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The wise are like the universe

they treat the myriad things impartially

as straw dogs

Tao is like a bellows

empty yet never exhausted

used yet never used up

moving yet always yielding

Too many words

better to hold fast to the center

the taoist philosopher Lao Tsu
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Scope of this thesis

The main aim of the Breda study described in this thesis was to identify

genetic factors involved in type 2 diabetes mellitus in a defined Dutch popu-

lation.

A representative Dutch population was obtained by collecting patient ma-

terial from the town of Breda and surrounding areas. This material was used

to identify genetic factors involved in type 2 diabetes mellitus by means of a

genome-wide scan. The results obtained from the initial genome-wide scan

revealed that the Breda study cohort consisted of two different groups of type

2 diabetes mellitus patients. Re-analysis of the genome-wide scan within the

two different groups was performed in two different ways. We searched for

factors influencing body mass index, as a measure of obesity in type 2 diabetes

mellitus patients, and for factors involved in obesity “driven”  type 2 diabetes

mellitus. Furthermore, two possible candidate genes were investigated for

association between genetic variants in these genes and type 2 diabetes melli-

tus.
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Abstract
Type 2 diabetes mellitus is a common multifactorial genetic syndrome,

which is determined by several different genes and environmental factors. It

now affects 150 million people world-wide but its incidence is increasing

rapidly due to secondary factors, such as obesity, hypertension and lack of

physical activity. Many studies have been carried out to determine the genetic

factors involved in type 2 diabetes mellitus. In this review we look at the

different strategies used and discuss the genome-wide scans performed so far

in more detail. New technologies, such as microarrays, and the discovery of

SNPs will lead to a greater understanding of the pathogenesis of type 2 diabe-

tes mellitus and to better diagnostics, treatment and eventually prevention.

Introduction
Diabetes mellitus (DM) affects over 150 million people world-wide, with

a prevalence that varies markedly from population to population (Zimmet

1992). Estimates predict that almost 300 million people will suffer from DM

by 2025 (see figure 1) with the vast majority being cases of diabetes mellitus

type 2. Many risk factors have been identified which influence the prevalence

(total number of cases as a percentage of the total population) or incidence

(total number of new cases per year as a percentage of the total population).

Factors of particular importance are a family history of diabetes mellitus, age,

overweight, increased abdominal fat, hypertension, lack of physical exercise,

and ethnic background. Several biochemical markers have also been identi-

fied as risk factors, including fasting hyperinsulinemia, increased fasting pro-

insulin, and decreased HDL-cholesterol (DeFronzo and Ferrannini 1991). Both

diabetes mellitus types 1 and 2 show a familial predisposition, which is a

strong indication for the involvement of genes in people’s susceptibility for

the disease. However, the aetiology underlying types 1 and 2 is different and

different genes are likely to be involved in each type of diabetes mellitus. The

following discussion focuses on a genetic dissection of type 2 diabetes melli-

tus.

The two most common forms of diabetes mellitus, type 1 and type 2, are
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both characterised by elevated plasma glucose levels. Normal glucose homeo-

stasis depends on the balance between glucose production by the liver and

kidney, and glucose uptake by the brain, kidney, muscle and adipose tissue.

Insulin, the predominant anabolic hormone involved, increases the uptake of

glucose from the blood, enhances its conversion to glycogen and triglyceride

and also increases glucose oxidation. Plasma glucose levels are normally kept

within a small range (4 to 6 mmol/l) by multiple mechanisms. After a meal, a

small increase in plasma glucose will lead to an increased insulin secretion by

 the pancreatic β-cells (figure 2).

This is associated with a decrease in glucose production by the liver, and

enhanced glucose uptake in muscle and adipose tissue. These actions result

from a combination of short-term rapid effects and longer-term slow effects,

which involve changes in gene transcription and in the rate of translation of

enzymes involved in glycogen synthesis, the glycolytic pathway and lipid

metabolism (Heesom et al. 1997). The effect on gene expression can be either

positive or negative, depending on the physiological role of the gene product.

There are a number of glucose counter-regulatory hormones, such as glu-

cagon, cortisol, epinephrine and nor-epinephrine, which elevate plasma glu-

cose levels and therefore counteract hypoglycaemia. The balance between the

insulin action and the effects of the counter-regulatory hormones ensures nor-

mal glucose homeostasis. Criteria for diabetes have heavily relied on plasma

glucose levels after an oral glucose load (usually 75 grams glucose in water).

Two-hour values over 11.1 mmol/l (= 200 mg/dl) are still used as diagnostic

for diabetes (1979 National Diabetes Data Group). This value was originally

chosen when prospective studies indicated that subjects with a 2-hour post-

glucose load plasma glucose level of >11.1 mmol/l were at significant risk of

developing (diabetic) retinopathy.

The diagnostic criteria for diabetes have recently been modified: a fasting

glucose level of 7.0 mmol/l and higher is now sufficient for the diagnosis,

since this (fasting) level has been shown to be associated with the 2-hour post-

glucose load plasma glucose levels of >11.1 mmol/l (1997 Report of Expert

Committee). However, a random plasma glucose level of 11.1 mmol/l and
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higher is still diagnostic for diabetes mellitus.

Patients with type 1 diabetes mellitus require insulin therapy to prevent

diabetic ketoacidosis. Since this form of the disease is usually established be-

fore the age of 20, it was formerly referred to as “juvenile-onset type diabetes

mellitus”. The major cause of type 1 diabetes mellitus is the auto-immune

destruction of the pancreatic b-cell (Taylor 1997).

Figure 2. Insulin action after a
meal.
Selected actions of insulin are indicated
with + (upregulation) or – (down regu-
lation). Insulin activates transport of glu-
cose to muscle and adipose tissue, and
also promotes synthesis of glycogen and
triglycerides by the liver. Increased in-
sulin levels inhibit glucose production
by the liver, lypolysis in adipose tissue
and proteolysis in muscle. They also in-
hibit ketogenesis by the liver. Although
the brain uses glucose as its main en-
ergy source, it can also use ketone bod-
ies when glucose levels are insufficient
(e.g. during fasting).

Type 2 diabetes mellitus accounts for around 90% of all cases of diabetes

mellitus. Since type 2 diabetes mellitus usually develops after the age of 40,

the disease was also called “adult-onset type diabetes mellitus”. Unlike type 1

diabetes mellitus, type 2 is not usually caused by autoimmune destruction of

the pancreatic β-cells, but is characterised by multiple defects in both insulin

action and insulin secretion. Both insulin’s inhibitory effect on liver glucose

production and its stimulatory effect on peripheral glucose uptake are dimin-
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ished. Although many type 2 diabetes mellitus patients have a basal

hyperinsulinemia, elevations in plasma glucose have a characteristically re-

duced stimulatory effect on insulin secretion. Type 2 diabetes mellitus pa-

tients are often treated by adapting their diet or with oral hypoglycaemic

drugs, but many will eventually need exogenous insulin to overcome their

hyperglycaemia.

Most patients with type 2 diabetes mellitus are obese, which led to the

finding that obesity is associated with diminished insulin action both in the

liver and in the periphery. The association between type 2 diabetes mellitus

and obesity is probably due to multiple mechanisms, including elevations in

plasma free fatty acids (FFA) and tumour necrosis factor-alpha (TNFα) re-

leased from “full” adipocytes (Hotamisligil et al. 1995; Uysal et al. 1997).

Furthermore, lack of physical exercise is also associated with diabetes melli-

tus, which led to the finding that exercise enhances the insulin action, pre-

sumably via upregulation of glucose-transporters in muscle (DeFronzo 1997).

Apart from the short-term complications such as thirst, malaise, tiredness,

and ketoacidosis, diabetes mellitus often leads to a number of long-term com-

plications, generally subdivided into micro- and macrovascular complications.

It is these long-term chronic complications that have the greatest impact on

the health and quality of life of patients.

The microvascular complications include retinopathy, neuropathy and neph-

ropathy, with type 2 diabetes mellitus being one of the main causes of blind-

ness, lower limb amputations, and renal failure in adults. The macrovascular

complications mean that type 2 diabetes mellitus is a major risk factor for

cardiovascular disease and stroke. These chronic complications have a high

socio-economic cost and put a heavy burden on public health services (WHO

 1999).

Genetics of type 2 diabetes mellitus
Unlike single-gene disorders, where expression of the disease is influenced

by a mutant allele at one gene locus, in common diseases like type 2 diabetes

mellitus the disease expression depends on many gene loci which all have
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small to moderate effects. Type 2 diabetes mellitus is a so-called multifacto-

rial disease in which the genes (loci) not only interact with each other but also

with environmental factors. It is probable that both insulin activity and secre-

tion are subject to genetic variance at several loci. According to this multifac-

torial model, predisposition to the disease could be determined by many dif-

ferent combinations of genetic variants (genotypes) and environmental fac-

tors; the genetically predisposed individuals (Valsania and Micossi 1994) will

not necessarily develop the overt syndrome unless they are also exposed to

particular environmental factors. It is well known that exogenous factors such

as age, physical activity, diet, and obesity, play a major role in the disease

aetiology of type 2 diabetes mellitus (Gerich 1998).

The following demographic observations have revealed the effect of changes

in environmental factors and the prevalence of type 2 diabetes mellitus has

been estimated for various populations. The prevalence spectrum ranges from

very low levels of about 1% in some populations, such as tribes of non-

Austronesian ancestry in Papua New Guinea or in the Chinese population

living on mainland China, to extremely high levels of 50% in Pima Indians

(Northern America). The Pima Indians have changed from a traditional agri-

cultural lifestyle to a sedentary one, with a diet similar to the general US

population. However, the large variation in the prevalence of type 2 diabetes

mellitus in different populations is probably a result of different environmen-

tal as well as genetic determinants. It is particularly interesting to see that the

prevalence increases as ethnic groups migrate from lesser-developed areas of

the world to more urbanised or westernised regions. This is illustrated by the

higher prevalence of type 2 diabetes mellitus seen among the Japanese who

migrated to Hawaii (Fujimoto et al. 1991; Fujimoto et al. 1987) or by the

high prevalence (13.1%) among the Chinese living on the island of Mauritius

compared with the prevalence among the Chinese living on mainland China

(1.6%) (Fujimoto 2000). In general, there is a trend of increasing prevalence

of diabetes mellitus with migration from rural to urban societies (King et al.

1984) but also with a change of environment, though not necessarily associ-

ated with a transition from rural to urban. Is simply a change of geographical
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location sufficient to trigger an increase in type 2 diabetes mellitus?

Twin studies have provided convincing evidence that genetic determinants

contribute to the development of type 2 diabetes mellitus (Valsania and Micossi

1994). Several studies have shown higher concordance rates in monozygotic

(MZ) twins than in dizygotic (DZ) twins (Medici et al. 1999) for example, in

a population-based cohort of twins in Finland, the concordance rate in MZ

twins was 34% whereas in DZ twins it was 16% (Kaprio et al. 1992). In a

Japanese study these figures were 83% for MZ twins and 40% for DZ twins

(1988 Japanese Diabetes Society). Such figures show the difference of envi-

ronmental influences within populations (i.e. the difference between MZ and

DZ twins). The large variation in concordance rates between populations may

be due to bias or a different selection from the populations studied, but it may

also indicate differences in genetic susceptibility between these populations

(Hamman 1992; MacGregor et al. 2000).

A concordance rate above 80% for MZ twins implies a high degree of

heritability for type 2 diabetes mellitus as well as the involvement of environ-

mental factors. In addition, there is a higher relative risk for a relative of a

patient with type 2 diabetes mellitus compared with the population preva-

lence, the so-called λ
r
, (relative risk of a relative). For type 1 diabetes mellitus

the λ
r 
= 20 whereas the λ

r
 for type 2 diabetes mellitus = 3.5. This relative risk

also increases with the number of affected relatives (Kahn et al. 1996; Rich

1990). These figures imply that the genetic models involved in the two types

of diabetes must be very different. The genetic model for type 1 diabetes

mellitus appears to contain at least one major locus providing significant sus-

ceptibility but requiring many other contributing factors with equal and ad-

ditive effects. In contrast, the model for type 2 diabetes mellitus seems more

complex, involving more loci and additional environmental factors (Rich 1990).

The search for susceptibility genes in type 2 diabetes mellitus
In our search for a better understanding of the pathogenesis of type 2

diabetes mellitus, a genetic approach will help focus on the underlying causes

of the disease, and may provide new information for diagnostic treatment and
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prevention. This genetic information may also form the basis for new drug

therapies, such as individually specific or targeted pharmacotherapy (pharma-

cogenetics). Two common approaches for distinguishing genetic factors are:

(1) the candidate gene approach, and (2) the genome-wide scan using anony-

mous polymorphic markers.

(1) The candidate gene approach
Defects in genes encoding proteins that play a role in pathways involved

in insulin control and glucose homeostasis are excellent candidates for type 2

diabetes mellitus. A powerful approach to finding such defects is the identifi-

cation of a significant association between diabetes mellitus and a functional

polymorphism in a candidate gene. Generally, this is achieved by comparing

a random sample of unrelated type 2 diabetes mellitus patients with a matched

control group. This approach may reveal a polymorphic allele that is increased

in frequency in the patient group and such a significant association might

point towards a disease-susceptibility locus.

To date, over 250 candidate genes have been studied for their role in type

2 diabetes mellitus (DeFronzo 1997). The majority of these studies have failed

to uncover any association. A minor role for some of the gene products in-

volved in insulin secretion or insulin action, such as IRS-1 (Almind et al.

1993; Almind et al. 1996; Porzio et al. 1999) the glucagon receptor (Hager et

al. 1995; Hansen et al. 1996; Lok et al. 1994) the sulfonylurea receptor (SUR)

(t Hart et al. 1999) the peroxisome proliferator-activated receptor-γ (PPARγ)

(Altshuler et al. 2000; Hegele et al. 2000) and the MAPKBIP1 (Waeber et al.

2000) has been observed, but the role for these candidate genes seems to be

limited to a small percentage of type 2 diabetes mellitus patients or to spe-

cific populations (So et al. 2000; Velho and Froguel 1997).

