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CHAPTER 1:  
INTRODUCTION 

 
 
PURPOSES AND DESIGNS OF REPEATED MEASUREMENTS 
 
 

Longitudinal repeated measurements, in which the same variable of interest is measured on 

each subject on several different times, occur frequently in the assessment of occupational 

exposure to toxic chemicals, as part of occupational hygiene surveys or monitoring 

programmes.1-9 Such designs are suited to study the association between exposure levels 

and exposure determinants both varying along time and to assess variance components of 

exposure variability in "exposure groups". In this thesis  exposure levels on a continuous 

scale will be dealt with.  

In epidemiological studies with repeated measurements designs, the aim is mostly to 

evaluate the associations of exposure with other covariates and health outcomes, both 

changing over time, or to investigate changes over time within a subject’s health status.  

 

Repeated measurements in epidemiology  

Longitudinal study designs with repeated measurements of a covariate (e.g. a time related 

risk factor) and a health outcome are appealing in epidemiology since they offer the 

opportunity to study the temporal order of events, to observe individual patterns of change 

and to measure exposure and other covariates prospectively. The temporal order is essential 

to assess causality, making longitudinal designs superior to cross-sectional ones. 

Differences in time related variables, e.g. age-related changes within and between 

individuals can be estimated with less bias caused by selective follow up (= different times 

of follow up) and cohort effects. 

Furthermore, longitudinal designs have greater power and precision than cross-sectional 

studies because between individual variability does not contribute to the variability of the 

individual change. In cross-sectional studies part of the explanatory variables have to be 

estimated retrospectively, and are thus more likely to be biased.10 
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In some epidemiological studies the risk factor (e.g. exposure) may be measured repeatedly 

while the health outcome is measured only once. 

The usual health outcomes are mortality or morbidity indexes, such as: acute and chronic 

symptoms, chronic respiratory diseases, respiratory infections and pulmonary function (PF) 

in respiratory epidemiology.11  Those health outcomes can be measured on a binary scale 

(e.g. yes-have the disease/no-don’t have the disease), counts (e.g. number of symptoms) or 

on a continuous scale (e.g. PF measurements).  

 

Repeated measurements in occupational hygiene 

Repeated shift-long exposure  measurement data sets are gathered at workplaces as part 

of:12-15 

(i) Compliance strategies where exposure levels have to be compared with health based 

exposure limits (such as TLVs- Threshold Limit values or OELs- Occupational Exposure 

Limits); 

(ii) Surveillance strategies to monitor exposure patterns over time, and;  

(iii) Epidemiological studies in which exposure data has to be associated with biological 

markers or specific health occurrences.  

Hygiene surveys performed to meet those short- (i) and long-term (ii,iii) objectives  involve 

repeated sampling of selected exposed persons. They should be carried out with an 

appropriate technique and procedure, and the inherent limitations should be fully 

understood. The repeated surveys should be performed with the same air monitoring 

strategy along the whole period (air sampling technique, analysis, selection of workers 

etc.).15 As a whole, strategies for performing repeated measures along time should take into 

account two dimensions : how to sample workers and how to sample the measuring days.  

Occupational health legislation is aimed at protecting the individual worker. Within this 

framework, hygiene monitoring should provide a tool for assessing the exposure of every 

worker. Due to limitations of money and time, monitoring strategies are department-

oriented (using production department, store etc. as sampling unit), or focus at the job level 

(using fuel fillers, laboratory workers etc. as sampling unit). Typical workers within these 

sampling units, called exposure-groups (or industrial hygiene groups) are usually 

monitored.12-15  
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Usually personal measurements, measurements in the breathing zone of the worker, are 

taken within exposure-groups. For epidemiological studies and surveillance programmes 

(not including the “worst case” oriented) the same exposure-groups oriented strategy 

usually holds. 

 

Nowadays it is known that exposure levels can vary considerably, between 10 and 4000 

fold, from day to day for the same worker. This fact strengthens the need for repeated 

measurements designs for a valid exposure assessment.16 Such surveys designs range from 

repeated measurements on consecutive or randomly selected days within a single 

year2,4,6,9,17-25, to studies which include historical measurements collected periodically over 

periods ranging from 2 to 30 years.1,3,5,7,8,18 The time points of measuring are mostly not 

identical across subjects  as well as the  time-interval between  adjacent measures of the 

same worker.  Consequently, the number of repetitions per subject is usually not the same, 

leading to unbalanced designs. 

Collection of ancillary information during the measurement process such as: work-

temperature, task, outdoor/indoor working etc., is an indispensable requisite since many of 

these factors are exposure determinants which are associated with elevated or reduced 

exposure levels.  The information on exposure determinants can be gathered to evaluate 

relationships between determinants and exposure for exposure control purposes 

(identification), and for evaluation of exposure response relationships in an epidemiological 

study. For the latter, the exposure may be estimated (predicted) on the basis of information 

on the determinants and those predicted exposures may further be used in exposure 

response modeling.26  Workers performing the same job will show considerable differences 

in average exposure levels (between-worker variability) , but will also experience different 

exposure levels from day-to-day  (within-worker variability). Assessing exposure variance 

components, between-workers and within-worker, is an inherent part of evaluating 

exposure distributions and estimating probabilities of exposure above standards, within 

exposure-groups and over time.  

Therefore, whatever the purpose, statistical modeling of relationships between exposure 

and determinants of exposure as well as statistical estimation of exposure variance 

components are key elements in modern exposure assessment strategies.  
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HISTORICAL REVIEW  

OF STATISTICAL ANALYSIS FOR REPEATED MEASUREMENTS DESIGNS 

 

Since the early fifties, several aspects of statistical modeling of exposure data have been 

recognized and implemented in the concepts regarding statistical treatment of repeated 

exposure data. The developments in statistical methods used to analyze repeated measures 

data, of a continuous exposure variable, are described below, and range from the use of 

simple summary measures to more complex multiple regression type modeling as follows: 

 

1. Using simple summary measures: The multiple measurements per subject or a group 

are reduced to one summary measure such as overall mean. In 1952 Oldman and 

Roach15 performed stratified  sampling of workers and simply calculated mean 

exposure over all workers in each stratum and applied this mean to each worker in the 

stratum. They implicitly introduced, the concept of the homogeneous exposure group. 

Ashford in 1958 extended this approach to epidemiological purposes in the framework 

of the large scale British Coal Workers Surveys,15 using repeated exposure 

measurements. He described a statistical approach to allocate the sampling effort on the 

basis of the time spent in a particular occupational title. The exposure was calculated as 

the product of the exposure measured for a certain occupational group and the time 

exposed. An underlying assumption was that the exposure of an individual worker is 

supposed to be indistinguishable from the shift average of the total group. In 1979, a 

zoning method was proposed by Corn & Esmen13 for sub-grouping workers based on 

their job and similarities in their environment. Then geometric mean and geometric 

standard deviations were calculated for each zone to represent the individual’s 

exposure,  assuming lognormality. Again, issues concerning repeated measurement 

designs were not explicitly dealt with. This approach ignores the existence of variability 

between workers in the “homogeneous” exposure group and there is a non-exhaustive 

use of all the information  available. Similar observations can be made for exposure 

compliance strategies in which the repeated structure of the data is usually ignored. The 

well known manual for estimating the probability of exposure over a certain exposure 

limit, written in the late seventies by NIOSH,13 mentions repeated measurement 
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designs. However, the manual does not explicitly state that repeated measurements 

should come from the same individual. The approaches described allowed 

measurements to be taken from different workers and the same worker for one series of 

measurement, assuming the individual as an interchangable variable. Again, this 

implies that also for compliance strategies between worker variability issues were not 

recognized and exposure categories were implicitly or explicitly considered 

homogeneous.  

 

2. Regression analysis: As a next step, regression models were used to estimate the mean 

exposure based on exposure determinants, as well as estimating the relative effect of 

each exposure determinant. One of the first examples of this approach is the use of 

regression modeling in evaluating determinants of asbestos exposure in the study by 

Dement et al. in 1983.3 More recent examples where regression models were used to 

analyze repeated measurements can be found in the review by Burstyn and Teschke.27 

The advantage was that relatively simple models with a limited number of variables 

could describe associations present in larger datasets. This approach treated the 

observations of the same subject as independent and ignored potential correlations 

between repeated observations. The assumption of independence between observations 

is misleading and may cause biased estimators. Several researchers that used this 

approach were aware of the disavantages at the time.27 However, no convenient 

alternatives were easily available for routine data analysis and the disadvantages were 

taken for granted.  

 

3. One way random effects model analysis of variance (ANOVA) with worker as a 

random effect was used to estimate the within- and between-worker variability which 

are systematic changes in exposure between days and between workers.28-30 This 

approach was first applied to evalute the homogeneity of exposure grouping 

schemes.26,31 The introduction of this approach marked the evaluation of homogeneity 

of exposure groups and eventually efficient grouping schemes based on optimizing 

within-individual and within and between group variability. At the same time, 

epidemiologists were interested in evaluation of the within-individual and between-
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individual variance components since the ratio of these two determines the attenuation 

of exposure response relationships.29    

                                                                                                              

4.  In general the random effects ANOVA approach accounts for a specific correlation 

structure between measurements (CS-Compound Symmetry). Since repeated exposure 

measurements consist of short time series with a non-fixed time interval only few 

studies examined autocorrelation issues explicitly.30,32-34, In these studies there were 

only anecdotal suggestion for significant AR(1) (Auto Regressive of first order) 

autocorrelation, a correlation that reduces consequently with time. In another 

comprehensive study  25% of the data-sets coming from several sources were found to 

show evidence of auto correlation.32  Even though the one way ANOVA method takes 

into account the correlation between repeated measures of the same subject , it is 

unefficient since one does not use all available information regarding exposure 

determinants which actually affect exposure levels and consequently the variance 

components. 

 

5. A two step process was applied consisting of a separate regression analysis and a one 

way random effects ANOVA.2,24,26,27,35,36  A modification of this approach has been 

applied in the situation where the dependent variable was not the mean exposure, but 

the variances of exposure-groups.37 Researchers applied this approach to evaluate their 

exposure data, including repeated measurements for both purposes. In this approach all 

available information was used but random effects were estimated separately from 

fixed effects, using models which were most likely not optimal for either type of 

analysis.38  In addition, by applying multiple testing statistical type I error might 

increase. 
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THE MIXED EFFECTS MODEL 

 
The mixed effects model is a generalization of the standard linear model (a regression 

model) , that enables the analysis of  data generated from several sources of variation 

instead of just one.39-42 The unique aspect of the mixed model is the inclusion of both fixed 

and random effects associated with the independent variables. A random effect is an effect 

whose values are drawn from a normally distributed random process with mean zero and 

common variance. Effects are defined as random when the levels are randomly selected 

from a large population of possible levels. Inferences are made using only a few levels but 

can be generalized across the whole population of random effects levels. Otherwise effects 

are defined as fixed.  

The mixed effects model in which the effect of the worker is assumed to be a random 

effect, can easily deal with repeated measurement designs.40,41 Subjects are assumed 

random because they are selected from a larger population for which we want to generalize 

the findings. Since measurements done on the same subject may be correlated, this 

correlation has to be taken into account in the modeling. The assumptions concerning 

dependency among the repeated outcomes can have different forms leading to specific 

covariance structures. The mixed model supports several covariance structures of the 

observations. As in the ANOVA model, a simple covariance structure can have a 

Compound Symmetry structure where the correlation between repeated measurements is 

assumed to be equal between any 2 measurements. However, more complex structures, 

such as first order Auto-Regressive covariance structures can be assumed as well.  

The number of repetitions per subject is similar (balanced designs) and time points are 

identical across subjects, only in specific circumstances. More commonly the case, the 

number of repetitions per subject is different (unbalanced designs) and deviant sampling 

schemes are most frequently used. The study designs range from repeated surveys on 

consecutive or randomly selected days within a single year2,4,6,9,17-25 to studies which 

include historical measurements collected over periods ranging from 2 to 30 years.1,3,5,7,8,18  

The time points can either be identical across subjects or not. The time-interval between the 

repeated observations can vary across repetitions. The mixed model can easily deal with 

these different sampling schemes.  
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For the analysis of occupational hygiene data with the purpose of exposure assessment this 

means that the mixed effects model has the advantage over all other described methods that 

it can estimate fixed effects associated with different jobs and other covariates (e.g. 

exposure determinants), and simultaneously estimate the within- and between-worker 

variance components associated with the random effects. It is a more efficient extension of 

the two-step approach using simple regression and ANOVA modeling.38 Despite the 

advantages of the mixed model, it is finding wide spread application only since the very 

recent years. The mixed models for exposure assessment were used only lately in studies 

regarding exposure to different pollutants , published by only a few research groups in 

1996 and between 1999-2002.38,43-53 Apart from the advantages for estimating effects from 

determinants of exposure, some other application are expected to be explored in the near 

future because of the specific properties of the mixed models. First, complex study designs 

with repeated measurements over time and space (multiple samples at the same time at the 

same individual,  multi-level structures etc.) can be analyzed efficiently. Secondly, the 

mixed model can be used to predict exposures on the basis of measurement of proxies of 

exposure (surrogate variables) in epidemiological studies which may be used in exposure-

response analysis. Thirdly, the mixed model can be used to design exposure assessment 

strategies, especially with regard to allocation of the sampling effort over time and workers, 

or groups of workers.  

 

 

GOALS OF THE THESIS 

 
The main objective of this thesis is to study applications of the mixed model to evaluate 

potential benefits from using mixed effects models for occupational exposure assessment 

and epidemiological studies by analysing several data sets from surveys with repeated 

exposure measurements. Evaluation of the relative contributions of particular fixed 

characteristics affecting the exposure level (the response variable) was assessed while 

controlling for the random effects as well as the evaluation of the variance components of 

exposure levels mainly for grouping strategy. In addition, an improved estimator of the 

between-worker variability is evaluated in specific conditions. Finally, an estimation of 
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workers’ exposure (a surrogate variable), based on an exposure-exposure determinants 

mixed effects model, was assessed and used further to avoid possible attenuation and to 

obtain more detailed exposure data than obtained through classical grouping strategies 

while exploring  the shape of a relationship with a health response. 

 

 

STRUCTURE OF THE THESIS 
 
 
Chapter 1 provides a general introduction to the thesis. Chapter 2 deals with a specific 

experimental design, a reliability study, consisting of general estimation of variance 

components of exposure over a year in random factories. The scheme of the design 

consisted of a nested design, 6-13 workers within 6 factories, and each 2 using the same 

contaminant. In each factory 10 repeated hygiene surveys were performed within 1 year, at 

random intervals of 3-7 weeks. Thus a nested random effects ANOVA model was fitted to 

the unbalanced design assuming equal correlation between any pair of measurements, a 

Compound Symmetry (CS)  dependence structure (part I) as well as a mixed effects model 

which account for both fixed and random effects (part II). In chapter 3 the benefits of using 

mixed effects models for occupational exposure assessment are presented. Two existing 

data sets with repeated exposure measurements and auxiliary information on work 

characteristics were re-analyzed. Mixed effects models were applied with and without work 

characteristics effects and resulting estimates of the within- and between-worker variance 

components were compared. In addition, the significance of the effects of exposure 

determinants are compared between common models (regression) and valid ones (mixed 

effects). In chapter 4 the association between airborne benzene exposure in fuel distribution 

facilities and task and time-related factors is described, based on a longitudinal database 

collected over 8 years in repeated hygiene-monitoring surveys  in Israel. By using the 

mixed-effects model, hazardous conditions associated with high exposure levels were 

identified and this resulted  in recommendations for better hazard control and a routine 

sampling scheme. In chapter 5 an improved estimator of the between-subject variability in 

exposure concentrations is presented. This estimate was proposed in order to be able to deal 

with negative estimates of variance components The phenomenon of obtaining a negative 
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estimate has its origin in the nature of occupational exposure data since we are dealing with 

relatively small between worker exposure variability and large day-to-day exposure 

variability. It has implications on further estimation of the probability that a worker’s mean 

exposure exceeds the occupational exposure standard, where the worker’s mean exposure 

is relevant to the risk of chronic adverse health effects.  

In chapter 6 we present a study in 270 Dutch bakers. In phase I, we present different 

exposure-exposure determinant models for (i) a classical grouping strategy leading to 

various industrial hygiene groups,  and for (ii) estimating exposure levels for work profiles. 

In phase II we present the process of  investigating the shape of relationship (linear or not) 

between either actual or  estimated exposure (from phase I) with bakers’ sensitization. 

Firstly, we fitted a semi-parametric generalized additive model and secondly we  applied  a 

parametric model – a quadratic logistic model based on previous results, to associate 

exposure and sensitization. The final model allowed us  to present with high certainty, by 

atopic status,  the probability of sensitization by exposure.  

Finally, in chapter 7 the main findings are being discussed. Although the emphasis of the 

thesis is on application of mixed modeling to exposure data in occupational hygiene, an 

example of application of mixed modeling to repeated heath outcome data can be found in 

the Appendix. The appendix contains results from a study on lung function change along 

time, in children living around a power-plant. 
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CHAPTER 2:  

THE VARIABILITY OF EXPOSURE OVER TIME:  

A  PROSPECTIVE   LONGITUDINAL STUDY 

 
C. Peretz, P. Goldberg, E. Kahan, S. Grady, A. Goren 

Ann Occup Hyg 1997;41:485-500. 

 

PART I : APPLICATION OF RANDOM EFFECTS MODELS 
 

 

ABSTRACT 

 

Four hundred and forty personal air measurements were carried out on 54 workers, 

employed in the main processes in six different factories (6-13 in each). Potential exposure 

was to lead, benzene and dust. Ten randomly repeated hygiene surveys were carried out 

over one year. In order to estimate the magnitude of the variability in workers’ exposure 

over time, its sources, the variance between workers and the variance within a worker, a 

nested unbalanced analysis-of-variance model was fitted to the logged data. Of the total 

exposure variance, the within variance of a worker’s exposure over time was 51% 

(GSD=3.1) and the between workers, factories and air contaminants variance was 49%. 

The exposure variance between all of the workers was mainly due to variance between 

workers within the same factory (67%). Outdoor locations, mobility of the worker and 

mobility of the sources of exposure result in a positive influence on both the variance 

between (26%, ANOVA) and the variance of a worker over time (39%, Regression). These 

variables are therefore important in the sampling strategy of workers’ exposure. For valid 

compliance testing and assessment of workers’ exposure the mean and the within- and 

between-variance of the workers’ exposure over time should be considered. The exposure 

should be measured several times a year randomly in order to prevent workers 

misclassification. To assess yearly exposure a GSD=3.1 can be used to calculate confidence 

limits for the arithmetic mean of worker’s exposure measurements, in circumstances 

similar to those in this study.  
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INTRODUCTION 
 

The phenomenon of exposure variability over time in the workplace has become a subject 

of increasing attention of late.1-7 This variability is related mainly to changes in production 

cycle, to the degree of ventilation (seasonal variation etc.), to location characteristics and to 

work practices. It should affect the basic elements of the exposure assessment strategy in 

three areas: hazard control surveys, compliance tests and exposure-response relationships in 

epidemiological studies. Exposure variability is usually expressed by the geometric 

standard deviation (GSD), which is a function of the variance of the log transformed 

exposure levels. The total exposure variance can, therefore, be divided into two main 

components: the variance between- and the variance within-worker. The between-worker 

variance component within the same factory is essential for effective hazard control. The 

latter, the within-worker variance component, expresses the exposure variance in the same 

worker over a long period. In Israel, as in other countries, occupational health legislation is 

aimed at protecting the individual worker; thus, hygiene monitoring should provide a tool 

for assessing exposure of every worker. 

In routine hygiene surveys, measurements are generally made between one to a maximum 

of four times per year and not necessarily on the same worker. There is a difficulty, 

therefore, in evaluating the between- and within-worker variance components simply on the 

basis of routine surveys. In order to further explore the variability between- and within-

worker, there is a need for a specially designed study based on multiple repeated 

measurements taken over an extended period of time. Moreover, on the basis of a one-time 

exposure survey or successive surveys carried out over a short period, inferences are made 

for the long-term exposure. This practice may cause bias since a single survey may not 

represent the annual exposure distribution, and successive surveys may result in 

autocorrelated exposure results.8 The findings of a specifically designed study can provide 

an estimation of long-term variance that can be used for calculating a confidence interval 

around the individual mean exposure. This interval estimate is more valid for assessing 

long-term exposure than a point estimate, such as one measurement, as it gives an 

indication of the precision of the estimate.9 Due to budget as well as logistic restraints the 
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estimation of long-term variability has mostly been based on retrospective data in specific 

job-groups. 

This study is a prospective one aimed at exploring long-term hygiene exposure variations 

based on a specific experimental design assessing the yearly exposure distribution of a 

cohort of workers by repeated exposure measurements, carried out at random intervals. The 

studied units were both individual worker and factory-group. In addition location 

characteristics were taken into account. The three specific aims of the study were to 

estimate the magnitude of exposure variability over-time including its components-the 

variances between- and within-worker, to explore the causes for the between-worker 

variance, and to model location variables affecting the within-worker variance. 

 

 
METHODS 

 

Subjects 

The sample consisted of 54 workers employed in six factories, 6-13 workers in each; two 

car-battery factories with exposure to lead, two fuel distribution installations (not gas 

stations) with exposure to benzene, one machine-tools factory with exposure to hard metal 

dust and one power station with exposure to coal dust. The factories working with these air 

contaminants are obliged by law to perform periodic hygiene monitoring surveys. Each of 

the six factories met the following a priori characteristics: the factory would not be closed 

in the near future, a wide range of exposure-levels was expected (based on previous 

measurements), the workers and processes had not changed recently.  Only workers 

engaged in the main production processes during the morning shift were randomly selected 

for monitoring. The workers employed in the factories involved in this study were not 

assigned to homogenous work groups since almost each job title and location was unique. 

The workplaces selected were publicly or privately owned; four were medium size (10-40 

workers) and 2 had more than 100 workers. They are situated throughout Israel. The 

processes were diverse as well as the ventilation conditions. Figure 2.1 shows the 

distribution of location characteristics of the 54 workers studied.  
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Fig 2.1 Distribution of workstation characteristics of 54 workers 
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Table 2.1 Location variables 

  
Location variable                              Description 

Isolation 0-None 1-Exist 

Method 0-None auto 1-Automatic 

Pressure 0-Atmospheric 1-Above atmospheric 

Temperature 0-Ambient 1-Over ambient 

Source control 0-None 1-Exist 

Ventilation 0-Natural 1-Forced 

Worker mobilitya 0-Stationary 1-Mobile 

Source mobility 0-Stationary 1-Mobile 

Environment 0-Indoors 1-Outdoors 

Continuous process 0-Exist 1-None 

Variety of locationsb 0-One 1-Over one 

NOTES: 
a   Mobility around a single work station 
b   Mobility between different workstations 
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Measuring protocol 

In each factory we performed 10 repeated hygiene surveys within one year, at random 

intervals of 3-6 weeks. This was done in order to cover the seasonal changes in the weather 

and all the phases of the production cycle. Some of the workers were missing during some 

surveys due to illnesses, vacations etc. but each worker had at least 6 measurements. The 

same hygienist carried out all of the surveys.  

Sampling and analysis were carried out by internationally accepted procedures.10,11 The 

samples were personal breathing zone samples carried out in one shift, over 6-8 hours. In 

addition to internal quality controls, validity of the analyses was verified by participating in 

external quality assurance schemes from the UK12 and the USA.13  Surveys were carried out 

after prior notification to the factory. 

 

Statistical analysis 

In order to bring exposures expressed in various scales to a common scale each 

measurement is expressed as a fraction of the  TLV-TWA  according to  Israeli Regulations 

(lead-0.1 mg/m3, benzene-0.6 ppm, hard metals-0.05 mg/m3, coal dust-4 mg/m3). Goodness  

of fit of the logged exposure measurements, obtained from each worker, to the normal 

distribution were evaluated with the  w-s test14 at a significant level of 0.05. Furthermore, 

estimation of the arithmetic mean (AM) exposure of each worker was calculated as the 

direct average     of  the observed    values   due   to   the  number ,6-10,   of  repeated 

measurements. In addition the geometric standard deviation (GSD) was calculated for each 

worker. Analysis of variance (ANOVA): components of  the total variance in exposure 

were estimated by employing    the    random-effect  ANOVA   model    from   Proc Nested 

of the SAS System Software.15  The unbalanced data were derived from a nested structured 

sample and were fitted to the following ANOVA Model:16  

 

Y Xijkl ijkl y i ij ijk ijkl= = + + + +log( ) µ α β γ ε  (i=l,...,3);(j=l,2); (k=l,...,13);(l=l,...,10)     

where, 

Xijkl  = the exposure level in the l -th repetition within the k-th worker within the j-th  

             factory within the i-th air contaminant. 

 µ y  = mean of  Yijkl  
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α i  = the random effect of  the i-th air contaminant. 

β ij    = the random effect of  the j-th factory,  within the i-th air contaminant. 

γ ijk  = the random effect of  the k-th worker, within the j-th factory, within the i-th air  

            contaminant. 

 ε ijkl  = the random effect of  the l -th repetition, within the k-th worker, within the j-th  

             factory,   within the i-th air contaminant. 

It is assumed  that: Xijkl -  has a log-normal distribution. α i , β ij , γ ijk  and ε ijkl are normally 

distributed with 0 means and variances σ σ σ σ
α β γ

2 2 2 2, , ,
e
 respectively. The random effects 

α i , β ij , γ ijk  and ε ijkl are assumed  to be  mutually independent. 

The total variance σ t
2  is divided to the variance between σ b

2  and the variance within σw
2 . 

In the above model the variance between is the sum of the variances σ σ σ
α β γ

2 2 2, ,  and the 

variance within is σ e
2 . It is important to distinguish between σγ

2 ,σ b
2 . The first one, σγ

2 , is 

the variance between workers controlled for the factory and the air contaminant or in other 

words, the variance between workers within factory within air contaminant. The latter,  σ b
2 , 

is the  variance between workers uncontrolled for the factory and the air contaminant or in 

other words, the variance between workers, factories and air contaminants. The estimations 

of the variances σ t
2 , σ b

2  and σw
2 are st

2 , sb
2  and sw

2   accordingly. The corresponding 

geometric standard deviations are: 

GSD-T= exp( st )      GSD-W= exp( sw )        GSD-B=exp( sb ) 

The above model is a three way nested random effects model .  One-way ond two-way 

random effects models were also used. The one way random effects model , with the 

worker as the random effect, was fitted to the data in factory groups. This model has been 

used by other researchers.3,5 The two way nested random effects model,  with factory and 

worker within factory as the random  effects, was fitted to the data  in the air contaminant 

groups. 

The random-effects ANOVA  model was also used to find causes for the variance between 

workers. Location variables were included in the model as effects, instead of the worker 

effect, (Proc Varcomp, SAS15). The extent of their weights among the total exposure 
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variance were considered  to indicate their importance  in consisting the variance between 

workers.  

Multiple regression model: the yearly exposure-distribution of each worker can be 

characterized by a mean and a variance. These parameters  of the whole cohort are 

scattered (each set has its own distribution). In order to explain the diversion of the 

exposure variance of a worker over time,  we built a multiple regression model. The 

dependent variable was the SD of the logged data, which reflects the individual  variance 

over time. Usually variances distribute chi-squared, however  the SD of the logged data 

was found to have a  normal distribution. The independent variables were  dichotomous 

variables characterizing location (Table 2.1). 

 

 

RESULTS 

 
Distribution of exposures  

Each worker in the cohort (total -54 workers) has a set of 6-10 measurements, describing 

the yearly distribution of his exposure. Table 2.2 shows the percent of sets fitting the 

normal distribution with or without either square-root transformation or natural log 

transformation.  

 

Table 2.2  Goodness of fit tests to a normal distribution: percentage of sets  accepted as     

                  a  good  fit according to W-S test 
  

Data-type α=0.05, P>0.95 α=0.10a, P>0.90 
Raw data 47% 37% 

Transformed to square root 73% 61% 

Transformed to natural  log (ln) 92% 82% 

   NOTES:  A set= worker’s yearly measurements; no. of sets=54 
      a      more severe criterion. 
 

From these results it is clear that transformation to natural log resulted in the best fit to 

normality. Thus exposure-levels within each individual can be assumed to be log-normally 
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distributed, which is a common distribution for hygiene  exposures. 5,8,17-19 The joint 

distribution (in categories) of AM and GSD, in the whole cohort, is shown in Fig. 2.2. 

 

Fig 2.2   Yearly exposure distribution of the 54  workers by categories of arithmetic means (AM)   

               and geometric standard deviations (GSD); exposure expressed as TLV fraction 
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Exposure variability- components 

The total and between distributions of the exposure are shown in Fig. 2.3a and 2.3b. 
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Fig 2.3 (a) Distribution of 440 exposure measurements of 54 workers, 6-10 measurements per 

worker, within a year. (b) Distribution of yearly median exposures of 54 workers. 
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We used the nested ANOVA random effects model, shown in Equation (1) to estimate the 

variance components between- and within and their weights (Table 2.3).  
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Table 2.3   Analysis of exposure variance between workers and factories and within a worker in 

groups exposed to the various air contaminants   

 

Air 
contaminant 

exposure  
group 

Main        
component   

Sub         
component 

DF VAR GSD % of       
variance 

among  total 
variance 

   Lead  Between      Factory 1 0.25 1.6 15

       Workera 17 0.27 1.7 17

 Within (= Error)  141 1.10 2.9 68

 Total  159 1.62 3.6   100

       

   Benzene Between      Factory     1 0.00 1.0   0

       Worker   14 2.05 4.2  52

 Within (= Error) 117 1.91 4.0 48

 Total  132 3.96 7.3 100

       

   Dust Between      Factory     1 1.23 3.0   51

       Worker   17 0.35 1.8   15

 Within (= Error) 128 0.83 2.5   34

 Total  146 2.41 4.7  100

  NOTES: A nested model. 440 measurements on 54 workers. 
  DF= Degrees of freedom  ;  VAR=The variance of the log transformed data 
    a   The effect of the worker within the factory 

 

 

The between component for each air contaminant consists of the nested random effect of 

the worker within the factory and the random effect of the factory. The exposure variance 

components of each factory can be seen in Table 2.4.  
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Table 2.4   Analysis of exposure variance between and within worker according to air    

                  contaminant and factory level. 

