scenario with a larger scale of spatial variation in saturated conductivity (Figure 
5.5A). In addition, the difference between the 45th and 55th percentiles increases. A 
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comparable decrease in Ke was also found by the modeling study of Corradini et al. 
(1998) and to my best knowledge not corroborated by field studies. 
4. Size of the model domain. Increasing the size of the model domain results in an 
increase in effective saturated conductivity. This is shown by the larger catchment 
scenario (Figure 5.5B), having a catchment of 500 x 10 units (Figure 5.3B) instead of 50 
x 10 units. The same trend was suggested by the modeling study of Blöschl et al. (1995) 
and found in field studies of Harms and Chanasyk (2000), van de Giesen et al. (2000), 
and Joel et al. (in press). 
5. Runoff pattern. The network scenario is different only from the base scenario in its 
runoff pattern. It represents a runoff pattern with more surface roughness, simulated by a 
higher amount of spatially uncorrelated noise added to the elevation model. This results 
in a runoff network with more convergent flow than the base scenario, as shown in the 
realization of runoff patterns in Figure 5.3C. Figure 5.5B shows that the network scenario 
results in a lower effective saturated conductivity than the base scenario. This is 
explained by regarding the results for the network scenario as an average of multiple 
small catchments. Small catchments have a lower effective steady state infiltration rate 
than large catchments, as was shown by the larger catchment scenario. 
 
 
5.4 Case study: scaling from local to plot scale 
 
5.4.1 Introduction 
 
The scaling model provides a rule to scale saturated conductivity from a scale where it 
can be conceptualized as a local process without spatial interaction using Ku for saturated 
conductivity (eq. 2), to the scale where it needs to be conceptualized as a spatial process, 
with Ke for saturated conductivity (eq. 3). To test the validity of the scaling model scaling 
from Ku to Ke, it needs inputs of saturated conductivity derived from field measurements 
at the local, point, scale, while its outputs at the larger scale need to be compared with 
estimates of saturated conductivity derived from field measurements measuring 
infiltration as a spatial process at that scale. In this case study, estimates of the probability 
distribution of saturated conductivity derived from ring infiltrometer experiments, 
denoted as *

uK , will be used as input uK  in the scaling model, in order to estimate the 
probability distribution of effective saturated conductivity Ke,p for plots of 1 m2. This 
scaled value of Ke,p is compared with the saturated conductivity, denoted as *

, peK , derived 
from artificial rainfall experiments, in order to validate the scaling model. 

The study area comprises the ‘La Folie’ catchment in the Ouvèze river basin, S. 
France, which is a 0.5 km2 cultivated catchment with hillslope angles of 0.25 m/m on 
average, near the village of Entrechaux. It contains loamy sands, sandy loams, loams and 
silt loam soils (USDA classification), all thicker than 2 m over bedrock. The catchment 
has a sub-Mediterranean climate, with a mean annual rainfall of 800 mm. 
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5.4.2 Field measurements 
 
Eighteen infiltration measurements on silt loam soils in vineyards were made with 
double-ring infiltrometers in May and June, 1997. The inner ring was 20 cm in diameter  
and the outer one was 40 cm in diameter. Rings were driven 3-5 cm into the ground and 
smeared with cement at the side, to minimize leakage. Water was applied simultaneously 
to both inner and outer rings, keeping a constant head of 3 cm in the ring. Infiltration in 
the inner ring was recorded by readings from a Mariotte bottle every 5 seconds. The 
experiments were stopped after 0.03 m cumulative infiltration in the inner ring. Saturated 
conductivity ( *

uk , mm/h) was derived by fitting the a (mm/h) and s (mm/h0.5) parameters 
in the equation (Philip, 1969, 1987), assuming a = 2/3· *

ek  (Green-Ampt soil, Philip, 
1969, 1987): 

 
attsic +=          (14) 

 
with ic, the cumulative infiltration (mm) in the inner ring at time t (h). Results are shown 
in Table 5.2. 

Effective steady state infiltration rates for small plots at 173 randomly chosen 
locations on cultivated land in the study area were obtained by rainfall simulation 
experiments, done in the period May-July, 1994-1997. Portable rainfall simulators were 
used on rectangular plots bounded at three borders with metal strips preventing runoff 
over the borders. At the fourth, downstream border, runoff was collected in a gutter, 
sealed to the plot surface with cement. Runoff in the gutter was measured under a rainfall 
intensity which was kept constant during an experiment, at time intervals of 0.5-2 
minutes, until a constant rate of runoff was measured, assumed to represent a steady state 
situation of infiltration in the plot. The actual unit kinetic energy (UKE), representative 
for the potential of the raindrops to detach soil material, was calculated from drop size 
and velocity distributions with an optical spectro-pluviometer (Salles and Poesen, 1999). 
For measuring infiltration for different plot sizes at different rain intensities, multiple 
rainfall simulators were used (Table 5.3), using a different constant rain intensity for each 
experiment. For each experiment, *

, pek  was calculated as the infiltration rate on the plot 
during steady state conditions of rainfall, infiltration and runoff, at the last part of the 
experiment. 

The distribution of *
uK  derived from the ring infiltrometer measurements can be 

regarded as log-normal. A Kolmogorov-Smirnov test rejected the hypothesis of a normal 
distribution, while a log-normal distribution was not rejected (α = 0.05), and a cumulative 
 
Table 5.2. Summary statistics for saturated conductivity ( *

uK , mm/h) measured by ring infiltrometers. 
Model parameters derived from these statistics are *

uKm = 1002 mm/h (mean of *
uK ) and b = 7.73 (variance 

of ln( *
uK +1)). s.d., standard deviation, c.v., coefficient of variation. 

 
 mean median s.d. c.v. (%) n 

*
uK  1002 280 1502 150 18 

ln( *
uK  +1)       5.081     5.629       2.780   55 18 
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Table 5.3. Properties of rainfall simulators. Type of rainfall generating mechanism s: spray nozzles, d: 
drop-formers (Battany and Grismer, 2000); UKE, unit kinetic energy or kinetic energy applied to 1 m2 of 
the soil surface by 1 mm of artificial rain based on 5 observations in each plot. 
 
Simulator Type Rain intensity 

(mm/h) 
UKE 
(J·m-2·mm-1) 

Plot width, length 
(m, m) 

1 s 25-90 13 0.8, 1.0 
2 s 58-79 13 0.8-1.2, 2.1-2.6 
3 s 85-105 17 0.6, 0.6 
4 d 20-30   7 0.4, 0.8 
5 s 67-152   7 0.4, 0.8 
6 d 80-423 23 0.14, 0.14 
 
 

 

 
 
Figure 5.6. Quantile-quantile plot of natural logarithm of saturated conductivity (ln( *

uK +1)) of ring 
infiltrometer measurements. Horizontal axis, normal distribution with mean 5.081 and standard deviation 
2.780, corresponding with summary statistics of ln( *

uK +1). n = 173. 
 
probability plot gives a rather good correspondence with a log normal distribution (Figure 
5.6). Log normal distributions are almost always found for effective saturated 
conductivity. The mean of the values is large compared to results found in other studies 
(e.g., Russo and Bresler, 1981; Sullivan et al., 1996; Sharma et al., 1980; Smettem, 1987; 
Loague and Gander, 1990), which can be explained by the occurrence of macro pores. 
Lauren et al. (1988) and Williams and Bonnel (1988) found comparably large values, 
when macro pores were present in the soil. Figure 5.7 shows that effective saturated 
conductivity *

, peK  derived with the rainfall simulators increases with rain intensity. Burt 
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(1998), Yu et al. (1997), Merz et al. (in press), Joel et al. (in press) report a comparable 
relationship between effective saturated conductivity and rain intensity on plots. 

The general trends found in the data set correspond with these simulated by the model 
presented in this study. An increase in *

, peK  (Figure 5.7) with rain intensity was also 
found in the sensitivity analysis with the scaling model. This suggests that processes 
described by the model are the key processes determining the measured trends in 
effective saturated conductivity. Although the rainfall simulator experiments showed a 
correlation with unit kinetic energy (r2 = 0.46), it is not expected that removal of surface 
crusts at high rainfall intensities, as suggested by Burt (1989), plays an important 
additional role in increasing effective saturated conductivity with rain intensity. This is 
because 1) the occurrence or removal of surface crusts was not observed during the 
rainfall simulations, 2) the correlation with unit kinetic energy, a measure for the 
potential of the rainfall to remove crusts, was weak. This suggests that removal of crusts 
is subordinate to the process of runon-runoff interacting with a within plot variation of 
saturated conductivity. 

 
 

 
Figure 5.7. Effective saturated conductivity against rain intensity for plots. Dots: *

, pek  (mm/h) derived 
from rainfall plot experiments against rain intensity applied with the rainfall simulator (p, mm/h), n = 173. 
Solid lines: first quartile, median and third quartile of *

, pek , moving average with width of moving window 
of 50 mm/h. Dashed line: median of modeled effective saturated conductivity (Ke,p, mm/h) against rain 
intensity (p, mm/h), gray area represents values between modeled first and third quartile. 
 
 
5.4.3 Upscaling 

 
The model was used for upscaling the ring infiltrometer measurements to effective 
saturated conductivity (Ke,p) of rainfall simulation plots. This was done with a model 
domain catchment area of 1 x 1 m, representing the area of rainfall simulation plots for 
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which effective values are calculated, and a model unit size |u| of 0.2 x 0.2 m, 
representing the approximate area of ring infiltrometer measurements. The parameters 
defining the probability distribution of the random field Ku(si) (equation 8-9) were 
assigned the measured values of the probability distribution *

uK  of the ring infiltrometer 
measurements; *

uKm = 1002 mm/h and b = 7.73 (Table 5.2). It was assumed that variation 
in Ku(si) can be represented by the spherical semivariogram model in equation 8. Since 
the spatial scale of variation in Ku(si), represented by the range parameter a in equation 8, 
was not measured, this parameter was calibrated as described below. Since detailed 
elevation data were only available for the hillslope used for the transient simulation, these 
data were used to derive runoff patterns for simulating the rainfall plot experiments. For 
each Monte Carlo loop, the local drain direction pattern was derived from the elevation 
model of a 1 x 1 m plot at a random location on this hillslope. 

The aim is to find the range parameter a resulting in the smallest deviation between 
the probability distribution *

, peK  given by the measurements *
, pek  (Figure 5.7) and the 

modeled probability distribution peK , , at all rain intensities. For each rainfall experiment, 
the model estimates peK , , at a rain intensity p corresponding to the intensity applied 
during the rainfall experiment. This was done with 200 Monte Carlo loops for each 
rainfall experiment, which resulted in a simulated distribution of saturated conductivity at 
different p, which could be plotted as dots just like the *

, pek  values in Figure 5.7, although 
it would contain 173 x 200 dots. The simulated and measured values were compared by 
making decile-decile plots of the measured distribution *

, peK  and simulated distribution 
peK , , in three intervals i of p: 1) 0-50, 2) 50-100 and 3) 100-200 mm/h. The range 

parameter a in equation 6 was calibrated using these decile-decile values by minimizing 
the sum of squares SS: 
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with i, the interval number of p; j, the decile number; Di,j the observed, measured, decile 
(mm/h); *

, jiD  the modeled decile (mm/h). Calibration resulted in a range parameter a of 
1.2 m (Figure 5.8 and 5.7), with a value for SS (eq. 15) of 3248 mm2/h2. 

Figure 5.7 shows that, after calibration of the range parameter, the modeled 
distribution peK ,  for the rainfall plots fits well with the measured distribution *

, peK , 
although the model somewhat overestimates percentile values at rain intensities in 
interval 1 and 2, while it underestimates percentiles in interval 3 (Figure 5.8). Although 
the calibrated range of 1.2 m cannot be verified with the field measurements presented 
here, it is a plausible value. Experimental semivariograms of saturated conductivity at the 
soil surface given in Buttle and House (1997), Lauren et al. (1988), and Loague and 
Gander (1990) suggest that 50-100% of  spatial variation occurs over distances smaller 
than 5-10 m. The correspondence between the modeled and measured distribution of 
effective saturated conductivity for plots suggests that processes described by the model 
are indeed the key processes determining the measured trends in effective saturated 
conductivity. 
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Figure 5.8. Modeled (D*) against observed (D) deciles for three intervals (i=1..3) of rainfall intensity of 
rainfall simulation experiments. 
 
 
5.5 Case study: scaling from local to hillslope scale.  
 
5.5.1  Field measurements and upscaling 
 
For rainfall runoff models representing a catchment by a set of, internally homogeneous, 
connected hillslope segments, effective saturated conductivity values are needed for each 
hillslope segment. To test the applicability of the scaling model in such rainfall runoff 
models, it is used to scale the estimates of saturated conductivity derived from the ring 
infiltrometer measurements to effective saturated conductivity Ke,h of one hillslope in the 
same study area. The effective values for the hillslope will be applied in a rainfall runoff 
model for that hillslope using natural rainstorms as input, in order to test the applicability 
of the scaled values, theoretically only valid under steady state conditions,  in transient 
conditions. Different approaches will be tested to deal with the transient conditions. 

Event based runoff modeling will be done for one hillslope, which is an 
approximately rectangular 7500 m2 sandy loam vineyard in the study area, with a mean 
slope of 0.042 m/m. The direction of tillage on the hillslope is approximately parallel to 
the elevation contour lines. Field data to derive model input parameters and variables 
were collected in 1997 and 1998 (Table 5.4, c.f., Van Dijck, 2000). Errors in water depth 
and velocity head measurements by continuous pressure recorders in a flume were 
estimated resulting in an estimated measured cumulative discharge dm from the hillslope 
(m3) and minimum (dm,min) and maximum (dm,max) values of estimated cumulative 
discharge, apart from hydrographs. Data were available for 16 events in 1996 and 1997. 
Since both the ring infiltrometer and the rainfall simulation measurements did not reveal 
any significant difference in *

eK  between fields in the area, it is assumed that the input 
parameters for Ku(si) derived from these measurements ( *

uKm  = 1002 mm/h and b = 7.73, 
a = 1.2 m) can also be applied to the hillslope. The effective saturated conductivity (Ke,h) 
under the assumption of steady state conditions was calculated using the same model unit 
size of 0.2 x 0.2 m. The drainage pattern is derived from the elevation model of the 
hillslope plus random noise (Monte Carlo simulation, step 1b). For simulating the effect 
of different agricultural practices,  three scenarios  of  random  noise added to the original  
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Table 5.4. Source of parameter values for runoff modeling on the hillslope. All data collected on the 
hillslope itself, or adjoining similar, hillslopes, except where indicated. 
 
Model 
component 

Parameter Unit Source N 

Catchment 
representation 

elevation, drain 
directions per grid 
location 

m interpolation from elevation 
contours 

- 

Rain 
 

rain intensity m/h tipping bucket, Casella, 0.077 
mm/tip 

1 location, 300 m 
from the hillslope 

Interception vegetation cover m2/m2 field measurement of canopy area 
and vertical photographs of 
canopy 

Several in winter 
and summer 

 maximum content of 
interception store 

m through fall measurements after 
rainstorms 

20 

Infiltration net capillary drive mm rainfall simulations 173 
 volumetric rock content m3/m3 3500 cm3 soil samples 31 
 saturated moisture 

content 
m3/m3 100 cm3 soil samples 114 

 initial moisture content m3/m3 local source* - 

Surface storage maximum surface 
storage 

mm based on field measurements and Kamphorst et al. 
2000 

Surface runoff discharge from hillslope m3/h flume with continuous pressure 
recorders 

- 

 Manning’s n  Chow (1959) outflow point 
from the hillslope 

*  Centre d’Information Régional Agrométéorologique et Economique, Carpentras  
 
 
digital elevation model for each Monte Carlo loop were used (Figure 5.9). These 
scenarios are 1) sheet flow, with random noise consisting of a realization from a random 
field given by a spherical semivariogram with range = 1000 m and variance 0.00005 m, 
2) micro scale variation, with random noise consisting of spatially correlated variation 
given by a spherical semivariogram with range = 0.5 m and variance 0.05 m, 3) flow with 
wheel tracks, consisting of parallel, straight wheel tracks in a direction D (degrees), with 
a constant interval between the wheel track centers of 1.25 m, a wheel track width of 0.5 
m, and a depth of 0.01 m. The direction D is a random variable with an average direction 
corresponding to the average direction of the elevation contour lines on the hillslope and 
a variance of 1. For each Monte Carlo loop, a different wheel track pattern was obtained 
by generating the wheel track pattern using the above given constants and a realization of 
D. 

Figure 5.10 gives the results, which were derived with a number of Monte Carlo loops 
M=200. Since each realization in the Monte Carlo procedure results in an almost similar 
relation between p and ke,h, the spreading in the distribution of Ke,h is small, as shown in 
Figure 5.10. The figures shows that the difference in Ke,h between the three different 
scenarios of runoff patterns is small compared to the change in Ke,h with rain intensity. 
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5.5.2 Application in a transient simulation 
 
5.5.2.1 Rainfall runoff model and scenarios. The event based rainfall runoff model uses 
grid cells of 10 x 10 m and a time step of 5 seconds. All input parameters were kept 
constant in space over the hillslope. For each time step, the net rainfall is the rainfall 
minus interception at that time step, calculated according to Merriam (1973). For each 
cell, and each time step, actual infiltration is the minimum value of the saturated 
conductivity (k) at the time step and the amount of net rainfall plus run-on from upstream 
cells at the time step. The value of k is derived for each time step with the scaling model  
with the spatial probability distribution of  the saturated conductivity  as input,  as will be. 
 
 

 
 
Figure 5.9. Example realizations of drainage patterns for a zoomed area of the field. Catchment area (w) of 
each unit u(si). (A) sheet flow, (B) micro scale variation, (C) wheel tracks. 
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Figure 5.10. Modeled effective saturated conductivity (Ke,h, mm/h) against rain intensity for the hillslope 
for three scenarios of runoff patterns. Solid line: median; gray area represents values between modeled first 
and third quartile. Lines for wheel tracks and sheet flow approximately correspond. 
 
described below. It is assumed that values of maximum infiltration higher than the 
saturated conductivity at the start of a rainstorm as a result of the suction force in an 
unsaturated soil can be ignored. Surface water that is not kept in a constant potential 
surface storage is routed as sheet flow with the kinematic wave using the Manning 
equation (Li et al., 1975; Chow et al., 1988). The model was implemented in the 
PCRaster spatio-temporal modeling language (Wesseling et al., 1996). 

The relationship between p and the median of the *
eK  distribution derived from the 

upscaling procedure with wheel tracks (Figure 5.10) was used for deriving the value of k. 
In the PIntEvent scenario, the k value is kept constant throughout the event, 
corresponding to the *

eK  value read from the p-median( *
eK ) curve (Figure 5.10) at a p 

value corresponding to the mean of the rain intensity during measured runoff. In the 
PIntVar scenario, the k value varies with t, the real time (seconds) with respect to a 
reference time for an event. The k(t) value is read from the p-median( *

eK ) curve using the 
average rain intensity between td(t) and t, with 
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with d(t), the average travel time of water from the edge of the hillslope to the outflow 
point at t, and ts(t), the maximum of all td(t) values in the past. In addition, three scenarios 
with the same k value for all events were run. These are the Ring scenario, with k = 1002 
mm/h corresponding to the mean value of the saturated conductivity *

eK  derived from the 
ring infiltrometer measurements, the Plot scenario, with k = 46 mm/h, the mean saturated 
conductivity *

, peK  derived from the rainfall simulations, and the InvMod scenario, with k 
= 1.7 mm/h derived from inverse modeling with the rainfall runoff model, based on a 
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minimization of the mean of the squared differences between measured cumulative 
discharge (dm, m3) and simulated cumulative discharge (ds, m3) of the events. 
 
5.5.2.2 Results and discussion. Table 5.5 gives summary statistics of the 16 events. Table 
5.6 gives for each scenario the mean error (ME) and mean squared error (MSE): 
 

( )
n

l
ME ne

e∑
== ..1           (17) 

 
( )

n

l
MSE ne

e∑
== ..1

2

         (18) 

 
with n, the number of events, where le = log10(ds+0.1)-log10(dm+0.1), with ds, the 
simulated cumulative discharge at the outflow point (m3), and dm the measured 
cumulative discharge (m3). The PIntVar scenario (Table 5.6, Figure 5.11) gives better 
results regarding MSE than all other scenarios, indicating that this scenario gives a better 
representation of the infiltration process on the hillslope than the other scenarios. Using 
the average of the saturated conductivity derived from field measurements of infiltration 
does not yield runoff, as shown by the Ring and Plot scenarios. The PIntEvent scenario 
results in an underestimation of discharge for most events. This can be explained by the 
transient conditions in the phases of the rainstorm corresponding to the rising and falling 
limb of the hydrograph. The PIntVar scenario deals with the transient conditions by using 
a temporally variable value for k (Figure 5.12) resulting in a smaller value of MSE. For 
analyzing unexplained variation in cumulative discharge, a multiple linear                            
. 
Table 5.5. Summary statistics of the rain storms. n, number of events; pcum, cumulative rain (mm) over 
event; p, average rain intensity during measured runoff; pcv, coefficient of variation of rain intensity values 
(values are average values over periods of 30 s.), during measured runoff; dQ, duration of measured runoff; 
dtt, average travel time of water from catchment boundaries estimated with the rainfall runoff model. 
Values in brackets denote standard deviations.` 
 
n pcum (mm) p (mm/h) pcv (%) dQ (h) dtt (h) 

16 19 (9.9) 8.4 (8.2) 91 (60) 1.8 (1.8) 0.22 (0.039) 
 
 
Table 5.6. Mean error (ME) and mean squared error (MSE) of cumulative discharge for scenarios described 
in text. A ‘-‘ indicates that the model predicts zero discharge for all events. 
 