There are two plausible explanations: either the genes concerned carry ge-

netic variations which are peculiar to these specific populations and only give

rise to type 2 diabetes mellitus in that specific population, or the genetic

variances are spread through many populations and only manifest together

with type 2 diabetes mellitus because of general genetic background differ-
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ences between the populations concerned. Although the case-control study

design is an easy to implement approach, it also has a history of false-positive

results. Such false-positive associations often occur because of confounding

due to population stratification. This is because population subdivision (or

any other form of non-random mating) permits marker allele frequencies to

vary among segments of the population, as the result of genetic drift or founder

effects (Slatkin 1991). In response to this problem it was decided to use the

transmission disequilibrium test (TDT), which looks at the genotypes of the

parents of affected individuals. Although this approach takes advantage of

population-level associations, the TDT is not susceptible to false-positive as-

sociations that result from stratification.

Unfortunately this approach is not suitable for late-onset diseases like type

2 diabetes mellitus because the proband’s parents may no longer be alive to

give DNA samples. It is intrinsically likely that future genetic research into

complex disorders, such as type 2 diabetes mellitus, will also involve genome-

wide analysis of many gene families to establish the contribution made by the

genetic background (Pritchard and Rosenberg 1999).

(2) Genome-wide scan
One of the major drawbacks of the candidate gene approach is that it will

not lead to the identification of entirely new genes or pathways involved in

type 2 diabetes mellitus. In order to identify new genes for type 2 diabetes

mellitus, genome-wide scans using polymorphic markers need to be performed.

However, the classical approach of gene localisation by linkage analysis in

multi-generational families is not the most suitable strategy for type 2 diabe-

tes mellitus, for several reasons. Firstly, there is the lack of a Mendelian inher-

itance pattern; secondly, the mean age of diagnosis is around 60 years. As a

consequence, one or both of the patient’s parents are often no longer available

for study. Thirdly, only affected individuals can be used for linkage studies

because of the reduced and age-dependent penetrance. Hence, it is hard to

obtain families with enough type 2 diabetes mellitus patients. In addition,

genetic heterogeneity can become a problem as mutations in any one of sev-
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eral genes may result in identical phenotypes, or a chromosomal region may

co-segregate with the disease in some families but not in others. A non-para-

metric analysis method can overcome these problems, since this would re-

quire no knowledge of the mode of inheritance of the disease, the disease

allele (gene) frequencies, or the penetrance (Lander and Schork 1994).

A commonly used non-parametric genetic mapping approach is the af-

fected sib pair (ASP) approach using randomly spaced polymorphic markers

(usually every 10 cM). The ASP approach is discussed in detail in Box 1.

Using ASPs in genome-wide scans generally requires large numbers of ASPs

to obtain sufficient power for detecting linkage for a given value of λ
s 
(relative

risk for a sibling) (Risch 1990; Risch and Merikangas 1996). This strategy is

also very expensive and it used to be extremely time-consuming. However,

technological improvements, such as capillary sequencing equipment and faster

computers, have decreased the time required enormously.

The most efficient and cost-beneficial way of performing a genome-wide scan

using ASP is “staged searching”. The initial genome scan (stage 1) is carried

out with a sparse marker set (average spacing 20 cM). Regions of  interest

should exceed the threshold LOD score of 1.0. It has been shown that the

power exceeds 90% in a sample size of 200 ASPs once the λ
r
 (relative risk for

a relative) is greater than 1.7, given a LOD of 1.0 (Risch 1990; Weeks and

Lathrop 1995). Loci with delicate effects are not missed when a lower thresh-

old is used. However, this strategy also increases the false-positive rate. Subse-

quently, the regions of interest are investigated (stage 2) with a denser marker

set (average spacing 5 cM). The threshold for significant linkage would be a

LOD score of 3.3 (Holmans and Craddock 1997; Kruglyak and Daly 1998;

Weeks and Lathrop 1995). A three-stage strategy, with increasing thresholds

at each stage, is the most powerful approach to adopt in a genome scan (Brown

et al. 1994; Weeks and Lathrop 1995). An alternative staged strategy, known

as sample splitting, is to perform the initial screening on part of the sample

and to follow up on interesting loci in the whole sample (Holmans 1998;

Holmans and Craddock 1997).

An efficient study design is an important aspect of any genome-wide scan.
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Different types of cohorts, consisting of nuclear families, multi-generational

families or affected sib pairs, can be used. To date, various research groups

have completed or nearly completed genome scans for type 2 diabetes melli-

tus using ASPs (Ehm et al. 2000; Ghosh et al. 1999; Ghosh et al. 2000; Hanis

et al. 1996; Hegele et al. 1999; Ji et al. 1997; Watanabe et al. 2000; Zouali et

al. 1997) or occasionally, multi-generational families (Duggirala et al. 1999;

Elbein et al. 1999; Hanson et al. 1998; Ji et al. 1997; Mahtani et al. 1996).

Both types of genome scans (using ASPs or multi-generational families) yield

varying levels of evidence (table 1).

In 1996, a genome-wide significance was found on chromosome 2q37 in a

combined data set of 330 Mexican-American ASPs from Starr County, Texas.

This locus was designated NIDDM1 (Hanis et al. 1996). In a sample from

Botnia, Western Finland, a small number of selected pedigrees with the low-

est quartile for mean 30-min insulin levels after oral glucose tolerance tests

showed significant evidence for linkage to type 2 diabetes mellitus on chro-

mosome 12q, and this locus was designated NIDDM2 (Mahtani et al. 1996).

More recently, several studies have shown significant evidence for linkage to

chromosome 20 (Ghosh et al. 1999; Ghosh et al. 2000; Ji et al. 1997; Zouali et

al. 1997) and a recent genome scan in Pima Indians revealed strong evidence

that chromosome 11q contains a susceptibility locus influencing both type 2

diabetes mellitus and obesity. Chromosomes 1q and 7q showed some evi-

dence of additional diabetes mellitus susceptibility loci (Hanson et al. 1998).

In 42 multi-generational families with Northern European ancestry from Utah,

significant linkage was found under a model of recessive inheritance on chro-

mosome 1q21-23 (Elbein et al. 1999) and in 49 ASPs of Canadian Oji-Cree

Indian origin, both suggestive linkage and suggestive association was found

with chromosomes 6, 8, 16, and 22 (Hegele et al. 1999). In Mexican Ameri-

cans from the San Antonio Family Diabetes Mellitus Study, significant evi-

dence was found that a susceptibility locus on chromosome 10q influences

age at onset of diabetes mellitus and this locus also seems to be linked to type

2 diabetes mellitus itself (Duggirala et al. 1999).
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Box 1. Affected sib pair analysis (ASP)
Currently, the ASP approach is the most commonly used non-parametric or model-free map-

ping approach (Kruglyak and Lander 1995; Lander and Schork 1994; Weeks and Lathrop

1995) and it only requires pairs of affected

siblings (Holmans and Craddock 1997).

The ASP approach is well suited to the

analysis of type 2 diabetes mellitus be-

cause only one or two generations in a

family with this disease are normally

available. The basis of the ASP analysis

is that individuals concordant for a given

genetic trait should show greater than

expected concordance for marker alleles

that are closely linked to the disease. The

most frequently used measure of concor-

dance of two siblings at a locus is the

number of alleles they share identical-by-

descent (IBD). If the marker is not linked

to a disease susceptibility locus, then the

probabilities of a sib pair sharing 0, 1,

and 2 alleles IBD are

0.25, 0.50, and 0.25,

respectively (Holmans

1998; Lander and

Schork 1994; McCarthy

et al. 1998; Velho and

Froguel 1997; Weeks

and Lathrop 1995). The

mean sharing is 0.5. If

the marker is linked to

a disease locus, the

probability of an af-

fected sib pair sharing

IBD alleles should be

higher (i.e. >0.5) (fig-

ures 3 and 4).

The most distinct ap-

proach for determining the number of alleles IBD is to count the number of pairs sharing 0,

1, and 2 alleles IBD and to compare these to the expected frequencies under the hypothesis of

Average sharing,
marker locus far from
diabetes gene

Excess of allele
sharing (>>50%):
marker probably linked
to diabetes gene

50% sharing

Figure 4. Overview of sharing

Marker alleles 1,2, 3, 4

1, 2 3, 4

1, 3 1, 3   2 alleles IBD
1, 4   1 allele IBD
2, 3   1 allele IBD
2, 4   0 alleles IBD

Figure 3. Family with two affected sibs
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no linkage (H0) using a chi-square test. Another possibility is to compare the average num-

ber of shared IBD alleles by the affected sibs (the mean test), or to count the number of pairs

sharing two IBD alleles and compare this to the expected numbers. An excess of IBD allele

sharing in each case is taken as evidence of linkage between the tested marker and the disease

susceptibility locus (Haines 1998; Holmans 1998; Ott and Lucek 1998).

Since type 2 diabetes mellitus is a late-onset disease, the patient’s parents are usually unavail-

able so that the IBD status of affected sib pairs cannot be determined. One way of circum-

venting the problem due to untyped parents is to consider the number of alleles shared’identical-

by-state (IBS). Two individuals are said to share an IBS allele if they both have a copy of an

identical allele, regardless of from whom it was inherited. One problem with this kind of

analysis is the reduced power, its reliance on the allele frequency, and the higher percentage of

false-positive findings. However, the alleles can be reconstructed using additional sibs ap-

proaching IBD in more than 80% of the cases (Bishop and Williamson 1990; Haines 1998)

(Sandkuijl, unpublished data).

Most recently, a genome-wide scan in four American populations has re-

vealed suggestive linkage to type 2 diabetes mellitus or impaired glucose

homeostasis on chromosome s 5, 12 and X in whites, on chromosome 3 in

Mexican Americans, and chromosome 10 in Afro-Americans (Ehm et al. 2000).

In an eastern and south-eastern Chinese Han population, two loci in a region

on chromosome 9 showed suggestive evidence for linkage to type 2 diabetes

(Luo et al. 2001).

All these different findings need to be replicated in additional type 2

diabetes mellitus cohorts to strengthen the evidence that true type 2 diabetes

mellitus susceptibility genes exist at these loci (Frayling et al. 2000).

After the genome-wide scans, then what?
What can be said about the results from the various genome-wide scans?

The results suggest that there may be genes on chromosome 1q contributing

to the risk for type 2 diabetes mellitus in Pima Indians, this may also be true

for chromosome 2 in Mexican Americans and for chromosomes 12 and 20 in

Caucasians (see table 1). The genomic regions described so far, which extend

over 20 cM in many cases, now require fine mapping to pinpoint the region
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Table 1. Linkage results of different genome wide scans in
type 2 diabetes mellitus.

Ethnic group Trait
Pima Indian Diabetes mellitus before age 25 years

Age-adjusted diabetes mellitus
Age-adjusted diabetes mellitus
Age-adjusted diabetes mellitus
Diabetes mellitus

Mexican Americans Diabetes mellitus
Diabetes mellitus

Diabetes mellitus age at onset
Diabetes mellitus age at onset
Diabetes mellitus age at onset
Diabetes mellitus
Diabetes mellitus
Diabetes mellitus
Diabetes mellitus

Caucasian (Finn) Diabetes mellitus (stratified on
30 min. insulin)

Caucasian (North
American)

Diabetes mellitus

Caucasian (North
American)

Diabetes mellitus

Caucasian (French) Diabetes mellitus

Caucasian (Finn) Diabetes mellitus

Caucasian (Utah) Diabetes mellitus (recessive model)

Oji-Cree (Canadian) Diabetes mellitus

Han (China) Diabetes mellitus
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Sample (cohort) Locus marker LOD
264 nuclear families
(Hanson et al. 1998)

D1S198
D6S1009-D6S1003
D9S299-D9S2026
D11S4464-D11S912
D7S1799

4.1
1.39
1.22
1.66
1.8

330 ASPs(Hanis et al. 1996)
- 53 nuclear families (Phase 1)
- 64 nuclear families (Phase 2)
(Ehm et al. 2000)
27 extended families
(Duggirala et al. 1999)

D2S125
D3S2432
D3S2432
D3S1566-GATA128C02
D9S288-D9S925
D10S587-D10S1223
D3S1566-GATA128C02
D4S1615-D4S175
D9S288-D9S925
D10S587-D10S1223

4.03
3.91
<0.1
2.51
2.06
3.75
2.67
1.99
2.38
2.88

26 families D12S1349 3.3

77 nuclear families (Phase 1)
(Ehm et al. 2000)

D5S1404
D12S853
GATA172D05 (X chr.)

2.8
2.81
2.99

14 extended families
(Ji et al. 1997).

D20S197 3.3

55 ASPs (Zouali et al. 1997) ADA (chr. 20)
PCK1 (chr. 20)

2.84
2.04

716 ASPs (Ghosh et al. 1999;
Ghosh et al. 2000)

D11S937-D11S901
D20S849-D20S905
D20S909-D20S107
D20S886-D20S197

1.75
1.99
2.04
2.15

42 extended families (Elbein et
al. 1999)

CRP-APOA2 (chr. 1) 4.3

49 ASPs (Hegele et al. 1999) D6S1056
D8S264
D16S2616
D22S683

4.24
2.91
4.20
2.48

168 ASPs (Luo et al. 2001) D9S171
D9S161
D9S175

3.29
2.22
2.94
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of interest and this can be done using linkage disequilibrium (LD) analysis.

LD occurs when a marker allele lies so close to the disease susceptibility

allele that these alleles are inherited together over many generations. Thus,

the same allele will be detected in affected individuals in multiple, but appar-

ently unrelated, families. The genetic mapping has to be followed by testing

all the candidate genes from the region for their involvement in the disease

and this should result in the positional cloning of a gene associated with type

2 diabetes mellitus. However, this last step will become obsolete because the

Human Genome Project will now provide us with a detailed map of all the

genes. It has been proven that it is possible to use this approach of genome-

wide scan to position clone genes for complex diseases such as type 2 diabetes

mellitus.