 

Air Contaminant Exposure 
Group 

Number 
of 

Workers 

n      GSD-T GSD-B       
(% of  Total    
Variance) 

GSD-W       
(% of  Total    
Variance) 

   Lead Factory 1 10 78 2.4 1.6 2.1 

     (31) (69) 

 Factory 2   9 82 4.4 1.8 3.9 

        (15)    (85) 

       

   Benzene Factory 3 10 54 5.7 3.5 3.3 

     (52) (48) 

 Factory 4   6 79 8.4      4.6      4.4 

      (51) (49) 

       

   Dust Factory 5 13 106 2.8 2.0 2.2 

     (42) (58) 

 Factory 6 6 41 5.1 1.0 5.1 

      (0) (100) 

 NOTES:  n = no. of Measurements; GSD-T=Geometric Standard Deviation, Total 
 GSD-B=Geometric Standard Deviation, Between-Workers; GSD-W=Geometric Standard    
 Deviation, Within-Worker; % of Total Variance=Percentage of Between or Within Variance of  
 the Total Variance 

 

 

It can be seen from Table 2.3 that the variance of the random effect of the worker within 

the factory, in each air contaminant, was different and greater than zero. For each 

contaminant, this means that the random effects of the workers within factory were not the 

same. It can be concluded, therefore, that in  the population there were differences in 

median exposures (in the population, median=GM) among the workers within each factory. 

In addition as the weights of the random effects of the factory in each contaminant were: 

15% for lead, 0% for benzene and 51% for dust,  it was concluded  that there was no 

difference in the median exposure level  between the two benzene factories, there was a 

slight difference in the median exposure between the two lead factories and that there was a 
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large difference between the two dust factories. Looking into the weights of the within- 

variances in each air contaminant   each of them was over a third of the total variance. An 

overview of the whole cohort is shown in the Table 2.5.  

 

 

  Table 2.5   Analysis of exposure variance between workers, factories and air contaminants and 

                    within a worker  

 

 
    Main  

Component 

 
      Sub      
  Component 

 
DF

 
VAR

 
GSD 

% of   variance 
among total 

variance 
Between  Air 

contaminant 

2 0.00 1.0  0

  Factorya 3 0.39 1.9 16

  Workerb   48 0.82 2.5 33

  Total 53 1.21 3.0 49

     

  Within (= Error) 386 1.29 3.1 51

  

  Total 439 2.47 4.8     100

 NOTES:   A nested model. 440 measurements on 54 workers 
 DF=Degrees of freedom 
 VAR=The variance of the log transformed data  
   a    The effect of the factory within the air contaminant 
   b      The effect of the worker within the factory within the air contaminant 
 
 
 

The table relates to four components of the the total variance, the weights of each sum up to 

100% of the total variance. The variance within has the greatest weight, 51%. The second 

component is the variance between workers within the same factory within specific air 

contaminant and accounts for 33%. The third component weighs 16%, the variance 

between factories within the same air contaminant.  There is no variance between the 

median exposures of the air contaminants (weight=0%). 
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Factors affecting the within- and between-variance 

To model  the relationship between the within-worker variance and factors in the individual 

workers locations we used the regression model.  

 

  Table 2.6  Relationship between worker’s exposure variance over-timea and location     

    characteristics -linear regression models 

 

 R2 P Pb Pb Pb Pb Pb÷ 

Work  Station 
characteristics 

 Fitness Intercept Environ Worker M Source M Variety 

All work station  
characteristics  
(11 characteristics) 

 
.45 

 
.0035 

 
NS 

 
.0108 

 
.0688 

 
NS 

 
NS 

Environ .33 .0001 .0001 .0001 --- --- --- 

Environ,Worker M. .36 .0001 .0001 .0010 NS --- --- 

Environ, Source M. .38 .0001 .0001 .0001 --- NS --- 

Environ, Variety .37 .0001 .0001 .0001 --- --- .0909 

Environ, Worker 
M., Source M. 

.40 .0001 .0001 .0006 .0569 .0897 --- 

Environ, Worker 
M., Variety 

.40 .0001 .0001 .0024 .1177 --- .0711 

Environ, Source M., 
Variety 

.38 .0001 .0001 .0001 --- NS .0993 

Environ, Worker 
M., Source M., 
Variety 

.43 .0001 .0001 .0016 .0421 .0901 .0719 

  NOTES:  Environ= Environment: outdoors/indoors;  Worker M= Worker Mobility:    
  stationary/mobile; Source M= Source Mobility: stationary/mobile;   Variety= Variety of  
  locations: one/two+  
    a     GSD of the logged data 
    b     Significance of the coefficient in the regression model 

    

The dependent variable was the SD of the logged data. From all possible regressions the 

best models characterizing the relationship (according to R2 and P-values of the 

coefficients) are shown in Table 2.6.  

Four variables in the individual worker location were significantly related to the within 

variance: environment, mobility of worker, mobility of source and variety. The 

environment alone had the most significant relation with the within variance (R2=0.33). 

The environment (P=0.0006) together with the mobility of the worker (P=0.0569) and the 
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mobility of the source (P=0.0897) raised the correlation by 7% (R2=0.40). The variety of 

work locations of the individual worker and the mobility of the worker raised  also the 

correlation in the model but the coefficients were less significant. 

In order to find causes for the variance between workers we investigated certain random 

effects of worker-location which replaced  the worker effect, in two ANOVA models. The 

first model included the random effects of air contaminant, factory, mobility of worker, 

mobility of source, and environment. These effects should explain the variance between 

workers as they replaced the worker effect.  It was found that the factory accounted for 

13% of the total variance, the mobility of source 17%, and the environment, 5%. The 

random effects of the air contaminant and worker’s mobility had 0% weight. Thus the 

variance between workers can be attributed to the mobility of the source, the environment 

and the factory. In the second model only three random effects were included: mobility of 

the worker, mobility of the source, and environment. Similar weights for the random effects 

of source mobility and environment were found (18%+8%= weight of 26%). 

 

 

DISCUSSION 

 

Recently it has been suggested that assessment should be based on an ongoing process 

since exposure varies with time.5,17,18 By collecting exposure data over a period, which 

fully covers  varying production patterns and external environmental conditions, the 

statistical depictors (mean and standard deviation) should have more validity in 

representing the true exposure distribution over time. Very few systematic studies have 

been carried out on this subject. One was based on on 780 workers with 3321 

measurements6 and another one used this data with additional sources, resulting in a study 

involving  ~1600 workers with ~14000 measurements.3 Both of them were retrospective. 

Another study was carried out over consecutive days and was based on 4 repeated 

measurements for each job group.20 Another study that concentrated only on flour dust 

exposure performed three repeated measurements over a period of one week only.21 

Our research was a prospective one carried out over a period of one year in each factory. 

Over this period ten surveys were performed at random intervals with approximately 3-7 
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weeks between each survey. Our protocol was aimed at removing any serial correlation of 

consecutive measurements (autocorrelation). Such autocorrelation may be caused by 

similarities in the production and ventilation conditions, which may occur when carrying 

out the surveys day after day. This prospective study was able to control for confounding 

variables, such as those related to the circumstances of production, the strategy of 

sampling, and variation between hygienists.22 

Our nested sampling design (sampling workers within factories within air contaminants) 

enabled us to look simultaneously into sub-components responsible for the overall 

variability in exposure. The above nested model has four random effects: air contaminant, 

factory, worker and error.  This model can be extended to include also the random effect of  

a  homogenuous /homomorphic group, in which case the model will have five random 

effects: air contaminant, factory, group, worker and error. In such a case the between 

workers variation is controlled for three factors, the air contaminant, the factory and the 

group.   

The unbalanced nested ANOVA model assumes conditional independent repeated 

measurements. Empirically, we found an almost constant simple correlation (R2=~0.3) 

between repeated measurements. However, we chose to use this model since it takes into 

account both the nested and the unbalanced situation, which is the case in our study. In 

addition the use of a random effect model allows us to make comparisons with other studies 

that have used the same model. Other models cannot handle a nested design or omit some 

of the measurement results in order to convert an unbalanced design to a balanced one. This 

omission could give rise to the loss of important exposure information. In addition, for the 

ANOVA model we assumed homoscedacity, a uniform within variance, which is a 

common assumption, especially after having carried out a log-transformation of the data. 

Due to the robustness of the model this assumption is reasonable. Empirically the variances 

of the individual workers over time were diverse. Hence, when the study group is large 

enough it is more valid, statistically, to divide it into homogeneous sub-groups according to 

the long term variances of the individual workers. 

In looking for the combination of variables which together are responsible for the single 

worker variance over time we used a multiple regression model. This kind of investigation 



 

  38 

into variables related to the between- and within-worker variances can contribute to a 

subject, which has health related and legal implications.  

 

Total variance 

As the exposure data were found to fit a log-normal distribution, the total exposure variance 

is characterized by GSD-T (geometric standard deviation-total). For the whole cohort the 

GSD-T was 4.8, for the lead workers GSD-T was 3.6, for the benzene workers  GSD-T was 

7.3 and  for the dust workers  GSD-T was 4.7. Two studies which relied on homogenous 

job-title groups3,20 reported much lower values, 2.4 and 2.5 respectively, the former relating 

to various chemicals and the latter to sodium borate dust only. A comparison between our 

data which consisted of sampling workers within factories in a nested sample with 10 

randomly repeated measurements within a year and the above studies3,20   may not be 

reasonable due to  the difference in the study design. They used job-title exposure groups 

and small number of repeated measurements or short measuring period, repeated on four 

consecutive days. 

A notion expressed17 that exposure to dust tends to vary more than other agents was not 

substantiated by our data, but was, however, consistent with the data of  other studies.3,20 In 

contrast to the above mentioned studies based on homogenous job-title groups, our sample  

represented workers in the main processes within factory within air contaminant. In order 

to carry out an overall exposure assessment in factories it is recommended to sample 

workers randomly within homogenous job-title etc. groups.17,18 Nowadays it is realized  

that such homogenous groups based on an observational strategy are not truely 

homogenous.7 The majority of the factories examined (~70%) employed less than 40 

workers and the  subgroups according to job-titles consisted   of only 1-3 workers. From 

our previous experience of these and other similar factories a wide range of between 

worker exposure levels was expected. Therfore it was not reasonable to define 

homogeneous groups according to exposure levels and hence our studied unit was the 

individual worker. The factory and subgroup size is typical of the situation in Israel (and 

perhaps also in other countries) and is too small for analysis of variance related to job title 

groups. 
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Main variance components  

The variance of occupational exposure in each group of workers, consists of two main 

components : the variance within a worker, and the variance between workers, factories and 

air contaminants. During our analysis of the variance components we found that the within 

variance was half (51%) of the total variance of the long-term exposure of the whole 

cohort. The other half (49%) of the total variance was due to the variances between 

workers, factories and air contaminant. Other studies mentioned above reported higher 

weights of within variances compared to the between ones. This observation may be mainly 

due to their homogenous job-title subgroups.3,20 

As the workers in our study represented different processes in factories we expected a 

priori that the sum of the weights of the variation between workers, factories and air 

contaminants would be greater than the weight of the variance-within. However, as 

mentioned above, this was not the case; we found an almost even split contribution of the 

within- and between- variances. The within-variance should, therefore, be given high 

attention when conducting exposure assessment. Usually in hygiene surveys for diagnostic 

and compliance tests this issue is ignored. 

As regards the magnitude of the variance components, the first component, the GSD within 

workers, was found to be 3.1, which is a higher value than that suggested in other countries 

e.g.  Holland2 2.7 , Great Britain17 1.8. The reasons for our higher variance component may 

be related to our different study design, different work situations and work practices and 

different meteorological conditions.  

Our findings on the magnitudes and weights of the two variance components have practical 

implications. Regarding the control of hazards, when the within variance is high, efforts 

should be addressed to reduce the exposure variability within locations; the within 

variability gives information on the relative importance of periods of high exposure in the 

long-term exposure. There is a need to control the source of exposure, to improve local 

ventilation and to ensure that standard operating procedures are written and are being 

applied.  

Regarding compliance testing, when focusing on a single measurement and hence ignoring 

the within and between variances, the long-term exposure picture is missing. This might 

cause over-exposed workers to be classified as non-exposed and vice versa. In situations in 
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which regulations require periodic monitoring, or when a workplace requests a follow-up 

survey, the sampling strategy should be based on two dimensions-the magnitude of the 

within worker variance as well as the between worker variance, since both of them are 

high. In the subsequent surveys, therefore, measurements should take into account these 

factors including repeat measurements on the same workers.   

For evaluating exposure-response relationships, when the variance is not taken into account 

the relationship can be attenuated artificially.23   

 

Factors affecting the variance components 

In our nested design sample, the total variance consisted of the following sub-components: 

(a) Variance between different agents; 

(b) Variance between different factories within the same agent; 

(c) Variance between different workers within the same factory within the same agent; 

(d) Variance between different times of measuring within the same worker within the same      

factory within the same agent. 

The first three sub-components accumulate to the variance between component and the last 

one is the within variance component over time. According to the nested and unbalanced 

analysis of variance model  we found that the weight of the sub-component (c), the 

variance between workers within the same factory within the same agent, was the highest 

(67%) amongst  the first 3 sub-components, indicating  a diversity in median-exposure 

levels  among  workers in the same factory. This sub-component reflects the differences 

between location characteristics and individual work habits/practices (“dirty” or “clean” 

workers for example) in the same factory. A further investigation of the location 

characteristics, revealed that environment (indoors/outdoors) and the mobility of source 

(stationary/mobile), were partly responsible for this variability. Within a particular factory, 

conclusions cannot be drawn on group exposures on the basis of one or a few individual 

measurements. In many situations, group medical examinations are carried out on the basis 

of these individual measurements. In some cases this may result in a waste of valuable 

resources. In other cases it may be decided not to carry out group medical examinations and 

at some future date this could affect the health of the worker. 
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The weight of sub-component (b), the variance between factories within the same agent, 

was 37% of the first 3 sub-components, meaning a medium-diversity (on a TLV scale) in 

median-exposures between these factories. This reflects the differences between the 

structure, geographical location etc. of the factories within the same agent. Unexpectedly, 

the weight of sub-component (a) was 0%, meaning no-difference in median exposures (on 

TLV scales) among the three agents. The findings that the variance between agents was 

zero and that the variance between workers within the same factory was high, suggest that 

the strategy of homogenous group exposure according to air contaminant should be 

considered alongside other exposure assessment strategies. This finding should be a subject 

for further investigation. 

Sub-component (d), the variance between measurement times of the year within the same 

worker within the same factory within the same agent was the highest weight 51% among 

the four sub-components, showing that it has a major importance in exposure variability. 

As previously mentioned this is an important factor in planning an exposure measuring 

strategy. 

By a multiple regression model it was found that the amount of variability in a worker’s 

exposure level over time is related to the environment of the location  (R2=0.33,P=0.0001). 

These finding were similar to those of another study.3 In outdoor locations, the 

environmental variability was higher than indoors. This variability was raised for mobile 

workers or mobile sources of exposure than for non-mobile ones (R2=0.40, P=0.0001). 

However, as the time factor has a significant effect on the exposure levels, long-term 

worker exposure should be assessed by an interval estimate relating to the exposure 

variability over time instead of a point estimate based upon one or two measurements. 

Recently it has been suggested5  that the arithmetic mean is more relevant to long term risk 

assessment and thus the confidence interval  should be a confidence interval for arithmetic 

means of data originating from a log-normal distribution.24 This is laborious to compute 

and therefore approximations were suggested.9 Within the last year, a confidence interval 

has  been suggested for the arithmetic mean of a group of workers exposed over a long 

period of time.25  In general, the number of repeated measurements is less than five and 

exposure variability is high,  as was found in this study. Thus in these situations one should 

use the exact confidence limit instead of the approximation.9 One should take into 
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consideration that the confidence interval assumes independence between repeated 

measurements which is not always the case. In addition, the large variation causes a very 

large confidence interval, especially when the confidence level is high. For example, if 

AM=0.5TLV, GSD=3.0, with five repeated measurements and a confidence level of 95% ,   

the   exact    confidence   interval   is   then  (0.2-25 TLV). Therefore it is extremely 

desirable to increase the number of repeated measurements. In any case, there is a need to 

find technical solutions that will allow continuous measurements to be carried out over long 

periods relatively cheaplyin order to have a valid assessment of long term exposure to 

hazardous chemicals that affect the health of the worker.5   

 

  

CONCLUSIONS AND RECOMMENDATIONS 

 

The exposure variance both within- and between-worker are high. For a valid assessment of 

exposure, a single measurement/survey of hygiene-exposure is insufficient. Rather, the 

level of exposure should be measured repeatedly over a year, with intervals of several 

weeks. 

The present method of compliance testing should be replaced with one in which  the mean 

and standard deviation of the exposure over time should be taken into consideration The 

traditional approach  is based on  a dichotomy where a worker’s exposure level can only be 

above or below the TLV in each single measurement. Due to the worker’s high exposure 

variance over time, workers might  be classified  as overexposed  when this is not the case 

and vice versa. In addition, in order to present the exposure distribution in a factory  it is 

essential that the strategy of workers’ sampling should rely upon statistical sampling 

methods to account for both the variance within- and between-worker, since both of them 

are high. 

For both sampling of workers for exposure assessment in individual surveys and over time, 

one should take account of those working in different environments (indoor, outdoor) and 

mobilities (the source and the worker) in order to cover a large range of workers’ exposure 

distribution. In similar circumstances as described in this study, a primary estimator of the 

environmental variability in exposure level over time can be: GSD=3.1. In the absence of 
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more specific information, this value can be used to calculate the confidence limits of the 

mean exposure findings when measuring exposure levels of workers. Grouping of workers 

according to the agent may not be relevant in identifying homogenous exposure groups. 

There is a need to study the construction of the correlation matrix between randomly   

repeated measurements. In order to improve the statistical analysis required in hygiene 

exposure assessment, the consistency of various statistical models using the same data with 

various matrix  covariance/correlation constructions should be studied. 
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PART II: APPLICATION OF MIXED EFFECTS MODELS 

 

 
INTRODUCTION  

 
In our year-long longitudinal exposure study we used a one way random-effects model,1 as 

most researchers2-7 do to estimate  variance components, ignoring the work characteristics. 

Since work characteristics usually are fixed effects, random effects models are not the 

appropriate statistical tool to handle them. 

The mixed-effects model can model the influence of both fixed and random work-

environment characteristics, on the observed exposure levels and estimate the within- and 

between-worker variance components controlled for work characteristics and their standard 

errors. In addition, mixed-effects models are able to identify and deal with the presence of  

time trends in the concentrations of  air pollutants. 

In this appendix we illustrate the benefits of using the mixed effects  models for our data in 

comparison to a random effects model.  

 
 
METHODS 
 

Eleven characteristics of the working conditions were recorded in each workstation in our 

study. Four of these variables appeared to affect exposure levels in a statistically significant 

manner: work method (automated/non-automated), temperature (ambient/above-ambient), 

mobility of the worker (stationary/mobile) and mobility of the source (stationary/mobile). 

The influence of these four work characteristics on the estimated variance components was 

evaluated by applying the mixed-effects model for unbalanced data. A one way random-

effects  model was used as a reference.  

Existence of a time-trend was also examined, by dividing the 10 measurements sessions 

into 2 periods: the first five measurements and the last five measurements.  

We assumed a compound symmetry structure of the correlation matrix, as there was no 

reason to assume a more complex structure and we also assumed independence across 

subjects.  
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The mixed-effects model for unbalanced data is specified by the following expressions: 

For i=1,.....,k (workers) and j = 1,.......,ni (repetitions of  the i’th worker) 

Where: 

=Y ij  log-transformed exposure levels (devided by the TLV) 

0β = overall (fixed) group mean; mean of  Y ij  

1β ,……….. , pβ  =  fixed effects (= covariates)   

1ijx ,............., ijpx = values of the effects for the i’th worker on the j’th day  

ib  =  i’th worker random effect 

 

It is furthermore assumed that:  

ib ~ N(0, 2
bσ ),  ib ’s are all independent ; ijε ~ N(0, 2

wσ ), ijε ’s are all independent 

 
222
wb σσσ +=   ;  =2

bσ  variance between-workers;  2
wσ = variance within-workers 
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For every  i ,   i= 1,.....,k   and  for every  j,l ,   j,l = 1,.....,ni  

 

(the ijy ’s of the same worker are correlated, those of different workers are uncorrelated) 

 

To model the influence of work characteristics on the exposure levels they were considered 

as fixed effects in the above model : 

1β = method effect  

2β = temperature effect 

ijby iijppijij
........... εΧβΧββ +++++= 110
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3β = worker mobility effect 

4β = source mobility effect 

1ijx = method  value (0-automated/1-none) for the i-th worker on the j-th day 

2ijx = temperature value (0-ambient/1-above) for the i-th worker on the j-th day 

3ijx = worker mobility  (0-stationary/1-mobile) for the i-th worker on the j-th day 

4ijx = source mobility  (0-stationary/1-mobile) for the i-th worker on the j-th day 

 

To identify time trends in the above model a fixed time effect was added to the model ,  

5β = period  

5ijx = period value (0-first period /1-second period), for the i’th worker on the j-th  day 

 

The one-way random-effects model used is a specific case of the  mixed-effects model with 

an equation that includes only the workers’ random effects.  

Both models were analysed by using PROC MIXED from the SAS System Software 

Version 6.1.8 Variance components were estimated by the Restricted Maximum Likelihood 

(REML) method. The exposure concentrations were assumed to be log-normally 

distributed.9-11  

 

 

RESULTS 

 

The estimated variance components controlled for the 4 work characteristics that resulted 

from applying the mixed effects model are presented in table 2.7, as well as the one way 

random-effects  model variances estimators, which are uncontrolled for work 

characteristics.  

From the table it can be seen that the within-worker variability in exposure concentrations 

(s2ww) is significantly greater than zero in all  factories with both models. The within-

worker variance component remained unchanged when the time-independent covariates 

were added in the mixed-effects model.  
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However, a distinct reduction was observed for the between-worker variance component 

(s2bw) in four factories (1, 2, 4, and 6). In factory 4, the working method alone reduced the 

between worker variability in exposure concentrations by 85% (from 2.30 to 0.35). In 

factory 6 the limited amount of between-worker variability present was completely 

explained by differences in working method. In factory 2 it was mainly the temperature that 

reduced the between worker variability by 59% (from 0.29 to 0.12).  In factory 1, mobility 

of the source was found to have a significant effect, resulting in a  reduction of 100% of the 

between-worker variability in  exposure concentrations (from 0.23 to 0.00). In factory 5 

none of these covariates had a significant effect on the exposure levels and therefore on the 

between-worker variability.  

No statistically significant time-trend was found for each of the factories.  The estimators of 

the variance components of the exposures remained unchanged in the mixed-effects model 

when period was taken into account.  

When comparing the estimated variance components in the two models with (mixed model) 

and without (random effects model) work characteristics, in general as expected variance 

components were lower in the mixed model. Specifically, the work characteristics affected 

the between-worker variance estimators consistently (59-100%). 
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Table  2.7    One-way  random-effects and  mixed-effects models  for  exposures in  six factories 
 
  Random-effects     

         model  

Mixed-effects  

     model 
Factory  n      k     variance est   (se) p est (se) p Covariatesa    βb H    pc 

1 

battery 

lead 

78     9     s2bw 

                s2ww 

 

0.23 (0.14) 

0.54 (0.09) 

ns 

.0001 

0     (.)d 

0.53 (0.09) 

. 

.0001 

Intercept 

c1 

c2 

c3  

c4  

-1.56 

-0.41 

 0.21 

-0.21 

 1.49 

.02 

ns 

ns 

ns 

<.01 

2 

battery 

lead 

82   10    s2bw 

               s2ww 

 

 

0.29 (0.23) 

1.64 (0.27) 

ns 

.0001 

 

0.12 (0.21) 

1.65 (0.27) 

ns 

.0001 

Intercept 

c1 

c2 

c3  

c4  

-1.93 

-0.94 

 1.31 

 0.24 

 0.38 

<.01 

.11 

.01 

ns 

ns 

 3 

fuel 

benzene 

54     6    s2bw 

                s2ww 

 

 

1.56  (1.09) 

1.46  (0.30) 

ns 

.0001 

1.75 (1.92) 

1.46 (0.30) 

ns 

.0001 

Intercept 

c1  

c2  

c3  

c4  

-3.01 

-0.14 

 2.89 

 0.00 

 1.11 

ns 

ns 

ns 

nr 

ns 

4 

fuel 

benzene 

 

79   10    s2bw 

                s2ww 

 

 

2.30  (1.22) 

2.21  (0.38) 

.0587 

.0001 

0.35 (0.32) 

2.21 (0.38) 

ns 

.0001 

Intercept 

c1 

c2 

c3  

c4  

 0.25 

-2.78 

 0.00 

 0.00 

 0.00 

ns 

<.01 

nr 

nr 

nr 

5 

tools 

cobalt 

106  13    s2bw 

                s2ww 

 

 

0.45  (0.21) 

0.64  (0.09) 

.0372 

.0001 

0.54 (0.29) 

0.64 (0.09) 

.0649 

.0001 

 

Intercept 

c1 

c2 

c3  

c4  

-0.49 

-0.27 

-0.46 

 0.42 

 0.00 

ns 

ns 

ns 

ns    

nr 

6 

power 

coal 

41     6    s2bw 

               s2ww 

0.07  (0.16) 

1.33  (0.32) 

ns 

.0001 

 

0       (.) 

1.30 (0.30) 

. 

.0001 

Intercept 

c1 

c2 

c3  

c4  

-2.38 

 0.75 

 0.00 

 0.00 

-0.23 

.03 

.07 

nr   

nr 

ns 

 NOTES:    n = no. of  measurements ;  k = no. of   workers;  est = estimator;  se = standard  error ; 
 s2bw = between- worker variance component;  s2ww = within-worker variance component 
  a   covariates: c1 = method: automated (0) / non-automated (1); c2 = temperature: ambient (0) / above-  
     ambient (1);c3 = worker mobility: stationary (0)/mobile (1);c4 = source mobility:stationary (0)/mobile (1) 
  b  coefficients for fixed effect related to log-transformed standardised (TLV fractions) concentrations; 
  c   p-value:     ns = non-significant, p>0.11 ;      nr = non-relevant (covariate is constant in all workers or  is  
     correlated with other  covariates); d   cannot be estimated due to numerical limitations 
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DISCUSSION 

 
The re-analyses with the mixed model resulted in criteria for uniformly exposed groups of 

workers. Grouping workers into uniformly exposed sub-groups is an inherent part of 

exposure assessment9-11 and  there is so far only limited experience with optimisation of 

these strategies.9,12,13 

In four out of six factories, three factors ‘working method’, ‘temperature’ and ‘source 

mobility’, were found to significantly affect exposure. They reduced the between-worker 

variance component by 59%-100 in the different factories. In this example, a priori 

grouping based on job titles was not meaningful since almost each worker had a different 

task. However, a posteriori grouping by ‘working method’ (automated/non-automated), 

‘temperature’ (ambient/over-ambient), and ‘source mobility’ (mobile/not-mobile) based on 

the results of the mixed model, will result in more uniformly exposed groups of workers.  

In contrast, the available information on work characteristics did not allow for explanation 

of within-worker variability in exposure concentrations, which was quite high in most 

factories, since these characteristics were constant for the same worker during the one-year 

follow-up period.  

In summary, in this study, the comparison between the variance components estimators in 

the nested models; the mixed model which accounted for the work characteristics and the 

random effects model which did not account for the work characteristics enabled us to 

evaluate the extend of the combined "contribution" of those specific work characteristics to 

the variance between workers within an exposure group. Consequently, more refined 

homogeneous exposure-groups can be declared for further exposure assessment surveys 

and epidemiological dose-response studies.  
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CHAPTER 3:  

APPLICATION OF MIXED-EFFECTS MODELS FOR  

EXPOSURE ASSESSMENT   

 
C. Peretz , A. Goren , T. Smid , H. Kromhout  

Ann Occup Hyg 2002;46:69-77.  

 

 

ABSTRACT 

 

The benefits of using linear mixed effects models for occupational exposure assessment 

were studied by re-analysing three data sets from two published surveys with repeated 

exposure measurements.  The relative contributions of particular characteristics affecting 

exposure levels were assessed as in a multiple regression model, while controlling for the 

correlation between repeated measurements. While one-way ANOVA allows  one only to 

estimate unconditioned variance components, a mixed model enables estimation of 

between- and within-worker variance components of exposure levels while accounting for 

the fixed effects of work characteristics. Consequently, we can identify the work 

characteristics affecting each variance component. Mixed models were applied to the data 

sets with repeated measurements and auxiliary information on work characteristics. The 

between-worker variance components were reduced by 35%, 66% and 80% respectively in 

the three data sets when work characteristics were taken into account. The within-worker 

(day-to-day) variability was reduced only in the pig farmer data set, by 25%, when 

accounting for work activities. In addition, coefficients of work characteristics from the 

mixed model were compared with coefficients resulting from originally published multiple 

linear regression models. In the rubber manufacturing data, the coefficients of the mixed 

model showed similar relative importance, but were generally smaller than the coefficients 

from regression models. However, in the pig-farm data, only the coefficients of work 

activities were somewhat reduced. The mixed model is a helpful tool for estimating factors 

affecting exposure and suitable variance components.  Identifying the factors in the 
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working environment that affect the between-worker variability facilitates a posteriori 

grouping of workers into more uniformly exposed groups. Identifying the factors that affect 

the within-worker variance is helpful for hazard control and in designing efficient sampling 

schemes with reference to time schedule. 