Scenario ME MSE 
PIntEvent -0.8 1.0 
PIntVar -0.4 0.4 
Ring - - 
Plot - - 
InvMod 0.4 0.8 
 



 121

 
Figure 5.11. PIntVar scenario, log10 of simulated cumulative discharge (ds, m3) against estimated measured 
cumulative discharge (dm, m3). Each dot with a horizontal line represents one rainstorm, where the dot gives 
the cumulative discharge and the horizontal lines indicate measurement error, with endpoints of each line 
representing dm,min and dm,max of the measured discharge. 
 
regression between le for the PIntVar scenario and (log transformed) characteristics of the 
events in Table 5.5 was performed. A backward elimination procedure using the Akaike 
information criterion as indicator for dropping terms, resulted in a significant positive 
relation between le and 1) rain intensity during runoff (p), and 2) average travel time of 
water from catchment boundaries (dtt), with an r2 of 0.71. Since both p and dtt are related 
to the estimation of k in this scenario, the regression indicates that the approach followed 
by the PIntVar scenario is still not completely capable of dealing with the transient 
phases of runoff. Other approaches using a variable k during the event were tested, but 
these did not result a decrease of the MSE. 

Although the use of the p-median( *
eK ) curve improves model results compared to 

scenarios with a constant k, the method applied in the PIntVar scenario still yields poor 
results for the transient case. This is mainly caused by an incorrect representation of the 
infiltration in the transient phases represented by the rising and falling limb of the 
hydrograph. Although it is not proven in this study, it can be expected that this limitation 
is a smaller problem for transient simulations of smaller hillslopes, having shorter travel 
times, resulting in a shorter duration of highly transient phases. This is indicated by the 
study of Yu et al. (1997). Following a similar approach of using a p- *

eK  curve in 
simulations of runoff from large plots (20-216 m2), they found a close fit between 
modeled and measured hydrographs resulting from natural rainstorms. For larger 
hillslopes, it is expected that a scaling approach similar to the approach followed here can 
only be used in transient simulations when effective values of saturated conductivity are 
calculated for grid cells. 

Apart from the above mentioned errors in the conceptualization of the processes, 
other factors may have caused part of the difference in measured and simulated discharge 
on the hillslope. These are 1) uncertainty in the probability distribution of Ku(s) due to the 
relatively small number of ring infiltrometer experiments,  2) incorrect calibration  of  the 
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Figure 5.12. PIntVar scenario, event 6 Nov. 1997. (A) rainfall, (B) measured discharge, modelled 
discharge, and saturated conductivity (k(t)). Gray area of measured discharge represents error in 
measurements. 
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semivariogram range parameter a as a result of a relatively large number of rainfall 
simulation data at rain intensities higher than these of natural rainstorms, 3) occurrence of 
processes not incorporated in the model, such as removal of crusts at higher rain 
intensities and increased infiltration rates at the start of a rainstorm as a results of suction 
forces in the soil under unsaturated conditions. 
 
  
5.6 Conclusions 
 
Under steady state conditions, the scaling model predicts an increase in effective 
saturated conductivity of a model domain with 1) an increase in rain intensity, 2) 
increasing mean and decreasing variance, and skewness of saturated conductivity 
distribution within the model domain, 3) decreasing spatial scale of variation in saturated 
conductivity within the model domain, 4) increasing size of the model domain and, 5) 
decreasing bifurcation of the drainage pattern in the model domain. The direction of these 
relations corresponds with these found in other modeling studies and estimates of 
effective saturated conductivity derived from field measurements in other studies. 

In addition, it has been shown that the scaling model is capable of scaling modeled 
saturated conductivity from the local scale (0.04 m2) to the plot scale (1 m2). Estimates of 
saturated conductivity at the local scale derived from ring infiltrometer measurements 
representing the local scale values can be scaled to effective values at the plot scale 
corresponding to these derived from rainfall simulation experiments at that scale. 

At the hillslope scale (7500 m2), the relation between rain intensity and effective 
saturated conductivity found by the scaling model was tried in a transient simulation of 
runoff from the hillslope. Results were generally poor, most probably owing to the steady 
state nature of the effective conductivity relationship. However, effective values did at 
least create runoff, which was not the case when directly using the average saturated 
conductivity derived with the field measurements of infiltration. Moreover, using an 
approach with varying effective saturated conductivity with rainfall intensity gave better 
results than using a fixed saturated conductivity per event, or a value obtained from 
inverse modeling. This indicates that an approach with varying effective saturated 
conductivity with rainfall intensity does have some potential in transient runoff modeling. 
It is expected that transient simulations will give better results when smaller areas are 
used as modeling domain, for instance grids. 
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6 A SCALE TRANSFORM FUNCTION TO COMPUTE 
SATURATED CONDUCTIVITY FOR MODEL UNITS OF 
DYNAMIC SPATIAL RAINFALL-RUNOFF MODELS FROM 
LOCAL SCALE MEASUREMENTS OF INFILTRATION 

 
D. Karssenberg 

 
 
Abstract: Dynamic spatial rainfall-runoff models require values of saturated conductivity 
which are representative for (i.e., effective at) the support size used in these models. The 
support size is defined as the domain in space and time in which all fluxes are assumed to 
be homogeneous and constant, respectively. It is defined by the size of the model units 
and the time step used in the rainfall-runoff model. This chapter describes a scale 
transform function to upscale local scale values of saturated conductivity to effective 
values of saturated conductivity at a support corresponding to the size of a model unit of 
100 m2 and a time step of several seconds. The form of the transfer function is derived 
from a stochastic model simulating the spatial process of runoff and infiltration within a 
model unit. The three parameters in the transfer function can be found for each model 
unit in the rainfall-runoff model using a correlation between these parameters and 1) the 
spatial probability distribution of the saturated conductivity within a model unit, 2) 
derivatives of the digital elevation model at the scale of the model unit (e.g., slope, 
curvature), and 3) the pattern of surface runoff in the unit. With field data from a 0.43 
km2 catchment in the Ouvèze river basin, S. France, the transfer function was tested in a 
simulation with a dynamic spatial rainfall-runoff model, resulting in an effective saturated 
conductivity that varied for each model unit with the intensity of net rainfall and runon to 
the model unit. The simulations showed that the application of the transfer function in a 
dynamic spatial rainfall-runoff model resulted in differences between simulated and 
measured cumulative discharge from the catchment which were smaller than these found 
with simulations without the use of the transfer function. This was also the case for a 
small hillslope in the same area. 
 
 
6.1 Introduction 
 
When it is simulated over a small area (e.g. 10-2 m2), infiltration is generally considered 
to be a one dimensional process. A large number of standard infiltration models are 
available to do such simulations. In most cases these models estimate infiltration as a 
function of the availability of surface water for infiltration, physical and chemical 
properties of the soil, water content of the soil, occurrence of macro pores and/or surface 
sealing. For larger areas, infiltration has to be considered as a spatial process with an 
interaction between overland flow and infiltration processes in the soil, since the 
availability of water for infiltration becomes dependent on rain and runon, while runon is 
determined by the same interaction process in upstream areas. As a result, for larger 
areas, infiltration can only be modeled when both infiltration processes in the soil and 
runoff are regarded as interrelated processes with variation in space (Smith and Hebbert, 
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1979; Woolisher et al., 1996; Merz and Plate, 1997; Corradini et al., 1998). In a spatial 
infiltration model, this means that factors determining one dimensional infiltration need 
to be incorporated, but also the spatial variation in these factors and the spatial pattern of 
runoff. 

Infiltration as a spatial process can be simulated by dynamic spatial rainfall-runoff 
models simulating discharge from a catchment, using model units with such a small size 
that within each unit infiltration can be simulated as a one dimensional process into the 
soil, ignoring spatial processes within the model unit. Since spatial variation in runoff and 
infiltration occurs at very small scales, this approach leads to rainfall-runoff models with 
model units that need to be very small (e.g. 10-2 m2), resulting in unacceptably large 
model run times. Moreover, field data needed as model input, for instance to define the 
flow pattern between model units, is mostly not available at this high resolution. The only 
alternative, especially for large catchments, is to use larger model units. It is common 
practice in dynamic rainfall-runoff modeling to use model units with an area of 101-108 

m2. Data at this resolution are usually derived from existing digital elevation models, 
digitized soil, vegetation or land use maps or remote sensing images. 

As noted above, infiltration cannot be regarded as a one dimensional process when 
larger model units are used. Thus, so called effective parameters have to be defined for 
model units; i.e. parameters that take account of the infiltration and runoff-runon 
processes within each model unit. In a dynamic spatial model, an effective parameter or 
variable is the single value assigned to a model unit, defined in the space and time 
domain, such that the model based on that value yields the same output for that model 
unit as a model based on the actually occurring heterogeneous parameter or variable 
field(s) within the model unit (after Blöschl and Sivapalan, 1995). The optimal way to 
estimate effective parameters for infiltration would be to adjust the support of field 
measurements of infiltration to the size of the model units used. Although possible, this 
has unacceptable disadvantages since it results in large infiltration plots which are 
difficult to install. Moreover, infiltration plots ignore runon from upstream areas outside 
the plot. In most cases, the only measurements available are those estimating infiltration 
as a one dimensional process into the soil, such as ring infiltrometer measurements or 
laboratory measurements of conductivity in soil samples, or measurements with a rainfall 
simulator measuring infiltration as a spatial process at a small support (typically 1-102 
m2). These measurements can only be used for modeling infiltration in a dynamic spatial 
rainfall-runoff model using a mathematical or numerical upscaling technique. 

Although many authors have stressed the need for upscaling techniques (Beven, 1989; 
Binley et al., 1989; Blöschl et al., 1995; Blöschl and Sivapalan, 1995; Harms and 
Chansyk, 2000; Bierkens et al., 2000), research in this field is in its infancy. Existing 
methods for deriving effective parameters (e.g., Russo, 1992; Hendrayanto et al., 2000) 
mostly ignore the interaction between surface runoff and infiltration. Studies that take the 
interaction between runoff and infiltration into account are either focused on effective 
parameters for (sub-)catchments as a whole (e.g., Binley and Beven, 1989), or do not deal 
with infiltration under spatial variation of runoff (e.g., Grant et al., 1991). To the author’s 
knowledge, upscaling techniques for deriving effective infiltration parameters for model 
units with inflow from upstream are not available. 

This study describes an upscaling method that calculates effective values of saturated 
conductivity for model units of dynamic spatial rainfall-runoff models. These effective 
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values are derived from field measurements of saturated conductivity with ring 
infiltrometers or rainfall simulators. The technique takes into account the interaction 
between runoff and infiltration, in an approach similar to the approach described in 
chapter 5. It is developed for a catchment with macro pore flow dominated infiltration, 
assuming a temporally constant spatial pattern of saturated conductivity within the model 
unit. The aim is to develop and test a transfer function which derives the effective 
saturated conductivity of a model unit from the mean of the effective saturated 
conductivity field within the unit and additional parameters. These additional parameters 
can be estimated from data which are available in most rainfall-runoff modeling studies: 
parameters describing the probability distribution of the effective saturated conductivity, 
the derivatives of the digital elevation model used (e.g., slope, curvature), and the pattern 
of surface flow within the unit (e.g., sheet flow or rill flow). 

The setup of the chapter is as follows. First, a description of the study area is given, 
followed by a general overview of the approach followed. Then, a steady state rainfall-
runoff model is described simulating the spatially variable process of infiltration within a 
model unit. From the concepts and outcomes of this stochastic model, the transfer 
function is developed, which is applied in a dynamic spatial rainfall-runoff model 
simulating discharge from two catchments. The results are evaluated by comparing 
simulated and measured discharge, and by additional runs with the rainfall-runoff model 
without the use of the transfer function. 
 
 
6.2 Study area and methods 
 
The study area corresponds to the study area described in Chapter 5, comprising the ‘La 
Folia’ catchment in the Ouvèze river basin, S. France, which is a 0.43 km2 cultivated 
catchment consisting of approximately 100 arable fields, mainly vineyards, near the 
village of Entrechaux. It contains loamy sands, sandy loams, loams and silt loam soils 
(USDA classification), all thicker than 2 m over bedrock, with hillslope angles of 0.25 
m/m on average. The catchment has a sub-Mediterranean climate, with a mean annual 
rainfall of 800 mm. This catchment is referred to here as catchment A. It contains 
catchment B, the catchment for which dynamic simulations were done in Chapter 5, 
which is an approximately rectangular 7500 m2 sandy loam hillslope with a vineyard. Its 
mean slope is 0.042 m/m and the constant direction of tillage on the hillslope is 
approximately parallel to the elevation contour lines. 

Eighteen infiltration measurements in catchment A were made with double-ring 
infiltrometers in May and June, 1997. The inner ring was 20 cm in diameter and the outer 
one was 40 cm in diameter. Rings were driven 3-5 cm into the ground and smeared with 
cement on the side, to minimize leakage. In addition, rainfall simulation experiments 
were done on 0.02 m2-5.5 m2 plots at 173 randomly chosen locations on cultivated land in 
catchment A, in the period May-July, 1994-1997. With these field measurements of 
infiltration, the research described in Chapter 5 derived the spatial probability distribution 
of the saturated conductivity Ku(s) of the top-soil for catchment A, for a support of 
rectangular cells of 0.04 m2 area, which was calculated to have a lognormal distribution, 
with a mean )(u sKm = 1004 mm/h, a variance of ln(Ku+1) of 7.73, and a spatial pattern of 



 130

ln(Ku+1) characterised by a spherical variogram with a range avar = 1.2 m. The rainfall 
simulation experiments did not reveal significant differences between soil and landuse 
types in catchment A. The high mean value of the saturated conductivity is probably 
caused by macro pore flow (c.f., chapter 5), while surface crusting was shown not to have 
a significant impact on the infiltration rate. 

Field data to derive model input parameters and variables for rainfall-runoff modeling 
were collected in catchment A and B, in 1997 and 1998 (Table 6.1, c.f. Van Dijck, 2000). 
Hydrographs and the cumulative discharge (dm, m3) under Hortonian runoff from 
catchment A (n = 16 events) and B (n = 14 events) were derived from measurements with 
flumes installed with continuous pressure recorders. Errors in the water depth and 
velocity head measurements recorded by the pressure recorders were estimated resulting 
in minimum (dm,min, m3) and maximum (dm,max, m3) values of cumulative discharge. 
 
Table 6.1. Source of parameter values for running the rainfall-runoff model on catchment A and B. All data 
collected on catchment A, c.f., Van Dijck (2000). For rainfall simulations and ring infiltrometer 
measurements, see text. 
Model component Parameter Source N 

digital elevation model interpolation from elevation contours - Catchment 
representation 
and flow direction tillage direction field observations all fields 

Rain 
 

rain intensity (pr) tipping bucket, Casella, 0.077 mm/tip 1 location 

Interception vegetation cover (c) field measurement of canopy area 
and vertical photographs of canopy 

Several in winter 
and summer 

 maximum content of 
interception store (sm) 

throughfall measurements after 
rainstorms 

20 

Surface storage maximum surface storage based on field measurements and 
Kamphorst et al. (2000) 

- 

discharge flume with continuous pressure 
recorders 

1 per catchment Surface runoff 

manning’s n Chow (1959) - 
*  Centre d’Information Régional Agrométéorologique et Economique, Carpentras  
 
 
6.3 Approach 
 
The measured discharge from catchment A and B is simulated with a dynamic spatial 
rainfall-runoff model with model units of 10 x 10 m. The aim is to develop and 
parameterize a transfer function calculating the effective saturated conductivity for each 
model unit in the rainfall-runoff model, and to apply the function in this model, to both 
catchment A and B. The approach is as follows. 

Dynamic spatial rainfall-runoff models use model units which are subdomains of the 
spatial and temporal domain, created by discretisation of the spatial domain in grid cells 
or polygons (Figure 6.1A), and discretisation of the time domain in time slices. For each 
model unit, an effective saturated conductivity (ke(t), mm/h) is needed, where t represents 
the time (s). The value of ke(t) of a unit is related to several properties of the unit:  
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ke(t) ~ (p(t), q(t), Ku(s), flow pattern, location)    ( 1) 

 
Since ke(t) depends on the availability of water for infiltration (chapter 5), it will depend 
on the net rain reaching the surface (p(t), mm/h) and the inflow (q(t), mm/h) from 
neighboring units (i.e., subdomains), both averaged over the unit. The fluxes p(t) and q(t) 
can be derived from the rainfall-interception module and the water routing algorithm, 
respectively, of the rainfall-runoff model in which ke(t) is needed. Since the spatial 
pattern of the saturated conductivity is not exactly known for each model unit, it is 
modeled with a random field Ku(s) with known spatial probability distribution. In 
addition to p(t), q(t), and Ku(s) which have an effect on ke(t), the spatial pattern of surface 
flow within the unit is important, since it has effect on the interaction between runoff and 
infiltration. Just like the spatial pattern of infiltration, the flow pattern is not exactly           
. 
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Figure 6.1. (A) Model units in a rainfall-runoff model using rectangular model units; (B) model unit 
discretised in subunits with area |u| (m2), catchment area iΒ shown of one subunit at the edge of the unit; 
(C) input and output fluxes for one subunit within a unit; left, subunit at the edge of the unit; right: subunit 
not at the edge of the unit. 
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known for each unit, and it needs to be represented as a random variable, with known 
statistical properties. The location of the unit in the large scale drainage network will 
influence the value of ke(t) since it determines whether runon to the unit is concentrated at 
a few locations or spread over the cell. 

For describing the process of runoff and infiltration occurring within the unit, a 
steady-state stochastic spatial model (G) is developed for within unit runoff-infiltration 
modeling. Under steady state conditions, it derives the probability distribution of the 
effective saturated conductivity for each unit, using the inputs in equation 1. This 
stochastic model cannot be used for calculating the effective saturated conductivity 
distribution for each unit in a rainfall-runoff model with a large number of units, since its 
run time is very large. For this reason, a deterministic transfer function g will be derived 
from the properties and outcomes of the steady-state stochastic model G. It transfers the 
mean saturated conductivity ( )(u sKm ) of the unit to the effective saturated conductivity 
(ke(t)) of the unit. Under the assumption that steady state conditions occur over each time 
interval (t, t+∆t), this transfer function can be used to calculate ke(t): 
 

[ ] )(21 u
,...,),(),()( sKne mppptqtpgtk =      ( 2) 

  
The variables p(t) and q(t) are input variables to the transfer function, for each time step 
in the rainfall-runoff model, p1, p2,..pn are parameters, which are related to the spatial 
probability distribution of the saturated conductivity, the flow pattern, and the location of 
the unit (equation 1). By running the stochastic model G for within unit runoff-infiltration 
modeling for each unit in catchment B, which is possible, since it contains only 75 units, 
the parameter values p1..n in the transfer function g will be derived for each unit in this 
catchment, by fitting the transfer function g to the outcome of the stochastic model G. 

The same approach for finding the parameter values p1..n for all units in the larger 
catchment A cannot be applied, since this would take too much calculation time. Instead a 
regression analysis is applied using the results of catchment B. Since the parameters p1, 
p2,…pn are related to (known) properties of the cell (equation 1), a regression will be 
performed for catchment B between these parameters as dependent variables and 1) 
parameters describing the spatial probability distribution of the saturated conductivity, 2) 
the flow pattern and 3) the location of the unit in the large scale drainage system as 
independent variables. The results of this regression can be used for estimating the 
parameter values p1, p2,…pn for individual model units in catchment A. 