Recently a putative diabetes mellitus-susceptibility gene, calpain-10

(CAPN10), was found to be associated with type 2 diabetes mellitus in Mexi-

can Americans, in the NIDDM1 region (Hanis et al. 1996). This finding sug-

gests a novel pathway that may contribute to the development of type 2 dia-

betes mellitus (Horikawa et al. 2000). Using of single nucleotide polymor-

phisms (SNPs) analysis, genetic variation in CAPN10, a member of the calpain-

like cysteine protease family, was found and it appears to affect risk of type 2

diabetes mellitus. However, these findings need to be replicated in other popu-

lations and such studies may identify additional variation (SNP) associated

with diabetes mellitus within CAPN10 (Horikawa et al. 2000).

If we consider there may be approximately 30,000 genes in the human

genome (McPherson et al. 2001; Venter et al. 2001) that these genes may have

multiple forms and also interact with each other and environmental factors,

this illustrates the magnitude of the problem in searching for type 2 diabetes

mellitus susceptibility genes (Permutt and Hattersley 2000). It is clear that

other strategies need to be considered as well as the ones described above.

It is also important to realise that type 2 diabetes mellitus often occurs

together with obesity and hypertension, but that each may have its own ge-

netic origin. One approach may therefore be to compare genome-wide scans

of patients having two or all three diseases with genome-wide scans of pa-
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tients having “only” one of these diseases, preferably in the same ethnic

population”(Parker et al. 2001; Perusse et al. 2001).

Alternative approaches could be used to find disease susceptibility genes

and to elucidate the molecular basis of type 2 diabetes mellitus. By using

families exhibiting a rare early onset form of the disease, it may be possible to

identify genes involved in the disease aetiology. Other alternatives are to study

genetic isolates or to use genetically engineered animals and inbred animals.

All these alternatives can be valuable tools for understanding the molecular

basis of type 2 diabetes mellitus (see Box 2).

The discovery of a novel gene and pathway in type 2 diabetes mellitus

characterises the importance of conducting genome-wide scans in complex

diseases like type 2 diabetes mellitus. However, it may be a long time before

all the susceptibility genes are found. It may take even more time before their

roles in different pathways have been elucidated and the mechanisms involved

in their interaction with other factors in the disease aetiology clarified.

The discovery of thousands of SNPs and the construction of a reliable SNP

linkage map will certainly be a major factor in the discovery of a new gene.

New and improved technologies, such as microarrays that can type thousands

of SNPs in a single assay, will also be of great importance in finding genetic

variation in these new genes. Combining these genetic variations with new

developments in the fields of bioinformatics, genomics and proteomics will

lead to a greater understanding of the pathogenesis of type 2 diabetes melli-

tus, and may provide new information for diagnostics, treatment and, eventu-

ally, prevention of the disease. This genetic information may also form the

basis for the development of new drug therapies such as individually specific

or targeted pharmacotherapy.
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BOX 2. Alternative approaches for finding genes
(1) The use of rare families exhibiting phenotypes very similar to type 2 diabetes mellitus

It may be possible to find genes involved in the disease aetiology using rare families exhibit-

ing an early onset form of the disease. In Alzheimer’s disease (AD), for example, the use of a

familial early onset form revealed at least three AD genes’(Levy-Lahad et al. 1998; Roses

1996; Schellenberg 1995). These genes are now being investigated for new ideas on the mecha-

nisms underlying the pathogenesis of AD. A relatively rare form of diabetes mellitus, matu-

rity-onset diabetes mellitus of the young (MODY) is characterised by monogenic, autosomal

dominant transmission and early age of onset. Although MODY account for only 2-5% of the

type 2 diabetes cases, by using large families expressing this form of diabetes, it has been

possible to identify a number of different genes involved in MODY (see table 2). Another rare

and early onset form of diabetes is the maternally inherited diabetes and deafness (MIDD), in

which mutations are found in the mitochondrion. The implication of mitochondrial muta-

tions in diabetes mellitus is supported by the fact that patients with type 2 diabetes mellitus

are more likely to have affected mothers than affected fathers (Alcolado and Alcolado 1991).

Although, the MODY and MIDD genes found so far provide a good insight into the develop-

ment of diabetes mellitus, no direct linkage has been found between these genes and the more

common type 2 diabetes mellitus.

Table 2. Genes involved in MODY.
Location on
genome

Gene References

MODY1 20q12-q13.1 hepatocyte nuclear factor-
4α(HNF-4-alpha)

(Yamagata et al.
1996)

MODY2 7p15-p13 glucokinase (GCK) (Froguel et al. 1992;
Froguel and Velho
1993; Matschinsky
1990; Velho et al.
1992; Vionnet et al.
1992)

MODY3 12q24.2 hepatocyte nuclear factor-1α
(TCF1)

(Yamagata et al.
1996)

MODY4 13q21.1 insulin promoter factor-1
(IPF1)

(Leonard et al. 1993;
Miller et al. 1994;
Ohlsson et al. 1993;
Stoffel et al. 1995;
Stoffers et al. 1997;
Stoffers et al. 1998)

MODY5 17cent.-q21.3 hepatocyte nuclear factor-1-
β (TCF2)

(Abbott et al. 1990;
Horikawa et al. 1997)

MODY6 2q Neurogenic differentiation 1
(NEUROD1)

(Malecki et al. 1999)
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(2) The use of genetically isolated populations

Another alternative for discovering genes involved in type 2 diabetes mellitus is the use of

genetic isolates. The number of disease mutations in an isolated population is assumed to be

reduced when the present population is derived from a relatively small number of founders

and population expansion has occurred during a period of isolation and rapid population

growth and not by immigration. The population has to be large enough to provide a suffi-

cient number of affected individuals for study (Sheffield et al. 1998). This approach has been

successful for some very rare monogenic diseases. A gene for benign recurrent intrahepatic

cholestasis (BRIC) and progressive familial intrahepatic cholestasis type 1 (PFIC1) was mapped

and cloned by using two genetic isolates: the Amish in the USA and the population of a fairly

isolated fishing village in the Netherlands (Bull et al. 1998; De Koning et al. 1995; Houwen

et al. 1994). Studying a genetic isolate may provide opportunities for special study designs to

identify not only rare Mendelian disease genes, but also major loci contributing to complex

diseases, as seen in a genome-wide scan of Ashkenazi Jews (Permutt et al. 2001). In this study

it was suggested that susceptibility for type 2 diabetes mellitus may be encoded by loci on

chromosomes 4q and 20q. The reduced genetic complexity of these genetic isolates means

there is a greater contribution from the individual genes. Sub-populations and patient mate-

rials from these genetic isolates can be used to perform association studies or linkage analysis

(Peltonen et al. 1995).

(3) The use of an animal model exhibiting the phenotype

Genetically engineered animals and inbred animals can be valuable tools for understanding

the molecular basis of type 2 diabetes mellitus (Kim et al. 1998). Today there are several mice

and rat models available for studying both type 2 diabetes mellitus and obesity. By crossing

the monogenic mouse (the ob/ob and the db/db mice) models with other strains, it might be

possible to reveal modifier genes (Ktorza et al. 1997). The use of polygenic models is another

way towards understanding the molecular basis of type 2 diabetes mellitus, and the Goto-

Kakisaki (GK) rat model is one of the best animal models for studying genetic susceptibility

to type 2 diabetes mellitus. This rat manifests the main features of the metabolic, hormonal

and vascular disorders described in type 2 diabetes mellitus (Hussain 1997). It also exhibits a

basal hyperinsulinemia and impaired insulin response to glucose. One disadvantage of this

model is the lack of obesity seen in these animals. Unlike the GK-rats, the Otsuka Long-

Evans Tokushima fatty (OLETF) rat is an animal model for type 2 diabetes mellitus,

characterised by abdominal obesity, insulin resistance, hypertension and dyslipidemia. The

OLETF rats develop the disorder with age, individuals of the same progeny are not all dia-

betic (Ktorza et al. 1997) and the rats also develop mild obesity (Kanemoto et al. 1998; Nara

et al. 1997; Wei et al. 1999). There has not so far been a good animal model available for type

2 diabetes mellitus, the disease is much more complex and heterogeneous than can be found

in inbred animal models. Complementary approaches in different animal strains may lead to

the identification of candidate genes for type 2 diabetes mellitus and help to direct the search

for candidate genes in humans.
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Introduction
The prevalence of type 2 diabetes mellitus (T2D) varies markedly world-

wide. In the Netherlands the prevalence is estimated to be at least 2.5% of the

total population, and ranges from 2.6% (in the age group 55-59 years) up to

18% (in the age group 80-84 years) (The Hoorn Study (Heine et al. 1996;

Nijpels 1998)).

Based on different epidemiological studies, the relative risk (i.e. ratio of

the incidence of T2D among relatives of a proband with T2D to the incidence

of T2D in the general population) for MZ twins of T2D probands (λ
MZ

 is

predicted to be 10, whereas the relative risk for first-degree and second-de-

gree relatives (λ
1
 and λ

2
) is predicted to be 3.5 and 1.5, respectively (Elbein

1997; Kaprio et al. 1992; Medici et al. 1999).

This clearly implies the involvement of a genetic component in T2D.

Nevertheless, the expression of the disease does not follow Mendelian segre-

gation. We know that the expression of T2D largely depends on environmen-

tal factors, such as a family history of diabetes, increased age, hypertension,

lack of physical exercise, and obesity (DeFronzo and Ferrannini 1991). Ac-

cording to this multifactorial model, genetically predisposed subjects will

not necessarily develop overt disease unless they are also exposed to one or

more of these particular environmental factors (Valsania and Micossi 1994).

Aim of the study
The aim of the study was to perform a genome-wide scan in at least 250

Dutch Caucasian affected sibpairs with T2D to identify susceptibility loci. To

date, no genome-wide scan has been performed in an outbred population of

Dutch T2D patients and no sufficient Dutch cohort of affected sibpairs was

available to perform such a genome-wide scan. To collect T2D sibpairs, we set

up a collaboration with the Diabetes Service Breda and 80 general practitio-

ners from the region around Breda (see figure 1). The Diabetes Service Breda

is the only regional clinical and laboratory service for the western part of the

province of North Brabant in the Netherlands.
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Figure 1. A) Breda and the surrounding area. B) Black boxes indicates the

Diabetes Service Breda and its outpatient clinics.

Since 1990 the Diabetes Service

Breda has collected clinical and bio-

chemical data on more than 13,000

patients with T2D. All patients are di-

agnosed according to WHO criteria

(plasma glucose levels >11.1 mmol/l or

a fasting plasma glucose level ≥ 7.0

mmol/l), and undergo clinical and labo-

ratory evaluations for their diabetes at

regular 3-month intervals. A randomly selected portion of these patients served

as probands to identify first-degree relatives (mainly sibs) who have T2D. The

Medical Ethics Committee of the University Medical Centre in Utrecht ap-

proved our study protocol. Initially, 4,000 possible T2D probands from the

Diabetes Service Breda were recruited in collaboration with their general prac-

titioners.
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All possible participants were sent an information letter describing the

rationale of the study, background information, the inclusion criteria (having

first-degree relatives who are also affected) and a questionnaire. These probands

were also used to obtain information on the occurrence of T2D in relatives.

Moreover, the probands were asked to invite their T2D relatives to participate

in this study as well. All family members included in the study filled out an

informed consent form and a questionnaire on clinical data, which included

their diabetes-related medication, height and weight at present time, and at

the age of 20 years.

Ten ml blood was collected from each proband by the Diabetes Service

Breda and was sent to the research lab of the Department of Medical Genetics

in Utrecht, where DNA was extracted from the blood samples. A similar

procedure was applied for siblings who lived in the same area and were under

control of the Diabetes Service Breda. Those siblings who were not under the

control of the Diabetes Service Breda (e.g. diabetes controlled by another phy-

sician) were asked to go the Diabetes Service or to one of its out-patients-

clinics in the surrounding area to donate 2 x 10 ml EDTA blood. Of this 20

ml, half was to sent to the research lab for DNA extraction at Utrecht and 10

ml of blood was analysed for lipid levels by the Diabetes Service Breda. Two

10 ml tubes for blood donation were sent to siblings living outside the con-

trol area of the Diabetes Service Breda, with an accompanying letter for the

nurses at a nearby clinic asking them to send the samples to Utrecht and

Breda.

Clinical data of all participants
We had a response of 60% on the returned questionnaires and signed

informed consent forms: 570 (approx. 15%) probands donated blood for DNA

extraction. Of these 570 probands, 227   had at least one affected sibling who

also donated blood, making up the initial 227 families used for the genome-

wide scan. Unfortunately no parents were available. However, if available,

unaffected relatives were approached to donate blood for DNA extraction in

order to reconstruct parental genotypes. After careful evaluation of the af-



Chapter 2

44

fected siblings, 49 families were excluded because one of the affected siblings

was younger than 35 at age of onset of T2D, or because of demonstrable non-

paternity, using the program GRR (graphical representation of relationship

errors (Abecasis et al. 2001)). The remaining 178 families, consisting of 420

patients and 142 unaffected siblings, were included in the genome-wide screen.

These 178 families comprised 312 affected sibpairs with an average sib-

ship size of 3.1; there were 128 families with two affected siblings, 40 fami-

lies with three affected siblings, 9 families with four affected siblings, and 1

family with five affected siblings. The participants’ clinical parameters are

shown in Table 1 and the information on the 178 families is shown in Table 2.

