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For large epidemiological observational studies banks of biological samples are
sometimes created. To study specific research hypotheses blood, urine or tissue
specimens can be obtained from participants to the study and stored for later analysis in a
biological bank1-5. This was done, for example, in the DOM project. The DOM project
was a breast cancer screening programme in the city of Utrecht (the Netherlands) and the
region around it. The Dom project consisted of several birthcohorts of women. Women
who volunteered to come to the screening were asked to bring their overnight urine or, in
another cohort, their toenail clippings. Combination of the characteristics of the
participants with information from the regional cancer registration led to the
identification of cases, participants developing the disease of interest, after a shorter or
longer follow-up. These cases can be contrasted to controls, participants who did not
develop disease during the same follow-up period of the study. 

Constantly new biochemical, molecular or genetic laboratory techniques are
developed. These allow a large number of (new) etiologic hypotheses to be tested on the
stored biological material of cases and controls to investigate interesting associations
between an exposure and a disease. The amount of stored biological material however is,
in general, limited, in particular for the cases, when the disease is not so common.
Furthermore, with most laboratory techniques biological material is destroyed and cannot
be used for another test. To combine the large number of interesting hypotheses with the
limited number and amount of biological samples statistical methods are needed that can
distinguish between more promising and less promising hypotheses at the expense of as
little biological material as possible.

Sequential statistical methods offer a researcher the possibility to terminate an
investigation as soon as sufficient evidence has accumulated to accept the null hypothesis
(‘no association between exposure and disease’) or to reject it in favour of the alternative
hypothesis (‘an association exists between exposure and disease’). After each new
observation or group of observations the accumulated data are tested. Based on the
cumulative test result the study is stopped or more information is obtained. A sequential
analysis requires, on average, fewer observations to come to a decision (‘accept the null
hypothesis or reject it’) than the corresponding fixed sample size analysis. Sequential
methods are thus an efficient way to handle the available data.6-10

Cases and controls can be matched to control for possible confounding factors. These
factors are related to both exposure and disease and may distort the size of the exposure-
disease relation. Examples of possible confounding factors in epidemiological studies are
age, ethnicity and menopausal status. In a case-control study one or more controls can be
matched to a case based on the value of the confounding factor. When a disease is rather
common, many cases are observed during follow-up. If enough cases are available, one
case matched to one control gives the statistical test optimal power. However, when a
disease is rare, few cases become apparent, but, in general, a lot of controls are available.
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To achieve sufficient power in those situations, more than one control can be matched to
a case. A matched design requires in general less cases and controls than an unmatched
design. Matching, applied to control for confounding factors, enhances the efficiency of
the analysis.11

In the design phase of a randomised clinical trial it is a matter of Good Statistical
Practice to estimate the necessary number of patients before the data are obtained. This
number of patients is determined by the size of the effect measure that is relevant to
detect if it is present, the type I error � and the power 1-�.12-14 In most epidemiological,
observational studies the size of the study is determined by practical aspects like time,
costs, availability of subjects, etc. and less by the effect size to detect or the power to
detect this effect size. When an epidemiological study will be analysed sequentially, one
has to specify beforehand �, 1-� and the effect size one would like to detect. The number
of observations needed to come to a decision using a sequential analysis is not fixed,
however, but is a stochastic variable. This implies that an average or median study size
can be estimated beforehand, but that one also has to consider, for example, the 90th

percentile of the expected study size.
When the exposure variable is continuous, such as the selenium content of toenail

clippings, all values can be used. When, on the contrary, the exposure variable is
dichotomous, such as the occurrence of a genetic mutation, it is possible that a matched
case-control set does not contain any usable information. This happens when the case and
its matched control(s) are all exposed or all unexposed, the so-called concordant sets.
Only so-called discordant sets contain information for analysis. The total study size
necessary thus depends on the probability of a discordant set. When this probability is
small, a large number of matched case-control sets will have to be collected and analysed
to obtain enough information for a decision. Matching more controls to a case, if
possible, can increase the probability of a discordant set. This can be another way of
handling the available data efficiently.11 

The chapters of this thesis describe how sequential analysis on matched case-control
sets can handle valuable biological samples efficiently, so as to be able to test a large
number of interesting hypotheses. The developed sequential tests are illustrated by
examples using data from the DOM cohorts. When the exposure variable in a matched
case-control study is continuous and the difference between the value for the case and the
(mean) value for the control(s) can be assumed normally distributed, this difference can
be analysed using a one-sample t-test on paired observations. In chapter 1 two versions of
a sequential one-sample t-test are compared. Subsequently one of the sequential one-
sample t-tests from chapter 1 is compared to another version in chapter 2. In chapter 3 a
standardized difference between the mean exposures of cases and controls is related to a
minimum expected value for the odds ratio for the highest quintile versus the lowest
quintile of the exposure distribution. An exposure variable can, however, not always be
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measured on a continuous scale. Often one is or is not exposed to some environmental
factor, or one has or does not have a certain gene mutation. Chapter 4 describes the
development of a sequential test for a dichotomous exposure variable with a fixed or a
variable number of controls matched to each case. In chapter 5 the disadvantages of
calculation of the conditional power as a decision tool for early stopping of a study are
discussed. Use of a (group) sequential test is proposed as an alternative. Chapter 6
describes sequential designs to test for gene-environment interactions. In chapter 7 three
approaches to statistical testing theory and their effects on sequential testing are
compared.
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Abstract

Application of sequential analysis may avoid unnecessary experimentation and achieve
economical use of available biomaterial stored in biological banks. When, as often in
cohort case-control studies, cases are scarce, it may be possible to use multiple control
observations per case to increase the power of a test for detecting differences between
cases and controls.

Samples from a biological data bank were analysed. We compared results of a non-
sequential analysis with results of sequential t-tests for 1 to 5 controls matched per case
in a cohort nested case-control study. Simulations are performed to get an idea of the
unreliability and the power of the sequential test. 

In general the sequential t-tests are too conservative with respect to the achieved
power. Average sample numbers are lower for the sequential tests and decrease with
multiple controls. More than 3 or 4 controls per case does not give a meaningful increase
in efficiency.

Keywords: sequential t-test, multiple controls, simulations, efficiency, biobanking,
cohort nested studies

1.1 Introduction

Sequential analysis of quantitative data has never found wide application in clinical trial
practice, even though considering its use might be worthwhile. For ethical reasons alone
one may wish to minimize the expected number of exposed patients. From an
experimental point of view, one may wish to avoid unnecessary experimentation. In
cohort nested case-control studies exposures may be assessed in biological samples
stored in a biological bank. In this situation, economy with material from the biological
bank may be a reason to choose a sequential type of analysis. In a prospective study,
cases are often detected sequentially during follow-up. A sequential analysis could then
limit the total duration of the study. 

In a sequential case-control analysis, the response of a case is compared with the
response of a single control. O’Neill describes in a detailed way a sequential analysis of a
matched pair case-control study with a dichotomous response.1

In a cohort study, usually there is only a limited amount of biological material per
subject, and there are far more controls in the biobank for which such material can be
analyzed than cases. Therefore it may be desirable to compensate for the loss of statistical
power by comparing each case with more than one control.2
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Ury3 showed that, for non-sequential case-control studies with continuously distributed
data, the efficiency of multiple (k > 1) controls relative to matched pairs (k = 1) is equal
to 2k / (k+1) for equal case and control variability.

Gail et al4 show that in (non-sequential) situations with a limited number of cases,
more than four controls per case (or vice versa) gives no more meaningful power
increase.

We are unaware of literature about the efficiency of multiple controls per case in
sequential analyses. Therefore, we compared the effect of more controls per case in a
sequential design with the results of a non-sequential analysis.

1.2 Materials and patients

We performed retrospective analyses on data from a cohort nested case-referent (control)
study on breast cancer and the selenium content in ppm of toenails (Van Noord5). The
aim of the study was to determine whether selenium, as available in the body, is already
decreased before tumour occurrence.

Nail clippings had been collected since 1982 in a cohort of 8760 premenopausal (i.e.
without menopausal signs) women (42-52 years of age), who attended to a breast cancer
screening program. A total number of 64 premenopausal breast cancer cases were
detected in this cohort. Controls were matched to cases for age. For 57 cases 5 controls
per case were available; to 7 cases 3 or 4 controls could be matched per case. 

Selenium content in the nails did not depend on age, probably due to the relatively
small age-range in our data. No seasonal or other time trends were found in nail selenium
contents during three years of investigation (unpublished results).
The data were analysed in the order the cases became available over time.

1.3 Statistical analysis

1.3.1 Non-sequential analysis
For matched case-control observations the minimal sample size n1 (i.e. the number of
case-control pairs necessary) for detecting a true difference between case and control
observations of at least � with a (two-sided) type I probability (or unreliability) � and a
type II probability � (i.e. power 1-�) is6 

22
1

2
1 /*)( ��

��
ttn ��  

where 
2

1� is the variance of the difference between a case and a control
observation,

�
t  and 

�
t are values from the t-table with n1-1 df corresponding to probabilities of

�/2 and � respectively.
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The type I probability � is the risk one wants to accept that the null hypothesis of no
difference between case and control observations is falsely rejected; the type II
probability � is the risk of falsely not rejecting the null hypothesis when a true difference
of at least � exists between case and control observations.

In case of multiple (say k) control observations per case, assuming equal variances for
cases and controls and, for the sake of argument, a negligible correlation between case
and control observations, the variance of the difference between a case observation and
the mean of the k control observations becomes

� �� � � �� � 2
1

22 *2/1*/1 ��� kkkkk ���� ,

( 22
1 2�� � , where 2

�  is the variance of a single case or control observation).
The minimal number of case-control sets for detecting the same difference � then

becomes

� �kknttn kk 2/)1(*/*)( 1
222

���� ��
��

N.B. We assumed (near) independence of case and control observations. In case of a
positive correlation between case and control observations, the result will be a smaller

2
1�  and 2

k�  and a smaller sample size needed to detect the same difference �.

1.3.2 Sequential analysis
Wald7 developed the theory for the ‘sequential probability ratio test’ (SPRT). Rushton8

further developed this theory to the one-sample, two-sided sequential t-test. This test is
based on the probability ratio 

probability of observed results given H1 trueln= probability of observed results given H0 true

for n observations processed so far. For our situation with case-control sets, we pose as
null hypothesis H0 :

0/ �� k���

and as alternative hypothesis H1 :

0��

where � is the minimal mean difference to be detected and �k is the theoretical standard
deviation of the differences between the case and control observations. Because in most
practical situations �k will be unknown and needs to be estimated from the data, the
parameter � = � /�k is used in the test. The test operates as follows :
- continue sampling as long as B < ln < A
- stop sampling and decide for H0 as soon as ln < B
- stop sampling and decide for H1 as soon as ln > A
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To obtain approximately the a priori specified error probabilities � (two-sided type I
error) and � (type II error), Wald stated the theorem that A � (1-�) /� and B � � / (1-�).
The logarithm of the probability or likelihood ratio ln can be calculated exactly using the
series expansion of Kummer’s function.9

Rushton8 obtained a practical approximation to the logarithm of the likelihood ratio. 
See Appendix I for more details on Kummer’s function, Rushton’s approximation and
our adaptation of the test statistic for k control observations per case.
 
1.3.3 Simulations

To examine the effect of multiple controls per case in a sequential t-test on its overall
type I and type II error, simulation studies were performed. A simulation program was
written in Turbo Pascal Version 5.0 (Borland). Random case and control observations
were generated following a normal distribution with expectation �0 or �1 and theoretical
standard deviation � . The values chosen for �0, �1, � and � under H1 are based on
population values and a desirable shift in ppm of the selenium content (see Van Noord10).
Both for case and control observations � was chosen equal to 0.15. Under H0: � = 0, �0

was chosen equal to 0.8. Under H1: �� � , �1 was equal to 2**8.0 ��� .
Both under H0: � = 0 and under H1: �� �  (� = 0.3, 0.4 and 0.5 respectively), and

with 1 to 5 controls per case, we ran a 1000 simulation runs (� = 0.05, 1-� = 0.80). 
Per run the resulting decision (‘accept H0’ or ‘reject H0 in favour of H1’) and the

number of case-control sets necessary to come to that decision were recorded. 
Simulations were performed using both Rushton’s approximation to the logarithm of the
likelihood ratio and the series expansion of Kummer’s function.

1.4 Results

1.4.1 Non-sequential analysis
The results of a randomized blocks analysis of variance on the ‘selenium and breast
cancer’ data for n = 57 cases and 5 control observations per case are shown in Table 1. 
The mean difference between a case and the mean of the corresponding 5 control
observations was 0.018 ppm with a SE = 0.029 ppm (NS). 
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Table 1 ‘Selenium and breast cancer’ study;
descriptive statistics and ANOVA table for 57 cases with 5 controls per case

mean
(ppm)

SD
(ppm) n

Cases 0.790 0.156 57
Controls 0.772 0.207 285

ANOVA table

Source
Sum of
squares

Degrees of
freedom

Mean
squares F p

Between matched sets 2.20 56 0.04
Within matched sets 0.16 5 0.03 <1 NS

Case-controls* 0.02 1 0.02
Between controls 0.14 4 0.03

Residual 11.24 280 0.04

* Due to the difference between cases and the mean of the matched control observations.

Means, standard deviations and a randomized-blocks analysis of variance (ANOVA) table for n=57 cases
with 5 controls per case. Data are the selenium content in ppm in toenails from the ‘selenium and breast
cancer’ study.

Within matched sets the sum of squares, degrees of freedom and mean square are subdivided into two
components: one that measures the variation because of a difference between cases and the mean of the
matched control observations, and one that measures variation between controls. If we assume no
differences between control observations, this last component can be combined with the residual sum of
squares to give a (slightly) improved estimate of the residual mean square or error variance.

1.4.2 Sequential analysis
Sequential t-tests were performed on the ‘selenium and breast cancer’ data, using the
available cases and a random sample of k (k = 1,...,5) control observations available in the
matched set. (For each sequential test performed, control observations were replaced.)
Both Kummer’s function and Rushton’s approximation were applied. 
The number of cases (n) at which the decision ‘H0 cannot be rejected’ was reached, is
tabulated in Table 2 for several alternative hypotheses ( � = 0.3, 0.4, 0.5).

N.B. None of the tests led to rejection of H0; in case of H1: � = 0.3, for some tests no
conclusion could be reached with the available number of case-control sets.
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Table 2 ‘Selenium and breast cancer’ study;
results of sequential t-tests for k controls per case

H1

�  = 0.3 �  = 0.4 �  = 0.5
k R K R K R K
1 21 -- 12 23 9 13
1 25 -- 30 30 11 15
1 27 62 21 21 10 13
1 22 48 23 24 10 14
1 26 50 13 25 8 18
2 25 50 17 21 9 14
3 22 -- 18 21 12 16
4 22 -- 12 21 8 13
5 22 -- 13 21 9 13

Results of the sequential t-tests, given 57-64 cases and random samples of k controls per case, on the
‘selenium and breast cancer’ study (� = 0.05 and 1-� = 0.80);
R, Rushton’s approximation; K, Kummer’s function.

1.4.3 Simulations
The relative efficiency of more (k) controls per case is depicted graphically in Figures 1
and 2 for � = 0.4. (For � = 0.3 and � = 0.5 the course of the relative efficiency is similar).
There the relative sample size nk/n1 is plotted against k for the median, mean and 95th-
percentile number of cases required to reject H0 in favour of H1. The theoretical expected
efficiency (k+1) / 2k is plotted as a comparison.

Figure 1 Relative sample size (nk/n1) for mean (▲), median (●) and 95-th percentile (■) number of
cases necessary to reject H0 in favour of H1: �  = 0.4 compared to the theoretical expected
value (k+1)/2k (x), using Rushton’s approximation.

Rel. sample size (delta = 0.4)

(Rushton's approximation)

K

54321

nk
/n

1

1.00

.75

.50

.25

0.00
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Figure 2 Relative sample size (nk/n1) for mean (▲), median (●) and 95-th percentile (■) number of
cases necessary to reject H0 in favour of H1: �  = 0.4 compared to the theoretical expected
value (k+1)/2k (x), using Kummer’s function.

Appendix II shows data and calculations of one of the simulations as an example.

1.5 Discussion

Biological data banks contain valuable material that can be analysed to explore new
hypotheses with possible important public health consequences. But, with most chemical
analyses, these unique biological samples are destroyed and thus economical tests are
preferable.11

While, in case-control studies, cases are mostly scarce, but control samples abundant,
statistical efficiency of non-sequential tests can be increased by including multiple
controls per case. If the power using equal allocation (k = 1) is greater than 0.9, this is of
no practical importance. If the equal allocation power is less than 0.9, meaningful power
increases may be obtained, but more than 4 controls per case are seldom worthwile.4 

Retrospective analyses as well as prospective studies justify the use of sequential
investigation to avoid unnecessary destruction of the biological material and to limit the
total duration of the study. In prospective clinical trials ethical aspects may play a role.
For example when chemotherapy is one of the trial arms in a trial comparing two cancer
therapies, one wishes to expose as few patients as necessary in coming to a decision. 

From an economical point of view we performed sequential t-tests with multiple
control observations per case and compared the results with those of a non-sequential
analysis and of simulation studies.
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Table 3 Comparison of expected and observed sample size for one control matched per case (k = 1)

H1

�  = 0.3 �  = 0.4 �  = 0.5

Fixed
Paired t-test 88 50 32

Sequential
Expected:

Cox’ approximation 57/34 34/20 22/14
Observed:

Simulation results
Rushton
Mean 57/44 36/27 25/18
Median 50/33 31/20 21/13
Kummer
Mean 64/54 39/31 26/21
Median 57/43 35/25 23/17

Sequential sample sizes are expressed as ‘number of case-control pairs necessary to reject H0/number of
case-control pairs necessary to accept H0’.

Expected sample size for a non-sequential paired t-test and expected and observed sample sizes for
sequential t-tests with matched pairs (i.e. 1 control per case).

The expected average sample numbers (ASN) for a sequential t-test with one control
observation per case are already smaller than the minimal sample size required for a
corresponding non-sequential (=fixed sample size) paired t-test (Table 3). (See Appendix
III for the calculation of the ASN according to Cox’ approximation.12) Notable in Table 3
is the fact that both the mean number of case-control pairs required to reject H0 using
Rushton’s approximation and the median number using Kummer’s function almost equal
Cox’ approximated ASN. Only the median number of cases necessary to accept H0 using
Rushton’s approximation resembles the corresponding ASN according to Cox. Our
simulations indicate that Cox’ approximation probably underestimates the average
sample size, especially the expected ASN needed to accept H0.

Most sequential t-tests of our ‘selenium and breast cancer’ data (Table 2) resulted in
acceptance of H0 at a considerable smaller number of case-control sets than necessary for
a non-sequential analysis.

The simulations confirm these results even better. The largest gain in efficiency as
compared to matched pairs is reached with 2 controls per case, when H0 is rejected.
When H0 cannot be rejected, the gain in efficiency is smaller. The simulated power
values are closer to each other for different values of � using the exact Kummer function
than they are using Rushton’s approximation.
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Rushton’s approximation, on the other hand, is less conservative with respect to the
simulated power and thus more economical in its use of case-control sets. Only with the
matched-pairs simulations Rushton’s approximation yields a simulated power
significantly less than the theoretical power of 0.80. In general, the simulated
unreliability using Rushton’s approximation is larger than that using Kummer’s function
and more often even larger than the theoretical unreliability of 0.05.

Skovlund and Walløe13 already drew attention to the conservatism of the sequential
t-test when applied as a two-sample sequential test. Their smallest value for � studied was
0.5, however. Neither did they simulate with more than 1 control matched per case.

In theory it is possible that a sequential test continues infinitely. To warrant that a
decision is reached, albeit ‘no decision can be made’, it is recommended to set a
restriction (e.g. once or twice the fixed sample size) to the total number of cases available
for the test. 

Our simulations illustrate that there is hardly any effect on the simulated power and
unreliability when the sequential test procedure is truncated at twice the fixed sample
size. 

Truncating the procedure at the fixed sample size results in a simulated power that is
still too large, except for the matched-pairs situation using Rushton’s approximation
where it is too small. The unreliability resulting from the simulations using Rushton’s
approximation with more than one control per case is often (significantly) too large.

When a sequential test is terminated at a small number of observations, point and
interval estimates of the case-control difference are rather imprecise. We hold the view
that these objections play a less important role when, as in our experimental set-up, a
rather ‘qualitative’ answer (‘H0 can/cannot be rejected’) suffices to distinguish promising
new hypotheses from unfruitful ones (see for an example Van Noord10).

Group sequential procedures (for matched case-control sets)15-18 also have the
advantage of a reduction in the average sample size as compared to fixed-sample-size
plans. There are some differences between group sequential procedures and a one-at-a-
time SPRT, however. A one-at-a-time sequential approach can be stopped after every
new case-control set, while a group sequential procedure can only be stopped after the
next planned inspection. Furthermore, a group sequential procedure cannot come to the
decision to accept the null hypothesis until after the last planned inspection. A SPRT can
be stopped the very moment that evidence exists that the null hypothesis cannot be
rejected anymore.

Therefore, the authors prefer a one-at-a-time SPRT over the group sequential
procedure when ethical and/or economical motives play a role. Promising hypotheses as
well as unfruitful ones are to be distinguished with as little as possible biological material
destroyed or, for that matter, time and/or money spent.

Following Skovlund and Walløe14, we hold the view that a sequential design might be
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considered more often in prospective clinical trials as well as in (cohort-nested) case-
control studies.

Furthermore, we are of opinion that a sequential t-test with 2-4 controls per case is
appropriate in case-control studies and other experimental designs where the case
material must be used economically and the response is available (almost) immediately.
In general the investigation can then be stopped at a lower average sample size as
compared to one control per case or a non-sequential test.

The use of exact calculations (the series expansion of Kummer’s function) is
recommended, although less conservative procedures are to be developed.

Tables and figures summarizing the results from the computer simulations are
available from the authors by written request.

1.6 Conclusions

1) A sequential t-test with 2-4 controls matched per case in general leads to lower
average sample sizes than a matched-pairs sequential t-test or a non-sequential
analysis. The largest gain in efficiency as compared to matched pairs is reached
with 2 controls per case.

2) Rushton’s approximation to the logarithm of the likelihood ratio is rather inaccurate
and leads to a power that is significantly too small in case of a matched-pairs
analysis.

3) The use of Kummer’s function (the exact calculation) results in power values which
are too conservative.

4) Cox’ approximation to the expected average sample number probably
underestimates the expected sample size needed to accept H0.
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APPENDIX I

The logarithm of the likelihood ratio ln is a function of �, n and u² and equal to 

� � � � 2
2
122

2
1

2
1 ;;2lnln �� ������� nunMlL n (1)

For the nth case-control pair (n = 1,2,3,... successively and one control observation per
case) u² is equal to 

� � � �22222 1 tntnddu ii ����� �� , i = 1, …, n

where

 t² = n·mean(d)²/var(d),

di is the difference between the observation for the case and the control observation, and
mean(d) and var(d) stand for the mean and variance of these differences. For every n L is
compared to ln(� / (1-�)) and ln((1-�) /�. M(a;b;x) is the confluent hypergeometric
function, which can be calculated using Kummer’s function9, a series expansion:

� � � � � �� �!2111;; 2
����� bbxaabaxxbaM � �� � � �� �� � ...!32121 3

������ bbbxaaa

We involved 30 terms of this expansion. Rushton’s approximation8 to L is equal to

� � � �� �2ln2
2
1223

2
1

1 ���������� ��� nunnul . (2)

For k control observations per case the variance of the difference between the case
observation and the mean of the k control observations is estimated using the cumulating
case-control variance-covariance matrix. This estimate is then substituted as s² in the
equations mentioned below. (The variance-covariance matrix takes the correlations
among cases and controls into account. If we assume negligible correlations among
control observations, equal variance for the control observations and equal correlations
between the case and each of the controls, s² can be approximated by the variance of the
differences between the case and the mean of the control observations.) Then Rushton’s
approximation to L can be calculated by

� � � �� �2ln2
2
1223

2
1

1 ���������� ��� nunnul kk (3)

with 

� �222 1 kkk tntnu ����

and

� � 222 sdmeanntk ��

N.B. For matched case-control observations (k = 1) equation (3) is equal to equation (2).
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APPENDIX II

Data and calculations of one of the simulations with � = 0.05, 1-� = 0.80, � = 0.5,
�0 = �1 = 0.8, � = 0.15 and 2 controls per case (see Appendix I for the notation used):

n Case Control Control s² 2
2t

2
2u M L

1 0.911 0.912 0.891
2 0.919 1.044 0.518 0.008 1.312 1.135 1.312 0.022
3 0.628 0.867 1.029 0.056 0.180 0.248 1.095 -0.284
4 0.781 0.759 0.861 0.037 0.273 0.334 1.174 -0.340
5 0.947 0.740 0.600 0.049 0.022 0.028 1.018 -0.608
6 0.527 0.728 0.791 0.050 0.084 0.099 1.075 -0.677
7 0.814 1.053 0.771 0.042 0.223 0.250 1.230 -0.668
8 0.784 0.730 0.877 0.036 0.263 0.290 1.308 -0.731
9 0.908 0.860 0.826 0.033 0.151 0.167 1.195 -0.947

10 0.745 0.637 0.580 0.032 0.018 0.020 1.025 -1.226
11 0.846 0.659 0.672 0.032 0.032 0.035 1.048 -1.328
12 0.650 0.762 0.919 0.032 0.019 0.020 1.031 -1.470
13 0.898 0.896 0.778 0.030 0.001 0.002 1.002 -1.623

After 13 case-control sets are evaluated, M equals 1.002 and therefore L = -1.623
becomes smaller than the lower boundary, ln(� / (1-�)) = -1.558, and thus H0 cannot be
rejected.

When Rushton’s approximation to L is applied, the sequential analysis can be stopped
after the 10th case-control set, where l1 = -1.719.
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APPENDIX III

For matched case-control observations, the average sample number (ASN) for a
sequential t-test with unknown variance is approximately (1+� 2 / 2) times the ASN for a
test with known variance (Cox’ approximation, Wetherill and Glazebrook12).
Under H0 this ASN (unknown variance) is about

� �� � � � � � � �� �� �'1ln'1'1ln'2 2 ������� ��������

and under H1 this ASN is about

� � � � � �� � � � � � � �� �� �'1ln1'1ln21 2 ������� ��������

(with �' = � / 2).

We recognize that Cox’ approximation is an asymptotic result and that it is currently
unknown how accurate it is.
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Summary

In view of recent advances in molecular and biochemical epidemiology, there is growing
interest in the creation of biological banks of blood, urine, tissue, or other biological
specimens collected from participants in prospective cohort studies. The existence of
biological banks may make it possible to study a multitude of etiologic hypotheses, by
comparing biochemical parameters measured in the biological specimens of subjects who
will eventually develop the disease of interest (‘cases’) and of control subjects, using a
nested case-control or a case-cohort design. In practice, however, the amount of
biological material available per subject (in particular, that of cases) will limit the number
of hypotheses that can be tested. The present paper discusses the use of a sequential t-test
which, compared with an analogous fixed sample procedure, will on average require
fewer biological specimens before a given study hypothesis can he accepted or rejected.
The sequential test should thus facilitate an early decision on whether a new hypothesis is
worth further investigation, while avoiding wasting too much biological material on
testing hypotheses that may eventually prove unfruitful. If the test reveals an exposure
difference of interest, the study may be extended so that relevant epidemiologic effect
measures can be estimated more accurately.

Keywords: biological banks, nested case-control studies, sequential methods,
epidemiologic methods.

2.1 Introduction

Following recent developments in ‘biochemical’ and ‘molecular’ epidemiology, there is
growing interest in the creation of banks of biological samples of material, such as blood
or urine specimens, collected from participants in prospective cohort studies.1,2 After
detection of a sufficient number of cases of a given disease (during a given follow-up
period), parameters measured in their biological specimens can be compared with those
of controls to study specific etiologic hypotheses. Since new laboratory techniques are
constantly being developed for the assessment of specific biochemical or molecular
parameters, the number of new hypotheses that can be tested is also increasing rapidly. In
practice, however, the amount of biological material stored (in particular, that of cases)
will limit the number of possible studies.3 It would therefore be useful to have a statistical
method which, at the expense of as little biological material as possible, will distinguish
between promising hypotheses, which may be worth further investigation, and less
promising ones. Such a method may be particularly useful in exploratory investigations,
when there is only limited prior evidence to justify a study based on a large number of
biological specimens.
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Using sequential statistical designs,4,5 it is theoretically possible to terminate an
investigation on a specific hypothesis as soon as sufficient evidence has accumulated for
it to be accepted or rejected. On average, sequential analysis will arrive at a decision after
substantially fewer observations than equally reliable test procedures based on a fixed
sample size. The first sequential procedures were developed during the Second World
War,6 when Wald described the theoretical basis for a sequential probability ratio test
(SPRT), and it almost immediately became an important tool for efficient quality control
in wartime factories. Nowadays, sequential methods have also been adopted for use in
medical research, in particular for the design and analysis of clinical trials.7,8 So far,
however, sequential methods have not been used to a large degree in epidemiologic
studies, outside of clinical trials.