Finally, the dynamic spatial rainfall-runoff model with the transfer function g and its 
estimated parameter values is used to simulate the discharge of catchment A and B for all 
rainstorms. Results of this simulation will be compared with field measurements of 
discharge and results of simulations without the transfer function.  
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6.4 Stochastic model for within-unit runoff-infiltration modeling 
 
6.4.1 Stochastic representation of within unit saturated conductivity and flow pattern 
 
A model unit with spatial variation in saturated conductivity is represented by the random 
field (i.e. random function) { },:)( DK ∈ss where s is a spatial coordinate in the two 
dimensional domain D. Note that uppercase letters denote random fields (e.g., K), while 
lower case letters denote realizations of random fields (e.g., k). In a model unit, flow over 
the surface and infiltration are assumed to occur over square subunits u(s), with an area |u| 
(m2, Figure 6.1B). Since |u| is chosen to be very small, typically 0.04 m2, it is assumed 
that rain on a subunit and inflow from upstream to the subunit are distributed evenly over 
the whole subunit. Under this assumption, the saturated conductivity at the support of a 
subunit Ku(s) is the average of K(s) over the subunit u: 

 

u

d)(
)( u

u
∫=

ss
s

K
K         ( 3) 

 
At the support |u|, the plausible assumption can be made that Ku(s) has a lognormal 
distribution (Russo and Bresler, 1981; Ragab and Cooper, 1993; Buttle and House, 1997; 
Mallants et al., 1997): 
 

.)( )(
u

ss ZeK =         ( 4) 
 
Furthermore, it is assumed that Z(s) is a multivariable normal and stationary random 
spatial function. Thus, { }DZ ∈ss :)(  is defined by: 
 

{ },)(E)( ss ZmZ =         ( 5) 
 

 

( ){ },)(-)( E
2
1)( 2hssh += ZZγ       ( 6) 

  
where E represents expectation. The quantity )(hγ  which is a function only of the 
separation vector h, is called the semivariogram defining the spatial structure of Z(s). In 
the absence of other information, a spherical model is assumed for the variogram:   
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with; avar, range of the variogram defining the spatial scale of variation; )(sZσ , maximum 
value of the covariance. The expectation (mean) of Ku(s) is (Aitchison and Brown, 1957): 
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Increasing )(sZσ  results in a probability distribution of Ku(s) with both a higher variance 
and a higher skewness. 

Surface flow within the unit is represented by flow over a rectangular grid of subunits 
u(si), with s1,…,sn, the locations of the center of the subunits at a regular grid, with a grid 
spacing corresponding to the length and width of the subunits ( u , m), Figure 6.1B). 
Realizations of Ku(si) are generated by sequential Gaussian simulation with Latin 
hypercube sampling (Pebesma and Heuvelink, 1999). 

The model assumes that the exact flow pattern between subunits is not known, 
although general characteristics will be known, such as the large scale change in 
topography and the presence or absence of micro relief such as furrows. The model 
generates realizations of the flow pattern derived from a digital elevation model defined 
as a random field with characteristics representing the large scale topography as a 
deterministic surface and micro relief added as a random component with specified 
spatial correlation characteristics. For each realization, the model derives from such a 
realization of the digital elevation model the direction of flow for each subunit u(si), 
assigning to each subunit a flow direction to one of the eight steepest downstream 
neighboring units, while removing small, local depressions (8-point pour algorithm, 
Burrough and McDonnell, 1998). 

To represent the flow patterns under different land use types in the study area, the 
flow pattern is generated for three scenarios with different types of random components 
added to the original, deterministic elevation model (Figure 6.2): 
1. sheet flow. The drainage pattern is derived from the original digital elevation model 
plus a realization from a random field given by a spherical variogram with range = 1000 
m and variance 5·10-5 m. 
2. flow with micro scale variation. The drainage pattern is derived from the original 
digital elevation model plus spatially correlated variation given by a spherical variogram 
with range = 0.5 m and variance 0.05 m. 
3. flow with wheel tracks. The drainage pattern is derived from the original digital 
elevation model plus a realization of relief caused by wheel tracks. This wheel track relief 
consists of parallel, straight wheel tracks in a direction Γ  (degrees), with a constant 
interval between the wheel track centers of 1.25 m, a wheel track width of 0.5 m, and a 
depth of 0.01 m. The direction Γ  is a random variable with an average direction and a 
variance of 1. For each realization, a slightly different wheel track pattern was obtained 
by generating the wheel track pattern using the above given constants and a realization of 
Γ . 
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6.4.2 Process model 
 
For modeling the factors determining the effective saturated conductivity of the model 
unit (Figure 6.1B), a process model (G) is used with the stochastic parameters described 
above. The aim of this model is to estimate the effective saturated conductivity of the unit 
over the time step ∆t applied in the dynamic spatial rainfall-runoff model, for which the 
effective values are needed. Since model units and time slices are relatively small 
(typically 102 m2 and 10 s, respectively), it is assumed that the effective saturated 
conductivity of the unit can be estimated with a steady state approach, using constant 
fluxes over ∆t. 

The process model is defined as follows. The subunits u(si) on a rectangular grid 
within the unit drain to each other. Any subunit within the unit draining to a neighboring             
. 

 
 
Figure 6.2. Example realizations of drainage patterns for a zoomed area of a field. Catchment area (w) of 
each subunit u(si). (A) sheet flow, (B) micro scale variation, (C) wheel tracks. Note that the length of one 
unit is 10 m. 
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subunit u(si) within the unit is called a neighboring upstream subunit u(si,n), n=1..m 
(Figure 6.1C), with m the number of neighboring subunits (max. 8). Since it is assumed 
that rainfall on the subunit and inflow from upstream to the subunit is evenly distributed 
over the whole subunit, as described in the section 6.4.1, the actual infiltration in a 
subunit is: 
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where 'min(x,y)' assigns the minimum value of x and y. The subscripts ‘st’denote values 
standardized to values valid for a unit mean saturated conductivity, which is needed since 
the transfer function will be defined for standardized values, too. These are (see also 
Figure 6.1C): pst, rainfall (h-1); Ist(si), actual infiltration of the subunit (h-1); Oout,st(sn), 
outflow to a directly neighboring subunit (h-1); Oin,st(si), total inflow from neighboring 
units 1..m to the subunit (h-1); Ku,st(si), saturated conductivity of the subunit (h-1); rst(si), 
runon over the edge of the unit (h-1). 

Subunits at the edge of the unit may receive runon (rst(si)) from neighboring units 
while subunits in the center of the unit do not receive runon from neighboring units 
(Figure 6.1C). The amount of runon received by all subunits at the edge of the unit equals 
the total inflow from neighboring units in the rainfall-runoff model. It is assumed that 
each subunit at the edge of the unit receives an amount of this inflow proportional to its 
supplying catchment area outside the unit (Figure 6.1B): 
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with: iΒ , catchment area outside the unit of a subunit i at the edge of the unit (m2); 

∑
∈

Β
edgei

i , catchment area of subunit i outside the unit, cumulative over all subunits at the 

edge of the unit (m2); |u|, area of a subunit (m2); |ud|, area of a unit in the dynamic spatial 
rainfall-runoff model (m2);  qst = q / mk, with q (mm/h, over the unit), the inflow from 
neighboring units in the dynamic spatial rainfall-runoff model. The catchment area iΒ  is 
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the catchment area outside the unit, in neighboring units (Figure 6.1B). iΒ  is calculated 
using the flow pattern between subunits in neighboring units derived from the elevation 
model with random noise in neighboring units following the procedure also applied for 
the unit itself (section 6.4.1). iΒ  is the area represented by subunits on one or more 
upstream paths over the local drain direction network between the subunits, starting at 
these subunits at the edge of the unit receiving inflow from a neighboring unit. 

The standardized effective saturated conductivity Ke,st (h-1) of the unit is: 
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with n, the number of subunits in the unit. And it is clear that the effective saturated 
conductivity Ke (mm/h) of the unit is 

 
)(, u sKstee mKK =         ( 14) 

 
Also, the model calculates Ai (-), which is the area inside the unit which is 

downstream of one or more subunits at the edge of the unit, divided by |ud|. This 
downstream area is calculated using the flow pattern between subunits. 

The model G is represented by equations 4-14. It derives Ke and Ai from: (1) the 
process model given by equations 9-14, (2) the distribution of the input random field 
Ku(si) and the random flow pattern, (3) a rain intensity p, which is homogeneous within 
the unit, and the inflow from neighboring units q. The Monte Carlo simulation approach 
solves G in two steps (Hammersley and Handscomb, 1979; Heuvelink, 1998). Step 1. 
Repeat M times: a) Generate a realization of the random field Ku(si) and the flow pattern 
between the subunits u(si), b) With this realization of Ku(si) and the flow pattern, run the 
model with a fixed amount of rainfall p and inflow q, and store the model outcome 
(realization) of Ke. Step 2. The M model realizations represent Ke, and can be used to 
calculate parameters describing the distribution of Ke. The same holds for Ai. 
 
 
6.5 The transfer function 
 
The form of the transfer function (g) needs to be derived from infiltration and runoff 
processes occurring in a model unit as described by the stochastic model G. A fraction a 
(-) of the total area of the unit receives inflow from upstream units, which corresponds in 
the stochastic model G to the area represented by all subunits downstream of subunits at 
the edge of a unit receiving inflow from neighbouring units. The effective saturated 
conductivity of the unit can be written as the weighted sum of the effective saturated 
conductivity (ke,ch) in the compartment receiving inflow, represented by the fraction a, 
and the effective saturated conductivity (ke,nc) in the compartment receiving net rain only, 
represented by 1-a: 

ncechee kakak ,, )1( ⋅−+⋅=        ( 15) 



 138

Under the invalid assumption of 1) a complete distribution of all inflow and net rain 
within each  compartment,  and  2) absence of spatial variation  in  saturated  conductivity  
within the two compartments, ke is: 
 

),(min)1(),(min ,, nckchke mpam
a
qpak ⋅−++⋅= ,    ( 16) 

 
with, mk,ch and mk,nc the saturated conductivity within each of the two compartments. In 
most cases, the  assumption can be made that mk,ch and mk,nc (mm/h) are the same, as is 
done in the stochastic model G. Then, after some manipulation, equation 16 becomes: 
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and )(u sKm , the mean saturated conductivity of the unit. Figure 6.3 illustrates the shape of 
equation 17, using )(, u

/ sKeste mkk = . 
With spatial variation of inflow and saturated conductivity, ke is lower than 

represented in equation 17, and the ‘min’ function is replaced by a function h, with 
additional input parameters bp and bq: 
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with bp, bq, parameters defining the shape of the function in the pst and qst direction 
respectively. 

The next question is to find a form for g, which is equivalent to finding a form for h. 
The form of h needs to follow from the properties of the stochastic model G defined by 
eq. 3-14. Some main properties of h can be derived from G as follows. Let∆  be a random 
variable representing the total standardized runon to a subunit: 
 

)()(, ististinst rOp ss ++=∆        ( 19) 
 
It is shown in Appendix 6.1, lemma 1, that for I the following limit is true (L. Booth, 
Utrecht University, personal communication): 
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Figure 6.3. Relation between qst, pst, and ke,st for equation 17, a = 0.28. Note that )(, u

/ sKeste mkk = . 

 
with δ , a variable; and )(∆I , the actual infiltration of a subunit as a function of ∆ , see 
appendix 6.1 for a further explanation. From eq. 20 it follows that g should have the 
following properties: 
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In addition, Appendix 6.1, lemma 2, shows that the following limit is true (L. Booth, 
Utrecht University, personal communication): 
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And from this it follows that g should have the following properties: 
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A function h resulting in the properties of g given in equation 21 and 23 is given by 
(Appendix 6.2, L. Booth, Utrecht University, personal communication): 
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Appendix 6.2 gives proofs for the properties of the function g given in equation 21 and 
23. The surface in Figure 6.4 illustrates the shape of the transfer function, with an 
example using the same input parameter for a used in Figure 6.3, and rather low values 
for bp and bq. When bp and bq are increased the surface approaches the surface 
represented by equation 17 (Figure 6.3). In other words, bp and bq define how much 
‘lower’ the surface is compared to the surface represented by equation 17, in the pst and 
qst directions respectively. Another example is given in Figure 6.6. 

A sensitivity analysis shows that with a pst value greater than qst, typical for the first 
part of a rainstorm, ke,st calculated by g(pst,qst) is more sensitive to changes of bp than to 
changes in other input parameters (Figure 6.5A), since infiltration in the area (a) with 
runon from upstream cells is very low as a result of the small value of qst, resulting in a 
low sensitivity to changes in bq. For a pst value less than the qst value, the opposite is true, 
and ke,st becomes also sensitive to changes in bq and a (Figure 6.5B). 
 
 
6.6 Parameterization of the transfer function 
 
6.6.1 Fitting to outcomes of stochastic model for within-unit runoff-infiltration 

modeling 
  
Parameter values of the transfer function g (equation 18) for each unit of catchment B are 
derived by fitting the transfer function to the outcome of the stochastic model G. For each 
unit, the following procedure is followed: 1) The stochastic model is run for 64 different 
combinations of values for pst and qst in the range of values actually occurring during a 
rainstorm, using M = 40 Monte Carlo samples per combination, resulting in 64·40 = 2560 
realizations, 2) the parameter a in the transfer function is assigned the value E{Ai}, 3) the 
remaining parameters bp and bq are fitted to the 2560 realizations of Ke using least squares 
regression, constraining both parameters to an upper bound of 1·104. At the upper bound 
value, the difference between the shape of the transfer function and equation 17 is 
negligible, and a further increase does not result in a significant change in shape of the 
transfer function. 

The procedure was followed with different combinations of inputs: 1) four different 
scenarios of runoff patterns: ploughing, sheet flow, wheel tracks perpendicular to the 
general flow direction and wheel tracks parallel to the general flow direction on the 
hillslope; 2) three different values of the semivariogram range parameter avar = 1.25, 2.5, 
and 5 m; and 3) three different values of  )(sZσ  = 0.48, 1.93, and 7.73. For each unit on 
catchment B, this resulted in 4 x 3 x 3 = 36 scenarios of the stochastic model with 
associated sets of parameter values a, bp and bq. Figure 6.4 and 6.6 give example fits of 
the parameters of g to the realizations of the stochastic model G, for two different units, 
while Figure 6.7 gives resulting maps for catchment B. These figures represent the results 
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for the scenario with flow with wheel tracks perpendicular to the general aspect of the 
field and input parameters avar = 1.25, )(sZσ  = 7.73, which are the values derived from the 
field measurements. Note that these results will also be used for the runs with the 
dynamic spatial rainfall-runoff model. 

 
 

 
Figure 6.4. Surface: relation between qst, pst, and ke,st for the transfer function, a = 0.28 (which is the same 
as in Figure 6.3), bp = -0.88, bq = -0.98. Dots represent realizations of the Monte Carlo simulation to which 
bp and bq have been fitted. (A) axes corresponding to Figure 6.3; (B) cut off axes. Note 
that )(, u

/ sKeste mkk = . 
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Figure 6.5. Sensitivity analysis with the transfer function. Each line represents the change in ke,st (i.e., 
g(pst,qst)) as a result of changing either a, log10(bp+1) or log10(bq+1), while keeping the other parameters 
constant at a standard value. For each parameter, this standard value is the average of the values on 
catchment B shown in Figure 6.7. These are a = 0.22, log10(bq+1) = -0.86, log10(bp+1) = -1.15. Upper 
horizontal axis, absolute values of a; lower horizontal axis, absolute values of log10(bp+1) and log10(bq+1). 
(A), pst = 1.4, qst = 0.1; (B), pst = 0.1, qst = 1.4. 

 
 
6.6.2 Regression with derivatives of the digital elevation model 
 
To parameterize larger catchments (e.g., catchment A), it is not feasible to run the 
stochastic model G for all model units. Instead, parameter values can be assigned using 
results of a regression analysis from catchment B. For each 10 x 10 m model unit used for 
rainfall-runoff modeling on catchment B, the following derivatives of the digital elevation 
model at that resolution are calculated: ds, the topographical slope (m/m) at the unit, 
derived from a window of 3 by 3 units using the third-order finite difference method of 
Horn (1981), also applied by Skidmore (1989); dc, the catchment area (m2) of the unit, 
which is the area of the unit itself plus the units upstream over the local drain direction 
network derived with 8-point pour algorithm (Burrough and McDonnell, 1998); dpl, 
topographical planform curvature, which is the curvature transverse to the slope, derived 
from a 3 by 3 window of units (Zevenbergen and Thorne, 1987); and dpr, topographical 
profile curvature, which is the curvature in the direction of the slope, derived from              
. 
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Figure 6.6. Surface: relation between qst, pst, and ke,st for the transfer function, a = 0.027, bp = -0.78, bq = -
0.91. Dots represent realizations of the Monte Carlo simulation to which bp and bq have been fitted. (A) 
axes corresponding to Figure 6.3; (B) cutoff axes. Note that )(, u

/ sKeste mkk = . 
 
heights in a 3 by 3 window of units (Zevenbergen and Thorne, 1987). Both dpl and dpr 
have a positive value for a convex slope, and a negative value for a concave form of the 
slope. Finally, dr is calculated, the topographical slope perpendicular to the ploughing 
direction divided by the slope parallel to the ploughing direction, calculated using the 
ploughing direction, the topographical slope ds, and the direction of the steepest 
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Figure 6.7. Maps with a, log10(bp+1) and log10(bq+1) values on catchment B, derived with the scenario with 
wheeltracks perpendicular to the general aspect of the field and avar = 1.25, )(sZσ  = 7.73, which are the 
values determined by the field measurements. 
 
 
topographical slope (i.e. aspect), calculated by the third-order finite difference method of 
Horn (1981). Values of dpr are calculated for both the scenarios of the stochastic model 
with a ploughing direction parallel and perpendicular to the general aspect of the 
topography of catchment B. 

Using the fitted model parameters resulting from the scenarios with the stochastic 
model, a, log10(bp) and log10(bq) were used as dependent variables in multiple linear 
regressions with ds, log10(dc), dpl, dpr, log10(dr+0.001), )(sZσ  and avar as independent 
variables. Log transformation was done for bp, bq, dc and dr, since log transformed values 
were closer to a normal distribution than untransformed values, based on visual 
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interpretation of histograms. For the multiple regressions, a backward elimination 
procedure was followed using the Cp statistic as a criterion for dropping variables in each 
regression (Draper and Smith, 1981). An inspection of the Cp plot for all possible 
regressions (Draper and Smith, 1981) confirmed for all regressions the choice of 
variables derived by the backward elimination procedure. 

Although interpretation of the results in Table 6.2 is difficult, some conclusions can 
be drawn. The multiple correlation coefficients for the regressions are between 0.25 and 
0.70, which means that the variation in the input parameters of the transfer function can 
partly be explained with derivatives of a digital elevation model at the resolution of the 
units and parameters describing the spatial probability distribution of Ku(s). For the 
parameter a, the standardized regression coefficients (sometimes called beta weights) 
have the highest absolute value for dc, the catchment area of a unit. The value of a is          
. 
Table 6.2. Coefficients for multiple linear regression with (log transformed) parameters of the transfer 
function as dependent variables and derivatives of the digital elevation model, )(sZσ , and avar as 
independent variables (for description see text), catchment B, three scenarios: sheet flow, flow with 
microscale variation and flow with wheel tracks. Upper values are coefficients for non standardized 
independent and dependent variables, lower values are coefficients for independent and dependent variables 
standardized to one standard deviation (sometimes called beta weights). ‘Int’, intercept; r2 is multiple 
correlation coefficient; n.s., non significant (dropped variables); - not used. 
 
 Int ds log10(dc) dpl dpr log10(dr+

0.001) )(sZσ  avar r2 

Sheet          

a -0.35 
-1.4 

1.2 
0.094 

0.29 
0.50 

14 
0.14 

n.s. 
n.s 

n.s. 
n.s 

- 
- 

- 
- 

0.39 

log10(bp+1) 1.25 
0.66 

-4.1 
-0.045 

0.72 
0.17 

n.s. 
n.s 

n.s. 
n.s 

n.s. 
n.s 

-0.45 
-0.74 

-0.14 
-0.12 

0.59 

log10(bq+1) -0.025 
-0.021 

3.74 
0.065 

-0.32 
-0.12 

40 
0.083 

-266 
-0.34 

n.s. 
n.s 

-0.13 
-0.34 

-0.049 
-0.065 

0.25 

Microscale           

a 0.0090 
0.29 

n.s. 
n.s 

0.036 
0.51 

1.7 
0.13 

n.s. 
n.s 

n.s. 
n.s 

- 
- 

- 
- 

0.38 

log10(bp+1) 1.0 
0.55 

-2.3 
-0.026 

0.71 
0.17 

-27 
-0.037 

37 
0.031 

n.s. 
n.s 

-0.48 
-0.82 

-0.077 
-0.066 

0.70 

log10(bq+1) -0.55 
-0.96 

1.4 
0.052 

n.s. 
n.s 

n.s. 
n.s 

-44 
-0.12 

n.s. 
n.s 

-0.14 
-0.75 

-0.058 
-0.16 

0.61 

Wheel tracks          

a -0.24 
-2.0 

1.6 
0.27 

0.14 
0.50 

6.7 
0.13 

n.s. 
n.s 

0.016 
0.15 

- 
- 

- 
- 

0.52 

log10(bp+1) 1.5 
0.76 

n.s. 
n.s 

0.63 
0.14 

n.s. 
n.s 

33 
0.025 

0.13 
0.040 

-0.49 
-0.79 

-0.15 
-0.12 

0.65 

log10(bq+1) -0.19 
-0.20 

4.4 
0.093 

-0.23 
-0.10 

49 
0.12 

-157 
-0.24 

-0.079 
-0.048 

-0.13 
-0.43 

-0.050 
-0.080 

0.29 
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mainly determined by the number of subunits at the edge of a unit receiving inflow from 
neighbouring cells. For units near the edge of the hillslope, the number of subunits 
receiving inflow is low compared to the other units since the units near the edge have a 
limited (or zero) number of upstream neighbor units. This causes a positive relation 
between a and dc. The correlations between a and the planform curvature (dpl) are always 
positive, which can be explained by a divergent flow pattern with positive planform 
curvature values and a convergent flow pattern with negative values. With convergent 
flow, a will be smaller than with divergent flow. The coefficients of the multiple 
regression for bp and bq are negative for )(sZσ  and avar. This confirms the results 
described in chapter 5. In chapter 5, a decrease in effective saturated conductivity with an 
increase of these parameters was found, using a similar model. In addition, a number of 
derivatives of the elevation model are significant variables in the regressions for bp and 
bq. 