Table 1. Clinical information of all participating probands
female (n=296) male (n=246)

average ± SD range average ± SD range

Age (y) 70 ± 9 45-93 69 ± 9 45-94

Age at onset (y) 61 ± 9 40-85 60 ± 9 40-86

Years of disease (y)# 10 ± 6 4-36 10 ± 6 4-37

Height (m) 1.63 ± 0.06 1.45-1.76 1.75 ± 0.07 1.50-1.93

Weight (kg) 75.5 ± 14.1 45-130 83.7 ± 12.2 56-124

BMI (kg/m2) 28.5 ± 4.8 17.9-46.1 27.2 ± 3.4 19.2-38.7

HbA1c (%) 7.3 ± 1.1 4.5-12.9 7.3 ± 1.3 5.3-13.1

HDL
cholesterol(mmol/l)

1.2 ± 0.3 0.6-2.7 1.1 ± 0.3 0.5-2.0

Total cholesterol
(mmol/l)

5.5 ± 1.1 2.5-9.0 5.1 ± 1.0 2.0-8.4

Triglicerides
(mmol/l

1.9 ± 0.9 0.5-5.1 1.8 ± 1.0 0.8-3.3

Insulin use (y/n/?) 30/264/2 22/222/2

Elevated BP (y/n/?) 142/135/19 74/158/14

#Duration of the disease from age at onset.
BMI: body mass index, HbA1c: haemoglobin A1c = glucose bound to haemoglobin,
HDL: high density lipoprotein, BP: blood pressure, y/n/?: yes/no/unknown
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Purpose of the Cohort
Genome-wide  scan

Our goal of collecting at least 250 affected sibpairs with T2D was well

met by obtaining 312 affected sibpairs from 178 families with at least 2 af-

fected sibs. These families could be used to perform a genome-wide scan to

search for susceptibility loci for T2D in the Dutch population.

Genome-wide scan of stratified cohort

The clinical data obtained from all the subjects could be used to stratify

the cohort on different parameters, such as age at onset, BMI or medication

use. These stratified subsets of the cohort could be used to repeat the genome-

wide scan to find quantitative trait loci (QTL) associated with type 2 diabetes

mellitus.

Candidate genes

This large Breda cohort of 542 patients could be used to perform associa-

tion studies with polymorphisms from suitable candidate genes for type 2

Table 2. Clinical information of the families used in the genome-wide scan

Affected Unaffected

Gender female male female male

Number (n) 235 185 87 55

Age (y) 69 ± 9 67 ± 9 64 ± 10 64 ± 10

Age at onset (y) 58 ± 10 57 ± 9

Body weight (kg) 73.9 ± 12.2 83.0 ± 12.6 72.3 ± 15.4 78.6 ± 8.5

BMI (kg/m2) 27.9 ± 4.1 26.9 ± 3.4 26.4 ± 4.2 25.8 ± 2.2

Affected sib pairs

All possible 312

Independent 239

BMI: body mass index
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diabetes mellitus. As stated in chapter 1 of this thesis, defects in genes in-

volved in insulin signalling and insulin response are excellent candidate genes

for type 2 diabetes mellitus.
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Abstract
A genome-wide scan was performed using non-parametric linkage analy-

ses to find susceptibility loci for type 2 diabetes mellitus in the Dutch popu-

lation. We studied 178 families from the Netherlands, who constituted 312

affected sibpairs. The first stage of the genome scan consisted of 270 DNA

markers with an average inter-marker spacing of 13 cM. Since obesity and

type 2 diabetes mellitus are inter-related, the data set was stratified for the

sub-phenotype body mass index, corrected for age and gender. This resulted

in a suggestive maximum multi-point LOD score of 2.3 (p-value 9.7 x 10–4)

for the most obese 20% pedigrees of the data set , between marker loci D18S471

and D18S843. In the lowest 80% obese pedigrees two interesting loci on

chromosome 2 and 19 were found with LODs of 1.5 and 1.3, respectively (p-

values 0.0075 and 0.0112). We provide solid and independent evidence that

the chromosome 18p11 locus, reported earlier from a Finnish/Swedish popu-

lation, is of definite interest for type 2 diabetes mellitus in connection with

obesity. Subsequently, our results indicate that two novel loci may reside on

chromosomes 2 and 19 with minor effects involved in the development of

type 2 diabetes mellitus in the Dutch population.

Introduction
The aetiology of type 2 diabetes mellitus is unknown, but several studies

indicate that the disease results from a combination of genetic susceptibility

and external risk factors (DeFronzo and Ferrannini 1991). According to this

multifactorial model, genetically predisposed subjects will not necessarily

develop overt disease unless they are also exposed to particular environmental

factors (Valsania and Micossi 1994). Important risk factors for the develop-

ment of type 2 diabetes mellitus, apart from obesity, include a family history

of diabetes, increased age, hypertension, lack of physical exercise, and ethnic

background (DeFronzo and Ferrannini 1991).

The discovery of monogenic forms of diabetes, such as maturity-onset dia-

betes of the young (MODY), underscores the phenotypic and genotypic het-
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erogeneity of this disease. Despite identification of at least six MODY loci to

date, they account for only a few percent of all diabetes patients (Permutt and

Hattersley 2000). However, defining the genetic basis of the far more com-

mon polygenic forms of type 2 diabetes mellitus presents methodological dif-

ficulties due to the absence of extended families and the small contribution of

each polygene to the disease phenotype. Candidate gene studies have identi-

fied several loci with a modest effect on type 2 diabetes mellitus susceptibility

(van Tilburg et al. 2001). Several genome-wide scans have been conducted in

the past five years, giving rise to various genetic regions in as many various

populations, illustrating the genetic heterogeneity of type 2 diabetes mellitus

(Busfield et al. 2002; Duggirala et al. 1999; Ehm et al. 2000; Elbein et al.

1999; Ghosh et al. 1999; Hanis et al. 1996; Hanson et al. 1998; Hegele et al.

1999; Lindgren et al. 2002; Mahtani et al. 1996; Parker et al. 2001; Permutt

et al. 2001; Watanabe et al. 2000; Wiltshire et al. 2001). However, at least one

susceptibility gene was found using the genome-wide scan approach (CAPN10

(Horikawa et al. 2000)). It is therefore of great importance that replication

studies are performed in additional populations, as well as independent ge-

nome scans in different populations, to confirm the original findings or to

provide more insight into the genetic complexity of type 2 diabetes mellitus.

We describe a genome-wide linkage analysis to identify type 2 diabetes

mellitus susceptibility loci in nuclear families from the province of North

Brabant, the Netherlands (around the town of Breda). To minimize genetic

heterogeneity, all nuclear families with at least two affected sibs were ascer-

tained from a region of 130,000 inhabitants.

Subjects and methods
Population studied. Probands were recruited in collaboration with their general

practitioners and the Diabetes Service Breda, which is the only regional clini-

cal and laboratory service for the western part of the province of North Brabant

in the Netherlands. Since 1990 the Diabetes Service Breda has collected clini-

cal and biochemical data on more than 13,000 patients with type 2 diabetes

mellitus. All patients undergo clinical and laboratory evaluations for their
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diabetes at regular 3-month intervals. Initially, 4,000 possible participants

were asked at random to take part in this study. Although we had a response

of 60%, only those who had at least one affected sibling and were diagnosed

after the age of 35 years according to WHO criteria were included. Unfortu-

nately, no parents were available. However, if available, unaffected relatives

were  included in order to reconstruct parental genotypes. Initially 214 fami-

lies fulfilled the criteria for inclusion in the study. After careful evaluation of

the affected siblings, 36 families were excluded because one of the affected

siblings was younger than 35 at age of onset of type 2 diabetes mellitus, or

because of demonstrable non-paternity. The remaining 178 families, consist-

ing of 420 patients and 142 unaffected siblings, were included in the ge-

nome-wide screen. These 178 families comprised 312 affected sibpairs with

an average sib-ship size of 3.1; there were 128 families with two affected

siblings, 40 families with three affected siblings, 9 families with four affected

siblings, and one family with five affected siblings. The Medical Ethics Com-

mittee of the University Medical Center in Utrecht approved our study pro-

tocol and all the participants signed an informed consent. The participants’

clinical parameters are shown in Table 1.

Genotyping. DNA was extracted from 10 ml of blood using standard proce-

dures (Miller et al. 1988). The 551 DNA samples were divided into eight 96-

well microtiter plates. Every DNA plate contained up to 80 unique DNA

samples, six blind duplicate samples, three CEPH controls and one negative

control. A modified version of the Weber set 6 containing 270 markers (73%

of markers from the Weber 6 map) at an average spacing of 13 cM was used

for the genome-wide screen. For details of the markers see:

http:humgen.med.uu.nl/publications/jonathan2002_1/. Reverse primers were

labelled with either 6-FAM, HEX, or TET fluorescent dyes (Isogen Bioscience,

the Netherlands) at the 5’-end. PCR was carried out in a 10 ml volume con-

taining 1 x PCR Gold-buffer*, 200 mmol/l of deoxy-NTP, 2.5 mmol/l MgCl
2
,

25 ng/ml of each primer, 0.4 U AmpliTaq Gold* and 25 ng genomic DNA.

Cycling conditions were 7 min at 94°C followed by 32 cycles of 30s at 95°C,
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30s at 55°C and 30s at 72°C, followed by a final extension at 72°C for 30

min. PCR products were pooled into four different running sets, before elec-

trophoresis on an ABI 3700*, and analyzed using GeneScan version 3.1*.

Allele sizes of the individual markers were determined using Genotyper ver-

sion 2.1 software*. CEPH reference samples (1331-01, 1331-02 and 1347-

02) were included to determine the appropriate size of the alleles. The 48

duplicate samples were included to estimate the proportion of mistyping of

genotypes. All samples where double-checked by two independent investiga-

tors (JHOvT and ES), who did not know the origin of the 48 duplicate samples.

The blind genotypes of the duplicate samples were compared to the original

samples by a technician (Alfons Bardoel). (*Applied Biosystems, Foster City, Ca, USA).

Stratification of the dataset. In unaffected individuals (n=150) the relationship

between BMI and age and gender was determined via multiple linear re-

gressions. For all family members, BMI was adjusted for age and gender ac-

cording to the resulting regression coefficient. Normal percentile values were

obtained from the adjusted BMI values in unaffected individuals. All affected

individuals were then classified according to these percentiles. Only sibpairs

Table 1. Clinical information of participants

Affected Unaffected

Gender female male female male

Number (n) 235 185 87 55

Age (y) 69 ± 9 67 ± 9 64 ± 10 64 ± 10

Age at onset (y) 58 ± 10 57 ± 9

Body weight (kg) 73.9 ± 12.2 83.0 ± 12.6 72.3 ± 15.4 78.6 ± 8.5

BMI (kg/m2) 27.9 ± 4.1 26.9 ± 3.4 26.4 ± 4.2 25.8 ± 2.2

Affected sib pairs

All possible 312

Independent 239
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in which both affected siblings fitted in the same percentile group were in-

cluded in the stratified data set. As a consequence the 20% most obese pedi-

grees group (referred to as ‘DS-20%’) contained 44 affected sibpairs. As a

counterpart to the DS-20% group, there was the group without the 20%

most obese pedigrees (referred to as’DS-80%’); only sibpairs who fit in this

group were included giving 146 affected sibpairs (Table 2).

Statistical analyses. To assess for linkage, we applied multi-point non-paramet-

ric linkage analysis using the MapMaker/Sibs software 2.0 package (Kruglyak

and Lander 1995). Allele frequencies were calculated from the whole data set,

and the weighted sibpair option in MapMaker/Sibs was used. For analysis of

the entire length of the different chromosomes, we used genetic map dis-

tances estimated from the Marshfield genetic map (http://

research.marshfieldclinic.org/genetics/, see also the complementary informa-

tion on the web site:  http:humgen.med.uu.nl/publications/jonathan2002_1/

). Exclusion mapping was performed using the exclude option of MapMaker/

Sibs, under an additive model and at several locus-specific values of λ
s
 (the

ratio of the risk to sibling of an affected person relative to the risk to a mem-

ber of the general population), ranging from 1.25 to 2.5. LOD scores for

exclusion of a region were obtained by comparing the likelihood of the data

assuming the presence of a locus with a specific effect (λ
s
) to the likelihood if

the region contained no relevant locus at all (λ
s
=1).

Table 2. Distribution of variables used for subphenotypic classification according to BMI.
Whole data set Affected Highest percentile

threshold values
Mean ± SD Range Mean ± SD Range DS-20% DS-80%

age (y) 67 ± 9 33 - 96 68 ± 9 41 - 96 65 ± 10 68 ± 9

age at onset (y) 58 ± 10 35 - 85 57 ± 11 35 - 85 55 ± 10 58 ± 10

Weight (kg) 77.5 ± 13.3 40 - 160 78.3 ± 13.3 40 - 128 90.3 ± 11.2 72.4 ± 11.3

BMI (kg/m2) 27.2 ± 3.8 17.2 - 43.3 27.5 ± 3.9 17.1 - 43.3 31.9 ± 2.6 25.3 ± 2.4

No. of families 178 30 99

No. of affected
sibpairs

312 44 146
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Power calculations. Computer simulations were carried out on an initial marker

map with a 20 cM spacing, with subsequent markers at 2 cM intervals, 250

sibpairs, and marker information > 0.7. This simulation showed that, with

the initial marker map, we could only extract about 55% of all the available

information from the sibpairs. After saturation with additional markers, on

average 94% of the maximal information (which would be for a completely

linked and completely informative marker) could be extracted via the

MapMaker/Sibs program. Under the assumption of a single disease-predis-

posing locus for type 2 diabetes mellitus (locus-specific λ
s
 = 3.5), there was ~

100% power for detection with a LOD score of 3 (p-value < 0.0001), when

the initial map of 270 markers was used. The power to detect a locus with a

modest effect (locus-specific λ
s
 = 1.5) is ~ 70%. It should be realized, how-

ever, that if there are multiple disease-predisposing loci, each will present an

opportunity for mapping. Therefore, while our sample size yields a power of

70% to detect a single locus with λ
s
 of 1.5, if there are two such loci, our

power to detect at least one of them is 0.70+(0.70 x (1-0.70)) = 0.91. Since

type 2 diabetes mellitus is expected to be genetically heterogeneous, we were

aiming at a LOD score of 0.5 (p-value of 0.09 or less) for our initial scan. To

detect a locus with a relative small effect (λ
s
 = 1.5) the power is ~ 99% for

detection with a LOD score of 0.5.