The present paper discusses the use of a sequential t-test for exploratory hypothesis
testing, in cohort-nested case-control studies where the exposure assessment is based on a
biochemical marker, obtained by laboratory analysis of stored biological specimens. (To
simplify, we shall refer to the biological marker as a measurement of an internal or
external ‘exposure’, although it is clear that markers can also be a measure of individual
susceptibility or of intermediate endpoints.)9,10 The application of the sequential t-test will
be illustrated using data from a study conducted to examine whether selenium is a
potentially protective agent against breast cancer.11

2.2 The sequential t-test

We shall assume that the biomarker measurements, M, can be considered as values drawn
from two normal distributions, for cases and for controls, respectively. We also assume
that both distributions have an equal variance, � 2, but that their means may be different;
that is:

 M | case � N(�1,� 2)

and

M | control � N(�0,� 2)

The null hypothesis to be tested is that the mean exposures of cases and controls are
equal; that is:

H0: �1 = �0

or

�1 - �0 = 0

If � is not known a priori, but must be estimated, the magnitude of the mean difference
�1 - �0 that can be detected with a given power is unknown. The null hypothesis,
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however, can be re-defined in terms of a standardized difference, � = (�1 - �0)/� between
the mean exposures of cases and of controls:

H0: 001
�

�

�

�

��
�

If the standard deviation � is high, then, for a given number of observations, only very
large differences will be detectable with sufficient statistical power. Inversely, the power
will be higher if � is small.

A t-test can be used to evaluate the null hypothesis against an alternative. In the case
of a well defined biological hypothesis, a one-sided alternative may be reasonable; that
is:

H1: � � �R

Here, �R is the minimum standardized difference, (�1 - �0)/�, that one would find relevant
enough to be detected, with a power of at least 1-� and a significance level �. (If the
exposure is expected to be higher for controls than for cases, the standardized difference
can also be defined as � = (�0 - �1)/�.) A two-sided alternative can be specified as:

H1: �  � �R

Most epidemiologists are familiar with the traditional, fixed sample t-test, based on the
comparison of the mean exposures of predetermined numbers of cases and controls. The
procedure described here, however, uses a sequential sampling of cases and controls
within the cohort. This sequential sampling may follow the detection of cases over time.
Alternatively, if a large number of cases has already accrued, the sequential sampling can
also be performed retrospectively. In the latter situation, the order in which cases are
selected does not need to follow the chronological order in which they were detected but
can also be based on a random selection process. For each case selected, a random subset
of k controls is drawn from the disease-free subjects in the cohort. If there are many
cases, and if the major concern is to limit the expenditure on laboratory analyses, 1:1
matching (k = 1) will give optimal statistical power at a given total cost. When disease
incidence rates are low (for example, for a given type of cancer), however, cohort studies
must be very large to observe a sufficient number of cases. Additional costs for
laboratory assessments, even though sometimes considerable, may then still be low in
comparison with the initial investments in the study, and priority may be given to the
possibility of studying as many hypotheses as possible with the biological material
available. In this case, a higher matching ratio will be more efficient (k > 1), as this
design will increase the power of the test while keeping constant the number of
specimens from cases. A matching ratio greater than 5 will seldom be worthwhile,
however.12 After every new set of one case plus corresponding controls is sampled, the
biochemical measurements are compared for all cases and controls processed up to that
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point to determine whether there is sufficient evidence either to reject or to accept the
null hypothesis H0.

The earliest theory for sequential test procedures (that of the sequential probability
ratio test) was initially developed by Wald.6 According to this theory, a sequential test
was based on the logarithm of the following likelihood ratio, Ln, which can be computed
after every new case-control set has been sampled:

the probability of observing the case
and control measurements if H1 is true (ie, if � � �R)Ln =
the probability of observing the case
and control measurements if H0 is true (ie, if � = 0)

where n is the number of case-control sets processed so far. A high value of the logarithm
of the likelihood ratio, ln, indicates that, given the measurements observed, the alternative
hypothesis H1 is more likely to be true than the null hypothesis H0, whereas a low value
of ln indicates that the null hypothesis is more likely to be true. The testing process will
continue until one of the following arises:

1. The log-likelihood ratio ln becomes smaller than a critical minimum value A. In
this case, the conclusion is that the standardized difference � is unlikely to be as large as
�R, and the null hypothesis H0 will not be rejected.

2. The log-likelihood ratio ln becomes larger than a critical maximum value B. In this
case, it will be concluded that there is a standardized difference between the average
exposures of cases and controls as large as or larger than �R, and the null hypothesis H0 is
rejected in favour of the alternative hypothesis.

Whitehead8 developed a more general approach to sequential test procedures, which
includes procedures that are equivalent to Wald’s sequential probability ratio tests, and
which is based on a log-likelihood function (with unknown parameter �) rather than on a
log-likelihood ratio. The log-likelihood function can be expressed in terms of the
parameter � (for our comparison of two mean exposures still defined as � = (�1 - �0)/� as
well as of two test statistics, Z and V, which are both computed at each stage of the
sequential test procedure. Formulas for the computation of Z and V are given in Appendix
I. Z is the so-called ‘efficient score for � ’ and, for the comparison between quantitative
exposures of cases and controls discussed here, is computed as the cumulative difference
in exposure divided by an estimate of the unknown standard deviation �. V is a measure
of the amount of information about � contained in Z, also referred to as ‘Fisher’s
information’, and increases as the sequential test procedure progresses. Whitehead has
shown that, when � is small and samples are large, then, at any stage in the sampling
process, Z follows approximately a normal distribution with mean �V and variance V.8p60
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In practice, the sequential testing process can be conveniently presented in the form of
a graph, plotting Z against V. The testing process then continues until:
1. Z becomes smaller than the critical value A* = -a + bV, in which case H0 cannot be

rejected, or
2. Z becomes larger than the critical value B* = a + bV, in which case H0 will be

rejected.
The critical values A* and B* are both linear functions of V. The slope (b) and

intercepts (± a) of these linear functions depend on the values chosen for �, �, and �R

(see Appendix I). An example of the graphic presentation of the sequential t-test is shown
in Figure 1 (further discussed in the next section). The computations for this example,
including those for determination of the critical values A* and B*, were performed using
the computer program PEST, developed by Whitehead and Brunier.13

2.3 An example

Within a cohort of participants in the DOM project, a population-based breast cancer
screening program in Utrecht, The Netherlands, toenail clippings were collected and
stored in a biological bank. After an average follow-up of 25.7 months, a total of 61 cases
of premenopausal breast cancer were detected.11 Results were reanalyzed using a
sequential t-test. The null hypothesis of an equal selenium content in toenails of cases and
of controls (H0: (�0 - �1) /� = 0) was tested against the one-sided alternative of a higher
selenium content in the control group (H1: (�0 - �1) /� � �R). The �R-value was chosen
equal to 0.25. The significance level and the statistical power were fixed at � = 0.05 

Figure 1 Sample path and critical boundaries for the Selenium and Breast Cancer data (one-sided
sequential t-test without matching; � = 0.05, 1-� = 0.8, and �R = 0.25). A* and B* are the
critical boundaries of the test; Z is the so-called ‘efficient score’ for �, computed as the
cumulative standardized difference between the exposures of cases and controls; V is a
measure of the amount of information about θ contained in Z, also referred to as ‘Fisher's
information’ statistic.
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(one-sided) and 1-� = 0.80, respectively. Case-control subsets consisted of one case and
five controls each and were analyzed in the chronological order in which the cases had
been diagnosed.

The results of the sequential testing procedure are shown in Figure 1. After a total
number of 31 case-control sets (that is, 31 cases and 155 controls), the sample path of the
efficient score Z plotted against V crossed the critical boundary corresponding to no
rejection of the null hypothesis.

2.4 Gain in efficiency: the expected sample size

The advantage of sequential procedures is that the expected number of observations
(average sample size) needed to reject a given study hypothesis, or not, is smaller than
when the test is based on a fixed sampling procedure (that is, with predetermined sample
size). Indeed, it has been shown that, when either the null hypothesis H0 or the alternative
hypothesis H1 is true, the sequential probability ratio test is a more efficient test.4

Table 1 shows, for different values of �R, the expected sample size for the sequential t-
test used in the previous example, as compared with that for a test with a fixed sample
size (these expected sample size values can be computed by the PEST program). It can be
seen from Table 1 that, for a sequential t-test with the given specifications (one-sided
� = 0.05, and 1-� = 0.80), the expected sample size under H0 is approximately 0.46 times
the fixed sample size at all values of �R. The expected sample size under H1 is
approximately 0.66 times the fixed sample size. For the open sequential test procedure
described here, the expected sample size of the sequential t-test reaches its maximum in
situations where the true �-value is approximately equal to 0.75�R, but even then, it
remains below the sample size for a classical, fixed sample test of equal reliability.

Table 1 Expected number of case-control sets N in a sequential test for a standardized exposure
difference θ, when in reality θ = 0, θ = θR, or θ = 0.75θR: 
Test without matching; � = 0.05, 1-� = 0.80

Sequential testNumber of controls
per case

θR θ = 0 θ = θR θ = 0.75θR

Fixed sample
test

1 (k = 1) 0.15 255 361 414 550
0.25 92 130 149 198
0.35 47 67 76 101

5 (k = 5) 0.15 153 216 249 330
0.25 55 78 90 119
0.35 28 40 46 61
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2.5 Choice of the alternative hypothesis

In sequential test procedures, an explicit definition of the alternative hypothesis H1 is
required, specifying the minimum standardized exposure difference θR high enough to be
detected with a given statistical power. Specification of the alternative hypothesis, in
addition to the null hypothesis H0, results in a rule that defines at which stage there is
sufficient evidence for not rejecting H0 or for rejecting H0 in favour of H1. If there were
no such rule for stopping a sequential test procedure without rejection of H0, the sampling
of cases and controls could continue infinitely in those situations where no difference in
exposure between cases and controls exists, without ever reaching a conclusion.

The probability that, at a given stage in the sequential testing process, sufficient
evidence will have accumulated on whether or not to reject the null hypothesis, H0,
depends on the specific alternative hypothesis against which H0 is tested. For example,
imagine a situation in which, at a given number of observations, there appears to be little
difference between the mean exposures of cases and of controls. In such situations, the
log-likelihood ratio ln would tend to be small if the alternative hypothesis were defined
by a relatively extreme θR -value, and H1 would appear less likely to be true than H0 given
the case and control observations. At a small value of θR specified, however, the same set
of case and control observations would have led to a higher log-likelihood ratio. The
probability of concluding the test procedure with no rejection of the null hypothesis
would therefore be higher in the first case (high value of θR) than in the second (small
value of θR). Of course, this phenomenon is not specific for sequential tests in particular
but occurs also in statistical procedures based on a fixed sample size. The example does
underscore, however, that the choice of the alternative hypothesis (that is, the value for
θR) should be well motivated, in terms of potential public health impact or strength of the
biological relation to disease.

For the sequential t-test discussed here, θR is specified as a standardized difference
between the mean exposures of cases and of controls. For epidemiologists, who are more
familiar with the definition of study hypotheses in terms of measuring disease risk, this
specification of the alternative hypothesis may be difficult to interpret. If the disease
incidence is low over the entire range of exposures (that is, the ‘rare disease’
assumption), however, and the alternative hypothesis is true, it is possible to compute a
minimum expected odds ratio value, ORR, for different quantile levels of the distribution
of exposure measurements within the cohort (from which cases and controls were
drawn). For instance, the expected odds ratio for the highest vs the lowest quintile of the
exposure distribution equals:

R� 2.80
15R e)Q-(QOR �

(See Appendix IIA.)
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Thus, for an alternative hypothesis defined as θR � 0.25, the minimum expected odds
ratio of disease for the highest vs the lowest quintile of exposure measurements
approximately equals 2.0. An extended list of expected odds ratio estimates, for different
values of θR, is given in Table 2.

Table 2 Expected Odds Ratios, ORR(Q5 – Q1), for the highest vs the lowest quintile of the exposure
distribution in the cohort, under the alternative hypothesis θ = θR: study without matching

θR ORR(Q5-Q1)

0.15 1.5

0.20 1.8

0.25 2.0

0.30 2.3

0.35 2.7

0.40 3.1

2.6 Analysis of matched studies: the pairwise sequential t-test

The sequential test procedure described thus far did not take account of any potential
confounding factors. In many situations, however, it may be necessary to adjust for
potential confounding factors such as age, length of follow-up, or additional risk factors
such as body weight and menopausal status. Using the sequential procedure described
here, adjustments for confounding can be made by matching cases and controls for such
additional risk factors. In case-control studies nested within a cohort, this may not be too
complicated, since there will be a pool of disease-free subjects in which to find matched
controls (unless there are many matching criteria). Whenever a matched study design is
used, however, the matching should be reflected in the analysis to obtain unbiased
results.
A matched sequential t-test can be based on the pairwise differences between the
exposure measurement of a case, and the mean exposure measurement of k controls
belonging to the same matched subset.

We shall assume that these differences, Di (where i = 1,….,n is the number of case-
control sets evaluated), will be normally distributed:

Di � � �2, kN ��

where � is the mean, and 2
k� is the variance of the differences Di. As in the unmatched

situation, the hypotheses H0 and H1 can then be defined in terms of a standardized
difference θ:
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H0: 0��

k�

�
�

and, for the one-sided alternative of a higher exposure for cases than for controls,

H1: R
k

�
�

�
� ��

(Note: If the exposure is expected to be higher for controls, the alternative hypothesis
may be defined as H1: θ = � � �k � -θR. A two-sided alternative may be specified as
H1: �  � �R.)
The computation of the statistics Z and V is slightly different from that for the unmatched
situation (see Appendix IB). Nevertheless, the critical boundaries of the test, A* and B*,
remain the same (since these depend only on the values chosen for �, �, and θR). Also,
with respect to a fixed sample test, efficiency gains will be made similar to those in the
unmatched situation, in terms of a decrease in the expected sample size.

Again, with some additional assumptions, it is possible to compute expected odds ratio
values under the alternative hypothesis, θ = θR, for quantile levels of the within-stratum
exposure distribution (strata being defined by the matching variables). As before, it will
be assumed that for cases and controls the exposure measurements have an equal
variance, � 2, and that the overall incidence of disease is low. In addition, it will be
assumed that, after matching, exposure measurements are equally correlated between
controls or between cases and controls. The variance of the exposure differences Di,
between a case and k matched controls, can then be written as:

� � 222 '11
����

k
k

k
k

k
�

��
�

� ,

where �  is the covariance between the exposure measurements of cases and controls (due
to the matching), and 2'� is the average variance of exposure among controls (and thus,
approximately, in the full cohort) within strata defined by the matching variables. The
expected odds ratio for the within-stratum difference between the upper and the lower
quintiles of the exposure distribution will be approximately equal to:

� � � �� � Rkke �/180.2
15R QQOR �

�� ,

where k is the control-to-case matching ratio, and with kR ��� �  (see Appendix IIB). In
Table 3, some expected odds ratio values are given for different values of R�  and k.
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Table 3 Expected Odds Ratios, ORR(Q5–Q1), for the highest vs the lowest quintile of the exposure
distribution of the cohort within strata of the matching variables, under the alternative
hypothesis that � = R�  (1:k matching)

ORR(Q5–Q1)

R� k = 1 k = 2 k = 3 k = 4 k = 5

0.15 1.8 1.7 1.6 1.6 1.6

0.20 2.2 2.0 1.9 1.9 1.8

0.25 2.7 2.4 2.2 2.2 2.2

0.30 3.3 2.8 2.6 2.6 2.5

0.35 4.0 3.3 3.1 3.0 2.9

0.40 4.9 3.9 3.6 3.5 3.4

2.7 Discussion

We have shown how a sequential t-test can be applied in case-control studies where the
exposure measurement is a continuous variable. The use of the sequential probability
ratio method in epidemiologic studies has been suggested previously by O'Neill and
Anello,14 who described a sequential test for analyzing (matched pair) case-control
studies, with a dichotomous exposure variable. Thus far, however, this has not been put
into practice widely. An explanation may be that the advantage of a smaller expected
sample size does not outweigh certain drawbacks in the use of a sequential probability
ratio procedure, particularly in studies where (dichotomous) exposure assessments are
based on information derived from questionnaires. One such drawback may be the fact
that epidemiologists are not familiar enough with sequential statistical methods, and, until
recently, no simple computer software for sequential analysis was widely available.
Another drawback may be that the sequential probability ratio procedure does not allow
flexible, multivariate data modelling for the control of varying sets of confounding
factors. In spite of these various drawbacks, a strong argument in favour of the use of
sequential methods is the desire to make optimal use of material from biological banks,
reducing the number of biological samples needed to test a given hypothesis.

In a sequential design, the number of case-control sets that will be sampled before a
conclusion is reached is a random variable. On average, the sample size needed will be
smaller than that of an equivalent fixed sample test, but occasionally, larger numbers of
observations may be needed. This feature may introduce some uncertainty into the
process of setting a budget for grant requests. Nevertheless, budgets can be reasonably
planned on the basis of the 90th percentiles of the sample size distribution. The PEST
program contains a subroutine for the computation of these percentiles, at the planning
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stage of a study. Further details about these computations are given in Whitehead's book
on sequential clinical trials.8

The sequential t-tests described in this paper can be useful, especially in exploratory
studies, to decide, at the expense of as little biological material as possible, whether a
new hypothesis seems worth further investigation, or whether it is more likely that it will
eventually prove unfruitful. It is generally agreed, however, that the use of hypothesis
testing is an unsatisfactory way of assessing and presenting epidemiologic findings, and
that results should rather be presented as estimates of relevant measures of exposure-
disease association and their confidence intervals.15,16 Therefore, after terminating the
sequential test, and irrespective of whether the null hypothesis is rejected or not, final
results should always include such point and interval estimates, describing the association
between the marker values and disease risk (for instance, in terms of relative risks for
different quantiles of the marker assessments). Since, on average, a sequential test will
terminate at a smaller sample size than an equivalent fixed sample procedure, estimates
of epidemiologic effect measures may be relatively imprecise. Once a given hypothesis
has proved of interest, however, (that is, if the null hypothesis of ‘no difference’ in
exposure is rejected), the investigator may decide to extend the number of laboratory
assessments, so as to increase the precision of the study. The number of additional
assessments needed to reach sufficient precision can then be determined from the
standard error of effect estimates at the end of the sequential test, as in a double sampling
design.17

The combination of sequential testing and subsequent estimation of epidemiologic
effect measures -with or without further extension of the study- can be seen as a two-step
procedure, which will tend to result in effect estimates with the desired degree of
precision if there is a dear difference in exposure, or in less precise estimates if no
exposure difference of interest exists. In the latter case, on average more biological
samples will be saved for the investigation of other hypotheses.

O'Neill and Anello14 have described how, for a dichotomous exposure variable and for
matched case-control pairs, the critical values of a sequential test can be interpreted in
terms of odds ratio values. We have shown that, under the rare disease assumption, and
for a matched or an unmatched case-control design, similar interpretations can be given
to the critical �R-value of a sequential t-test for comparison of cases and controls by a
continuous exposure variable. Due care must be taken to avoid misinterpretation,
however. The sequential procedures described in this paper essentially provide a test for a
difference between the mean exposures of cases and of controls and do not give the same
results as a test of statistical significance for odds ratios at different quantile levels of
exposure. It is possible to compute expected odds ratio values for different quantile
categories of exposure, such as quartiles or quintiles, under the assumption that the
alternative hypothesis, � = �R is true (that is, that a certain standardized difference in
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mean exposure actually exists). The relation between a �R -value chosen and expected
odds ratio values for different quantile levels of exposure is of interest only insofar as it
may help define a reasonable �R -value for the alternative hypothesis. Within this context,
the choice of quintile levels of exposure was, of course, quite arbitrary; computation of
expected odds ratio values for tertiles or quartiles could be equally informative.

The exact value that should be chosen as a reference odds ratio value ORR (as defined,
for instance, for quintiles) may depend on the specific hypothesis to be tested, as well as
on the potential relevance of the exposure in terms of attributable risk (that is, also taking
into account the prevalence of exposure within a population). O'Neill and Anello14

recommend specifying that the alternative hypothesis should correspond to an odds ratio
not greater than about 2.0 for exposed vs nonexposed subjects (the exposure in their
paper being defined as a dichotomous variable). We agree that the value of �R should
always correspond to relatively small expected odds ratio values, so that a failure to reject
the null hypothesis can be interpreted as the absence of any relevant association between
exposure and disease risk. Of course, it should also be kept in mind that, due to intra-
individual variation over time, many biochemical markers will provide only an
approximate estimate of the true risk factor of interest, and that the observed association
with disease risk (also in terms of a standardized difference between mean exposures)
may therefore be attenuated.

In this paper, it was assumed that the sequential testing process proceeds in steps
corresponding to case-control sets consisting of only one case and its k controls. It will
often be more practical, however, to run laboratory analyses in batches of more than only
one case-control set at a time. It is possible to perform the sequential probability ratio test
on case-control sets each comprising multiple cases. The only disadvantage of such larger
inspection intervals is that there can be some ‘overrunning’ of the critical boundary, by
the sample path of Z plotted against V. The number of observations may thus exceed the
number that was actually required to reach a conclusion, and part of the advantage of
sequential methods, in terms of a reduction in expected sample size, will be lost. This
loss of efficiency resulting from overrunning can be limited by including only a relatively
small number of cases in each group of observations. We have discussed only so-called
‘open’ or ‘nontruncated’ procedures, in which no upper limit has been set to the number
of observations needed before a conclusion is reached. Therefore, although sequential
procedures will on average require fewer case-control comparisons than equivalent tests
based on a fixed sample size, there may be occasions on which the sequential procedure
terminates after a much larger number of observations than would have been required for
a classical, fixed sample test. In ‘closed’ or ‘truncated’ sequential procedures, an upper
limit is fixed for the actual number of observations that may be needed to reach a
conclusion. For instance, it may be decided that the null hypothesis will not be rejected if
the number of case-control comparisons becomes larger than twice the normal sample
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size for a fixed sample test without reaching the critical boundaries, A* or B*. Such an
additional stopping rule will then affect � and � to some extent. If the maximum number
of observations chosen is sufficiently large, however, the effects on these error
probabilities will be relatively small. Whitehead and Brunier's PEST computer program13

provides an option for the analysis of sequential studies with a truncated design. More
extensive discussions of truncated sequential procedures are given in Whitehead's
textbook on sequential clinical trials,8 as well as by Wetherill and Glazebrook5 and by
Armitage.7

Aliquots of biological specimens such as blood serum cannot be thawed and refrozen
too frequently without potentially causing changes in the biochemical parameters of
interest. The volume of aliquots, however, may often be sufficiently large to allow more
than one type of biochemical analysis within the same laboratory. It would thus be
possible to study several etiologic hypotheses in parallel, based on different biochemical
markers measured in the same aliquot. The simple sequential tests described in this paper
are based on the concept of studying only one type of exposure measurement in relation
to a single type of disease. Further development of sequential statistical methods is
needed, so that such multiple, parallel hypotheses can be evaluated simultaneously with
minimal loss of biological material.
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APPENDIX I

Computation of the statistics Z and V, and formulas for critical boundaries A* and B*

A. Analysis without Matching
After the nth case-control subset, the following sample statistics will be available:

Cases Controls All
Number of observations n nk n(k + 1)
Sum of observed exposures S1 S0 S
Sum of squares Q1 Q0 Q

The statistics Z and V are computed from the cumulative sums, S1 and S0, and cumulative
sums of squares, Q1 and Q0, of the exposure measurements of cases and controls,
respectively. (See Whitehead.8,pp57-62) The efficient score statistic Z is computed as:
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It is to be noted that C2 is a maximum likelihood estimate of � 2, under the null hypothesis
� = 0. Thus, Z is equivalent to the cumulative difference between the exposure
measurements of cases and of controls, divided by a maximum likelihood estimate of the
standard deviation �.
Fisher’s information statistic V is computed as:
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For � = 0.05, � = 0.2 and �R = 0.25, this leads to a = 8.661 and b = 0.17.

B. Matched
The following sample statistics can be computed after each new case-control subset:

Number of case-control sets n

Sum of exposure differences Di S

Sum of squared differences 2
iD Q

The efficient score statistic Z is computed as:

C
SZ �

where

n
QC �

2

Again, C2 corresponds with a maximum likelihood estimate of the variance of the
exposure differences Di, under the null hypothesis (θ = 0). Fisher's information statistic is
computed as:

n
ZnV
2

2

��

(See Whitehead8,pp67-68)



Application of a sequential t-test

41

APPENDIX II

Relation between �R and the expected odds ratio for the upper vs the lower quintile
of exposure

A. Analysis without matching
Suppose that, both among cases and among controls, exposure measurements M have
normal distributions with different means but with an equal variance:

 M | case � N � �2
1 ,�� ,

and

 M | control � N � �2
0 ,��

If the probability density functions of both exposure distributions are given by 	1(M) =
Pr(M | case) and 	0(M) = Pr(M | control), respectively, then, for a given difference in
exposure, 
 = m1 – m0, the odds ratio of disease can be written as:
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Here, the standard deviation � is unknown.
If the disease incidence in the cohort is low, however, the distribution of exposure

measurements of the controls will be approximately identical to the exposure distribution
in the entire cohort. Then, for subjects belonging to different quantile categories of this
distribution, the expected difference in exposure 
 can be expressed as a number of
unknown standard deviations �. The expected exposure measurement above a given
cutpoint value L can be computed as the mean of a truncated normal distribution:
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where �(u) is the probability density function, and �(u) is the cumulative distribution
function of the standard normal distribution at the point u. If L is chosen to be the
cutpoint for the highest quintile of exposure, we find from the normal distribution table
that (L-�0) /� = 0.84. The average exposure in the highest quintile is thus expected to be
equal to:
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Likewise, the average exposure in the lowest quintile is expected to he equal to
E(M�M < -L) = �0 - 1.40�. Thus, the difference between the average exposures in the
highest and lowest quintiles will be equal to 
 = 2.80�.

The expected odds ratio for the highest vs the lowest quintile of exposure can now be
written as a function of � :

 � �15R QQOR �  = ���� 80.2/ ee �

Inversely, this function can be used to compute the value for �R that corresponds with a
minimal expected odds ratio, ORR(Q5 – Q1) for the upper vs the lower quintile of
exposure. For instance, an expected odds ratio of 2.00 corresponds with a standardized
difference between the mean exposures of cases and controls equal to

R�  = ln(2.00) / 2.80 � 0.25.

B. Matched analysis
Suppose that, in a matched pairs study, Di is the difference between the exposure
measurement for the ith case and its matched control, and let the distribution of such
differences be given by Di � N � �2

1,�� . Then, as was previously derived by Rosner and
Hennekens,18 the odds ratio for a difference Di = 
 can be computed as:
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Assume, moreover, that, for unmatched cases and controls, the exposure distributions
have an equal variance and that, after matching, the exposure measurements are equally
correlated between controls (if more than one control is matched per case) or between
cases and controls. The variance of the exposure differences, Di, between a case and a
single matched control will then be equal to:
 � � 222

1 '22 ���� ���

where � is the covariance between the exposures of cases and of controls (due to the
matching). In this case, � '2 = � 2 - � can be interpreted as the average variance of
exposure measurements among controls (and thus, approximately, in the full cohort)
within strata defined by the matching variables. The expected difference between the top
and bottom quintiles of the within-stratum exposure distribution can then be written as:

 
2

80.2'80.2 1�
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The odds ratio corresponding with this difference in exposure equals:

 � �15R QQOR �  = 111 280.2/2 ���� ee �

with

 
1
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If k > 1 controls are matched per case, the variance of the exposure differences Di

becomes smaller:

 22 '1
��

k
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� ,

and we can write:

 � �� � � �� � kk kkkk ������ 2/1/2/1/ 11 �����

Thus, with k controls per case,

 � �15R QQOR �  = � �� � kkkee �� /180.2280.2 1 �
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Summary

In epidemiological prospective cohort studies exposure levels of cases with disease and
disease-free control subjects can be measured by laboratory analysis of previously stored
biological specimens. In such studies, a sequential t-test can be used for preliminary
evaluations, at the expense of the smallest possible number of specimens, of whether a
new aetiological hypothesis is worth further investigation or whether specimens should
rather be spared to test other, more fruitful, hypotheses. For this purpose, we recently
compared two sequential probability ratio tests (SPRTs), in which the log-likelihood ratio
was either based on an approximation, or computed exactly, and which were adapted to
account for various control-to-case matching ratios. The tests turned out to be relatively
conservative, particularly in terms of the significance level achieved. In the present paper,
we compare an SPRT for matched or paired data based on Rushton's approximation to
the log-likelihood ratio with a profile log-likelihood method developed by Whitehead.
The comparison is partly mathematical, and partly based on computerized simulations.
Average sample size for a sequential test is already smaller than for the equivalent fixed
sample test. Increasing the number of controls matched per case further reduces the
average sample size necessary to come to a decision. We show that, irrespective of the
number of controls per case, pre-specified levels of statistical power and significance are
respected closely by Whitehead’s method, but not by Rushton’s SPRT. This last
procedure can lead to a significant loss in power. Since, in addition, Whitehead’s method
has been implemented in a commercially available computer program (‘PEST’), we
conclude that this method can be preferred above the methods we described earlier.
Moreover, compared with the method of Rushton, Whitehead’s method has the advantage
that it can also be applied to groupwise inspection of the data and that it can also be
converted easily into a truncated procedure

3.1 Introduction

During the Second World War, Wald1 developed his theory for sequential statistical test
procedures as a tool for efficient quality control in wartime factories. Nowadays,
sequential statistical methods have also found important applications in medical research,
in particular, in randomized clinical trials evaluating the effect of alternative medical
treatments, where, for ethical reasons, it is desirable to reach a conclusion with the
smallest possible number of patients enrolled. When the effect of the treatment is
measured as a continuous variable with an approximately normal distribution, a simple
sequential t-test on paired or unpaired observations can be used to evaluate whether the
mean effect differs between the treatments. In the first clinical application of sequential
analysis a one-sample sequential t-test was performed on paired observations in the same
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subject2. Facey3 applied a sequential t-test to design a phase II efficacy trial with a
normally distributed outcome variable. 