 

 

INTRODUCTION 

 

Ideally, exposure assessment of air pollutants at the workplace should be based on repeated 

measurements on randomly selected days of a randomly selected number of workers from a 

priori defined occupational groups.1-5 Usually measurements done on the same worker are 

correlated. Since exposure varies both within and between workers in a given exposure 

group,1,2,4,6,7 these variance components should be taken into account in exposure 

assessment and for more effective hazard-control, as well as in compliance testing and 

evaluation of exposure-response relationships.8-11 

Understanding the factors in the work environment that affect mean exposure levels 

enables the estimation of the between- and within-worker variance components conditioned 

on these factors.  The identification of uniformly exposed groups of workers is essential for 

valid compliance testing and exposure-response evaluation. Identification of the factors in 

the work environment that are related to the between-worker variance component enables 

sub-grouping of workers into more uniformly exposed groups. An understanding of the 

factors affecting within-worker variance assists in the identification of conditions in the 

work environment that cause varying concentrations from day to day. This is a prerequisite 

for better protection of the individual worker from hazardous exposures. 

So far, in studies with repeated measurements designs, most researchers have used either a) 

a one-way random-effects model to estimate variance components, ignoring work 

characteristics12-19 and/or b) multiple linear regression to model the effect of work 

characteristics on observed exposure levels, ignoring the correlation between repeated 

observations from the same worker.14-15   Mixed-effects models for unbalanced data 

simultaneously estimate both the effects and the variance components in a more efficient 

way.20-22 For exposure groups those models can describe the influence of fixed and random 
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work environment characteristics on the observed exposure levels, and estimate the within- 

and between-worker variance components controlled for work characteristics and other 

determinants of exposure. Recently, mixed effects models were used by several researchers 

for different purposes.19, 23-25  A time trend can be introduced into these models as a fixed 

effect. In this paper we present the benefits of using mixed effects models for unbalanced 

data to estimate variance components while controlling for work characteristics. In 

addition, we present the coefficients of the work characteristics that affect exposure levels, 

controlled for the correlation between repeated measurements. Finally, we will show which 

work characteristics affect between- and within-worker variability in exposure 

concentrations.   

For our analysis, we used three existing data sets with repeated personal exposure 

measurements as described previously in two published papers.14,15,18 A common feature of 

the data sets was that they were from systematic surveys. Auxiliary information on the 

work environment and activities was collected during the measurements. The data sets 

stemmed from two industry-wide surveys among workers from the rubber manufacturing 

industry and one survey among pig farmers in the Netherlands. Detailed information on 

these studies and the results from the one-way random-effects models and from the 

multiple linear regression models can be found in the above-mentioned papers.14,15,18  

 

 
METHODS 
 

Study design, data collection and previous statistical analysis 

First Example: Industry-wide survey of the rubber manufacturing industry  

This study of the rubber manufacturing industry was performed in the Netherlands, to 

examine relationships between working conditions and chemical exposures. Personal 

exposures to airborne particulate, rubber fumes and solvents, as well as dermal 

contaminants, were measured in a representative sample of 10 factories producing an array 

of different rubber products. For each plant, the measurements and observations took four 

days (Tuesday-Friday). Auxiliary data on tasks performed, use of personal protection 

devices, ventilation characteristics and process characteristics were collected through 

interviews of sampled workers. Workers were selected, stratified by production function 
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and by the job done, and surveyed on randomly chosen days during the course of the four-

day measurement period. 

Multiple regression models were applied to evaluate the relationships  between the 

collected auxiliary data and exposure levels , for two groups of workers: 234 workers with 

620 measurements exposed to inhalable particulate, and a sub-group of 36 workers with 59 

measurements exposed to rubber fumes (measured as the cyclohexane-soluble fraction of 

the inhalable particulate). Details of the study and the modeling can be found elsewhere.18 

 

Second  Example: Survey on Pig Farmers’ Exposure to Inhalable Endotoxin  

In a study among 98 pig farmers from the south of the Netherlands, exposure to inhalable 

dust and endotoxin was monitored by personal sampling. Exposure was measured during 

one work shift on a randomly chosen day of the week; one day during the summer of 1991 

and one day during the winter of 1992. Outdoor temperature was obtained from a 

monitoring station in the south of the Netherlands. Task activity patterns and farm 

characteristics were also recorded. Activities, which were represented by time spent in each 

activity, were based on daily averages during 12-14 days  For the purpose of this paper, 

only the exposure data on endotoxin will be used. Multiple linear regression analysis were 

applied to evaluate  the relationship between farm characteristics,  activities and outdoor 

temperature and log-transformed endotoxin concentrations. One-way random-effects model 

was applied to estimate variance components. Details of the study and the modeling  can be 

found elsewhere.14,15 

 
Sources of exposure variability   

We postulated that the variability of the exposure levels in an industrial hygiene group of 

workers arises from 4 sources: 

1. Systematic between worker variation: Systematic differences in factors that define the 

work conditions of different workers. These factors are mostly spatially related (e.g. 

local ventilation), varying among workers but constant in time for each worker. 

Sometimes these factors are both temporal and spatial (e.g. process temperature), 

meaning that the levels differ among workers (the mean value) and within the same 

worker along time. 
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2. Random between worker variation: Differences among workers beyond what can be 

explained by specific factors.  This additional variation may be associated with  factors 

that are not measured due to time/money limitations,  inability to measure (e.g. 

workers’ habits) or lack of awareness. 

3. Systematic within worker variation: Systematic differences in factors that define the 

work conditions of the same worker over time. These factors are  temporal (e.g. burden, 

activities) and may be common to all workers in the IH group. Time itself is one 

possible systematic, within worker, factor (e.g. season, year). Usually these within 

worker changes are related to  the cycle of work, the production, seasonality etc. 

4. Random within worker variation: Differences among measurements on the same 

worker at different time points beyond what can be explained by specified factors. This 

additional variation may be associated with further within-worker factors (e.g. changes 

of habits of a worker) that are not measured due to time/money limitations,  inability to 

measure or lack of awareness (e.g. measures taken by different hygienists, 

measurement errors). 

 

Thus, within the same exposure group along time, the usual partition of the total exposure 

variance into 2 components: between workers and within workers1,2,4,6,7 can be refined 

when work characteristics are taken into account. 1. Systematic variation (sources 1,3) 

accounts for differences in work characteristics.  These differences can be included as 

explanatory variables in the model whose effects can be estimated. 2. Random variation 

(sources 2,4), which is partitued into 2 components: a. Between worker variation, 

“conditioned” on the effects of the observed work characteristics (source 2). This variance 

component reflects additional variation among workers beyond differences due to work 

factors. b. Within worker variation (source 4), which reflects additional variation at the 

within-worker level.  The total random variance when work characteristics are taken into 

account is a conditional variance, so its value is less than the total variance when those 

factors are not taken into account, and is the sum of the conditioned random between 

worker variance and the random within worker variance.  
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Mixed effects models  

A mixed effects model is a generalisation of the standard linear model (a multiple 

regression model) that enables the analysis of data generated from several sources of 

variation instead of just one.26 It associates one continuous dependent variable (a response, 

an outcome,) with several explanatory variables (categorical or continuous). The unique 

aspect of the mixed effects model is the inclusion of both fixed and random factors. Fixed 

effects provide estimates of the average responses in the group, like in a common 

regression model, while random effects (e.g. subjects’ effects) account for the natural 

heterogeneity in the responses of different individuals and allow estimation of responses 

for each individual in the study. Since measurements done on the same subject are 

correlated, this correlation must be taken into account in modelling. The dependence 

among the repeated responses can be of different types leading to specific 

covariance/correlation structures. The model allows the assumption of several covariance 

structures and enables estimation of the effects as well as variance parameters. The number 

of observations per subject can be either the same (a balanced design) or different (an 

unbalanced design). The time points can be either identical across subjects or not. The 

time-interval between repeated observations can vary across repetitions.21  

 

Current application of the mixed effects model 

The application of this model for identifying the determinants of exposure and assessing 

variance components is presented in this paper using two examples: one from the rubber 

manufacturing industry, and another from pig farming. In both examples, the dependent 

variable was the exposure level of a pollutant and the explanatory variables were workplace 

characteristics. These fixed effects were either time-dependent (e.g. outdoor temperature) 

or fixed along time (e.g. stable flooring). The individual worker’s effect was taken as a 

random effect. We looked at two sources of random variance: the random variance between 

workers and the random variance among repeated measurements within workers. In the 

first example we had three repetitions, and in the second example we had only two 

repetitions per worker. We assumed that any two repeated measurements of the same 

worker have equal correlation irrespective of the time interval between them; a compound 

symmetry covariance structure. This is the covariance structure assumed in classical 
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repeated measurements ANOVA. Furthermore, we assumed that the variance between 

workers is equal across the fixed factors of work characteristics (defined as homogeneity) 

and that the effects as well as the variance within workers are equal across all workers in 

the same group. The residuals were assumed to be independent of each other. Exposure 

concentrations were assumed to be log-normally distributed.1,2,4,7 Mixed models were 

applied with and without the fixed effects (without- is equivalent to the random effects 

model), to determine the impact of the fixed effects upon the variance component 

associated with the random effects. The estimated variance components of both models 

were compared.  

PROC MIXED from SAS System Software Version 6.126 was used for the analysis. The 

procedure enables simultaneous estimation of the effects, their standard error and 

significance tests, as well as variance components and their confidence limits. Variance 

components were estimated using the Restricted Maximum Likelihood (REML) method. 

Nested models were compared by likelihood ratio test.  

 

The mixed-effects model for unbalanced data is specified by the following expressions: 

For i=1,...,k (workers) and j = 1,...,ni (repetitions of  the i’th worker) 

Where: 

=Y ij  log-transformed exposure level 

0β =  an overall intercept for the group that corresponds to mean background exposure 

(log-transformed) when all factors equal zero 

1β ,…, pβ  = fixed effects  

1ijx ,..., ijpx = values of the variables for the i’th worker on the j’th day  

b1,...,bk = workers’ random effects 

b i=  i’th worker random effect, which corresponds to the discrepancy between his 

intercept and the group intercept 0β    

Z1,..,Zk = workers’ indicators (0/1) 

 

ijy kkijppijij
zbzb εβββ ++++++ ΧΧ= ...... 11110
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It is furthermore assumed that:  

ib ~ N(0, 2
bσ ),  ib ’s are all independent ; ijε ~ N(0, 2

wσ ), ijε ’s are all independent, 

ib ’s and ijε ’s are all independent of each other 

222
wb σσσ +=   ;  =2

bσ  variance between-workers;  2
wσ = variance within-workers. 

 22 /σσρ b= ; =ρ  correlation between any two repeated measures of the same worker 

 





≠
=

=
lj
lj

)yy(corr il,ij ρ
1

        




≠
=

=
lj
lj

)yycov( il,ij 2

2

ρσ
σ

compound symmetry structure 

  

For every  i ,   i= 1,...,k   and  for every  j,l ,   j,l = 1,...,ni  

(All ijy  of the same worker are correlated, and those of different workers are 

uncorrelated) 

 

To model the influence of work characteristics on the exposure levels they were 

considered as fixed effects in the above model, for example: 

1β = process pressure effect 

2β = process temperature effect 

3β = local exhaust ventilation effect 

1ijx = process pressure value for the i-th worker on the j-th day 

2ijx = process temperature value for the i-th worker on the j-th day 

3ijx = local exhaust ventilation indicator (0-non present/1-present) for the i-th worker on 

the j-th day 

To identify time trends in the above model a time term was added to the model: 

4β = period effect 

4ijx = period indicator (0-first period /1-second period), for the i-th worker on the j-th  

          day 
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RESULTS 

 

First Example: Industry-wide survey of the rubber manufacturing industry  
Results of the application of both the random-effects model (the model without the fixed 

effects) and the mixed-effects model (the model with the fixed effects) were compared in 

the 2 data sets with exposure to inhalable particulate and rubber fumes (see Table 3.1, 3.2). 

The effect of the day of the week on the exposure level was tested separately. Table 3.1 

shows that for workers exposed to inhalable particulate, the factors affected the between-

worker component of variance (s2bw) considerably (35% reduction from 1.30 to 0.84), but 

did not alter the within-worker component of variance (s2ww). In the two models s2bw  is 

different from zero (p<.05) and  the models were significantly different (p=.0023).  

 

Table 3.1     Variance components estimates for the one-way random-effects and mixed-effects  

models for exposure to inhalable particulate among  workers in the  rubber                                                 

manufacturing industry (n=620, k=234, l=10) 

 

 
Variance 

Random-effects model 
est    (CI) 

Mixed-effects model 
est      (CI) 

s2
bw 

s2
ww 

1.30  (1.07-1.59) 

0.29  (.25-.34) 

0.84    (.68-1.06) 

0.30    (.26-.34) 

 NOTES: n = no. of measurements;  k = no. of workers;  l = no. of  factories;  
 s2

bw = between-worker variance component;  s2
ww = within-worker variance component;  

 est= estimator;  CI= 95% Confidence Interval 
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Table 3.2    Variance components estimates for the one-way random-effects and mixed-effects 

models for exposure to rubber fumes among workers in the rubber manufacturing 

industry (n=59, k=36, l=7)   

 

 
Variance  

Random-effects model 
 
est      (CI) 

Mixed-effects model  
Full model 
est    (CI) 

s2
bw 

s2
ww 

 

 

 

s2
bw 

s2
ww 

0.53  (.31-1.17) 

0.32  (.20-.60) 

 

Mixed-effects model including  
local ventilation 
 

0.49   (.28-1.08) 

0.31   (.20-.58) 

0.18  (.08-.70) 

0.30  (.19-.55) 

 

Mixed-effects model including 
process’ temperature and pressure 
 

0.26   (.13-.83) 

0.32   (.20-.59) 

 NOTES: n = no. of measurements;  k = no. of workers;  l = no. of  factories;  
 s2

bw = between-worker variance component;  s2
ww = within-worker variance component;  

 est= estimator;  CI= 95% Confidence Interval 
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Table 3.3   Coefficients for binary (0/1) a  factors affecting exposure to inhalable particulate 

among workers in the rubber manufacturing industry in  the mixed effects model and 

multiple linear regression model (n=620, k=234, l=10) 

 

 Mixed-effects model Multiple linear regression 
 β P   β p 
Intercept -0.05  -0.17  
Punching powdered products 3.41 <.01 3.79 <.01 
Tube inspection 3.47 <.01 3.34 <.01 
Packing powdered products 2.67 <.01 2.82 <.01 
Jointing 2.41 <.01 2.71 <.01 
utoclave 0.63 .01 1.66 <.01 
Weighing 1.26 <.01 1.43 <.01 
Heating mill 0.26  ns 1.10 <.01 
Repair buffing 0.71 .02 0.82 <.01 
Bench fitting 0.51 .01 0.78 <.01 
Open mill 0.20 ns 0.61 .03 
Internal mill 0.31  ns 0.52  .03 
Packing 0.51 .01 0.48 .02 
Cleaning 0.15 ns 0.37 <.01 
Transport 0.15 ns 0.34 .02 
Rubber cutting -0.18 ns -0.24 bs 
Inspection -0.29 ns -0.29 ns 
Breakdown work -0.51 <.01 -0.38 .05 
Punching -0.20 ns -0.46 ns 
Unrolling -0.49 bs -0.60 .05 
Calendering -0.13 ns -0.64 <.01 
Assembling machine  -0.69 ns -0.68  bs 
Manual assembling -0.41 .04 -0.73  <.01 
Loading-unloading -0.43 ns -0.80 .05 
Weighing products -0.71 .04 -0.93 .02 
Extruding-slicing 0.05 ns -0.97 .03 
Lead extrusion -0.24 ns -1.00 .05 
UHF curing -0.48 ns -1.05 <.01 
Braiding machine -1.22 bs -1.21 .02 
Laboratory work -0.87 .03 -1.28 <.01 
Autoclave LEV -0.69 .03 -1.39 <.01 
General trimming -1.56 .03 -1.94 <.01 

 NOTES: n = no. of measurements;  k = no. of workers;  l = no. of  factories; bs     .05<p≤.10;      ns  p>.10 
  a    binary variable:  0= non-present, 1=present 
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The difference between the models suggests no systematic changes in work tasks and 

production characteristics for individual workers during a week. The main difference 

between the mixed-effects model and the original multiple regression model18 assuming 

independence between repeated measurements, was that fewer exposure-affecting factors 

were statistically significant or borderline statistically significant (p<0.10) (17 versus 28 

factors, see Table 3.3). However, the coefficients had the same sign for all factors except 

one task (“Extruding-Slicing”), whose coefficient was nearly 0 in the mixed-effects model. 

The tasks “Punching Powdered Products”, “Packing Powdered Products”, “Tube 

Inspection” and “Jointing” affected exposure to inhalable particulate most dramatically, 

according to both the mixed-effects model and the original multiple regression model.  

For workers exposed to rubber fumes (Table 3.2), the same phenomenon for the 

components of variance was observed.  The three factors, one pure spatial between workers 

factor (local ventilation) and the rest (process- temperature and pressure) both spatial and 

temporal factors, affected the between-worker component of variance (66% reduction from 

0.53 to 0.18). The within-worker component of variance (s2ww) was not affected. In the 2 

models s2bw  is different from zero (p<.05) and the models were not significantly different. 

The coefficients of the factors were almost identical when compared to the original 

multiple linear regression (Table 3.4).  

 

Table 3.4  Coefficients for factors affecting exposure to rubber fumes among workers in the rubber  

                  manufacturing industry in the mixed-effects model and multiple linear regression model  

                  (n=59, k=36, l=7) 

 
 Mixed-effects model Multiple linear regression 

 β p β p 
Intercept 4.94  4.97  

Process-Temperaturea 0.0056 .04 0.0049 .05 

Process-Pressureb 0.0038 <.01 0.0042  <.01 

Local Exhaust Ventilationc -0.69 <.01 -0.68 <.01 

NOTES: n = no. of measurements;  k = no. of workers;  l = no. of  factories 
a  per 1 °C;  
b  per 1 bar;   
c  binary variable: 0=non-present,1=present 
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The effect of ‘day of the week’ (Tuesday-Friday) on the mean exposure and on the 

components of variance was non-significant for both exposure modelling (to inhalable 

particulate and rubber fumes), suggesting no systematic differences in exposure over the 

course of a week.  

 

Second  Example: Survey on Pig Farmers’ Exposure to Inhalable Endotoxin  

Table 3.5 presents the results of both the original one-way random-effects model and a 

mixed-effects model with 21 fixed effects for both farm characteristics and activities.  

Furthermore, results from three additional mixed models with only farm characteristics, 

only activities and outdoor temperature, and only a season term, respectively were 

elaborated and are presented in the same table.  

From the random effects model (Table 3.5) it was clear that the within-worker variance 

component had a greater weight than the between-workers variance component (85% 

versus 15% of the total exposure variance). The between-worker variance component was 

low 0.11. Table 3.5 shows the extent of reduction in both the within- and between-worker 

variance components by including all the statistically significant factors from the original 

multiple regression model. The within-worker variance component was reduced by 0.16 

(25%) and the 2 models are significantly different (p<.0001). The between-worker variance 

component was reduced by 0.09 (80%) and while in the random effects model  s2bw is 

different from zero (p<.05) in the mixed model with the farm characteristics s2bw ~0 .  

In Table 3.5 we see that farm characteristics appeared to be solely responsible for the 

reduction in the between-worker variance component (s2bw=0.01). The model with 

outdoor temperature and farmers’ activities pure within worker factors had no effect on 

the between-worker variance component (s2bw=0.12), while it reduced the within-worker 

variance component by 25%. 
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Table 3.5  Variance components estimates for the one-way random-effects and mixed-effects 

models (full model and three sub-hierarchical models) for exposure to endotoxins 

among pig farmers (n=348  , k=198) 

 

Variance Random-effects model  
 
est   (CI) 

Mixed-effects model  
Full model 
est   (CI) 

 

s2
bw 

s2
ww 

0.11 (.05-.45) 

0.64 (.52-.80) 

0.02 (a)  

0.48 (.04-.60) 

 

 
 
Variance 
 

 
 
Mixed-effects model 
including  
farm characteristics 
est    (CI)  

 
 
Mixed-effects model 
including 
activities and temperature  
est    (CI) 

 
 
Mixed-effects model 
including  
season effect  
est    (CI) 

s2
bw 

s2
ww 

0.01  (a) 

0.64  (.52-.80) 

0.12  (.06-.33) 

0.48  (.39-.61) 

0.14  (.07-.39) 

0.59  (.48-.74) 

NOTES: n = no. of measurements;  k = no. of workers;  l = no. of  factories 
s2

bw = between-worker variance component;  s2
ww = within-worker variance component; 

est= estimator;  CI= 95% Confidence Interval ;  
a  cannot be computed 

 

This clearly shows that different work environment characteristics contributed 

independently to the variance components. Farm characteristics, which are almost constant 

over the time period studied (one year), were responsible for differences in average 

endotoxins concentration between farmers, while changes from day to day in temperature 

and activities performed, led to temporal variability in exposure concentrations. The season 

factor was found to have a minor influence on the within- worker variance component.  

The two models (the random effects model and the mixed effects model with season effect) 

were found to be significantly different (p<.0001). When compared to the coefficients of 

the original multiple linear regression model14 the estimated coefficients from the 

Unbalanced Mixed Effects Model were almost exactly the same for the farm 

characteristics, but somewhat smaller for the activities (Table 3.6). Neither the relative 

order nor the p-values changed.  
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Table 3.6   Coefficients for factors affecting exposure to endotoxines among pig farmers, in the   

                  mixed-effects model and multiple linear regression model (n=348, k=198) 

 
   Mixed-effects model Multiple linear regression 
 β p β p 
Intercept 
Temperature 
Outdoor temperature (per 10%)a 

Farm characteristics 
Feeding 
manual dosage dry feeding (1/0)b 

pig starter (1/0) 
automated dry feeding (per 10%) 
Flooring 
Convex floor (1/0) 
Fully slatted floor (per 10%) 
Fully slatted floor with piglet mat 
(per 10%) 
Synthetic grid (per 10%) 
Concrete and metal grid (per 10%) 
Floor heating (per 10%) 
Floor heating with delta heating 
tubes (per 10%) 
Other 
Overall very dusty 
Air exhaust via pit (1/0) 
Activities   (per 10 minutes)c 

Feeding 
Controlling 
Re-penning 
Floor sweeping 
Iron injection 
Castrating 
Teeth cutting 
Ear tagging 

4.44 
 

-0.35 
 
 

-0.38 
0.35 
-0.06 

 
-0.22 
0.08 
-0.08 

 
-0.13 
-0.15 
0.07 
0.10 

 
 

0.12 
-0.33 

  
0.04 
0.03 
0.04 
0.08 
0.09 
0.07 
0.25 
0.22 

 
 

<.01 
 
 

<.01 
.03 
.02 

 
.02 

<.01 
<.01 

 
.04 

<.01 
<.01 
.04 

 
 

.02 
<.01 

 
<.01 
.03 
.05 

<.01 
.03 
.03 

<.01 
<.01 

4.44 
 

-0.35 
 
 

-0.37 
0.35 
-0.06 

 
-0.22 
0.08 
-0.08 

 
-0.13 
-0.15 
0.07 
0.10 

 
 

0.12 
-0.33 

 
0.03 
0.02 
0.02 
0.06 
0.09 
0.05 
0.17 
0.14 

 
 

<.01 
 
 

<.01 
.03 
.02 

 
.01 

<.01 
<.01 

 
.03 

<.01 
<.01 
.03 

 
 

.01 
<.01 

 
<.01 
.02 
.05 
.01 
.03 
.03 
.01 

<.01 
NOTES: n = no. of measurements;  k = no. of workers 

a   per 10% of total time spent in pig farming;  
b   binary variable: 0= non-present, 1=present 
c   per 10 minutes spent on a task 
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DISCUSSION 

 

The above examples illustrate the major contribution of the mixed-effects model in 

unbalanced designs to the investigation of exposure variance components and exposure 

affecting factors. In contrast with the one-way random-effects model, the mixed effects 

model deals with both fixed and random effects. It estimates the between- and within-

worker variance while adjusting for fixed effects. Simultaneously, it assesses the linear 

relationships between the determinants of exposure (usually fixed factors) and exposure 

levels. Common multiple linear regression can be correctly applied when each worker has 

only a single measurement. 

With repeated measurements of each worker, some dependence amongst repeated 

measurements will exist and the correlation between values for a given person must be 

taken into account when estimating the relationship between the determinants and exposure 

levels.21,22 The mixed effects model is capable of taking this dependence into account in the 

modeling process.  

In this study we used mixed effects models to understand the relationship between specific 

work environment characteristics and between- and within-worker exposure variance 

components. Identification of specific work characteristics, which affect the between-

worker variance component, will enable development of criteria for defining uniformly 

exposed groups of workers.1,5,10,19 Grouping workers into sub-groups is an inherent part of 

the work of an industrial hygienist in exposure surveys, as well as in compliance tests and 

epidemiological studies.1,5,6 Despite the widespread use of grouping strategies, there is so 

far only limited experience with optimisation of these strategies.5,27,28 

The analyses with the mixed effects models form the basis for the creation of uniformly 

exposed groups of workers. Reliance on observational factors such as a job title, which 

may lead to non-uniformly exposed groups, seems no longer necessary.5  For instance, 

classifying curing workers in rubber manufacturing based on the determinant process-

temperature and -pressure will lead to more uniform and distinctly different rubber fume 

exposure groups. It is further recommended that if the IH group cannot be split into sub-

homogeneous groups due to a small number of workers, the testing of overexposure in IH 

groups, as suggested by Lyles et al,11 which relate to both within and between variance 
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components,  should be refined to account for the effects of work characteristics in these 

groups.  As we have shown here, these effects can be estimated with mixed effects models. 

Also, in this study, specific factors were identified which mainly influenced variability in 

exposure levels from day to day (within-worker). Hazard control should focus on these 

factors.  

The two examples presented in this paper describe different work situations and 

measurement strategies. In the first example, one to three randomly chosen measurements 

were performed within a week on two groups of rubber workers in The Netherlands.18 In 

the second example, one to two measurements were collected in two different seasons of a 

particular year among Dutch pig farmers.14,15 Different work characteristics were 

documented in each examples. In the first example, for exposure to particulate, a reduction 

of 25% of the between-worker variance component was the effect of 17 factors affecting 

exposure. Classification of rubber workers into uniformly exposed groups will have to rely 

on those identified factors. In the second example, exposure to endotoxin among pig-

farmers, the reduction of 82% in between-worker variance was mainly an effect of the 

inclusion of 12 farm characteristics. Consequently, classification of pig farmers into 

uniformly exposed groups will have to rely on those farm characteristics.  

In the second example (pig farmers), there was a clear distinction between characteristics 

influencing each of the variance components. Eight time-dependent activities, as well as 

outdoor temperature, all pure within worker factors, reduced the within person (day-to-day) 

variability by 25%. From diary information collected among the pig farmers, it appeared 

that some of the activities followed a distinct temporal pattern, with some activities taking 

place only on particular days of the week.14 The farm characteristics, pure between worker 

factors, were responsible for reducing the between-worker variance component to zero. 

In the mixed model, when the between-worker variance component is close to zero, the 

coefficients for the fixed effects would be very similar to those from a multiple regression 

model, assuming independence between repeated observations. In the model for the pig 

farmers, this was indeed the case (between-worker component 0.02). For the rubber 

workers' exposure to inhalable particulate the opposite was true a very large between-

worker variance component, led to changes in the coefficients. In addition, fewer 
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statistically significant exposure-affecting factors were found in the mixed model, since the 

significance tests of the coefficients in the mixed model are different.  

In all the examples, we assumed that any two repeated measurements of the same worker 

had equal correlation, irrespective of the time interval between them; a compound 

symmetry covariance structure. This, since we had only two repetitions per worker in the 

second example and three in the first example. We also assumed independence across 

subjects.  In general, the residuals can be analysed to check for departures from the 

independence assumption.  However, such analyses will be relevant only when there are a 

reasonable number of observations within workers, say at least 8-10.  Other models with 

different dependence structure may be applied when the time course of the exposure level 

of each person is of primary interest, that is, when the correlation itself has scientific 

relevance. The unbalanced mixed-effects model is a specific case of the generalised linear 

models. These models were developed over the last decade and were recently introduced in 

common statistical packages such as SAS (Proc Mixed), BMDP (5V) and S-Plus.26,29,30  

The computerised procedures enable simultaneous estimation of parameters, approximate 

standard errors and significance tests that have not been available before. One should take 

into account the fact that in models for unbalanced data, the estimators are proxies since the 

Maximum Likelihood Estimates have approximately normal distribution. Balanced data 

(the same number of repeated measurements for each worker) is preferable whenever 

possible, in order to obtain more accurate estimators.   