Figure 6.8 illustrates the sensitivity of g(pst,qst) (i.e. ke,st) to changes of the 
independent variables in the multiple regression. For the derivatives of the digital               
. 
 

 
 
Figure 6.8. Sensitivity analysis with the multiple regression analysis for flow with wheel tracks as input to 
the transfer function. The value of ke,st (i.e., g(pst,qst)) is derived with the transfer function, by calculating its 
input parameters a, bp, bq with the multiple regression coefficients in Table 6.2, for flow with wheel tracks. 
Each line represents the change in ke,st (i.e., g(pst,qst)) as a result of changing one of the independent 
variables in the multiple regression. For ds, log10(dc), dpl, dpr, and log10(dr+0.001)), a value of 0 at the x-axis 
represents the average value, while a value of 1/-1 represents the average value plus/minus one standard 
deviation of the values on the hillslope. For )(sZσ , and avar, a value 0 represents the measured mean value 
and 1/-1 represents this measured mean value plus or minus 1. (A), pst = 1.4, qst = 0.1; (B), pst = 0.1, qst = 
1.4. 
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elevation model, it shows that ke,st is most sensitive to changes in dc, while dpl and ds have 
an additional significant effect for the case of large amounts of runoff and low amounts of 
rain (Figure 6.8B). The magnitude of change in the sensitivity analysis for )(sZσ  and avar 
was arbitrary chosen, but can be regarded as representative for the values found in the 
field. Changing )(sZσ  and avar with this magnitude has an effect on ke,st which is 
approximately equally large as changes resulting from the sensitivity analysis with 
derivatives of the digital elevation model, as shown in Figure 6.8. 

For application in the dynamic spatial rainfall-runoff model for catchment A, the 
attributes used as independent variables in the multiple regression and the coefficients in 
Table 6.2 are used to estimate ke,st for each unit of catchment A, using derivatives of the 
digital elevation model of catchment A at the resolution of 10 x 10 m. For dc, only the 
upstream area of cells with flow over an arable field is included, excluding the upstream 
area connected by small ditches occurring in the catchment. 
 
 
6.7 Application of the transfer function in a rainfall-runoff model 
 
6.7.1 The dynamic spatial rainfall-runoff model 
 
For each time step of 5 seconds, the net rainfall (pn, m per time step) reaching the ground 
is: 
 
 jcpp rn ⋅−=         ( 25) 
 
with; pr, the rain (m/timestep); c, percentage of the grid cell covered with vegetation 
(m2/m2); and j (m/timestep), the amount of water transported to the interception store, in 
meters per timestep for the area covered with vegetation. j is (Merriam, 1973): 
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with: sm, maximum content of interception store (m); pc, t-1 , cumulative net rainfall since 
the start of the rainfall, at preceding time step (m); pc,t, cumulative net rainfall (m) since 
start of the rainfall, at current time step. Since some units of catchment A contain ditches, 
surface water that is not kept in a constant potential surface storage is routed as sheet flow 
towards a ditches-network with channel flow, using the kinematic wave and the Manning 
equation (Li et al., 1975; Chow et al., 1988). The transfer function (g, eq. 18) 
parameterized for each unit is used to derive ke,st for the area with sheet flow, for each 
unit and each timestep, and note that )(, u sKstee mkk ⋅= . For each t (s) in the model, a 
steady state situation of rainfall and runoff is assumed over a period (t-∆t,t), with ∆t = 100 
s, which is the estimated average travel time of water as sheet flow through a unit. For 
each timestep at t, the runon at t from sheet flow areas in upstream cells, excluding runon 
through ditches, is used for qst in the transfer function, assuming that q at t represents the 
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average situation of surface flow over (t-∆t,t). For each timestep at t, the value of pst is 
derived from the average value of pn (eq. 25) over the period (t-∆t,t). 

For each unit, and each time step, actual infiltration in the area with sheet flow is the 
minimum value of ke (for that timestep and unit) and the amount of net rainfall (pn) plus 
runon from the sheet flow area in upstream cells at the timestep. For the ditches occurring 
in the catchment, a constant infiltration capacity of 20 mm/h is used, which was found by 
Van Dijck (2000) in catchment A.  The ditches-network with channel flow takes into 
account the infiltration of runon to the channel in a particular unit from the sheet flow 
area within the unit and inflow from upstream units containing a ditch. The model was 
implemented in the PCRaster spatio-temporal modeling language (Wesseling et al., 
1996). 

 
 
6.7.2 Results 
 
For each catchment, four scenarios were run (Table 6.3). The transfer scenario uses the 
transfer function with )(u sKm = 1004 mm/h, which is the measured mean of the saturated 
conductivity, while the transfer, cali scenario uses the transfer function with a value 

)(u sKm  found by calibration, minimizing the mean square error: 
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        ( 27) 

 
with n, the number of events measured for the catchment, where le = log10(ds+0.1)-
log10(dm+0.1), with ds, the simulated cumulative discharge at the outflow point (m3), and 
dm the measured cumulative discharge (m3). The fixed and fixed, cali scenarios do not use 
the transfer function. Instead, it is assumed that the saturated conductivity for each unit is 
equal to )(u sKm  for all timestep. The fixed scenario uses the measured value of  )(u sKm = 
1004 mm/h, while the fixed, cali uses a value of )(u sKm  found by calibration, minimizing 
MSE. For each of the scenarios, Table 6.3 gives MSE and the mean error (ME): 
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From an analysis of the scenarios without calibration, for which the results are given 

in Table 6.3, Figure 6.9 and 6.10, one can conclude that the transfer scenario gives better 
results than the fixed scenario for both catchments, although also the transfer scenario 
significantly underestimates runoff. Also after calibration, the model with the transfer 
function (transfer, cali scenarios) gives better results than the model without the transfer 
function (fixed, cali scenarios), and it can be concluded that the model with the transfer 
function gives better results regarding cumulative discharge than the model without.
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Table 6.3. Mean error (ME), mean squared error (MSE) and mean of saturated conductivity ( )(u sKm ) for 
simulations with the rainfall-runoff model . Different scenarios for catchment A and B are shown: transfer, 
runs with the transfer function without additional calibration; fixed, runs with a fixed value )(u sKm  of 
saturated conductivity, without using the transfer function; transfer, cali, runs with the transfer function 
with calibration of )(u sKm ; fixed, cali, runs with a fixed value of )(u sKm  found by calibration, without 
using the transfer function. 
 
Scenario ME MSE 

)(u sKm (mm/h) 

Catchment A 
transfer -1.9   5.1 1004 
fixed -3.6 13.3 1004 
transfer, cali -0.2   0.2     40 
fixed, cali -0.7   3.6       4.4 

Catchment B 
transfer -1.5   2.6 1004 
fixed -2.0   4.2 1004 
transfer, cali  0.3   0.4     25 
fixed, cali  0.4   0.8       1.7 
 
Calibration of )(u sKm  results in a value )(u sKm  which is much lower than the measured 
value of )(u sKm , both with and without the transfer function. This is probably caused by 
an overestimation of )(u sKm  derived from the ring infiltrometers and rainfall simulation 
experiments, since the value of )(u sKm = 1004 mm/h is high compared to saturated 
conductivity values generally measured on this soil type. Additional causes of this 
discrepancy could be measurement errors related to other parameters used in the models. 
For most scenarios, the timing and shape of the hydrographs corresponded rather well 
with measured hydrographs, for scenarios generating runoff. A further evaluation of the 
shape of the hydrograph is not done here, since parameters determining the shape of the 
hydrograph (e.g. Manning’s roughness coefficient) were not calibrated. 
 
 
6.8 Discussion 
 
In chapter 5, a similar steady-state scaling method was tested, a similar rainfall-runoff 
model, and the same data set for simulating discharge from catchment B. In contrast to 
the approach followed here, the research described in chapter 5 used effective values of 
saturated conductivity representative for a support with the size of catchment B as a 
whole in the simulations with the rainfall-runoff model. It was concluded that the 
approach followed in that study suffered from an absence of steady-state conditions of 
rainfall and runoff on the hillslope as a whole. An improvement of the results was 
expected when the saturated conductivity is scaled to a support representing a smaller 
area, and a shorter time slice. The latter approach was tested in this research, and results 
are somewhat better than to those found in chapter 5. Further research with other data sets 
is necessary to evaluate both approaches regarding their usefulness in transient rainfall-
runoff modeling. Testing the approaches with other data sets is also important because the 
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large values for the average and the skewness of the distribution of saturated conductivity 
(Ku(s)), found by ring infiltrometer measurements in this research area, is not 
representative for many other catchments. 

The upscaling method described here suffers from some weaknesses that need to be 
resolved. The first weakness is related to the calculation used to distribute the inflow (qst) 
to a unit over the subunits at the edge of the unit, resulting in an amount of runon (rst) for   
. 

 
 
Figure 6.9. Catchment A, log10 of simulated cumulative discharge plus 0.1 (ds+0.1, m3) against measured 
cumulative discharge plus 0.1 (dm+0.1, m3). Measurement error in cumulative discharge, defined by dm,min 
and dm,max, smaller than size of dots. (A) transfer, (B) fixed, (C) transfer, cali, (D) fixed, cali scenarios. 
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Figure 6.10. Catchment B, log10 of simulated cumulative discharge plus 0.1 (ds+0.1, m3) against measured 
cumulative discharge plus 0.1 (ds,m+0.1, m3), dots. Horizontal lines indicate measurement error, with 
endpoints of each line representing dm,min and dm,max of the measured discharge. (A) transfer, (B) fixed, (C) 
transfer, cali, (D) fixed, cali scenarios. 
 
each subunit at the edge of the unit, see equation (12). For technical reasons, the 
assumption is made in equation (12) of an amount of runon (rst) proportional to the 
catchment area ( iΒ ) of the subunit. This results in an overestimation of runon for 
subunits with a large catchment area ( iΒ ) because the interaction of rainfall and runoff in 
the catchment area is not taken into account in equation 12. Another weakness is the 
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assumption of a deterministic transfer function. At fixed values of qst and pst, the results 
in Figure 6.4 and 6.6 show that each Monte Carlo sample results in a different value of 
ke,st. This spread is not represented by the transfer function, which models one value for 
each combination of pst and qst. This weakness could be overcome by using stochastic 
variables for a, bp, and bq in the transfer function, with parameter distributions fitted to 
the results of the Monte Carlo simulation. This approach would need a stochastic rainfall-
runoff model, too. This weakness related to the transfer function becomes less significant 
when smaller values of )(sZσ  and avar (avar, with respect to the size of the unit) are used,  
since the spread in the values of ke,st becomes smaller for these cases (results not shown). 

Another weakness of the approach is that the infiltration capacity of a unit at the start 
of a rainstorm is greater than ke,st, as a result of the suction force, which is not represented 
in the upscaling method. For the case study described here, the suction force is assumed 
to have a negligible effect on infiltration, since the process of infiltration is mainly macro 
pore flow, as shown by the high average value of ke,st derived from ring infiltrometer 
experiments. For other catchments, this may not be the case. 
 
 
6.9 Conclusions 
 
The research showed that it is possible to develop a transfer function that calculates 
effective values of saturated conductivity for model units of approximately 100 m2 from 
local scale (approximately 0.04 m2) values of saturated conductivity. The form of the 
transfer function fits results of a stochastic steady-state runoff-infiltration model 
calculating the same scale transfer of saturated conductivity. 

The parameters in the transfer function correlate with parameters describing the 
spatial probability distribution of the saturated conductivity within a model unit, 
derivatives of the digital elevation model at the scale of the model unit (e.g., slope, 
curvature), and the pattern of surface runoff in the unit. Using this correlation, it is 
possible to parameterize the transfer function for each model unit of a dynamic spatial 
rainfall-runoff model. 

With this parameterization, it was shown that the application of the transfer function 
in a dynamic spatial rainfall-runoff model resulted in differences between simulated and 
measured cumulative runoff which were smaller than these found with simulations using 
the same rainfall-runoff model without the transfer function. This was the case both for 
the catchment consisting of one hillslope, and for the larger catchment, consisting of 
several hillslopes. Although the transfer function is derived from the stochastic steady-
state runoff-infiltration model, the reasonably good results of its application in a dynamic 
spatial rainfall-runoff model mentioned above indicates that it can be applied in transient 
simulations. 
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Appendix 6.1 
 
We consider here a particular subunit i. Let ∆  be the standardised total runon to this 
subunit: 
 

)()(, ististinst rOp ss ++=∆  
 
Let )(∆I  be the standardised infiltration for this particular subunit, as a function of ∆ , 
which is a certain standardised amount of total runon to the particular subunit. Let δ be a 
variable. 
 
Proofs for the properties of the stochastic model 
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If )(,u istK s≤∆  then ( ) ∆≤∆I , so 
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Observe that 
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      (3) 

 
and that 
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Combining equations 2, 3 and 4 we see 
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By the fact that ( ) )(,u istKI s≤∆  and thus 
 
( ) ( ) ( ))(E)(E)(E ,u,u istist KKI ss =≥∆≤≥∆∆ δδ      (6) 

 
Lemma 2 follows by combining equations 5 and 6. 
 
  
Appendix 6.2 
 
Explanation of the form of the transfer function 
 
Notice that 
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PART III: 
 

INVERSE MODELLING 
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7  CONDITIONING A PROCESS BASED MODEL OF 
SEDIMENTARY ARCHITECTURE TO WELL DATA  

 
Derek Karssenberg (with Torbjörn Törnqvist and John S. Bridge) 

 
 
Abstract: Prediction of sedimentary architecture for modeling of fluid flow in 
hydrocarbon reservoirs and aquifers is accomplished mainly using stochastic, structure-
imitating models, because these can be conditioned to data from wells, seismic profiles, 
and outcrop analogs. This implies that modeled architecture fits all available 
observations. However, the sedimentary architecture simulated by such models is 
commonly unrealistic. Process-based (forward) models potentially provide more realistic 
prediction and understanding of sedimentary architecture, but these models are not 
widely used because conditioning to well, seismic or outcrop data is considered to be 
very difficult. We show here that conditioning of process-based models to well data is 
possible in principle, using a 3D alluvial-architecture model as an example. This model 
considers the formation of alluvial deposits as a predominantly deterministic process, 
with a single channel belt moving by avulsion over an aggrading floodplain. However, 
the initial floodplain topography is simulated by a random field, thus yielding different 
model output for each run. Monte Carlo simulation was used to produce model 
realizations that fit five hypothetical vertical wells within predetermined tolerance bands. 
Such simulation allows calculation of the probability of occurrence of channel-belt 
deposits for each 3D cell in the 3D block of sediments generated by the model, as well as 
the probability distributions of volumes of channel-belt deposits and connectedness 
ratios. Adding more conditioning wells increases the precision of model predictions. 
Application of this approach in practice will require a major effort, particularly in 
overcoming the anticipated large amounts of computing time. 

 
Published as: Karssenberg, D., T. Törnqvist, J.S. Bridge (2001), Conditioning a process-
based model of sedimentary architecture to well data. Journal of Sedimentary Research 
71, pp. 868-879. Reproduced with permission. 

 
 

7.1 Introduction 
 

Determination of the volume and quality of hydrocarbon reservoirs and aquifers, and 
development of fluid production and management strategies, requires understanding of 
the geometry, orientation, proportion, and spatial distribution (i.e., architecture) of the 
various sediment types present. Information derived from geophysical profiles, cores, 
well logs, and well-test data is rarely sufficient to provide comprehensive 3D description 
and understanding of hydrocarbon reservoirs or aquifers. Recourse must normally be 
made to outcrop analogs and depositional models. A common approach is to use outcrop 
analogs to provide supplementary data on sedimentary architecture, and to use stochastic 
models conditioned by subsurface data to distribute the architectural elements in 3D 
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space (reviews by Bryant and Flint 1993; Koltermann and Gorelick 1996; North 1996; 
Anderson 1997).  

Modeling approaches include structure-imitating methods and process-based 
methods. Structure-imitating models do not simulate processes of deposition. These 
models directly simulate the sedimentary architecture and generally include stochastic 
components. Methods used are indicator geostatistics (e.g., Journel 1983; Bierkens and 
Weerts 1994), simulated annealing (e.g., Deutsch and Cockerham 1994), Markov chains 
(e.g., Doveton 1994, Carle et al. 1998), and probabilistic rules defining the geometry and 
location of stratigraphic units, known as Boolean object models (e.g., Budding et al. 
1992; Deutsch and Wang 1996; Hirst et al. 1993; Holden et al. 1998). An advantage of 
these models is that they are conditioned to observational data. However, adequate input 
parameters are difficult to obtain for simulating realistic depositional architectures (e.g., 
Tyler at al. 1994; Deutsch and Wang 1996; Holden et al. 1998). 

Unlike the structure-imitating models mentioned above, three-dimensional process-
based models, sometimes referred to as process-imitating models, simulate the 
sedimentary processes acting to produce a deposit (Koltermann and Gorelick 1996; 
Anderson 1997). Process-based models can be deterministic and/or stochastic, and 
empirical and/or theoretical. Examples of such models include random-walk 
sedimentation models of braided rivers (Webb 1994), models based on the fundamental 
equations of fluid flow and sediment transport (e.g., Bridge 1977, 1992; Tetzlaff and 
Harbaugh 1989; Stam 1996; Gross and Small, 1998), and avulsion-related alluvial-
architecture models (e.g., Bridge and Leeder 1979; Mackey and Bridge 1995; Heller and 
Paola 1996). Process-based models are forward models in the sense that they predict the 
nature of deposits given a set of initial starting parameters. It is not known a priori what 
the deposits will look like. Advantages of three-dimensional process-based models are 
that they can help provide genetic interpretations of deposits and can predict more 
realistic sedimentary architecture than structure-imitating (stochastic) models. A 
perceived disadvantage of three dimensional process-based models, however, is that it is 
difficult or impossible to make the simulated deposits fit (or be conditioned to) 
observational data in sufficient detail in three dimensions (Clemetsen et al. 1990; North 
1996; Koltermann and Gorelick 1996; Anderson 1997). Therefore, process-based models 
have had limited application in quantitative simulation of the architecture of hydrocarbon 
reservoirs or aquifers, although recent studies have shown that two-dimensional sequence 
stratigraphic models with simple process equations can be conditioned to well data 
(Bornholdt et al. 1999; Cross and Lessenger 1999). But such two-dimensional models 
have limited interpretive value in hydrocarbon reservoir characterization and 
geohydrology. 

The advantages of structure-imitating and process based methods could be retained 
by combining them. One way of doing this would be the use of a range of outputs from 
process-based models to provide input for stochastic models. However, the view that 
three dimensional process-based models cannot be conditioned to observational data can 
be challenged. 

It is demonstrated here that conditioning of three-dimensional process-based models 
to well data using an essentially trial-and-error approach is possible in principle, using an 
alluvial-architecture model as an example. The model, based on that of Mackey and 
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Bridge (1995), considers the formation of alluvial deposits as a single channel belt moves 
by avulsion over an aggrading floodplain. The model is partly stochastic in the sense that 
it has a stochastic random field (initial floodplain topography) as input yielding a 
different model outcome (realization) for each run. Monte Carlo simulation is used to 
calculate the probability of occurrence of channel-belt deposits in each voxel (3D cell) of 
the 3D block of sediments generated by the model, as well as the probability distributions 
of volumes of channel-belt deposits and channel-belt connectedness ratios. 