Recently we have described how a sequential t-test can also be applied usefully in
prospective epidemiological studies, where exposure levels of cases with disease and of
matched controls are measured by laboratory analyses of blood or tissue specimens
stored previously in a biological bank4-6 (this type of measurement is often (log-)normally
distributed). The continuous development of new laboratory techniques for measurement
of biochemical or molecular parameters has allowed evaluation of a steadily increasing
number of aetiological hypotheses. Nevertheless, the number of hypotheses that can be
evaluated in practice will often be limited because only small amounts of biological
material are available and because laboratory tests often lead to its destruction. It is thus
useful to have a statistical method which, using the smallest possible number of
biological specimens, can distinguish between promising and less promising aetiological
hypotheses. Using a sequential t-test to evaluate whether or not there is a relevant mean
exposure difference between cases and controls, up to 50 percent of the biological
material of cases can be spared for the investigation of potentially more fruitful
hypotheses if in reality the null hypothesis of ‘no difference’ is true5. On the other hand,
if the null hypothesis is rejected, additional specimens may be analysed to allow more
precise estimation of relative risks or other epidemiological measures of association6.

Within this context, we5 evaluated the operating characteristics of two types of
sequential probability ratio test (SPRT) in which the log-likelihood ratio was either based
on an approximation developed by Rushton or calculated exactly using the so-called
Kummer function. In prospective cohort studies on relatively rare forms of disease there
are many more potential control subjects than cases, and thus the biological specimens
will be particularly precious for cases. Therefore, to reduce further the number of
specimens to be analysed for cases, multiple controls were matched to each case, and the
sequential t-tests were modified to account for control-to-case matching ratios greater
than one. The two types of t-test employed were found to be relatively conservative,
particularly in terms of the significance level achieved. On the contrary, Rushton's
approximation led to a power which was significantly too small for matched pairs. For
one-to-one matching Skovlund and Walløe7 also concluded that exact calculation of the
log-likelihood ratio resulted in an over-conservative test.

In the meantime, Whitehead8 published his theory for the planning and evaluation of
sequential trials based on a profile log-likelihood approach, implemented in practice
using the computer program ‘PEST’9. In the present paper we derive the test statistics for
studies with more than one control matched per case and compare a one-sample two-
sided sequential t-test following Whitehead's approach with an SPRT using Rushton's
approximation. The comparison is made mathematically and by simulations. 
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3.2 Two types of sequential t-test

Let Xi be the observation for the ith case, Yij the observation for the jth control
(j = 1,2,...k) matched to the ith case, Yi. the mean over the k controls matched to the ith
case (within strata of potential confounding factors), and Di = Xi�Yi., for i = 1,2,... (each
case is matched to a fixed number, k, of controls). Further, let Xi ~ N � �2;��x  and
Yij ~ N � �2;�� y , then Di ~ N � �2; k��  where yx ��� �� , � � � � kkk /1122

���� ���  and
ρ is the correlation between observations in a case-control set. The parameter �k, as a
measure for the standardized difference, is defined as k�� / , where k�  is equal to

� �� �kk 2/11 �� . The null hypothesis to be tested is formulated as H0: �k = 0 and the
two-sided alternative hypothesis as H1: Rk �� � .Tests are performed with a two-sided
type I error 2� and a type II error �.

We have shown elsewhere6 how for various control-to-case matching ratios the value
of R�  can be related to an expected odds ratio, for example, between the top and bottom
quintiles of measured exposure levels. The alternative hypothesis can thus be specified as
a mean, standardized difference in exposure level R�  corresponding to a minimum odds
ratio considered of aetiological or public health relevance, and important enough to be
detected with given significance level and power.

3.3 The SPRT using Rushton's approximation

The test statistic for Wald's sequential probability ratio test1 is based on the likelihood
ratio

likelihood of observed results given H1 is trueLn= likelihood of observed results given H0 is true

for n data sets processed up to a given point.
For a one-sample two-sided sequential t-test the likelihood ratio can be written as

2
2
1

Rn
n eL ��

� �
�

�
�
�

� 22

2
1;

2
1;

2
UnM R� (1)

where

�
�

�
�
�

�

�
�

�
�
�

�

�

�

�

�

�

n

i
i

n

i
i

D

D
U

1

2

2

12



Chapter 3

50

and M(a;b;x) is the confluent hypergeometric function10. For pairwise matching (k = 1)
Rushton11 developed an approximation to the log-likelihood ratio, while for k controls per
case, we extended Rushton's test statistic to 
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The null hypothesis is tested against the composite alternative hypothesis H1: Rk �� � ,
making use of two critical boundaries: 

� �� ��� 21/ln ��Rl  and � �� ��� 2/1ln ��Ru

The sampling process continues as long as ln (eq.(2)) remains between these boundaries.
When ln becomes larger than uR, the process is stopped and H0 rejected. Likewise, the
process is stopped, but with the acceptance of H0, when ln becomes smaller than lR.

3.4 The sequential test following Whitehead's approach

Rather than based on a log-likelihood ratio, Whitehead's procedure is based on a profile
log-likelihood function, considering 1� as a nuisance parameter. The test statistics are Z
(the ‘efficient score for k� ’) and V (‘Fisher's information about k� contained in Z’). For k
controls matched per case we extended the test statistics for a one-sample two-sided
sequential t-test (see Appendix I), to
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For comparison we considered an open double sequential test, which is a combination of
two one-sided tests leading to stopping boundaries of the form 

� �1WubVaZ �� � �2WubVaZ ���

� �2WlbVaZ �� � �1WlbVaZ ���

The slopes ±b and intercepts ±a of the boundaries are functions of the error probabilities
�2  and �, as well as of the choice of a minimum standardized exposure difference, R� ,

that defines the alternative hypothesis H1: Rk �� �
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Throughout this paper, we shall assume that the boundaries of the test are placed
symmetrically about the horizontal axis.

The sequential test following Whitehead’s approach is conveniently presented in the
form of a graph, plotting Z against V (see Figure 1). The testing process continues as long
as the sample path formed by successive Z-values plotted against corresponding V-values
remains between the boundaries uW1 and uW2 or between lW1 and lW2. The sampling is
stopped and H0 rejected when the sample path crosses uW1 or lW1. The test is stopped with
acceptance of H0 when the sample path crosses uW2 or lW2. The test is also stopped with
the acceptance of H0 when the sample path has crossed the first parts of both uW2 and lW2.
To adjust for the discrete monitoring of a strictly continuous process, Whitehead8

recommends replacing the intercept a by � �1583.0
�

�� ii VVa  for i = 1,2,... with V0 = 0
(this adjustment is called the ‘Christmas tree’ correction).

Figure 1 Sample path of successive (Z;V)-values for three controls matched per case in an open
double sequential t-test with �2 =0.05, power 80.01 �� �  and R� = 0.5. Values for the
intercepts ±a are ±5.05 and values for the slopes ±b are ±0.3627. Data come from a cohort-
nested case-control study relating selenium levels in toe-nails to the occurrence of colon
cancer4.  

In Figure 1, an example of such presentation is given. Women from a cohort of
participants in a population-based breast-cancer screening programme were also
monitored for the occurrence of colon and rectal cancer. Three control women without
colorectal tumours were matched by age to each case in the order in which cases were
notified. The selenium content in toe-nails, stored previously in a biological bank, was
used as a biomarker of selenium status. The purpose of the investigation was to detect a
difference in selenium content between cases and controls and relating this difference to
the occurrence of colorectal cancer. Selenium values can be considered to follow a
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normal distribution (details and other examples are given in references 4-6). Applying the
sequential t-test, the null hypothesis could be accepted after the 8th case-control set was
processed. For a fixed sample paired t-test at least 32 case-control sets would have been
necessary to satisfy the same requirements, in terms of �2 , �  and R� .

Although the program PEST does not contain standard features for the design and
analysis of paired data, it can be used for a matched sequential t-test by choosing the
'DEFAULT-response' option, and using precalculated values of the Z- and V-statistics as
data input. 

3.5 Comparison of the two types of sequential t-test

We compared the test statistic ln according to Rushton’s approach to the test statistics Z
and V following Whitehead’s method. For a one-sided test a mathematical comparison
shows that Rushton's approach (2) is identical to Whitehead's procedure (3), if the latter
is conducted without continuity correction and if �� � (see Appendix II). Likewise, for
a two-sided test the rejection boundaries for the two methods can also be shown to be
identical, irrespective of the value of k (the number of controls matched to each case),
when Whitehead's procedure is conducted without continuity correction, �� �  and in
case of rejection of the null hypothesis. The two methods can be shown to differ with
respect to their acceptance boundaries, both for �� �  and for ��a  (see Appendix III). 

We conducted computer simulations to evaluate the type I and type II error
probabilities. Simulations were performed applying Rushton's approximation in a SPRT,
and Whitehead's procedure for an open double sequential t-test either with or without
continuity correction. Simulation programs were written in Turbo Pascal Version 5.0
(Borland). Uncorrelated, random ‘case’ and ‘control’ observations were generated. Both
under H0: 0�k�  and under H1 (with 25.0�R�  and 0.5) and with 1, 2 and 3 controls per
case, 2500 simulations were run with a type I error 10.02 �� and a type II error

05.0�� �� . In terms of the median or average sample size n, the results of these
simulations can be summarized as follows, irrespective of k:

under H0: nR < nW+ < nW- under H1: nW+ < nR � nW-

(where the subscripts R stand for Rushton, and W+ and W- for Whitehead's approach
with and without continuity correction). 



Comparison of one-sample two sided sequential t-tests

53

In Figures 2 and 3 the simulation results for �� �  are depicted graphically in terms of
the achieved type I and type II error probabilities. 

Figure 2 Achieved type I and type II error probabilities '2�  (a) and '�  (b) versus k, the number of
controls matched per case for 10.02 �� , 05.0�� , 25.0�R� . The 0.95-confidence
intervals are calculated using the normal approximation to the binomial distribution.

(a)

(b)

25.0�R�

25.0�R�

(b)
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As shown by these figures, the achieved type I error probabilities for Rushton's
approximation and for Whitehead's approach without continuity correction are smaller
than the prespecified ones. Using Whitehead's approach with continuity correction,
however, the achieved error probabilities are not significantly different from the
prespecified, theoretical values, although the type I error is a little large for 5.0�R�

(that is, for small n). For 25.0�R� , Rushton's type II error is on the large side. 

Figure 3 Achieved type I and type II error probabilities '2�  (a) and '�  (b) versus k, the number of
controls matched per case for 10.02 �� , 05.0�� , 5.0�R� . The 0.95-confidence
intervals are calculated using the normal approximation to the binomial distribution.

5.0�R�

(a)

5.0�R�

(b)

(a)
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For 05.02 �� , 20.0�� , 25.0�R�  and 1, 2 or 3 controls per case, results of 2500
simulation runs for Rushton's procedure and Whitehead's approach with continuity
correction are depicted in Figure 4. 

Figure 4 Achieved type I and type II error probabilities '2�  (a) and '�  (b) versus k, the number of
controls matched per case for 05.02 �� , 20.0�� , 25.0�R� . The 0.95-confidence
intervals are calculated using the normal approximation to the binomial distribution.

As for �� � , Rushton is somewhat conservative in terms of the achieved type I error,
while Whitehead's approach with continuity correction tends to result in somewhat higher

25.0�R�

25.0�R�

(a)

(b)
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'2� -values , especially for 5.0�R�  (not shown). For 25.0�R�  Rushton's type II error
is now significantly too large. In terms of the number of case-control sets n processed, the
results can be summarized as follows:

under H0: nR < nW+ and under H1: nW+ � nR

3.6 Discussion

We have compared two approaches to perform a sequential t-test, with a view to applying
such a test in prospective cohort studies for preliminary evaluations whether or not there
is a relevant difference in mean exposure level between cases with disease and disease-
free control subjects. The first approach is a classical sequential probability ratio test
(SPRT) using an approximation to the log-likelihood ratio derived by Rushton. The other
procedure, developed by Whitehead, is analogous to the SPRT but is based on a profile
likelihood rather than a likelihood ratio. We extended both procedures for studies with
more than one control matched per case.

We have compared Rushton’s approach only to the symmetric, open version of the
t-test given by Whitehead. Using Whitehead’s method, a two-sided test with the
boundaries placed symmetrically (at ±a) about the horizontal axis and with �� � has an
expected maximum sample size when 2/Rk �� � . The restriction �� �  does not
correspond to the usual choice of prespecified values of significance level and power in
clinical or epidemiological studies: generally these values are chosen equal to 05.02 ��

and ��1  = 0.90 or ��1  = 0.80, respectively. If �� � , but the expected maximum
sample size should occur at 2/Rk �� � , test boundaries can be developed with slope b
equal to 2/R� , but with asymmetric intercepts.12 Such an asymmetric test (without the
‘Christmas tree’ correction) equals Rushton's procedure for the one-sided version and for
the two-sided version when H0 is rejected. Because the program PEST provides only for
symmetric versions of the SPRT-like procedure, we only evaluated and discussed these
symmetric tests. 

Whitehead8 states that the open, one-sample sequential t-test using test statistics Z and
V is equivalent to the test based on the approximation by Rushton.13 Our mathematical
comparison shows, however, that this is true only (for the symmetric versions of
Whitehead's test) when: 
1) � is equal to �, in case of a one-sided test; or, for a two-sided test, � is equal to �

and H0 is rejected;
2) no ‘Christmas tree’ corrections are made on the critical boundaries.

The difference between the two-sided ‘open’ versions of the sequential t-test following
Rushton, or following Whitehead, can be explained partly by the fact that there are two
possible approaches to design a two-sided test,14-16 namely:
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(i) to combine two one-sided tests, one to test H0 versus H+: Rk �� �  and one to test H0

versus H-: Rk �� �� , both with prespecified error probabilities α  and  β; 
(ii) to compare H0 with a composite alternative hypothesis, giving equal weights to H+

and H-, and using specified error probabilities 2α  and β. 

On the one hand, when H0 is rejected in favour of, for example, H+, then under (i) L+/L0

is greater than or equal to �� /)1( � , and under (ii) (L++L-)/2L0 is greater than or equal to
�� 2/)1( �  (where L0, L+ and L- denote the likelihood under H0, H+ and H-

respectively). Then the two approaches are practically equal because L- is negligible in
comparison to L+. On the other hand, when H0 is accepted, under (i) L+/L0 and L-/L0 are
both smaller than )1/( �� �  and under (ii) (L++L-)/2L0 is smaller than )21/( �� � . In
the latter case, these two approaches will differ for all values of α and β, the second
approach (ii) being more conservative for α < 1/3 (i.e. for all practical values of α).
Rushton11 mentions that his likelihood ratio (equation (1)) for a two-sided test is ‘...
obtained as the simple average of two likelihood ratio's appropriate for one-sided t-tests
...’. Rushton’s likelihood ratio is, however, expressed in terms of U² rather than of ±U:
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If the likelihood ratio were obtained as the average of two likelihood ratio's, it would
have been
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and then would have been a test of type (ii). It can easily be seen that, for n > 0, (6) is
always smaller than (7). Thus when H0 is rejected, a test based on (6) is more
conservative than a test based on (7), and when H0 is accepted, a test based on (6) is less
conservative than a test based on (7). The open double sequential tests as implemented by
Whitehead in PEST are tests of type (i), which is generally considered the best approach
to two-sided tests14. Our results for �� �  are in agreement with these theoretical
considerations, since we observed that: (1) nR � nW-, when H0 is rejected; and (2) nR < nW-,
when H0 is accepted. Furthermore, from the mathematical comparison (see Appendix III,
equations (20) and (21)) it follows that, when �� � , Rushton's test will lead to the
acceptance of H0 more often than Whitehead's approach, that is for smaller n, and thus in
general Rushton's type I error probabilities will be smaller and type II error probabilities
will be larger than their theoretical values (see also Figures 2 and 3). For �� �  (and
especially �� � ) the difference between Rushton's and Whitehead's procedure
increases, leading to more frequent acceptance of H0 and thus to power values which are
significantly too small, especially for larger sample sizes (see Figure 4).
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Our simulations show that Whitehead's approach with continuity correction results in
type I error probabilities which are on the large side for small sample sizes )5.0( �R� .
This might be due to the fact that, because of these small sample sizes, the normality
assumption for the test statistic Z was not met. This same phenomenon can be observed
in the simulation results for a triangular test with larger R� -values3. For larger samples
type I error probabilities are not significantly different from their prespecified, theoretical
values. Irrespective of the choice of 2�, � and R�  the achieved type II error probabilities
resulting from Whitehead's procedure are close to the theoretical ones. 

As expected, our simulations showed that the average sample size for a sequential test
with pairwise matching (k = 1) is smaller than that for the equivalent fixed sample test
procedure, while increasing the number of controls per case further reduced mean,
median and 90th-percentile of the number of case-control sets necessary to reach a
decision. In addition, using Whitehead's approach, the relative efficiency of the
sequential t-test using multiple (k) controls per case instead of pairwise matching appears
to be approximately equal to the theoretical value 2k / (k+1)17.

Theoretically it is possible for an open SPRT to process an infinite number of
observations without ever coming to a decision whether to accept or reject the null
hypothesis. This can be prevented by limiting the maximum allowed number of case-
control sets sampled for analysis (that is usually referred to as ‘truncation’). The slopes
and intercepts of the critical boundaries must then be adjusted to maintain the same
significance level and power, which is accomplished automatically using the program
PEST, following Whitehead’s approach. For instance, in the example shown in Figure 1
the coefficients of the critical boundaries a and b should be changed from 5.05 to 5.10
and from 0.3627 to 0.3601, respectively, if the test is truncated at twice the fixed sample
size. The expected sample size under H0 was 19.4 and then becomes 19.7; the expected
sample size under H1 was 21.6 and becomes 21.9. Using Rushton’s approach with
truncation, similar adjustments of the critical boundaries have not been described so far,
and the probabilities of type I and II errors will thus change. In previous simulations we
have shown5, however, that the error probabilities are hardly affected when the truncation
point is greater than or equal to twice the required sample size for an equivalent fixed-
sample test procedure, suggesting that at this level the adjustments of critical boundaries
become as small as to be negligible in practice.

Besides the truncated SPRT-like test procedure, the PEST-program provides routines
for other types of sequential tests originally designed as ‘closed’ procedures. These
procedures are still based on the test statistics Z and V, but use different types of critical
boundaries. An example is the so-called ‘triangular’ test. The triangular test is more
efficient, in terms of the amount of information used, when the true value of k�  is close
to ± R� /2. On the other hand, not only open but also truncated, SPRT-like procedures tend
to require less information than the equivalent triangular test when k�  is anticipated to be
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equal to 0 (the null hypothesis) or when Rk �� �  (the alternative hypothesis)8. In all
instances, whether using a triangular test or a SPRT-like procedure, less information is
needed than in an equivalent fixed sample size procedure.  

For the analysis of specimen stored in a biobank it may be more practical to retrieve
and analyze biological specimens of cases in batches (groups) of multiple cases (and their
matched controls). Likewise, in large-scale, multi-centre clinical trials it may also be
more feasible in practice to process and analyse data for groups of patients. In the past,
various approaches for group sequential tests were proposed. In the seventies Pocock18

developed tables for group sequential tests based on the prior specification of a small
number of equally spaced inspections of the cumulating data, applying the same nominal
significance value at each inspection. Pasternack and Shore19 amongst others used
Pocock's tables in the group sequential analysis of cohort data from a
toxicological/epidemiological study. O'Brien and Fleming20 proposed increasing nominal
significance levels at equally spaced inspection intervals to reduce the chance of very
early stopping. In practice, however, the approach of prespecified, equally spaced
inspection intervals may be cumbersome. A more flexible approach is based on the so-
called ‘alpha-spending function’ (see for example DeMets and Lan21 and Whitehead8),
that allows the cumulating data to be analysed at arbitrary inspection intervals. At each
inspection of the data the nominal significance level corresponds to the amount of
information ‘used’ (for example, the fraction of total trial duration expired). All group
sequential tests offer the advantage of smaller expected sample size requirements
compared with traditional, fixed-sample counterparts when the alternative hypothesis is
true (although the efficiency gain is usually smaller than that for continuous sequential
procedures as there may be some ‘overrunning’). The choice of appropriate nominal
significance levels at intermediate inspections guarantees that the desired overall
significance level is maintained. 

A major disadvantage of the group sequential methods developed by Pocock,18

O'Brien and Fleming20 and DeMets and Lan21 is that the null hypothesis H0 cannot be
accepted until the last planned inspection of the data. In Rushton's and in Whitehead's
procedures the critical boundaries are chosen so that both the overall significance level
2�  and the type II error �  are guaranteed. Whitehead's sequential tests8 can be easily
adapted for groupwise inspection at fixed or arbitrary inspection intervals using the,
already mentioned, ‘Christmas tree’ correction of the critical boundaries. Thus,
Whitehead’s sequential procedure as discussed in this paper can be used for groupwise
sequential testing. In addition, both the SPRT-like test and the triangular test following
Whitehead's approach allow earlier stopping when enough information has been gathered
to conclude that H0 can be accepted. Although Rushton's procedure also allows early
stopping with acceptance of H0, an adjustment of its boundaries for groupwise inspection
has not been described. 
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In conclusion, although PEST does not contain default features for the sequential
analysis of matched or paired data, it can be used for such tests if precalculated Z- and V-
values are used as data input. Our mathematical comparisons and simulations show that,
when the continuity correction is applied (as is done in the PEST-program), type I and
type II error probabilities are very close to the theoretical (prespecified) �2 - and � -
values, in particular for small values of R� . On the contrary, Rushton's approximation can
lead to a large loss in power. Storing blood or tissue specimens from members of a cohort
in a biological bank enables researchers to test aetiological hypotheses about supposed
associations between biological markers and diseases such as cancer. Using a sequential
t-test to distinguish between promising and less promising hypotheses can save precious
biological material. Matching more than one control to each case leads to an even more
economical test. Practical considerations can necessitate grouped sampling and
groupwise inspection of the specimens. To prevent the occurrence of a very large sample
size in an open SPRT a truncated procedure can be considered. Contrary to Rushton’s
procedure, Whitehead’s procedure can be easily adapted for truncation and/or groupwise
inspection of the data without affecting the type I and the type II error of the sequential
test. (More tables and figures summarizing the computer simulations are available from
the first author on written request.)
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APPENDIX I

For one control matched to each case (k = 1) the difference Di between the observation
for the ith case (Xi) and that for the ith control (Yi1) is Normally distributed with variance

)1(2 22
1 ��� �� .

For k controls matched to each case, the variance of the difference between Xi and the
mean over the k controls Yi. becomes 
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Writing ln for the logarithm of Ln and substituting (8) and 11��� � , the first-order
derivatives of ln with respect to 1�  and 1� are
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Substituting 01 �� and (10) into (9) leads to the test statistic Z:
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Substituting 01 ��  and (10) into (11) leads to the test statistic V:
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APPENDIX II: The one-sample one-sided sequential t-test

For a one-sided test13 Rushton's approximation to the log-likelihood ratio substituting
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with fk = 2k / (k+1).
The null hypothesis H0: 0�k�  is rejected in favour of the alternative hypothesis
H1: Rk �� � when 
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Using Z and V in a SPRT leads to rejection of H0 when 
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Equations (12) and (14) are only equal when �� � .
In Rushton's test H0 is not rejected when 

� �� ��� �� 1/lnnl (15)

Using Z and V in a SPRT leads to acceptance of H0 when 

Z � -a + bV (16) 

Substituting (3), (4) and (5) into (16) leads to 
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Equations (15) and (17) are only equal when �� � . A similar derivation can be made
for H0 versus H1: Rk �� �� .
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APPENDIX III: The one-sample two-sided sequential t-test

For a two-sided test Rushton's approximation is given by equation (2). Substituting U²
from equation (1) into equation (2) leads to
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with fk = 2k / (k+1).
The null hypothesis H0: 0�k�  is tested with significance level 2α  and rejected in favour
of H1: Rk �� �  when 
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Using Z and V in a SPRT leads to rejection of H0 when

bVaZ �� (19) 

Now (18) and (19) are only equal when �� � .
In Rushton's test H0 is accepted when � �� ��� 21/ln ��nl , that is
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Using Z and V in a SPRT leads to rejection of H0 when 

bVaZ ��� (21)

Equation (20) can never be equal to equation (21).
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Summary

Sequential analysis of randomized controlled clinical trials and epidemiological prospective
(matched) case-control studies can have ethical or economical advantages above a fixed
sample size approach. It offers the possibility to stop early when enough evidence for an
apparent effect of the risk factor or lack of the expected effect is achieved. In clinical trials it
is well accepted to stop the trial early in favour of the alternative hypothesis. In
epidemiological studies, in general, the need is not felt to stop early in case of a clear
exposure effect. Little attention has been paid, however, to early stopping and accepting the
null hypothesis. In metabolic epidemiological studies where analysis destroys the biological
material, the question of efficient use of samples, for example, those stored in a biobank,
becomes crucial. Also a slow accrual of cases or the costs of follow-up of a cohort nested
study can make it desirable to stop a study early when it becomes clear that no relevant
exposure effect will be found. Matching can further reduce the amount of information
necessary to reach a conclusion. We derived test statistics Z (efficient score) and V (Fisher's
information) for the sequential analysis of studies with dichotomous data where each case
can be matched to one or more controls. A variable matching ratio is allowed. These test
statistics can be entered into the software PEST to monitor the course of the study. The
double sequential probability ratio test and the double triangular test were evaluated with
simulated data for odds ratios equal to 1.5, 2.0 and 2.5 and various type I and type II error
probabilities both under H0 and under H1. Our simulations resulted in average and median
values for the amount of information (V), that are far less than those for a fixed sample size
study. Efficiency gain can range from 32 per cent to 60 per cent. The proposed sequential
analysis was applied in an investigation on the possible relationship between the
polymorfism of the MTHFR-gene and rectal cancer in a cohort of women with cases
matched by age to one and to three controls. A sequential analysis of matched data can lead
to early stopping in favour of H0 or H1, thus conserving valuable resources for future testing.
A sequentially designed study can be more economical and less arbitrary than a study that
makes use of conditional power or conditional coverage probability calculations to decide
early stopping.

4.1 Introduction

In randomized controlled clinical trials and epidemiological (prospective) case-control
studies it can be desirable to have at one’s disposal a statistical analysis that uses the least
possible number of observations to come to a decision. 

In a clinical trial it may be unethical to subject more patients than necessary to a
treatment that turns out to be inferior. For example, Newman et al1 describe how a
sequential analysis showed a poorer survival under radiotherapy plus razoxane than under
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radiotherapy alone in patients with inoperable lung cancer. Thus the trial could be
stopped early, saving patients from an inferior treatment. Montaner et al2 showed that
oral corticosteroids can prevent early deterioration in patients with moderately severe
AIDS-related pneumonia. After 37 patients were analysed sequentially the null
hypothesis could be rejected. This result meant that 47 per cent (that is 33 out of 70) of
the foreseen number of patients did not have to be included in the trial. Moss et al3 used a
sequential design to demonstrate the superiority of an implanted defibrillator over
conventional medical treatment of patients at high risk for ventricular arrhythmia. All
clinical trials described1-3 were analysed using a so-called triangular test4. In an
epidemiological prospective (cohort nested) case-control study, cases are often scarce or
accrue slowly and continuation of the follow-up of the cohort is frequently costly.
Especially in the emerging field of metabolic and genetic epidemiology with biosamples
from cohorts stored in a biobank, analysis of these biosamples is frequently destructive,
unlike analysis of questionnaire data. This introduces the need to be selective with regard
to the hypotheses that can be tested using these biosamples. Contrary to the samples of
the cases, control material is mostly abundantly available in cohort nested studies. Thus a
first step in the analysis of such a study is to increase the number of controls per case. A
second option is to analyse the data sequentially4-6. 