However, the mixed effects model enables estimation of variance components of exposure 

levels that have been adjusted for workplace factors in order to improve the assessment of 

exposure. This statistical method can be used to improve future sampling strategies through 

the grouping of workers into more uniformly exposed groups, and the identification of 

specific workplace conditions that should be controlled. 
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ABSTRACT  

 

An association between  airborne benzene exposure  and task and timing factors was 

examined, applying a  mixed effects model on a cohort of 258 workers randomly chosen, in 

7  fuel distribution facilities. During 8 years, 692 repeated personal measurements were 

performed. Filler-task, warm month, Tuesday, credit-day and period (1992-1996) were 

significantly associated with higher exposure to benzene. After controlling for the period 

effect, task-type was found to highly affect the between worker variance and thus, two 

homogeneous exposure groups - fillers and non-fillers are adequate for exposure grouping 

strategy. The timing factors  were found to affect the high within worker variance (>2 than 

between worker variance) after controlling for the task and period effects. To better 

represent long-term exposure, the sampling strategy should be stratified by warm/non 

warm months and  measurement days should be selected randomly. 
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INTRODUCTION 

 

Long-term low level exposures to benzene (less than 10 ppm) have been recently found to 

be probably associated with acute myeloid leukemia.1 The major occupational sources for  

benzene  exposure, -through the inhalation of gasoline vapors-, in  the  fuel supply  industry 

,are oil refineries, distribution facilities  and service stations. Exposure levels of benzene 

among attendants in service stations are generally lower than the existing Threshold Limit 

Value (TLV), 1 ppm,  and are primarily affected by the type of fuel, the work practice, the 

work load and weather conditions.2-6 However,  the time weighted average exposure levels 

reported for distribution facilities and refineries are higher, 0.003-8.9 ppm.7-8  They are 

probably affected by additional factors, especially the task and the filling method.5,7-12 

Assessing long term exposure in occupational groups is essential for exposure-response 

evaluation.13-15 Assessing the determinants of exposure is essential for hazard control and 

for effective use of control measures.13,16-18  However,    due  to study limitations, the 

exposure assessment in those studies was not satisfactory.1,10 In many situations, chronic 

exposures have been inferred on the basis of a one-time exposure survey or successive 

surveys carried out over a short period.19 Since exposure varies within the same worker 

over time, 13,19-24 even to a very high degree, 5,19,22 this practice may cause bias since a 

single survey as well as successive surveys - which may result in autocorrelated 

exposures25  - may not represent long term exposure. For a valid exposure assessment, 

monitoring designs should be based on repeated measurements within the same 

worker.4,19,23 

Occupational labor inspection regulations for benzene in Israel stipulate that: (i) Airborne 

benzene monitoring should be carried out four times a year (every 3 months) in fuel 

distribution facilities, and the exposure results should be kept for 20 years (ii) A Threshold 

Limit Value (TLV-TWA) of 0.6 ppm and an Action Level (AL) of 0.3 ppm were 

established (iii) Biological monitoring and medical surveillance along time. However, only 

a few studies regarding exposure assessment to chemicals at workplaces, based on multiple 

non successive repeated measurements over time, have been published should be 

conducted every 6 months among workers exposed above the Action Level and among all 

workers in the production of benzene or in filling tankers or storage tanks. 
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The existence of a systematic and accessible long-term exposure data-base for all  fuel 

distribution facilities in Israel, enables the investigation of benzene monitoring for both 

exposure assessment and exposure determinants, in this industry.  Thus, the specific aims 

of the present study were to evaluate the association  between work task and exposure and 

between timing factors - day, month, year and exposure.  Moreover, since it is known that 

exposure in occupational groups varies between and within-workers, these variance 

components were estimated in different conditions. 

 

 

METHODS 

 

Study subjects  

The study cohort included 258 workers from 7 fuel distribution facilities in Israel, whose 

environmental monitoring was carried out systematically during 8 years (1989-1996). In 

each monitoring survey the workers  selected to represent the main processes in each 

facility. The major tasks were: fuel-filling (top loading), maintenance, gate-guarding, 

workshop activities, and laboratory work. All except one were men and besides two  

laboratory, the workers were all blue-color workers. The number of fillers  in each facility 

varied     between 3-33 and  comprised 55% of the study cohort.      

 

Environmental  monitoring 

In each installation 2-4 hygiene surveys were performed each year. Altogether, 18-32 

surveys were performed at each facility during the whole period, giving a total of 151 

surveys. The sampling strategy employed was monitoring  a representative number of  

workers in all work-areas with potential exposure. The sampling scheme varied from one 

survey to another depending on different selection of workers by different hygienists who 

performed the surveys. The majority of the samples were personal breathing zone samples 

in which air was drawn through a commercial charcoal tube (SKC226-01). Benzene 

analysis was carried out by gas chromatography. In addition to internal quality controls, 

validation was verified by participation in external  quality assurance programs of 
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Proficiency Analytical Testing (PAT) and Workplace Analytical Scheme for Proficiency 

(WASP).  

 

Repeated measurements  

Results of 692  full shift  personal measurements, time weighted average, were included in 

the study. Of these, 64% were performed on fuel-fillers. The repetitions varied between 1-

12 measurements per worker along the 8 years. Fifty five percent of the workers had two or 

more  repeated measurements; 16% had over 5 repetitions.   

 

Data source  

Data were obtained from the occupational hygiene unit of the Institute for Occupational 

Health of Tel Aviv University. Each observation included the following variables: 

exposure concentration, date (day, month, year), measuring type (personal/fixed points), 

department and workstation identification - usually including subject name. Due to non-

uniformity   in the department name and  workstation identification even within the same 

facility, a rearrangement was done for these two variables with a suitable coding. 

 

Statistical analysis  

Univariate analysis: descriptive statistics, such as geometric means and standard deviations, 

maximum likelihood arithmetic means and proportions, were used to describe benzene 

exposure by different characteristics. Multivariate analysis: to associate between exposure 

(dependent variable) and its determinants (independent variables) a multiple model, the 

mixed effects model for unbalanced data was used.26-29 The dependent variable was the 

log-transformed values of benzene concentrations since these concentrations were assumed 

to have a log-normal distribution.15,19-22 The five dichotomous independent variables were: 

work-task (filler, non-filler), month (warm, non-warm), day of the week (Tuesday, other), 

credit-day (yes, no) and period (1989-1992, 1993-1996). * 

                                                 
* Credit day is an account day and the day after it:1,2,10,11,15,16,20,21,30,31 of each month. The    
  days on which the gasoline stations prefer to receive supply due to financial  considerations 
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Details regarding the model are presented in the Appendix. To investigate variance 

components, three hierarchical mixed effects models were applied. The first included only 

the background exposure (=the intercept), while the second included  the task and period 

effects and the background exposure. The third included all 5 exposure effects, the 

independent variables and the background exposure. 

The application of the mixed effects models was carried out using PROC MIXED from the 

SAS System Software,30 and the estimation of the variance components  was done  by 

using the Restricted  Maximum Likelihood (REML) method.  

 

 

RESULTS 

 

Data description  

The accumulated percentage of workers by number of repeated measurements per worker 

is shown in Fig 4.1, both for the fillers and for the whole group.  

 

Fig 4.1. Distribution of workers by number of repeated measurements per worker   (n=692)  
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Twenty percent of the workers had more than 3 repeated measurements and among the 

fillers twenty percent had more than 4 repeated measurements. The analysis is based on 

692 measurements performed on 258  workers, along 8 years of follow-up. Table 4.1 

presents univariate statistics of benzene distribution by specific characteristics (exposure 

determinants), assuming independence between repeated measurements within a worker.  

 

Table 4.1 Benzene exposure (ppm) by specific characteristic among gasoline distribution workers 

 

Characteristic    k     n AM GM GSD P-value 
Task Filler 141 445 .38 .18 3.35  

 Non-filler  117 247 .07 .03 3.25 <.0001 

Month Warma 196 411 .43 .14 4.44  

 Non-warm 144 281 .20 .08 3.97 <.0001 

Week-day Tuesday     77 105 .36 .12 4.31  

 Other  228 687 .27 .10 4.22  BS(.1021) 

Credit-day Yesb  121 202 .35 .13 4.14  

 No 205 490 .26 .09 4.26 .0048 

Period 1989-1992 110 268 .29 .10 4.39  

 1993-1996 182 424 .28 .10 4.18  NS 

 

Total 

  

258 

 

692 

 

.29 

 

.10 

 

4.26 

 

 NOTES:  k = no. of workers;   n = no. of measurements;   
 AM = Maximum likelihood Arithmetic Mean; GM = Geometric Mean;  
 GSD = Geometric  Standard  Deviation; BS =.05<P-value<=.10;  NS = P-value>.10 
   a   Warm months: Jun., Jul., Aug., Sept.  
   b   Days of the month when it is financially advantageous to receive supply 

 

Significant higher geometric mean exposures can be observed  amongst fillers, on warm 

months and on credit-days. There was a borderline significant difference in the geometric 

mean exposure on Tuesdays in comparison to all other days. A non-significant difference 

between the geometric mean exposures in the 2 periods, 1989-1992 and 1993-1996 could 

be demonstrated.  
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Compliance may be regarded with respect to the percentage of results exceeding exposure 

standards. The percentage of results exceeding the Israeli TLV-TWA and  AL, by specific 

characteristics, are presented in Fig 4.2.  

 

Fig 4.2.    Percentage of measurements (n=692) that exceeded standards, by specific   
                characteristics 
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A difference in the level of overexposure, in relation to the TLV-TWA, between the 

categories of 4 characteristics (task, month, week-day, credit-day) can be seen. These 

differences are even larger regarding exposure over the AL. There is almost no difference 

in percentage of overexposure between the 2 periods 

 

Exposure  factors relating to benzene levels in the air  

In Table 4.2, the modeling of  exposure determinants by the multiple mixed effects model 

is presented. As can be seen from this table, all the 5 effects were significantly associated 

with exposure. The coefficients of the  model represent the contribution of the factors to the 

mean exposure expressed as log-transformed benzene concentrations,  when a value of 1 

was assigned to task (meaning fillers), month (meaning a warm month), week-day 
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(meaning Tuesday), credit-day (meaning a credit day), period (meaning 1989-1992). The 

background geometric mean exposure was found to be 0.03 ppm (Table 4.2, intercept).  

 

Table 4.2   Factors affecting  benzene exposure (log-transformed benzene concentrations in ppm)     

                   according to a mixed effects model (based on 258 workers and 692 measurements) 

   

Factor 
 

Coefficient (SE) P-value Exponent of 
Coefficient 

Intercept -3.62 (.10) .0001 0.03 

Task 1.71 (.11) .0001 5.52 

Month 0.49 (.09) .0001 1.63 

Week-day 0.19 (.09) .0492 1.21 

Credit-day 0.24 (.10) .0148 1.27 

Period 0.27 (.10) .0048 1.31 

 NOTE: SE=Standard Error 

 

In order  to calculate the estimated geometric mean exposure in different conditions, the 

exponent of coefficients (= factors) should be multiplied by 0.03 and  by each other. Task  

was found to be the most important factor associated with exposure. Geometric mean 

exposure to benzene was 5.5 times higher among fillers than among non-fillers. It is 

noteworthy that the results for fillers are related to top loading. Each of the other factors - 

month, week-day and credit-day, significantly increased the geometric mean exposure by a 

factor less than two. The simultaneous existence of all of the factors, increased the 

exposure 2.5 fold (1.63*1.21*1.27). 

In addition, a significant period effect was found since the geometric mean exposure in 

1993-1996 was 1.3 times higher than that in 1989-1992. Thus, the period effect should be 

controlled for the  association between exposure and task and date determinants. It should 

be noted that in the univariate analysis (Table 4.1), the p-value of the period characteristic 

was non-significant, while in the multiple analysis (Table 4.2) it was found significant. 

When the  mean exposure is above  exposure  standards, such as TLV-TWA and AL, 

remedial action should be taken and control devices should be applied to reduce exposure. 

Table 4.3 shows the estimated geometric mean (GM) exposures of fillers and non-fillers in 

different conditions controlled for period effect.  
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Table 4.3    Estimated Geometric Mean  (GM) exposure to benzene (ppm) according to the mixed 

effects model  in  8 out of 32 possible conditions  (based on 258 workers and 692 

measurements) 

 

Period           Task Condition GM 
Exposure 

1993-1996 Filler Warm month, Tuesday,  credit day 0.41  

  Warm month, not Tuesday, non-credit day 0.28 

  Not warm month, not Tuesday, non-credit day 0.17 

 Non-filler Warm month, Tuesday,  credit day 0.07 

 

1989-1992 

 

Filler 

 

Warm month, Tuesday, credit day 

 

0.31 

  Warm month, not Tuesday, non-credit day 0.21 

  Not warm month, not Tuesday, non-credit day 0.13 

 Non-filler Warm month, Tuesday,  credit-day 0.05 

 

 

The highest 3 GM exposures of fillers were 0.41 ppm, 0.31 ppm and 0.28 ppm. With an 

action level of 0.3 ppm in Israel, these conditions indicate potential hazardous situations 

that should be controlled in order to reduce exposure. In contrast, even in the most extreme 

conditions of high potential exposure, non-fillers were subject to very low mean exposures, 

of 0.07 ppm and 0.05 ppm, in the different periods.    

 

Variance components of benzene concentrations 

In Table 4.4, the estimators of variance components of the benzene concentrations are 

shown in geometric standard deviations. The geometric standard deviations between 

workers and within workers, in the 8 years of follow up, are presented in 3 hierarchical 

mixed effects models.  
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Table 4.4  Within- and between-worker variability in 3 models relating various  factors to  exposure 

(based on 258 workers and 692 measurements) 

 

 MODEL 1 MODEL 2 MODEL 3 
 (factors=none) (factors=task, period) (factors=task, month, week-

day, credit day, period) 
 

Component 

 

Estimate     P-value 
 

Estimate      P-value 

 

Estimate     P-value 

GSD- b 2.34       .0001 1.34        .0729 1.37       .0305 

GSD- w 3.26       .0001 3.21        .0001 3.07       .0001 

 NOTES: GSD-b/w=Geometric Standard Deviation, between/within-worker;  
 P-value, estimate not equal one 
 

 

The first  model, a one way random effects model,  included only the background exposure. 

The second model included in addition the task and period factors, and the third model 

included all the  5 factors affecting the exposure in addition to the background exposure. In 

all the models the geometric standard deviation components were at least borderline 

significantly  different from 1 (namely the variances were different from zero).  

In Models 2 and 3, the GSD-w were  found to be 3.21 and 3.07 respectively, more than 

twice higher then the GSD-b which were 1.34 and 1.37 respectively. The work-task was 

found to be the major predictor of exposure and was responsible for a 43% reduction of the 

GSD-b ((2.34-1.34)/1.34*100) based on  comparing a model without exposure 

determinants (Model 1) to a model including task and controlling  for the period effect 

(Model 2). However the month, credit-day and day of the week were responsible for a 

reduction of 6% of the GSD-w   ((3.26-3.07)/3.26*100), controlling for task and period 

when comparing model 3 to model 1.  Since the variance components may be different in 

the different task groups13,22,33 the variance components were estimated  separately for 

fillers and non-fillers (Table 4.5). The estimations, controlled for other exposure-factors, 

seemed to be of the same order of magnitude in both task groups. 
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Table 4.5   Within- and between-worker variability in 2 task-group; controlling for month, week-  

                  day, credit-day  
 

Task  

Fillers Non-fillers 

No. of workers 
No. of measurements 

141 
445 

117 
247 

   
GSD- b 
GSD- w 

1.39 
3.07 

1.25 
3.13 

 NOTES: GSD-b/w= Geometric Standard Deviation, between/within-worker 

 

 

DISCUSSION 

 

The aim  of this comprehensive  follow-up study  was to assess exposure to benzene in the 

fuel distribution industry in Israel and to investigate  exposure determinants. The study 

included environmental monitoring data gathered  over eight years of follow-up. The 

analysis was based on accumulated data compiled for administrative purposes on an 

ongoing basis. Even though exposure registries could be a useful tool in public health 

response to occupational exposure, such  evaluations are rarely done.  

Since this is a historical-prospective study, the exposure determinants examined were 

limited to those mentioned in the data-source. The study might be slightly biased due to 

non uniform schemes of workers monitoring. However, there is no reason to assume any 

specific bias and consequently the study results may  be generalized.  

In a mixed effects model for an unbalanced repeated measurements design, five 

determinants, task and four timing factors (month,  week-day, credit-day, period) were 

tested for their effects on benzene exposure. A strong task-type effect was found. Fuel-

filling workers, on average, experienced exposure levels 5 times higher  than all other types 

of workers. Controlling for the four timing  determinants, the predicted average exposure of 

the fillers was  0.41 ppm in their presence  (namely on warm months, Tuesdays, credit-

days, second period) as opposed to 0.13 ppm in their absence. Exposure standards  aim to 

prevent health impairment of workers.  Exposure of 0.41 ppm is higher than the action 



 

  84 

level of 0.3 ppm, thus, a sincere effort should be made  in all the facilities to reduce fillers 

exposure.  

An averaged benzene concentration of 0.17 ppm (=0.55 mg/m3) was found in an Italian 

study regarding 111 filling station attendants in Rome, which were monitored 6.3 times (on 

average) during one  year.4 The exposure of the non-fillers found in our study is of the 

same order of magnitude as that of benzene attendants .  

In this study warm months, and to a lesser extent, credit-days, Tuesdays and the later 

period were associated with increased  exposures to benzene. Warm months in Israel (June-

September) are characterized by high temperatures, on average 24°c ±0.5 (opposed to 18°c 

±3.5 during the rest of the year), which cause higher fuel evaporation and consequently 

higher exposures. The average exposure level obtained on warm months was 1.6 times 

higher than on non-warm months. Credit-days indicate higher activity, since it is 

financially advantageous for the gasoline stations to receive supply on the account day and 

the following day. Exposure on credit-days was 1.3 times higher than on non credit-days. 

An attempt was made to associate the day of the week and the level of exposure, 

controlling for all the other exposure determinants. A higher average exposure was found 

on Tuesdays, indicating a work peak, compared to the beginning and the end of the week. 

According to a subjective estimate of workers in the facilities,  the work-load has been 

uniformly distributed during the week, except for the higher work load on credit-days. 

Since we did find an effect of the day of the week this effect should be further investigated. 

 

During the 8 years of the follow up, there were no changes in the sampling and analysis 

methods or in work processes (including job-tasks and equipment) . The percent of benzene 

in the fuel ranges from 1.5%-2.5%, the variation being due to differences between 

refineries and to market demands.  However, it is known  that measurements taken over 

periods longer than 5 years appear to exhibit systematic changes in exposure results. 31 In 

order to control for a period effect, the 8 years of the follow up were divided into two 

periods, of four years each. A period effect was included in the multiple mixed effects 

model and indeed was found to be significant. The average exposure of the period 1993-

1996 was 1.3 times higher than that of the period 1989-1992. This may be due to changes 
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in work load. Hence, the period effect should be controlled for in the investigation  of the 

exposure and its determinants over a long period of follow-up. 

In order to reduce the exposure to benzene, it is essential that hygienists, occupational 

physicians, employers and workers understand the main factors contributing to higher 

exposure. Extreme conditions should therefore be better controlled in order to avoid risky 

situations. Such information can also assist hygienists in planning a representative 

environmental sampling strategy and thus better assess occupational exposure for both 

hazard control and epidemiological studies - of exposure-response relationships. Based on 

our findings, warm months and credit-days should be considered as part of the sampling 

strategy.  Today the sampling surveys are performed on fixed months in each facility and 

thus may not represent higher exposures on warm months. This procedure should be 

changed to a stratified one by warm and non-warm months. In addition, selecting 

measurement days at random should maximize the likelihood that they are representing 

different work load conditions. 

Modeling exposure and its determinants  has always been performed by regression 

models.16  In repeated measurements designs, this means ignoring the dependence between 

the measurements , a procedure which  may entail biased models for assessing exposure. 

The mixed effects model used in this study enables  handling unbalanced repeated 

measurements and modeling exposure in a more efficient way.  

Estimating exposure variance components between and within workers in homogeneous 

exposure groups is essential for exposure assessment.13,15,22,32-34 Several  investigators have 

ignored the contribution of exposure determinants and  used a one way analysis of variance 

model to estimate variance components in task groups, thus limiting the possibility of 

understanding the factors affecting within and between worker variance.22,23,33 In a study 

regarding benzene exposure in petroleum refining, 19 task groups were defined and had 

varying GSD-b and GSD-w values (1.0-9.29). However, the period  effect was not 

controlled for as has recently been suggested by Symanski et al.,31  nor were  other timing 

effects controlled.  

Since in this study, task was found to highly influence the between worker variance, two 

homogeneous exposure groups- fillers and non-fillers were found to be adequate for 

exposure grouping strategy in this industry. The geometric standard deviation  within-
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workers was found to be  more than twice higher than that between workers, after 

controlling for the task and time effects, meaning a wide range of exposure levels for each 

worker during a time period.  Control of factors which affect the within-worker variance of 

exposure such as: month, credit-day and day of the week may assist in reducing exposure 

levels.  Other work characteristics such as worker-mobility, source mobility, ventilation, 

personal hygiene etc. may affect the within-variance exposure.19,22  

 

In conclusion, the mixed effects model used in this study enables a better assessment of 

occupational exposure and a better assessment of the relative contribution of exposure 

determinants. Consequently, more effective prevention of hazardous exposure and an 

improvement in sampling strategy can be established.  This study shows that an 

administrative exposure registry can have a strong interactive role in channeling relevant 

risk information to the primary care provider.  
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APPENDIX 

 

The mixed effects model: 

The mixed effects model can be specified by the following expression: 

Yij=β0+ β1Xij1+ …….+ βpXijp+ b1Z1+........+bkZk+εij 

i=1,.....,k     (workers)        j=1,.......,ni   (repetitions of  the i’th worker  ) 

Yij= log-transformed values of  benzene concentrations 

β0  = overall (fixed) group mean; mean of Yij 

β1,……….. , βp  =  fixed effects    

Xij1, …........,Xijp= values for the i’th worker on the j’th repetition for each effect 

b1,........,bk= workers’ random effects 

Z1,.......,Zk= workers’ indicators (0/1) 

The concentrations of  the benzene were assumed to have a log-normal distribution.  

εij~ N(0, σ2 e ) independent within a worker ;  bi~N(0, σ2 b) 

εij’s and bi’s are all independent. 

E(Yij )= µi                    for specific  i;    for every    j=1,.......,ni 

                  σ2     i=j 

var(Yij )={                    compound symmetry structure      

                 ρσ2     i≠j 

ρ=corr(εil, εim)            for every     i=1,.....k;    l,m=1,.....,ni    l≠m 

 

Exposure determinants were  considered as fixed effects in the above model, as follows: 

β0  = background exposure (=intercept) 

β1  = task effect 

β2  = month effect 

β3   = day of the week effect 

β4   = credit-day effect 

β5   = period effect 



 

  88 

Xij1= task indicator (0/1) for the i’th worker on the j’th repetition 

          0- non-filler, 1-filler. 

Xij2= month indicator (0/1)  for the i’th worker on the j’th repetition 

          0-non-warm months, 1-warm months (Jun,Jul,Aug,Sep). 

Xij3= day of the week  indicator (0/1)  for the i’th worker on the j’th repetition 

          0- any day except Tuesday,  1-Tuesday. 

Xij4= credit-day indicator (0/1)  for the i’th worker on the j’th repetition 

          0- any day except credit-day 1-specific dates each month: 1,2,10,11,15,16,20,21,30,31. 

Xij5= period indicator (0/1) for the i’th worker on the j’th repetition 

          0-1989-1992, 1-1993-1996. 

 

 

REFERENCES 

 
1. Savitz DS, Anderews KW. Review of epidemiologic and evidence on benzene and lymphatic 

and hematopoietic cancers. Am J Ind Med 1997;31:287-95. 
2. Foo Swee Ceng. Benzene pollution from gasoline usage. Sci Total Environ 1991:103;19-26. 
3. Fung KK, Wright BJ. Monitoring of benzene in ambient air with organic vapor badges. J of 

Air Pollution Control Assoc 1986:36; 819-21. 
4. Lagorio S, Forastiere F, Iavarone N, et al. Exposure assessment in a historical cohort of 

filling stations attendants. Int J of Epidemiology 1993;s51-s56. 
5. Rappaport SM, Selvin S. Exposure hydrocarbon components of gasoline in the petroleum  

industry. Appl Ind Hyg 1987;2:148-54. 
6. Spear RC, Selvin S (personal communication) Benzene exposure in the petroleum refining 

industry.  Appl Ind Hyg 1987;4:155-63. 
7. Armstrong TW, Pearlman ED, Schnatter AR, et al. Retrospective benzene and total 

hydrocarbon exposure assessment for a petroleum marketing and distribution worker 
epidemiology study.  Am Ind Hyg Assoc J 1996; 57:333-43. 

8. Lewis SJ, Bell GM, Cordingley N, et al. Retrospective estimation of exposure to benzene in a 
leukaemia case-control study of petroleum marketing and distribution workers in the United 
Kingdom .Occup Environ Med 1997;54:167-75. 

9. Irving WS, Grumbles TG. Benzene exposures during gasoline loading at bulk marketing 
terminals Am Ind Hyg Assoc J 1979;40:468-73. 

10. Rushton L, Thar WE  Retrospective  exposure assessment for benzene; issues, methods and 
recommendations from an international workshop on petroleum marketing and distribution 
worker studies. Occupational Hygine 1996;5:295-305. 

11. Verma DK, Julian JA, Bebee G, et al. Hydrocarbon exposures at petroleum bulk terminal and 
agencies.  Am Ind Hyg Assoc J 1992;53:645-56. 

12. Halder CA, Van-Gorp GS, Hatoum NS, et al. Gasoline vapor exposures. Part I. 
Characterization of workplace exposures Part II. Evaluation of the nephrotoxicity of the 
major c4/c5 hydrocarbon components. Am Ind Hyg Assoc J 1986;47:164-75. 



 

  89 

13. Boleij J, Buringh E, Heederik D, et al. Occupational hygiene of chemical and biological 
agents. Elsevier, Amsterdam, The Netherlands, 1995. 

14. Preller L, Kromhout H, Heederik D, et al.  Modelling long-term average exposure - in 
occupational exposure-response analysis.  Scand J Work, Environ, Health 1995;21:504-12 

15. Rappaport SM. Assessment of long-term exposure to toxic substances in air.  Ann Occup 
Hyg 1991;35:61-121. 

16. Burstein I, Teschke K. Methodological considerations in studies of determinants of exposure. 
Am Ind Hyg Assoc J  (accepted for publication). 

17. Heederik D, Boleij JSM, Kromhout H, et al. Use and analysis of exposure monitoring data in 
occupational epidemiology: an example of an epidemiological study in the Dutch animal food 
industry. Appl Occup Environ Hyg 1991;5:458-64. 

18. Kromhout H, Swuste P, Boleij JSM. Empirical modeling of chemical exposure in the rubber 
manufacturing industry.  Ann Occup Hyg 1994;38:3-22. 

19. Peretz C, Goldberg P, Kahan E, et al. The variability of exposure over time: a prospective 
longitudinal study. Ann Occup Hyg 1997;41:4:485-500. 

20. Burdorf A. Shifting Concepts in Assessment of Occupational Exposures.  Ann Occup 
Hyg 1993;37:447-50. 

21. Dewell P. Technical Handbook Series No. 1:  Some Application of Statistics in 
Occupational Hygiene.  BOHS, British Occupational Hygiene Society  Science 
Reviews Ltd with H & H Scientific Consultants,  Leeds, UK, 1989. 

22. Kromhout H, Symanski E, Rappaport SM. A comprehensive evaluation of within- and 
between-  worker components of occupational exposure to chemical agents.  Ann Occup Hyg 
1993;37:253-70. 

23. Nieuwenhuijsen MJ, Lowson D, Venable KM, et al. Flour dust exposure variability in flour 
mills and bakeries. Ann Occup Hyg 1995;39:299-305. 

24. Francis M, Selvin S, Spear R, et al. The effect of autocorrelation on the estimation of 
worker’s daily exposures.  Am Ind  Hyg  Assoc J 1989;50:37-43. 

25. Kumagai S, Kusaka Y, Goto S. Cobalt exposure level and variability in the hard metal 
industry of Japan.  Am Ind Hyg Assoc J 1996;57:365-69. 

26. Breslow NE, Clayton DG.  Appoximate inference in generlaized linear models. J of 
American Statistical Association 1993; 88:9-25. 

27. Lindskey JK.  Models for repeated measurements Clarendon Press, Oxford, GB, 1993. 
28. Searle SR. Mixed models and unbalanced data: wherefrom, whereat and whereto. 

Communication in Statistics-Theory and Methods 1988;17-24:935-968. 
29. Searle  SR, Casella G , et al. Variance Components , John Wily and Sons , New York USA, 

1992. 
30. SAS: SAS/ STAT software, changes and enhancements. SAS Institute , North Carolina USA, 

1996. 
31. Symanski E, Kupper LL, Kromhout H, et al. An investigation of systematic changes in 

occupational exposure.  Am Ind Hyg Assoc  J 1996;57:724-35. 
32. Rappaport SM, Lyles RH, Kupper LL.An exposure assessment strategy accounting for 

within- and between worker sources of variability. Ann Occup Hyg 1995;39:469-95. 
33. Rappaport SM, Kromhout H, Symanski E. Variation of exposure between workers in 

homogenous exposure groups. Am Ind Hyg Assoc J 1993;54:654-62. 



 

  90 

 



 

  91 

CHAPTER 5:  

IMPROVED NON-NEGATIVE ESTIMATION OF VARIANCE 

COMPONENTS FOR EXPOSURE ASSESSMENT  
 

C. Peretz,  D. M. Steinberg  

J  Expo Anal Environ Epidemiol 2001;11: 414-21 
 

 

ABSTRACT 

 

Hygiene surveys of pollutants exposure data can be analyzed by an  analysis of variance 

(ANOVA) model with a random worker effect. Typically workers, are classified into 

homogeneous exposure groups, so it is very common to obtain a zero or negative ANOVA 

estimate of the between-worker variance ( 2
Bσ ). Negative estimates are not sensible and also 

pose problems for estimating the probability (θ) that in a job-group, a randomly selected 

worker's mean exposure exceeds the occupational exposure standard. Therefore, it was 

suggested by Rappaport et al to replace a non-positive estimate with an approximate one-

sided 60% upper confidence bound. This article develops an alternative estimator, based on 

the upper tolerance interval suggested by Wang and Iyer. We compared the performance of 

the two methods using real data and simulations with respect to estimating both the 

between-worker variance and the probability of overexposure in balanced designs.  We 

found that the method of Rappaport et al. has three main disadvantages: (i) the estimated 
2
Bσ  remains negative for some data sets; (ii) the estimator performs poorly in estimating 2

Bσ  

and θ with 2  repeated measures per worker and when true 2
Bσ  is quite small, which are 

quite common situations when studying exposure; (iii) the estimator can be extremely 

sensitive to small changes in the data.  Our alternative estimator offers a solution to these 

problems. 
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INTRODUCTION  

 

Recently, analysis of variance (ANOVA) random effects models have been applied to data 

sets consisting of repeated measurements of pollutants within factories in order to identify 

random determinants of exposure and estimate within- and between-worker variance 

components. The within-worker variance in these studies reflects day-to-day variations in 

the levels of exposure to pollutants, which often vary greatly.  Between-worker variance, 

on the other hand, is often rather small due to the use of homogeneous exposure groups. 