 
 

7.2 Model Concepts 
 
In this exploratory study, we use a slightly simplified version of the 3D alluvial-

architecture model of Mackey and Bridge (1995). It was simplified to save computer time 
for conditioning the model to the wells. We developed the new model in the spatio-
temporal modeling language that runs inside the PCRaster environmental modeling 
system (Wesseling et al. 1996). (PCRaster information and demonstration software 
including links to gstat available at http://www.geog.uu.nl/pcraster.) Stochastic 
simulations are performed with Gstat (Pebesma and Wesseling 1998). The model starts 
by calculating the initial floodplain topography and the initial geometry and location of 
the channel belt.  Then, the model calculates for each time step representing the period 
between avulsions: (1) channel-belt and overbank aggradation (thickness, age and type of 
deposited sediment, i.e., either channel-belt or overbank deposit) and new surface 
topography; and (2) channel-belt avulsion location and new channel-belt location 
(including erosion of previous deposits by channel-belt incision).  

 
 

7.2.1 Initial Floodplain Topography 
 
The rectangular modeling area has a down-valley length L (m) and width W (m). It is 

discretized by square raster cells with constant cell length C (m) and cell center 
coordinates x, y (m; origin at the bottom left corner of the modeling area). The initial 
floodplain surface has a constant down-valley slope plus uncorrelated random noise 
representing local variation in elevation. The initial floodplain topography is the only 
stochastic input to the model. For each cell, the surface elevation at the start of the model 
run is 

 
E(x,y,0) = S·y + e(x,y),        (1) 
 

with: 
E(x, y, 0) surface elevation (m) at point x,y at time t = 0 (yr), 
S  down-valley slope (-), 
y distance of the cell center from the downstream end of the modeling area 

(m), 
e(x, y) stochastic field: spatially uncorrelated random noise with variance σ  and 

zero mean. 
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7.2.2 Channel-Belt Geometry and Initial Location 
 
Throughout the model run, a single channel belt is active on the floodplain. 

Unaggraded channel-belt dimensions are defined by the bankfull channel depth d (m) and 
channel-belt width w (m), both constant in time. The inflow location of the channel-belt 
center is at the upstream center cell (i.e., inflow cell) throughout a model run. The initial 
channel-belt location on the floodplain is determined by first defining the cells 
representing the downstream path of the channel belt center following the local direction 
of maximum floodplain slope, using the 8-point pour algorithm (Moore 1996; Burrough 
and McDonnell 1998). Each channel-belt center cell i leads to a channel-belt center cell 
that is one of the n = 1…8 adjacent cells following the maximum downstream slope 
(Figure 7.1A). Local closed depressions are removed using the algorithm of Van Deursen 
(1995). The initial channel belt consists of the cells with a distance less than w/2 normal 
to this centerline (Figure 7.1B). 
 
 
7.2.3 Channel-Belt and Overbank Aggradation 

 
The aggradation rate in the channel belt (a, m/yr) is constant in space and time. 

Overbank aggradation rate decreases with distance from the channel-belt edge. For each 
point x,y and time step t, the aggradation rate in the overbank area A(x, y, t) (m/yr) is: 

 
A(x,y,t) = ac + a(1-c) e-D(x,y,t) / b,      (2) 
 

where: 
a  channel-belt aggradation rate (m/yr), 
c theoretical aggradation rate at infinite distance from the channel belt, 

expressed as a fraction of a (-), 
D(x, y, t) distance to the channel-belt edge at time step t (m), 
b  dimensionless aggradation exponent (-). 

 
Mackey and Bridge (1995) did not include the c value in the equation for overbank 

aggradation rate. Equation (2) allows definition of aggradation rates that approach a value 
much greater than zero at large distances away from the channel belt that is not possible 
if c is omitted. If c is set to zero, the equation is equivalent to Mackey and Bridge's 
equation (1995), when D is converted to their dimensionless distance from the channel-
belt edge. 

For each time period between avulsions, the total thickness of aggraded sediment is 
stored by the computer model. This deposit is labeled with its age and sediment type 
(channel-belt deposit or overbank deposit). Erosion of formerly deposited strata occurs 
only as a result of incision of new channel belts. In the interest of simplicity, compaction 
of sediment is not included in this model (cf. Bridge and Leeder 1979; Mackey and 
Bridge 1995). 
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Figure 7.1. A) Calculation of channel-belt centerline that is the path in the direction of maximum 
floodplain slope. For cell i, the floodplain slope towards the 8 adjacent cells is calculated in order to 
determine the direction of maximum slope. B) Plan view of initial surface elevation E(x, y, 0) (m), inflow 
cell, initial channel-belt centerline and initial channel belt. 
 
 
7.2.4 Avulsion 

 
Avulsion is the process whereby the channel belt shifts abruptly from one location to 

another on the floodplain. In the interest of model simplicity, avulsion occurs at a 
constant time interval T (yr). Concepts of calculation of the avulsion location correspond 
with Mackey and Bridge (1995), but the algorithms used are slightly different. The 
floodplain surface morphology at the edge of the channel belt determines the avulsion 
location (Figure 7.2). The direction of maximum floodplain slope at the edge of an 
unaggraded channel belt will be approximately parallel to the active channel belt, 
resulting in a low probability of avulsion. Because the aggradation rate of the channel 
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belt is greater than that of the overbank area, however, an alluvial ridge develops, and the 
direction of maximum floodplain slope may locally change from parallel to nearly 
perpendicular to the edge of an aggraded channel belt. This situation will lead to a high 
probability for an avulsion to occur (cf. Heller and Paola 1996; Slingerland and Smith 
1998). This principle is represented in the model with the following algorithm. For each 
cell immediately neighboring the channel belt the avulsion angle α  is calculated by α  = 
| β  – γ  |, with β , the azimuth of direction of maximum floodplain slope (algorithm of 
Horn 1981, also described in Burrough and McDonnell 1998), and γ , the azimuth of 
direction perpendicular to the channel-belt edge. 

The avulsion location is the cell with the lowest avulsion angle (α ) immediately 
adjacent to the channel belt (Figure 7.2). The lowest avulsion angle is equivalent to the 
highest value of Mackey and Bridge's (1995) slope ratio. The centerline of the new 
channel belt is determined as: (1) the set of cells that connect the avulsion cell with the 
center of the former channel belt (upstream path, A in Figure 7.3); (2) the center of the 
former channel belt upstream of this connecting set of cells (B in Figure 7.3); and (3) the 
downstream path from the avulsion cell over the locus of maximum floodplain slope (C 
in Figure 7.3) calculated with the 8-point pour algorithm also applied for the initial 
channel belt. The new channel belt consists of cells with a distance of less than w/2 
normal to this centerline. 
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Figure 7.2. Determination of the location of the channel-belt avulsion. 
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Figure 7.3. Calculation of new channel-belt center and new channel belt following an avulsion. Letters A, 
B, and C refer to explanation in text. 
 
 
7.3  Conditioning To Well Data 

 
Our model is stochastic only in the sense that the initial floodplain topography is 
represented in part by a random field, causing the first channel belt to be at a different 
location and elevation for each model run. As a result, the entire alluvial succession will 
be different for each run because the behavior of the model is determined by antecedent 
conditions. In fact, the probability that one model run will result in an outcome that 
agrees with well data is very low. The trial-and-error method for producing process-based 
model outcomes that agree with well data (well-conditioned output) is described below. 

 
 

7.3.1 Stochastic Model with Output Conditioned to Well Data 
 

The stochastic model resulting in an output conditioned to well data is 
 
U(x,y,z) = g((E(x,y,0), d1(x,y,z),...,dm(x,y,z))     (3) 
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and 
 

f(U(x,y,z), w) = 0         (4) 
 

where 
g(·)   the process-based alluvial-architecture model, 
E(x, y, 0)  input random field: initial topography of the floodplain surface, 
d1(x, y, z),...,dm(x, y, z) deterministic input fields for the alluvial architecture model, 
U(x, y, z)  output random field: well-conditioned alluvial architecture, 
f(·)   objective function for well-conditioned output, 
w   well data. 

 
The only input random field is E(x, y, 0), the randomly varying initial floodplain 
elevation with random variation. All other parameters of the model are assigned 
deterministic values. The output random field is U(x, y, z), which is the 3D block of 
sediment generated by the stochastic model at the end of the model run. In this block, 
each voxel has a probability of containing channel-belt deposits. The Boolean objective 
function f is a function of U(x, y, z) and the well data w, giving an error of zero or one. If 
the error is zero, the outcome of the process-based model fits the well data within 
predetermined limits. If the error is one, the model outcome does not adequately fit the 
well data. The objective function is described in the next section. 

The stochastic model derives the distributions (or parameters describing these) of the 
random field U(x, y, z) from: (1) the distribution of the input random field E(x, y, z) and 
the deterministic inputs d1(x, y, z),...,dm(x, y, z); (2) the process-based model g(·); (3) the 
well data w; and (4) the objective function f(·). The Monte Carlo simulation approach 
solves this in two steps (Hammersley and Handscomb, 1979; Heuvelink, 1998): 

 
Step (1) 
Repeat K times (lower case letters represent realizations):  
a. Generate a realization of the initial floodplain elevation: input random field e(x, y, z). 
b. With this realization and deterministic input fields d1(x, y, z),...,dm(x, y, z), run g(·) 

and compute the outcome u(x, y, z) of the process-based model. 
c. With the model outcome u(x, y, z) and well data w, calculate the error of the objective 

function f. If the error is 1, the outcome of the process-based model does not fit the 
well data and start again at (a); otherwise continue to (d). 

d. Store the model outcome u(x, y, z). N is the number of outcomes of the process-based 
model that resulted in well-conditioned output. 

 
Step (2) 
Compute sample statistics (e.g., mean, variance, skewness, channel-belt connectedness 
ratio, volume of channel belt deposits) from the N well-conditioned outcomes u1..N(x, y, z) 
of the process-based model. 
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7.3.2 Objective Function 
 

The role of the objective function is to select the realizations of the process-based model 
that fit the well data within prescribed limits. These well-conditioned realizations are 
used for computing the sample statistics of the conditioned outcomes of the process-
based model (e.g., channel-belt connectedness ratio). Running the model without the 
restrictions defined by the objective function results in a model output that does not fit 
the well data. 

For each loop in the Monte Carlo simulation, the objective function is defined as 
 

           (5) 
 
In the current model, we use vertical well logs with positions and thickness of the 
channel-belt and overbank deposits. For each well, the well log is compared with the 
alluvial succession generated by the process-based model at the vertical that contains the 
well. Figure 7.4 shows how the objective function is evaluated for each well. Figure 7.4A 
shows the well log. Because exact conditioning is extremely difficult, tolerance bands 
with vertical length wt (Figure 7.4B) are defined at the boundary between the channel-
belt deposits and overbank deposits, and at the top of the well log (top surface). The 
succession at the well location is said to fit the well data if the model output matches the 
strata in the well log within the tolerance bands, typically 0.1 - 1 m.  
 
 
7.3.3 Reducing Computing Time with a Directive Function 

 
In step (1) of the Monte Carlo simulation, only a small number of runs of the process-
based model give output that matches well data, and a lot of computing time is needed 
because the process-based model has to be run thousands of times. For this reason, a 
directive function is included to decrease run times. This function is applied in step (1b) 
of the Monte Carlo simulation. The principle is that, while running the process-based 
model forward in time, for each t = i the alluvial succession u(t = i) is compared with the 
well data w1,...,wn. If the alluvial succession for t = i deviates from the well data in such a 
way that the model outcome will not be conditioned at the end of the model run, the run 
is interrupted and a new loop K is started by generating a new input random field (step 
1a). Otherwise the process run is continued. 

The directive function uses the property of the process-based model that channel-belt 
deposits cannot be replaced by overbank deposits, because erosion of the floodplain 
occurs only as a result of channel-belt incision. A run of the process-based model that        
. 
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Figure 7.4. Evaluation of the objective function for each well. A) Well log and B) model output for 
conditioned result with tolerance bands wt. 
 
predicts channel-belt deposits in a well log at time step t where the well log contains 
overbank deposits cannot give a conditioned result, and the run of the process-based 
model is interrupted. As in the objective function, this comparison is done only  for the 
well log outside the tolerance bands (Figure 7.5). Within the tolerance bands, the 
sediment type predicted by the model may deviate from the well log. 
 
 
7.4 CASE STUDY 

 
An example of an application of the approach, using model parameters given in Table 

1, is now described. Figure 7.6 gives the hypothetical well data set used for conditioning. 
Model test runs demonstrated that a minimum value of 0.6 m is necessary for the width of 
the tolerance band. A further decrease in wt resulted in unacceptably large computer run 
times to arrive at 50 realizations that fit the wells, needed for the stochastic model. Figure 
7.7 gives the evolution in time of the floodplain for one run of the process-based model 
with the simulated deposits fitting the five wells. The initial floodplain at t = 0 shows a 
channel belt that is slightly curved as a result of the random noise included in the initial 
floodplain topography. The decrease in deposition rate with distance from the channel 
belt is represented in the topography at the end of a time step: an alluvial ridge is formed    
. 
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Figure 7.5. Evaluation of the directive function for each well. A) Well log with tolerance bands with width 
wt. B) Model output at the well location for t = i without directive function error: runs possibly resulting in 
conditioned model result at t = end.  C) Model output at the well location for t = i with directive function 
error: runs that will not result in conditioned model result at t = end. 
 
at the location of the channel belt. As a result of this alluvial ridge, an avulsion occurs 
resulting in a new channel-belt location for the next time step. The maps show that the 
new channel belt for each time step follows the lowest topography downstream of the 
avulsion location. The simulated succession at the well sites matches the stratigraphy in 
the well logs within the tolerance bands (Figure 7.8). Figure 7.9 gives the 3D alluvial 
architecture resulting from the model run of Figure 7.7. 
 
 
7.4.1 Effect of Number of Conditioning Wells on Model Output 

 
In order to evaluate the effect of the number of conditioning wells on the model outcome, 
the stochastic model was run without conditioning and conditioned to different numbers 
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of wells. Figure 7.10 shows the stochastic outcomes of alluvial architecture for three 
scenarios, based on 50 realizations for each scenario (N = 50 in the Monte Carlo 
simulation procedure). 

Without conditioning (Figure 7.10A), probabilities of greater than 0.8 for the 
occurrence of channel-belt deposits occur at the edges of the floodplain and close to the 
channel-belt inflow location. High probabilities at the edges of the floodplain are related 
to the decrease in deposition rate (hence floodplain elevation) with distance from the 
channel belt. An initial channel belt at the center of the floodplain results in the lowest 
deposition rate and elevation at the edge of the floodplain. Thus, subsequent channel belts 
tend to move towards these low areas (Figure 7.7). The area directly downstream of the 
inflow location has high probabilities because all channel belts originate in this zone. 
Between these high probability areas, values are typically 0.3 - 0.5 and show little spatial 
structure. 

Addition of conditioning well data (Figure 7.10B, C) results in spatial heterogeneity 
occurring in the central part of the floodplain in addition to the pattern observed for the 
unconditioned run. Volumes with low and high probabilities for the occurrence of 
channel-belt deposits occur immediately adjacent to each other. The scenario conditioned 
to wells 1 and 2 (Figure 7.10B) results in an extensive volume with high probabilities of 
channel-belt occurrence upstream and downstream of well 1. Well 2 containing only 
overbank deposits results in low channel-belt probabilities near the well. The probability 
field for the scenario where all wells are used for conditioning is strongly determined by 
the five well logs (Figure 7.10C). 
 
 
 
Table 7.1. Model parameter values for the case study. 
Symbol Value Description 
L 20100 down-valley floodplain length (m) 
W 10050 cross-valley floodplain width (m) 
C     150 cell length (m) 
S         5·10-5 down-valley slope (-) 
σ          3·10-3 variance of spatially uncorrelated random 
d       10 bankfull channel depth (m) 
w   1200 channel-belt width (m) 
a         2·10-3 channel-belt aggradation rate (m/yr) 
c         0.5 theoretical deposition rate at infinite distance from channel belt, fraction of a (-) 
b         1·103 overbank-aggradation exponent (-) 
T     400 time interval between avulsions (yr) 
wt         0.6 width of tolerance bands (m) 
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Figure 7.6. Case study well data set. A) Model area with the location of the wells and B) well logs. Well 
area is used for calculation of volume of channel-belt deposits and connectedness ratio. Origin of vertical 
axis corresponds to original topography (substratum) at downstream edge of the floodplain. Note that 
substantial amounts of substratum have been eroded at wells 1, 3, and 4. 

 
 

7.4.2 Number of Well Logs and Estimation Precision 
 

Total volume of channel belt deposits (m3) and areal (2D) connectedness ratio were 
calculated within the area of the well data (Figure 7.6). Areal connectedness ratio is the 
sum for all channel belts of the total horizontal area of contact with another one, divided 
by the total horizontal  area of all channel belts (Figure 7.11). Results for total volume of 
channel-belt deposits are reported here instead of net-to-gross ratio (channel-deposit 
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proportion), which can also be calculated.  Net-to-gross ratios are not discussed because 
the thickness of the simulated deposit is too small to enable realistic comparison with real 
world successions. 

Probability density distributions of total volume of channel-belt deposits and the areal 
connectedness ratios are unimodal (Figure 7.12). Average total volume of channel-belt 
deposits is between 4.0·108 and 4.8·108

 m3. Average connectedness ratios for the 
scenarios with different numbers of wells are between 0.4 and 0.5. There is no clear trend 
in these values with increasing number of wells. 
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Figure 7.7. Evolution in time of conditioned model run, including initial situation (t = 0) and five 
successive time steps (each timestep represents 400 yr). Each map shows the position of the old and new 
channel belt, and surface topography (m) at the end of the time step, i.e., at the moment of the avulsion. 
The new channel belt corresponds with the old channel belt for the next time step. 
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.        
 

Figure 7.8. Conditioning to well data of the model run in Figure 7.7. For each well number the left column 
represents the well log with tolerance bands; the right column represents model output. Numbers to the 
right of the wells refer to interavulsion periods (i.e., time steps in Figure 7.7). Substratum is material below 
initial floodplain surface at t = 0. 

 
Prediction precision, however, does increase with increasing number of conditioning 

wells, as shown by a decrease in coefficients of variation and an increase in the volume 
fraction of the 3D block that is predicted with high precision. The coefficient of variation 
of total volume of channel-belt deposits decreases from 0.18 to 0.13 (Figure 7.13A). 
Similarly, coefficients of variation for connectedness ratio decrease from 0.45 with no 
conditioning wells to 0.21 when five conditioning wells are used (Figure 7.13B). 
Addition of more well data also increases the precision of the prediction of the 3D block 
of alluvial architecture. The volume fraction of this block that is predicted by the model 
with a high probability (> 0.9) of occurrence of either channel-belt or overbank deposits 
increases with increasing number of wells (Figure 7.14). If there is no conditioning to 
well data, a volume fraction of only 0.08 is predicted by the model as channel-belt 
deposits or overbank deposits with a probability of occurrence greater than 0.9. With five 
wells, this fraction is 0.15. 
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Figure 7.9. 3D alluvial architecture resulting from the realization of the model in Figure 7.7. Only channel-
belt deposits are shown. 
 
 

Figure 7.10. 3D images of probability of occurrence of channel-belt deposits. Top diagrams show volumes 
with probability > 0.8. Bottom diagrams are transects through the 3D block; grayscale represents 
probability of occurrence of channel-belt deposits. A) Model unconditioned to wells. B) model conditioned 
to wells 1 and 2. C) model conditioned to wells 1 - 5. 
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Figure 7.11. Method of calculation of areal channel-belt connectedness ratio, A) plan view, B) cross 
section. A, B, and C represent areas (m2). Horizontal contact between channel belts exists in area C. 
Channel-belt connectedness ratio is 2C/(A+B+2C). 
 
 
7.5 Discussion and conclusions 

 
The goal of this study was to show that it is possible in principle to condition process-

based models to observational data. The example given here does not prove the 
applicability of the process-based model to real-world problems, because the model and 
the hypothetical well data were relatively simple. Fitting of the model to the well data 
using Monte Carlo simulation required much computer time. For example, 5000 
realizations took five days running time on a 200 MHz Linux machine to arrive at 50 
realizations that fit five wells. As a result, success of the method with real-world 
problems depends on future decrease of model run times. It is expected that model run 
times can be reduced by development of faster computers, optimizing the computer 
program  (e.g.,  improve  the  directive function),  providing key input parameters,  and     
. 



 178

 
 
Figure 7.12. Probability density distributions for (A, B) total volume of channel-belt deposits in the well 
area and (C, D) channel-belt connectedness ratios in the well area. A, C) Model conditioned to wells 1  and 
2; B, D) model conditioned to all the wells 1 - 5. 
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Figure 7.13. Coefficients of variation (standard deviation divided by mean value) for A) total volume of 
channel-belt deposits and B) connectedness ratio. Different well-conditioning scenarios on x axis. 
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Figure 7.14. Volume fraction in the well area that is A) classified as containing no channel-belt deposits 
with a probability > 0.9; B) classified as containing channel-belt deposits with a probability > 0.9; and C) 
total volume classified with a probability > 0.9 (sum of values in graph A and B). Different scenarios of 
conditioning to well data on the x axis. 
 
application of optimization algorithms for finding model outcomes that fit well data, such 
as genetic algorithms (Bornholdt et al. 1999). However, model run times will be 
increased as the process-based models become more complicated. 