On average, a sequential analysis requires fewer observations than a fixed sample
analysis under the same design specifications4,5. When, in an epidemiological study, each
case can be matched to a control, and in particular to multiple controls, a sequential
analysis of the matched data requires fewer case-control sets than a sequential analysis of
unmatched data with the same design specifications.

In an earlier paper we developed and compared one-sample two-sided sequential t-
tests for epidemiological studies with more than one control matched per case and a
normally distributed exposure variable6. In the present paper we derive the test statistics
for a sequential test with matched dichotomous data. A fixed and a variable matching
ratio are considered. Two sequential tests are compared: the sequential probability ratio
test and the triangular test. Comparisons are made by simulations. 

The proposed sequential test was applied in a genetic epidemiological study
investigating the possible relationship between the polymorfism of the MTHFR-gene and
rectal cancer in a cohort of women with cases matched by age to one and to three
controls.

When a sequential test is concluded, fixed sample estimation procedures can not be
applied, because the maximum likelihood estimate of the parameter is biased. Valid
estimation procedures lead to a median unbiased parameter estimate and corresponding
confidence interval4.
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4.2 Example

We were confronted with the need for efficient use of biosamples in investigating data
from the DOM cohort7. Participants in this cohort were 50 to 69 years old. Between 1974
and 1984, women in this population-based breast cancer screening cohort volunteered to
provide overnight urine samples. For each of more than 16,532 women 100 cm3 aliquots
are stored at a temperature of -20°C in a biobank. It turned out that in these stored urine
samples enough cells were available in the sediments to allow for PCR DNA probe
analysis. Since the DNA was fragmented, it will not be possible to amplify full DNA,
which otherwise could have solved the problem of limited biological material available
for analysis.

Several hypotheses with respect to the roles of genetic polymorfism have been put
forward in the literature that, when tested, will compete for the limited material. Since in
particular the material of cases is limited (the number of potential controls is less of a
problem given the cohort size), the question of efficient management of the samples
emerged. We had earlier developed some strategies for handling this problem for a
normally distributed exposure variable6,8. For a dichotomous exposure new tests had to
be developed.

Colorectal cancer was among the first tumours in this cohort where the problem of
efficient management became pressing, given problems in the continuation of a complete
follow-up of the entire cohort. A role for the methylene-tetra-hydrofolate-reductase
(MTHFR) gene was claimed in the literature. Mutations in this gene occur in up to 13 per
cent of the population. The wild polymorfism was contrasted to the homozygote and
heterozygote polymorfisms to explore the hypothesis that being a homozygote or
heterozygote carrier of the MTHFR-gene mutation (677 C > T mutation) increases the
risk of developing rectal cancer. Through follow-up by the regional cancer registration
(IKMN) and a mortality register established with the general practitioners in the Utrecht
region, incidence of or mortality due to rectal cancer was traced prospectively. Based on
the date of incidence or mortality (whatever became first known), urine samples were
thawed and tested. A total number of 72 cases were reported. For three of these cases no
genetic information was available. Control women were matched to each case by age. We
matched one and three controls per case in different analyses to study the efficiency
aspect of multiple controls per case. So for 69 cases and 207 controls urine samples were
retrieved from the biobank. Urines were treated according to a fixed protocol to obtain
urine sediments and PCR gene product. All data were analysed sequentially in the
chronological order in which the cases were notified. 
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4.3 The sequential tests

4.3.1 The test statistics Z and V
Consider an epidemiological study where each case can be matched to one or more
controls and the possible relation with an exposure variable is to be tested. Let π0 be the
probability of exposure for the controls and π1 the probability of exposure for the cases.
Only discordant matched sets provide information and thus are used in the analysis. Let π
be the probability that the case is exposed in a discordant pair of uncorrelated
observations with
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where X1i = Xi,case is the value for the case in the ith set and iMi iXX ,12 ... �  are the values for
the matched controls in the ith set (1 when exposed, 0 when not exposed) with controlsiX ,  as
the average value for the controls in the ith set and iX  as the overall average value of the
ith set. The test statistics Z and V are equal to ΣZi and ΣVi, respectively, over the
successive sets i = 1,2,...,n, where n is the number of sets observed so far.
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The test statistics in (2) can also be written as Z = Sn - n/2 and V = n/4, with Sn as the
number of exposed cases and n the number of discordant matched pairs so far observed
(see also equations (3.47) and (3.48) in Whitehead4 with p0=0.5). 

In general, for Ci cases matched to Mi controls the results in the ith matched set can
also be tabulated as follows:

ith matched set cases controls total

Number of persons Ci Mi Ni

Number exposed Si Ti Ei

Number not exposed Fi Gi 1E

where Si stands for the number of exposed cases, Ti for the number of exposed controls,
Ei for the total number of exposed persons and iE  for the total number of unexposed
persons. The test statistic Zi can be expressed as the difference between the observed
number of exposed cases and the expected number under the null hypothesis, and the
statistic Vi as the variance under the null hypothesis. Using this tabular notation,
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The above equations (3) for Zi and Vi are equal to equations (1). (The variance formula as
given here can be compared to formula (3.5) in Whitehead4. Our denominator is equal to
Ni

2(Ni - 1) due to the use of the conditional likelihood in our derivation, while that in
formula (3.5) is N 

3.)
The test statistic Z is the efficient score for θ under the null hypothesis H0: θ = 0; V stands
for Fisher's information about θ contained in Z. Z follows approximately a Normal
distribution with expectation θV and variance V when samples are large and θ is small4,9.
For 1 : 1 matching Z and V are equal to the numerator and the square root of the
denominator, respectively, of McNemar's (fixed sample size) test for matched pairs
without continuity correction. The test statistics Z and V for a sequential test with 1 : M
(Mi equal to M for all i) matching are equal to the numerator and the square root of the
denominator, respectively, of the test statistic proposed by Miettinen10. They are related
in the same way to the Mantel-Haenszel test statistic for matched data11 (without
continuity correction) and to the logrank test statistic12.
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When Mi is equal to M for all i, the ratio of the expectation of Vi under the null hypothesis
for M = 2 to the expectation of Vi under the null hypothesis for M = 1 is equal to 1.33.
Likewise, the ratio of the expectation of Vi under the null hypothesis for M = 3 to the
expectation of Vi under the null hypothesis for M = 1 is equal to 1.50 (see Appendix II).
This means that the amount of information for two controls matched per case is 1.33
times the amount of information obtained with matched pairs. For three controls matched
per case, 1.50 times the amount of information contained in matched pairs is obtained. 
In epidemiological studies a variable matching ratio can occur when not enough controls
can be found to match to the same case, or when biological or genetic material stored in a
biobank is either limited or not available (any more). Suppose a control is missing with
probability πm (i.e. the number of controls matched to a case is now variable for the ith
set). Under the null hypothesis and, for example, πm = 0.25 the ratio of E(Vi | Mi = 2; πm)
to E(Vi | M = 1) is equal to 1.125, and the ratio of E(Vi | Mi = 3; πm) to E(Vi | M = 1) is
equal to 1.336 (see Appendix III). (When M = 1 and the control is missing, the case-
control set is uninformative; likewise when the case is missing).

4.3.2 Two sequential tests
We compare the behaviour of the test statistics Z and V in two types of sequential tests:
the sequential probability ratio test (SPRT) and the triangular test (TT). Both tests require
critical boundaries to be specified in advance. Characteristics of both tests are described
at length by Whitehead4. For an open double SPRT the critical boundaries are as follows 

Z = a + bV (u1)

Z = -a + bV (u2)

Z = a – bV (l2)

Z = -a – bV (l1)

The slopes ±b and intercepts ±a of these boundaries are functions of the error
probabilities 2� (the two-sided type I error) and � (the type II error), as well as of the
choice of a minimal relevant standardized exposure difference, θR, that defines the (two-
sided) alternative hypothesis H1: R�� � : 
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For a double TT the critical boundaries are as follows
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Z = a + cV (u1)

Z = -a + 3cV (u2)

Z = a – 3cV (l2)

Z = -a – cV (l1).

The boundaries u1 and u2, and l1 and l2, cross at Vmax = a/c and Z = ±2a.
For � ≠ � no simple expressions can be given for a and c.

Throughout this paper, it is assumed that the boundaries of the tests are placed
symmetrically with respect to the horizontal axis. Both sequential tests are conveniently
presented in the form of a graph, plotting Z against V (see Figures 1(a) and (b) for
illustration). The testing process continues as long as the sample path formed by
successive Z-values plotted versus corresponding V-values remains between the
boundaries u1 and u2 or between l1 and l2. The sampling is stopped and H0 rejected when
the sample path crosses u1 or l1. The test is stopped with acceptance of H0 when the
sample path crosses u2 or l2. The test is also stopped with the acceptance of H0 when the
sample path has crossed the first parts of both u2 and l2. To adjust for the discrete
monitoring of a strictly spoken continuous process, Whitehead recommends to replace
the intercept a by a � 0.583√(Vi � Vi-1) for i = 1,2,... with V0 = 0 (this adjustment is called
the ‘Christmas tree’ correction).
Both tests are implemented in the computer program PEST13. Although PEST does not
contain features for the design and analysis of matched data, it can be used by choosing
the ‘DEFAULT-response’ option and entering precalculated values for Z and V.

Figure 1
(a)
Double SPRT and double TT with θR = ln(2
line denotes the fixed sample value for V. 
±3.643 and for the slope b are ±0.503. (b) 
the slope of the boundaries u1 and l1 is � 0
±0.731.
(b)
75

.0), 2� = 0.05 and � = 0.20. The vertical dashed
(a) Double SPRT, values for the intercept a are

Double TT, values for the intercept a are ±6.149,
.244 and the slope of the boundaries u2 and l2 is
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4.3.3 Simulations
The double SPRT and the double TT were evaluated with simulated data both under
H0: θ = 0 and under H1: |θ| = θR with θR = ln(ψ) for ψ = 1.5, 2.0 and 2.5 with 2α = 0.10,
β = 0.05 and with 2α = 0.05, β = 0.20. Each evaluation consisted of 2500 simulation runs
with M = 1, 2 and 3 controls matched per case. To evaluate the effect of a variable
number Mi of controls matched per case, data were simulated and analyzed by the double
SPRT for ψ = 1.5 with 2α = 0.10, β = 0.05 and with 2α = 0.05, β = 0.20. For Mi = 2 and
Mi = 3 the probability of a missing control (πm) was chosen equal to 0.25. All evaluations
of both the double SPRT and the double TT were performed with the so-called
‘Christmas tree’ correction of the boundaries.

4.3.4 Estimation of sample size
For a fixed sample design with matched case-control pairs the sample size can be
estimated using the relation 22 /)( Rfixed uuV �

��
��  (Whitehead4), where ux denotes the

standardized normal deviate exceeded with probability x. The total sample size can be
estimated by dividing the number of discordant pairs n = Vfixed � 4 (see equation (2)) by the
probability of a discordant pair of uncorrelated observations, πdisc = π0(1 - π1) + π1(1 - π0).
For our simulated data evaluated sequentially πdisc can be approximated by
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(see Appendix IV). This probability is about 1/3 for an odds ratio ψ in the range 1.0 to
2.5.

In practice, for a sequential study the expected average or median value for V (as
reported by the program PEST when designing the study) multiplied by 4 and divided by
the probability of a discordant pair of observations estimates the average or median total
number of case-control sets necessary for a study with 1 : 1 matching. For 1 : M matching
this number can be reduced by a factor (M + 1) / 2M (Ury14). (Note the reciprocal relation
with the expectation of Vi for M = 2 and M = 3.)

4.4 Results of the example

Homozygote or heterozygote carriers of the MTHFR-gene mutation were expected to
have at least a twofold risk of developing rectal cancer compared to the carriers of the
wild polymorphism. A double SPRT was designed with an OR equal to 2 as the
alternative hypothesis (θR = ln(2) = 0.69315), a two-sided type I error 2α = 0.05 and a
power 1-β = 0.80. The expected average value for V under H0 is equal to 10.1; the
expected median value for V is equal to 8.8. The matched-pairs analysis ended without a
decision after 69 matched pairs and 32 discordant pairs (Z = -2.0 and V = 8.0) (see Figure
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2(a)). For three controls per case the sequential analysis could be terminated with
accepting the null hypothesis after 41 matched sets and 35 discordant sets (Z = -0.25 and
V = 7.3) (see Figure 2(b)). After stopping the sequential test, a median unbiased estimate4

can be given for the odds ratio: OR = 0.87 with its 95 per cent confidence interval
(0.39 ; 1.85).
The number of discordant pairs necessary for a fixed sample design with the design
specifications as above is at least 66 (Vfixed = 16.34; n≥ 16.34� 4). Thus a saving of 47 per
cent was reached in this study by a sequential analysis with three controls matched per
case compared to a fixed sample design.

Figure 2 Sample path of successive (Z;V)-values for (a) 1:1 matching, and for (b) 1:3 matching in a
double SPRT with θR = ln(2.0), 2� = 0.05 and � = 0.20. Data come from a cohort-nested
case-control study relating exposure to the MTHFR-gene to the occurrence of rectal cancer
in women (see text). The ‘curved’ lines indicate the ‘Christmas tree’ correction (see text and
ref. 4).

4.5 Results of simulations

4.5.1 Type I and type II errors
For all evaluated OR's the resulting type I errors were not significantly different from
their theoretical values. Simulations with a theoretical � equal to 0.05 resulted in
acceptable type II errors. Only for ψ ≥ 2.0 both the SPRT and the TT resulted in
somewhat larger type II errors than the theoretical � = 0.20 for M = 1 or M = 2. (See
Figures 3 and 4)

(a) (b)
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Figure 3 Achieved type I and type II error probabilities (a) 2�' and (b) �' versus the number of
controls matched per case (M) for θR = ln(2.0), 2� = 0.10 and � = 0.05. The 0.95-confidence
intervals are calculated using the normal approximation to the binomial distribution.

Figure 4 Achieved type I and type II error probabilities (a) 2�' and (b) �' versus the number of
controls matched per case (M) for θR = ln(2.0), 2� = 0.05 and � = 0.20. The 0.95-confidence
intervals are calculated using the normal approximation to the binomial distribution.

4.5.2 Sample size with a fixed number of controls per set
In Tables 1 and 2 observed and expected average and median values for V and the
observed total number of (concordant and discordant) case-control sets (N) are given.
Values tabulated are for 1 : 1 matching. Comparing the observed median values for V to
the expected fixed sample size value (Vfixed) shows that savings in the amount of
information used by a sequential study can range from 32 per cent to 46 per cent when
the null hypothesis is true and from 36 per cent to 60 per cent when the alternative
hypothesis is true, irrespective of the value for the odds ratio.

ψ = 2.0, 2� = 0.05, � = 0.20

(b)

ψ = 2.0, 2� = 0.05, � = 0.20

(a)

ψ = 2.0, 2� = 0.10, � = 0.05

(b)

ψ = 2.0, 2� = 0.10, � = 0.05

(a)
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For 1 : M matching the expected reduction in total sample size N by a factor (M+1)/2M
was found for most simulations. Small deviations were seen when the type II error was
larger than � = 0.20. 

4.5.3 SPRT with a variable number of controls per set
The effect of a variable number of controls per case on the results of the double SPRT is
shown in Table 3. To achieve the same amount of ‘information’ with a variable number
of controls per case as with a fixed number more case-control sets are needed. The type I
and type II errors were not significantly different from their theoretical values.

Table 1 Observed and expected (italic) values for the amount of information (V) and the observed
total number of case-control sets (N) for 1 : 1 matching, ψ is the odds ratio, 2� = 0.10,
� = 0.05 (Vfixed is the expected fixed sample size value for V) 

H0 H1

V N V N
ψ

average median average median average median average median

Vfixed

(a) SPRT
1.5 49.55 42.75 594.4 512.5 32.33 25.25 384.9 299.0

47.82 41.59 32.57 26.47 65.84
2.0 16.71 14.50 200.6 173.0 11.40 9.25 134.4 111.0

16.36 14.23 11.14 9.06 22.53
2.5 9.57 8.25 115.0 100.0 6.92 5.25 80.0 63.0

9.36 8.15 6.38 5.18 12.89
(b) TT
1.5 47.29 44.50 568.3 535.0 34.56 31.75 412.0 375.5

47.50 44.69 35.33 32.53 65.84
2.0 16.30 15.25 195.7 185.0 12.30 11.25 144.7 134.0

16.25 15.29 12.09 11.13 22.53
2.5 9.11 8.50 109.6 103.0 7.12 6.75 81.8 74.0

9.30 8.75 6.92 6.37 12.89
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Table 2 Observed and expected (italic) values for the amount of information (V) and the observed
total number of case-control sets (N) for 1 : 1 matching, ψ is the odds ratio, 2� = 0.05,
� = 0.20 (Vfixed is the expected fixed sample size value for V) 

ψ H0 H1 Vfixed

V N V N
average median average median average median average median

(a) SPRT
1.5 30.11 26.25 361.3 312.5 33.99 26.00 405.2 309.0

29.53 25.73 32.83 25.99 47.76
2.0 10.16 9.00 122.5 107.0 12.18 9.75 142.5 110.0

10.10 8.80 11.23 8.89 16.34
2.5 5.90 5.25 70.7 63.0 7.79 5.75 90.7 72.0

5.78 5.04 6.43 5.09 9.35
(b) TT
1.5 31.76 30.00 381.5 357.0 31.51 29.75 373.9 358.0

31.81 29.79 32.05 30.67 47.76
2.0 10.95 10.25 132.0 124.0 10.98 10.25 128.5 121.0

10.89 10.19 10.97 10.50 16.34
2.5 6.27 6.00 74.8 71.0 6.45 6.25 74.5 71.0

6.23 5.83 6.28 6.01 9.35

Table 3 The ratio of the average and the median number of case-control sets for a variable number of
controls (Mi) (with probability of a missing control πm = 0.25) to those for a fixed number of
controls for the double SPRT 

H0 H1

average median average median
(a) � = 1.5, 2� = 0.10, � = 0.05
Mi = 2 1.168 1.171 1.190 1.196
Mi = 3 1.113 1.125 1.125 1.169
(b) � = 1.5, 2� = 0.05, � = 0.20
Mi = 2 1.173 1.174 1.188 1.202
Mi = 3 1.126 1.128 1.067 1.037

4.6 Discussion

Sequential analysis of epidemiological studies can have advantages above a fixed sample
size approach. It offers the possibility to stop early when enough evidence for an apparent
effect of the risk factor or lack of the expected effect is achieved. Control for possible
confounders or a more precise effect estimate could be an argument for not stopping
early to reject the null hypothesis. On the other hand, studies on the relevance of certain
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gene mutations for the development of tumours focus primarily on the exploration of
hypotheses, using a limited number of biological samples, as proposed in this paper. Such
studies are meant to build evidence and create prior information for further affirmative
studies. Once a role for a gene mutation is detected in a sequential analysis a more
elaborate (sequential) design including possible effect modifiers and/or confounders can
be warranted. However, a possible lack of an exposure effect certainly is an argument in
favour of early stopping and accepting the null hypothesis. Destructive or expensive
laboratory tests can demand a minimization of the number of those tests performed.
Strömberg15, for example, calls for development of methods for early stopping of
inconclusive epidemiological studies and further discussion.

In epidemiological studies, and especially in cohort nested studies, cases are often
scarce while controls are abundant. Then, matching of controls and cases can increase the
efficiency of an epidemiological study and multiple controls per case can improve the
power of the study (Ury14). 

In clinical trials a matched data structure can arise when patients are subjected to two
successive treatments in a random sequence (the so-called cross-over trials). A similar
situation arises when two drugs or treatments are applied to different sides of the mouth
(Fertig et al16) or two equivalent parts of the body. Most clinical cross-over trials have to
do with the within-subject comparison of two treatments and thus matched pairs of
observations. 

In this paper, the test statistics Z and V were derived for the sequential analysis of
studies with a dichotomous outcome where each case can be matched to one or more than
one control. Using the computer program PEST, designed to perform sequential analysis,
the test statistics can be entered into this computer program to monitor the course of the
study. (It is thus possible to analyse stratified data, like the case-control study described
by Strömberg15 (four strata) and matched case-control studies (many strata), sequentially
using PEST4,13 by calculating the test statistics for each stratum and combining them.) 

Our simulations resulted in acceptable type I errors for the evaluated OR's. The
resulting type II errors were slightly larger than their theoretical values, especially for an
OR = 2.5. Bellisant et al17 performed some simulations to evaluate the small sample
properties of an open SPRT and a TT applied to non-comparative phase II clinical trials.
These non-comparative studies can be compared statistically to the results of our matched
pair simulations. They performed simulations only with β = 0.05. Although they do not
mention this explicitly, their simulations show higher type II errors for large θR

(= ln(3.86) = 1.35) especially with the TT.
The test statistics Z and V are derived assuming that the likelihood for the parameter θ

resembles the normal likelihood. Sprott18 showed that among various reparametrizations
of the binomial distribution the transformation 
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completely removes the component of asymmetry. Therefore Whitehead4 suggests the
use of � � � �� �5.04' 3/1 ���� ��  instead of θ for a sequential test with dichotomous data.
The use of θ' leads to the same test statistics under H0 as the use of θ (equations (1), (2)
and (3)). Only the critical boundaries of the sequential tests are adjusted. In theory, the
use of θ' instead of θ should lead to type I and type II errors that are closer to their
theoretical values 2� and �. In fact, our simulations showed only negligible differences.

The statistic V is based on the ‘observed’ information about θ. For a dichotomous
response the ‘observed’ and ‘expected’ information are equal. We considered the use of
Cox's test as a sequential analogue of Wald's We test19. This test has the disadvantage that
for every new case-control set not only Z and V but also the ML-estimate for θ has to be
calculated. For a sequential test, the ML-estimate is biased4. Although Cox's test is
asymptotically equivalent to the sequential tests described in this paper, some simulations
for small samples (i.e. large ψ, ψ=2.5) show type II errors larger than their theoretical
values, but in addition far too small type I errors.

Two types of sequential tests were compared: an open sequential probability ratio test
(SPRT) and a triangular test (TT). The TT is, by the shape of its boundaries, a ‘closed’
test. Theoretically, the SPRT can carry on infinitely without reaching a decision. The
PEST-program also provides a possibility for a closed SPRT, the so-called ‘truncated
SPRT’. The number of observations is then set to a limit to prevent this carrying on
infinitely. Slopes and intercepts of the critical boundaries are adjusted to maintain the
same significance level and power. In general, an SPRT is more efficient, in terms of the
amount of information used, than a TT when the true parameter value θ is equal to 0 (the
null hypothesis) or when | θ | ≥ θR (the alternative hypothesis). This is confirmed by our
simulations. Median numbers of case-control sets were smaller for the double SPRT than
for the double TT both under the null hypothesis and under the alternative hypothesis,
when the same parameterization and type I and type II errors were applied. 

Pasternack and Shore20 mentioned the possibility of applying a group sequential test to
matched data from case-control studies. Laboratory or logistic conditions can require
analysis of the data in groups or batches. Group sequential designs as well as designs that
use α-spending functions for repeated testing can be easily implemented in PEST4,13.

A number of (recent) publications have paid attention to the early stopping of a trial or
study due to lack of treatment difference or exposure effect (Lan and Wittes21;
Hunsberger et al22; Betensky23; Strömberg15; Ware et al24). Lan and Wittes21 and
Hunsberger et al22 provide conditional power (CP) calculations for studies that were not
sequential by design. Betensky23 developed lower boundaries for CP calculations in
repeated significance and O'Brien-Fleming (group-sequential) designs. Strömberg15
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considers the conditional coverage probability (CCP) instead of CP. (CP is the
probability of rejecting the null hypothesis at the end of the study (when only part of the
total amount of planned information is observed), conditional on the observed data and
assuming an alternative hypothesis for the remainder of the study. CCP is the probability
that a two-sided confidence interval around the final estimate given the observed data and
an assumed alternative hypothesis for the remainder of the study, includes the parameter
value under the null hypothesis). Betensky23 and Strömberg15 both observe that less
attention is paid to designs for early acceptance of H0 than to designs that allow early
termination due to a clearly apparent result. Strömberg even calls for ‘further discussion
concerning early stopping of epidemiologic studies’. We agree with both authors that
early stopping in favour of H0 can conserve valuable (time, financial, genetic, biological)
resources for future testing (see for example6,8,25,26). We emphasize, however, that CP and
CCP calculations require extrapolation of the observed data and are based on rather
arbitrary assumptions27. We take the view that a (group-)sequential analysis can be more
economical and more objective than an analysis based on CP or CCP calculations.

An alternative sequential approach that focuses on effect estimation more than on
hypothesis testing is the repeated confidence interval (RCI) approach, as described by
Jennison and Turnbull28. RCIs can be constructed by inverting a group sequential test.
Group sequential tests perform a number of interim analyses on accumulating data. Each
interim analysis is performed using a nominal significance level that is smaller than the
desired overall type I error 2α to guarantee that the overall significance level is not
inflated by the multiple testing procedure. The critical values for such an interim analysis
are used to construct the corresponding RCI for that interim inspection.

In general, we think that a clear distinction must be made between hypothesis testing
and effect estimation. Repeated testing of the null hypothesis can lead to early stopping
of a study either because there is evidence for a significant effect and the null hypothesis
is rejected or because there is no such evidence given the data thus far and the null
hypothesis can be accepted. Advantages of early stopping with acceptance of the null
hypothesis lie in making the most efficient use of finite resources. Effect estimation can
be carried out repeatedly during a sequential study or once at termination of the study
when a final estimate with its confidence interval is desired. For example, in an
epidemiological study monitoring the effects of environmental hazards, early stopping is
mostly not relevant, but RCIs can be useful to contemplate the effect size in accumulated
data. At termination of the study point and interval estimates should be adjusted
according to the sequential stopping rule. Jennison and Turnbull do not indicate any
adjustments, however. A limitation of the RCI approach is the lack of a power aspect
when RCIs are used to stop a study early. The power guarantee is an essential part of the
sequential design as suggested by Whitehead, which makes this design more appropriate
for hypothesis testing.
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In case of early stopping and accepting the null hypothesis emphasis lies more on
hypothesis testing than on effect estimation. Nevertheless, a median unbiased estimate for
the parameter θ, and thus for the odds ratio, and a confidence interval can be obtained4,13.

Average or median sample size for a study with 1 : 1 matching can be estimated from
the average or median value for V multiplied by 4 and divided by the probability of a
discordant pair or set (pdisc). As pdisc is often unknown, its expected value (see Appendix
IV) can be used to get an approximate idea of the total number of matched sets necessary.

Our simulations confirm that a sequential analysis requires on average less case-
control sets than a fixed sample analysis. For 1 : 1 matching savings in the amount of
information used can range from 32 per cent to 60 per cent. Where efficiency is the aim,
optimizing the case-control ratio in epidemiological studies is, in our opinion, an
additional essential strategy whether a classical case-control or a cohort-nested study is
concerned, since in epidemiological studies the collection or accrual of cases in a cohort
or population may not be as simple or inexpensive as finding controls. When more than
one control can be matched to each case, the amount of information per case-control set
becomes larger. Also the probability of a discordant, informative set is larger. A variable
matching ratio due to missing control information can easily be dealt with.

We further suggest that authors claiming efficiency gain give additional estimations of
such gain (for example in per cent) to allow comparisons of different strategies for early
stopping. We hope that this paper and further discussion may stimulate other
investigators to consider these sequential designs as strategies for ethical or efficiency
aspects in epidemiological studies, in order to pursue only the most promising
hypotheses. 
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APPENDIX I

In case of 1 : Mi matching the conditional likelihood for the ith matched set or stratum
with Mi controls matched to each case is equal to29
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APPENDIX II

Let η be the probability of exposure under the null hypothesis with η = π1 = π0 . For Ci

cases matched to Mi controls the results in the ith matched set can be tabulated as
follows:

 ith matched set Cases Controls Total
Number of persons Ci Mi Ni

Number exposed Si Ti Ei

Number not exposed Fi Gi iE

For the ith matched set, Vi is equal to
)1(2

�ii

iiii

NN
EEMC

. 