Thus the variance ratio λ (= σσ 22
B w ) may be quite small.  As a result, when analyzing data 

using ANOVA random effects models, it is very common to obtain a zero or negative 

estimate of the between-worker variance. In many applications, it is common practice to 

report such negative values as zeros.  

The occurrence of negative or zero between-worker ANOVA variance estimates causes a 

number of problems.  First, zero between-worker variance appears to be an unrealistic 

result since it implies that all workers have the same mean exposure.  This contradicts 

common industrial hygiene experience. Furthermore, in exposure assessment in 

epidemiological studies and for hazard control, the probability θ of overexposure is often of 

more interest than the variance components themselves. This is the probability that in a job 

group, a randomly selected worker’s mean exposure exceeds the occupational exposure 

standard, where the worker’s mean exposure is relevant to the risk of chronic adverse 

health effects.1 The probability of overexposure depends on both 2
Bσ  and 2

Wσ . Common 

practice is to adopt a “plug in” approach in which 2
Bσ  and 2

Wσ  are estimated and their 

estimates are inserted into the formula for θ. This approach is impossible to employ when 

the estimate of  2
Bσ  is zero or negative.  Finally, the variance ratio should have implications 

for planning future sampling design.  Small variance ratios imply that it may be 

advantageous to sample fewer individuals but at more time points.  

The estimation of the probability of overexposure (point estimator) becomes meaningless 

when a zero or negative between-worker variance estimate appears. Therefore, it was 

suggested by Rappaport et al.1 to replace a negative or zero estimator with an approximate 

one-sided 60% upper bound, as derived from formulas of Willaims and cited in Searle et 
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al.2  This practice is based on empirical evidence that such a procedure has minimal impact 

on significance levels and statistical power.  This proposal does have some drawbacks.  

Many negative ANOVA estimates are not adjusted to positive values and the estimator is 

very sensitive to small changes in the data.  

This article develops an alternative- the bias corrected variance component estimator- 

based on the upper tolerance interval suggested by Wang and Iyer,3 to deal with the 

problem of negative variance component estimates.  We compare the performance of the 

two methods using real data and simulations, focusing on the estimation of probabilities of 

overexposure (beyond standards) in balanced designs.   

 

ANOVA method   

We briefly review the ANOVA, or least squares (LS), method for estimating variance 

components in a balanced one-way random effects model.  

We denote:   

k =   number of subjects in a group,  

n =   number of repeated measurements obtained from each subject in the group.  

MSW=SSW/(k(n-1)) ;   MSB=SSB/(k-1);    F=MSB/MSW  

The estimators of the between-subject ( 2
Bσ ) and within-subject ( 2

Wσ ) variance components 

are:  n/]MSW[MSBˆ B −=2σ         ; 
2
wσ̂ =MSW     For more details, see Searle et al.2   

 

An example from real data: lead exposure 

Nineteen workers at two Car Battery Producers in Israel were repeatedly measured to study 

their annual exposure to lead. They were randomly selected- 9 workers in the first factory 

and 10 in the second- to represent those exposed to the main processes (details can be 

found elsewhere4). Ten hygiene surveys, with intervals of 3-7 weeks, were performed in 

each factory over the course of a year. Due to missing data (absence of worker,s etc.) each 

worker had 6-10 repeated measures. We have taken the first six measures of each worker, 

and estimated the variance components 2
Bσ  and 2

Wσ  at each factory. According to Israel’s 

regulations for factories with exposure to lead, it is mandatory to conduct two hygiene 

surveys each year.   
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In order to realise the sensitivity of the 2
Bσ  estimator we have created new data sets, each 

including just two repeated measures out of the six. In total we had 15 sets of data with two 

repetitions for each factory.  The exposure level was taken as a log transformation of the 

TLV∗ fraction  (= log (concentration/ TLV).4 The TLV-TWA standard  for occupational 

lead exposure according to Israel’s Regulations is 0.1 mg/m3 . 

Table 5.1a shows summary measures of the estimators in each factory, in comparison to the 

original estimators (="accurate") based on six repetitions. It can be seen that a negative 2
Bσ  

estimate resulted from 40% of the series in the first factory (with true λ=.17), and from 

20% of the series, in the second factory (with true λ=.09) . In addition the ANOVA 

estimators for λ were quite poor.  This reinforces the importance of performing more than 2 

repeated surveys per year. In practice, though, many surveys are limited to two 

measurements as mentioned above for lead exposure. So the example also highlights the 

need for statistical methods that can cope with small samples.  Table 5.1b shows summary 

measures of the estimators if four repeated surveys were performed in each factory. One 

can see the improvement in the estimation when doubling the number of repeated 

measurements per subject. The MSE [=(mean 2ˆ Bσ -
2
Bσ  )2+ var 2ˆ Bσ ] is reduced by about 75% 

in the two factories. 

 

                                                 
∗ TLV = threshold limit value; a health-based concentration to which nearly all workers may be   
  exposed without adverse effect. 

      TLV-TWO =  threshold limit value, with respect to 8-h time-weighted average, that should not be  
      exceeded during any part of the day.   
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Table 5.1  Summary measures of ANOVA (LS) estimators,  mean, SD (min, max) 

                                on semi-simulated data sets 

 

 Series No. 
of series 

2ˆ Bσ  λ̂  (= σσ ˆˆ 22
B w )  

(a) na=2    

Factory 1 kb=9                  Accurate .09 .17 (=.09/.53) 

 Total  15 .10,.23  (-.23, .46)  .35,.57 (-.33,1.35) 

 Positive 9 .26,.14  ( .00, .46)  .72,.42 ( .01,1.35) 

 Negative 6 -.14,.08 (-.23,-.04) -.20,.11 (-.33,-.05)  

Factory 2 kb=10                Accurate  .11  .09 (=.11/1.29) 

 Total  15 .13,.37  (-.59, .65)  .24,.36 (-.27, .88) 

 Positive 12 .29,.20  ( .03, .65)  .36,.30 ( .03, .88) 

 Negative 3 -.48,.10 (-.59,-.42) -.23,.04 (-.27,-.20) 

(b) na=4     

Factory 1 kb=9                  Accurate .09 .17 (=.09/.53) 

 Total  15 .09,.08 (-.03, .24) .19,.18  (-.06, .58) 

 Positive 12 .12,.07 ( .03, .24) .25,.16  ( .06, .58) 

 Negative 3 -.02,.01(-.03,-.01) -.04,.02 (-.06,-.02) 

Factory 2 kb=10                Accurate  .11 .09 (=.11/1.29) 

 Total  15 .12,.12 (-.09,.29) .11,.12  (-.05, .38) 

 Positive 12 .16,.09 ( .00, .29) .14,.10  ( .00, .38) 

 Negative 3 -.05,.03 (-.09,-.02) -.03,.02 (-.05,-.01) 

NOTES: 
a    n= no. of repetitions;   
b    k= no. of workers 
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ESTIMATING θ IN THE PRESENCE OF A NEGATIVE ANOVA ESTIMATE OF  
2
Bσ  

 

Overexposure 

For hazard control, the probability θ of overexposure is very important.  We present here 

the basic equations for overexposure as derived by Rappaport et al.1   They followed the 

common assumption that the exposure ijx of worker i on day j follows a lognormal 

distribution with:  

ijiyijij xy εαµ ++== )ln(  

where yµ is the mean of the overall logged exposure distribution in the group, iα  is a 

random effect for the ith worker and ijε is the within-worker random error.  This model is 

applied to homogeneous work groups consisting of workers who perform similar tasks and 

therefore should have similar exposures.  A worker is considered overexposed if his mean 

value xiµ (conditional on iα ) exceeds a Standard limit (S).  The probability θ that a 

randomly selected person from a work group is overexposed is thus: 

}
5.0)ln(

{}{ 1

2

θ−=
σ

σ−µ−
>=>µ=θ Z

S
ZpSp

B

wy
xi                equation ( 1)  

The relationship between 2
Bσ and  θ for different values of C, C= µ x /S.  (for 2

Wσ =.5) is 

presented in Fig 5.1.  It can be seen that when 0.5 ≤C≤1.0, θ has a maximum and then 

decreases, with little sensitivity to 2
Bσ . Therefore, as θ is calculated based on an estimate of 

2
Bσ , the estimate of θ is quite stable for 2

Bσ  values which are slightly larger than zero. 

There is a problem in the estimation of θ when 2
Bσ is near zero, because θ is sensitive to 

2
Bσ  in that region and because the ANOVA estimate of 2

Bσ estimators may be negative. 

Since nowadays there is an emphasis on making the exposure groups as homogeneous as 

possible, we may be faced with applications that have small values of  λ (= σσ 22
B w ).  
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Figure 5.1  Relationship of the between-workers variance (Var-b) and the probability of                   

                  overexposure (Theta) for different values of c (=µ  x /Standard) for the group  

                 of   workers ( 2
Wσ =.50). 
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Rappaport et al. method 

Rappaport et al.1 recognized the problems of negative between-worker variance component 

estimates for estimating overexposure probabilities and for testing for compliance to 

standards.  They proposed the following alternative estimator. 

Use the ANOVA estimate if 2ˆ Bσ  is positive. Otherwise, substitute 2
1,.ˆ ασ −B  for 2ˆ Bσ  where 

2
1,.ˆ ασ −B  is an approximate 100(1-α)% upper confidence bound for 2

Bσ , namely  

P ( 2
Bσ < 2

1,.ˆ ασ −B )≈1-α.  The upper bound derived by Williams 8 and sited in Searle et al.2 , is  

χ
ασ 2

,1

2
1,

))(1(ˆ
Lk

L
B

n

MSWFMSBk

−

−
−−

=  
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where 

P{ F k
nk

)1(
)1(

−
− ≤F L )} = 1-α/2          P{χ −

2

1k
≤χ −

2

,1 Lk
)} =1-α/2 , Where F k

nk
)1(

)1(
−
−   and  χ −

2

1k
 

represent random variables distributed as F with (k-1) numerator and k(n-1) denominator 

degrees of freedom and χ2   with (k-1) degrees of freedom, respectively.  Rappaport et al.1 

suggested using a 60% confidence bound. In a subsequent article, Lyles et al.5 used the 

same basic approach but with a 95% rather than a 60%, approximate upper confidence 

bound for a negative 2ˆ Bσ  ANOVA estimate.  Although the latter article dealt only with 

hypothesis testing, the 95% upper bound could also be used in estimating θ.  

 

Some drawbacks of the Rappaport et al. estimator  

We note here two problems with the between-worker variance component estimator 

proposed by Rappaport et al.  First, the adjustment made to negative ANOVA estimates is 

often insufficient to produce a positive estimate.  We illustrate this feature later in a 

simulation study. 

Second,the fact that Rappaport et al.’s estimator only corrects negative ANOVA estimates 

makes it very sensitive to small changes in the data.  According to Rappaport et al. when 

λ( σσ 22
B w ) ≈0.1-0.2, negative estimated values of 2

Bσ  could be observed as much as 30-40% 

of the time when k=10 and 2≤n≤4. This probability can be reduced by increasing the 

sample size; however, in reality, many occupational hygiene groups are of this order of 

magnitude, having 20-40 repeated measurements.6  

We illustrate the sensitivity of Rappaport et al.'s estimator with simple example using 

simulated data with k=10, n=2 , 2
Bσ =.1 and  2

Wσ =1. First, a random set was generated and 

gradually, eight slight changes were made to create eight further sets, each with the same 

worker averages but with increasingly larger within worker residuals. 

Table 5.2 presents the variance components estimates according to ANOVA and Rappaport 

et al.’s method with the 60% confidence bound. 

From step 7 on, the ANOVA estimator 2
Bσ̂ ANOVA,  was negative. The Rappaport et al. 

estimate for 2
Bσ  makes a sudden jump from very small to very large values at step 7 and 

thus is quite sensitive to small changes in the study data.  A slight increase in the within-
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workers mean square could change a positive ANOVA estimate to a negative one, thus 

sharply increasing Rappaport et al.'s estimate.  This change could lead to a much larger 

estimate of θ .  Since the error term in exposure measurements is already known to vary 

greatly over time (contributing to the within worker variability), measuring the same 

exposure group at different times can easily produce negative 2
Bσ̂ ANOVA estimates. 

 

    Table 5.2  Sensitivity of 2
Bσ , 2

Wσ  estimators to small changes in values  of a set  of data  

 

Set  Percent inflation  
of residuals 

2
wσ̂ _ANOVA 2ˆ Bσ _ANOVA           2ˆ Bσ _1

a 

     
1 random set .72 .23 .23 

2 5 .80 .20 .20 

3 10 .87 .16 .16 

4 15 .96 .12 .12 

5 20 1.04 .07 .07 

6 25 1.13 .03 .03 

7 30 1.22 -.02 3.47 

8 35 1.32 -.06 3.45 

9 40 1.42 -.11 3.43 

NOTES:  n=2;  k=10, original: 2
Bσ =.1 , 2

Wσ =1 
a    2ˆ Bσ _1 – according to Rappaport et al.’s method, based on upper bound of 60% 

 

Bias-adjusted variance component estimation (BAVCE) 

We suggest an alternative estimate to overcome some of the limitations of the estimator 

proposed by Rappaport et al.  Our method, which we call BAVCE, is  based on the upper 

tolerance interval suggested by Wang and Iyer.3 
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It takes account of the fact that an upper confidence bound will typically be biased high and 

multiplies by a factor that attempts to adjust for this bias. The estimator is defined as 

follows:  

n/)MSWFMSB(ˆ LB −= 22 ωσ     

where 

P{ F k
nk

)1(
)1(

−
− ≤F L )} = η    for  η = (1-γ)/n, 

γ is the confidence level (which we have taken to be .95), 

[ ]LF)~1(1/~2 φφω −−=      and      )./1,0max(~ MSBMSWFL−=φ  

The BAVCE estimator, like the others (Rappaport et al.1  ,Lyles et al.5)  reduces the 

frequency of negative or zero estimates by subtracting less than the full value of MSW 

from MSB.  However, their use of an upper confidence bound as an estimator almost 

guarantees an overestimate of 2
Bσ .  The factor 2ω in the BAVCE attempts to correct the 

upward bias.  To see how the bias correction works, we present an approximation to the 
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The bias correction is implemented by using a "plug-in" estimator of φ  in which the 

observed mean squares replace their expected values. 

 

Comparison of estimators on simulated data 

Simulated Data 

Simulations were run to compare the different estimators of 2
Bσ  and θ.  The estimators of 

2
Bσ were the ANOVA estimator, the estimator of Rappoport et al. with a 60% bound 

(method 1) and with a 95% bound (method 1A), and the BAVCE proposed here (method 
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2). The estimators of θ were generated by plugging the estimators of 2
Bσ  along with the 

ANOVA estimator of 2
Wσ and the sample average into the equation (1) in Section 4. The 

simulations covered three different practical settings defined by the number of repetitions 

(n) and the number of subjects (k):  

(i).   1000 data sets for k=10, n=2 (20000 observations);  

(ii).  1000 data sets for k=10, n=3 (30000 observations); and 

(iii). 1000 data sets for k=10, n=4 (40000 observations).  

In addition, we examined several different values of 2
Bσ .  The within-subject variance 2

Wσ  

was held constant at 1 in all the simulations.  Original values for θ  for n=2,3,4 were 

computed from equation (1). When the least squares estimate of the between-workers 

variance component 2
Bσ  was negative, method 1 modified it to a larger value. The method 

2 estimator increased all the 2
Bσ  estimates, not just the negative ones.  

 

Comparison of estimators  
 
Tables 5.3 and 5.4 present the estimators based on the simulated data for n=2 , 3 and 4, 
when original 2

Bσ =.2 (Table 5.3) or 2
Bσ =.05 (Table 5.4) , which are representative of the 

results that we found for all the values of 2
Bσ . 

Tables 5.3a and 5.4a relate to the estimators when negative ANOVA estimates were found. 

Tables 5.3b and 5.4b relate to the estimators when positive ANOVA estimates were found. 

As was found previously, the ANOVA estimator of 2
Bσ  was often negative for the cases we 

studied. In Table 5.3a ( 2
Bσ =.2, λ=.2), we can see that more than 40% of the data sets for 

n=2,3,4 resulted in a negative 2
Bσ   ANOVA estimate and in Table 5.4a ( 2

Bσ =.05, λ=.05) 

we can see that the percentage was higher, over 50%. 

A serious problem with Rappaport et al.'s method is that many negative estimates of 2
Bσ  

remained negative. The problem is especially acute with the 60% confidence bound.  Even 

with 2
Bσ =.20 and four replications per subject, almost 30% of the negative ANOVA 

estimates remained negative with this method.  Using their method with a 95% confidence 

bound reduces the problem but did not eliminate it, with 7-10% of the negative ANOVA 
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estimates remaining negative.  Our method was much more successful in this regard.  

Negative estimates are automatically adjusted to 0 and these occurred in less than 4% of the 

cases with negative ANOVA estimates in all the settings we examined.    

In conclusion, there is an estimation problem using method 1 when n=2 or 3 and 22 / WB σσ  is 

less than 0.20. 
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Table 5.3   Comparison of estimation methods based on simulations of 1000 sets for                  

                  ten workers with 2,3,4 repetitions 

 

 a. Results for negative LS estimators of 2
Bσ  

Repetitions  
(no. of series) 

2ˆBσ   (original=.20) θ̂  (original=.34) 

  ls_method method_1  method_1a method_2 method_1 method_2 
2a  
(473) 

 
mean, SD 

 
-.23,.19 

 
.06,.23 

 
.51,.37 

 
.16,.11 

 
.32, .03 

 
.31, .06 

 min, max -1.13,.00 .24, 6.14  -.55, 1.83 .00, .58 .00, .34 .00, .34  
3b 
(478) 

 
mean, SD 

 
-.13, .10 

 
.05, .13 

 
.32, .23 

 
.11, .07 

 
.31, .05 

 
.32, .05 

 min, max  -.61, .00 -.47, .43 -.33, 1.21 .00, .41 .04,.34 .00, .34 
4c 
(413) 

 
mean, SD 

 
-.09, .07 

 
.04, .10 

 
.24, .16 

 
.09, .05 

 
.30, .06 

 
.31, .06 

 min, max  -.41, .00 -.30, .26 -.19, .67 .00, .24 .00, .34 .00, .34 
 
 
 

       

b. Results for positive LS estimators of 2
Bσ  

Repetitions 
(no. of 
series)  

 2ˆBσ   (original=.20) θ̂  (original=.34) 

  method_1 
(ls_method)

method_2 method_1 method_2 

2  
(527) 

 
mean, SD 

 
.27, .21 

 
.49, .21 

 
.31, .05 

 
.32, .02 

 min, max .00, 1.14 .11, 1.30 .00, .34 .25, .34 
3 
(522) 

 
mean, SD 

 
.17, .14 

 
.34, .14 

 
.31, .06 

 
.33, .01 

 min, max  .00, .76 .10, .93 .00, .34 .28, .34 
4 
(587) 

 
mean, SD 

 
.14, .11 

 
.28, .11 

 
.30, .06 

 
.33, .01 

 min, max  .00, .53 .08, .63 .00,.34 .31,.34 
NOTES:  ls_method = least squares method;  method_1= Rappaport's et al methods based on 
upper bound of 60%;  method_1a= Rappaprt's et al methods based on upper bound of 95%;  
method_2 = our method, based on a modified upper bound 
a   298/473 positive according to method_1;   437/473 positive according to method_1a;     
    463/473 positive according to method_2 
b     318/478 positive according to method_1;   445/478 positive according to method_1a;     
    462/478 positive according to method_2 
c     293/413 positive according to method_1;   386/413 positive according to method_1a;     
    408/413 positive according to method_2     
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Table 5.4  Comparison of estimation methods based on simulations of 1000 sets for 10     

                 workers with 2,3,4 Repetitions.  

 

a.  Results for negative LS estimators of  2
Bσ  

Repetitions  
(no. of series) 
 

2ˆBσ  (original=.05) θ̂  (original=.31) 

  ls_method method_1  method_1a method_2 method_1 method_2 
2a   
(505) 

 
mean, SD 

 
-.25,.19 

 
.04,.24 

 
.47, .37 

 
.15,.11 

 
.32, .05 

 
.31, .06 

 min, max -1.11,.00 -.87, .72 -.52, 1.82 .00, .59 .00, .34 .00, .34 
3b  
(538) 

 
mean, SD 

 
-.14, .10 

 
.03, .14 

 
.29, .22 

 
.10, .07 

 
.31, .06 

 
.31, .06 

 min, max  -.62, .00 -.48, .40 -.33,.1.15 .00, .39 .00,.34 .00, .34 
4c 
(510) 

 
mean, SD 

 
-.09, .07 

 
.03, .10 

 
.22, .15 

 
.08, .05 

 
.30, .07 

 
.31, .06 

 min, max  -.39, .00 -.28, .24 -.18, .63 .00, .22 .00, .34 .00, .34 
 
 

       

b. Results for positive LS estimators of 2
Bσ  

Repetitions  
(no. of series) 

 2ˆBσ   (original=.05) θ̂  (original=.31) 

  method_1 
(ls_method)

method_2 method_1 method_2 

2  
(495) 

 
mean, SD 

 
.24, .20 

 
.46, .20 

 
.31, .05 

 
.32, .02 

 min, max .00, 1.05 .10, 1.16 .00, .34 .27, .34 
3 
(462) 

 
mean, SD 

 
.15, .12 

 
.32, .12 

 
.31, .05 

 
.33, .01 

 min, max  .00, .83 .11, .93 .00, .34 .28, .34 
4 
(490) 

 
mean, SD 

 
.12, .10 

 
.25, .10 

 
.30, .07 

 
.33, .01 

 min, max  .00, .50 .08, .60 .00,.34 .31,.34 
NOTES: ls_method = least squares method;  method_1= Rappaport's et al method based on upper 
bound of 60%, method_1a= Rappaprt's et al method based on upper bound of 95%,  method_2 = 
our method, based on a modified upper bound 
a   303/505 positive according to  method_1;   462/505 positive according to method_1a;     
    485/505 positive according to method_2 
b   336/538 positive according to  method_1;   485/538 positive according to method_1a;    
    521/538 positive according to method_2 
c     326/510 positive according to  method_1;   469/510 positive according to method_1a;    
    501/510 positive according to method_2 
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AN EXAMPLE 
 
Survey on pig farmers’ exposure to inhalable endotoxins 

In a study of 200 pig farmers from the south of the Netherlands, exposure to inhalable dust 

and endotoxins was monitored  by personal sampling. Exposure was measured during one 

work shift on a randomly chosen day of the week, one day during the summer of 1991 and 

one day during the winter of 1992. Outdoor temperature was obtained from a monitoring 

station in the south of the Netherlands. Task activity patterns on the day of measurement 

and farm characteristics were also recorded.7.  For the purpose of this paper, only the 

exposure data on endotoxins will be used on 153 farmers out of the 200 who had two 

measurements (the rest had some failure in the measuring process for one measurement). 

For the whole study population (n=153), the following estimates were calculated and they 

were considered to be the accurate parameters for the pig farmers’: 2
Bσ =.13, 2

Wσ =.64, 

θ =.32,µy =7.81. We have taken the standard to be 8.29 (Standard=log(4000ng/m3) =8.29) 

for this example.  

We compared the different estimators of  2
Bσ  by generating 100 sub-samples . Each farmer 

was included /excluded from a particular sample by drawing a binomial random variable 

with probability 0.1 for inclusion. For the 100 sub-samples, mean±SD. of the µy values= 

7.81±0.15. The same parameters were estimated while 2
Bσ  was estimated by the different 

methods (see table 5.5).In this example, only about 20% of the series resulted in negative 

ANOVA estimates. Thus , one might expect that our method, which always corrects 2ˆ Bσ , 

might be less successful.  Nonetheless, for θ, our estimate performed better than that of 

Rappaport et al., with a smaller SD especially for the samples with positive ANOVA 

estimate. For 2ˆ Bσ , Rappaport et al.'s estimate over the 100 samples seemed to perform 

better than our method. This conclusion differs from our previous conclusion regarding the 

simulated data due to the different sample sizes. Here, on average, 15 subjects were 

included in each sample  while in our previous samples, we had only 10 subjects per each 

sample. The Rappaport et al.'s estimator of 2
Bσ  was more accurate with a 60% bound than 

with a 95% bound.  
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Table 5.5  Parameter estimation according to the different methods (mean ± SD) 

 
 k n 2ˆwσ  

2ˆ Bσ  θ̂  
 

   ls_method ls_method method_1 method _1a method_2 method_1 method_2 
          
All farmers 153 2 .64 .13  

(λ=0.20) 
    

          
 
Subsamples 
Negative 

2ˆ Bσ _ls  
(21 series) 

 
8-20 
 

 
2 

. 
73±.14 

 
-.09±.06 

 
.09b±11 

 
.34±.21 

 
.11±.07 

 
.29 b±.21 

 
.27±.18 

 
Subsamples 
positive 

2ˆ Bσ _ls  
(79 series) 

 
5-25 
 

 
2 

 
.59±.15 

 
.19±.15 

 
.19±.15 

 
.19±.15 

 
.34±.15 

 
.32±.17 

 
.32±.09 

NOTES:  ls_method = least squares method,  method_1= Rappaport's et al method based on 
upper bound of 60%, method_1a= Rappaprt's et al method based on upper bound of 95%,  
method_2 = our method, based on a modified upper bound 
a   Randonuni function- returns a number from the uniform distribution on the interval (0,1). 
    The function was applied 100 times on the original data set , each time with another seed. In each  
     time, observations with a random number less than 0.1 were included in the new sub-sample. 
b     Four negative values for   2ˆBσ  according to  method_1a consequently  4 missing values for  θ̂   
    according to method_1 
  

 
 

DISCUSSION 
 

The use of Rappaport et al.’s approach for assessing compliance for hazard control is a new 

application. It has inherent statistical considerations and takes into account the variance 

components of the hazardous exposure based on real-life data sets and should be 

recommended for use. However since it is a new tool, caution and further study are needed. 

In exposure data sets, ANOVA estimators for between-variance components are quite often 

negative (see sensitivity analysis).  

The common practice of changing such negative values to zeros prevents the application of 

popular plug-in estimators in compliance assessment and it also appears to be an unrealistic 

result since it implies that all workers have the same mean exposure.   



 

  107 

The modified variance component estimator for negative values proposed by Rappaport et 

al.1 and by Lyles et al.5 has three main disadvantages: 

1. It remains negative for some data sets. 

2. It performs  poorly in estimating 2
Bσ  and also θ when n=2 and when original 2

Bσ     is 

quite small and 0.5*standard≤µ x≤1.0*standard, which are quite common situations  

when studying exposure.   

3. Discontinuous behavior: small changes in the data set can make the ANOVA estimator 

negative, resulting in the use of the modification, which may cause a large change in  

the conclusions of a study. 

 

In this paper we have proposed an alternative variance component estimator, the BAVCE, 

to cope with the problem of negative and zero between-worker ANOVA estimates.  Our 

modification seems to react better than the estimator of Rappaport et al. as can be seen in 

the tables. Thus, from our simulations and the simulated subsets of data.  

We think that further thought should be given to analysis of data from unbalanced designs, 

which are common in real-life exposure data sets due to absence of workers and changes in 

work practices. Here exposure was measured in industry and agriculture. The same ideas 

can be applied to environmental exposure within the community.  
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ABSTRACT  

 

Objective: We aimed to assess dust exposure among different wheat exposed workers and 

to study their risk for sensitization. Methods: About 520 measures of inhalable dust and 

wheat allergens were performed among 270 individuals from four sectors of industry. Data 

on sensitization to wheat and common allergens (atopy) was also available. Using mixed 

effects models, we estimated exposure levels according to sector, job title and tasks. The 

shape of the relationship between sensitization and exposure was studied using a 2-stage 

modeling approach: a semi-parametric generalized additive model and consequently a 

parametric logistic model. To avoid possible risk estimate attenuation, we modeled 

variance weighted estimate (VWE) of exposure in addition to the actual exposure. Results: 

The effect of exposure to both inhalable dust and to wheat allergens on sensitization was 

found to be a quadratic relationship. The probability of sensitization increased with 

exposure up to ~2.7 mg/m3 for inhalable dust and ~25.7µgEQ/m3 for wheat allergens. The 

risk decreased at higher exposures (possibly a healthy worker effect or tolerance) 

(OR=.84,.94 p=.0121 and p=.0731 for dust and wheat respectively). Atopy and sector of 

industry modified the sensitization risk significantly in all the analyses (OR for atopy was 

~6, p<.0001; OR in the industrialized bakeries was ~4.2 times higher than in flour mills). 

Using VWE exposures corrected for bias resulted in almost the same point risk estimates. 

Conclusions: The exposure-response relationship may be non-linear and requires 

exploration. Our findings also do not indicate a threshold for occupational exposure 

standards, alternatively, other approaches such as benchmarking seem warranted. 
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INTRODUCTION 

 

Recently, there has been growing interest in risk assessment for allergens by several 

countries and professional bodies (e.g., the American Conference of Governmental 

Industrial Hygienists, ACGIH,1,2 and the Dutch Expert Committee for Occupational 

Standards, DECOS.3 Based on these risk assessments, health-based exposure standards 

were proposed for diminishing the risk for becoming sensitized against wheat flour 

allergens. Such proposals were made by both ACGIH and DECOS.1-3 Other organizations, 

such as the Health and Safety Executive (HSE) from the United Kingdom and the Nordic 

Expert Group, favored a different approach of which the rationale was described earlier.4,5  

The standard setting process is complicated because only a few studies have dealt in any 

detail with exposure among bakers and sensitization, mainly because these data were not 

available until recently.6-9 Moreover, the shape of the relationship was not studied in depth 

in most earlier studies: it was either based on simple categorization of the exposure or on 

job titles (e.g., bread versus cake bakers), or assumed to be linear. Risk assessments have as 

a result been fairly simple, straightforward and based on a subjective or intuitive 

interpretation of the data. The shape of exposure-response relationships for sensitization 

agents has received specific attention in more recent studies in the indoor environment, and 

the results were suggestive of a bell-shaped curve for some allergens and linear for others.10 

The current paper is therefore based on new data for an occupational allergen collected in 

four sectors of industry, thereby including workers with higher levels of exposure to both 

inhalable dust and wheat flour, than in earlier studies. Earlier analyses of this data set 

ignored the fact that task information can be used and allows more powerful modeling 

approaches. Advanced exposure modeling is necessary to obtain a refined assessment of 

exposure estimates that allows subsequent evaluation of the derived exposure- response 

shape. 