The computing time required depends on the probability that one run of the process-
based model will fit the well data. Figure 7.15A shows the probability distribution Uau of 
the alluvial architecture generated by the unconditioned model and the range r of all 
possible alluvial architectures that fit the observational data. For illustrative purposes, Uau 
is assumed to be normal here, although other probability distributions would be possible. 
The probability p that one run of the process-based model fits the well data is the area 
under the curve of Uau for alluvial architectures r. The probability p depends on several 
factors. Increasing the number of wells for conditioning decreases the range of alluvial 
stratigraphies r that will fit all wells, resulting in a smaller value for p (Figure 7.15B). 
Increasing the width of the tolerance bands wt in the objective function increases the 
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range of alluvial stratigraphies r that are regarded as being conditioned, resulting in a 
higher value for p (Figure 7.15C). If the process-based model or its input parameters are 
incorrect, r will be at one of the tails of the distribution of Uau and p values will be very 
small (Figure 7.15D) or even zero (Figure 7.15E). This can be solved by increasing the 
variability of the stochastic input of the model, resulting in a wider distribution of Uas, 
but p values will be relatively low (Figure 7.15F). 

Successful conditioning of a process-based model depends on the amount of soft 
information that is available in addition to hard observational data. Soft information may 
come from seismic profiles and ancient or modern analogs. Conditioning to seismic data 
and analog data is expected to be possible with some changes in the objective and 
directive functions. Soft data may include paleoflow direction, channel-belt geometry, 
aggradation rates, floodplain width, and the presence of synsedimentary faults. If these 
data are not available, a process-based model can still be used by using stochastic 
variables for these input parameters. In the example given here, it is assumed (in the          
.       
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Figure 7.15. Schematic probability density distribution (Uau, area under the curve is 1) of alluvial 
architecture for unconditioned model run and range of possible alluvial architectures conditioned to well 
data r. Each location on the x axis represents a different alluvial architecture. The x axis is the same for all 
figures. The area under the curve of Uau for r is the probability p for a conditioned model outcome. A) 
Standard curve. Effects of B) larger number of well data, C) larger tolerance bands, D, E) incorrect model 
structure or model parameters, F) higher degree of variability in the stochastic input. 
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interest of simplicity) that these parameters were known except for the initial floodplain 
elevation, which was represented as a stochastic variable. Adding more stochastic inputs 
to process-based models would be a worthwhile extension to the approach of sedimentary 
architecture modeling described here. 

Under the assumptions of a correct model structure and input, the Monte Carlo 
method applied here gives model outputs that are true probability distributions. For each 
voxel, the probability of occurrence and the connectedness of channel-belt deposits is 
known. This is an advantage compared to some stochastic modeling studies in which only 
one or a few realizations are given. Another advantage of Monte Carlo simulation is the 
possibility of deriving a relationship between the number of observational data (i.e., 
wells) and the precision of the predicted architecture.  

The quality of prediction of alluvial architecture using process-based models depends 
strongly on the quality of the model used. Current knowledge of alluvial processes allows 
considerable improvement of the model presented here. Such development would be 
worthwhile in view of the potential of this method of fitting process-based models to 
observational data. Furthermore, the potential use of process-based models to provide 
input to purely stochastic models would also require further development of process-
based models. 

Process-based models conditioned to observational data could potentially be used in 
other depositional environments such as coastlines, marine shelves, and submarine fans. 
The method also has potential for application at larger scales (such as sequence-
stratigraphic models) and smaller scales (such as crevasse-splay models). 
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8 THE PCRASTER SOFTWARE AND COURSE MATERIALS 
FOR TEACHING NUMERICAL MODELLING IN THE 
ENVIRONMENTAL SCIENCES  

 
Derek Karssenberg (with Peter A. Burrough, Raymond Sluiter, Kor de Jong) 

 
  
Abstract: Teaching numerical modelling in the environmental sciences not only needs 
good software and course material but also an understanding of how to program the 
models in the computer. Conventional environmental modelling procedures require 
computer science and programming skills, which may detract from the important 
understanding of the environmental processes involved. An alternative strategy is to build 
a generic toolkit or modelling language that operates with concepts and operations that 
are familiar to the environmental scientist. PCRaster is such a spatio-temporal 
environmental modelling language developed at Utrecht University, the Netherlands. It is 
used for teaching modelling in classrooms and over the WEB (distance learning) at three 
levels: 1) explaining environmental processes and models, where models with a fixed 
structure of model equations are evaluated by changing model parameters, 2) teaching 
model construction, where students learn to program spatial and temporal models with 
the language, and 3) teaching all phases of scientific modelling, related to field research. 
So far, we have received positive responses to these courses, largely because the software 
provides a set of easily learned functions matching the conceptual  thought processes of a 
geoscientist that be used at all levels of teaching. 
 
Reproduced from: Karssenberg, D., P.A. Burrough, R. Sluiter & K. de Jong (2001). The 
PCRaster software and course materials for teaching numerical modelling in the 
environmental sciences. Transactions in GIS 5, pp. 99-110. 
 
 
8.1 Introduction 
 
As in many areas of science, numerical modelling is a means of expressing our 
understanding of complex, dynamic processes, such as those operating in natural or semi-
natural environments. Not so long ago, it was sufficient for environmental scientists 
merely to name the forms created by frequently occurring interactions of many processes 
- soil series, vegetation types, climatic zones: then classification was an aim in itself. 
Today, modelling has largely replaced classification as a scientific activity as scientists 
attempt to find better and more quantitative explanations of how complex environmental 
systems work. In this respect, creating a numerical model is one way of expressing our 
scientific understanding in a communicable form. It is therefore complete natural, and 
important that we should want to teach numerical modelling to our students.  

Environmental systems are mostly open systems with many, poorly definable 
interactions between hard to describe processes. These complicated systems having both  
spatial and temporal variation at several levels of resolution are difficult to reproduce in 
the laboratory. Since analogue modelling  requires large scale models, it is generally not 
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feasible, especially for teaching, so numerical methods are currently most used for 
modelling environmental systems. Whereas engineering skills and tools are needed to 
build an analogue model, mathematical and computer programming skills and tools are 
necessary to build numerical models. Today, many environmental scientists have access 
to powerful computers, but they are not necessarily able to program them. Until recently, 
the creation of complex environmental models has required the efforts of teams of 
computer scientists - think of MODFLOW (McDonald and Harbaugh 1984) and related 
pollutant transport codes. This is mainly because such models need complex numerical 
algorithms, programmed by specialist programmers in system programming languages 
such as C or Fortran. For teaching environmental model construction, the use of system 
programming languages for constructing a model presents difficulties because many 
students in the geosciences are not skilled in programming computers. Instead, a 
modelling language is needed that matches the thinking level of an environmental 
researcher or geoscientist who thinks in terms of higher level functions that may be used 
to simulate real world processes. 

A second issue in education is the computing load. It is not uncommon for some 
environmental models to require super-computers for their operation. While this is 
appropriate for highly specific problems, such methods are out of the question for routine 
modelling and instruction in class (Casti 1998). Clearly, there is a need for a generic 
environmental modelling language that operates in a way that is easily understandable for 
students and environmental scientists providing flexible, modular model construction on 
affordable computers. PCRaster is such an environmental modelling language (Van 
Deursen 1995; Wesseling et al 1996). It is raster-based and supports construction of both 
static GIS-like cartographic models and dynamic spatio-temporal models (including 
cellular automata functions) using a modelling syntax similar to mathematical notation.  

 This chapter explains how the PCRaster software may be used for teaching numerical 
modelling in a classroom situation and for distance learning (Web based teaching). At 
Utrecht University, course material has been written for both kinds of teaching 
environments, which supports individual learning without too much direct contact with 
the tutor. This absence of direct assistance by a tutor is crucial in Web based teaching 
since learning over the Web does not allow direct assistance from a tutor. Instead, support 
has to be provided by the course material itself. The chapter describes methods how this 
automatic assistance is provided as an integral part of the course material. 

The Utrecht modelling curriculum has a learning path that starts with map overlay 
operations and static cartographic modelling (c.f. Burrough and McDonnell 1998), and 
simple numerical modelling for the construction and application of spatio-temporal 
environmental models (Burrough 1998, Wesseling et al 1996). Geoscientific fields that 
use such spatio-temporal modelling include hydrology, ecology, pedology, 
sedimentology, land degradation research and geomorphology. The students are 
undergraduate, or postgraduate students in these sciences; they are usually unfamiliar 
with programming, but most have some basic knowledge of GIS. At MSc level and 
above, students are offered courses in using PCRaster to construct models of 
environmental processes that they encountered in their major fieldwork course. One of 
the main principles behind all the material is that it should stimulate students to construct 
conceptual frameworks that can support the development of their own models, thereby 
finding solutions for their own specific problems. 
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8.2 The PCRaster Environmental Modelling Software 
 
The effort and degree of specialism needed to create powerful environmental models has 
lead to model building being seen as a scientific activity in its own right. The products of 
this work - the models - may be completely understood by their creators, but others often 
see them as 'black box' units in a data processing system. Such models are frequently 
linked to GIS as sources of data, and as a means of displaying the results or for 
combining them with other spatial information. 

This loose coupling of GIS and off-the-shelf models may be ideal for many 
environmental scientists working in advisory or dedicated research institutes but it poses 
several problems for those wishing to experiment with modelling, or to teach it to 
university and post-academic students. These problems include: 
 

• The afore-mentioned need for programming skills in a system progamming 
language such as FORTRAN or C++  

• A lack of insight into how mathematical representations of processes are 
expressed in algorithms in the standard models  

• The difficulties or impossibilities of easily modifying the model code to explore 
new ways of modelling the process being studied  

• A complete absence of a generic approach (apart from the mathematical basis) to 
dynamic spatial modelling because each program is written by a different team 
under different circumstances  

• The need for means of linking models with spatial and temporal data in a GIS  
 
In recent years there have been developments in both computational mathematics and 
GIS that provide answers to these problems. The first edition of the 'Numerical Recipes' 
books (Press et al. 1986) was a major advance that made many standard algorithms 
available to those without knowledge of numerical mathematics. But modellers still 
needed to be programmers, since the algoritms were still written in system programming 
languages. The main disadvantage of model construction in a system programming 
language, however,  is that all technicalities of a model have to be defined in the code, 
resulting in difficult to handle model programs. So there is a need for a higher level 
programming language with standard easy to use functions at the level of thinking of a 
modeller, that enables the representation of real world processes. This line of reasoning 
has been followed by programs such as Matlab (2000) and STELLA (2000) in which the 
user can set up and solve equations without any overt programming skills. Such programs 
are in effect higher level programming languages that operate with an interface at the 
level of scientific or technical communication. 

In GIS there is a long tradition of using of command languages for stringing together 
sets of well-defined operations to achieve given results. The command syntax of such 
languages is frequently of the form 

 
Newmap = operation(Inputmap1..n) 
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in which the resulting map is created by a certain operation on one or more input maps. 
The operation is the name of a generic process that the user understands at his or her 
level of working.  The operation could be that of calculating slope from an elevation map, 
or of determining proximity zones to linear features such as roads or rivers (c.f. Burrough 
and McDonnell 1998), so the ‘language’ is very easy to use. By linking these operations 
together one can create what are in effect ‘models’, albeit static models of spatial patterns 
that are the bread-and-butter of much GIS analysis. 

This concept of higher level operations has been extended in PCRaster to include not 
just spatial operations but also temporal iterations. In addition the set of spatial functions 
in the language is increased to cover many standard operations encountered in 
environmental studies. The result is a mathematical space-time modelling language that 
gives many advantages for environmental modelling and those wishing to teach it. Data 
entities in PCRaster are objects such as stacks of raster maps for spatio-temporal 
attributes, time series for temporal non-spatial data and lookup tables. The language 
contains 125 generic functions operating on these entities. Functions included are 
mathematically defined non-spatial (point) operations, network creation, transport and 
flow operations and window operations, as well as spatio-temporal time operations for 
reading and writing temporal data, e.g. hydrographs at specific locations. A GIS-like 
database and visualization software is integrated in the system. 
 
 
8.3 Levels of Teaching 
 
PCRaster is used at several levels in teaching environmental modelling: 
  

• As a means of explaining environmental processes and models 
• As a modelling language in its own right and as means of teaching model 

construction 
• As a means of teaching all phases of scientific modelling needed for field research 

 
 
8.3.1 Explaining Environmental Processes and Models 
 
At the introductionary level, students do not yet have the skills needed for constructing 
models. Teaching at this level has two aims. First, it is important to give students insight 
in processes occurring in the natural world. In a lecturing environment, models can be 
used as virtual landscapes illustrating processes occurring in a real landscape and they 
supplement – but not replace! - field excursions and field studies. Model animations have 
been shown to be very useful for illustrating processes that are too slow or imperceptible 
to experience in the field, e.g. tectonic uplift or groundwater flow. In addition, models are 
useful for illustrating different scenarios of landscape evolution, for example, exploring 
the degrees of sedimentation and erosion that may occur if a dam is built.  

Secondly, at a somewhat higher level, students can run models themselves by 
modifying certain model parameters through a graphical user interface (GUI). By clicking 
on the buttons in the user interface, the user invokes the simulation software under user 
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defined scenarios or the standard visualization routines of PCRaster. This can be done 
without direct support of a lecturer, if good course material is provided. This helps 
students understand how landscape processes are represented by environmental models 
and how model components interact.  

 One of the Utrecht courses at this introductory level covers the long-term effects of 
slope processes on slope profile form. The temporal change in elevation for each location 
on a hillslope is a result of interaction between processes of weathering and supply or 
removal of material over the slope, driven by several factors, see Figure 8.1 (cf. Ahnert 
1987). A PCRaster model simulating the development of a mountain range in geological 
times is used to explain these often difficult to understand interactions (Figure 8.2). The 
student learns the basic principles of hill slope processes by changing the input 
parameters in the interface, such as base level lowering, levels of creep and wash, and 
comparing animated maps and time series for different scenarios. A course text is written 
that stimulates students to learn by ‘playing’ with the model. 

An advantage of using PCRaster at this level of teaching is that lecturers can quickly 
and easily make models with student interfaces that will run on personal computers. 
PCRaster automatically generates the GUI from a PCRaster modelling script written by 
the lecturer, without extra programming. As a result, development times of models are 
short, and models can be tailored to a specific lecture or theme. In addition, evaluating 
models by interactively changing model parameters requires the students to think, and 
inspires them to make their own models. 
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Figure 8.1. Factors and processes determining the rate of bedrock weathering (i.e. denudation) at a grid cell 
on a hillslope, (A) profile with processes, (B) positive and negative feedback loops in the cell. After Ahnert, 
1987. 
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8.3.2 Teaching Model Construction 
 
At this second level, students are taught how to construct simple models using PCRaster. 
They learn how the language is used and construct models step by step. The course text 
gives the basic theory behind the models and explains how the models may be 
constructed with PCRaster. This level is taught in two phases: static modelling and 
dynamic modelling. 
 
8.3.2.1 Static Modelling. Static modelling involves modelling in space with single 
PCRaster operations or combinations of operations in script files. The student learns the 
ideas behind the different groups of (non-spatial) point operations and spatial operations 
by applying them to a case study data set. Initially, students work from the command line, 
by typing single operations with a syntax similar to mathematical notation. For instance, 
runoff during a rainstorm is calculated by: 

 
pcrcalc RunoffMap = accuthresholdflux(LddMap,RainMap,InfilMap) 

 
where LddMap contains the flow directions, and RainMap, InfilMap contain the 
amount of rain and potential infiltration respectively, under the assumption of steady state 
conditions (Burrough 1998, Wesseling et al. 1996, van Deursen 1995 -  Figure 8.3, p. 
196). In the next phase, students have to solve case study problems by combining 
operations in a PCRaster script file. Here it is not just the meaning of the single operation 
that counts, but also how functions can be combined, where the output of an operation 
can be the input of the next operation. Examples of problems which may be solved are 
the location of a sports fields complex in an urban area or finding the optimal route for a 
road through a mountainous terrain. 
 
8.3.2.2 Dynamic Modelling. Dynamic modelling builds upon static modelling with script 
files that include the time component. The construction of dynamic models is done in a 
PCRaster script file structured in different sections containing PCRaster operations 
written using the same syntax as in static modelling (Figure 8.4). Operations in the initial 
section define the initial state of the model at time step = 0. In an event-based runoff 
model, the initial section could define the initial soil moisture content, derived by 
crossing a soil type map with a lookup table of soil types and their hydrologic 
characteristics. The temporal  behaviour is defined in the dynamic section. The same set 
of operations in this section is carried out for each time step. The results from the 
previous time step are the input for the next time step. For example, in a runoff model, the 
dynamic section would contain an iterative operation that for each time step and each 
cell, adds the amount of infiltrated water to the soil moisture content. This soil moisture 
map could be used in the next time step for calculating potential infiltration. Additionally, 
the dynamic section contains time operations that read temporal data such as rain time 
series or cloud cover maps from the database. Storing results is simply done by adding a 
‘report’ keyword to operations that should be stored in the database. The results can be 
visualized as 4D (3D plus time) displays (Figure 8.5, p. 197). The current course material 
includes exercises for constructing large scale catchment models, event based runoff 
modelling, plant growth and dispersion modelling and pollutant dispersion modelling. 
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Figure 8.2. Slope development model, interface and model output at different time steps T. The output 
represents a baselevel lowering between T=0 and T=100, with erosion resulting in a decrease in elevation 
mainly near the streams and incision of valleys. After T=100, baselevel is constant and existing relief 
disappears as a result of continuous erosion at the higher parts and a constant level near the streams. 
 
 

Our experience in Utrecht with these PCRaster-based courses suggest that PCRaster 
is an ideal environment for teaching model construction because:  
 

• Its generic approach to modelling using a wide range of standard algorithms and 
functions avoids having to re-invent the wheel  

• There is no need for students to learn a programming language such as 
FORTRAN or C++ before they start to think quantitatively about landscape 
change: if they wish, they can do this in a later stage of their study  

• The modelling language is similar to that of scientific discourse – therefore it is 
easy to learn  

• Its text-based interface supports both simple static modelling with single 
commands and the construction of space-time models with the same set of 
operations  
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• The language provides a means to embed modelling in the GIS rather than create 
once-off or clumsy links between models and GIS  

• The language is portable and can be run on different platforms, including 
currently available, cheap PCs 

 
As a result, the learning path is fairly short: after two weeks students are able to use the 
language without too many problems and are ready for the next stage of environmental 
modelling: the construction of models according to model concepts tailored to their own 
field research. 
 

���
�
�����


���
��
����


���
��
����


����
��
����������������
�

����
���
�����



���

����

����


������	 �������

�
��
� �
��
�� ���

���
�����
�!�

������	�������	��
 ���
�����
�������
�!�
����������
���

 
 
Figure 8.4. Concept of a dynamic modelling script with initial, dynamic and timer sections. 
 
 
8.3.3 Teaching all Phases of Scientific Modelling Related to Field Research 
 
At this level, equivalent to MSc and above, students perform a complete study by 
combining data gathered at their own field study site and knowledge of environmental 
processes with modelling. Their modelling study includes all phases of scientific 
modelling: 
 

• identification of the structure of a model based upon the field study problem and 
available data, i.e. choice of processes to be simulated, mathematical 
representation of  these processes, and the levels of temporal and spatial 
resolution,  

• implementation of this model with PCRaster,  
• calibration and validation with their own field data, and  
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• presentation of the results.  
 
Students get some assistance from their tutor, especially in the first phase of model 
structure identification, but most of the work is accomplished without much support. 
Some studies performed by undergraduate students include event-based runoff and 
erosion modelling studies, water balance, vegetation growth and grazing modelling 
studies, heat balance modelling studies using remote sensing, and modelling of 
geomorphological processes.  

Unlike the use of standard models in student research, requiring students to  construct 
their own models has the advantage that they have to identify model structures 
themselves, which forces them to understand a landscape in a numerical form. In 
addition, students are directly confronted with the usual problems of modelling such as 
incorrect model structures, implementation errors, the effects of spatial and temporal 
resolution, and parameter identification problems, since they are responsible for 
everything. This responsibility is also the reason for their appreciation of this work: it is 
much more interesting and challenging to construct your own model, using your own 
field data, than pressing buttons in a model written by somebody else. A disadvantage of 
students constructing their own models is that they may use inappropriate concepts and 
methods, but this can be prevented by good support from the tutor. Another disadvantage 
is that the restricted set of standard functions in PCRaster limits the range of  models, but 
this can usually be solved by programming extra functions in C++, which are called up 
by the plug-in function of PCRaster. This may help to give students some knowledge of 
system programming as well. 
 