Because Ei can be assumed to follow a binomial distribution with parameters Ni and η,
the expectation of Vi is equal to 
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For Ci = 1 and for Mi = 1, the expectation of Vi is equal to �(Vi) = η(1-η)/2, for Mi = 2 the
expectation of Vi is equal to �(Vi) = 2η(1-η)/3, and for Mi = 3 the expectation of Vi is
equal to �(Vi) = 3η(1-η)/4.
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APPENDIX III

Suppose, the probability of a missing control in a matched set is equal to πm. For 1 case
and Mi controls in the ith matched set, the expectation of Vi given Mi becomes 
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 �(Vi | k controls present in the ith set)

�(Vi | k controls present in the ith set) is given in appendix II with k = Mi, Ci = 1 and
Ni = k+1.
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APPENDIX IV

The probability of a discordant pair of uncorrelated observations πdisc is equal to π0(1-π1)
+ π1(1-π0). The probability π1 can be substituted by a function of π0 and ψ. The
probability π0 is replaced in our simulations by U, a random variable with a uniform
distribution on [0,1] and thus with expectation �(U) = 1/2, variance var(U) = 1/12 and
�(U²) = 1/3. 
The probability of a discordant pair of uncorrelated observations πdisc can then be
rewritten as 
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The expectation of πdisc is equal to (ψ+1) �(NUM/DEN). The expected value of
NUM/DEN can be approximated by30

�(NUM) cov(NUM,DEN) �(NUM)var(DEN)
�(DEN) � (�(DEN))2 + (�(DEN))3

with �(NUM) = 1/6, �(DEN) = (ψ+1)/2, var(DEN) = (ψ-1)²/12 and

cov(NUM,DEN) = �{U(1-U)[ψU+(1-U)]} � �(NUM) �(DEN)
= �{ψU²(1-U)+U(1-U)²} � (ψ+1)/12
= ψ�(U²-U³)+�(U-2U²+U³) � (ψ+1)/12
= ψ(1/3-1/4)+(1/2-2/3+1/4) � (ψ+1)/12=0
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Abstract

Early stopping of a clinical trial is well accepted when there is enough evidence for a
significant effect. However, during the course of a trial there can be reasons to consider
early termination for ‘futility’. In epidemiological studies costly or destructive laboratory
tests or slow case accrual can make it desirable to stop a study early for reasons of
efficiency. 

Estimation of the conditional power (CP) is proposed as a decision tool to stop a study
early or to continue it. We consider the disadvantages of this method. We propose
(group) sequential continuation of the trial or study as a less arbitrary strategy. We
re-analysed two data sets from the literature to illustrate the advantages of a sequential
approach.

We conclude that (group) sequential analyses have several advantages as compared to
the use of CP. We therefore plea that more studies should consider a sequential design
and analysis, where possible, to enable early stopping when enough evidence has
accumulated to conclude a lack of the expected effect. Such a strategy can save valuable
resources for more promising hypotheses.

Keywords: sequential tests, conditional power, early stopping, randomized clinical
trials, epidemiological studies

5.1 Introduction

In clinical trials early stopping for ethical or economical reasons is well accepted. For
that purpose, often one or more interim analyses or a (group) sequential analysis are
planned at the design phase of the trial, mostly to allow the trial to stop as soon as enough
evidence for a significant effect is available. Nevertheless for some trials no interim
analysis was foreseen1, but in the course of the trial the need for it is felt. Reasons include
a much slower than anticipated patient accrual, intervening results of comparable trials,
etc. In these cases the question behind an interim analysis often is whether the trial can be
stopped because of lack of a relevant difference between the treatment groups.

In observational epidemiological studies, in general, no need is felt to stop early in
case of a clear exposure effect. However, in cohort studies, slow case accrual, costly
laboratory tests or tests that require destruction of unique biological samples can make it
desirable to stop early when the data obtained so far indicate no relevant effect.

Thus in the course of some clinical trials or cohort studies the question can arise
whether to stop early and accept the null hypothesis (no difference between treatments or
no exposure effect) or to continue. This paper starts with a review of two examples from
the literature where this question was raised. Next we discuss the use of conditional



Chapter 5

94

power as proposed by the authors of these examples as a strategy for early stopping and
its disadvantages. Then we present the results of re-analyses of both examples using a
sequential approach to illustrate its advantages.

5.2 Two examples from the literature

5.2.1 Example I:
The Lupus Nephritis Collaborative Study (LNCS) was a multicenter clinical trial to
evaluate standard drug therapy S (prednison plus cyclophosphamide) versus standard
drug therapy plus plasmapheresis P (plasma exchange) in the treatment of nephritis
associated with systemic lupus erythematosis (SLE).2

The principal outcome was renal failure or death. The study was designed to detect a
50% reduction in the hazard rate (from a value of 0.30 for S to a value of 0.15 for P) with
a one-sided type I error � = 0.05 and a power 1-� equal to 0.88. The fixed sample size
was targeted to be 125 patients. During the trial it had to be decided whether a renewal
application for funding should be submitted, so an external advisory committee reviewed
the emerging results. Life table analysis of the primary study outcome showed no
meaningful difference between the two groups. The cumulative survival probability was
even slightly higher for the standard treatment S. By that time 46 patients were
randomized to S and 40 patients to P. The average follow-up duration was 97 weeks,
ranging from 1 to 225 weeks.

Because of this lack of difference in the principal outcome measure and, to a lesser
extent, the slow recruitment of patients, the need for further continuation of the trial was
questioned.

5.2.2 Example II:
The Atherosclerosis Study in Communities (ASC) was designed as a nested case-control
study to look at the association of atherosclerosis with the presence of three viral
antibodies: cytomegalovirus (CMV), herpes simplex virus 1 (HSV1) and herpes simplex
virus 2 (HSV2).3 The presence of antibodies to each virus in a blood sample indicated
exposure to the virus. The hypothesis to be tested was that exposure to these viruses was
associated with early atherosclerosis. The cases were persons without clinical evidence of
atherosclerosis who were found to have abnormal arterial wall thickening of their carotid
arteries as determined by non-invasive B-mode ultrasound. The controls were matched,
amongst others, on age and gender. 

The study was designed to detect an odds ratio (OR) of 2 in 300 matched pairs for
occurrence of the antibodies in cases when compared to controls, using McNemar’s test
with a two-sided type I error 2� of 0.05 and a power 1-� of 0.80. 
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Based on the data from the first 100 matched pairs, the authors questioned whether the
study should be continued. The laboratory blood analysis of antibodies was costly, so
analysis of the blood of all cases and controls was not desirable if there would be little
chance to detect the hypothesized relationships. 

5.3 Methods

5.3.1 Conditional Power
Calculation of the conditional power (CP) was proposed and used as a decision tool for
either stopping a study early or continuing it. The CP is defined, at a given information
fraction k (i.e. given the data processed so far), as the probability pk(�) that a statistical
test will reject the null hypothesis H0 at the end of the study and assuming � as the
parameter value of interest for the remainder of the study.4 The information fraction k is
the observed proportion of the total amount of planned information, i.e. for example the
planned fixed sample size. Under the null hypothesis H0 the parameter � is assumed to be
equal to 0; under the alternative hypothesis H1 (the absolute value of) � is assumed to be
equal to R�  (depending on a one-sided or a two-sided test), R�  reflecting the treatment
difference or effect size relevant to detect. When k = 0, pk(�) is the unconditional power
function. The null hypothesis H0 can be accepted at an information fraction k if the CP
assuming a certain value of � is smaller than some value �.

In this paper we will focus on early stopping of a trial or a study to accept H0. With
this in view several authors have proposed different values for the parameter � to
calculate the CP. Hunsberger et al3 calculated the CP, amongst other values, for � = R�

and for a parameter value � estimated from the first part of the data. Pepe and Anderson5

proposed for a two-stage experimental design an ‘optimistic but plausible alternative
given the initial data’ under which the CP might be calculated: )ˆ.(.0.1ˆ 11 �� es� , where

1�̂ is the mean of the first n1 observations. This parameter value is the limit of the (one-
sided) 84%-confidence interval (CI) for the parameter estimate based on the data
processed so far. Here we denote this parameter value as 2� . Strömberg6 used, amongst
other values, the limits of the (one-sided) 75%- or 90%-CI for the parameter estimate as
parameter values, i.e. )ˆ.(.674.0ˆ 11 �� es�  or )ˆ.(.282.1ˆ 11 �� es� , respectively. We denote
these parameter values as 1�  and 3� , respectively. 

The decision to stop the study and accept the null hypothesis is based on a CP,
calculated under a parameter value �, falling below some prespecified value �, say 0.1
(conservative) to 0.3 (non-conservative).7

5.3.2 Disadvantages of the Conditional Power
CP calculations require extrapolation of the study results obtained so far and are based
upon rather arbitrary choices. First, a choice must be made for a plausible parameter
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value � to calculate the CP e.g. a) the parameter value R�  as specified in the design phase
under H1 or b) the parameter value based on the data obtained so far or c) the parameter
value based on a limit of the CI for the parameter estimate ( 1� , 2�  or 3� ). Second, a
choice must be made for the critical value � for the CP to decide for early stopping or
continuing. Third, a choice must be made for the ‘optimal’ information fraction k to
estimate the CP. 

In addition, early stopping rules affect the type I and type II error probabilities of the
hypothesis testing procedure as well as the validity of the final parameter estimates.

5.3.3 A sequential approach as an alternative for CP 
A study that is sequential by design does not depend on the above-mentioned, rather
arbitrary choices (the parameter value � , the value of � and the ‘optimal’ information
fraction k) necessary for the calculation of the CP. In a sequential approach the data can
be analysed under the same (a priori) specifications as were made in the fixed sample
design.8 The general approach for a sequential analysis9 is as follows. A null hypothesis
H0 and an alternative hypothesis H1 are formulated for a suitable measure �  of treatment
difference or exposure effect. Two test statistics Z and V can be derived depending on the
type of response variable: Z is a measure of the treatment difference or the exposure
effect, V reflects the amount of information about �  contained in Z. For each new patient
or group of patients values for Z and V can be calculated and presented graphically by
plotting Z against V (see Figures 1a and 1b for illustration of one-sided sequential tests).
When Z and V are calculated after each new patient, the analysis is called a continuous
sequential test; when Z and V are calculated after each new group of patients it is called a
group sequential test. 

After each calculation of Z and V one of three decisions is made (Figures 1a and 1b): 
a) the analysis is stopped and H0 is rejected (the upper boundary is crossed),
b) the analysis is stopped and H0 is accepted (the lower boundary is crossed), 
c) the process is continued with one or more new patients (the new (Z,V)-point is still

within the two boundaries). 
Various types of sequential tests are described9 of which we used the (truncated)

sequential probability ratio test (SPRT) and the triangular test (TT) as illustration. All
tests require critical boundaries to be specified in advance. These boundaries depend on

R� , the (one- or two-sided) type I error (�  or �2 ) and the type II error ( � ). 
Characteristics of the sequential tests are described at length by Whitehead.9

So, when in the course of a study the question arises whether it can be stopped early,
we propose to analyse the available data sequentially using the same values for R� , type I
error and type II error as specified in the original fixed sample design. If the sequential
analysis based on the data from the first part of the study leads to the decision to continue
the study, it can easily be continued sequentially. With this approach patients, money,
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time, biological samples, etc can be saved by an average amount of 35 to 65%,
particularly when H0 or H1 is true9, as we will show by sequential re-analysis of the data
from the LNCS-trial2 and from the ASC-study.3 

When a sequential analysis is stopped, a median unbiased estimate for the treatment or
exposure effect can be calculated with its CI. This estimate is adjusted for the multiple
testing due to the repeated looks at the cumulative data.

The computer program PEST10 was used for the sequential analyses.

5.4 Sequential re-analysis of the two examples from the literature 

5.4.1 Example I:
In the LNCS-trial2 unconditional and conditional power calculations were based on data
observed in the first 86 patients. The actual incidence of renal failure was much lower
than anticipated, so the unconditional power was less than 0.5 to detect a 50% reduction
in hazard rate. Conditional Power values were calculated for various assumed values of
the incidences of renal failure under P and under S. These CP values were less than 0.15
for a 50% reduction in hazard rate. Thus it was considered highly unlikely that
plasmapheresis would add significant benefit to standard drug therapy and the trial was
terminated.

We re-analysed the LNCS-data sequentially with a (truncated) SPRT and a TT. The
specifications for the sequential tests were the same as the ones used in the design phase
for the fixed sample size calculations.2 As measure of treatment difference � was taken
equal to the negative logarithm of the hazard ratio (HR). Thus the null hypothesis can be
formulated as H0: 0��  with a (one-sided) type I error 05.0��  and a type II error

12.0�� . The HR was powered to be 0.5, which translated into an alternative
hypothesis H1: � � 693.05.0ln ���� R�� . The events and their time-to-event and the
censored follow-up times were entered chronologically into the sequential analysis. Note
that the test statistic Z is the log-rank statistic and Z 2/V corresponds to the well-known
log-rank test. 

Using an SPRT (Figure 1a), the trial could have been terminated with acceptance of
the null hypothesis after inclusion of the results of the first 58 patients with 4 events in 29
patients in group S and 10 events in 29 patients in group P. The median unbiased estimate
of the HR was equal to 1.73 with a 95% CI (0.56 ; 5.22).

Using a TT (Figure 1b), results of all 86 patients with 10 events in group S and 12
events in group P were entered sequentially. The sample path touched the boundary for
acceptance of the null hypothesis, but just did not cross it. The median unbiased estimate
of the HR was equal to 1.37 with a 95% CI (0.58 ; 3.21). (NB Lachin reported HR = 1.41
(0.61 ; 3.26) as the final estimate for the HR for the 86 patients.)
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5.4.2 Example II:
In the ASC-study3 CP values were calculated based on data from the first third of the
study (100 matched pairs) and assuming the estimated current trend as the parameter
value for the rest of the study. For HSV1 and HSV2 CP values of about 0.39 were found,
whereas the CP for CMV was 0.90. The authors decided to complete the study till the
planned end. They also calculated CP values assuming the parameter value R�  as
specified originally under H1. These CP values were 0.72 for HSV2, 0.86 for HSV1 and
0.94 for CMV.

To obtain an idea of the ‘sensitivity’ of our approach we created ten random
permutations of all 340 matched pairs resulting from both the HSV1 and the HSV2 data
at the end of the study (Table 1). 

Table 1 Results at the end of the ASC study3 (after 340 matched pairs).

cases

HSV1 HSV2

neg. pos. neg. pos.

neg. 34 65 195 51controls

pos. 46 195 56 38

OR 1.41 0.91

exact p-value 0.09 0.70
exact 95%-CI (0.95 ; 2.11) (0.74 ; 1.64)

 

Figure 1a
LNCS-data analysed in a one-sided truncated
SPRT with R� =-ln(0.5), 05.0��  and 12.0�� .
(The truncation point was cut off.)

1b
LNCS-data analysed in a one-sided TT with

R� =-ln(0.5), 05.0��  and 12.0�� .

STOP the study – a boundary has been crossed CONTINUE the study – no boundary has yet been crossed
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Figure 2 Conditional power values for information fraction k = 1/4, 1/3 and 1/2 for parameter values
�  equal to 1�  ( � ), 2�  ( � ) and 3�  ( � ) for 10 permutations of the HSV2 data. 
(For illustration purposes k was diminished and increased by a small amount.)

For each permuted data set we adapted the method as described3 for the calculation of
the CP for McNemar's test to allow its use for two-sided tests. Figure 2 shows the CP
values calculated when 75, 100 or 150 matched pairs were analysed (i.e. at k = 1/4, 1/3 or
1/2 respectively) for three parameter values 1� , 2�  and 3� . 

When 1/4 or 1/3 of the planned case-control sets were analysed, CP values were in
general too high (i.e. higher than 0.3) to terminate the study. When half of the fixed
sample size was analysed, CP values were lower but still varied considerably. When the
current trend in the data was extrapolated, CP values were less than 0.2 for 6 of 10 and 9
of 10 permutations at information fractions of 1/3 and 1/2, respectively (not shown). In
general, using larger parameter values � led to higher CP values. 

We also analysed each permutation of the data by a group sequential test and a
continuous sequential test, both with a double SPRT and a double TT. We analyzed the
data group sequentially after inclusion of 20%, 40%, 60%, 80% and 100% of the matched
pairs respectively. All sequential tests were designed9,11 for 1 : 1 matched dichotomous
data with the same specifications as for the original fixed sample case-control study
(H0: 0��  versus H1: � �2ln�� R��  with 05.02 ��  and 20.0�� ). The parameter
�  was chosen equal to the logarithm of the OR, that is ln[ � ��� �1 ] with �  as the
probability of a discordant pair with case ‘antibody positive’ and control ‘antibody
negative’. The test statistics are Z = Sn - n/2 and V = n/4, where n is the number of
discordant pairs observed, Sn is the observed number of discordant pairs with case
‘antibody positive’ and control ‘antibody negative’ and n/2 is the expected number of
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discordant pairs under the assumption that the probability of a discordant pair �  is equal
to 1/2. Note that here Z ²/V corresponds to McNemar's test for matched pairs without
continuity correction. 

The group sequential and continuous sequential tests for the 10 permutations of the
HSV2 data all ended with the acceptance of H0. Group sequential analysis with an SPRT
or TT led more often to early termination of the HSV2 data than calculation of the CP
with 2�  as the parameter value (CP < 0.3). When results of continuous and group
sequential analyses are compared, in general, more data sets could be saved using a
continuous sequential test. The percentage saving using a continuous SPRT was greater
than or at least equal to the amount of saving using a continous TT for all permutated
data sets (Table 2). 

Table 2 The percentage saving in matched sets after continuous or group sequential analysis for ten
permutations of HSV2 data. All sequential analyses accepted H0.

continuous sequential group sequential
permutation SPRT TT SPRT TT

1 67 64 60 60
2 50 50 60 40
3 69 49 60 60
4 71 61 60 60
5 76 68 60 60
6 61 59 60 40
7 75 65 60 40
8 71 69 80 60
9 54 54 40 40

10 61 61 60 60

Using the SPRT, sequential evaluation of matched sets would have saved 50% to 76%
as compared to the analysis of the planned fixed sample size. The median number of
matched sets needed was 96.5. The range of values for V in the ten simulations was 5.5 to
11.0 with a median value of 7.75. With respect to the fixed sample size V-value (=16.34)
the range for V was 0.34 to 0.67 with a median value equal to 0.47. (Note that V is in
terms of ‘information’ i.e. discordant pairs, thus saving 33% to 66% of these.) With the
TT 49% to 69% of the fixed sample number of matched sets could have been saved. The
median number of matched sets needed was 118. The range of values for V in the ten
simulations was 7.75 to 11.75 with a median value of 9.125. With respect to the fixed
sample size V-value (=16.34) the range for V was 0.47 to 0.72 with a median value equal
to 0.56. (In terms of discordant pairs this means savings of 28% to 53%.) Group
sequential SPRT and TT resulted in a median saving of 60% of the matched sets. 
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In Figure 3 the median unbiased estimates for the ORs and their 95% CIs are depicted
for each of the ten permuted data sets. All confidence intervals include 1, the value of the
OR under H0.

Results of continuous sequential analyses using a (truncated) SPRT or a TT for one of the
simulated HSV2 data sets are presented as an example in Figures 4a and 4b. The (truncated)
SPRT (Figure 4a) could be stopped after 87 matched sets with 36 discordant sets (a saving
in terms of the number of matched sets of 71%); the TT (Figure 4b) could be stopped after
118 matched sets with 43 discordant sets (a saving of 61%).

Figure 3 Median unbiased estimates and 95% confidence intervals for the Odds Ratio (OR) for 10
permutations of the HSV2 data analysed by the SPRT and TT.

HSV2 data
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4b
One of the permutations of the HSV2 data
analysed in a two-sided TT with � �2ln�R� ,
2� = 0.05 and � = 0.20.

STOP the study – a boundary has been crossedSTOP the study – a boundary has been crossed
Figure 4a
One of the permutations of the HSV2 data analysed
in a two-sided truncated SPRT with � �2ln�R� ,
2� = 0.05 and � = 0.20. (The truncation point was cut
off.)
101
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In only one of the ten permuted HSV1 data sets a CP value based on 2�  between 0.1
and 0.3 could have led to early termination after 1/3 of the data sets were analysed. 

When the current trend was extrapolated, CP values for this same permutation were
less than 0.1 after 1/4, 1/3 and 1/2 of the data was observed. Sequential analyses of the
ten permuted data sets led to savings ranging from 0 to 91% (Table 3). 

Table 3 The percentage saving in matched sets after continuous or group sequential analysis for ten
permutations of HSV1 data. 
Most analyses accepted H0, except for those marked by a * for which H0 was rejected; and
those marked by $ for which H0 was accepted after the planned 300 matched sets, but within
the actually analysed 340 matched sets.

continuous sequential group sequential
permutation SPRT TT SPRT TT

1 25 53* 0 20
2 44 44 40 40
3 0$ 22 0 20
4 9 20* 0 20*
5 91* 84* 80* 80*
6 0$ 58* 60* 60*
7 0$ 35* 0$ 20*
8 43 46 40 40
9 71 65 60 60

10 66 66 60 60

Figure 5 Median unbiased estimates and 95% confidence intervals for the Odds Ratio (OR) for 10
permutations of the HSV1 data analysed by the SPRT and TT.
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Again, for most of the permutations, a continuous sequential analysis saved more data
sets (median saving of 44%) than a group sequential analysis (median saving of 40%).
One of the permuted data sets ended very early with the rejection of H0. For the other
data sets the parameter estimates and their CIs were similar (Figure 5).

5.5 Discussion

During the course of a clinical trial or prospective epidemiological study the need can be
felt to consider early stopping for ‘futility’, because accrual is much slower than
anticipated or because the hypothesized effect size does not seem to exist. For AIDS
clinical trials a strong relationship between early patient enrollment and the eventual
ability of the trial to attain its target sample size was noticed.12 For these trials the
feasibility or futility can be gleaned from the early enrollment patterns to a considerable
extent. When patient enrollment in a trial lags behind and it looks unlikely that the target
sample size will be reached, investigators should consider whether to stop the trial for
futility with unconclusive results or change to a sequential continuation of the trial
hoping this will lead to more conclusive evidence. 

Stochastic curtailment procedures, calculation of the conditional coverage probability
(CCP) and calculation of the CP have been proposed as decision tools for early stopping
of a trial or study. Stochastic curtailment procedures were developed to enable early
stopping by evaluating the CP at multiple times during a study.13 In case early stopping is
considered at just a single point in time these procedures may be conservative in terms of
their type I and type II error probabilities. The CCP is defined6 as the probability that a
two-sided (95%) confidence interval around the final estimate, given the observed data
and an assumed alternative hypothesis H1 for the remainder of the study, includes the
parameter value under the null hypothesis H0 (e.g. the value 1 when H0: OR = 1 is
assumed). If the CCP is high for plausible values of the assumed parameter, the study is
likely to be inconclusive.

Calculation of the CP and the CCP is not straightforward; sometimes approximations
to the exact CP have to be made and/or ad-hoc computer programs have to be written.
The calculation requires extrapolation of the data obtained so far and is based upon rather
arbitrary choices. First, a parameter value �  must be chosen. Ware et al14 calculated their
‘futility index’ (defined as the conditional probability that a trial will fail to demonstrate
an effect given the results already observed) using R� . Pepe and Anderson5 showed that
stopping rules based on R�  may be overconservative in many cases. Therefore, they
proposed to base the CP calculations on 2� , the limit of the (one-sided) 84%-CI for the
parameter estimate. Strömberg6 used the limits of the (one-sided) 75%- or 90%-CI as the
parameter values ( 1�  and 3�  respectively) for his CCP calculations. Thus a variety of
possible parameter values �  can be thought of and the CP value can be quite different
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depending upon the value chosen.5 Second, a threshold must be determined for �, the CP
value below which the decision to stop the study and accept H0 can be made. Ware et al14

used a value equivalent to a � of 0.33. Pepe and Anderson5 recommend values less than
or equal to 0.3. Betensky15 works with threshold values of 0.1 (conservative) and 0.3
(non-conservative). Conservative values for � do not affect the power much while non-
conservative values will lead to power loss. Strömberg6 gives no clear choice for the
critical value for the CCP. He admits that his approach permits a flexible definition of an
‘inconclusive study’. Third, the ‘optimal’ information fraction k must be chosen. Pepe
and Anderson5 find it difficult to provide a general recommendation, but think that values
between 1/4 and 1/2 have intuitive appeal. In practice, the moment for calculating the CP
arises more from the trial or study progress than from a possible ‘ideal’ information
fraction.

Therefore, we propose to analyse the data sequentially as an alternative to the
estimation of CP or CCP. Either a group sequential or a continuous sequential test
procedure can be used in such situations, where the choice depends on pragmatic
considerations. We illustrated our proposal with re-analyses of two examples from the
literature.2,3 In our re-analyses we chose the same specifications for the sequential test
( R� , � and �) as for the original fixed sample size design. Lachin et al2 concluded, based
on calculations of, amongst others, the (un)conditional power that it was highly unlikely
that there would be any benefit of additional plasmapheresis. For these calculations they
specified a range of plausible values for the true incidences or parameter values. Our
sequential re-analysis of the LNCS-data showed that savings in the number of patients
compared to the corresponding fixed sample size could be none (the TT) or 33% (the
SPRT). Hunsberger et al3 decided to complete their association studies based on CP
values larger than 0.3 for all three antibodies. CP values calculated under the originally
specified parameter value R�  were highest (always higher than 0.3) and thus indeed very
conservative. Our results confirm that a decision based on the CP to stop the study or to
continue is rather arbitrary. We studied the ‘sensitivity’ of our sequential analyses by the
creation and analysis of 10 random permutations of the final HSV1 and HSV2 data.3

Sequential analyses more often led to early termination of the studies and in a more
objective way. 

Sequential analyses have several important advantages as compared to the use of CP: 
- no extrapolation of the observed data is necessary;
- no choice needs to be made for the threshold value � for the CP; 
- no choice is required for the timing of the calculation of the CP, i.e. for the

information fraction k;
- stopping guarantees the type I and type II error probabilities, so there is no power loss;
- median unbiased parameter estimates and their CIs can be calculated after stopping;
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- standard software is commercially available10, so no ad-hoc computer programs have
to be written; 

- different kinds of outcome variables (binary, ordinal, survival, normal) can be
analysed with this software, while the calculation of the CP is complicated e.g. for
censored survival data15 and demands simplifying assumptions;

- adjustment for prognostic factors or confounding variables is possible9,10 ;
- sequential analysis using the boundaries approach as in PEST can be performed either

continuously or in a group-sequential way without adaptations, contrary to the
adaptations proposed for conditional power calculations7,15 at each time point. 

On average, a sequential analysis requires less patients to come to a decision than a fixed
sample size analysis.9

Although in theory these advantages are clear, we acknowledge that pragmatic
considerations can hamper the practical realization of sequential analysis. At the same
time we emphasize that only the primary outcome variable is monitored sequentially and
thus needs to be up-to-date. Furthermore, when continuous sequential monitoring is not
easy or convenient, group sequential analysis could be considered.

Both for fixed sample size tests and for sequential tests the (expected) sample size is
based on the type I and type II errors and on R� . The choice for R�  is in most situations
conducted by practical considerations of the feasibility of the trial. Although some
authors therefore consider the use of R�  as arbitrary, we think that it is the most
‘objective’ choice, especially when a trial or study is already underway and transformed
from a fixed sample size test to a sequential test.

Additional results of simulations11 performed to determine the characteristics of
sequential tests on matched data are given in Table 4. 

Table 4 The minimal amount of information Vmin needed before H0 can be accepted in a 1 : 1
matched case-control study or clinical trial with paired dichotomous data with type I error
�2  and type II error � (results from simulations).11 For comparison the corresponding fixed

sample size information Vfixed is given. OR: Odds Ratio.

10.02 �� , 05.0�� 05.02 �� , 20.0��

OR Vmin Vfixed Vmin Vfixed

1.5 17.75 65.83 11.00 47.76
2.0 6.00 22.53 4.25 16.34

SPRT

2.5 3.25 12.89 2.50 9.35
1.5 25.25 65.83 18.75 47.76
2.0 9.00 22.53 6.75 16.34

TT

2.5 4.75 12.89 4.00 9.35
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From these results we can derive the minimal information fraction. For example, for the
ASC-study3 (OR=2.0, 05.02 �� , 20.0�� ) the minimal information fraction using a
SPRT is equal to 4.25/16.34=0.26 and using a TT it is equal to 6.75/16.34=0.41. Before
this amount of information is gathered in the study, a sequential analysis cannot be
stopped early and accept H0. This minimal information fraction derived in terms of V is
the same as the fraction in terms of the number of discordant pairs.

Recently, Whitehead introduced a ‘futility design’ in the PEST program (version
4.1).10 This ‘futility design’ also allows early termination of a trial when cumulating
results look disappointing. But, interim analyses using the ‘futility design’ cannot result
in early stopping to reject H0. For the ‘futility design’ either the slope of the boundary
must be specified or a maximum value for V, the amount of information to be used.
Although a guideline is given for the choice of the value for the slope of the boundary,
specifications for the ‘futility design’ are also arbitrary.

Betensky15 and Strömberg6 both observed that little attention is paid to designs of
epidemiological studies with a possible early acceptance of H0. Strömberg even calls for
‘further discussion concerning early stopping of epidemiologic studies’. Our results
confirm their statements that early stopping for ‘futility’ can conserve valuable
resources.11,16

We share the view that one should terminate a clinical trial earlier than planned only in
exceptional circumstances.17 When a study is stopped early, savings in the number of
patients, biological samples, in time, costs, etc. must be weighed against the decreased
precision of the (adjusted) parameter estimate. This is probably of more concern when
the null hypothesis is rejected than when it is accepted for ‘futility’ with the conclusion of
‘no relevant effect’. When a trial or study is stopped early, then the effect estimates
(although perhaps non-significant) and their CIs should be published. This is especially
valuable for contribution to future overviews or meta-analyses.