Results
The autosomal genome scan was completed on 178 families consisting of

417 patients and 134 unaffected siblings, which were used to generate the

final data set for statistical analysis. By including additional siblings, both

affected and unaffected, we obtained an average sibship size of 3.1. The first

stage of the genome scan consisted of 270 DNA markers with an average

inter-marker spacing of 13 cM and a mean heterozygosity of 0.76. Forty-

eight duplicate samples were included to estimate the proportion of typing

errors. An average of 90% of subjects was successfully genotyped for each

marker with less than 3% of mistyping of genotypes. The average informa-
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tion content was 50% throughout the genome (measuring the proportion of

the total inheritance information extracted at each chromosomal position given

the observed genotype data (Kruglyak et al. 1996)), see for details

http:humgen.med.uu.nl/publications/jonathan2002_1/.

Only four genomic regions initially showed multi-point LOD scores ≥

0.5 (Figure 1). On chromosome 2 a LOD score of 0.5 was obtained between

markers D2S436 and D2S410, on chromosome 11 a maximum LOD score of

0.9 was obtained between markers D11S1984 and D11S2362, chromosome

14 showed a LOD score of 0.9 between markers D14S53 and D14S606, whereas

on chromosome 18 a LOD score of 0.6 was obtained near marker D18S843.

These four chromosomal regions were selected for follow up studies (Table 3).

Fine maps of the regions exhibiting LOD scores ≥ 0.5 were constructed

with an average inter-marker spacing of 5 cM or less. The original 178 type 2

diabetes mellitus families were then genotyped using these fine maps. The

results of the follow up studies are summarized in Table 3. The addition of

extra markers (10, 3, 6 and 15 markers for chromosomes 2, 11, 14 and 18

respectively) gave the following results: the multi-point LOD at chromosome

14 decreased from 0.9 to 0.3 at marker position D14S53 whereas the multi-

point LOD on chromosome 11 the LOD score decreased slightly from 0.9 to

0.8. No change in the multi-point LOD for chromosome 2 was seen after

addition of extra markers. However, on chromosome 18 the multi-point LOD

increased slightly when more markers where analyzed in the region of inter-

est. Analysing more markers on chromosome 18 increased the multi-point

LOD from 0.6 at marker position D18S843 to a multi-point LOD of 0.7

between markers D18S1163 and D18S843 (Table 2). For additional informa-

tion on the markers, see  http:humgen.med.uu.nl/publications/

jonathan2002_1/.

In addition to searching for evidence of linkage, we performed exclusion

mapping to determine which genomic regions could be excluded as candi-

dates for harbouring major susceptibility loci. Five different locus-specific

values of λ
s
 were considered, 1.25, 1.5, 1.75, 2.0 and 2.5. We could exclude

87% of the genome for a λ
s
 of 2.0 (for details see http:humgen.med.uu.nl/
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Figure 1. Graphs of the multi-point LOD scores for each autosome from the genome-
wide scan in 312 affected sibpairs with 270 DNA markers, using the non-parametric
linkage analysis program, MapMaker/Sibs. The X-axis represents the length of the
chromosome in cM whereas the Y-axis represents the multi-point LOD score.
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publications/jonathan2002_1/). However, for a λ
s
 of 1.25 we could only ex-

clude 7% of the genome with a sample of 312 affected sibpairs and in the

absence of parental data. This is almost certainly due to the limited size of our

data set in resolving such low predisposition values, suggesting that large

numbers of affected sibpairs are necessary to identify loci with minor effects

in type 2 diabetes mellitus.

Stratification for obesity

A previous study by Parker et al. (Parker et al. 2001) had reported a locus

on chromosome 18 whose genetic contribution increased by stratifying the

data set for BMI. When a comparable stratification was applied to our data set

(Table 3), the multi-point LOD increased from 0.7 in the unstratified sample

to LOD 2.5 (between markers D18S452 and D18S1163) when the DS-20%

pedigrees were analyzed (Table 3). Adding another 8 markers to this region

with a resolution of one marker every 1.5 cM slightly decreased the LOD to a

maximum LOD of 2.3 for the DS-20% pedigrees, between markers D18S471

and D18S843 near marker D18S1163 (Table 3).

Figure 2 illustrates the evident effect of BMI stratification on the multi-

point LOD score, despite the reduction in sample size. Only 30 families con-

taining 44 affected diabetes sibpairs comprised the DS-20% type 2 diabetes

mellitus pedigrees. The mean BMI of the affected individuals in this sub-

phenotype group of DS-20% pedigrees was 31.9 kg/m2 versus 27.5 kg/m2 for

all affected individuals in the whole data set.

Although the overall marker information content was relatively low, namely

50% (see http:humgen.med.uu.nl/publications/jonathan2002_1/), it did reach

78% at the map position showing the highest evidence for linkage on 18p,

with an average information content of 91% between D18S391 and D18S1163.

Genome screen in DS-80%

The limited number of interesting loci resulting from the genome-wide

scan prompted us to re-calculate the LOD scores for the affected sibpairs in

which both sibs were in the DS-80% group, as we thought this group could
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represent a different sub-phenotype. The DS-80% consisted of 146 affected

sibpairs from 99 families with 220 patients and 72 unaffected siblings, with

an average sibship size of 2.9 (Table 2). The number of markers was increased

from 270 to 319, since markers were added in order to fine map the 5 regions

already identified. Recalculation of the LOD scores was performed for 319

Table 3. Regions displaying multi-point LOD scores  0.5 in Dutch Caucasian siblings
with type 2 diabetes mellitus.
Chromosome Marker cM Het1 LOD p-value2

2 D2S436 118.2 0.90 0.3 0.16
interval 123.7 0.5 0.09
D2S410 125.2 0.81 0.3 0.16

11 D11S1984 2.1 0.76 0.7 0.04
interval 7.6 0.9 0.03
D11S2362 8.9 0.93 0.9 0.04

14 D14S53 86.3 0.67 0.8 0.12
interval 88.5 0.9 0.03
D14S606 91.6 0.69 0.8 0.05

18 D18S843 28.1 0.6 0.07

Dense map3

2 D2S436 118.2 0.90 0.0 0.58
D2S1888 121.6 0.71 0.2 0.22
interval 122.9 0.5 0.09
D2S410 125.2 0.81 0.4 0.12

11 D11S2362 8.9 0.93 0.8 0.04
interval 10.2 0.8 0.04
D11S1999 17.9 0.76 0.9 0.04

14 D14S53 86.3 0.67 0.3 0.16
interval 88.5 0.3 0.16
D14S606 91.6 0.69 0.1 0.22

18 D18S1163 24.1 0.54 0.7 0.05
interval 27.2 0.7 0.05
D18S843 28.1 0.7 0.05

Stratification4

DS-20% D18S452 18.7 0.83 2.3 9.5 x 10–4

interval 24.0 2.5 5.5 x 10–4

D18S1163 24.1 0.54 2.4 7.1 x 10–4

DS-20%5 D18S471 19.3 1.6 0.0052
interval 24.2 2.3 9.7 x 10–4

D18S843 28.1 1.8 0.003
1 Het = Heterozygosity of the marker
2 p-value according to Holmans’  possible triangle method (Holmans 1993)
3 With the addition of more markers at a  5 cM spacing in the region of interest
4 Analysis using data-set stratified on age- and sex- adjusted BMI
5 With the addition of 5 extra markers in the region between D18S452 and
   D18S1163 on chromosome 18
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markers; interestingly, three genomic regions showed multi-point LOD scores

≥ 1.0 (Table 4). On chromosome 2 a LOD score of 1.5 was obtained between

markers D2S436 and D2S1888, a region also be identified in the whole data

set. Since this region had already been saturated with markers every 5 cM or

less we did not perform further fine mapping on this region. On chromosome

15 a maximum LOD score of 3.1 was obtained between markers D15S817

and the gene ACTC, whereas on chromosome 19 a LOD score of 1.5 was

obtained between markers D19S400 and D19S254. All results of the recalcu-

lation can be seen on http:humgen.med.uu.nl/publications/jonathan2002_1/

Both regions on chromosome 15 and 19 were further investigated by fine

mapping. Addition of 4 markers on chromosome 15 showed that the previous

finding was a false positive finding because the maximum LOD score de-

creased from 3.1 to 0.3 near the ACTC gene. However, adding 3 markers to

the map of chromosome 19 gave the following result; the maximum LOD

score on chromosome 19 decreased slightly from 1.5 to 1.3 between markers

D19S246 and D19S601 (Table 4).

Discussion
We performed a genome-wide linkage analysis study designed to identify

type 2 diabetes mellitus susceptibility loci in type 2 diabetes mellitus nuclear

families from Breda, North Brabant, the Netherlands. Our results contribute

to a better understanding of type 2 diabetes mellitus, combined with results

of similar studies in other populations, including African Americans (Ehm et

al. 2000), Ashkenazi Jews (Permutt et al. 2001), British (Wiltshire et al. 2001),

Chinese (Luo et al. 2001), European Americans (Ehm et al. 2000; Elbein et al.

1999), Finnish (Ghosh et al. 1999; Lindgren et al. 2002; Mahtani et al. 1996;

Parker et al. 2001; Watanabe et al. 2000), French (Vionnet et al. 2000), Han

Chinese (Luo et al. 2001), Mexican Americans (Duggirala et al. 1999; Ehm et

al. 2000; Hanis et al. 1996), and native Americans from the US and Canada

(Hanson et al. 1998; Hegele et al. 1999). However most of these scans have

failed to generate highly significant linkage results. Replications of certain
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loci of these different scans can therefore direct further investigations toward

positional cloning targeting the most promising loci.

Our genome scan of a stratified sample of 146 Dutch families with type 2

diabetes mellitus using non-parametric linkage analysis and exclusion map-

ping revealed modest indications of linkage to regions on chromosomes re-

gions 2q12 (multi-point LOD score of 1.5 with corresponding p-value of

0.0075) and 19q13 (multi-point LOD score of 1.3 with corresponding p-

value of 0.0112). Although we identified interesting LOD scores on chromo-

somes 2, our locus mapped outside the previously described CAPN10 region

on chromosome 2 (Cox et al. 1999; Hanis et al. 1996; Horikawa et al. 2000).

This locus lies approximately 105 cM distal of the locus found in our popula-

tion. The locus found on chromosome 19 is not previously described in litera-

ture.

The results on chromosome 18 in the DS-20% group indicate linkage
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Figure 2. Fine map (33 markers) analysis of chromosome 18 in a data set stratified by mean age-

and sex-adjusted BMI. The dashed line indicates the whole data set and the solid line the DS-

20% set. The confidence limits define this locus as lying between D18S967and D18S1153, a

region of ~20 cM.
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between D18S471 and D18S843 (multi-point LOD score of 2.3 with corre-

sponding p-value of 9.7 x 10-4). This finding on chromosome 18 clearly repli-

cates the linkage to this region previously reported in a Finnish-Swedish popu-

lation (Parker et al. 2001) and in a confined isolated population of Dutch

Caucasians near the town of Breda (Prof. B.A. Oostra, Erasmus University

Rotterdam, personal communication). This is interesting because it suggests

our finding is genuine since our stratified group (DS-20%) consists of only 44

affected sibpairs.

Replication of linkage results from additional populations, whether as

extension or follow up studies in the same population or as independent ge-

nome scans in different populations, may provide vital confirmation of the

original findings. Guidelines have been proposed for the level of significance

necessary in sibpair studies in order to show replication (Lander and Kruglyak

1995; Roberts et al. 1999).

As for the significance of our finding with respect to the null hypothesis -

no disease susceptibility locus present in the study sample - Lander and

Kruglyak ( 1995) defined suggestive linkage for a LOD score of 2.2 (p-value

Table 4. Regions displaying multi-point LOD scores  1.0 in 146 DS-80% sibpairs

Chromosome Marker cM Het1 LOD p-value2

23 D2S436 118.2 0.90 1.0 0.0239
interval 121.4 1.5 0.0075
D2S1888 121.6 0.71 1.4 0.0092

15 D15S817 4.8 0.79 0.8 0.0446
interval 20.3 3.1 1.54 x 10–4

ACTC 31.5 0.94 0.8 0.0423
19 D19S400 64.7 0.86 0.6 0.0683

interval 79.5 1.5 0.0063
D19S245 100.6 0.76 0.3 0.1600

Dense map
15 ACTC 31.5 0.94 0.3 0.1802
19 D19S246 78.1 0.84 1.0 0.0239

interval 80.0 1.3 0.0112
D19S601 83.2 0.81 1.2 0.0144

1 Het = Heterozygosity of the marker
2 p-value according to Holmans’ possible triangle method (Holmans 1993)
3 This is already a dense map with markers at 5 cM or less.
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= 0.001) or higher whereas significant linkage is defined only when the LOD

score is 3.6 (p-value = 2 x 10-5) or higher. The LOD score obtained on chro-

mosome 18p11 (in DS-20%) meets the criteria for suggestive linkage. Al-

though the loci found on chromosome region 2q12 and chromosome region

19q13 do not achieve suggestive LOD scores, they may indicate the existence

of novel loci with minor effects involved in type 2 diabetes

mellitus in the Dutch population.

Apart from the findings on chromosome 2, 18 and 19, our genome scan

did not provide any supporting evidence for the other linkage findings de-

scribed earlier. Several reports have described linkage to chromosomes 12q

(Bowden et al. 1997; Elbein et al. 1995) and 20q (Bowden et al. 1997; Elbein

et al. 1999; Ghosh et al. 1999; Permutt et al. 2001). We observed no evidence

for linkage to either of these two chromosome regions in our study.

This absence of strong agreement among genome-wide scans in type 2

diabetes mellitus is not unexpected, in part because of the complexity of the

disease involved. Gene discovery in complex diseases has been limited by sub-

stantial etiological and genetic heterogeneity, the possibility of genes of small

effect, the interaction of multiple genes with each other and environmental

factors, and the need for large sample sizes (Altmuller et al. 2001). A typical

10 cM genome scan fails to capture a significant proportion of the inheritance

information, especially in cases of small sibships and lack of parental geno-

type information, as is usually the case in late-onset disorders such as type 2

diabetes mellitus (Wiltshire et al. 2001). The inclusion of additional sibs to

reconstruct parental haplotypes may compensate for part of the lost informa-

tion. A two-stage screening design with denser mapping in regions of interest

identified by the primary low-resolution scan has also been proposed to en-

hance power by recovering some of the missed information. However, this

approach may still miss regions of linkage if the evidence for linkage has, by

chance, been underestimated in the primary scan such that thresholds for

dense mapping were not achieved (Wiltshire et al. 2001). On the other hand,

as shown in this study and others (Parker et al. 2001), sub-phenotyping of the

disease may lead to substantial improvement in the results from genome-
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wide scans for type 2 diabetes mellitus.