 
8.4 Courses in Classrooms and Distance Learning 
 
8.4.1 Structuring the Course Material 
 
Our course material for teaching in a classroom and over the internet includes a software 
manual and a course text for teaching at different levels of environmental modelling. We 
have developed the material in a structured way resulting in a database with all written 
material based on the Extensible Markup Language (XML, 2000). This approach has 
several advantages over developing course material as separate entities:  
 

• Modularity and reuse of pieces of text. As the same operations may be repeated in 
different courses or different parts of a course, standard texts have been written 
explaining these operations which can be included at any location in the course 
material. This prevents double work. 

• Links between courses. By using one structured database of all written material, it 
is easy to include and maintain hyper links within or between different courses 
and the user manual. This increases the accessibility of the specific information a 
student needs while making the exercises.  
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Figure 8.3. Runoff calculation with the accuthresholdflux operator. Right: rainstorm; left, resulting runoff. 
 

• Recombining courses. Post-graduate students need courses tailored to their 
individual needs. A structured database allows course material to be extracted to 
meet specific learning paths.  

• Standard output format for digital and hardcopy material. A standard style sheet is 
used after the text has been written resulting in a standard format for all material. 
In addition, it is possible to derive both digital (e.g. HTML) and hardcopy output 
from the same course text, with a standard format.  

 
 
8.4.2 Distance learning 
 
People working at government institutes and private firms may have little chance to 
spend periods away from home to study. These people cannot attend courses at a 
university campus but need courses that can be followed part time. Such on-job training 
courses can be provided by web based training, or distance learning. 

Distance learning courses are different from courses on the campus in the sense that 
apart from an initial seminar, there is little direct contact between the tutor and the 
student. Instead, all contact is through the internet (formerly the mail), mostly with time 
lags. PCRaster has been incorporated in a distance learning course system that is 
currently developed in the EU-sponsored MUTATE bundle (MUTATE 2000). The 
course database contains course content in XML, written by multiple authors, and a 
course management tool managing and storing all the data per student, such as 
subscription details per module, and scores on exercises (Figure 8.6). The students 
retrieve and navigate through the course material on a WWW server, over the internet. 
Since spatio-temporal data sets may be too large to be sent over the internet, PCRaster 
runs with datasets on the student's computer. 
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Figure 8.5. Dynamic modelling environment for the construction of an event based runoff model. Clock-
wise from top-left: 3D display with animation of discharge draped over the elevation model, elevation 
model with drainage pattern, control centre of visualisation tools, hydrograph at catchment outlet, 
modelling script. Centre: control centre for animations. 
 

Since there is little direct contact between the student and tutor, the system provides 
alternative ways for student evaluation and support. The course material includes multiple 
choice, numerical and keyword questions. Students enter their answers in the digital 
course material and get an automatic feedback on their answer providing additional 
explanation, and a score, which is also used for final evaluation of the student by the 
tutor. This automatic evaluation is possible since the course material contains algorithms 
to compare students’ answers with correct answers available in the course data base. In 
addition, open questions are given for more complicated problems, which are evaluated 
by the tutor.  The system also stores a log of all actions of the student with the PCRaster 
software in the database. This information can be used by the tutor to check what the 
student does and provides a good reference for communication between the tutor and the 
student if the student has problems solving the exercises. 

For courses at the second and third level that teach the construction of models, 
support from the tutor is very important, since students may easily get stranded while 
constructing a  model.  In  a classroom situation,  this support is provided by a tutor in the 
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Figure 8.6. Distance learning environment. 
 
classroom. Distance learning needs alternative strategies to provide comparable support. 
Strategies followed in the PCRaster course material are: 
 

• Provide the student with background knowledge at the start of each module. 
This is done by referring to pages in standard text books, links to the PCRaster 
manual and internet sites. 

• Provide links to (parts of) courses, which the student has already done, to 
freshen up the skills needed for a specific exercise. 

• Provide advice on the basis of answers to questions, which are automatically 
evaluated. If the student gives the wrong answer, the system explains why this 
answer is wrong and provides (parts of) the correct solution. 

• Provide optional links to hints giving additional information that should help 
the student solve the problem. 

• Provide methods for contacting other students, such as bulletin boards or 
mailing lists. 

• Provide means to contact the tutor by email attaching all additional 
information (model scripts, commands) that may help the tutor to support the 
student. 

  
 
8.5 Discussion and Future Work 
 
Although the existing software and course content provides modelling courses in a wide 
range of fields, PCRaster does not support all types of modelling which could be the 
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subject of teaching in one of the geosciences. Geostatistical modelling, interpolation and 
simulation is currently supported by the Gstat package (Pebesma and Wesseling 1998), 
but this package is only loosely linked to PCRaster through the same raster file structure. 
A useful combination of modelling and geostatistics would provide methods for error 
propagation in spatial-temporal models, assuming spatially correlated errors in the inputs. 
Theory for error propagation modelling in GIS has been described in standard text books 
(e.g. Burrough and McDonnell 1998,  Heuvelink 1998) but tools, which are easy to use 
for environmental modellers, are not generally available. The development of such a tool 
in PCRaster would need embedded linking of the Gstat random field simulation software 
with the PCRaster environmental modelling software (cf. Karssenberg et al. 2000; 
Pebesma et al. 2000). 

The disadvantage that PCRaster is only a 2.5D system is currently being worked on 
by extending the modelling language with 3D entities and functions (Karssenberg et al. 
2000). Whether the requirement for cheap computing will be met has yet to be seen, but 
given the still increasing processing power we expect  that 3D methods will be soon 
available for both the classroom and research.  
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9 Conclusions 
 
 
In the introduction (Chapter 1), the important role of the model development cycle 
(Figure 9.1) was explained, and the central research question was given related to the 
model development cycle: 
 
Is the current state of computer technology and science sufficient for executing the steps 
of programming, upscaling, and inverse modelling in the model development cycle, and 
for teaching all steps in the model development cycle, with respect to dynamic spatial 
environmental models simulating continuous fields? 
 
In this section, the central research question will be answered by first treating the 
individual research questions related to programming, scaling, inverse modelling and 
teaching, which were derived from the central research question in the introduction. An 
answer to the central research question will be derived from these individual research 
questions at the end of this concluding section. 
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Figure 9.1. Model development cycle. Issues of programming, scaling, inverse modelling and teaching (in 
bold type) represent those dealt with in this thesis. 
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9.1 Programming 
 

As noted in the introduction, the research questions for programming deal with the 
procedural step in the model development cycle comprising the conversion of the 
mathematical representation of the processes to a computer program of the model 
(Section 1.3.3). Two groups of research questions were posed which will be answered 
here: those related to (concepts of) existing dynamic spatial environmental modelling 
languages, and those dealing with scientific concepts for development of new dynamic 
spatial modelling languages. 
 
Questions related to software technology: 
 
Are the concepts included in dynamic spatial environmental modelling languages better 
than those of system programming languages, for programming the model? 
 
Unlike system programming languages, which provide entities and functions that 
represent aspects of the computer, dynamic spatial environmental modelling languages 
provide the model builder with entities and functions pitched at the level of thinking 
needed for programming dynamic spatial environmental models. Consequently, dynamic 
spatial modelling languages are conceptually better for model building than system 
programming languages. As was shown in chapter 2, dynamic spatial environmental 
modelling languages have several attractive properties for model building that follow 
from their concept of providing entities and functions at the level of thinking of 
environmental researchers. Compared to system programming languages environmental 
modelling languages are better in their reusability of program code, lack of technical 
details in the program, short development time, and learnability. 

Apart from these advantages, the use of dynamic spatial environmental modelling 
languages for programming has two disadvantages which directly follow from their 
concepts. First, the range of models that can be programmed with them will always be 
restricted, since the fixed set of pre-programmed building blocks provided poses 
limitations regarding the application of the language, because models may need to be 
developed that cannot be programmed with the building blocks provided. This can partly 
be solved by adding a wider range of building blocks to these languages, but the 
disadvantage will always remain for models with exotic model structures. This 
conceptual disadvantage can only be solved by providing model builders with the 
possibility to plug in their own functions, written in another language, mostly a system 
programming language. This is already done in the PCRaster language. The second 
disadvantage is the slow run times of models programmed with a dynamic spatial 
environmental modelling language, relative to these written (and optimised) in a system 
programming language. This disadvantage will be less significant with faster computers, 
but when run times are really crucial, it is expected that programming in a system 
programming language will be more efficient. Although dynamic spatial modelling 
languages have more disadvantages in addition to these noted above, as will be discussed 
in the answer to the next research question, most of these disadvantages can be attributed 
to the relative immatureness of dynamic spatial modelling languages, compared to system 
programming languages, and not by deficiencies in their concepts. 
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What are the restrictions of existing dynamic spatial environmental modelling languages 
for executing the procedural step of programming in the model development cycle? 
 
Apart from the two disadvantages given above, which are implicit to the concepts of 
dynamic spatial environmental modelling languages, the use of existing dynamic spatial 
modelling languages comes with restrictions mainly caused by their early stage of 
development. Most of these are expected to be resolved when dynamic spatial 
environmental modelling languages evolve towards full-grown programming languages, 
with concepts for environmental model building which are better than these of system 
programming languages, as noted above. The most important restrictions of existing 
dynamic spatial environmental modelling languages for the procedural step of 
programming are given here (see also Camara, 2002). 

As was noted in Chapter 2, existing dynamic spatial environmental modelling 
languages do not provide sufficient means to prevent the occurrence of programming 
errors (i.e., bugs) in models. Interactive visualisations embedded in the language allow 
programmers to check their models while building the model script, but automatic 
debugging mechanisms are not provided. In addition, it is relatively time consuming to 
include budget checks in storage-flux based models written in dynamic spatial 
environmental modelling languages. It can be expected that automatic mechanisms for 
debugging and checking budgets can be added without changing the framework of 
existing dynamic spatial environmental modelling languages. 

Other restrictions of existing dynamic spatial modelling languages are related to their 
concept of providing pre-programmed building blocks. As noted in the answer to the 
previous research question, this will always be a restriction, since only a limited set of 
models can be built. But major steps forward can be made to minimize this disadvantage 
by adding new entities and functions. The main restrictions that can be solved in this way 
are 1) their limitation to two-dimensional modelling, while many environmental models 
need a three dimensional representation of the environment, 2) their restriction to 
deterministic modelling, while many environmental models need to be stochastic, 3) the 
relatively small number of spatial functions provided, with an emphasis on explicit 
solution of differential equations. These restrictions can be solved by extensions to 
languages without completely changing their concepts, as is shown in this thesis (see 
answers to research questions below). 

Finally, a restriction of existing field based modelling languages treated in this thesis 
is that they do not provide functionality for modelling of objects. Adding this 
functionality will need completely new concepts regarding the design of the 
computational engine of the language and its syntax. 
 
Questions related to science: 
 
Can we extend dynamic spatial environmental modelling languages with (concepts for) 
functions for efficient programming of three dimensional models? 
 
Chapter 3 describes a prototype dynamic spatial modelling language capable of dealing 
with data in three spatial dimensions, using an irregular discretisation in the vertical 
direction. The language provides a syntax which is as intuitive for environmental 
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modellers as the syntax of existing dynamic spatial modelling languages, while standard 
spatial functions are included on three dimensional data. The case study described in 
Chapter 3, and the application of the concepts for three dimensional modelling in Chapter 
7, shows the usefulness of the language for constructing dynamic spatial models 
simulating erosion and deposition, while it can be expected that the language can also be 
used in many other fields of environmental modelling. 

Although the usefulness of the language can only be demonstrated after it has been 
tested in a wider range of modelling situations, the positive results noted above, show that 
it is possible to extend existing dynamic spatial environmental modelling languages with 
functions for programming with three dimensional environmental data. The problem of 
large data sets that need to be dealt with when modelling in three dimensions can be 
resolved by adding optimisation algorithms. 
 
Can we extend dynamic spatial environmental modelling languages with (concepts for) 
functions for efficient programming of stochastic models in order to calculate error 
propagation in dynamic spatial models? 
 
The prototype stochastic modelling language and the case studies with it described in 
Chapter 6, show that it is indeed possible to extend existing dynamic spatial 
environmental modelling languages with functions for modelling error propagation in 
dynamic spatial models. A wider application of this type of environmental modelling 
languages, will only be possible after additional optimisation algorithms to deal with the 
large data sets involved in stochastic dynamic spatial modelling using Monte Carlo 
simulation. In addition, exploratory data analysis techniques specially developed for multi 
dimensional stochastic data are needed for analysing relations in model inputs and 
outputs. 
 
 
9.2 Upscaling 
 
As described in Section 1.3.4, upscaling involves scaling methods needed to change the 
support of field data to appropriate values of inputs and parameters at the support used by 
the dynamic spatial model. Below, answers are given to the research questions related to 
the two case studies involving upscaling methods for infiltration. In addition, answers to 
research questions touching upon the general issue of upscaling are given, inferred from 
the knowledge and experience gained from these studies. 
 
Questions related to science: 
 
Scale transfer of infiltration was dealt with by upscaling to 1) the support of a catchment 
(Chapter 5) and, 2) the support of the units in a rainfall-runoff model (Chapter 6). The 
research questions related to these issues are answered in this order, followed by one 
research question regarding upscaling in general. 
 
Is it possible to define an upscaling method to scale infiltration measured at a small 
support (app. 0.04 m2) to effective values of infiltration for catchments (1-7500 m2), 
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which correspond to values derived from measurements at that larger scale, under steady 
state conditions of rainfall, runoff and infiltration? 
 
In Chapter 5, I showed that the upscaling method is capable of upscaling saturated 
conductivity derived from measurements at a small support (0.04 m2) to values of 
effective saturated conductivity representative for a catchment with a size between a plot 
and a hillslope (app. 1-75000 m2), under steady state conditions of rainfall, runoff and 
infiltration. Under these conditions, the upscaling method predicts an increase in effective 
saturated conductivity of a catchment with 1) an increase in rain intensity, 2) increasing 
mean and decreasing variance, and skewness of saturated conductivity distribution within 
the catchment, 3) decreasing spatial scale of variation in saturated conductivity within the 
catchment, 4) increasing size of the catchment and, 5) decreasing bifurcation of the 
drainage pattern in the catchment. 

The direction of these relations corresponds with estimates of effective saturated 
conductivity derived from field measurements in other studies. In addition, it has been 
shown that the method is capable of upscaling saturated conductivity from the local scale 
(app. 0.004 m2) to the plot scale (app. 1 m2). The estimates of saturated conductivity at 
the local scale, derived from ring infiltrometer measurements representing the local scale 
values, can be upscaled to effective values at the plot scale. These effective values at the 
plot scale correspond with values derived from rainfall simulation experiments at that 
scale. So, it seems quite plausible that the upscaling method is capable of calculating 
realistic effective values of saturated conductivity for catchments with the size of a plot (1 
m2). 

Although the concepts of the upscaling method are in principle also valid for 
upscaling saturated conductivity to catchments with the size of a hillslope (7500 m2), 
valid under steady state conditions, these scaled values could not be compared with 
saturated conductivity values derived from field measurements at that scale, since 
conditions of rainfall, runoff and infiltration on a hillslope with a natural rainstorm are 
predominantly transient (i.e. not in steady state). 
 
Does an upscaling method, which scales infiltration measured at a small support (app. 
0.04 m2) to effective values of infiltration for catchments (1-7500 m2), give better results 
when applied to a dynamic rainfall-runoff model than using the same model without the 
transfer function? 
 
The upscaling method can be used to derive a relation between rainfall intensity and 
effective saturated conductivity for the hillslope (7500 m2), under steady state conditions 
of rainfall and runoff. This relation was tried in a dynamic rainfall-runoff model 
simulating discharge from the hillslope. For most rainstorms, the simulated discharge was 
significantly different from the measured discharge. These unsatisfying results are most 
probably caused by the transient nature of rainfall and runoff on the hillslope, while the 
upscaling method used to calculate the effective saturated conductivity assumes steady 
state conditions. However, effective values for saturated conductivity did at least create 
runoff, which was not the case when directly using the average derived with the field 
measurements of infiltration. Moreover, using an approach that varied effective saturated 
conductivity with rainfall intensity gave better results than using a fixed saturated 
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conductivity per event, or a value obtained from inverse modelling. This indicates that the 
upscaling procedure to derive effective saturated conductivity that varies with rainfall 
intensity does have some potential in transient runoff modelling. 
 
When an upscaling method scaling infiltration measured at a small support (app. 0.04 
m2) is used to derive effective values of infiltration for model units (app. 100 m2)  in a 
dynamic rainfall-runoff model, does this rainfall-runoff model give better results 
regarding discharge from a hillslope (app. 7500 m2) and a catchment (app. 0.4 km2) than 
these found when the upscaling method is not used? 
 
The research in Chapter 6 showed that it is possible to define a transfer function 
calculating scale transfer of saturated conductivity from the local scale (app. 0.04 m2) to 
the scale of model units (app. 100 m2) in a dynamic rainfall-runoff model. The transfer 
function can be parameterised for all model units in the rainfall-runoff model, using data 
mostly available in rainfall-runoff modelling studies. When the function is used in the 
dynamic rainfall-runoff model, effective saturated conductivity values for each model 
unit are calculated that vary with rainfall intensity and the inflow flux from neighbouring 
units. The simulations for the two example catchments using the transfer function 
resulted in a smaller difference between simulated and measured discharge than found 
when the transfer function was not used. 

Compared to the approach when local scale values of saturated conductivity are 
scaled to effective values of a catchment as a whole (previous two research questions), 
the approach using effective values for model units seems to be more promising for 
predicting discharge from catchments, mainly because 1) the approach using effective 
values for units does not suffer from transient conditions within the spatio-temporal 
domain for which the effective values are calculated, which may not be the case for the 
approach using effective values for a catchment as a whole, and 2) results of the dynamic 
simulations with the effective values for model units are slightly better than these found 
when effective values for a catchment are used. 
 
Is the existing theory sufficient for solving problems of upscaling related to estimating 
inputs and parameters in a model, in all fields of dynamic spatial environmental 
modelling? 
 
As noted in the introduction (Section 1.3.4), general theory for solving scale problems has 
recently been described in standard text books. Although this provides a theoretical 
background for estimating inputs and parameters in dynamic spatial environmental 
models, the sometimes unsatisfying results of the case studies of infiltration have shown 
that for a specific scaling problem, it can still be very difficult to find an upscaling 
method that gives satisfactory results. This is mainly caused by difficulties in 
representing spatio-temporal processes related to the specific input or parameter to be 
scaled, and not by deficiencies in the general theory of upscaling. 

So, the existing general theory for upscaling provides general rules how an upscaling 
method can be developed. But this theory does not automatically provide appropriate 
upscaling methods in all situations of modelling, for all inputs and parameters, since the 
upscaling method needs to be developed for each situation of modelling. For many of 
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these specific situations, upscaling methods have not been described, or are not yet fully 
developed. 
 
Questions related to technology: 
 
Is the existing software technology sufficient for solving problems of upscaling related to 
estimating inputs and parameters of a rainfall-runoff model, and in other upscaling 
situations? 
 
Standard software specially developed for upscaling does not exist. Instead, a wide range 
of tools needs to be used. For the studies of upscaling of infiltration (Chapter 5 and 6), the 
steady state stochastic model representing the process of rainfall and runoff was built 
with a prototype of the stochastic modelling language described in Chapter 4, providing 
standard functionality for Monte Carlo simulation. In addition, the Gstat software 
(Pebesma and Wesseling, 1998) was used for simulation of random fields, and a 
statistical package was used for analysing results and fitting the transfer function 
described in Chapter 6. Several additional programs were specifically written to manage 
data exchange between these packages. 

From the case studies of upscaling of infiltration it is obvious that the implementation 
of an upscaling method with the existing software involves considerable more work than, 
for example, programming a dynamic spatial model with existing dynamic spatial 
modelling languages. Although it can be put forward that upscaling is more complicated 
and more case specific than dynamic spatial model building, it seems that software 
technology for upscaling is somewhat less developed, compared to the technology for 
constructing dynamic spatial models. 

The development of better, easy to use tools for upscaling is expected to be difficult, 
since methods of upscaling depend on the kind of attribute to be upscaled, the support for 
which effective values are needed, and the kind of model in which the values are needed. 
A closer integration of the above mentioned software tools will be a first step towards the 
development of a good toolbox for upscaling. 
  
  
9.3 Inverse modelling 
 
As noted in section 1.3.5, inverse modelling is a means to estimate inputs and parameters 
of a model by comparison of a set of outputs of the model with measurements of these 
outputs. The answers to the research questions below are mainly based on Chapter 7, 
which provided a case study of an inverse modelling procedure for predicting three 
dimensional sedimentary architecture. 
 