Quoting Jennison and Turnbull4, p.219: ‘… it is wise to define a study protocol as
unambiguously as possible at the outset. If this is done thoroughly and an interim analysis
schedule is also defined, the full range of group sequential tests are available for use and
one of these tests may be preferred to stochastic curtailment.’

Our results show that, when a study was not designed sequentially, (group) sequential
continuation of the study both provides a more objective strategy requiring no arbitrary
assumptions and turns out to be at least as and often even more efficient than the
calculation of CP .
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Summary

The sample size necessary to detect a significant Gene x Environment interaction in an
observational study can be large. For reasons of cost-effectiveness and efficient use of
available biological samples we investigated the properties of sequential designs in
matched case-control studies to test for both non-hierarchical and hierarchical
interactions. We derived the test statistics Z and V and their characteristics when applied
in a two-sided triangular test. 

Results of simulations show good agreement with theoretical values for V and the type
I error. Power values were larger than their theoretical values for very large sample sizes.

Median gain in efficiency was about 27%. For a ‘rare’ phenotype gain in efficiency
was larger when the alternative hypothesis was true than under the null hypothesis.

Sequential designs lead to substantial efficiency gains in tests for interaction in
matched case-control studies.

Keywords: sequential tests, gene-environment interactions, matching, case-control
studies, sample size

6.1 Introduction

To study the association between a disease, for example cancer, and a genetic risk factor or
an environmental factor case-control studies can be designed and analysed. To adjust for
possible confounding factors a case can be matched to one or more controls by, for
example, ethnicity or age. Both genetic and environmental factors may contribute to the
susceptibility of disease and these factors may interact in their influence on the risk of
disease.1 Then a gene-environment interaction can be interesting to explore. Interactions can
be tested both hierarchically by first including the main effects (for example G and E for a
genetic and an environmental factor) in the model and subsequently testing for the
interaction between these main effects (GxE), and non-hierarchically, thus modelling the
interaction but not the associated main effects. A non-hierarchical model can be of interest
when both the genetic type and the exposure are required to increase the risk of disease.1,2

This kind of association is discussed as model D.1

Sample sizes necessary to detect significant GxE interactions can be large when the
occurrence of the genetic factor is rare.3 Furthermore, when an increased risk does exist for
a genetic factor, the interaction is likely to be very moderate4 and thus, again, large sample
sizes will be needed. Besides, epidemiological studies often use biological samples that are
limited in quantity or costly to obtain. These considerations make it essential to search for
study designs that make very efficient use of available resources.5-8 
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Matched case-control studies already require a smaller sample size than unmatched
studies under the same model specifications to study an association with disease.7,9 While
matching already leads to more efficient designs in terms of fixed sample size, sequential
methods may reduce the average sample size even further.6,7 A sequential analysis tests the
cumulative data every time new information becomes available. 

In the following we describe the test statistics we derived for the sequential analysis of
both hierarchical and non-hierarchical GxE interactions in matched case-control studies. We
investigated the efficiency of these sequential analyses by simulations.

6.2 Models and hypotheses

In this paper we study a recessive bi-allelic disease with prevalence of the recessive allele a
equal to qa. Then a dichotomous disease phenotype can be defined from the three genotypes
AA, Aa and aa. The probability of the disease phenotype, P(G=1), equals qa

2 for aa and the
probability of no disease phenotype, P(G=0), equals 1–qa

2 for AA or Aa. The probability
distribution for the dichotomous exposure variable is pe for exposure, i.e. P(E=1), and 1–pe

for no exposure, i.e. P(E=0).

a) GxE interaction in a non-hierarchical model:
The likelihood for a non-hierarchical interaction in a conditional logistic regression model,
i.e. without main effects G and E, can be written as
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where Gi1 and Ei1 denote the case information for genetic and environmental factors,
respectively,  and Gi2 and Ei2 the control information, in the ith matched set.

b) GxE interaction in a hierarchical model: 
The likelihood for a hierarchical interaction in a conditional logistic regression model, i.e.
with main effects G and E, can be written as
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where Gi1 and Ei1 denote the case information for genetic and environmental factors,
respectively,  and Gi2 and Ei2 the control information, in the ith matched set.



Sequential tests for gene-environment interactions

113

6.3. The sequential tests

For a sequential test as developed by Whitehead10 to test the null hypothesis H0: � = 0
versus H1: � � 0  two test statistics are needed,  the score statistic Z and Fisher’s
information V. The parameter of interest � is standardized such that under the null
hypothesis it always equals 0. An example is the logarithm of the odds ratio for the
interaction. When the information of the genetic and environmental factors for a new
case-control set is obtained, new values for Z and V can be calculated. This is called a
continuous sequential analysis. Z and V can also be calculated when information on more
than one matched case-control set becomes available, a so-called group sequential
analysis. Based on Z and V a decision with respect to H0 is made. Therefore cumulative
(Z,V)-values are plotted in a graph forming a pathway. Critical boundaries that enable to
make the decision are fixed beforehand. These critical boundaries depend on the (two-
sided) type I error 2�, the type II error � and the parameter �R. �R is the expected value of
the standardized parameter under the alternative hypothesis H1. Each new (Z,V)-point is
compared to the predefined boundaries. This leads to one of three decisions:
i) enough evidence is obtained to reject the null hypothesis when the upper or lower

boundary is crossed, no more observations are necessary;
ii) enough evidence is obtained to accept the null hypothesis when the inner wedge is

reached, no more observations are necessary;
iii) more evidence is needed to come to a decision when the new point is still within the

boundaries, so more observations are necessary.
We investigated the behaviour of the double Triangular Test (TT)10 as a sequential test
for GxE interaction (see Figures 1a and 1b for illustration of a double TT).

The test statistics Z and V for a sequential test on interaction in a non-hierarchical
model on matched case-control data can be derived in a rather straightforward way.7,10

This derivation is given in Appendix I.
For a sequential test on interaction in a hierarchical model on matched-case-control data

the test statistics Z and V are derived by first estimating the main effects in a conditional
logistic regression model without an interaction term on the available cumulative data.10

The estimated main effects are substituted as nuisance parameters so that Z and V can
subsequently be derived for the sequential test on interaction (see Appendix II).

In a matched case-control design only discordant sets are informative for the relation to
test. This means, for example, that when we study the effect of exposure, only matched
pairs with the case exposed and the control not, or vice versa, are informative for a possible
association between an exposure factor and a disease. This aspect applies also to tests on
GxE interaction (see Table 1). The fact that only discordant sets are informative influences
the total number of matched sets necessary for a test on interaction. Based on the
conditional logistic regression model, the probability of a discordant pair equals 
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� �
� �1OR1

1OR)1(
2

22

��

��

�

ae

aeae
disc qp

qpqp
�  (see Appendix III), 

where OR is the Odds Ratio for the interaction term in the model, i.e. OR=exp(�GE). We
assume that the odds ratios for the main effects of G and E are equal to 1.

Table 1 Gene (G) x environment (E) interaction in a matched case-control set
(G=0: genetically not at risk, G=1: genetically at risk,
E=0: not exposed, E=1: exposed)

Control
G = 0 
E = 0

G = 0
E = 1

G = 1
E = 0

G = 1
E = 1

G = 0
E = 0

@

G = 0
E = 1

@

G = 1
E = 0

@Case

G = 1
E = 1

@ @ @

@: case-control pairs informative for a test on interaction 

6.4 Fixed sample size determination

Gauderman describes how the fixed sample size can be estimated for a test on GxE
interaction in a hierarchical model.3 His calculations are based on a likelihood ratio test
statistic for a conditional logistic regression analysis of matched case-control data. 

First the expected log-likelihood 1
�  = �(ln(L(�G, �E, �GE)), with L as defined in

Equation (2), is maximized with respect to the observable phenotype and exposure data.
This results in expected MLEs 111 ˆ,ˆ,ˆ

GEEG ���  and an expected log-likelihood 1
�̂ . Then, the

expected log-likelihood 0
�  = �(ln(L(�G, �E))) under the null hypothesis (i.e. H0: �GE = 0)

is maximized. This leads to expected MLEs 00 ˆ,ˆ
EG �� and an expected log-likelihood 0

�̂ .
The likelihood ratio test statistic is defined as � = 2( 1

�̂  � 0
�̂ ). For N matched sets N� is

the non-centrality parameter of the �2-distribution under the alternative hypothesis H1.
When both the genetic factor and the environmental factor are dichotomous, the test on
interaction has one degree of freedom and N can be computed as N = (z� + z�)2 / � with
2� as the (two-sided) type I error, � as the type II error and zx as the standardized normal
deviate exceeded with probability x. For these calculations user-friendly software is
provided.11
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We followed the same approach for a non-hierarchical model. Now the expected log-
likelihoods 1

�  = �(ln(L(�GE))) and 0
�  = �(ln(L(�))) (the ‘null’ model), with L as defined

in Equation (1), are maximized leading to the MLE 1ˆ
GE�  and expected log-likelihoods 1

�̂

and 0
�̂ . Again the test on interaction has one degree of freedom and N can be calculated

as before.
The necessary fixed sample size for a test on interaction in a non-hierarchical model

can also be estimated using Whitehead’s test statistic V (Fisher’s information), V = (z� +
z�)2 / (�GE)2 with �GE = �R = ln(OR) under H1.10 The number of discordant matched case-
control sets is equal to Ndisc = 4V (see Appendix I). The total number of matched case-
control sets can be estimated by Ntot = 4V /�disc with �disc as the probability of a discordant
matched set. 

6.5  Sample size determination for a sequential test

When a sequential test is used, sample size is a stochastic variable and therefore cannot be
determined beforehand. Only an average or median estimate or other characteristics of its
distribution can be given. This estimate can be derived by multiplying the average or
median value for V by 4 and dividing it by the probability of a discordant set. (The computer
program PEST version 4 provides the average and median values for V).12 A GxE
interaction can be tested continuously or group sequentially. In genetic laboratory
determinations a 96-wells plate is common for PCR-based genotyping. For a GxE
interaction 2 wells are required for each matched case-control set, 1 to determine the
phenotype of the case and 1 to determine the phenotype of the control, leading to a group
size of, e.g., 44, when space is also reserved for blank and control samples. A group
sequential analysis will in general be less efficient in terms of sample size than a continuous
sequential analysis. However, it may be more efficient in terms of cost or logistic
(laboratory) considerations.

For a ‘rare’ gene a group size of 44 often contains no information to be able to estimate
the main effect of G in a hierarchical model. In these situations the group size was increased
to 3*44.

6.6 Data generation and simulations 

To investigate the performance of the test statistics simulation studies were carried out both
under H0: OR = 1.0 and under H1 with an OR of 1.5, 2.0 and 3.0, where OR is the Odds
Ratio for the interaction term in the model. The odds ratios for the main effects G and E are
assumed to be equal to 1. The two-sided type I error 2� was set equal to 0.05, the power 1-�
to 0.80 or 0.90, pe = P(E=1) to 0.25, and qa

2 = P(G=1) to 0.01 for a ‘rare’ phenotype or 0.40
for a ‘common’ phenotype. For each combination of an OR and P(G=1), a large population
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of matched cases and controls was simulated. The probability of occurrence of the
several combinations of phenotype and exposure for both cases and controls was based
on the law of Hardy-Weinberg and the conditional logistic regression model.

For each combination of the power, the OR and P(G=1) 2500 simulations were run on
random samples from the corresponding large population both under H0 and under H1.
Every simulation run resulted in an average, median and 90th percentile for the
information statistic V and for the total number of case-control sets N. The fraction of
simulations that resulted in the rejection of H0 is an estimate of the type I error and the
power of the test.

6.7 Results of simulations

For the non-hierarchical interaction model both continuous and group sequential analyses
were simulated (Table 2a and 2b). For data with a ‘common’ phenotype (P(G=1)=0.40)
and an OR equal to 1.5 or 2.0 the simulation results agreed very well with the theoretical
values for 2� and 1-�. For an OR equal to 3.0 resulting significance levels were about
0.05, but power values were lower than the theoretical values. The median gain in
number of matched case-control sets necessary for a sequential test compared to
Gauderman’s fixed sample size estimate was about 25%. For data with a ‘rare’ phenotype
(P(G=1)=0.01) power values were mostly larger than their theoretical values, especially
for an OR = 1.5. Median efficiency gain was about 22%.

For the hierarchical interaction model only group sequential analyses were simulated
(Table 3a and 3b). For the data with a ‘common’ phenotype simulation results for all ORs
resembled their theoretical values. Only for an OR = 1.5 power values were larger than
the theoretical values. Median efficiency gain as compared to Gauderman’s fixed sample
size estimate was about 34%. For data with a ‘rare’ phenotype power values were larger
than theoretical values, but significance levels were about the theoretical value of 0.05.
Median efficiency gain was about 30%. 

In general, for data generated under H0 the median efficiency gain was smaller than
that under H1.

6.8 An example

Breast cancer is caused by genetic factors, environmental factors or a combination of
these two in most cases. Van der Hel (submitted) investigated the combined effects of
smoking and genetic polymorphisms in relevant metabolic genes. She also looked at the
cumulative effect of putative at risk phenotypes on breast cancer risk. N-acetyltransferase
1 and 2 (NAT1, NAT2), glutathione S-Transferase M1 (GSTM1) and T1 (GSTT1) are
enzymes, involved in carcinogen metabolisms. The genes coding for the NAT enzymes
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STOP the study – a boundary has been crossed STOP the study – a boundary has been crossed

Figure 1a
Results of a sequential test on non-hierarchical
interaction using a double triangular test with
2� = 0.05 and 1-� = 0.80 to detect an OR = 2

1b
Results of a sequential test on hierarchical
interaction using a double triangular test with
2� = 0.05 and 1-� = 0.80 to detect an OR = 2

contain polymorphic sites, which cause variable enzymatic activity. GSTM1 or GSTT1
null phenotype results in a complete lack of enzymatic activity. 

Follow-up of a population-based screening program for early detection of breast
cancer in the Netherlands (DOM) revealed 942 women with incident breast cancer. One
thousand control women were randomly selected from the DOM-cohorts. As
environmental factor the smoking status of the women was assessed at baseline by a self-
administered questionnaire. Women were classified as ‘never’ smokers or ‘ever’
smokers. The probability of being an ‘ever’ smoker was estimated as 0.30. When a
woman had three or four putative phenotypes at risk she was considered ‘susceptible’,
otherwise she was not. The probability to be ‘susceptible’ was estimated as 0.30 (Van der
Hel submitted).

A total of 579 cases and controls could be matched on age. To detect an OR equal to 2
with a hierarchical test on interaction, a two-sided significance level 2� = 0.05 and a
power 1-� = 0.80 a fixed sample size of at least 674 matched sets (according to
Gauderman) would be required. For a non-hierarchical test on interaction with the same
specifications at least 290 (according to Whitehead) to 308 matched sets (according to
Gauderman) would be required. Cumulative data on cases and controls were analysed in
the chronological order the cases became apparent. Data were analysed sequentially with
group sizes of 44 case-control sets. 

The non-hierarchical test on interaction led to the acceptance of the null hypothesis
(i.e. no interaction between G and E) after 5 groups of data (= 220 case-control sets of
which 33 informative sets) were analysed (Figure 1a). Z was equal to –0.5 and V was
equal to 8.25. The median unbiased estimate for OR was 0.92 (95% C.I. 0.46 ; 1.84).
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Thus an efficiency gain of about 29% with respect to the fixed sample size was reached
by using a group sequential test.

The hierarchical test on interaction also concluded that there was no evidence for an
interaction between G and E after the analysis of 9 groups of data (= 396 case-control
sets of which 73 were informative) (Figure 1b). Z was equal to 0.24 and V was equal to
9.56. The median unbiased estimate for OR was 1.11 (95% C.I. 0.57 ; 2.19). The main
effects were estimated as ORG = 1.173 and ORE = 1.167. Here an efficiency gain of 41%
was reached by using a group sequential test instead of a fixed sample test.

6.9 Discussion

The sample size necessary to detect a significant GxE interaction in an observational
study can be (very) large. If an increased risk does exist for the combination of a genetic
and an environmental factor, its size is more likely to be moderate (OR of 1.2 to 1.6) than
large, thus requiring a large number of observations.4 As an alternative to a large study,
many small studies can be pooled. But pooling of small studies may be hampered by
publication bias (i.e. positive findings are more likely to be published than negative
findings).4 Therefore a large, conclusive study to detect a moderate interaction would be
preferred to a meta-analysis of small studies. 

For reasons of cost-effectiveness and efficient use of available resources, like
biological samples, we investigated the properties of sequential designs in matched case-
control studies to test for interaction. Matched study designs already require smaller
sample sizes than unmatched designs. Sequential tests require, on average, a smaller
sample size than their fixed sample size counterparts.

We derived the test statistics for sequential tests on hierarchical and non-hierarchical
interactions in matched case-control studies. For non-hierarchical interactions we
compared results of continuous and group sequential tests. The continuous sequential
analyses reflect the theoretical properties of the tests, while the group sequential tests
reflect more the way laboratory analyses will be performed in practice. 

For the non-hierarchical models we estimated fixed sample sizes according to
Gauderman  and by using Whitehead’s expression for V. Differences between the two
estimates arise because Gauderman bases his calculations on the likelihood ratio test,
while Whitehead uses the score test. For the hierarchical models we could only estimate
sample size following Gauderman’s formula. Efficiency gains for the sequential tests
were calculated with respect to Gauderman’s fixed sample size estimate. 

Results of our simulations for sequential tests showed a good agreement with
theoretical values for both types of interaction when a ‘common’ phenotype was
assumed. Efficiency gains ranged from 19 to 48% for ORs less than or equal to 2. Only
for very small studies (OR = 3) the gain was obviously less. For the ‘rare’ phenotype the
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gain in efficiency was largest for data generated under the alternative hypothesis. The
probability of a discordant, and thus informative, pair depends on the OR and, especially
when the phenotype is ‘rare’, this leads to smaller values for πdisc under H0 (when OR=1)
than under H1 (when OR>1). This results sometimes in median estimates of the number
of matched sets necessary that are only slightly smaller or even somewhat larger than the
fixed sample size estimate. Because πdisc is smaller under H0 than under H1, more case-
control sets are needed under H0 than under H1 to get the same amount of information V. 

In general, the larger studies in terms of sample size led to power values that were
larger than their theoretical values. Resulting significance levels agreed well with their
theoretical values.

The ability of a sequential test to accept the null hypothesis was illustrated by the
example of the breast cancer data. A possible interaction with an OR=2 between genetic
susceptibility and smoking was tested non-hierarchically and hierarchically. Both
sequential tests accepted the null hypothesis without using all the available data. Gains of
29% and 41% in the number of matched sets (as compared to the fixed sample size)
necessary to come to a decision were reached for the non-hierarchical and hierarchical
test, respectively. 

Case-only designs are mentioned as alternative to matched case-control designs.2,13,14

Gauderman shows that case-only designs can be more efficient than matched case-control
designs to study (gene x gene) interaction.14 Case-only designs require no selection of
controls, but they are only useful to test an interaction in the cases. They depend strongly
on the assumption that the genetic and the environmental factor are independent in the
large population. If that association has still to be examined, a (matched) case-control
study yields more information. If genetic and environmental main effects are also of
interest or have to be adjusted for, case-only designs are no option. Further work will
show efficiency gains of the use of sequential designs in case-only studies and compare
these efficiency gains to those from non-hierarchical models in matched case-control
studies. 

When biological samples are scarce or laboratory examinations are costly savings in
samples, labour, and/or costs can be very valuable. Sequential tests can be very useful to
handle the available data efficiently and can lead to considerable savings.

When biological samples for controls are abundant, but those for cases are scarce, still
more efficiency can be obtained by matching more than one control to a case.7,15 
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APPENDIX I A non-hierarchical interaction model

The likelihood for a non-hierarchical interaction in a conditional logistic regression
model has the form
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where Gi1 and Ei1 denote the case information for genetic and environmental factors,
respectively,  and Gi2 and Ei2 the control information, in the ith matched set.
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because (Gi1Ei1 = 1 and Gi2Ei2 = 0) or (Gi1Ei1 = 0 and Gi2Ei2 = 1).
For the ith matched set Vi = 1/4.
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APPENDIX II A hierarchical interaction model

The likelihood for a hierarchical interaction in a conditional logistic regression model has
the form
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where Gi1 and Ei1 denote the case information for genetic and environmental factors,
respectively,  and Gi2 and Ei2 the control information, in the ith matched set.
This likelihood is identical to the likelihood of fitting a logistic regression model to a set
of data with constant response, no intercept and differences between the corresponding
values for case and control for G, E and GE:
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where �Gi = Gi1 – Gi2 (the difference between the case value Gi1 and the control
value Gi2), 

�Ei = Ei1 – Ei2 (the difference between the case value Ei1 and the control
value Ei2) and 

�GEi = Gi1Ei1 – Gi2Ei2 (the difference between the case value Gi1Ei1 and the
control value Gi2Ei2). 
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We derived estimates for �G and �E by fitting the reduced model (i.e. a model without the
interaction term) in a logistic regression analysis. Subsequently the null hypothesis H0:
�GE = 0 can be tested in a sequential analysis.
Substituting the derived estimates bG and bE for �G and �E and �GE = 0 in (3) leads to
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Note that Z equals the sum over all non-zero values for the variable of interest (�GEi)
times the difference between the constant response (=1) and the fitted value for a logistic
regression model with covariates �Gi and �Ei , a constant response and no intercept term.

To derive Fisher’s information V we have to work out the second derivatives of the log-
likelhood with respect to the parameter of interest �GE. 
We simplify the notation by denoting ηi for exp(�G�Gi + �E�Ei + �GE �GEi).
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where GE�� � is the parameter of interest and )',( EG ��� �  is the vector of nuisance
parameters. 
Thus 
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Substituting 0�� and )',(*
EG bb��  into the expression for V leads for the separate

parts of this equation to:
(4) this second derivative is equal to the negative of the sum over all non-zero values for
�GEi times pi(1-pi) with pi = �i / (1 + �i);
(5a), (5b) these second derivatives are the negative of the sum over all non-zero values
for �GEi times the covariates �Gi and �Ei , respectively, times pi(1-pi);
(6) this matrix is the covariance matrix of the parameter estimates for the fit of a logistic
regression model with covariates �Gi and �Ei, a constant response and no intercept term.
(See also Whitehead par. 7.6.210 for the derivation of Z and V).

(N.B. The same values for Z and V are derived for the conditional logistic regression
model when a Cox PH regression model with strata is used to estimate the nuisance
parameters.)
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APPENDIX III

We define pe = P(E=1), 2
aq  = P(G=1) and OR = exp(�GE).

For the cases the following holds:
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Repeated looks at accumulating data:
to correct or not to correct?
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The history of the development of statistical theory has shown two main schools: the
Bayesian and the frequentist school. Fundamental differences between these two schools
have divided statisticians in the past into Bayesians and frequentists. In the preceding
chapters of this thesis we applied sequential testing theory following the frequentist
approach. Recent developments and publications have drawn attention again to the less
known likelihood approach and its applications in sequential testing. In this chapter I
describe the three approaches and their main features and differences. The differences
culminate when sequential methodology is applied. Therefore, especially this aspect will
be discussed.

7.1 The frequentist approach: Neyman-Pearson theory

Sequential testing theory was developed by Abraham Wald during the Second World
War to try to minimize cost of industrial experiments. Later sequential testing was
adopted in clinical trial settings for ethical reasons: we want to stop a trial early if a new
drug or treatment is especially beneficial or harmful. Wald (1902-1950) and also Neyman
(1894-1981) were the most influential exponents of the frequentist philosophy.1 Central
in the Neyman-Pearson theory is the likelihood ratio (LR), that is defined as LR =
P(x | �1) / P(x | �2), the ratio of the probability distribution or likelihood of the observed
data, summarized by x, given that hypothesis H1: � = �1 is true and the probability
distribution or likelihood of the observed data given hypothesis H2: � = �2 is true, where
� is the parameter of interest. If the LR is large, the observed data contain evidence
favouring �1, if the LR is small, the observed data contain evidence favouring �2 and if
the LR equals 1, there is no evidence for either �1 or �2. Wald’s Sequential Probability
Ratio Test (SPRT) is based on the Neyman-Pearson theory. It says that one should
continue collecting data as long as B < LR < A, to stop data collection and decide for H2

as soon as LR � B and to stop data collection and decide for H1 as soon as LR � A.2 A
and B are functions of the type I error � and the type II error �. Thus based on the LR,
Wald’s SPRT chooses between the two hypotheses using a stopping rule and a decision
rule. 

7.2 The frequentist approach: significance testing

While Neyman-Pearson theory is concentrated on hypothesis testing and decision-
making, another frequentist approach (usually ascribed to Fisher)3 concentrates more on
significance testing using critical values or p-value procedures. A statistical test is
performed under the assumption that the null hypothesis is true. Based on the observed
data, one rejects or accepts the null hypothesis. There is no explicit role for an alternative
hypothesis. Repeated significance testing procedures as introduced and fully explained by
Armitage4 can be viewed in this light. The statistical test is repeated after each new group
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of observations. To maintain an overall type I error � of, say, 0.05 and to avoid ‘chance
capitalization’ or ‘inflation of the error rate’, each interim analysis is performed at a
lower nominal value for �. Pocock and O’Brien and  Fleming, amongst others, have
developed different ways to ‘divide’ � for a fixed number of interim analyses.5,6 DeMets
and Lan describe how the overall � can be ‘spent’ more flexible according to the amount
of information (time) used.7

Whitehead further elaborated Wald’s SPRT in his ‘boundaries approach’.8 He
developed continuous stopping boundaries such that the type I error is maintained and
power requirements are satisfied. The use of these boundaries is a very flexible way of
performing interim analyses. Test statistics are the efficient score statistic Z and Fisher’s
information V. Z is a cumulative measure for the effect size, V is a measure for the
amount of information about the parameter � contained in Z. The parameter � that is to be
tested can be standardized such that it is always equal to zero under the null hypothesis.
Under the null hypothesis the distribution of Z is Normal with mean �V and variance V.
Whitehead’s approach is thus close to Fisher’s: no choice between two hypotheses is
made, but the null hypothesis is rejected or accepted based on the cumulative observed
data. When the sequential test leads to the decision to stop further data collection, the p-
value has to be adjusted for the multiple looks at the data.

7.3 The Bayesian approach

Already in the 18th century, Bayes (1701-1761) developed his theory on probability
which was published (posthumously) in 1763. Bayesians express their prior knowledge,
ideas, theories, … in a prior distribution function for the parameter of interest.
Subsequently they observe data as result of an experiment. The product of the prior
distribution function and the information about this parameter contained in the data and
expressed in the likelihood, leads to the posterior distribution function. This posterior
distribution can thus be viewed as an update of the prior information or the way belief is
altered by data. If the two hypotheses H1 and H2 are to be distinguished, the posterior
probability ratio can be expressed as the product of the LR and the prior probability ratio:
P(�1 | x) / P(�2 | x) = LR . P(�1) / P(�2).

When cumulative data from an experiment are analysed sequentially following the
Bayesian approach, the posterior distribution describes the currently available
information about the parameter of interest. This information can be used to decide
whether to stop the experiment because enough evidence is already gathered or whether
additional evidence is needed. In a Bayesian sequential setting no adjustment is necessary
for interim looks at accumulating data.8 The fact that test results following the Bayesian
approach depend to a large extent on the choice of the prior distribution makes the
approach less attractive. 
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7.4 The likelihood approach 

Over decades statisticians have divided themselves into two, often controversial, groups:
the frequentists and the Bayesians. The frequentists try to answer the question: ‘What
should I do?’, while the Bayesians ask: ‘What should I believe?’. Neither of these
approaches explicitly answers the question: ‘What do the data say?’3,9 Perhaps a ‘third
way’, the likelihood approach, deserves more attention than it has got until now. The
concept of likelihood can be ascribed to Fisher (1890-1962). Fisher was against the use of
prior probability distributions, but also rejected the idea that probability can only be
interpreted in a long-run frequency way. For example: one can state, that, if the null
hypothesis is true, the probability that we observe a specific test result, is smaller than,
say, 0.05. We mean to say that, if we would repeat our experiment a very large number of
times, we would observe this test result or one more extreme in less than 5% of the
experiments. Fisher’s ideas are formulated as 
- whenever possible to get exact results we should base inference on probability

statements, otherwise it should be based on the likelihood;
- the likelihood can be interpreted subjectively as a rational degree of belief, but it is

weaker than probability, since it does not allow an external verification, and
- in large samples there is a strengthening of likelihood statements where it becomes

possible to attach some probabilistic properties (‘asymptotic approach to a higher
status’).1

Fisher’s view differs, however, from the ‘pure likelihood’ view as supported by, amongst
others, Royall3 and Blume.9 This ‘pure likelihood’ view, or ‘evidentialism’ as Vieland
and Hodge called it10, tries to answer the question ‘What do the data say?’ by the use of a
methodology based only on the likelihood function. The Likelihood Principle states that
the likelihood function contains all of the information in an experiment relevant for
statistical inference about the parameter �.11 According to the Law of Likelihood, as
formulated by Hacking, the observed data are evidence supporting one hypothesis over
another hypothesis and the LR measures the strength of that evidence.3 Note that no
choice is made is for one or the other hypothesis. 