The role of a susceptibility locus for type 2 diabetes mellitus on chromo-

some 18p11 and BMI, suggested by Parker et al. (Parker et al. 2001) and

independently replicated in our Dutch population, is not known. It has often

been suggested that obesity plays a causal role in the development in type 2

diabetes mellitus and is the most important determinant of type 2 diabetes

mellitus (Trevisan et al. 1998). So far, the region on chromosome 18p11 has

not been found in genome-wide scans for obesity. The association between

type 2 diabetes mellitus and obesity is presumably due to multiple mecha-

nisms, including elevations in plasma free fatty acids (FFA) and tumour ne-

crosis factor-alpha (TNFα) released from “full” adipocytes (Hotamisligil et al.

1995; Pi-Sunyer 1993; Reaven 1988; Uysal et al. 1997). Additional support

for this hypothesis was seen in the recent demonstration of significantly in-

creased β-cell apoptosis in obese versus lean ZDF rats (Shimabukuro et al.

1998).

Whether this chromosome 18p11 locus is a primary obesity locus, or a

locus which is important for the development of type 2 diabetes mellitus in

already overweight individuals is a question for the future. Substantial new

research will be required to resolve this issue. Analysis of the region on chro-

mosome 18 in the sequence databases revealed no obvious candidate gene.

The chromosomal 18p11 region contains 111 transcripts of which 61 are of

unknown function and 50 either resemble a known function or have already

been described. Much genetic analysis will have to be carried out to implicate

the correct candidate gene.

In conclusion, our results indicate that a novel gene resides in the 18p11

region, which forms part of an as yet unidentified pathway involved in type 2

diabetes mellitus and obesity, and that are indications of two novel loci on

chromosome 2 and 19 both with minor effects involved in the development of

 type 2 diabetes mellitus in the Dutch population.
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Abstract
We analyzed data from 178 small family samples for linkage to loci influ-

encing BMI; the data came from the Dutch Breda Cohort ascertained for type

2 diabetes. Subsequently, we also analyzed the data from the 20% most obese

type 2 diabetes pedigrees for linkage to type 2 diabetes. We used variance-

components analysis implemented in GENEHUNTER 2 to determine QTL

influencing BMI and we used affected sib pair analysis implemented in

MAPMAKER/SIBS to search for linkage in obese-driven type 2 diabetes. Our

findings support previous results that a susceptibility locus influencing BMI

in type 2 diabetes may reside on chromosome 11q. Additionally, we found

evidence to suggest linkage for type 2 diabetes on chromosome regions 1q,

11p, 12q and 18p11, and to confirm previous findings to the corresponding

regions. However, it appears that the linkage found in the present Breda Co-

hort of type 2 diabetes patients is influenced by obesity. This supports the

notion that a genetic predisposition to obesity is probably intertwined with a

genetic predisposition to type 2 diabetes; further efforts should address the

question how, on a genetic level, the two interact.

Introduction
The etiology of type 2 diabetes is ill defined: several studies indicate that

the disease results from a combination of genetic susceptibility and external

risk factors (DeFronzo and Ferrannini 1991). According to this multi-facto-

rial model, genetically predisposed subjects will not necessarily develop overt

disease unless they are also exposed to particular environmental factors (Valsania

and Micossi 1994). Important risk factors for the development of type 2 dia-

betes include a family history of diabetes, increased age, hypertension, lack of

physical exercise, and obesity (DeFronzo and Ferrannini 1991).

Several genome-wide scans for linkage with type 2 diabetes have been

conducted over the past five years, and have detected linkage with many ge-

netic loci in various populations. This illustrates either the genetic heteroge-

neity of type 2 diabetes or the inability to replicate linkage with defined loci.

However, at least one susceptibility gene, namely CAPN10, was found using
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a genome-wide scan approach (Horikawa et al. 2000).

While obesity is a risk factor for type 2 diabetes it is also a complex trait

determined by multiple genetic and environmental factors (including physi-

ological, behavioral, and sociocultural factors) (Perusse and Bouchard 1999).

In recent years, several single-gene defects responsible for obesity have been

identified in rodents and also in humans in rare instances of extended fami-

lies. In addition to leptin (OMIM:164160), which is the most notable ex-

ample, numerous other proteins and neuropeptides have recently been found

that participate in a complex network regulating food intake and energy ex-

penditure (Rankinen et al. 2002). The genetic relationship between type 2

diabetes and obesity appears complex and it is unknown how these two dis-

eases influence each other at the genetic level. It seems unlikely that all forms

of obesity will be associated with type 2 diabetes, or vice versa, and therefore

any possible direct link between the two at the genetic level would probably

be limited to a subset of patients.

To study further the relationship between type 2 diabetes and obesity we

performed a genome-wide screen in a cohort of type 2 diabetes patients with

known BMI values. The aim of the study was two-fold. The first aim was to

find loci modulating BMI in type 2 diabetes patients, using variance compo-

nents (VC) analysis. The second aim was to identify loci responsible for the

restricted phenotype ‘obesity-driven type 2 diabetes ’, using affected sibpair

(ASP) analysis in obese diabetes patients (mean BMI 31.9 ± 2.6).

The resulting genotypes were analyzed in two ways. First the data was

used to determine linkage for BMI in type 2 diabetes patients according to a

continuous scale to define Quantitative Traits Loci (QTL) using the adjusted

BMI values of affected individuals for type 2 diabetes. Secondly, the data were

analyzed with the ASP method to find BMI susceptibility loci involved in

BMI levels (obesity) in type 2 diabetes patients.

If loci found in both analyses show overlap, these loci might possibly in-

fluence BMI and be involved in type 2 diabetes. Furthermore, if loci are found

in the VC analysis but not in the ASP analysis, these loci will likely influence

BMI in general, but possibly not be involved in type 2 diabetes. Vice versa, if
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loci are found in the ASP analysis but not in the VC analysis, these BMI loci

might be specifically involved in obese type 2 diabetes but would not influ-

ence BMI in general.

The VC analysis revealed two genomic regions showing VC LOD scores

≥ 1.0 (see Figure 1). On chromosome 1 a VC LOD score of 1.0 was obtained

between markers D1S1678 and D1S549. Fine-mapping of this region with

the addition of four extra markers increased the VC LOD from 1.0 to 1.5

between markers D1S1678 and D1S2141. For chromosome 11 a VC LOD

score of 2.5 was obtained between markers D11S940 and D11S2000, while

addition of four extra markers in this region slightly decreased the VC LOD

from 2.5 to 2.3 between markers D11S1887 and D11S940 (see figure 3).

The ASP analysis revealed four genomic regions showing maximum LOD

scores ≥ 1.0 (see Figure 2). On chromosome 1 a maximum LOD score of 1.0

was found near marker D1S549. Since the region found on chromosome 1

showed overlap with the region found in the VC analysis the same fine-map

with additional markers was applied. Addition of four extra markers in this

region decreased the maximum LOD from 1.0 to 0.7. On chromosome 11, a

maximum LOD score of 1.7 was obtained between markers D11S2362 and

ATA34E08; addition of three extra markers between these markers slightly

decreased the maximum LOD from 1.7 to 1.5 between markers D11S2362

and D11S1999. For chromosome 12, a maximum LOD score of 1.9 was ob-

tained near marker D12S1042; after addition of six extra markers the maxi-

mum LOD of 1.9 decreased to a maximum LOD score of 1.7 between

D12S1207 and D12S398 (see figure 3). For chromosome 18, a maximum

LOD score of 2.3 was obtained between markers D18S471 and D18S843 (van

Tilburg et al. unpublished data). Chromosome 18 had already been fine-mapped

to 5 cM or less, and no further genotyping was performed in this region.

Initially, the loci detected in both analyses on chromosome 1 appeared to

overlap. However, after addition of extra markers the VC LOD increased from

1.0 to 1.5 between D1S1678 and D1S2141 in the whole dataset, whereas the

maximum LOD score decreased from 1.0 to 0.7 in the 20% most obese pedi-

grees. The small peak in the 20% most obese pedigrees may represent its
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contribution to the total peak found in the whole dataset for BMI (figure 3).

We therefore concluded that the evidence suggests that this locus possibly

influences BMI and may also be involved in type 2 diabetes.

The QTL suggested by the linkage with BMI on the long arm of chromo-

some 1 (LOD =1.5) in our dataset has also been found in various other linkage

studies on type 2 diabetes (Elbein et al. 1999; Hanson et al. 1998; Meigs et al.

2002; Wiltshire et al. 2001). The 95% confidence limits for our linkage esti-

mate, generally assumed to be the maximum LOD value -1 (subsequently

referred to in the text as LOD-1) was located in region 1q31-q42. Our find-

ings and those of others (Elbein et al. 1999; Meigs et al. 2002; Wiltshire et al.

2001) focus particularly on the region between markers D1S518 and D1S179,

in Caucasian subjects. This region contains CAPN2 and CAPN9, calcium-

activated neutral proteases related to CAPN10, a candidate gene recently as-

sociated with type 2 diabetes in a Mexican-American population (Horikawa

et al. 2000).

So far, no human QTL influencing obesity has been reported for this re-

gion on chromosome 1, although the syntenic region seems to be involved in

various animal models for both obesity and diabetes (Brockmann et al. 1998;

Moody et al. 1999; Taylor et al. 2001). The similarity between our finding

Figure 3. Fine-map results of chromosomes 1, 11 and 12. Solid lines represents the variance-
components linkage analysis of BMI in type 2 diabetes patients. Dashed lines represent the non-

parametric linkage analysis of the 20% most obese type 2 diabetes pedigrees.
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and these studies supports the hypothesis that a diabetes susceptibility locus

is located in this region on chromosome 1q and that it may influence BMI as

well.

It is of note that the loci found on chromosome 11 are over 100 cM apart.

The region between markers D11S2362 and D11S1999 on the short arm of

chromosome 11 (LOD =1.5; LOD-1 region 11p15) shows suggestive evi-

dence for linkage to obese type 2 diabetes. This region harbors the insulin

(INS) gene and its VNTR; it also harbors the sulphonylurea receptor 1 (SUR1)

gene. Various association studies, although not conclusive, have found that

the INS VNTR locus has been implicated in type 2 diabetes. More recent

studies have established a significant association between the class III VNTR

allele size and type 2 diabetes in Caucasian subjects in the UK (Huxtable et al.

2000; Ong et al. 1999). Thus, insulin deficiency in type 2 diabetes might

depend on polymorphisms in the VNTR, affecting the expression of the insu-

lin gene. SUR1 has been proposed as a candidate gene for type 2 diabetes,

since it is a major determinant of normal glucose-induced insulin secretion in

the beta-cell (t Hart et al. 2000), and a target for the sulfonylurea type medi-

cation. It has been shown (Hani et al. 1997) that an exon 18 variant of SUR1

was associated with morbid obesity and type 2 diabetes, although other sib-

pair studies have failed to provide evidence for linkage in this region.

The suggestive evidence for linkage found on the long arm of chromo-

some 11 (LOD=2.3; LOD–1 region 11q14-q24) in our analysis for BMI in

type 2 diabetes, was also found in a linkage study with Pima Indians (Hanson

et al. 1998; Norman et al. 1997). Hence our finding further strengthens the

indication that a locus influencing BMI in type 2 diabetes may reside on

chromosome 11q. Nevertheless, to date no physiologically plausible candi-

date genes have been found that account for linkage to diabetes and BMI on

chromosome region 11q23 (Baier et al. 2002).

The region found on chromosome 12 (LOD=1.7; LOD –1 region 12q12-

q14) shows suggestive evidence for linkage in obese type 2 diabetes. This

region has been shown to harbor the gene for vitamin D3 receptor (VDR);

allelic variations in VDR were reported to modulate insulin secretion in re-
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sponse to glucose (Ye et al. 2001). It was also found that polymorphisms in

the VDR gene were associated with the susceptibility to obesity in subjects

with early-onset type 2 diabetes (Ye et al. 2001). Subsequently, other studies

also showed evidence for linkage to chromosome 12q for type 2 diabetes (Bektas

et al. 1999; Mahtani et al. 1996). In combination with our data, this suggests

that a susceptibility locus for type 2 diabetes in combination with obesity

resides on chromosome 12q. So far, no physiologically plausible candidate

gene has been proposed that might account for the described linkage to dia-

betes on chromosome region 12q.

In summary, our study to determine linkage of BMI in type 2 diabetes

and linkage to high BMI in obese type 2 diabetes families confirmed previous

findings on various chromosomes (summarized in table 1). Our findings sup-

port a susceptibility loci for type 2 diabetes residing on chromosome 1q, which

may also influence BMI. We confirmed the finding of a locus on chromosome

region 11q that influences BMI in type 2 diabetes. Additionally, we found

evidence-suggesting linkage for type 2 diabetes on chromosome regions 11p,

12q (this report) and 18p11 (Van Tilburg et al. unpublished data), which

confirm previous findings to the corresponding regions. However, at least in

the Breda Cohort of type 2 diabetes patients, these regions are most likely to

be influenced by obesity. Previous studies did not consider the role of BMI,

with the exception of the 18p11 locus, where a similar BMI stratification was

applied (Parker et al. 2001).

From the present data it cannot be inferred whether individual BMI loci

are independently or cooperatively involved in determining diabetes status.