Questions related to science: 
 
Does existing scientific knowledge provide sufficient means to make predictions of three 
dimensional sedimentary architecture with a dynamic spatial model, conditioned to 
observations? 
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The case study shows that prediction of three dimensional sedimentary architecture with a 
dynamic spatial model is indeed possible, for the case of a hypothetical set of 
observations, but it was not demonstrated that the approach is applicable to real-world 
problems, because the model and the hypothetical data set are relatively simple. More 
research aiming at testing the approach with real-world data sets, needs to be directed to a 
further improvement of dynamic spatial models simulating the processes of sedimentation 
and erosion, because existing models do not include all processes which are important at 
the scale of modelling. This should result in a prediction of sedimentary architecture 
which is more realistic. Further, these models need to be provided with correct values for 
the probability distribution of parameters and inputs, which is only possible from an 
analysis of soft information, such as paleoflow direction, aggradation rates, for each case 
study under consideration. Finally, future research in this field needs to aim at a further 
improvement of inverse modelling procedures themselves, and the development of a 
procedure to select the appropriate inverse modelling algorithm for the situation of 
modelling under consideration, for instance by using genetic algorithms. It is expected 
that this will significantly decrease run times compared to those found with the brute 
force procedure applied in the case study. 
 
Does existing scientific knowledge provide sufficient means to do inverse modelling with 
dynamic spatial environmental models? 
 
It is difficult to extrapolate the results of the case study of sedimentary architecture 
modelling to the general issue of inverse modelling, since the results of an inverse 
modelling procedure will only be satisfactory when the conditions are fulfilled for an 
environmental model with an appropriate representation of processes, and a correct a 
priori estimation of (the probability distribution of) inputs and parameters. When these 
conditions are fulfilled, standard inverse modelling techniques will be sufficient for 
executing the inverse modelling procedure, in most cases, although run times can be 
large. Run times can be decreased by improving techniques for inverse modelling, or 
technological innovation (see below). 
 
Questions related to technology: 
 
Does existing computer technology provide sufficient means to make predictions of three 
dimensional sedimentary architecture with a dynamic spatial model, conditioned to real-
world observations? 
 
The computer technology used in the case study was appropriate for an inverse modelling 
procedure with a simple model and a small number of observations. With a real world 
data set, the approach is expected to suffer from long run times, mainly because the larger 
number of observational data and the need to use a more complex dynamic spatial model, 
aiming at predictions which are more realistic. As noted in the research question related 
to science, run times can be decreased by using correct (distributions of) input parameters 
and an inverse modelling procedure which is suitable for this kind of inverse modelling. 

Besides these scientific issues, innovative computer technology is needed for 
application of the approach to real-world observations. This needs to involve both 
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improvement of software and hardware. Although dynamic spatial environmental 
modelling languages are attractive for model building, models built with these languages 
tend to be slower than these built and optimised with a system programming language, as 
noted in chapter 2. This can be a problem when a model built with a dynamic spatial 
modelling language is used in an inverse modelling procedure, since the model needs to 
be executed iteratively. This problem can be solved by 1) a further improvement of 
dynamic spatial modelling languages, resulting in shorter run times of models, or 2) 
programming the dynamic spatial model using a system programming language. The 
latter needs specialist programmers, able to optimise the program code of a system 
programming language. 

Apart from the software used for inverse modelling, the hardware is an important 
factor determining run times. In the case study described, inverse modelling runs were 
done on a standard 200 MHz Linux machine. Considerable decrease of run times is 
expected when faster machines are used, such as a faster personal computer or a vector 
machine, or a distributed computer with multiple nodes, allowing parallel processing. 
 
Does existing computer technology provide sufficient means to do inverse modelling with 
dynamic spatial environmental models, in practice? 
 
As noted above, existing computer technology is appropriate for inverse modelling with 
dynamic spatial environmental models, only when 1) an inverse modelling problem can 
be solved without too many iterations, and 2) the model run time is sufficiently small. For 
more complex (slower) models, and an inverse modelling problem that needs more 
iterations to be solved, run times of the inverse modelling procedure can be a problem. As 
noted in the previous research question, this problem can partly be solved by innovation 
of software and hardware, although these improvements in computer technology will not 
solve the problem of run times completely. There will always be inverse modelling 
situations which are not feasible, because they need too much run time. 

Another issue is the easy use of inverse modelling procedures in combination with 
models built with a dynamic spatial environmental modelling language. Currently, the 
software providing the inverse modelling procedures needs to be linked to the dynamic 
spatial model, for each case study, which may involve additional programming. An 
integration of inverse modelling procedures with dynamic spatial modelling languages 
would make inverse modelling available to a wider group of users. 
 
 
9.4 Training 
 
As noted in section 1.3.6, training model building involves teaching all steps of the model 
development cycle (Figure 1) to people with some background in environmental sciences, 
but without, or with little, background in model building and computer programming.  
 
Does the existing PCRaster environmental modelling language, its associated course 
material and tools for distance learning, provide an efficient means for teaching dynamic 
spatial model building in all phases of education, for a wide range of people? 
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At the first level of training, students are not yet prepared for building models themselves, 
and dynamic spatial models can be used to explain environmental processes and models, 
where students evaluate models with a fixed model structure by changing model 
parameters in a graphical user interface. At this level of teaching, models are built by the 
tutor, which is relatively easy with PCRaster, since it provides an easy to use modelling 
language, as noted in the answers to the research questions in Section 9.1. In addition, 
PCRaster comes with standard software for construction of a graphical user interface, on 
top of a model script (program), which can be done without too much additional work. 
So, at this level of teaching, PCRaster provides an efficient means for teaching. 

The PCRaster software and course materials are also efficient for teaching at the 
second level of training. At the second level, students have sufficient background 
knowledge in environmental processes and computer modelling, to start building models 
themselves. At this level, students are trained in the phase of programming in the model 
development cycle, using workbooks teaching them to build a model step-by-step. For 
teaching programming, PCRaster is very efficient because models can be programmed 
using building blocks pitched at the level of thinking of most environmental researchers. 
In addition, PCRaster comes with software manuals and course materials at various levels 
of programming, providing the possibility for distance learning too. 

At the third level of training, students need to be taught in all procedural steps of the 
model development cycle. This is done in relation with a field study in their own research 
area. Students need to learn how to identify  the model structure on the basis of the aim of 
their research, data availability and the key processes in their study area. Although model 
structure identification is mainly done using knowledge of processes important in the 
specific research, the PCRaster software plays an important role in this model structure 
identification phase, since it allows students to build and test models themselves, which is 
not possible when standard user models are used. Teaching the procedural step of 
estimation of inputs and parameters in a model receives insufficient attention in the 
PCRaster training material, partly because standard software for these issues is not 
provided, but also because teaching material is not available. For teaching this step of 
model building, additional software and course material is needed.  
 
 
9.5 Central research question 
 
Is the current state of computer technology and science sufficient for executing the steps 
of programming, upscaling, and inverse modelling in the model development cycle, and 
for teaching all steps in the model development cycle, with respect to dynamic spatial 
environmental models simulating continuous fields? 
 
Model building in a specific case study will only result in the optimal model for that case 
study, when all steps of the model development cycle are provided with optimal scientific 
knowledge and computer tools, while environmental researchers need to be trained to go 
through these steps. This thesis evaluated three steps in the model development cycle: 
programming, upscaling, and inverse modelling, and the issue of training people. The 
step of programming is mainly related to computer technology. Existing dynamic spatial 
environmental modelling languages provide tools for programming which are attractive 
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for environmental researchers, since the concepts of these tools are pitched at the level of 
thinking of environmental researchers. The extensions to existing dynamic spatial 
modelling languages with concepts for three dimensional modelling and stochastic 
modelling described in this thesis, show that limitations of dynamic spatial environmental 
modelling languages can be resolved by adding new concepts to them. It can be 
concluded that existing dynamic spatial modelling languages are very attractive for 
programming models in a number of application fields, while extensions are needed to 
these languages to make them more generic. 

General scientific theories exist for the procedural step of upscaling of field data to 
the support of a dynamic spatial environmental model. The case studies into infiltration 
showed that using these general theories and theory in the field of hydrology, it is 
possible to define an upscaling method for infiltration which gives satisfactory results in 
dynamic spatial rainfall-runoff models. The success of these case studies does not prove 
that the scientific issue of upscaling is resolved, or can be resolved, for all situations of 
modelling. This is mainly because upscaling methods are highly specific for the property 
of interest , and the situation of modelling. Upscaling can be done with existing software 
tools, but improvements are needed to make these tools more easily accessible, to a wider 
group of researchers.  

The case study into sedimentary architecture modelling showed that inverse 
modelling is possible in principle with the existing theory for inverse modelling 
procedures and the available computer technology. This does not mean that inverse 
modelling will be successful in all cases, since the quality of the outcome of an inverse 
modelling procedure depends on the quality of the dynamic spatial environmental model 
used, which is case study specific, while many inverse modelling procedures will not be 
feasible because they need too much computation time. The latter issue of run times can 
partly be dealt with by better hardware and software technology, and an improvement of 
inverse modelling procedures. 

The PCRaster software and training materials provide good means to train people in 
the procedural steps in the model development cycle of model structure identification and 
programming. The steps of upscaling and inverse modelling do not come with standard 
training material, partly because these procedural steps are not provided as standard 
software in PCRaster. 

The general conclusion is that existing dynamic spatial modelling languages provide a 
good means for performing the procedural step of programming in the model 
development cycle. The other steps of upscaling and inverse modelling come with 
general theories, but these steps need to be executed taking care of the specific situation 
of the case study under consideration. In addition, software which is easier accessible for 
environmental modellers, and faster hardware, is needed for a more efficient execution of 
the steps of upscaling and inverse modelling. With regard to training people in model 
building, sufficient materials are available for training the steps of model structure 
identification and programming, while more materials are needed for training the steps of 
upscaling and inverse modelling. 
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Summary 
 
 
An environmental model is a representation or imitation of complex natural phenomena 
that can be discerned by human cognitive processes. This thesis deals with the type of 
environmental models referred to as dynamic spatial environmental models. The word 
‘spatial’ refers to the geographic domain which they represent, which is the two- or three-
dimensional space, while ‘dynamic’ refers to models simulating changes through time 
using rules of cause and effect, represented in mathematical equations. Since these 
equations generally include complex interactions which can only be solved by numerical 
solution, dynamic spatial models are programmed and run on a computer. 

The aim of dynamic spatial environmental model building is to find the optimal 
representation of environmental processes in the numerical equations (and parameters) of 
a computer program of the model, for a given case study defined by the aim of modelling, 
the properties of the study site, the field data present, the software en hardware 
technology available to construct the model, and the researchers involved. Since most of 
these factors will be different for each case study, a new (or modified) model should be 
made for each case study, by executing the procedural steps of the model development 
cycle (Figure 1) until the optimal model has been found. 

This thesis evaluates whether existing technology and/or science provide sufficient 
means to deal with four issues related to the model development cycle (Figure 1). The 
first issue is concerned with programming the model. Environmental modelling 
languages exist which are programming languages specifically meant for building 
dynamic spatial environmental models. It is shown in the thesis that concepts of these 
languages are better than these of system programming languages when used for 
programming an dynamic spatial environmental model. However, the disadvantage of 
existing environmental modelling languages is their restricted set of models that can be 
built with them. To overcome this disadvantage, concepts, a prototype language, and case 
studies, are described for new environmental modelling languages supporting 
construction of three dimensional and stochastic dynamic models for calculating error 
propagation in environmental models. Construction of these kind of models was so far 
not possible with environmental modelling languages. 

The second issue which evaluated is upscaling methods, which are procedures 
describing how to derive model inputs and parameters, representative for the support 
(resolution) of the dynamic spatial environmental model, from field data collected at a 
smaller support. This is explored in two case studies involving upscaling of local 
measurements of infiltration to values of infiltration that can be used in dynamic spatial 
models simulating runoff in a catchment during a rainstorm. In the first case study, 
representative (effective) values are calculated for a hillslope as a whole, while in the 
second case study, representative values are calculated for a support corresponding to the 
model units (grid cells) of a rainfall-runoff model. It is shown that the proposed upscaling 
methods can be applied in rainfall-runoff models, although problems caused by the 
transient character of the rainfall-runoff processes, and/or data availability remain to be 
solved. From the experiences of this case study, it is concluded that upscaling remains a 
complicated issue, and it will be difficult to develop standard software which makes 
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upscaling possible for a wider group of researchers, in a wide range of environmental 
models.  

The third issue evaluated is the method of inverse modelling (or inverse estimation) 
for estimating inputs and parameters of a dynamic spatial model by minimizing the 
difference between the simulated and measured values of one or a set of outputs of a 
dynamic spatial environmental model. This is studied in a case study aiming at the three 
dimensional interpolation of sediment type, using a dynamic spatial model simulating 
erosion and deposition by rivers, on time scales of thousands of years. It is shown that 
with a brute force inverse modelling procedure, the sediment type between hypothetical 
well locations can be predicted with the model, in three dimensions, while at the well 
locations, the simulated sediment type corresponds to the observed sediment type. It is 
concluded that the method applied for three dimensional interpolation of sedimentary 
deposits works in principle, while practical application with a real world data set needs to 
involve a further decrease of the computer run time of the dynamic spatial model used, 
and the use of a more advanced inverse modelling procedure. 

The fourth issue evaluated is that of training people in executing all steps of the 
model development cycle. It is shown that existing environmental modelling languages 
are an efficient tool for training model building in all phases of learning, although 
progress need to be made regarding software and training material for teaching upscaling 
and inverse modelling. 
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Figure 1. Model development cycle for building dynamic spatial environmental models. Issues of 
programming, upscaling, inverse modelling and training (in bold type) are these dealt with in the thesis. 
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Het maken van dynamische ruimtelijke landschapsmodellen 
 
Samenvatting 

 
Een landschapsmodel is een representatie of imitatie van complexe natuurlijke 

fenomenen die kunnen worden onderscheiden door menselijke cognitieve processen. Dit 
proefschrift behandelt het type landschapsmodellen dat bekend staat als dynamische 
ruimtelijke modellen (dynamic spatial environmental models). Het woord ‘ruimtelijk’ 
verwijst hierbij naar de twee- of driedimensionale ruimte waarbinnen de processen zich 
afspelen. Het woord ‘dynamisch’ verwijst naar modellen die veranderingen in de tijd 
simuleren. Deze veranderingen worden gemodelleerd met gebruik van regels van oorzaak 
en gevolg, welke worden weergegeven in wiskundige vergelijkingen. Doordat de 
verbanden die weergegeven worden door deze vergelijkingen complex kunnen zijn, 
moeten de vergelijkingen worden opgelost met behulp van numerieke 
oplossingstechnieken, beschreven in een computerprogramma dat alle 
modelvergelijkingen bevat. 

Het doel van de constructie van dynamische ruimtelijke landschapsmodellen is het 
vinden van de optimale weergave van landschappelijke processen in numerieke 
vergelijkingen (en parameters) van een computer programma van het model, voor een 
gegeven onderzoek. Hierbij is het gegeven onderzoek gedefinieerd door het doel van de 
modelleerprocedure, de eigenschappen van het onderzoeksgebied, de veldgegevens die 
beschikbaar zijn, de beschikbare software en hardware technologie voor de ontwikkeling 
en het draaien van het model, en de onderzoekers die het model maken. Aangezien deze 
factoren specifiek zijn voor een bepaald onderzoek, is het in de meeste gevallen nodig om 
een nieuw, of aangepast, model te maken voor ieder onderzoek. De ontwikkeling van een 
nieuw model dient te gebeuren door middel van het doorlopen van de procedurele 
stappen van de modelbouwcyclus (Figuur 1), waarbij verschillende modelrepresentaties 
van processen in het landschap kunnen worden getest, totdat het optimale model is 
gevonden. 

In dit proefschrift wordt geëvalueerd of de huidige technologie en wetenschap 
voldoende kennis en middelen ter beschikking heeft om de modelbouwcyclus 
bevredigend te doorlopen. Hierbij wordt gekeken naar vier onderdelen van de cyclus. Het 
eerste onderdeel waarnaar wordt gekeken is het programmeren van het model. Hiervoor 
bestaan landschapsmodelleertalen (environmental modelling languages) die specifiek zijn 
ontwikkeld voor het programmeren van dynamische ruimtelijke modellen. Het wordt in 
dit proefschrift aangetoond dat voor het programmeren van een dynamisch ruimtelijk 
model dergelijke landschapsmodelleertalen conceptueel beter zijn dan 
systeemprogrammeertalen. Het nadeel van bestaande landschapsmodelleertalen is echter 
dat er slechts een beperkte set van modellen mee gemaakt kunnen worden, doordat nog 
onvoldoende functionaliteit beschikbaar is. Om dit nadeel voor een deel op te lossen, 
worden in dit proefschrift concepten voor landschapsmodelleertalen beschreven die de 
ontwikkeling mogelijk maken van 1) driedimensionale en 2) stochastische dynamische 
modellen. Dergelijke modellen konden tot nu toe niet met de bestaande 
landschapsmodelleertalen worden gemaakt. Tevens worden prototypen beschreven van 
modelleertalen die ontwikkeld zijn volgens deze concepten. 
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Figure 1. Modelbouwcyclus voor de ontwikkeling van een dynamisch ruimtelijk landschapsmodel. De 
stappen programmeren, opschaling, inverse modelling en training (vet letter type) worden behandeld in het 
proefschrift. 

 
Het tweede onderdeel dat wordt geëvalueerd is opschaling. Een opschalingsmethode 

beschrijft hoe veldgegevens die verzameld zijn met een kleine support kunnen worden 
omgezet in waarden voor de invoer of parameters van een model die representatief zijn 
voor de grotere support van het model. Dit onderwerp wordt behandeld in twee 
onderzoeken naar het opschalen van puntmetingen van infiltratie naar waarden 
representatief voor de support van een dynamisch ruimtelijk model dat afvoer in een 
stroomgebied simuleert tijdens een regenbui. In het eerste onderzoek worden waarden 
berekend die representatief zijn voor een gebied ter grootte van een helling. Het tweede 
onderzoek behandelt de berekening van waarden van infiltratie die representatief zijn 
voor een support ter grootte van modeleenheden (gridcellen) van een regen afvoer model. 
In de twee onderzoeken wordt aangetoond dat de voorgestelde opschalingsmethoden 
kunnen worden gebruikt in regen afvoer modellen. Dit gaat echter gepaard met enkele 
problemen die nog zullen moeten worden opgelost. Deze problemen zijn gerelateerd aan 
het feit dat tijdens een regenbui geen lange perioden optreden waarbij sprake is van een 
stationaire toestand van alle fluxen. Daarnaast is het een probleem dat onvoldoende 
veldgegevens beschikbaar zijn. Uit de resultaten van de twee onderzoeken kan worden 
geconcludeerd dat opschaling een complex probleem is. Het is niet te verwachten dat het 
eenvoudig zal zijn om standaard software voor opschaling te maken die opschaling 
toegankelijk maakt voor een bredere groep van onderzoekers, in een breed scala van 
landschapsmodellen. 
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Het derde onderdeel van de modelbouwcyclus dat wordt behandeld is de methode die 
bekend staat als inverse modelling (of inverse estimation) voor het schatten van de invoer 
en de parameters van een dynamisch ruimtelijk model. Een inverse modelling procedure 
schat de waarden van de invoer en de parameters door deze zodanig aan te passen totdat 
het verschil tussen de gesimuleerde en de gemeten waarden van één of een set van 
uitvoeren van het dynamisch ruimtelijk model is geminimaliseerd. Dit onderwerp wordt 
behandeld in een voorbeeldstudie die tot doelstelling heeft om het type sediment in een 
rivierafzetting te interpoleren tussen hypothetische boorpunten, in drie dimensies. Dit 
wordt gedaan door middel van een dynamisch ruimtelijk model dat erosie en depositie 
door rivieren simuleert, op een tijdschaal van duizenden jaren. Het wordt aangetoond dat 
met een eenvoudige inverse modelling procedure het sedimenttype tussen hypothetische 
boorpunten kan worden voorspeld, waarbij op de locatie van de boorpunten zelf het 
sedimenttype wordt voorspeld dat in de boringen is gevonden. De conclusie is dat de 
toegepaste methode voor driedimensionale interpolatie van sedimentaire afzettingen in 
principe werkt. De praktische toepassing van de methode met gebruik van werkelijke 
gegevens vereist verbeteringen wat betreft de rekentijd van het gebruikte dynamische 
model, en verbeteringen in de inverse modelling procedure zelf. 

Het vierde onderwerp dat wordt geëvalueerd is het trainen van mensen in het 
uitvoeren van alle stappen in de modelbouwcyclus. Het wordt aangetoond dat bestaande 
landschapsmodelleertalen een efficiënt gereedschap vormen voor onderwijs in het maken 
van modellen in alle fasen van het leerproces, hoewel vooruitgang nodig is wat betreft de 
software en het cursusmateriaal voor onderwijs in opschalen en inverse modelling. 
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