7.5 (Mis)interpretation of the p-value 

Controversies arise between the frequentist and the likelihood approach when it comes to
statistical inference. The controversies arise because of the way p-values are used and
interpreted in the frequentist approach. A p-value is the probability that the null
hypothesis is rejected erroneously. It is, however, also interpreted as a measure of
strength of evidence against the null hypothesis: ‘the smaller the p-value, the stronger the
evidence’. Several authors show that data from different experiments can have the same
likelihood, but do not necessarily lead to the same p-value.1,3,12 As an example, suppose
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we observe 8 successes in 10 experiments with probability of success for each
experiment equal to 0.5, a typical example of a binomial experiment. The one-sided p-
value corresponding to 8 or more successes in 10 experiments is equal to 0.055. If we had
not planned beforehand to do exactly 10 experiments, but to continue until 2 failures (8
successes) were observed, the sampling scheme is a different one. We then would have a
negative binomial experiment. In that case the one-sided p-value corresponding to 8 or
more successes is equal to 0.0195. While these two experiments have the same likelihood
and thus the same evidence about the parameter of interest, the p-values are different and
even lead to different conclusions with regard to the rejection of the null hypothesis. The
(strong) likelihood principle states that two data sets that produce proportional
likelihoods should lead to identical conclusions and thus should also carry the same
evidence about the parameter of interest. People are inclined to give different
interpretations to the p-value depending on the sample size of the experiment. If two
experiments that are identical except for their sample sizes produce results with the same
p-value, these results do not represent equally strong evidence against the null
hypothesis. Some statisticians will argue that the evidence is stronger in the smaller
experiment, while others will state that the results of the larger experiment give stronger
evidence.3 Thus, the �-postulate as formulated by Cornfield: ‘All hypotheses rejected at
the same critical level have equal amounts of evidence against them’ or in other words
‘Equal p-values represent, at least approximately, equal amounts of evidence’ is wrong.3 

7.6 Correction of the type I error

The discrepancy between frequentist and likelihood inference culminates in the use of
sequential methodology. When, for example, accumulating results of a clinical trial are
monitored applying a frequentist method, at each interim analysis part of the overall � is
spent. Smaller nominal values for � must be used at each interim analysis to guarantee
that the overall value of � is not inflated at the end of the trial. The consequence is that an
experiment cannot be extended beyond its planned sample size, because the preset level
of � is already ‘spent’.12 The decision to continue or to stop further data collection
depends not only on the information obtained so far but also on a stopping rule. This
stopping rule is a function of the type I error �. The type I error is not part of the
likelihood approach. Here the evidence in the data is entirely independent of the type of
sampling, be it sequential or fixed. It has been shown that the likelihood function in
sequential experimentation ignores the stopping rule and thus that the evidence from an
experiment is independent of the stopping rule.1,13 So, in a sequential experiment multiple
looks at the data do not affect the likelihood function. (Note that also Armitage remarks
in passing: ‘In fact, the likelihood function is unaffected, apart from a constant multiplier,
by the stopping rule under which the data were collected.’)4 
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7.7 Strength of the evidence

Pawitan, however, also emphasizes that the likelihood principle states something about
evidence, but not about any particular course of action.1 Then the question can arise when
‘enough’ evidence is obtained in favour of one of two hypotheses. One could argue that
‘enough’ evidence is a very subjective matter. Nevertheless, several likelihood supporters
have searched how to quantify the amount of evidence. The LR measures the strength of
the evidence. Let us denote the value of the LR by k. Royall suggested benchmark values
of k=8 and k=32 to distinguish between weak, moderate or fairly strong and strong
evidence.3 If the LR � k, the data show (fairly) strong evidence in favour of H1, if the LR
� 1/k, the data show (fairly) strong evidence in favour of H2 and if 1/k < LR < k, the data
show weak evidence. (Of course this is just a crude categorisation of a continuous
measure.) We can see what the data tell us by graphing the likelihood function and by
calculating 1/k likelihood intervals. An 1/k likelihood interval encloses all values for the
parameter of interest � for which L(�)/L )ˆ(� � 1/k, where L(�)/L )ˆ(�  is the normalized or
standardized likelihood function and �̂ is the maximum likelihood estimate (MLE) for �.
Or, in other words, it consists of all values that are ‘consistent with the observed data’.
Any � within the likelihood interval is supported by the data because the best-supported
value, the MLE �̂ , is only better supported by a factor k or less. One could notice a
similarity between likelihood intervals and confidence intervals. An 1/8 likelihood
interval corresponds to a 95.9%-confidence interval and an 1/32 likelihood interval
corresponds to a 99.1%-confidence interval. (An 1/6.67 likelihood interval corresponds to
a 95%-confidence interval.) Nevertheless, likelihood intervals should not be interpreted
as identical to confidence intervals. Furthermore, a (frequentist) confidence interval
depends also on the number of interim looks at the data, while likelihood intervals
depend only on the data itself. 

7.8 Misleading evidence

Strong evidence, however, can be misleading evidence. Observations can hold strong
evidence supporting H1 over H2, while in fact H2 is true. However, although evidence can
be misleading, the probability of observing strong misleading evidence is small and
limited by a universal upper bound P(LR � k) � 1/k, when the true distribution of the
data is according to H2.14 This important fact implies that it is difficult to collect,
deliberately or not, strong misleading evidence.9 As a devil’s advocate, one could plan to
continue sampling until enough evidence is gathered for one’s favourite hypothesis
although it is an erroneous one compared to the rival hypothesis. The probability that one
will be successful in the end is always smaller than 1/k even if the number of
observations is unlimited.

The probability of misleading evidence can be compared with the type I error �. Both
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point into the direction of H1, when in fact H2 is true. The type II error � can be compared
to the probability of failing to find strong evidence in favour of H1, i.e. the probability of
finding only weak evidence plus the probability of finding misleading evidence in favour
of H2. 

Under a sequential design the probability of observing misleading evidence is greater
than that under a fixed sample size design. Although this probability increases with each
look at the data, it remains bounded because the amount by which it increases converges
to zero as the sample size grows.15 

7.9 An example

As an example, let us look at a simple sequential experimental design.11,16 A clinical trial
compared remission times for two treatments for acute leukaemia: 6-mercaptopurine
(treatment A) and placebo (treatment B). The original study was stopped after the
analysis of 21 pairs of patients. For each pair of patients a preference was recorded for A
or B according to which therapy resulted in a longer remission time. Under the null
hypothesis H0 the probability of a preference for A was 0.5, under the alternative
hypothesis HA this probability was thought equal to 0.75. A triangular test was designed
with � = 0.05 and power 1-� = 0.95. In the first two columns of Table 1 the data for the

Table 1 Data for the clinical trial as described11,16

number of pairs
n

preference Z V LR

1 A 0.5 0.25 1.50
2 B 0 0.50 0.75
3 A 0.5 0.75 1.12
4 A 1.0 1.00 1.69
5 A 1.5 1.25 2.53
6 B 1.0 1.50 1.27
7 A 1.5 1.75 1.90
8 A 2.0 2.00 2.85
9 A 2.5 2.25 4.27

10 A 3.0 2.50 6.41
11 A 3.5 2.75 9.61
12 A 4.0 3.00 14.42
13 A 4.5 3.25 21.62
14 B 4.0 3.50 10.81
15 A 4.5 3.75 16.22
16 A 5.0 4.00 24.33
17 A 5.5 4.25 36.40
18 A 6.0 4.50 54.75
19 A 6.5 4.75 82.11
20 A 7.0 5.00 123.16
21 A 7.5 5.25 184.74
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21 pairs of patients are shown. In the next two columns the test statistics Z and V for the
sequential triangular test as described by Whitehead are given.8 Z is equal to the
difference of the observed total number of preferences for A and the expected number
(=n*0.5); V is equal to n/4 (=n*0.5*(1-0.5)). In the last column the LR is given for the
accumulating data, i.e. the likelihood function for the data under HA: � = 0.75 divided by
the likelihood function for the data under H0: � = 0.50.
In Figure 1 Z and V are plotted in a triangular design. After the 16th pair the upper
boundary of the triangular test was crossed, which led to the conclusion that the null
hypothesis could be rejected. The 90%-confidence interval for � is (0.59 ; 0.88).

Figure 1 Results of the trial plotted as test statistics Z versus V in a triangular test

In Figure 2 the LR = P(x | � = 0.75) / P(x | � = 0.5), is plotted against the number of pairs.
The LR was greater than 8 after 11 pairs and greater than 32 after 17 pairs of patients.

Figure 2 Results of the trial plotted as the LR versus the number of pairs N.
The dotted line corresponds to a LR of 8, the dashed line to a LR of 32.
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In Figure 3 the standardized likelihood function is plotted together with the 1/8 and 1/32
likelihood intervals for the data from the trial (14 preferences for A in 17 pairs of
patients). The value � = 0.5 is not consistent with the data, the value � = 0.75 is included
in both likelihood intervals.

Figure 3 Results of the trial plotted as the standardized likelihood function versus �, together with the
1/8 and 1/32 likelihood intervals (LI)

To compare results from a trial that rejected the null hypothesis with those from an
experiment that led to the acceptance of the null hypothesis I simulated preference data
under the null hypothesis H0: � = 0.50. Results of the simulated data are presented in
Figures 4, 5 and 6. After the 17th pair the lower boundary of the triangular test was
crossed, which led to the conclusion that the null hypothesis could be accepted (Figure
4). The 90%-confidence interval for � is (0.30 ; 0.69).

Figure 4 Results of the simulated data plotted as test statistics Z versus V in a triangular test

STOP the study – a boundary has been crossed
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The LR = P(x | � = 0.75) / P(x | � = 0.5) was smaller than 1/8 after 16 pairs and smaller
than 1/32 after 18 pairs of patients (Figure 5).

Figure 5 Results of simulated data plotted as the LR versus the number of pairs N. 
The dotted line corresponds to a LR of 1/8, the dashed line to a LR of 1/32.

In Figure 6 the standardized likelihood function is plotted together with the 1/8 and 1/32
likelihood intervals for the simulated data (8 preferences for A in 18 pairs of patients).
The value � = 0.5 is consistent with the data, the value � = 0.75 is not consistent with the
data.
(Note that the LR is invariant to the choice of the parameter i.e. it makes no difference
whether � is used or � = log(OR) = log(�/(1-�)) )

Figure 6 Results of the simulated data plotted as the standardized likelihood function versus �,
together with the 1/8 and 1/32 likelihood intervals (LI)
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Blume gives an approximation to the probability P(M) that a sequential design will
generate misleading evidence.15 For Bernoulli-data, like the example above, P(M | k = 8) �
0.0922, while P(M | k = 32) � 0.0230. A 10,000 simulations for these data under H0

resulted in P(M | k = 8) = 0.1002 and P(M | k = 32) = 0.0238; a 10,000 simulations under
HA resulted in P(M | k = 8) = 0.0874 and P(M | k = 32) = 0.0224. (The universal upper
bound for P(M) is equal to 0.125 for k = 8 and equal to 0.03125 for k = 32.) As this
probability is greater for a sequential design than for a fixed sample design, a
recommendation could be to compare the LR for a sequential design with a threshold
k = 32 and not with k = 8 when looking for (clear) evidence. 

7.10 Summary

In a Bayesian sequential setting, as in the likelihood approach, no adjustment is necessary
for repeated looks at accumulating data. The practical problem in the Bayesian approach
of statistical testing lies in the choice of an appropriate prior distribution and the amount
of (subjective) belief that is assigned to it. In large sample problems the data will
dominate the prior distribution and thus determine the posterior distribution so that the
Bayesian approach becomes the likelihood approach. This is also the case when a non-
informative prior distribution is used. Furthermore, the invariance property that holds for
the likelihood approach does not hold in a Bayesian setting.

The Neyman-Pearson approach indeed makes use of the LR, but its numerical value is
not interpreted as a measure of the strength of evidence. Only its extremeness is
compared to critical boundaries to make a decision. The p-value was added to have a
measure of the strength of the evidence after all. This use of the p-value comes into
conflict with the likelihood principle. (Data sets with the same (or proportional)
likelihood carry the same evidence and should thus lead to the same p-value.)

The likelihood approach is a simple and elegant ‘third way’ to deal with evidence in
experimental data. It makes a clear distinction between the degree of uncertainty and the
strength of the evidence. Other favourable qualities of the likelihood approach are:
- Two hypotheses of equal importance are compared instead of focusing on the

acceptance or rejection of the null hypothesis.
- No correction for interim looks at accumulating data is necessary, so there is also no

problem in extending an already obtained sample.
- The MLE can be used for the parameter of interest without adjustment, while

following a frequentist sequential test it is biased.8

- For a sequence of observations the universal upper bound applies, i.e. the probability
of finding strong misleading evidence of strength k or greater cannot exceed, and
often is much less than, the value 1/k.14

Of course there are topics that call for further investigation:
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- The Law of Likelihood is restricted to the comparison of simple hypotheses and does
not apply to most composite hypotheses3, although Blume suggests a transformation
such that the Law can be applied.9

- In multi-parameter models there is no general way to eliminate nuisance parameters.
Royall and Blume suggest some ad hoc methods, of which the use of profile
likelihoods looks the most satisfactory.3,9 This has to be further investigated,
especially in the context of sequential likelihood testing.

- Simulations of sequential designs using the LR will have to show their characteristics,
like the efficiency, the average sample size to come to a decision, the probabilities of
weak and of misleading evidence, … for different outcome variables.

7.11 Conclusion

Recent developments and publications on the likelihood approach and especially its
application in sequential designs3,9,14,15 prompted me to go into this ‘third way’ and
compare it with the frequentist and the Bayesian approach. Although there are still topics
to investigate further before a definite recommendation can be made to turn into this way,
I would like to end with the following conclusion.

Because the number of interim looks at accumulating data does not affect the LR,
sequential designs based on the LR are a very natural way of monitoring the strength of
evidence in the observations. A sample of observed data can be enlarged without
worrying about the effect on the type I error, and thus without any adjustments. For
(simple) sequential testing problems in observational, epidemiological studies on
matched case-control data, where the goal is to achieve evidence for one hypothesis over
another and where it is important to use up available biological specimen as efficiently as
possible, the likelihood approach is an objective answer to the question: ‘What do the
data say?’
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Sequential statistical tests on matched case-control data are an efficient way of handling
the available biological material in an observational epidemiological study. In a cohort or
a biological bank controls are mostly abundantly present, while cases are (much) more
limited.  One or more controls can be matched to a case to control for confounding
factors thus enhancing the efficiency of the analysis.

In chapter 1 two versions of a one-sample sequential t-test were compared. The exact
calculation of the log-likelihood ratio using Kummer’s function was compared to
Rushton’s approximation in Wald’s open Sequential Probability Ratio Test (SPRT). The
average sample sizes for the two sequential t-tests with one control per case were already
smaller than the sample size required for the corresponding non-sequential paired t-test.
Matching multiple controls per case increased the efficiency. Simulations showed that the
gain in efficiency was largest when two controls were matched to each case compared to
1 control per case, when the null hypothesis could be rejected. The exact calculation
using Kummer’s function was somewhat more conservative than Rushton’s
approximation, i.e. it showed higher power values and lower type I error values. The use
of the one-sample sequential t-test was illustrated with data from the DOM cohort. Cases
were pre-menopausal women with breast cancer. The research hypothesis was whether
the selenium content in toenail clippings from these women is already decreased before
tumour occurrence. One to 5 controls were matched on age to each of 64 cases. Most of
the sequential tests to detect standardized differences of 0.3, 0.4 or 0.5 led to the
acceptance of the null hypothesis. For some tests to detect a standardized difference of
0.3 no conclusion could be reached, because the number of available case-control sets
was too small.

In chapter 2 we investigated how a standardized difference between the mean of the
exposure distribution of the cases and that of the controls can be expressed as an expected
odds ratio (OR). This relation was elaborated for both a one-sample (paired) and a two-
sample (unpaired) sequential t-test. An example was given of a two-sample sequential t-
test with 5 controls per case to test the null hypothesis of equal selenium content in
toenails of cases and of controls. Cases were pre-menopausal women with breast cancer.
An expected standardized difference of 0.25 between the average exposure values for
cases and for unmatched controls of the selenium distribution in the cohort corresponding
to a minimum expected OR of 2 between the highest and the lowest quintile of the
exposure distribution was tested sequentially. After the analysis of the information of 31
cases and 155 controls the null hypothesis could be accepted. Compared to the 61 cases
detected in the cohort, a saving of 49% was obtained.
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In chapter 3 again two versions of a one-sample sequential t-test were compared,
Rushton’s approximation to the log-likelihood ratio and the use of a profile log-
likelihood function, as described by Whitehead, in Wald’s open SPRT. Simulations
showed a smaller average sample size for Whitehead’s procedure when the null
hypothesis was rejected. Rushton’s approximation led to a smaller average sample size
when the null hypothesis could be accepted. Especially for larger sample sizes the power
resulting from Rushton’s version was too small. For small sample sizes the significance
level resulting from Whitehead’s version was somewhat too large. In this chapter a
possible relation between the selenium content in toenail clippings and colorectal cancer
in pre-menopausal women was investigated. Three controls were matched on age to each
case. The null hypothesis (‘no difference in selenium content between cases and
controls’) could be accepted after the 8th matched case-control set was analysed. Thus a
saving of 75% of available case-control sets was obtained compared to the fixed sample
size necessary to detect a standardized difference of 0.5.

In chapter 4 we described the sequential test we developed for dichotomous exposure
variables in matched case-control data. This test relates to the (fixed sample size)
McNemar test and Mantel-Haenszel test for matched data. Results from simulations
using the SPRT were compared to results using a triangular test (TT) for various odds
ratios, type I and type II errors. The resulting type I errors were acceptable in general.
Type II errors were somewhat larger than their theoretical values for larger odds ratios,
i.e. for smaller samples. In general, an SPRT requires less information to come to a
decision than a TT when the null hypothesis or the alternative hypothesis is true and thus
in these situations is a more efficient test. Our simulations confirmed that sequential
analyses require on average fewer case-control sets than fixed sample size analyses.
Savings ranged from 32% to 60%. We illustrated this sequential test investigating the
relation between a mutation of the MTHFR-gene and the occurrence of rectal cancer.
With one control matched by age to each of the 69 available cases no decision could be
made. With three controls matched to each case the null hypothesis could be accepted
after 35 discordant sets. For a fixed sample size analysis at least 66 discordant sets would
have been needed to detect an OR equal to 2. Thus, using a sequential test with 3 controls
matched to each case, 47% of the matched sets could be saved. 

During the course of a clinical trial or a prospective epidemiological study the need
can be felt to stop early for ‘futility’. One of the reasons is that there seems to be no
indication for a relevant effect thus far. Calculation of the conditional power (CP) is
proposed and used in the literature as a decision tool for early stopping of a trial or study.
In chapter 5 we discussed the disadvantages of CP. As an alternative we proposed to
perform a (group) sequential test on the already available data under the same
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specifications (effect size, �, �) as the original trial or study design. When the (group)
sequential test does not lead to a decision yet, new data can be collected and analysed
until enough evidence is obtained for a decision. We illustrated the use of a sequential
test instead of CP by re-analysing two examples from the literature. It turns out that a
(group) sequential test is at least as and often even more efficient than the estimation of
CP. Use of a (group) sequential test is a more objective strategy to decide for early
stopping than calculation of CP requiring no arbitrary assumptions. 

Case-control studies can be designed to study an association between a genetic risk
factor or an environmental factor and the occurrence of a disease. Both genetic and
environmental factors may contribute to the susceptibility of the disease and it can be
interesting to explore the gene-environment (GxE) interaction. GxE interactions can be
tested both hierarchically and non-hierarchically. In chapter 6 we described the properties
of sequential designs in matched case-control studies to test for GxE interactions. Results
of simulations showed a good agreement with theoretical values for V, the necessary
amount of information, and the type I error. Power values were larger than their
theoretical values for very large sample sizes. The median gain in efficiency was about
27%. For a ‘rare’ phenotype gain in efficiency was larger when the alternative hypothesis
was true than under the null hypothesis. The probability of a discordant, and thus
informative, set of data is always smaller under the null hypothesis than under the
alternative hypothesis. We illustrated the developed sequential tests by an example using
data from the DOM project again. Cases were women with incident breast cancer. Each
case was matched by age to one control. A possible interaction with an OR of 2 between
genetic susceptibility and smoking was tested non-hierarchically and hierarchically. Both
sequential tests accepted the null hypothesis. Gains in the necessary number of matched
sets of 29% and 41% were reached. So sequential tests on GxE interaction in matched
case-control data also show gains in efficiency. 

In the last chapter of this thesis I described two approaches to statistical testing theory,
the frequentist and the Bayesian approach. The frequentist approach tries to answer the
question: ‘What should I do?’; the Bayesian approach wonders: ‘What should I believe?’
The sequential tests as described in this thesis follow the frequentist approach. There are,
however, some fundamental problems to the frequentist approach. One is that the type I
error has to be adjusted when accumulating data are tested repeatedly. Another problem
is the two roles the p-value plays. The p-value or significance level is the probability of
obtaining the observed results or more extreme ones if the null hypothesis is true. One
could say that the p-value is the probability of obtaining misleading evidence. The p-
value is, however, often also wrongly used as a measure for the strength of the evidence
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against the null hypothesis. The practical problem in the Bayesian approach lies in the
subjective choice of an appropriate prior distribution for the parameter of interest.

There is a ‘third way’ that has drawn little attention until now: the likelihood approach.
This approach poses the question: ‘What do the data say?’ en tries to answer this question
by looking at the likelihood of the data under hypothesis H1 compared to the likelihood of
the data under hypothesis H2. The likelihood ratio measures the strength of the evidence
in the observations in favour of H1 over the strength of the evidence in favour of H2.
Contrary to the frequentist approach, the likelihood approach makes a clear distinction
between a measure for the strength of the evidence and the probability of misleading
evidence. Under the likelihood approach cumulative data can be tested repeatedly
without adjustments. In a simple example data are analysed sequentially using both the
frequentist and the likelihood approach. The likelihood approach shows clear advantages
compared to the frequentist and the Bayesian approach. Nevertheless, some topics will
have to be investigated further before the likelihood approach can be recommended in
general as a more efficient and objective way of repeated testing of accumulating data. 

In case of simple sequential tests of epidemiological, observational matched case-
control data with the purpose to collect evidence for one of two hypotheses using up the
available biological material as efficiently as possible, the likelihood approach can give
an objective answer to the question: ‘What do the data say?’
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Een epidemiologische observationele studie

Halverwege de jaren zeventig van de 20e eeuw startte de toenmalige vakgroep
Epidemiologie van de Rijksuniversiteit Utrecht onder leiding van prof.dr F. de Waard het
DOM project. Dit project was bedoeld om vrouwen in de stad Utrecht en omstreken
periodiek te screenen op borstkanker. Het DOM project is één van de vele voorbeelden
van een epidemiologische, observationele studie. In een dergelijke studie worden geen
behandelingen met elkaar vergeleken zoals in een klinisch vergelijkend onderzoek. In
deze observationele studie werd een grote groep vrouwen op vrijwillige basis regelmatig
geobserveerd om vast te kunnen stellen of op zeker moment in de tijd borstkanker
ontstaat. In sommige screeningsrondes van het DOM project werd aan vrouwen gevraagd
om hun urine van de voorafgaande nacht mee te willen nemen of een afgeknipte
teennagel. Deze monsters werden voor latere analyse opgeslagen in een biologische bank.
Combinatie van de karakteristieken van de deelneemsters aan het project met informatie
van de regionale kankerregistratie leidde, na kortere of langere tijd, tot de identificatie
van de cases, vrouwen met een ziekte, bijvoorbeeld borstkanker. Deze cases kunnen
worden vergeleken met controles, deelneemsters die gedurende dezelfde studieperiode de
ziekte niet ontwikkelen.

Biologisch materiaal

Voortdurend worden nieuwe laboratoriumtechnieken ontwikkeld. Hiermee kunnen een
groot aantal (nieuwe) hypotheses omtrent een mogelijk verband tussen blootstelling aan
een stof en een ziekte getest worden op het opgeslagen biologische materiaal van cases
en controles. Als de ziekte weinig voorkomt, zullen er weinig cases zijn en is de
hoeveelheid opgeslagen biologisch materiaal beperkt. Als biologisch materiaal eenmaal
verwerkt is in laboratoriumonderzoek kan het, in het algemeen, niet meer opnieuw
gebruikt worden. Om het grote aantal interessante hypotheses te combineren met de
beperkte hoeveelheid biologisch materiaal zijn statistische methoden nodig die
veelbelovende hypotheses kunnen onderscheiden van minder veelbelovende, daarbij
gebruik makend van zo weinig mogelijk biologisch materiaal.  

Sequentiële analyse

Halverwege de vorige eeuw werd een nieuwe statistische techniek ontwikkeld: de
sequentiële analyse. Deze werd vooral om economische redenen toegepast in de
industriële kwaliteitscontrole. Om ethische redenen wordt sequentiële analyse de laatste
jaren steeds meer toegepast in klinisch onderzoek ter vergelijking van medicijnen of
behandelingen. Sequentiële methoden bieden een onderzoeker de mogelijkheid om een
onderzoek te beëindigen zodra voldoende ‘bewijs’ is vergaard om de nulhypothese (‘er is
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geen verband tussen blootstelling en ziekte’) te kunnen aannemen of te kunnen
verwerpen ten gunste van de alternatieve hypothese (‘er is wel een verband tussen
blootstelling en ziekte’). Na iedere nieuwe waarneming of groep waarnemingen worden
de cumulatieve gegevens getest. Op basis van deze cumulatieve resultaten kan besloten
worden om de studie te stoppen of om meer gegevens te vergaren en te testen. Als na
iedere nieuwe waarneming wordt getest spreken we over een continue sequentiële
analyse; als na een groep van nieuwe waarnemingen wordt getest spreken we over een
groepssequentiële analyse. Een sequentiële analyse heeft, gemiddeld genomen, minder
waarnemingen nodig om tot een beslissing te komen dan een vergelijkbare studie met een
vooraf vastgestelde grootte. Sequentiële methoden zijn dus bruikbaar om efficiënter met
beschikbare gegevens om te gaan.

Matchen

Soms zijn er factoren die zowel met de blootstelling aan een stof als met de ziekte
samenhangen. Dergelijke factoren kunnen de mogelijke relatie tussen de blootstelling en
de ziekte verstoren. Voorbeelden van mogelijk verstorende factoren zijn leeftijd,
etniciteit en (bij vrouwen) menopauzale status. Matchen is een techniek die wordt
gebruikt om te corrigeren voor dergelijke verstorende factoren. Op basis van de
waarde(n) van de verstorende factor(en) kan iedere case gematcht worden aan één of
meer controles. Als een ziekte vrij veel voorkomt en er dus in de loop van de studie veel
cases bekend worden, is het voldoende om één case aan één controle te matchen. Als een
ziekte echter zeldzaam is, zijn er weinig cases, maar daarentegen veel controles
beschikbaar. Om toch in dergelijke situaties voldoende zeggingskracht  te hebben, kan
meer dan één controle aan een case worden gematcht. Voor een proefopzet waarbij
gebruik gemaakt wordt van matchen zijn over het algemeen minder cases en controles
nodig dan voor een proefopzet waarin niet gematcht kan worden. Matchen is een manier
om efficiënter om te gaan met de beschikbare gegevens.

Omvang van een studie

Het is een kwestie van Good Statistical Practice om in de ontwerpfase van een
vergelijkend klinisch onderzoek het benodigde aantal patiënten te bepalen, dus nog vóór
de gegevens worden verzameld. We spreken dan over een studie met een van tevoren
vastgestelde omvang. De omvang van een dergelijke studie wordt bepaald door de
grootte van het verschil in uitkomst tussen de behandelingen dat men zou willen
detecteren als het bestaat, door de gewenste type I fout van de studie  en door de
gewenste power van de studie. De type I fout van een studie is de kans op een vals-
positief resultaat of de kans dat de nulhypothese ten onrechte wordt verworpen. Een
studie kan bijvoorbeeld ten onrechte concluderen dat er een verband bestaat tussen
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blootstelling aan een stof en een ziekte. Deze type I fout wordt meestal op 5% gesteld. De
power van een studie is de zeggingskracht oftewel de kans op een terecht-positief
resultaat oftewel de kans dat de nulhypothese terecht wordt verworpen. In dit geval is de
conclusie van een studie terecht dat er een verband bestaat tussen blootstelling en ziekte.
De power wordt meestal op 80% of 90% gesteld. 