Further studies in additional populations of obese patients as well as in type 2

diabetes patients will be necessary to provide a better insight into the inter-

play between loci and/or genes primarily associated with obesity and those

primarily associated with type 2 diabetes. Ideally, two independent groups

from the same population should be studied, one ascertained for obesity irre-

spective of diabetes status and, vice versa, one ascertained for type 2 diabetes

independently of BMI.
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Research design and methods
Subjects. The study group comprised 562 individuals from 178 families from

the Breda Study Cohort (322 women and 240 men, of whom 235 and 185,

respectively, were diagnosed as having type 2 diabetes ). The level of obesity

in each individual was given by the body mass index (BMI), defined as weight

(in kilograms) divided by height (in meters) squared. The relationship be-

tween BMI, age and gender was determined via multiple linear regression

analysis. The raw BMI values were adjusted for age and gender in all family

members according to the obtained regression coefficients, and normalized

percentile values obtained following natural log transformation. For the ASP

analysis family members were classified as affected only if they had both type

2 diabetes and a high BMI level (the highest 20% of the adjusted BMI distri-

bution within the study group). The 20% most obese pedigree group com-

prised 30 families with 44 sib-pairs having type 2 diabetes (range adjusted

BMI 28.5-43.5 kg/m2). Selection and ascertainment of the Breda Cohort has

been reported elsewhere (http://humgen. med.uu.nl/research/diabetes/

BredaCohort.html).

Genotyping. A modified version of the Weber set 6 containing 325 markers

from 22 autosomes with at an average spacing of 11 cM was used for the

genome-wide screen. Complementary marker information can be found at:

http://humgen.med.uu.nl/publications/jonathan2002_2/index.html. The

Table 1. Summary of results.

Locus Method LOD Previously described in literature
1q VC-analysis/

ASP-analysis
1.5
0.7

Linkage studies in T2D (Elbein et al. 1999;
Hanson et al. 1998; Meigs et al. 2002;
Wiltshire et al. 2001)

11p ASP-analysis 1.5 Implicated in candidate gene analysis for
T2D (Hani et al. 1997; Huxtable et al. 2000;
Ong et al. 1999)

11q VC-analysis 2.3 Linkage studies in T2D (Hanson et al. 1998;
Norman et al. 1997)

12q ASP-analysis 1.7 Linkage studies in T2D (Bektas et al. 1999;
Mahtani et al. 1996)

18p11* ASP-analysis 2.3 Linkage study in T2D (Parker et al. 2001)

T2D = type 2 diabetes, * van Tilburg et al. unpublished data
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markers were analyzed as described by van Tilburg et al. (unpublished data).

Statistical analysis. QTL analysis was performed using the multipoint vari-

ance-component (VC) method implemented in GENEHUNTER 2.0 soft-

ware (Pratt et al. 2000), assuming an additive model and applying all-pos-

sible-sib-pairs (unweighted) analysis option. The VC method assumes that

the expected genetic covariance between relatives for a trait is a function of

the estimated proportion of alleles shared identically by descent (IBD) at a

linked marker locus. The IBD probabilities were estimated using a multipoint

approach that considers all available genotypes. The likelihood-ratio test was

applied to test the null hypothesis of no additive genetic variance due to a

QTL at a particular location. Linkage analysis in type 2 diabetes patients with

high BMI was performed using MAPMAKER/SIBS software 2.0 package

(Kruglyak and Lander 1995) and is described elsewhere (van Tilburg et al.,

unpublished data).
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Introduction
Genes involved in insulin signalling and insulin response are excellent

candidate genes for type 2 diabetes mellitus (T2D). Generally, genes are cho-

sen on the basis of the existing knowledge of glucose homeostasis, and often

dysfunction of the gene would be predicted to lead to either insulin resistance

or impaired insulin secretion or both. The approach would then consist of

finding a significant association between diabetes mellitus and a functional

polymorphism in the proposed candidate gene. Alternatively, a finding could

consist of an association between a polymorphism and a dysfunction in one (or

more) of the mechanisms involved in glucose homeostasis (e.g. insulin sensi-

tivity or secretion). In general, this is achieved by comparing a significant

number of unrelated T2D patients with a control group. To date, over 250

candidate genes have been studied for their role in T2D (DeFronzo 1997).

The majority of these studies have failed to uncover any association. However

during recent years it has also become clear that this method may be powerful

especially if it is used to uncover the impact of rather common variants that

exert relatively small effects on the phenotype.

Studies involving polymorphisms of the insulin receptor, insulin receptor

substrates, the glucagon receptor, and the sulfonylurea receptor (SUR), which

is a constituent of the K
ATP

 channel of the pancreas β-cell (John et al. 1998),

have been somewhat more successful.

The sulphonylurea receptor 1 (SUR1) has been proposed as a candidate

gene for type 2 diabetes mellitus. The SUR1 is a major determinant of normal

glucose induced insulin secretion in the beta-cell, and is target for the sulfo-

nylurea type medication. Previous studies showed that in some populations

an association could be found between a single nucleotide polymorphism (SNP)

of exon 16 (SNP16) of SUR1 with type 2 diabetes mellitus. ‘t Hart et al.

(1999) reported an association of the SNP16-3t variant with T2D, showing

that the genotype frequencies between controls and Dutch Caucasian T2D

patients, from two different cohorts (Rotterdam and Hoorn), differed signifi-

cantly from controls (p<0.05). This effect was even stronger when allele fre-

quencies of the t-variant, rather than genotype frequencies, were compared
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between T2D patients (0.42) and controls (0.48) (p=0.01).

Materials and methods
The patient materials used for the candidate gene analysis are described in

chapter 2 of this thesis. The DNA was extracted from 10 ml of blood using

standard procedures (Miller et al. 1988). The described variant SNP16-3t of

SUR1 was examined by a PCR-RFLP based method as described by Hansen et

al. (1998). All 542 DNA samples were analysed twice, in independent assays.

The correctness of the alleles was confirmed by sequencing of 9 samples, three

samples, one from each genotype group, were used as control-standards in

every assay. Apart from the 542 T2D patients, 150 control subjects were in-

cluded in the analysis of the SUR1 polymorphism. Examples of the assay are

depicted in figure 1.

Statistical analysis
Differences between groups were compared with a χ2 test with two de-

grees of freedom, for both the genotypes and the allelic frequencies. A p-value

< 0.05 would be considered to be significant. As a measure of the relative risk

of the different alleles the Odds ratio (OR) was calculated, together with the

95% confidence interval (95% CI). The SNP16 polymorphism was analyzed

using 542 type 2 diabetes patients from the Breda Study Cohort. The charac-

teristics of this cohort are described in chapter 2 of this thesis. To determine

the normal frequencies of the variations in the Dutch general population 150

control subjects were screened. Due to PCR failure of certain samples or samples

only scored in one of the in independent assays, only 523 T2D patients of the

542 T2D patients were fully typed. The genotype and allele frequencies for

SNP16-3t of the 523 T2D patients are presented in table 1, next to the re-

sults of  ‘t Hart et al. (1999). No association was observed between the t-

variant of SNP16 and T2D in our cohort of patients (p=0.10).
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Figure 1. PCR-RFLP analysis of the SUR1
exon 16-3t polymorphism, PCR products
were digested with PstI. c/c = wild type, c/t
= heterozygotes, t/t = mutant type

Discussion
This study was undertaken in order to investigate whether an association

can be found between a relatively common polymorphism of the sulphonylurea

receptor 1 (SUR1) and type 2 diabetes mellitus. The studies indicate that in

our cohort, no association could be found between the polymorphism and

type 2 diabetes mellitus. The frequency of SNP16-3t of the SUR1 did not

differ significantly (p=0.42) between our control population and the control

populations used by ‘t Hart et al. (frequencies 0.46 and 0.41, respectively).

Whereas this SNP16-3t variant was significantly increased (p=0.01) in cases

compared to controls in the studies of ‘t Hart et al.’s study, such an increased

frequency was not observed in our Breda study; if anything a slight decrease

was found (p=0.10).

There are several possible explanations for this difference. Firstly, the pa-

tients involved in these studies might differ from patients in other studies.

The t-variant of the SUR1 gene does not create irregular splice variants (Inoue

et al. 1996) but may be associated with functional changes in the ATP-sensi-

tive K+ channel in insulin-secreting pancreatic β-cells. Since the oral agents

mostly used for type 2 diabetes (the socalled sulphonylurea derivatives) act

via this SUR1, one might speculate that carriers of the polymorphism would

have worse metabolic control than other diabetic subjects without the poly-

morphism. Hence, carriers would be more prone to be insulin users. In our

Breda cohort, which is a general practitioner driven cohort, patients are mainly

managed with diet or SU medication, and only 9.4% of our patients receive

pGEM
Un-

digested c/c c/t t/t
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insulin. It cannot be excluded that the cohort used by ‘t Hart et al. comprised

more patients using insulin, giving rise to a higher presence of the t variant in

patients than in controls. Assuming that the t-variant of the SUR1 gene is

associated with functional changes in the ATP-sensitive K+ channel in insu-

lin-secreting pancreatic β-cells, functional studies could provide further in-

sight into the effect of this t-variant on insulin-secreting pancreatic b-cells.

Indeed, in recent studies ‘t Hart et al. showed that the carriers of the polymor-

phism showed less insulin secretion during a standard hyperglycemic clamp

than controls (t Hart et al. 2000).

Secondly, the use of different populations may possibly make a difference.

‘t Hart et al. sampled from two different populations, namely Rotterdam and

Hoorn. The difference between our results and those of ‘t Hart et al. resides

almost entirely in the Rotterdam patient group, with no contribution from

the Hoorn cohort. Amongst the patients from the Rotterdam cohort there is

an increased frequency of the c/t genotypes (0.57), as compared to the fre-

quency in patients from the Hoorn cohort and the Breda cohort (0.51 and

0.46 respectively).

Another possible explanation may lie in the stratification or population

admixture. Positive association can also arise as an artefact of population ad-

mixture. This problem has afflicted many association studies performed in

inhomogeneous populations ranging from the population of metropolitan Los

Angeles to Native American tribes (Lander and Schork 1994; Pritchard and

Rosenberg 1999). Rotterdam is home to the world’s largest port and has a

mixed population arising from its long-standing migrant and immigrant popu-

lations.

A combination of all three points may explain the difference between the

results reported by ‘t Hart et al. and our results from the Breda cohort.

In conclusion, it appears that the SUR1 exon 16 t-allele is not a risk factor

for developing type II diabetes in the Breda cohort of 523 patients with an

apparently low insulin use. It will be of great interest to see if this t-allele is

associated with type II diabetes mellitus and insulin use.
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Abstract
OBJECTIVE: To investigate the possible association of the Glu27 variant of

the beta2-adrenergic receptor (B2ADR) and obesity in type 2 diabetes melli-

tus subjects from a Dutch cohort; to investigate the influence of this polymor-

phism on metabolic control and on plasma lipids in these type 2 diabetes

subjects.

RESEARCH DESIGN AND METHODS: The Glu27Gln polymorphism

(SNP27) of B2ADR was examined by a PCR-RLFP based method in 542

DNA samples of type 2 diabetes mellitus patients. Body Mass Indexes, HbA1c,

and plasma cholesterol, HDL-cholesterol, and triglyceride levels were com-

pared between the three genotype groups using ANOVA with age and gender

as covariates.

RESULTS: ANOVA of the three genotype groups showed no statistically sig-

nificant differences in BMI, age at diagnosis of diabetes, HbA1c, or in plasma

lipids (all p>0.10). After exclusion of the insulin treated subjects, once more

the differences were not statistically significant. Assessment of women and

men separately did not alter the results.

CONCLUSION: The Glu27Gln polymorphism has not important effect on

BMI in type 2 diabetes mellitus, neither in men nor in women. It has also no

appreciable effect on HbA1c, or plasma lipids.

Since type 2 diabetes mellitus is strongly associated with obesity, putative

obesity related genes are good candidate genes for type 2 diabetes.

Adrenergic receptor genes are candidate genes for obesity because they

regulate lipid mobilization, energy expenditure and are involved in glycogen

breakdown. It has previously been demonstrated that the beta2-adrenergic

receptor (B2ADR: OMIM 109690) is involved in the transmission of adren-

ergic stimuli in the vasculature and in bronchioli (Barbe et al. 1996; Szefler et

al. 1991). In adipose tissue, this receptor is notably involved in the adrenergic

signal leading to increase in lipolysis, and has therefore been suggested to

play a role in obesity (Barbe et al. 1996). A small number of studies have

indicated an association between a single nucleotide polymorphism (SNP) in
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codon 27 (SNP27) of B2ADR with obesity in non-diabetic (Swedish) subjects

(Ehrenborg et al. 2000; Large et al. 1997). In a group women (Large et al.

1997), but not in men (Hellstrom et al. 1999), the Gln27 variant of SNP27

was markedly associated with obesity, with homozygotes having an average

fat mass excess of 20 kg. Since the beta-2 adrenergic receptor is involved in

lipolysis, various authors have addressed whether the polymorphism has a

relationship with plasma lipid levels. Ukkola et al. ( 2001) found an influence

of the variant on plasma total cholesterol in non-diabetic subjects. Carlsson et

al. (2001) reported an association of the Gln variant with plasma Non-Esteri-

fied Fatty Acids (NEFA) in type 2 diabetes. In apparent contrast with this,

others have reported an association of the Glu variant with plasma triglycer-

ides (Rosmond et al. 2000), and cholesterol (Ehrenborg et al. 2000) in non-

diabetic subjects.

We performed a study in a large group of type 2 diabetes subjects, to

assess the possible relationship of the SNP27 of B2ADR with obesity, and

with plasma lipids, in our Dutch Breda Cohort of type 2 diabetes mellitus

patients. Detailed knowledge about this possible association may not only

have an impact on our appreciation of the development of type 2 diabetes

mellitus, but may potentially also have implications for its management.

Research design and methods
Subjects with type 2 diabetes mellitus were recruited in collaboration with

their general practitioners and the Diabetes Service of the city of Breda, which

is the only regional laboratory service for the western part of the North Brabant

county in the Netherlands. Since 1990 the Diabetes Service Breda has col-

lected clinical and biochemical data on more than 13,000 patients with type

2 diabetes mellitus. Initially, 4,000 possible participants were asked at ran-

dom to take part in this study, if they had at least one sibling affected by type

2 diabetes. DNA was obtained from 542 type 2 diabetes mellitus patients,

the majority of whom had at least one affected sibling; all were diagnosed

with diabetes mellitus after the age of 35 years according to WHO criteria.