Therefore, in this paper, exposure determinant modeling was performed to evaluate 

estimated exposure levels to inhalable dust and wheat allergens based on measurements 

among occupational wheat exposed populations. In addition, for risk assessment purposes, 

a refined non-linear exposure-sensitization relationship was explored with advanced 

statistical tools.   
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METHODS 

 

Subjects 

The data originated from a survey among Dutch bakers including a medical and a hygiene 

part, carried out between August 2000 and July 2001. We limited our study to those 270 

workers who were included in both the hygiene and medical survey, belonging to 83 flour- 

processing enterprises, from four industrial-sectors. 

  

Occupational factors 

Occupational factors included industry-sector, job-title within a sector and tasks-performed 

within a job-title, referred to as exposure determinants. We investigated four sectors:  

traditional bakeries, industrialized bakeries, flour mills and bakery-ingredient industries. 

Each sector can be described by several jobs (see appendix for details). About thirty jobs 

within sectors were observed. In addition about 80 tasks were distinguished. 

 

Dust and allergen exposure assessment  

Personal inhalable dust samples were collected in the workers breathing zone during full-

shift periods of 6-8 hours using PAS6 sampling heads at a flow rate of 2 L/min. Dust levels  

(mg/m3) were measured by weighing in a preconditioned weighing room before and after 

the measurements. Wheat allergens were recovered from the filters by extraction using a 

buffer solution (PBS) and the wheat allergen concentrations were measured in the extract 

by inhibition immuno-assay, using a pool of human IgG4 polyclonal antibodies, as 

described earlier and expressed in µgEQ/m3.7 For the 270 workers 335 personal inhalable 

dust samples were collected and out of them 298 wheat allergen exposure measurements 

were performed. 

 

Repeated exposure measures 

Of the 270 bakers, 208 (77%) had one exposure measurement, 59 (22%) had 2 repeated 

measures and 3 (1%) had 3 repeated measures.  Repeated measures were taken within a 2–

6 weeks period on randomly selected workers in the four sectors.  This procedure was 
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performed for further assessing the day-to-day variability of exposure in a subset of 

workers. 

 

Health outcomes 

Wheat specific sensitization:  Venous blood samples were analyzed for the presence of 

specific IgE antibodies against wheat flour allergens using the Pharmaca Diagnostics Uni 

CAP assay. Individuals with levels of class 1 or higher were considered positive.  

Atopy: Sera were also analyzed for the presence of IgE against common allergens: house 

dust mite and grasses. Individuals were considered atopic if any of the common allergens 

had a level of class 1 or higher.  

 

Statistical analyses 

Statistical analyses were performed using SAS software.12,13  Exposure values below the 

detection limit were replaced by two thirds of this limit. Some extremely high exposure 

levels were replaced by the 98 percentile: 100 mg/m3   for inhalable dust and 400µgEQ/m3 

for wheat allergens level. Exposure distributions for both inhalable dust and wheat 

allergens were found to be log-normal,7 and therefore the levels were natural log-

transformed for the statistical analysis. 

 

Exposure assessment  

Linear mixed effects models, which account for the correlation between repeated measures 

were used for estimation (SAS- Proc mixed) of exposure to inhalable dust and wheat 

allergens. 

a. We used a model with log exposure level as the dependent variable, and sector of 

industry, job-title and 80 tasks as covariates, to identify tasks associate with exposure. We 

then included those tasks found to have an effect at least borderline statistical significance  

(p<=.10) on the level  of either inhalable dust or wheat allergen exposure. 

b. For estimating variance components between (var-b) and within (var-w) workers we 

used different approaches. Four mixed models were applied with log exposure levels as the 

dependent variable. The four models included 1) no covariates, 2) sector of industry, 3) 

sector of industry and job title (nested within sector of industry), 4)  sector of industry, job-
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title and “effective tasks” (nested within job title).  In addition, we assessed the goodness of 

fit of the model with the three covariates in comparison to models with one or two 

covariates using the likelihood ratio test.  

c. Estimated (=predicted) mean exposure level in each job title within a sector was 

estimated using the models above. We also estimated the var-b and var-w of the estimated 

exposures. For further analysis, for each worker with repeated measurements, we averaged 

the estimated values.  

 

Modeling exposure-response relationship 
The relationship between sensitization (defined as a binary health outcome) and exposure 

to inhalable dust and wheat allergens accounting for atopic status and sector was firstly 

evaluated by calculating sensitization prevalence among categories of exposure, sector of 

industry and atopic status (SAS-Proc Freq/Univariate). 

To explore the shape of the relationship between sensitization and exposure:  

a.  We fitted a semi-parametric generalized additive model. We adjusted for the following 

parametric effects:  atopy (no/yes) and sector of industry (4 categories) as the linear 

predictors of the parametric part of the model and log-concentration as an additive 

predictor as the non-parametric part of the model. The term for the additive predictor was 

fitted using a spline as a smoother. The model is a generalized model since the probability 

distribution of the dependent variable sensitization (binary no/yes), is binomial and the 

relationship with the predictors is through a non-linear link function (logit= p/(1-p)). The 

degrees of freedom for the additive predictor were selected by a generalized cross-

validation method that indicates the degree of the polynomial that represents the data (SAS-

Proc GAM). We used scatter-plots (not shown) to present the relationship of logged 

concentration and their partial prediction by the smoother for dust and wheat exposure. 

b.   After inspection of the semi-parametric curve and interpretation of the cross-validation 

results we choose a parametric model – a generalized linear model (with 

distribution=binomial and link=logit) where the dependent variable was the logit of 

sensitization and the independent variable were: atopy, sector of industry, linear and 

quadratic terms of logged concentration. Odds ratios as well as confidence limits of 

exposure, atopic status and sector of industry for sensitization were estimated for this 
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logistic model (SAS- Proc Genmod) Goodness of fit of model was evaluated according to 

the deviance. 

The semi-parametric model (step a) and the parametric model (step b) were applied to the 

estimates from the four different exposure assessment approaches:  measured exposure , 

estimated exposure based on  the industrial-sector of industry and  job title (2 covariates), 

estimated exposure based on sector of industry, job-title and tasks performed (3 covariates) 

and on a Variance-Weighted Estimator (VWE) of measured exposure and estimated 

exposure (see appendix b). The VWE is a modification of the approach proposed by Seixas 

et al.19 in which the model predicted exposure and the actual measurements are combined. 

It reduces negative effects of grouping strategies (described in relation to Berkson error). 

 

 

RESULTS 

 

Exposure- Descriptive statistics  

Table 6.1 presents summary statistics on exposure within the various sectors, ignoring the 

dependence between repeated measures. The highest mean exposure level, for both 

inhalable dust and wheat allergens, was observed in the flour mills (geometric means: 2.72 

mg/m3 and 9.41µgEQ/m3, respectively) while the mean exposure level was the lowest, both 

to inhalable dust and wheat allergens, in industrialized bakeries (geometric means 1.03 

mg/m3 and 2.14 µgEQ/m3, respectively). 
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Table 6.1  Summary  statistics regarding exposure  to inhalable dust ( mg/m3 ) and wheat allergens    

                 (µgEQ/m3) within sectors 

 

Inhalable dust Wheat allergens Sector k  
GM (GSD) n GM (GSD)  n 

       
Traditional bakeries  70  1.71 (2.99) 80 8.63   (7.45) 65 

Industrialized bakeries  72  1.03 (3.72) 91 2.14 (14.07) 83 

Flour mills  73  2.72 (4.07)  94 9.41   (9.32) 85 

Enzyme processing  55  1.16 (4.42) 70 2.66 (11.03) 65 

Total 270  1.56 (3.98) 335 4.64 (11.38) 298 

  NOTES: k=no. of workers; n= no. of measurements  
 
 

Variance components between- and within-workers using different approaches with 

respect to exposure determinants   

Actual exposure measurements: Different approaches were evaluated with respect to the 

three exposure determinants, sector of industry, job title and nature of tasks. Table 6.2 

presents the variance components between- and within-workers obtained from models with 

and without exposure determinants. The grouping strategy based on sector of industry and 

job title led to a reduction of the variance between workers by 55% for dust and by 50% for 

wheat. Adding task information, however, reduced the variance between workers even 

more, by 78% for dust and by 56% for wheat. Thus, industrial sector, job-title and specific 

tasks could explain the variance in exposure between mean exposures of different bakers 

over time. The tasks also had an influence on the day-to-day variability of exposure to 

wheat (i.e., the variance within workers was reduced from 1.88 to 1.62).  

Estimated exposure values: The model with sector of industry and job title fitted 

significantly better than the model with industry sector alone. The 3-covariate model with 

the sector of industry, job title and tasks demonstrated a superior fit in comparison to the 

other models for both exposure to inhalable dust and wheat allergens (p<.0001 for all, 

based on likelihood ratio tests). We therefore calculated two exposure proxies for each 

worker based on his sector of industry and job title or sector of industry, job title and tasks 

performed. If a worker had different tasks or jobs during the 2-3 repeated measures, he 

would have 2-3 different exposure estimates. Variance components (between- and within-
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workers) based on estimated exposure levels were found to be significantly lower (p<.01) 

than those based on actual exposure measurements (table 6.2). As expected, estimated 

exposures were more precise and thus may correlate better with health responses.9 

 

Modeling exposure -response relationship 

Table 6.3 presents the prevalence of sensitization among the various categories of exposure 

(quartiles), sector of industry and atopic status. We fitted a semi-parametric generalized 

additive model to discover the appropriate shape of the relationship between sensitization 

and exposure, and the results of this model for exposure to dust and wheat allergens are 

given in table 6.4 and Appendix c. The effect of exposure using a smoothing spline was at 

least borderline significant for inhalable dust and wheat allergens (p=0.0462 and p=0.0941, 

respectively) (table 6.4). The relationship between log-concentration and sensitization 

seemed to be quadratic from the scatter-plot of logged concentration and their partial 

prediction by the smoother. Consequently, we applied a parametric model (i.e., a 

generalized linear model with binominal distribution and logit link), where the dependent 

variable was the logit of sensitization and the independent variables were atopy, sector of 

industry, and the linear and quadratic terms of log concentration. The modeling was also 

applied for estimated exposure levels, and the same quadratic relationship was found with 

the semi-parametric model (not shown).   
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Table 6.2   Variance components and 95% confidence intervals (CI) for different approaches   

                  with respect to exposure determinants (exposure to inhalable in dust mg/m3  and  

                   to wheat allergens in  µgEQ/m3)  

 

 Inhalable dust Wheat allergens 
Exposure 
determinants 

Var-b  
(95%CI) 

Var-w  
(95%CI) 

Reduction 
of var-b 

Var-b  
(95%CI) 

Var-w  
(95%CI) 

Reduction  
of var-b 

 

a. Using measured exposure, with different exposure determinants 

None 1.16 

(.86,1.64) 

.74 

(.54,1.07) 

- 4.00 

(3.03,5.51) 

1.88 

(1.30,2.96) 

 - 

Sector 1.03 

(.75,1.49) 

.75 

(.55,1.08) 

11%a 

(λb=.61) 

3.61 

(2.69,5.09) 

1.89 

(1.31,2.98) 

10% 

(λ=.68) 

Sector+job  .52 

(.29,1.17) 

.80 

(.57,1.22) 

55% 

(λ=.58) 

2.00 

(1.28,3.59) 

2.00 

(1.37,3.18) 

50% 

(λ=.66) 

Sector+job+task .25 

(.10,1.57) 

.78 

(.55,1.20) 

78% 

(λ=.39) 

1.75 

(1.08,3.31) 

1.62 

(1.06,2.79) 

56% 

(λ=.50) 

 

b. Using estimated exposures based of different exposure determinants 

Sector+job .56 

(.46, .70) 

.12 

(.09, .17) 

52% 1.93 

(1.59,2.39) 

.35 

(.26, .51) 

52% 

Sector+job+task .63 

(.49, .85) 

.35 

(.26, .49) 

46% 2.12 

(1.65,2.82) 

1.03 

(.76,1.47) 

47% 

NOTES:  Exposure was expressed in logged concentrations 
Var-b: variance between workers; var-w: variance within-worker; estimation was based on mixed 
effects models. 
a   (1.16-1.03)*100/1.16=11% 
b     λ= var-b/(var-b + var-w) known as reliability ratio 
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Table 6.3  Prevalence (%) of sensitization among categories of: exposure to inhalable dust 

and wheat allergens (inhalable dust mg/m3 , wheat allergens µgEQ/m3 ), sector 

and atopy  (k=no. of workers) 

   

Factor Categories         k Sensitization (%) 

    
[  .01-     .59)  54 18.5 

[  .59-    1.14) 54 33.3 

[ 1.14-   2.06) 54 29.6 

[ 2.06-   4.70) 54 27.7 

Exposure 

To inhalable dust 

[ 4.70-100.00) 54 20.4 

[.03-.34) 54 10.6 

[.34-4.84) 54 25.5 

[4.84-15.18) 54 34.0 

[15.18-47.39) 54 29.8 

Exposure 

to wheat allergens 

[47.39-400) 54 27.1 

No 193 37.1 Atopy 

Yes 77 50.6 

Traditional bakeries  70 37.1 

Industrialized bakeries 72 34.7 

Enzyme processing 55 16.4 

Sector 

Flour mills 73 13.7 

No 42 19.0 Traditional bakeries  

Yes 28 64.3 

No 52 26.9 Industrialized bakeries

Yes 20 55.0 

Enzyme processing No 45  8.9 

 Yes 10 50.3 

Flour mills No 54  9.3 

Sector & Atopy 

 Yes 19 26.3 

Total   270 25.9 
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Table 6.4  Effects of  exposure (inhalable dust mg/m3  , wheat allergens µgEQ/m3 ), sector 

and atopy on sensitization – using a semi-parametric generalized additive model  

with a smoothing spline 

 

  Inhalable Dust Wheat allergens 
  estimate Se p estimate Se p 
        

Int. -2.62 .18 <.0001 -2.86 .23 <.0001 

Traditional  

bakeries 

1.22 .34 .0004 1.25 .39 .0015 

Industrializd

bakeries  

1.45 .38 .0002 1.48 .36 <.0001 

  Enzyme  

processing 

 .56 .54 NS .71 .53 NS 

Flour mills# 0 .  0 - - 

Atophy 1.75 .33 <.0001 1.69 .36 <.0001 

Regression model 

(parametric part) 

Lineara 

 log conc. 

.11 .17 NS .15 .09 .0824 

Smoothing model 

(non-parametric part) 

Spline 

 log conc. 

DF =~2b .0462 DF =~2b  .0941 

NOTES: log conc.= log transformed concentration ; NS=(p>.10) ; #reference group 
a   linear term of log concentration 
b   Degrees of Freedom (DF)  were  selected by a generalized cross-validation  method  
 

Table 6.5 and fig. 6.1 show the results of the quadratic logistic regression model for the 

whole group. The results in table 6.5a and fig. 6.1(i) are based on measured exposure 

levels and those in table 6.5b and fig. 6.1(ii) on the estimated ones. Table 6.5 presents 

the odds ratios (ORs), confidence limits (CIs) and significance levels (p) for exposure, 

atopic status and sector of industry on sensitization risk. Fig. 6.1 depicts the quadratic 

relationship between exposure and the probability of sensitizing in terms of the different 

sectors among atopic and non-atopic individuals. 
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Table 6.5   Effects of exposure to inhalable dust (mg/m3) , wheat allergens (µgEQ/m3 ) and 

atopy on sensitization- using a quadratic logistic regression model (k=270 ): 

                  Odds ratios and 95% confidence intervals 

                   

  Based on:  

a. Actual exposure with sector as a covariate 

Inhalable dust Wheat allergens  
Odds 

   ratio 
95% LRCI pb Odds 

      ratio 
95% LRCI p 

 
      
Log-conc 1.41 1.03 -  2.01 .0329 1.31  1.05-  1.67 .0142

Log-conc^2 .84   .72 -   .96 .0087   .96    .90-  1.02 .1539

Atopy        6.12 3.26 -11.79 <.0001 5.49    2.87-10.75 <.0001

Traditional 

bakeries 

3.28 1.36 -  8.34 3.46  1.42-  8.86 

Industrialized 

bakeries  

4.40 1.80 -11.54 4.57  1.85- 12.06 

Enzyme 

processing 

1.78   .61-  5.28 2.00    .68-  5.84 

Sector 

Flour  

millsa 

1.00  

 

 

 

 

 

 

.0049 1.00  

 

 

 

 

 

 

.0040

 

b. Estimated exposure according to sector, job title and tasks   

Log-conc 1.24   .83- 1.98 .3300 1.50    1.10 - 2.18 .0185

Log-conc^2 .62   .43-  .83 .0039   .87      .79 -   .95 .0037

Atopy          5.90 3.23-11.00 <.0001 5.90      3.23 -10.99 <.0001

 

c. Estimated exposure according to sector and job title  

Log-conc 1.10 .71-1.82 .6800 1.33 .99-1.93 .0865

Log-conc^2 .71 .49-.95 .0039   .91 .81-1.00 .0651

Atopy          5.78 3.18-10.68 <.0001 5.66 3.13-10.42 <.0001

 NOTES: 95% LRCI= 95% likelihood ratio confidence interval; 
 Log-conc =linear term of log transformed concentration; Log-conc^2 =quadratic term of log-conc  
  a   Reference category 
  b   p based on LR statistics, comparing models with and without the effect  
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d. Calibrated exposure  (a weighted average of actual exposure and estimated exposure 

according to sector, job title and tasks) 

Inhalable dust Wheat allergens  
 Odds 

ratio 
95% LRCI p   Odds 

   ratio 
95% LRCI p 

 
      
Log-conc 1.44 1.01 -  2.15 .0467  1.42 1.09 - 1.89 .0074

Log-conc^2 .77  .60  -    .93 .0042    .93   .85 - 1.00 .0555

Atopy       6.19 3.29 -11.95 <.0001  5.56   2.91 -10.91 <.0001

Traditional 

bakeries 

2.99 1.24-  7.62  3.31 1.37 -  8.46 

Industrialized 

bakeries  

4.23 1.72 -11.11  4.54 1.84 - 11.98 

Enzyme 

processing 

1.67  .56 -   4.92  1.90   .65 -  5.58 

Sector 

Flour  

mills  

1.00  

 

 

 

 

 

 

.0074  1.00  

 

 

 

 

 

 

.0044

 

 

The probability of sensitization increased with greater exposure until it reached ~2.7 mg/m3 

for inhalable dust and ~25.7 µgEQ/m3 for wheat allergens. It later decreased, indicating 

possibly either a healthy worker effect or development of tolerance. Likewise, the ORs for 

the logged concentrations were at least borderline significant 1.41 (p=0.0329) for inhalable 

dust and 1.31 (p=0.0142) for wheat allergens (table 6.5a). For the squared logged 

concentrations, the ORs were at least borderline significant .84 (p=0.0087) for inhalable 

dust and .96 (p=0.1539) for wheat allergens.  

Atopy was a highly significant risk factor for sensitization, with an OR of ~6 (p<0.0001) in 

models with both exposures (6.12 and 5.49 for inhalable dust and wheat allergens, 

respectively). Overall, the probability for sensitization was much higher among atopic 

individuals compared to non-atopic ones. As for the sectors; the ORs for the industrialized 

bakeries were about 4.5 times higher than both the flour mills and the bakery-ingredients 

industry for both exposures (fig. 6.1(i)).  



 

  122 

 

Figure  6.1  Probability for sensitization  (Probability) as a function of exposure  to  

                   inhalable dust (logged mg/m3  ) and wheat allergens  (logged µgEQ/m3  );  

                   Among  non-atopic (n=193) and atopic workers (n=77) of  four sectors: 

                   industrialized bakeries, traditional  bakeries, bakery-ingredient suppliers and    

                   flour  mills (from top to bottom).  
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b) Atopic  workers  
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(ii) Based on VWE  
 

(a) Non-atopic workers 
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(b) Atopic workers 
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There were no significant differences in the ORs between traditional and industrialized 

bakeries nor between bakery-ingredients industry and flour mills.  

Risks based on estimated exposures according to two and three covariates (table 6.5c 

compared to table 6.5b) were not markedly different; as expected, the risk for the linear 

exposure term was somewhat lower. In a previous analysis using exposure-exposure 

determinants modeling, the model with three covariates fitted the data better than did the 

model with two covariates (p<.001). Consequently, the risk estimators shown in table 6.5b 

are more accurate from a statistical point of view than those shown in table 6.5c.  

Table 6.5d and fig. 6.1(ii) present the risks based on “VWE exposure” which is a weighted 

average of the actual exposure and exposure estimator according to the three covariates of 

sector of industry, job title, and tasks. The point risk estimators were quite similar to those 

based on actual exposure, but they were more accurate. They had almost the same precision 

and, in exposure to wheat allergens, the quadratic term which was not significant in model 

a (p=0.1539) turned out to be much more significant in model d (p=0.0555). 

We assumed that for each industry-sector the exposure-response relationship is the same. 

When modeling exposure-response relationship separately for each sector there was some 

evidence of a positive linear relationship in 2 sectors in high exposures. However for risk 

assessment purposes, only the left hand part of the curve regarding low exposures is 

relevant. 

 

 

DISCUSSION 

 

The aims of the current study were to assess exposure to inhalable dust and wheat allergens 

among bakers within different sectors and jobs and to evaluate the shape of its relationship 

with specific sensitization for risk assessment purposes. We discuss the results in three 

sections. The first one deals with exposure assessment; the second and third ones deal with 

risk assessment, specifically with exposure response relationship modeling and   

implications for an occupational health standard.  
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Exposure assessment  

The current study population is composed of bakers from four industry-sectors, two of 

which have hardly been studied earlier, namely, flour mills and bakery-ingredients 

industry. These two sectors were found to have higher significant exposure to both 

inhalable dust and wheat allergens (p<.001) compared to the traditional and industrialized 

bakers. Certain jobs, particularly weighing, filling of bags and “dumping of additives” in 

the bakery-ingredients industry, contributed to high levels of exposure. We found grouping 

by sector of industry and job title resulted in homogeneity, expressed as a relatively low 

exposure variance between workers within a given job category.14 Accounting for tasks 

resulted in a lower variance between workers and a better fit of the model that associated 

exposure with its determinants. Our estimated exposures based on grouping strategy by 

sector of industry and job title, were found to be more precise than the individually 

measured ones. Moreover, those estimated-exposure values accounting also for the 

performed tasks were more valid and more informative for exposure to both inhalable dust 

and wheat allergens.  

 

Exposure-response relationship 

We aimed to study the shape of the exposure sensitization relationship since there are too 

few available epidemiological data with a quantitative exposure-response investigation 

among bakers for risk assessment purposes. Those studies, in which a monotonic exposure-

–response relationship was tested for, had two main disadvantages.15  First, they imposed 

an a priori choice of cut-off. This may result in bias and even raise concern that 

investigators may select cut-off values that produce a desired result. Second, they made a 

restrictive assumption of a parametric model of linear shape on the logit scale and applied a 

linear logistic model. This restrictive assumption was not tested, even though the 

conclusions from these tests depend on its validity. Only one study considered the shape of 

the relationship without the above-mentioned restrictive assumption by using a flexible 

GAM method.7 Any GAM model has the disadvantage that even if it successfully fits the 

data, it is difficult to obtain estimates of the variability of the parameters/risk factors in 

order to assess their significances (non-robustness/non-stability). Therefore, parametric 

models are preferable over non-parametric ones due to the inferential statistics. We used 
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smoothing as intermediate step, as exploratory tool, leading to the desired parametric 

model. The smoothing analysis showed that the non-linear relationship can best be 

approximated by a quadratic one. Consequently, we could assume the parametric form of 

the model as being a quadratic logistic regression. We used two exposure assessment 

approaches, based on either actual exposure measurements or on estimated exposures. Both 

approaches yielded a significant quadratic dose-response relationship between exposure to 

inhalable dust and wheat allergens and sensitization (p<0.05 in comparison to a model 

without exposure terms). Based on actual measured exposure levels, the relationship was 

found to be monotonic up to a value of ~2.7 µg/m3 for inhalable dust and ~25.7 µgEQ/m3 

for wheat allergens, namely, the higher the exposure the higher the risk. The decline at 

higher exposures may indicate some kind of tolerance in a specific group of workers, as 

was suggested to play a role in exposure of children to domestic allergens,3,16 or a healthy 

worker effect.7 This phenomenon especially with regard to the biological mechanism 

requires further exploration.    

Previous studies that dealt with an exposure-response relationship had a smaller exposure 

range and presumably assumed a monotonic relationship, so that this phenomenon had not 

been observed before among atopic workers except in part in one earlier study.7 Because of 

the cross-sectional nature of the current study, we could not evaluate this any further.  

Atopy was found to be a significant modifier in our exposure-response relationship. It is a 

known risk factor for sensitization,7,11 and atopic individuals had a 6-time higher risk than 

non-atopic ones, accounting for the exposure level and the sector of industry. It was found 

to be a weaker modifier (a factor of 2 in PR) in the Heederik and Houba study,7  perhaps 

due to their lower exposure levels or modeling procedure. The industry sector was found to 

be a significant factor in the exposure-response relationship for both inhalable dust and 

wheat allergens. Industrialized bakeries had a 4 times higher risk to become sensitized at 

the same exposure level than workers in flour mills, and a twice as high risk as workers in 

the bakery-ingredients industry. So, the sector of industry might serve as a proxy for the 

kind of dust-mixture to which workers were exposed as well as for the local environment 

(e.g., temperature, the degree of using ventilation devices) or may be individual 

characteristics (other than age, gender or cigarette smoking21), which contributed to 

differences between industries.   
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The difference in prevalence in atopy between the industries seems a key explanatory 

variable. A remarkable difference in the prevalence of atopy among the four industrial 

sectors was observed (i.e., 22%, 35%, 38%, 67% in bakery ingredients industry, flour mills, 

industrialized and traditional bakeries, respectively). This may point to a strong selection 

effect (healthy worker effect), but the exact reason for the difference in atopy prevalence 

between industries remains obscure.  

We have assumed that the shape of the relationship between sensitization and exposure is 

the same within each industry, which can be questioned. However, regardless of the 

assumption about the shape of exposure response curve, up to intermediate exposure levels, 

the curve is monotonically increasing. Only at very high exposure levels, the curve flattens 

or even decreases. However, one should be aware that such high levels are not encountered 

by a substantial number of workers and do not occur regularly. Especially for risk 

assessment purposes, this part of the curve, at the high exposure levels, is of less relevance.  

Previous studies involving linear exposure-response relationships found that there was 

attenuation when using individual exposure data instead of exposure-group means.14,15,17  

In our study, quadratic logistic regression with the estimated exposure instead of the actual 

one led to almost the same point estimators of the risk factors. Point estimates using the 

estimated exposure based on three exposure determinants (sector of industry, job title, 

tasks) were in part higher than those based on two exposure determinants (i.e., sector of 

industry and job title). As in our previous study,18 the random within-worker variability of 

exposure is highly reduced when tasks that vary from day to day are accounted for. Based 

on actual measured exposure, the risk estimators for wheat allergens were found to be 

marginally attenuated in comparison to those estimated according to 3 exposure 

determinants. The new 4-stage approach for assessing exposure combines actual and 

estimated exposure to avoid bias in both point and range estimation of the risk for an 

illness. The idea of a combined estimate was offered earlier,19 but modified.  
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Implications of this study for an occupational health standard  

The development of an exposure-response curve based on human health effects is 

important for promulgating occupational standards.20 However, in previous studies 

involving linear exposure-response relationships, the use of individual exposure data 

instead of exposure-group means was associated with attenuation. Our approach tried to 

overcome this problem and therefore its conclusions seem to be more valid.  Our curves do 

not suggest a true zero response (= no zero probability for sensitization), known as the “no 

observed effect level” (NOEL) in toxicology. This is in line with earlier findings,7  

although very few studies have thus far attempted to evaluate the shape of the relationship 

between wheat exposure and health outcomes. Therefore, a true threshold dose level (i.e., 

the dose with which a zero response is associated) cannot be defined: instead, only a dose 

associated with a preset increase of risk (benchmarking) can be calculated. 
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Appendix a: Job titles 
 
Industry Job title 
Traditional  
 bakeries  Bread baker 
  Confectioner 
  Mixed baker (both bread and confectionery) 
  Oven worker 
Industrialized  
 bakeries  Bread baker 
  Doughmaker 
  Control baker/quality assurance 
  Cleaning worker 
  Confectioner 
  Oven worker 
  Slicers, packers and transport workers 
  Warehouse worker (additives) 
  Production manager 
  Maintenance worker 

Flour mills 
 
 Wheat (grain handler) 

  Operator (allround) 
  Operator silo 
  Operator flour mill 
  Operator wheat cleaning 
  Worker involved in filling of bags 
  Manager 
  Cleaning worker 
  Lorry/truck driver 
  Analyst 
  Maintenance worker 
  Mixer additives 
  Control baker/quality control 
   Warehouse worker (additives, e.g. transport) 
 
Enzyme processing   
 industry   Weighing 
  Filling of bags 
  Dumping of additives 
  Operator all round 
  Stacking of filled bags 
  Warehouse worker (additives, e.g. transport) 
  Control baker/quality control 
  Office worker 
  Operator (almond paste, fats) 
  Maintenance worker 
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Appendix b: The establishment of the VWE exposure  
 
v  = exposure level on a one day basis, subject to high day-to-day variability (within-
worker     variability) ;  
x  = average exposure level over a period. 
 