In de meeste epidemiologische, observationele studies wordt de omvang van de studie
bepaald door praktische aspecten als tijd, kosten, beschikbaarheid van personen, enz. Als
een epidemiologische studie sequentieel geanalyseerd zal gaan worden, kan het aantal
waarnemingen, dat nodig is om een beslissing te kunnen nemen, niet van tevoren worden
vastgesteld. Wel kan, op basis van de type I fout, de power en het te detecteren effect, een
schatting worden gemaakt van het gemiddelde of mediane aantal waarnemingen dat
nodig zal zijn. 

Continue en dichotome variabelen

Als de blootstellingsvariabele een continue grootheid is, dat wil zeggen binnen zekere
grenzen alle mogelijke waarden kan aannemen zoals bijvoorbeeld het seleniumgehalte
van afgeknipte teennagels, dan kunnen alle waarden gebruikt worden voor de analyse.
Als daarentegen de blootstellingsvariabele maar twee mogelijke waarden kan aannemen
(een zogenaamde dichotome variabele), zoals wél of géén genetische mutatie, dan is het
mogelijk dat een set van een case en één of meer gematchte controles geen bruikbare
informatie bevat. Dit kan gebeuren als zowel de case als de controle(s) allen wél
blootgesteld waren aan de stof of juist allen níet blootgesteld waren, de zogenaamde
concordante sets. Alleen de zogenaamde discordante case-controle sets bevatten
informatie voor de statistische analyse. In een discordante set is de case wél blootgesteld
aan een stof en de controle níet of omgekeerd. De totale omvang van de studie
(concordante + discordante sets)  zal afhangen van de kans op een discordante set. Als
deze kans klein is, zal een groot aantal case-controle sets geanalyseerd moeten worden
om genoeg informatie te kunnen vergaren om tot een beslissing te kunnen komen. Meer
controles matchen per case, als dat mogelijk is, vergroot de kans op een discordante set.
Dit is dus ook een manier om efficiënter met de beschikbare data om te gaan.
 
Dit proefschrift beschrijft hoe sequentiële analyse van gematchte case-controle sets op
een efficiënte manier met waardevol biologisch materiaal kan omgaan, waardoor een
groot aantal interessante hypotheses getoetst kan worden. De ontwikkelde sequentiële
toetsen worden geïllustreerd met voorbeelden die data uit het DOM project gebruiken.
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Twee eenvoudige voorbeelden

Aan de hand van twee eenvoudige, hypothetische voorbeelden wil ik het gebruik van de
sequentiële analysemethode illustreren. Om het verband tussen een mogelijke genetische
mutatie en het krijgen van borstkanker te onderzoeken is iedere vrouw met borstkanker
(de case) in de chronologische volgorde waarin de kanker zich openbaarde gematcht aan
een controlevrouw zonder kanker. Van alle vrouwen is bekend of ze de genetische
mutatie hadden of niet. Alleen de discordante combinaties A (case met de mutatie,
controle zonder de mutatie) en B (case zonder de mutatie, controle met de mutatie)
bevatten informatie voor de analyse. In onderstaande tabel zijn de resultaten van de eerste
19 case-controle paren vermeld. 

tabel 1 Resultaten van 19 case-controle paren in termen van combinatie A of B (zie tekst)

paar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
combinatie A B A A A B A A A A A A A B A A A A A

Na ieder nieuw paar worden nieuwe waarden voor grootheden Z en V berekend en
uitgezet in een figuur (zie bijvoorbeeld figuur 1). 

Figuur 1 Resultaten van de sequentiële analyse van de 19 case-controle paren uit tabel 1, die leiden tot
de conclusie dat er een verband bestaat tussen het hebben van de genetische mutatie en het
krijgen van de ziekte.

Z wordt verticaal uitgezet en is een maat voor het effect; V wordt horizontaal uitgezet en
is een maat voor de cumulatieve hoeveelheid informatie. Als in een case-controle paar
combinatie A optreedt, gaat Z een stapje naar boven in de figuur; als sprake is van
combinatie B gaat Z een stapje naar beneden. V gaat bij ieder nieuw case-controle paar
een stapje naar rechts. Bij de start van het onderzoek worden in de figuur kritieke
grenslijnen getrokken, in dit voorbeeld in de vorm van twee driehoeken. Het verloop en

STOP the study – a boundary has been crossed
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de helling van de grenslijnen hangen af van de type I fout, de power en de grootte van het
verwachte effect. Als het cumulatieve ‘pad’ van (Z,V)-waarden de bovengrens van de
bovenste driehoek of de ondergrens van de onderste driehoek overschrijdt, dan kan de
nulhypothese verworpen worden met als conclusie dat er een verband is tussen het
hebben van de genetische mutatie en het krijgen van borstkanker. Als het cumulatieve
‘pad’ de binnenste wigvormige grenzen overschrijdt, dan kan de nulhypothese
geaccepteerd worden. In dit voorbeeld is de nulhypothese: ‘de kans op een genetische
mutatie is voor cases en controles even groot, namelijk gelijk aan 0.5’. De alternatieve
hypothese zou kunnen zijn: ‘de kans op een genetische mutatie is voor cases gelijk aan
0.75’. Voor dit voorbeeld is V gelijk aan een kwart van het aantal (discordante) case-
controle paren; Z is gelijk aan het aantal paren met combinatie A verminderd met het
verwachte aantal als de nulhypothese waar is. Figuur 1 laat zien dat na de verwerking van
de gegevens van 19 paren het ‘pad’ de bovengrens overschrijdt en de nulhypothese
verworpen wordt. Van de 19 paren hadden 16 de combinatie A en maar 3 de combinatie
B. Het verwachte aantal paren met combinatie A, als de nulhypothese waar is, is
19/2=9.5. Z is dan gelijk aan 16 – 9.5 = 6.5 en V = 19/4 = 4.75. De conclusie is dat de
kans op een genetische mutatie voor cases groter is dan voor controles en dat er dus een
verband bestaat tussen het hebben van de genetische mutatie en het krijgen van
borstkanker. Om dit verband te kunnen detecteren zouden ten minste 43 discordante sets
nodig geweest zijn in een studie met een vaste grootte. Een sequentiële analyse levert in
dit geval 56% besparing op.

Een andere set gegevens uit een vergelijkbaar onderzoek maar met een andere
genetische mutatie zou tot figuur 2 kunnen leiden. 

Figuur 2 Resultaten van de sequentiële analyse van een onderzoek waarin geen verband is tussen het
hebben van de genetische mutatie en het krijgen van de ziekte.

Hier overschrijdt het ‘pad’ van cumulatieve (Z,V)-waarden één van de wigvormige
binnengrenzen nadat de gegevens van 28 paren zijn verwerkt en wordt de nulhypothese
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geaccepteerd. In dit geval is de conclusie dat er geen verband bestaat tussen het hebben
van de genetische mutatie en het krijgen van de ziekte. 

Hoofdstuk 1 

In hoofdstuk 1 werden een exacte en een benaderende versie voor een sequentiële toets
beschreven voor de situatie dat de blootstelling aan een stof gemeten kan worden als een
continue grootheid. Als voorbeeld kan hierbij het seleniumgehalte in de teennagels
dienen. De onderzoeksvraag was of het seleniumgehalte in de afgeknipte teennagels al
vóór het optreden van de tumor verlaagd was. Het verschil tussen het seleniumgehalte
van een case en het gemiddelde seleniumgehalte van de gematchte controles werd
gebruikt als maat voor een (mogelijk) verschil in blootstelling. Beide versies van de
sequentiële toetsen hadden gemiddeld genomen minder waarnemingen nodig om tot een
beslissing te komen dan een toets met een vooraf vastgesteld aantal waarnemingen. Het
matchen van méér dan 1 controle per case verhoogde de efficiëntie. De winst in het
aantal benodigde case-controle sets was het grootste als 2 controles gematcht werden aan
1 case in vergelijking met 1 controle per case, wanneer de nulhypothese (‘geen verband
tussen seleniumgehalte en ziekte’) verworpen kon worden. De gevonden type I fout van
de exacte versie was wat kleiner en de gevonden power wat groter dan die van de
benaderende versie. Het gebruik van een dergelijke toets werd geïllustreerd met data uit
het DOM project. De cases waren pre-menopauzale vrouwen die borstkanker kregen. Eén
tot 5 controles werden gematcht op leeftijd aan ieder van de 64 beschikbare cases. De
meeste sequentiële toetsen leidden tot het accepteren van de nulhypothese; soms waren
echter te weinig gegevens beschikbaar om een beslissing te kunnen nemen.

Hoofdstuk 2

In hoofdstuk 2 is onderzocht hoe een verwacht verschil in blootstelling als continue
grootheid tussen cases en controles uitgedrukt kan worden in een Odds Ratio (OR), een
in de epidemiologie gebruikelijke maat. Als voorbeeld zijn weer de pre-menopauzale
vrouwen met borstkanker uit het DOM project geanalyseerd. Een verwacht
gestandaardiseerd verschil in seleniumgehalte van 0.25 tussen cases en ongematchte
controles komt dan overeen met een verwachte OR van 2 voor de hoogste 20% ten
opzichte van de laagste 20% van de blootstelling. Na analyse van 31 cases en 155
controles kon de nulhypothese worden geaccepteerd. Vergeleken met de 61 beschikbare
cases, werd dus een besparing van 49% bereikt.
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Hoofdstuk 3

Ook in hoofdstuk 3 werden twee versies van een sequentiële toets voor een continue
blootstellingsvariabele vergeleken, de benaderende versie (R) uit hoofdstuk 1 en een
nieuwere versie volgens Whitehead (W). Simulaties lieten zien dat het gemiddelde aantal
case-controle sets voor de W-versie kleiner was dan voor de R-versie als de nulhypothese
verworpen kon worden; met de R-versie waren minder case-controle sets nodig als de
nulhypothese geaccepteerd kon worden. Voor grote aantallen case-controle sets was de
power van de R-versie te laag. Voor kleine aantallen case-controle sets was de type I fout
van de W-versie wat te groot. In dit hoofdstuk werd de mogelijke relatie onderzocht
tussen het seleniumgehalte in de teennagels en het optreden van darmkanker bij pre-
menopauzale vrouwen. Drie controles werden op leeftijd gematcht aan iedere case. De
nulhypothese kon al na de achtste case-controle set geaccepteerd worden. Dat betekende
een besparing van 75% in het aantal case-controle sets ten opzichte van de studieomvang
zoals die van tevoren vastgesteld kon worden om een gestandaardiseerd verschil in
seleniumgehalte van 0.5 aan te kunnen tonen als dat zou bestaan.

Hoofdstuk 4

Blootstelling is echter niet altijd in een continue waarde uit te drukken. Vaak is alleen
maar bekend of iemand wel of niet blootgesteld is geweest, of dat wel of niet sprake is
van een genetische mutatie. In hoofdstuk 4 werd de sequentiële toets beschreven die we
ontwikkelden voor deze zogenaamde dichotome data. Met behulp van simulaties zijn de
eigenschappen van deze toets bestudeerd voor twee versies van een sequentiële toets: de
SPRT (Sequential Probability Ratio Test) en de TT (Triangular Test). De SPRT en TT
verschillen in de (steilheid van de) grenzen die gehanteerd worden voor het beslissings-
proces. In het algemeen heeft de SPRT-versie minder informatie nodig dan de TT-versie
om tot een beslissing te komen als de nulhypothese (‘er is geen verband tussen
blootstelling en ziekte’) of de alternatieve hypothese (‘het verwachte verband is er wel’)
waar is. Dit werd door onze simulaties bevestigd. De type I fouten in de simulaties waren
acceptabel; de gevonden waarden voor de power waren soms aan de lage kant, vooral
wanneer het om kleine aantallen case-controle sets ging. We illustreerden het gebruik van
deze sequentiële toets met onderzoek naar een mogelijke relatie tussen het wel of niet
hebben van een bepaalde genetische mutatie en het optreden van rectumkanker. Vrouwen
uit het DOM project die deze vorm van kanker hadden gekregen werden op leeftijd
gematcht aan controlevrouwen zonder kanker. Met 1 controle gematcht per case kon na
cumulatieve analyse van de beschikbare 69 cases nog geen beslissing genomen worden.
Met 3 controles gematcht per case kon de nulhypothese na 35 discordante sets
geaccepteerd worden. Voor een vergelijkbare toets met een van tevoren vastgesteld
aantal waarnemingen zouden ten minste 66 discordante sets nodig zijn geweest om een
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OR van 2 aan te kunnen tonen. Met een sequentiële toets met 3 gematchte controles kon
in dit geval dus 47% bespaard worden.

Hoofdstuk 5

In de loop van een klinisch vergelijkend onderzoek of een epidemiologische,
observationele studie wordt soms overwogen om voortijdig te stoppen. Een van de
redenen hiervoor is dat het verwachte verschil tussen twee behandelingen of het
verwachte verband tussen blootstelling en ziekte er niet lijkt te zijn. In de literatuur wordt
berekening van de Conditional Power (CP) voorgesteld en gebruikt als instrument om te
beslissen of een studie voortijdig gestopt kan worden. CP wordt berekend op een moment
dat de studie nog gaande is. Het is de kans dat, gegeven de hoeveelheid informatie die op
dat moment verzameld is, de statistische test de nulhypothese aan het geplande einde van
de studie zal verwerpen. In hoofdstuk 5 bespraken we de nadelen van de CP. Als
alternatief stelden we voor om een (groeps)sequentiële toets toe te passen op de al
verzamelde gegevens. Als deze nog geen beslissing mogelijk maakt, dan kunnen nieuwe
gegevens worden verzameld en geanalyseerd tot voldoende ‘bewijs’ is bereikt om wel
een beslissing te kunnen nemen. We illustreerden dit voorstel door twee voorbeelden uit
de literatuur opnieuw te analyseren. Een (groeps)sequentiële toets bleek minstens zo
efficiënt te zijn als het berekenen van de CP. Bovendien zijn voor een
(groeps)sequentiële toets geen arbitraire aannames nodig zoals voor berekening van de
CP. Een (groeps)sequentiële toets komt op een meer objectieve manier tot de beslissing
om een studie voortijdig te stoppen.

Hoofdstuk 6

Case-controle studies kunnen ontworpen worden om een verband tussen een genetische
factor of een factor die de blootstelling aan een stof representeert en het optreden van een
ziekte te bestuderen. Zowel de genetische factor als de blootstellingsfactor kunnen
bijdragen aan de ontvankelijkheid voor een ziekte en het kan interessant zijn om hun
zogenaamde interactie te bestuderen. Interactie betekent dat het hebben van de genetische
factor én het blootgesteld zijn geweest aan de betreffende stof méér effect heeft op het
ontstaan van de ziekte dan beide factoren afzonderlijk. Zowel hiërarchische als niet-
hiërarchische interacties kunnen worden bestudeerd. Bij hiërarchische interacties worden
de genetische factor, de blootstellingsfactor en een factor voor hun interactie in het model
opgenomen. Bij niet-hiërarchische interacties wordt verondersteld dat zowel de
genetische factor als de blootstelling nodig zijn voor het ontstaan van de ziekte. In
hoofdstuk 6 beschreven wij de eigenschappen van sequentiële toetsen op interacties in
gematchte case-controle studies. Onze simulaties lieten een goede overeenkomst zien
tussen de theoretische en de gevonden benodigde hoeveelheid informatie om tot een
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beslissing te kunnen komen. Ook de gevonden type I fouten kwamen goed overeen met
de theoretische waarden. Voor hele grote studies waren de gevonden waarden voor de
power aan de hoge kant. De mediane winst in het aantal te analyseren case-controle sets
was ongeveer 27%. Voor weinig voorkomende genetische afwijkingen was de winst
groter als de alternatieve hypothese waar was dan als de nulhypothese waar was. Dit
houdt verband met de kans op een discordante set, die klein is voor weinig voorkomende
genetische afwijkingen. Het voorbeeld dat de ontwikkelde sequentiële toetsen illustreerde
maakte weer gebruik van gegevens uit het DOM project. Cases waren vrouwen die
borstkanker gekregen hadden. Iedere case werd op leeftijd gematcht aan een controle
zonder borstkanker. Getoetst werd of er sprake was van interactie tussen een genetische
afwijking en het rookgedrag. De sequentiële analyses leidden zowel voor de toets op
hiërarchische interactie als voor de toets op niet-hiërarchische interactie tot het
accepteren van de nulhypothese. Dat wil zeggen dat het veronderstelde interactie-effect
tussen een genetische afwijking en roken niet bevestigd kon worden. De winst in het
benodigde aantal case-controle sets was 29% en 41%. Sequentiële analyse kan dus ook in
geval van toetsen op interactie in gematchte case-controle sets efficiënter omgaan met de
beschikbare gegevens.

Hoofdstuk 7

In het laatste hoofdstuk worden twee stromingen in de statistiek beschreven, de
frequentistische en de Bayesiaanse stroming. De frequentistische stroming probeert de
vraag te beantwoorden: ‘Wat zou ik moeten doen?’; de Bayesiaanse stroming vraagt zich
af: ‘Wat zou ik  moeten geloven?’ De sequentiële toetsen die in dit proefschrift
beschreven worden, zijn frequentistisch van aard. Een sequentiële toets houdt in dat de
cumulatieve data herhaaldelijk worden geanalyseerd tot voldoende ‘bewijs’ is verkregen
om een beslissing te kunnen nemen. De frequentistische benadering vereist echter dat de
type I fout die per tussentijdse analyse gehanteerd wordt, kleiner gekozen wordt dan de
5% die als acceptabel beschouwd wordt voor de analyse van een studie met een van
tevoren vastgestelde omvang. De beslissing om een studie te stoppen of te continueren
hangt af van de inmiddels verzamelde informatie, maar ook van een stopregel die weer
afhangt van de type I fout. Behalve het feit dat aanpassing van de type I fout nodig is bij
herhaald toetsen, heeft de frequentistische benadering een veel fundamenteler probleem.
De p-waarde of overschrijdingskans, die als resultaat van een statistische toets vermeld
wordt, is de kans op de verkregen resultaten of extremere áls de nulhypothese waar is.
Men kan dus zeggen dat de p-waarde de kans is dat de verkregen resultaten misleidend
‘bewijs’ zijn. De p-waarde wordt echter ook vaak, ten onrechte, gebruikt als maat voor de
sterkte van het ‘bewijs’ tegen de nulhypothese: ‘hoe kleiner de p-waarde, des te sterker
het ‘bewijs’’. 
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De Bayesiaanse stroming combineert ‘a priori’ kennis of ideeën over de verdeling van
de te toetsen gegevens met de gegevens zelf tot een ‘a posteriori’ verdeling die dus
beschouwd kan worden als een update van de ‘a priori’ kennis of, met andere woorden,
de manier waarop een zeker geloof door de gegevens veranderd kan worden. Het grote
probleem van de Bayesiaanse benadering is echter het subjectieve karakter van de ‘a
priori’ verdeling. 

Er is nog een derde stroming die tot nu toe weinig aandacht in de statistiek heeft
gekregen: de likelihood stroming. Deze stroming stelt de vraag: ‘Wat vertellen de
gegevens?’ en probeert die vraag te beantwoorden door te kijken naar de aannemelijkheid
van de gegevens onder de ene hypothese (H1) ten opzichte van de aannemelijkheid van
de gegevens onder een andere hypothese (H2). Het quotiënt van de twee
aannemelijkheden is een maat voor de sterkte van het ‘bewijs’ in de gegevens ten gunste
van ófwel H1 ófwel H2. In de likelihood stroming wordt de maat voor de sterkte van het
‘bewijs’ losgekoppeld van de kans op een misleidend ‘bewijs’. Terugkomend op het
verschil tussen de frequentistische en de likelihood stroming: de interpretatie van de p-
waarde hangt voor veel mensen af van de grootte van een studie. Twee experimenten die,
behalve de grootte, volkomen identiek zijn en resultaten met dezelfde p-waarde
produceren, hoeven niet evenveel ‘bewijs’ tegen de nulhypothese te bevatten. Ook
kunnen gegevens uit verschillende experimenten precies dezelfde aannemelijkheid
hebben, maar toch leiden tot verschillende p-waarden. 

De beslissing om een studie te stoppen of te continueren op basis van het
aannemelijkheidsquotiënt is niet afhankelijk van de type I fout of van een stopregel.
Cumulatieve data kunnen dus zonder aanpassing van de type I fout herhaald geanalyseerd
worden. In een eenvoudig voorbeeld werden data sequentieel geanalyseerd met behulp
van een frequentistische toets en met een toets die gebruik maakt van de
aannemelijkheidsratio. De likelihood benadering laat duidelijke voordelen zien
vergeleken met de frequentistische en de Bayesiaanse benadering. Er blijven echter nog
diverse vragen die verder uitgezocht moeten worden, voordat de benadering in het
algemeen aanbevolen zal kunnen worden als een efficiënte en objectieve manier voor het
herhaald toetsen van cumulatieve data.

Samenvattend komt dit hoofdstuk tot de volgende conclusie. In het geval van
eenvoudige sequentiële toetsen van epidemiologische, observationele gematchte case-
controle data, waarbij het doel is om ‘bewijs’ te vergaren voor één van twee hypotheses
en waarbij de beschikbare hoeveelheid biologisch materiaal zo efficiënt mogelijk moet
worden gebruikt, kan de likelihood stroming een objectief antwoord geven op de vraag:
‘Wat vertellen de gegevens?’
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Dankwoord

" ... the whole of life is sequential, 
for our future actions are conditioned to some extent by our past experience ..." 

(Wetherill and Glazebrook, 1986)

Zo ook de totstandkoming van dit proefschrift. Het is niet, zoals veelal gebruikelijk, het
resultaat van onderzoek gedurende een periode als onderzoeker-in-opleiding. De eerste 4
hoofdstukken waren al gepubliceerd, toen Rick Grobbee mij vroeg of ik er iets in zou
zien om er een proefschrift van te maken. Prof. dr D.E. Grobbee, beste Rick, ik wil je
hartelijk bedanken dat jij dit in gang gezet hebt. Jij had zelfs al wat voorwerk verricht,
toen je het mij vroeg, door te informeren naar de mogelijkheden van een promotie als een
academische vooropleiding ontbreekt. Wij waren het er over eens dat er ook een
biostatisticus als promotor gevraagd moest worden. Prof. dr Th. Stijnen, beste Theo, ik
waardeer het erg dat jij je gelijk bereid toonde om ook promotor te willen zijn. Ik wil jou
en prof. dr J.C. van Houwelingen bedanken voor de brief die jullie geschreven hebben en
die mij toelating tot een academische promotie heeft verleend. 

Dr P.A.H. van Noord, beste Paul, jij hebt, zonder het op dat moment te weten, aan de
wieg van dit proefschrift gestaan. Eind jaren tachtig vroeg jij mij of ik mee wilde denken
bij de toepassing van sequentiële technieken in gematchte case-controle studies. Het
waardevolle biologische materiaal van vrouwen in de DOM-cohorten moest zo zuinig
mogelijk gebruikt worden. Jij hebt mij bedolven onder literatuur en ideeën. Ik wil je
bedanken voor de bijzonder plezierige samenwerking en ik hoop dat we die de komende
jaren kunnen voortzetten.

Dr R. Kaaks, beste Rudolf, ook jij was duidelijk betrokken bij de totstandkoming van de
eerste hoofdstukken van dit proefschrift. Bedankt voor de, soms urenlange, telefonische
discussies. 

Dr O.L. van der Hel, beste Olga, bedankt dat wij jouw data ter illustratie mochten
gebruiken. 

I would like to thank prof. J.R. Whitehead, mrs S. Todd and mr F. Baksh from the
University of Reading (U.K.) for the stimulating discussions around Fazil’s thesis. Dear
John, I have appreciated our contacts very much. Thank you for taking place in the
defence committee. Thank you also for inviting Paul van Noord and me to come to
Reading to discuss Fazil’s work. Dear Fazil, thank you, I have learned a lot from your
thesis. Dear Sue, I enjoyed our meetings, thank you also.
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Mijn collega’s van het Centrum voor Biostatistiek wil ik heel erg bedanken voor de
plezierige samenwerking. Ik ben blij dat we in goede harmonie een aantal taken hebben
kunnen verdelen, waardoor ik het promoveren kon combineren met het waarnemend
hoofd zijn. In het bijzonder wil ik Maria Schipper, Jan van den Broek en Cas Kruitwagen
bedanken voor het lezen, becommentariëren en bediscussiëren van verschillende
hoofdstukken. Wiebe Pestman, bedankt voor je hulp bij het opnieuw maken van een
aantal figuren.
Beste Maria, ik vind het heel fijn dat je op deze dag als paranimf naast mij wilt staan.
Dank je wel voor het meedenken. Ik verheug me al op de voortzetting van ons onderzoek
en de uitwerking van al onze onderzoeksplannen.

De KLEPpers van het Julius Centrum wil ik bedanken voor de goede contacten. Michael
Edlinger, bedankt voor alle kopjes koffie en gezelligheid. 

Monique den Hartog wil ik hartelijk bedanken voor het opnieuw invoeren van de eerste
hoofdstukken en de lay-out van het hele proefschrift. Je hebt mij veel werk uit handen
genomen.

Femke Bulten van de afdeling Vormgeving van de faculteit Biologie wil ik hartelijk
bedanken voor het ontwerpen van de omslag.
 
Beste mede-(ex-)diakenen van de Ark in Maarssenbroek, dank jullie wel voor het
anderhalf jaar lang overnemen van mijn werkzaamheden. 

Lieve vriendenclub, Annie en Martijn, Ingrid en Huib, Marina en Henk, Ineke en Dirk,
bedankt voor jullie belangstelling.

Lieve schoonfamilie, dank jullie wel voor jullie meeleven.

Lieve Liane en Rob, zus en broer, dank jullie wel voor jullie liefde en belangstelling.
Liane, ik waardeer het heel erg dat je op deze dag als paranimf naast mij wilt staan. Ik
hoop dat het minder ‘eng’ zal zijn dan je dacht.

Lieve mama en papa, jullie vonden het vanzelfsprekend dat ik op de HBS ‘exact’ zou
kiezen in een tijd dat dat helemaal niet zo vanzelfsprekend was voor een meisje. Ook na
de HBS hebben jullie mij gestimuleerd om in een ‘exacte’ richting verder te gaan. Dank
jullie wel voor jullie liefde, belangstelling en betrokkenheid.
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Allerliefste Gerard, dank je wel voor alles waarmee jij het mogelijk hebt gemaakt dat ik
dit proefschrift af kon maken. Dank voor je luisterend oor en je wijze raad; je geduld,
humor en relativeringsvermogen hebben mij heel veel goed gedaan. Bedankt ook voor
het lezen en herlezen van de Nederlandse inleiding en samenvatting. Deze is door jouw
op- en aanmerkingen en vragen om uitleg hopelijk begrijpelijk geworden voor familie,
vrienden en kennissen. 
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Curriculum vitae

Ingeborg van der Tweel werd op 12 januari 1955 in Bussum geboren. Zij behaalde in
1971 het HBS-B diploma aan het bijzonder Willem de Zwijger-lyceum in Bussum. 
In het najaar van 1971 trad zij in dienst van de stichting Mathematisch Centrum in
Amsterdam als computerprogrammeur. Daar volgde zij de opleiding Wetenschappelijk
Rekenen A (Wiskundig Genootschap), waarvoor zij in 1975 het diploma kreeg. In 1976
behaalde zij het diploma Statistisch Assistent VVS (Vereniging Voor Statistiek) en in
1977 het diploma Statistisch Analist VVS.
Op 1 september 1978 kwam zij in dienst bij de computerafdeling van de vakgroep
Cardiologie (faculteit Geneeskunde) van de Rijksuniversiteit Utrecht. 
Zij behaalde het diploma Statisticus VVS in 1987 en het tentamen voor een aanvullend
caput ‘Analyse van Overlevingsduren’ in 1989. De computerafdeling van de vakgroep
Cardiologie werd opgenomen in de facultaire computerdienst van de faculteit
Geneeskunde en in 1988 werd zij door de faculteit Geneeskunde gedetacheerd bij het
interfacultaire Centrum voor Biostatistiek i.o.. 
Het Centrum voor Biostatistiek is een samenwerkingsverband van de faculteiten
Biologie, Farmaceutische Wetenschappen, Diergeneeskunde en het Universitair Medisch
Centrum van de Universiteit Utrecht. Het Centrum voor Biostatistiek werd op 1 januari
1990 formeel opgericht en stond tot 1 juni 2002 onder leiding van dr ir J.A.J. Faber. Na
het samengaan van het Academisch Ziekenhuis Utrecht en de faculteit Geneeskunde in
het Universitair Medisch Centrum Utrecht kwam zij op 1 januari 2000 in dienst van de
faculteit Biologie.
Sinds april 1998 is zij vanuit het Centrum voor Biostatistiek twee dagen in de week
gedetacheerd bij het Julius Centrum voor Gezondheidswetenschappen en Eerstelijns
Geneeskunde. 
In 2000 werd zij geregistreerd als Biostatisticus-VVS door de commissie Registratie
Biostatistici van de Vereniging Voor Statistiek en Operationele Research. 
Zij kreeg in 2002 de Basiskwalificatie Onderwijs toegekend door de faculteit Biologie.
Sinds 1 juni 2002 is zij waarnemend hoofd van het Centrum voor Biostatistiek.