The basis of the calibration is the replacement of v by E(x/v), written here as vx /µ  . In 
our quadratic logistic model we will replace v and v2 by  the estimates of vx /µ  and  

vx /2µ   
 
(a) estimation of vx /µ  
 
In general: 

δ+= xv      ( δ  = “measurement error” due to day-to-day variability, independent of x, 

with E(δ )=0). This implies that 

εβα ++= vx      (ε  = random error)   (equation 1)       

(v and  x have means: vµ , xµ  and variances: 2
vσ  2

xσ  ,respectively, and covariance 2
xvσ  

δ and ε  have zero means and  variances : 2σδ , 2σε  ,respectively) 

 
where: 

2
δ

2
x

2
x

2
v

xv

σσ
σ

σ
σ

β
+

==  

xvx β)µ(1βµµα −=−=          (since  vx µµ =  ) 

hence: 

 εβµβ ++−= vx x)1(                        

wxvx βµβµ +−= )1(/                             (equation 2)      
-------------------------------------------------------------------------------- 
 
For the i-th worker:  

 zi  =  exposure estimator based on exposure determinants of worker i ( stage 1) 
22
wb s,s  =estimated variance components of the zi   the same for all workers (stage 2) 

in  = no. of repeated measures of  worker i (=1,2,3) 
=iv  mean actual measured exposure for worker i, based on 1-3 repetitions. 

 
then: 
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=
ixµ̂  zi    ;   
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b
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+
== λβ  ;     
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λλµ +−= )1(ˆ / , this is the VWE exposure for the i-th worker 

 
 
     
(b) estimation of  

vx /2µ  
In general: 

2
/

22
/

2
// ][][2 vxvxvxvx µσµσµ ε +=+=   (from equation 1) 

22222222
vxvx σβσσσσβσ εε −=⇒+=  

 

hence: 

2222
/ ])1[(2 vxvwx βµβσβσµ ε +−+−=   (from equation 2) 

------------------------------------------------------------------------------------------------------------------------------------ 

 

For the i-th worker:  
 

22222
/ ])1[()/(ˆ 2 iiiiiwbibwx vznsss λλλµ +−++−=  

 
 
 



 

  135 

Appendix c: GAM modeling  

Probability for sensitization  (Probability) as a function of exposure  to inhalable dust (logged 

mg/m3) and wheat allergens  (logged µgEQ/m3  );  Among  non-atopic (n=193) and atopic 

workers (n=77) of  four sectors:  industrialized bakeries, traditional  bakeries, bakery-ingredient 

suppliers and flour mills. (from top to bottom)  
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CHAPTER 7:  

GENERAL DISCUSSION 
 

 

The mixed effects model is a generalization of the standard linear regression model that 

enables studying effects of covariates on an outcome when the data is generated from 

several sources of variation, instead of just one.1-7 This model is relevant for example, 

when we study the effects of exposure determinants on exposure level where repeated 

measures have been taken for a group of workers. Then, both between- and within-subjects 

variability in exposure are present, exhibiting two sources of variation.  

The main objective of this thesis is to evaluate and explore possibilities of using mixed 

effects models for occupational exposure assessment. General benefits of mixed models are 

discussed below, with respect to both statistical and hygiene aspects. Several exposure data 

sets from surveys with repeated measurements were explored and studied in this thesis with 

different study designs and with a range of different determinants of exposure. In all 

studies, we explored variability in exposure to air pollutants, a common denominator in this 

thesis.   

The major benefits are the ability to estimate both the variance components of exposure 

(and their derivatives) and the unbiased regression coefficients for determinants of 

exposure, simultaneously in one model. Other benefits include modeling relationships 

between exposure and health effects, with improved approaches to deal with biases that 

occur as a result of measurement error. Classical hygiene aspects covered are grouping 

strategies, hazard control and over-exposure assessment. 

 

Correlation between repeated exposure measures  

Longitudinal hygiene surveys include measurements collected over periods ranging from 1 

week to 30 years with different number of repeated measurements per subject and usually 

the personal measurements of the same subject are correlated.  The mixed model method is 

capable of handling unbalanced data and estimating the correlation between repeated 

measures for a worker, accounting for other covariates such as job title and time period 

whereas multiple regression models use only balanced designs and consequently lose 
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information. Our data sets consisted of 2-10 repeated measurements per worker, which 

took place on 3-4 successive days or over a period of one year. In addition, exposure 

groups of varying sizes were present in the data, from 6-12 workers to about 600. This 

illustrates the extremely unbalanced nature, typical of data sets in occupational hygiene.  

Amongst all methods for longitudinal repeated measures modeling, only the mixed model 

enables the assumption of different correlation-structures. Assuming a constant correlation 

between any two repeated measures of a worker, in about 50% of our data sets we found a 

relatively non-ignorable correlation, greater than 0.50. The correlation value can be easily 

derived from the variance components evaluated in recent studies of exposure-groups,8-12 

(within to between  variance component ratio of  more than 1:1 is equivalent to a 

correlation value of .50 or more) but only a few of them also accounted for systematic 

effects10 and therefore a detailed comparison between our studies and other studies cannot 

be made.  The correlation is important as an indicator of the (in-) variability in exposure 

and has further implications for determining the exact role of exposure determinants, which 

will be explored later on. 

 

Covariance structure/ variance components 

It is known nowadays that exposure levels can vary greatly from day-to-day within the 

same worker as well as between workers performing the same job. This variability of 

exposure can be due to a wide range of sources, known and unknown to the hygienist, and 

statistically it is reflected with different covariance structures depending on the information 

available. The mixed model can handle different covariance structures (not only one 

structure as the repeated measures ANOVA model) and further to the random effects model 

can estimate variance components accounting for the fixed effects.  

In the data sets of this thesis (Chapters 3-6) two random variance components, between- 

and within-workers, were considered. Those components have been mostly estimated so 

far, through a one way random effects model,7-9 but with the mixed modeling they could be 

adjusted for the fixed effect exposure determinants,10-12,14 under the assumption of a 

compound symmetry (CS) covariance structure. CS means an equal correlation between 

repeated measures irrespective of the time interval between them.  It is also possible that a 

factor would have an effect on the variance of the response. Therefore, we investigated 
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heterogeneity of the variance among benzene workers with respect to their job-task 

(fillers/non-fillers) and found that the pooled between- and within-variances led to almost 

the same values of the variance components when fillers and non-fillers were allowed to 

have distinct variance components. The same was found among groups of workers exposed 

to inorganic mercury,12  but previous results from a study among construction workers 

indicated that the between-worker variance could not be pooled among jobs.14  Weaver et 

al.15 attempted to generalize these issues on a larger scale, in 39 data sets each containing 

multiple groups. With different between worker variance components they advocated 

testing the assumption of homogeneous within-worker variance components, using a 

likelihood ratio test, and found that it was often valid to pool the data across groups to 

estimate a common within-worker variance component. This has implications for statistical 

parsimony.  

When the number of observations in each group is small, like in common hygiene studies, 

estimation of a reduced number of parameters is preferable. Sometimes the random effects 

in the model structure can be affected by the fact that measurements that took place close in 

time are more highly correlated then those further apart in time,16 e.g. a first order 

autoregressive- AR(1) covariance structure (see appendix for application). Only one study 

compared results of using AR(1) and CS covariance structures on the same exposure data 

set. At face value, parameter estimators were similar.11 An unstructured covariance may 

also be considered when there are few repeated measures for the same worker (this is not 

yet done). Therefore the mixed model offers the hygienist information regarding the 

significant random sources of the variability, as well as the magnitude of the contribution 

of each specific source.    

 

Modeling mean exposure: assessing unbiased effects of exposure determinants  

Collection of exposure determinants during the measurement process such as: work 

temperature, task, outdoor/ indoor working is part of each hygiene survey since those 

factors are associated with elevated or reduces exposure levels. Therefore the estimation of 

their relative contribution to the mean exposure is of interest to the industrial hygienist. 

Modeling mean exposures with a mixed effects model corrects for bias in evaluating the 

determinants of exposure. This bias may occur when ignoring the dependence between 
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repeated measurements,18 as in regression models which until very recently have been  

used for “mean modeling”.1-4  This benefit of the mixed model is illustrated with examples 

of two sets of exposure data (Chapter 3), that were analyzed by both models.  A large 

between-worker variance component, as was estimated through a mixed model for the 

rubber workers' exposure to inhalable particulates, led to changes in the regression 

coefficients, the standard errors and in the tests of statistical significance. With the 

between-worker variance component close to zero (almost no correlation), e.g. in the pig 

farmers data, the coefficients for the fixed effects in the mixed model were almost the same 

as those from a regression model. To conclude, as the dependence between the repeated 

measurements increases, the standard regression estimates become less statistically 

efficient. This has implications when interpreting exposure data and when choosing a 

parsimonious predictive model for assessing a long-term exposure.  For hazard control, it is 

essential that conditions that contribute to higher exposure are known. By focusing upon 

those conditions (e.g. work done on a very warm and busy day- benzene data) it is possible 

to better control exposures.  

 
Time- and non-time related covariates/ exposure determinants  

The variability of exposure has both systematic and random sources, which should be 

evaluated while studying the temporal pattern of exposure. The mixed model enables us to 

distinguish between systematic and random fluctuations of exposure along time. The 

systematic variability may be evaluated by the incorporation of time dependent covariates 

(those that have different values along time) to the model such as worker's activities (e.g. 

pig farmers data), and periodic variables (e.g. calendar date, weekday- benzene data). The 

systematic trends can be divided into short-term changes (e.g. in activities) or long-term 

trends (e.g. 4-years periodical changes in benzene use).  

The mixed model enables evaluation of the relative contribution of time-independent 

exposure determinants, while simultaneous adjusting for the time-related ones. Symanski et 

al.,10  found that for periods extending beyond a year, systematic changes in exposure were 

more likely to occur and that ignoring such changes can bias the assessment of exposure, 

based on more than 500 exposure groups. Common repeated ANOVA models assume that 

the exposure is stationary, i.e., that the true mean of exposure (as well as the variance and 
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auto-covariance) does not change over time. The mixed models can accommodate non-

stationary situations by controlling for the time effects (like calendar year in the benzene 

data). Knowledge on systematic changes enables better control of exposure, although 

random fluctuations are indicative of more unmeasured exposure determinants, which 

should be identified.  

 

Bias correction for exposure-health response relationships  

Exposure response modeling is of vital importance in occupational epidemiology. In 

general, the high day-to-day variation (within-worker variance) reduces the power of a 

study to detect an association between exposure and disease (or any health outcome) and 

can introduce bias into the estimate of the risk of disease due to exposure, usually referred 

to as  “attenuation” 22-25. Bias reduction for exposure-health response modeling can be 

facilitated through the use of mixed models.  

To avoid this bias (to control for worker's day to day variation in exposure) usually 

worker's observed exposure levels are replaced by the mean of their exposure-group. 25-26   

In this thesis an alternative approach has been explored, in which instead of the observed 

exposure, the mixed model predicted exposure is used in the exposure response analysis. 

Two distinct scenarios were applied; one where mixed model predicted exposure values 

were used in the exposure response analysis. A mean exposure value estimated by the 

mixed effect model based on exposure determinants which is an improvement compared to 

“exposure-group’s” mean exposure; another where mixed model predicted exposure values 

were combined with individual observations. A suggestion to combine mean group 

exposure values with actual observed individual exposure measurements was made earlier 

by Seixas et al.25 The combination of the actual observed values with the predicted values 

weighed by variance components is done according to James-Stein.27  A modification of 

this principle has been applied in this thesis (Appendix, Chapter 6).  

 

Identification of uniform exposure groups (grouping strategy) 

Grouping of workers is an inherent part of the work of an industrial hygienist in exposure 

surveys as well as in compliance tests and epidemiological studies.19-21 Despite the 

widespread use of grouping strategies, there is only limited experience with optimisation of 
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these strategies. The mixed models assist in grouping workers into uniformly exposed 

groups further than on the basis of observed characteristics such as job-title or location. By 

applying nested mixed models (Chapter 3), we could identify specific work characteristics 

(both time and non-time related) that are associated with the between-worker variance 

components e.g. process temperature and pressure or farm-flooring characteristics. The 

time-independent factors (e.g. farm characteristics) may help in future surveys for a priori 

grouping. The time-related factors like process-temperature, together with the time-

independent factors should play a role in a posteriori sub-grouping of workers (see Chapter 

6).  

 

Identification of hazardous time-related conditions for hazard control and sampling  

Hazard control should focus on time related conditions namely on conditions with high 

exposures that occur not on a regular basis and can put the worker at risk. By applying 

nested mixed models we can understand the relationship between specific work-

environment characteristics and the within-worker/day-to-day exposure variance 

component. Variables responsible for variance in exposure levels from day-to-day were 

found to be certain activities, month (indicating outdoor temperature and relative humidity 

and wind  speed), week day and credit day (indicating work-burden).  

Such information can also assist hygienists and researchers in planning a representative 

environmental sampling strategy and thus better assess occupational exposure for both 

hazard control and epidemiological studies of exposure-response relationships. For 

example, in the fuel-installations (Chapter 4), selecting measuring days at random should 

maximize the likelihood that they are representative of different workload conditions 

during warm and cold months. 

 

Assessment of over-exposure  

Occupational exposure limits/standards aim to prevent health impairment in workers and 

even their offspring. Thus, exposure above the standards, or over-exposure, should be 

evaluated and controlled. Variance components of exposure, estimated by the mixed 

models, should be included in the assessment of over-exposure. Evaluation of over-

exposure includes estimation of the probability that in a group, a randomly selected 
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worker's mean exposure exceeds the occupational exposure standards.5 Rappaport et al. and 

Lyles et al.,5,6 were the first to propose a statistical strategy which accounts for variance-

between and within workers,11 when evaluating over-exposure and Symanski et al.12 

applied this on exposure job-groups with different assumptions regarding homogeneity in 

the between- and within-worker variance components. This statistical strategy may be 

extended to situations where workers are not classified into homogeneous job groups 

because it is meaningless or impossible (e.g. in small workshops where each worker is 

doing another job-task). When additional information with respect to tasks etc. is available, 

more refined variance components, adjusted for the tasks, based on a suitable mixed effects 

model, can be estimated for the heterogeneous group (see estimators in Chapters 2, 4, 6) 

and incorporated into the statistical strategy to evaluate over-exposure together with the 

predicted means.  Thus a more exhaustive use of the hygiene information available can lead 

to a more valid evaluation of over exposure, which has direct implication for workers 

health.   

 

 

ASSUMPTIONS AND LIMITATIONS 

 

The use of empirical data for modeling generally, and specifically in this thesis, involves 

assumptions, which should not be neglected when interpreting results:  

Random samples: Statistical inferences rely on random sampling. However, in the studies 

in this thesis the selection of workers was dependent on accessibility to factories, which 

may have introduced some bias. In addition, workers were selected among those who were 

present during the survey days.   

Missing values: Missing values may not have been missing at random. Specific workers 

may have been chosen to have repeated measures not in a systematic scheme. This could 

have caused bias in the modeling.  

Modeling: One should carefully check the assumptions of the mixed effects model as well 

as the covariance structure before application;  this is not always  straightforward. When 

modeling, one should avoid over-parameterization. In addition, the stability of the 

coefficients is still questionable in small groups. Asymptotic standard errors are derived 
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and the larger the data sets, the “better” the standard errors to assess the statistical 

significances of covariates. In mixed models “Maximum Likelihood" estimates of 

variances are biased because they fail to account for the estimation of the fixed parameters, 

and so “Restricted Maximum Likelihood” is generally advocated.   No standard statistical 

methodology is available for comparing variance models that are not nested.  

 

 

CONCLUSIONS AND FUTURE PERSPECTIVE 

 

The small sample size of “exposure groups” and the natural dependence between 

measurements may have implications on the statistical inference while evaluating exposure 

data sets. Given the advantages of the mixed effects modeling for pooling short dependent 

data sets nested within groups, one may assess exposure and exposure-response 

relationship, of the whole set of data with different variance sources accounting for 

different covariates. Therefore, additional applications of the mixed effects models should 

be performed in the future for different occupational health type of data as well as for 

complicated study designs such as: hierarchical (multi-level) and double repeated either in 

time or space.  

Analysis of data sets with repeated measures both in time and space (e.g. different locations 

on the body, different areas) or within nested groups (e.g. workers within occupational 

groups, groups within a factory, factories within an industry, industries within a region, 

etc.) should be considered as well.  

Repeated measures can be derived also from biological monitoring or from qualitative 

exposure assessment (self assessed or performed by expert evaluations by nominal and 

ordinal scales) with binary outcomes. Consequently, the association between repeated 

qualitative exposure and quantitative repeated outcomes should be modeled.  

Biomarkers may provide more sensitive, specific, quantitative or reproducible proxies of 

study endpoints than traditional approaches, and therefore may in theory improve both 

study efficiency and validity.  Consequently exposure-response mixed effects modeling 

will be needed for valid risk assessment where exposures and endpoints are repeated.  
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Hopefully, these models will be more widely applied and contribute to improve hazard 

control and exposure-response modeling. 
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ABSTRACT 

 

Background: The study was aimed to understand the growth of lung function (LF)  over the 

course of one year, among asthmatic and non-asthmatic schoolchildren. It was based on a 

repeated measurements design in order  to estimate LF predictors and to evaluate LF 

variability within a child. Methods: A panel of 79 asthmatic and 79 matched non-asthmatic 

schoolchildren (9 and 12 years old) were followed up.  During each of the season height 

and weight were measured and 10 repeated lung function tests were scheduled for each 

child. The parents completed  health questionnaire. Statistical mixed models were applied 

to estimate longitudinal predictors such as changes in height and weight within a child and 

cross-sectional predictors among children (e.g. initial height, age). The model allowed us to 

estimate variability around all individual prediction curves as well as a within child 

variability estimator for the LF parameters. Results: In total 3780 LF measurements were 

performed. Controlled for  gender , grade and asthma, a 1 cm growth within the same child 

increased his FVC and FEV1  by about 11 ml (longitudinal effect) while a 1 cm difference  

across children, increased FVC and FEV1 by about 30 ml (cross-sectional effect). 

However, longitudinal and cross-sectional  weight effects were the same. In addition, 

obesity reduce FVC and FEV1 significantly. Seasonal time trend, indicating a child’s lung 

growth within a season, was found to be significant only in fall.  Gender was found to be a 

significant modifier of LF in subgroups of grade and asthma status. The variability of a 

child’s LF outcomes over the study-time was quite high. On average the adjusted within 
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child standard deviation, in a year, was estimated to be about 250 ml for FVC and FEV1 

and 650 ml/s for FEF50.  FEF50 variability was found to be significantly associated with 

having the symptom of coughing apart from cold.  

Conclusions: For a better validity and insight of LF prediction curve  of a group, the 

evaluation should be based on repeated measurements per child; and the modeling 

procedure  should take into account the within variability of the child’s LF.  

 

 

INTRODUCTION 

 

Many studies in recent years have collected daily measurements of peak expiratory flow in 

children to examine daily correlates of those measurements and determinants of 

variability.1-3 Those studies have typically collected data  for one +to three months. On a 

different time scale, other studies have collected annual measurements of lung function 

using spirometers.4-7 These studies have helped us understand the growth of children’s lung 

function and the determinants of that growth. We have focused on an intermediate time 

scale that is less well studied, by obtaining frequent measures of Lung  Function (LF) in 

school children during one year. This allows us to look at how LF grows over the course of 

the year, including effects of the child’s height and weight growth and of seasonal patterns. 

Because asthmatic children may behave differently we have chosen a matched sample of 

asthmatic and non-asthmatic children, living in the Hadera-area in Israel (a typical location 

along the Mediterranean). Thus, this study was aimed to model the effect of seasonal 

changes in height and weight and within season growth on LF values of FVC, FEV1 and 

FEF50.  

A second goal of this study was to examine predictors of the variability of lung function 

over time. Increased variability in lung function may be an important predictor of 

respiratory health. For example, peak flow variability has been shown to be an important 

predictor of asthmatic status,7a and is correlated with baseline level of lung function, among 

other determinants. Less is known about the determinants of  variability in FEV1 and other 

spirometric measures over the course of a year. Therefore, a second goal was to evaluate 

the variability of LF of each child over the year after controlling for the time-dependent 
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effects and for being asthmatic, grade and gender. Since we used a matched asthmatics-non 

asthmatics data set, we also studied the importance of each of the three LF parameters in 

predicting the likelihood of being asthmatic, after control for respiratory symptoms , ETS , 

parents’ asthma and atopy of either child or the parents.   

 

 

METHODS 

 

Subjects 

During 1996 we have examined 3740 school-children in  the Hadera area , Israel, using  a 

cross-sectional study design. Out of this sample we selected a cohort of 79 children who 

were  diagnosed by a physician as having asthma or frequent wheezes (“asthmatic”), based 

on parents’ reporting. A second cohort of 79 non-asthmatic children, selected from the 

same study population, were matched on gender and class, school and residential-area. 

Among the asthmatics, a quarter reported being under regular medical follow up and one 

third reported that their asthma was diagnosed under the age of 1 year. The children lived 

in three residential areas in Hadera, for at least 7 years: 55 in the town of Hadera, 50 in a 

suburb of Hadera and 53 in a nearby village. In grade 3 (9 years old) , 91 children and in 

grade 6 (12 years old),  67 children were followed up. In total there were 68 girls and 90 

boys in the study. 

 

Lung Function tests and repeated measurements design 

Lung function tests consisted of forced vital capacity (FVC), forced expiratory volume in 

first second (FEV1), FEV1/FVC, peak expiratory flow (PEF), forced expiratory flow in 

50% volume (FEF50), and forced expiratory flow in 75% volume (FEF75). LF tests were 

carried out by a trained technician using a Minato AS-500 portable spirometer (ATS 

approved). The expiratory maneuver was carried out with the subject standing and was 

repeated at least three times until two similar tests (agreed within 5%) were achieved. The 

best test (highest FVC+FEV1) was chosen. The lung function testing was done in the 

children’s schools between May 1997 and March 1998, within 3 seasons: spring, autumn 

and winter (during the summer, the children were on vacation).  In each season, ten 
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repeated tests were scheduled for each child spaced 5-7 days apart. All but 12 children 

were tested in each season. Nine out of those 12 were tested only in the spring. The median 

number of repeated measurements was 26 for asthmatic children and 25 for non-asthmatic 

children. All the participants were weighed (kg) and their height measured (cm) before 

carrying out the expiratory maneuver in the first test of each season (3 times during the 

year). 

 

Questionnaire 

A health questionnaire, to be completed by the child’s parents, was adapted from that 

recommended by the American Thoracic Society and National Heart Lung and Blood 

Institute.8 The questionnaire included data on the child’s previous diseases and respiratory 

symptoms and parent’s respiratory diseases, as well as siblings’ health condition, some 

socio-economic indicators as well as smoking in the child’s home (ETS- environmental 

tobacco smoke).  The parents had to fill out the questionnaire twice: in the spring and fall. 

The concordance between the questionnaires was quite high; out of 20 dichotomous 

questions, only two among the asthmatics and four among the non-asthmatics showed a 

non-significant Kendall correlation.  Importantly, for the questions regarding having 

symptoms, the correlation was higher among the asthmatics than among the non-

asthmatics. For this analysis the fall questionnaire was used.   

 

Variables relating to time, height and weight 

In our data, eight variables were available to assess the association of baseline height and 

weight ( cross-sectional effects ), change in height and weight between seasons, and trend 

within season on lung function (longitudinal effects). Time was considered a variable to 

allow us to control for growth in lung function within season, since height and weight were 

only obtained once per season.  In addition, we have defined indicator variables for very 

tall and very heavy children and included them in our models to assure that our slopes for 

height and weight are not unduly influenced by outlier values for those measurements.   
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Statistical analysis  

Lung Function 

We used mixed effects models,9  to examine the effect of changes in height, in weight and 

in time, on each of the 3 LF values: FVC, FEV1, FEF50, controlling for being asthmatic,  

grade, gender and initial height and  weight. Because children’s growth rates may not be 

equal in each season we fitted separate time trends within each season. The LF values were 

assessed to have a normal distribution and all the variables were considered as fixed effects 

in the above models. We assumed an AR(1) (first order autoregressive) correlation between 

repeated measures, meaning that the correlation between the residuals of LF in each child 

declined with the time between measurements, which is a common assumption in this kind 

of time series.6,10  The mixed model can handle unbalanced repeated measurements designs 

and accounts for the variance of  the LF parameter within a  subject. The modeling was 

done by using PROC MIXED of  SAS.11. In addition to the linear terms of height and 

weight, non-linear  terms:  height2, height3, weight2 and weight3  were tested for inclusion 

in the mixed models as predictor variables. We also fitted generalized additive models for 

the data, using the GAM function in SPLUS.12  The GAM models allowed  us to fit non-

parametric smooth function of the predictor variables height and weight, and test the 

significance of the improvement in model fit, compared to linear height and weight terms.  

 

LF Variability 

As mentioned above the mixed model enabled us to model for each child his specific 

prediction curve,  from which residuals could be calculated (residual = observed LF value 

minus predicted LF value according to the prediction curve).  The SD of these residuals 

indicates the variability of this child’s LF outcomes over the year, after controlling for the 

time-dependent effects, grade, and gender. We have calculated this value for each child.  

Afterwards we applied a multiple linear regression to model the relationship between these 

SD’s and certain effects that we hypothesized might affect lung function variability. These 

include: an area effect, respiratory symptoms, ETS, parents’ asthma, and atopy of either the 

child or the parents. All regressions included control for gender and grade. SD was 

assumed to have a normal distribution and the modeling was done by using the PROC 

GLM of SAS.13 
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Comparison between Asthmatics and Non-Asthmatics 

To study the difference in LF results between asthmatics and  non-asthmatics, we have 

applied three logistic models, one for each of the LF parameters (FVC, FEV1, FEF50). In 

these models, each child was represented by his last measurement. The dependent variable 

was a dichotomous one, being asthmatic (value=1) or non-asthmatic (value=0) and the 

independent variables were the LF parameters and some factors we examined as predictors 

of SD. The modeling was done by using PROC GENMOD of SAS.11 

 

 

RESULTS  

 

Two sets of variables were available: time invariant variables such as initial height and 

weight, gender and grade, which are commonly used in cross-sectional studies. In addition 

we had  time variant variables: changes in height and weight across seasons, as well a 

linear time trend term within each season to capture within seasonal growth. These 

variables are discussed in turn.  

 

Prediction of LF 

Asthma, gender and grade  

Table A.1 presents  mean and  SD, of the three LF parameters: FVC, FEV1 ,FEF50 in sub-

groups of grade and gender for both asthmatic and non-asthmatic subjects, without 

accounting for the subject’s within variability (correlation between repeated 

measurements). While applying the mixed models controlling for effects relating to height, 

weight and time we have found that  the interaction effect of grade and gender  was 

significant. Hence, table A.2 presents the coefficients (se) of each level of grade and 

gender,  in the model, when arbitrarily selected girls in the 6th grade  were the  reference 

group.  The coefficient presents the difference in mean LF between each level and the 

reference group after controlling for being asthmatic, change in height and weight, and time 

(growth) effects. It can be seen that  in the 3rd grade boys, had higher FVC and FEV1 

values than girls, both in asthmatics and non-asthmatics (by  ~100ml, ~150ml 
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respectively). However in the 6th grade , the gender affect differed between asthmatics and 

non-asthmatics . Among the non-asthmatics, girls had higher values than boys (by  ~150ml 

in FEV1, ~350ml/s in  FEF50 ) while among the asthmatics, girls had much lower values 

than  boys (by ~240ml in FVC and  FEV1, ~400ml/s in  FEF50 ). Moreover in the 6th 

grade, asthmatic boys had the same values as non-asthmatics boys in FVC and FEV1, 

while asthmatics girls had significantly lower  values  than  non-asthmatic girls (- 290ml, - 

420ml, -970ml/s in FEV1, PEF, FEF50 respectively). For FEF50, even in the 3rd grade 

asthmatics had lower values than non-asthmatics, for both boys and girls. 

 

Table A.1  Mean±sd of lung function  outcomes and initial height and weight in subgroups of    

                  grade and gender  in asthmatic and non-asthmatic children    

               

Grade Gender k FVC ml        
     (n) 

FEV1 ml      
     (n) 

FEF50 ml/s   
      (n) 

Height cm     Weight kg     

        Asthmatics 
3 M 2

2 
2033±289  

(551) 
1776±267  

(534) 
2277±532  

(551) 
135.2±5.8 32.2±5.

6 

 F 2
4 

1822±321  
(599) 

1622±314  
(579) 

2320±761  
(599) 

133.9±6.4 32.7±6.
2 

6 M 2
3 

2582±402  
(519) 

2289±382  
(501) 

3015±706  
(519) 

149.5±7.3 41.0±8.
5 

 F 1
0 

2291±429  
(251) 

2000±406  
(241) 

2550±728  
(251) 

149.5±7.2 38.8±6.
7 

Non-Asthmatics 

3 M 2
1 

2010±323  
(507) 

1824±269  
(489) 

2618±483  
(507) 

134.5±6.0 30.5±6.
9 

 F 2
4 

1817±303  
(569) 

1663±269  
(547) 

2644±716  
(568) 

132.9±7.5 30.7±7.
5 

6 M 2
4 

2635±358  
(545) 

2365±350  
(526) 

3264±786  
(545) 

151.6±7.1 40.5±6.
4 

 F 1
0 

2797±413  
(231) 

2606±393  
(222) 

3793±746  
(230) 

151.9±5.9 44.6±9.
8 

 NOTES:  k = no. of children; n = no. of measurements  
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Height and weight  

Table A.1 presents mean and SD of initial height and weight in sub-groups of grade and 

gender for both asthmatic and non-asthmatic subjects. Table A.3 presents the coefficients 

(se) of  height and weight effects after controlling for being asthmatic , grade, gender, 

change in height and weight, and time (growth) effects. A difference of 1 cm in baseline 

height among children was associated with a change of about 30 ml in FVC  and FEV1, 

and an increase of about 30 ml/s in FEF50. The effect of a difference in 1 kg in weight 

among children varied by age. In 3rd grade children, the effect was small and not 

significant. In the 6th grade children, it was associated with about 15 ml increase in FVC, a 

12 ml increase in FEV1 and a 16 ml/s increase in FEF50. Obese children had lower values 

for LF than would otherwise be expected.  

 

Table A.2  Effects (se) of grade and gender on lung function stratified by asthmatic status  

 

Grade Gender FVC  ml FEV1  ml FEF50  ml/s 
Non-Asthmatics    

3 M 556.7  (110.2) 640.6 (114.4) 1178.2 
(334.0) 

 F 448.6  (110.6) 564.2 (114.9) 1352.8 
(335.0) 

6 M 235.2  ( 42.6) 265.2 ( 44.3)  596.1  
(130.4) 

 F 293.0   (51.6) 417.7 ( 53.7)  967.3  
(157.8) 

Asthmatics    

3 M 577.7  (111.4) 600.9 (115.7)  890.9  
(337.4) 

 F 409.0  (112.9) 482.7 (117.5)   994.2  
(343.2) 

6 M 236.7  (  43.3) 246.8 ( 44.8)  408.8  
(131.6) 

 Fa         0.0 0.0            0.0              

 NOTES: After controlling for initial height and weight, changes in height and weight,  
 growth within season and autocorrelation, using a mixed effects model  
 a  Reference category 
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Table A.3  Effects (se) of initial height and weight on lung function  
 

    FVC 
 ml 

    
FEV1 

 ml 

     FEF50  ml/s 

Height at 1st measurement (cm)    29.7 
 (1.9) 

   27.3 
 (2.0) 

    29.7 
(5.8) 

Weight at 1st measurement (kg)

For grade 3 

For grade 6 

 

     3.8 
 (2.5) 

   14.9 
 (2.2) 

 

  -  0.2 
 (2.6) 

   12.2 
 (2.2) 

 

   - 6.8 
 (7.5) 

    15.6 
(6.5) 

Tall    71.9 
(41.1) 

       ns 
      

        
ns 

Heavy -146.2 (76.5)  - 91.6 (74.0)         
ns 

 NOTES: After controlling for being asthmatic, gender, grade, growth within season, and     
 autocorrelation  using a mixed effects model; ns=non-significant 
 
 

Changes in height, weight and time  

Table A.4 presents the coefficients (se) of specific time-varying predictors, controlling for  

time invariant effects (being asthmatic, gender, grade, height and weight at first 

measurement). We found that a continuous time trend within season was only significant 

for fall where all three LF measures showed significant growth. This was not the case in 

spring and winter. However, the change in height and weight from season to season was 

associated with increase in both FVC and FEV1, even after control for season.  

 

Table A.4  Effects (se) of changes in height, weight and within season growth on lung function  

 

 FVC  ml  FEV1  ml FEF50  ml/s 

Change in weight from  1st measurement 
(kg)

  10.2 (4.0)    7.9 (3.9)    ns 

Change in height from  1st measurement 
(cm)

  11.2 (5.2)  12.4 (4.2)    ns 

Time from 1st measurement  

                                               For    spring   -0.6 (0.5) 

 

 -0.8 (0.5) -2.8 (1.2) 
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                For    winter 

    For    fall     

  -0.3 (0.4) 

   1.5 (0.4) 

 -0.4 (0.4) 

  1.4 (0.4) 

-0.9 (1.0) 

 1.8 (0.9) 

 NOTES: After controlling  for time invariant effects (being asthmatic, gender, grade and    
 initial height and weight) season  and autocorrelation, using a mixed effects model; 
 ns=non-significant  
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Repeated LF measurements: correlation and variance within a child 

Fig A.1 presents the repeated LF values of a non asthmatic 6th grade boy, along the 

studied year. His specific mean and sd of  25 LF outcomes were:  for FVC 2362±246 (ml), 

for FEV1 2077±226 (ml) and for FEF50  2819±444 (ml/s). For each LF parameter, the SD 

indicates quite a high  variability.  

 

Fig A.1  Repeated pulmonary function  outcomes during a year (n =  25) of a non-               

              asthmatic boy of the  6th grade ( 12 years) 

1400

1900

2400

2900

3400

3900

0 50 100 150 200 250 300 350

Time ( days )

FVC ( ml )
FEV 1 ( ml )
FEF 50 ( ml /s )

             Mean ( SD )
  FVC     2362 ( 246 ) 
  FEV 1    2077 ( 226 )    
  FEF 50  2819 ( 444 )

 

Table A.5 presents the estimated correlation between consecutive measurements of  lung 

function measurements. The longitudinal correlation for FEF50 was as high as for FEV1. 

These correlations declined with distance in time between the repeated measurements, 

justifying  the use of an autoregressive covariance structure . Since we found a high 

variability in each child’s repeated measurements, Table A.5 also presents the estimated  

mean of the  residuals variance for a child - the within-variance component. Thus, after 
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control for  the variables mentioned above (being asthmatic, gender, grade, height and 

weight  at 1st measurement, changes in height, weight and time), this variance was greater 

for FEF50 than for FEV1. That is, our  model explains less of the variance for this flow 

measure. This is because of our inability to find cross-sectional predictors that explain each 

child FEF50 as well as we can explain their FEV1. Longitudinally, however, FEF50 tracks 

as well as FEV1 over our study period.  

 

Predictors  of LF Variability  

We applied a multiple regression to model the relationship between the individuals’ SD of 

LF residuals and the following effects: residential-area, having respiratory symptoms, ETS, 

parents’ asthma and atopy of either child or parents. After controlling for gender and 

grade, few of these effects were found to be significant. Only coughing apart from cold 

was found to be a significant predictor of FEF50 variability. 

 

Table A.5  Correlation between consecutive measurements and within-child variance                     

                  of repeated lung function measurements 

 

 FVC  ml FEV1  ml FEF50  
ml/s 

Correlation 0.74 0.77 0.83 

Variance-within 

child 

62728 61176 417525 

(SD) (250.5) (247.3) (646.2) 
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Comparison between Asthmatics and Non-Asthmatics   

Table A.6 presents the difference in  LF parameters between asthmatics and non-

asthmatics, accounting for three  known risk factors of asthma. 

 

Table A.6  Odds ratioa (95%CI) of lung function (LF) outcomes and significant risk factors                

                  for having asthma 

 

 Model 1 

FVC  ml  

Model 2 

FEV1  ml  

Model 3 

FEF50  ml/s  

LF parametera 

 

Coughing without a cold 

 

Wheezing with a cold 

 

Atopy (home-dust, plants, pets) 

0.92b 

(.56-1.50) 

4.45 

(1.41-17.47) 

4.61 

(1.98-11.65) 

2.53 

(1.06-6.32) 

1.292 

(.80-2.12) 

4.17 

(1.32-16.29) 

4.71 

(2.02-11.93) 

2.47 

(1.04-6.10) 

1.91 

(1.18-1.91) 

3.67 

(1.14-14.59) 

5.06 

(2.10-13.39) 

2.47 

(1.02-6.24) 

 NOTES: According to logistic regression  
  a    Odds ratio and CI for one interquartile change in LF parameter (69 ml for FVC, 60 ml   for    
    FEV1, 103 ml/s for FEF50)  
  b  non-significant  factor 
 
 
Model 1 relates to  FVC, model 2 to FEV1 and Model 3 to FEF50. Coughing without a 

cold, wheezing apart from cold  and atopy of the child were substantial risk factors for 

being asthmatic (OR=4.45 CI=1.41-17.47, OR=4.61 CI=1.98-11.65 , OR=2.53 CI=1.06-

6.32, respectively for model 1).  Of the 3  LF parameters, only FEF50 was significantly 

different between the 2  groups, asthmatics and non-asthmatics, after controlling for these 

symptom variables. An interquartile range decrease  (103m/l) in FEF50 was associated 

with an odds ratio of  1.97 (CI=1.18-3.25) for asthma.  
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DISCUSSION  

 

We have produced a model of lung function development in asthmatic and non-asthmatic  

children based on seasonal changes in height and weight, and time within season (as proxy 

for within season growth). Our  model (for the whole group) takes into account the within-

child  LF variability, based on his   repeated LF measurements. This is in contrast to other 

models that refer to one summary measure for a child (e.g. his LF mean value)  while 

estimating the  prediction curve for the whole group. Thus, a lot of important and available 

information is not included in the model.  

Controlling for the time variant variables, we found a gender difference in lung function 

parameters in our young subjects (3rd grade , aged 9 years), with boys having larger values 

for their height and weight than girls. In healthy subjects this difference disappeared by 

grade 6 (age=12) since girls lung function is usually grows more rapidly than boys lung 

function at this age. This is in line with other studies regarding preadolescent and 

adolescent school children,4, 14, 15   

In the asthmatic 6th grade children, some of the gender difference persisted. This may 

reflect a slight retardation  of the beginning of a growth spurt in asthmatic girls. Both 

initial-height and -weight were found in our models to be significant predictors of higher 

lung function. Our models included an obesity indicator  as well as an indicator for being 

very  tall. Usually weight is considered to be a much less important predictor than 

height.4,5,15  However its impact on LF is not always linear and thus can be reduced in 

models that only include linear weight term as obesity may reduce lung function.   

Our models found a significant positive effect of weight along with a negative effect of the 

obesity dummy variable. Schoenberg et al,16  already in 1978, showed that “FVC in 

adolescents initially increases with increasing weight, “muscullarity”  effect and then 

decreases “obesity effect” “.  

Nonlinear terms for height (e.g. height2, height3) were non-significant as predictors of any 

of the lung function parameters, in our data. To confirm these findings we fitted 

generalized additive models for the data using the GAM function in SPLUS. GAM models 

allow us to fit non-parametric smooth function of predictor variables, such as height, and 

test the significance of the improvement in model fit compared to a linear height term. We 
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found that the deviation from linearity was not significant. These results contrast our model 

with that of Dockery and coworkers,4  who assumed FEV1 was proportional to height 

squared.  Seasonal changes in height, in weight and within season growth were found to 

significantly effect LF. After control for gender, grade and asthma, a 1 cm growth within 

the same child increased his FVC and FEV1  by about 11 ml. (both in 3trd and 6th grade). 

A 1kg increase in weight among 6th grade children, increased FVC and FEV1 by about 13 

ml.  This is in addition to the finding that  1 cm difference among children at baseline, 

increased FVC and FEV1 by about 30 ml and  a 1kg difference among 6th grade children, 

increased FVC and FEV1 by about 13 ml. The cross-sectional and longitudinal effects of 

weight are identical. The longitudinal effect of 1 cm increase in height is less than the 

cross-sectional effect, suggesting the cross-sectional results are capturing effects that are 

not strictly sized.  These findings regarding difference across children are in line with  the 

Israeli-specific prediction equations built by Hellmann and Goren  based on a cross-

sectional study.17 We also found that being obese reduces FVC and FEV1 significantly. 

Time trend was considered to be another lung function predictor. Recent studies using peak 

flow diaries have shown that a continuous time trend variable is important in models of 

peak flow in children,6, 10  and has been taken as representing the growth of the child’s 

lungs within the period of the study. However, we have found that this time trend was only 

significant in fall and not in spring and winter. Partly, this reflects our use of seasonal 

changes in height and weight as predictors. It is possible that growth of child lung function 

is not uniform, with greater growth in fall. We found a 15 ml increase on average in FVC 

and FEV1 per 10 days growth in fall.  

In all, our prediction model for lung function included gender, grade, being asthmatic, 

initial height and -weight, being heavy or very tall ,seasonal change in height and weight, 

and within season time trend. A logarithmic  transformation of  LF values was not found to 

improve the prediction model as was found by others.4, 6, 14 Our statistical approach used a 

mixed effects model, which is a regression model, that takes into account dependence  

between repeated measurements within the same child (variability within a child). 

Common regression models assume independence between repetitions of the same subject, 

which is not usually the case in repeated measures. The use of the mixed effects model  is 

relatively new in the analysis of lung function data. Pope et al.,10  present autoregressive 
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covariance structure among the methods for analysing lung health data.   We have used 

such a structure AR(1) ,  rather than a fixed within subject covariance structure (compound 

symmetry), assumed by Gerard et al.18  to evaluate the dependence between the repetitions. 

We have found that the correlation between consecutive measurements of lung function 3-5 

days apart was estimated to be .75, .72, .83 for FVC, FEV1, FEF50 respectively. However 

this correlation declines, as the distance in days between the repeated measurements 

becomes larger. In our data, the correlation between the first measurement and the 10th , 

declines to zero meaning that within three months, the deviation in a child’s lung function 

from that predicted by our longitudinal model was no longer related to past deviations. The 

variability of a child’s LF outcomes over the study-time was quite high. On average , the 

within child standard deviation during a year, was estimated to be about 250 ml for FVC 

and FEV1 and 650 ml/s for FEF50.   

Coefficient of variation (CV) was used by others as a measure of reproducibility19. This 

measure was based on very few repetitions and as mentioned by Hoek et al., the number of 

repetitions and their interval have a significant effect on this measure.20  In addition the CV 

did not account for the covariates. In contrast, our variability measure accounted for the 

covariates: gender, baseline height and weight, seasonal changes of height and weight, and 

time trend and was based on  about 25 repetitions per child during a year.  Since in our 

study the variability was found to be quite high, we have tried to investigate the 

relationship between the day to day variability of  LF (i.e.  variability within a child) and 

the effects of residential-area, being asthmatic, having respiratory symptoms, ETS, parents’ 

asthma and atopy.  

Our statistical approach was a more refined one than that was used by Timonen et al.21  It 

has the advantage that the variability of the observed LF outcomes were referred to the 

predicted values of each child (accounting for his height and weight change, time trend, 

gender, grade and primary height and weight). However we did not find any specific effect 

that may be correlated with the variability of FVC and FEV1. This may be related to the 

richness of our initial model regarding the LF predictors or to the sample size.  

Of the three LF parameters: FVC, FEV1 and FEF50, only FEF50 was found to be 

significantly different between asthmatic and non-asthmatic children. This supports the 

suggestion that FEF50 can be a sensitive index of airway obstruction since it is effort 
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independent, and thus avoids the learning effect which can cause spurious variation in FVC 

and FEV1.21,22 We confirmed the well established association between asthma and 

wheezing with a cold, atopy of the child (plants, home-dust, pets) and coughing apart from 

cold. We did not find any association between asthma and environmental tobacco smoke, 

parental asthma or allergies of the subject to food.  

To conclude, for a better validity and insight of LF prediction curve of a group, the 

evaluation should be based on repeated measurements within a child; and the modeling 

procedure  should take into account the within variability of the child’s LF. Hence, both 

longitudinal effects measured by time related variables (e.g. changes in height, weight and 

time) and cross-sectional effects, measured by non-time related variables (e.g. gender, 

baseline height and weight)  can be evaluated simultaneously.  
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SUMMARY:  

 

 

Repeated measurements designs, in which the same variable of interest is measured on 

each subject on several different times, occur frequently in the assessment of exposure to 

toxic chemicals. Chapter 1- the introduction, provides an historical review of classical 

statistical analysis for repeated measurements designs from using simple summary 

measures, with a non-exhaustive use of the known exposure distribution, through 

regression analysis which ignores the potential correlation between repeated measures or a 

one way random effects model which ignores exposure determinants. The mixed effects 

model, of which the application started at the late nineties in environmental hygiene,  

enables to estimate simultaneously in one model both the variance components of exposure 

(between- and within-subject) and the unbiased regression coefficients for determinants of 

occupational exposure.  

The mixed effects model is a generalization of the standard linear model (a regression 

model), that enables the analysis of data with several sources of variation instead of just 

one. The possibilities of using mixed effects models for occupational exposure assessment 

are evaluated and explored in this thesis. The thesis deals with the effects of exposure 

determinants on mean exposure to several materials while accounting for and estimating 

the exposure variance components. It deals with “strange” negative variance components 

and with the application of mixed effects modeling for exposure response evaluation. 

In Chapter 2 the focus is on the variance structure: since exposure varies both between and 

within-workers, “general” measures of these variance components of exposure, accounting 

for air pollution, factory and workers effects in a working population were estimated. The 

cohort consisted of   Israeli   workers (Chapter 2, part I) chosen in a nested-design. The 

geometric standard deviations representing variation between workers (after adjustment for 

air pollutant and factory) and within workers were 3.1 and 3.0, respectively. These values 

may be used, as rough estimates of exposure variability to get an interval estimate of mean 

exposure, instead of a point estimate and for planning future statistical sampling. Modeling 

mean exposure by its determinants while accounting for the variance components  was 

illustrated with 3 cohorts: the above-mentioned cohort and cohorts of Dutch rubber 
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manufacturing workers and pig farmers (Chapter 2, part II and Chapter 3). Exposure 

determinants (e.g. specific work characteristics) reduced the random between-worker 

variance estimators between 59-100% (Chapter 3). Interestingly, the random within-worker 

variability was reduced only in the pig farmer data set, by 25%, when accounting for 

specific work activities that varied over time.  

If the correlation between repeated measures is not dealt with appropriately,  or more 

generally, the different variance components of exposure are not accounted for,  then  the 

effects of exposure determinants on mean exposure may be biased. Therefore, we 

compared results of linear regression and mixed models (Chapter 3). In the rubber 

manufacturing data, the coefficients of the mixed model showed similar relative 

importance as those of the regression model, but were generally smaller. The main 

difference was that fewer factors affecting exposure to inhalable particulates were 

statistically significant in the mixed, rather than in linear regression models, due to the high 

correlation found between repeated measurements (r=0.82).  

Among the benzene-workers (Chapter 4) both time related factors and a non-time related 

factor (e.g. job task) were found to affect the mean exposure significantly, accounting for 

the correlation between repeated measures. The random between workers variance was 

highly affected by the job task. Time related factors (warm month, “credit day”-an over 

loaded day, day of the week), were found to be responsible for the high random within-

worker (day-to-day) variance, which was more than two times higher than the between-

worker variance. 

Grouping strategies in occupational health and epidemiology are used to create so called 

homogeneous exposure groups. Hence, the between-worker variance is often small. 

Besides, the within-worker variance that reflects day-to-day variations in exposure often 

varies greatly. Consequently, in simulated data based on real exposure data (Chapter 4) we 

found that it is very common to obtain a zero or negative ANOVA estimate of the between-

worker variance. This is not reasonable in real life and also poses problems for estimating 

the probability that, in a group, a randomly selected worker's mean exposure exceeds the 

occupational exposure standard.  We evaluated an approach proposed earlier to use an 

upper confidence bound when the estimate is negative and found that this method has three 

main disadvantages: the estimator remains negative for some data sets, the estimator 
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performs poorly with only two repeated measures per worker (common, and even 

recommended practice), and the method can be extremely sensitive to small changes in the 

data.  Our alternative estimator which incorporates the "plugging in" of an estimator in 

which the observed mean squares replace the expected values offers a solution to these 

problems. It gave a bias-adjusted confidence bound for all data sets.  

Exposure assessment plays an important role in a valid exposure-response evaluation in 

epidemiology. In a study among Dutch bakers (Chapter 6) we used mixed modeling in two 

procedures: firstly to estimate exposure based on specific exposure determinants and  

secondly for exposure-response relationship where the estimated variance components 

were used as a scaling factor to avoid possible risk estimate attenuation. The shape of the 

relationship between sensitization and exposure, was found to be a quadratic function, 

based on mean exposures estimated by different strategies for exposure assessment (with 

respect to sector of industry, job title and tasks). The probability of sensitization increased 

with exposure and at higher exposures decreased, possibly as a result of a healthy worker 

effect. In all analyses, atopy and  industry-sector affected risk significantly. The use of a 

regression calibration method which accounts for both within worker variability and 

predicted exposures (based on exposure determinants) to improve validity and accuracy of 

the odds ratios estimators, sharpened them slightly. An application of mixed modeling on 

repeated lung function measures can be found in the appendix, aiming to explore the lung 

function change over the course of a year among asthmatic and non-asthmatic children 

living around a power plant. 

Finally, the major issues that have not been dealt explicitly within the individual chapters 

regarding benefits of using mixed models, are discussed in Chapter 7, broken down into 

major statistical and occupational hygiene aspects. The statistical aspects includes the 

ability to estimate simultaneously in one model both the variance components of exposure 

between- and within-workers (and their derivatives), and the unbiased regression 

coefficients for determinants of exposure. As well as in modeling relationships between 

exposure and health effects when exposure measure has some variability and may attenuate 

the risk estimators, regarded as “measurement error modeling” in statistics. Hygiene 

aspects include those that are relevant to grouping strategies, hazard control and over-

exposure assessment. 
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SAMENVATTING: 

 

 
Studies op basis van herhaalde metingen, waarbij de te meten variabele bij ieder individu 

herhaald is gemeten op meerdere momenten, worden veel toegepast om de blootstelling aan 

toxische stoffen te karakteriseren. Hoofdstuk 1 – de inleiding, geeft een historisch overzicht 

van de statistische analyse technieken die gebruikt zijn voor de analyse van herhaalde 

metingen. De technieken lopen uiteen van toepassing van simpele maten zoals het 

gemiddelde, waarbij informatie over de verdeling van de gegevens genegeerd wordt, 

regressie analyse waarbij de correlatie tussen de herhaalde metingen niet wordt 

verdisconteerd, tot een “one way random effects ANOVA” model voor herhaalde metingen 

waarin de determinanten van de blootstelling niet worden meegenomen. Het “mixed effect 

model” dat vanaf de late jaren negentig van de vorige eeuw wordt toegepast in de 

milieuhygiëne, maakt het mogelijk om simultaan in een model de variantie-componenten 

van de intra- en inter-individuele variatie te bepalen alsmede de regressiecoëfficiënten voor 

de determinanten van de uitkomstvariabele, de blootstelling aan het agens.  

Het ‘mixed effect’ model is een generalisatie van het klassieke lineaire (regressie) model 

dat het mogelijk maakt de invloed van meerdere variatiebronnen tegelijkertijd te 

bestuderen, in plaats van één. Dit proefschrift beschrijft een verkenning en een evaluatie 

van de mogelijkheden van toepassing van “mixed” modellen voor 

blootstellingkarakterisering. Dit proefschrift behandelt de effecten van 

blootstellingdeterminanten op de gemiddelde blootstelling aan verschillende agentia terwijl 

rekening wordt gehouden met de blootstelling variantie-componenten structuur. Het 

proefschrift behandelt ‘vreemde’ negatieve variantie componenten en de toepassing van het 

‘mixed effect’ model voor blootstelling-respons modellering.  

In hoofdstuk 2 wordt ingegaan op de modellering van de variantie structuur: omdat de 

blootstelling intra- en inter-individuele variatie vertoont, worden de variantiecomponenten 

van intra- en inter-individuele variatie geschat, rekening houdend met determinanten van 

de blootstelling zoals bedrijf, functie, taak etc. De analyse is toegepast op een cohort 

Israëlische werknemers met blootstelling aan lood, benzeen en stof (Hoofdstuk 2, deel 1), 

die in een zogenaamde “nested-design” waren opgenomen. De geometrische standaard 
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deviaties voor de inter- en intra-individuele variatie (na correctie voor agens en bedrijf) 

waren respectievelijk 3,1en 3,0. Deze waarden kunnen als globale schatting worden 

gehanteerd voor toekomstig op te zetten meetstrategieën.  

Het modelleren van de gemiddelde blootstelling, terwijl rekening wordt gehouden met de 

variantie-componenten, wordt geïllustreerd aan de hand van drie verschillende studies. Het 

eerder genoemde cohort, populaties van rubber werkers met blootstelling aan stof en 

rubberdampen, en varkenshouders met blootstelling aan endotoxine (Hoofdstuk 2, deel 2 en 

Hoofdstuk 3). Determinanten van blootstelling (zoals specifieke werkplekkenmerken) 

reduceerden de inter-individuele variatie in endotoxine blootstelling met 59-100% in de 

studie onder varkenshouders. Interessant is dat de intra-individuele variatie afnam met 25% 

als de over de tijd veranderende taken in het model werden meegenomen.  

Als geen rekening wordt gehouden met de correlatie tussen herhaalde metingen, of 

algemener, als geen rekening wordt gehouden met variantie-componenten, dan kan 

vertekening (bias) optreden in de schattingen van de effecten van determinanten op de 

blootstelling. Daarom zijn resultaten van een klassieke lineaire regressie analyse 

vergeleken met de resultaten van een “mixed” analyse (Hoofdstuk 3). Uit de analyse van de 

gegevens van de rubberindustrie bleken de coëfficiënten geschat op basis van het ‘mixed’ 

een zelfde rangorde te vertonen voor wat betreft de grootte van de coëfficiënt als 

schattingen op basis van de klassieke regressieanalyse. Echter, de coëfficiënten geschat op 

basis van het ‘mixed’ model waren kleiner dan die afkomstig van de klassieke regressie 

analyse. Het belangrijkste verschil was dat minder determinanten significant bijdroegen aan 

de verklaring van de inhaleerbaar stofconcentratie in geval van de ‘mixed’ modellen in 

vergelijking met de klassieke regressie, door de sterke correlatie (r=0,82) tussen de 

herhaalde metingen.  

Onder aan benzeen blootgestelde werknemers (Hoofdstuk 4) bleken tijdgerelateerde en 

niet-tijdgerelateerde determinanten de gemiddelde blootstelling te bepalen als rekening 

werd gehouden met de variantie-componenten. De willekeurige intra-individuele variatie in 

blootstelling bleek sterk samen te hangen met de uitgevoerde taken. Tijdgerelateerde 

variabelen (warme maand, betaaldag, een zwaar belaste dag, dag van de week) bepaalden 

ook in hoge mate de intra-individuele variatie (dag-tot-dag variatie), welke tweemaal zo 

groot was als de inter-individuele variatie.  
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Groeperen van werknemers in homogene blootstellinggroepen is een veel gehanteerde 

strategie in arbeidsepidemiologisch onderzoek. In de meeste situaties is de inter-individuele 

variatie in blootstelling in een groep relatief gering. De dag-tot-dag variatie in blootstelling 

is veelal groot. Als gevolg hiervan is het mogelijk dat ANOVA modellen een negatieve 

inter-individuele variantie opleveren. Dit is in werkelijkheid onmogelijk en levert daarom 

problemen op bij het schatten van de kans dat in een groep werknemers voor een 

willekeurig geselecteerde werknemer de blootstelling een grenswaarde overschrijdt. Dit is 

nader bestudeerd in gesimuleerde gegevens, die wel op werkelijke situaties geënt zijn en 

dus realistisch zijn.  Een methode is geëvalueerd die uitgaat van een bovengrens van het 

betrouwbaarheidsinterval wanneer de geschatte variantie negatief is. Deze methode bleek 

drie principiële nadelen te hebben: in sommige gevallen blijft de schatting van de variantie 

negatief, de schatter gedraagt zich niet optimaal bij slechts twee herhaalde metingen, en de 

methode is gevoelig voor kleine veranderingen in de beschikbare gegevens. Een 

alternatieve schatter die deze problemen oplost wordt voorgesteld en heeft als kenmerk dat 

de geobserveerde gemiddelde kleinste kwadraten  worden vervangen door de verwachte 

waarde. Deze schatter leverde een gecorrigeerd betrouwbaarheidsinterval op voor alle 

gegevensbestanden.  

Karakterisering van de blootstelling speelt een belangrijke rol bij valide blootstelling-

respons analyse in de epidemiologie. In een studie onder bakkers werden ‘mixed’ modellen 

gebruikt voor twee doeleinden; allereerst om de determinanten van de blootstelling te 

identificeren en ten tweede om blootstelling te schatten op basis van de determinanten 

waarbij de variantiecomponenten als een “kalibratie factor” werden gebruikt om 

zogenaamde onderschatting van de blootstelling respons relatie (“attenuatie”) te vermijden.  

De vorm van de blootstelling respons relatie bleek zich te gedragen als een kwadratische 

functie, uitgaande van de gemiddelde blootstelling per bakker, geschat op basis van 

verschillende determinanten (industrie, functie en taken). De kans op sensibilisatie nam toe 

met toenemende blootstelling en nam weer af bij hogere blootstelling niveaus, mogelijk als 

gevolg van het zogenaamde “healthy worker effect” of de ontwikkeling van tolerantie. In 

alle analyses bleken atopie en branche het risico sterk te beïnvloeden. Gebruik van de 

regressie kalibratie methode op basis van zowel de intra-individuele als inter-individuele 
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variatie en voorspelde blootstelling op basis van determinanten leidde tot een verbetering in 

de validiteit en nauwkeurigheid van de schattingen van de Odds Ratio’s. 

Een toepassing van ‘mixed’ modellen op herhaalde eindpunt metingen (longfunctie) kan 

worden gevonden in de Appendix. Deze studie had tot doel de longfunctieverandering over 

een jaar te exploreren bij astmatische en niet astmatische kinderen rond een 

elektriciteitcentrale.  

Uiteindelijk worden een aantal belangrijke statistische en arbeidshygiënische thema’s, die 

betrekking hebben op het gebruik van ‘mixed’ modellen, die in eerdere hoofdstukken niet 

aan bod zijn gekomen in de discussie besproken (Hoofdstuk 7). De statistische aspecten 

hebben betrekking op het simultaan kunnen schatten van de niet vertekende bijdrage van 

determinanten van blootstelling (regressiecoëfficiënten) en de intra-en interindividuele 

variatie in blootstelling. De variatie-componenten spelen ook een rol in de analyse van 

blootstelling-respons relaties, wanneer de blootstelling in enige mate varieert en als gevolg 

daarvan onderschatting van de relatie op kan treden (“attenuatie”). De arbeidshygiënische 

aspecten omvatten groepeerstrategieën en het vaststellen van blootstelling boven een 

bepaalde grenswaarde. Toekomstige ontwikkelingen in het gebruik van “mixed” modellen 

worden ook kort besproken.  
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