Of each family only one subject took part in the studies. The Medical Ethics
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Committee of the University Medical Center in Utrecht approved our study

protocol and all the participants signed an informed consent. The partici-

pants’ clinical parameters are shown in Table 1.

HbA1c and fasting plasma cholesterol, HDL cholesterol and triglycerides

were obtained, and measured in one laboratory (Diabetes Service Breda).

The DNA was extracted from 10 ml of blood using standard procedures

(Miller et al. 1988). The single nucleotide polymorphism 27 (SNP27), which

leads to a Glu to Gln substitution, of the beta-2 adrenergic receptor (B2ADR)

gene was examined by a PCR-RLFP based method as described by Large et al.

(1997). However, the assay by Large et al. used the restriction enzyme ItaI

whereas we used the restriction enzyme Fnu4H1, which had no influence on

the assay because both enzymes recognise the same restriction site. All 542

DNA samples were analysed twice, in independent assays. The alleles were

confirmed by sequence analysis of 20 samples; three of these (previously se-

quenced) samples, one from each genotype group, were used as control-stan-

dards in every assay.

Table 1. Clinical characteristics of all participating subjects with type 2 diabetes mellitus
(total of 542)

Women (n=296) Men (n=246)

Age (y) 70 ± 9 69 ± 9

Age at diagnosis (y) 61 ± 9 60 ± 9

Years of disease (y)# 10 ± 6 10 ± 6

Height (m) 1.63 ± 0.06 1.75 ± 0.07

Weight (kg) 75.5 ± 14.1 83.7 ± 12.2

BMI (kg/m2) 28.5 ± 4.8 27.2 ± 3.4

HbA1c (%) 7.3 ± 1.1 7.3 ± 1.3

HDL cholesterol (mmol/l) 1.2 ± 0.3 1.1 ± 0.3

Total cholesterol (mmol/l) 5.5 ± 1.1 5.1 ± 1.0

Triglycerides (mmol/l) 1.9 ± 0.9 1.8 ± 1.0

Insulin use (yes/no/unknown) 30/264/2 22/222/2

Data is given as mean ± SD
#Duration in years of the disease from age at diagnosis
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Statistical analysis
ANOVA of BMI, age at diagnosis of diabetes, HbA1c, and plasma lipids

was performed on all subjects with age and gender as covariates (table 2).

Since insulin treatment is associated with weight gain, ANOVA was repeated

after exclusion of the subjects who used insulin treatment (9.4%). Since the

data of Large et al. (1997), and Hellström et al (1999) would suggest that this

polymorphism may have a different effect in women as compared to men, the

analyses were also performed for women and men separately.

If a population is in Hardy Weinberg equilibrium (HWE), the observed

genotype frequencies will conform to p2 + 2pq + q2=1, where p2 = freq (Gln/

Gln), 2pq = freq (Gln/Glu), and q2 = freq (Glu/Glu). To determine whether

the population used is in HWE, the p and q values of the population (ob-

served data) were compared with the expected genotype frequencies (if the

population were in HWE) using a χ2 goodness of fit test, with two degrees of

freedom.

Table 2. Comparison of age, age at diagnosis of diabetes, BMI, HbA1c, and plasma lipids in
502 type 2 subjects subdivided according to the beta2-adrenergic receptor gene Glu27Gln
polymorphism.

Gln/Gln Gln/Glu Glu/Glu

Number  (men/women) 109 (58/51) 225 (101/124) 168 (72/96)
Age (y) 70.5 ± 9.9 70.3 ± 9.0 70.0 ± 8.7
Age at onset (y) 60.6 ± 10.1 60.3 ± 9.1 60.6 ± 9.0

BMI (kg/m2) 27.2 ± 3.8 27.9 ± 4.4 28.2 ± 4.0
HbA1c (%) 7.2 ± 1.4 7.4 ± 1.3 7.2 ± 1.2
HDL cholesterol (mmol/l) 1.2 ± 0.3 1.1 ± 0.3 1.2 ± 0.3

Total cholesterol (mmol/l) 5.3 ± 1.2 5.3 ± 1.0 5.3 ± 1.0

Triglycerides  (mmol/l) 1.8 ± 1.1 1.9 ± 0.9 1.9 ± 0.9
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Results
The SNP27 of B2ADR was investigated in 542 type 2 diabetes mellitus

patients in order to study if there was an association between the polymor-

phism and obesity.

After exclusion of PCR failures, and of samples in which only scores in

one of the two independent assays had been obtained, 502 type 2 diabetes

mellitus patients were fully typed. Our study population was in Hardy-

Weinberg equilibrium.

ANOVA of age of diagnosis of type 2 diabetes, BMI, HbA1c, and plasma

lipids showed no statistically significant differences between the three geno-

type groups (with age and gender as covariates) (Table 3). After exclusion of

the insulin treated subjects, once more the differences were not statistically

significant.

Since the data of Large (1997) and Hellström (1999) would suggest that

this polymorphism may have different effects regarding obesity in women as

opposed to men, we also performed separate analyses of men and women (Table

3). However, again, no statistically significant differences were found.

Table 3. P-values for the assessment (ANOVA) of the influence of the beta2-adrenergic receptor
gene Glu27Gln polymorphism on BMI, HbA1c, and plasma lipids in type 2 diabetes subjects.
Data is given for all subjects and for the non-insulin-treated subjects separately.

All subjects
(including insulin use)

Subgroup
(without insulin use)

Total Men Women Total Men Women

Number 502 231 271 454 210 245
Age at diagnosis (y) 0.59 0.15 0.71 0.79 0.45 0.79
BMI (kg/m2) 0.26 0.12 0.73 0.29 0.12 0.63
HbA1c (%) 0.27 0.38 0.59 0.18 0.38 0.45
HDL cholesterol
(mmol/l)

0.40 0.16 0.34 0.60 0.16 0.47

Total cholesterol
(mmol/l)

0.75 0.88 0.50 0.84 0.88 0.66

Triglycerides
(mmol/l)

0.96 0.67 0.51 0.77 0.67 0.86

ANOVA was performed with age and/or gender as the covariate(s).
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Conclusions
This study was undertaken to assess whether we can find an association

between SNP27 of the B2ADR gene and obesity in a large group of type 2

diabetes mellitus. We also addressed the possible relationship of this poly-

morphism with age of diagnosis of diabetes, metabolic control, and plasma

lipids.

BMI values between the three genotype groups were compared using

ANOVA with age and gender as covariates. No statistically significant differ-

ence was observed between the various groups, this was also seen after exclu-

sion of the insulin treated subjects. This implies that, at least in our cohort of

subjects with type 2 diabetes mellitus, this polymorphism of the beta2-adr-

energic receptor has no important effect on body mass index. We also found

no effect of the polymorphism on age of diagnosis of diabetes, on metabolic

control or plasma lipids.

So far, an association of the polymorphism has only been found in Swedish

(non-diabetic) subjects (Ehrenborg et al. 2000; Hellstrom et al. 1999; Large et

al. 1997), while others found no such association in Caucasians (Evans et al.

2001; Oberkofler et al. 2000; Rosmond et al. 2000). This polymorphism is

less prevalent in Korean and Japanese ethnic groups than in Caucasians, and

was not found to be associated with obesity in them (Hayakawa et al. 2000;

Iwamoto et al. 2001; Kawamura et al. 2001; Kim et al. 2002).

Various explanations are possible for the differences found between the

various studies. First, Large et al. (1997) and Hellström et al. (1999) studied

healthy women and men  in whom diseases such as diabetes mellitus, or hy-

pertension were excluded. In contrast, our subjects were diagnosed with type

2 diabetes mellitus and were substantially older. It is therefore possible that

the association found by Large et al. is specific for non-diabetic obese women.

Whether some of these relatively young subjects (average age around 40 years)

would later develop diabetes is, of course, uncertain. The female cohort from

the Breda Study is (almost) twice the size of the one studied by Large et al.

(1997). Hellström et al. (1999) found a protective association for the Glu27

variant of SNP27 in men; we were not able to confirm such an association in
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the Dutch type 2 diabetes mellitus men. However, the men in the studies of

Hellström et al. were (on average) 27 years younger and they were non-dia-

betic. Whether the protective effect of the Glu27 polymorphism as observed

by Hellström et al. is an age-dependent effect, with other age-related effects

overruling this potentially protective effect in our cohort, remains specula-

tive.

We also addressed the possible relationship of the polymorphism with

plasma lipids in our type 2 diabetes subjects, and found no such relationship.

In a study involving 284 Swedish men, Rosmond (2000) found an association

of the homozygous Glu27Glu genotype with elevations in plasma triglycer-

ide, while Ehrenborg (2000) reported an association of the Glu variant with

elevations in cholesterol and triglyceride levels in a study involving 180 healthy

men. In the only study involving the relationship of plasma lipids with the

polymorphism in siblings with type 2 diabetes, Carlsson et al. (2001) found

no such relationship for total and HDL-cholesterol and triglycerides. How-

ever, in apparent contrast to the previous data involving the Glu variant

(Ehrenborg et al. 2000; Rosmond et al. 2000), Carlsson observed a small effect

of the Gln variant on plasma NEFA (Carlsson et al. 2001). We have not mea-

sured NEFA, but also found no effect of the polymorphism on the other plasma

lipids.

In conclusion, the current data can only lead to the conclusion that they

exclude large differences in BMI between carriers of the Glu27 variant as

compared to the carriers of the Gln27 variant of the B2ADR gene in patients

with type 2 diabetes mellitus. This polymorphism has also no appreciable

effects on metabolic control or plasma total and HDL-cholesterol and triglyc-

erides in our cohort.
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Introduction
Type 2 diabetes mellitus or non-insulin-dependent diabetes mellitus

(NIDDM) accounts for approximately 90% of all diabetes mellitus cases world-

wide and arises from three separate causes. These are: resistance of insulin

action on glucose uptake in peripheral tissue, particularly skeletal muscle and

adipose tissue; impairment of insulin action to inhibit hepatic glucose pro-

duction, and dysregulation of insulin secretion (DeFronzo 1997).

Type 2 diabetes mellitus is a very common disease, rising to an incidence

of more than 15% in persons older than 65 years; it has serious complications

and reduces life expectancy by an average of 8-10 years. It is rapidly becoming

one of the major diseases within the European Union (EU), while over 150

million people are affected worldwide. It has been estimated that the overall

prevalence will rise to 40% by 2010 (McCarthy and Zimmet 1994). Type 2

diabetes mellitus is difficult to treat and expensive to manage. Patients have a

high risk of developing a range of complications leading to disability and

premature death. These complications are the main cause of end stage renal

disease, blindness, and lower limb amputation in the elderly.

Type 2 diabetes mellitus appears to be a disease with a complex inherit-

ance patterns and is considered a multifactorial disease due to the interplay of

genetic factors and external factors (DeFronzo 1997; Kahn et al. 1996). The

genetic factors raise the risk approximately 3.5 times above the general popu-

lation risk for first-degree relatives within families in which one or more type

2 diabetes mellitus patients are already present. As a consequence, the disease

frequency within families is much lower than for fully penetrant Mendelian

disorders so that large pedigrees segregating the disease are hard to find. Fur-

thermore, the current rapid changes in disease prevalence worldwide cannot

be due to changes in genetic predisposition but must be environmental in

origin. These changes may reflect an extant genetic predisposition being chal-

lenged by changing or new environmental and life-style factors, the most

important of which are diet and exercise. However, demographic factors such

as better access to health care and an aging population are also involved in the

disease aetiology. Nonetheless, the strongest risk factor is the ethnic back-
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ground of a population (e.g. Pima Indians have a 50% risk of developing type

2 diabetes mellitus) (for excellent reviews see Marx 2002; Zimmet et al. 2001;

Zimmet 1999).

An elucidation of the molecular background of the pathology of type 2

diabetes mellitus using a genetic approach will help us to focus on the under-

lying causes of the disease, and may also provide new insights for modifying

diagnostic treatment and improving prevention.

Common variants and rare variants
In contrast to Mendelian traits, the expected patterns of genetic variation

in the genes underlying complex traits are far more blurred. Although a vast

amount of literature is available on various genetic models for complex traits,

relatively little is known about the specific genetic variants that underlie these

traits (Cargill et al. 1999; Chakravarti 1999; Lander 1996). Two major mod-

els make opposing predictions about the nature of genetic variation underly-

ing complex traits, namely the “common disease–rare variant” (CD/RV) model

versus the “common disease–common variant” (CD/CV) model. Common and rare

variants are expected to be detected at different rates. If most variation is

principally maintained by recent mutations, then they are likely to be rare,

comparable with Mendelian traits, but there may be many of them. If most of

the genetic variation is principally maintained by some form of balancing

selection, each allele contributing to that variation is likely to be common

but the actual number of these alleles is likely to be relatively small.

The CD/RV model predicts that phenotypic variation in complex traits

will be caused by numerous, individually rare, genetic variants at multiple

loci (Collins et al. 1997; Lander 1996; Pritchard 2001). Most populations,

however, will harbour many distinct genetic variants, and these variants taken

together may have a total frequency that is substantial. Although because any

individual variant is rare, these variants are unlikely to be shared among sub-

populations. Risch (2000) stated that rare alleles (<5% frequency) are most

likely to be population-specific, and that common alleles (>10% frequency)

are more likely to be found globally.
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The CD/CV model predicts that the number of variant sites will be few at

any particular locus, but have relatively common allele frequencies in the

overall population and be shared across multiple subpopulations (Cargill et al.

1999; Chakravarti 1999; Lander 1996).

In practice neither of these extremes is likely to hold sway and a mixture

of the two is the more likely scenario, with the rare alleles defining differences

between populations and the common alleles resulting in a general discrete

genetic disposition. Extensive discussion of the accuracy of these models must

await the definition of enough rare and common disease-causing alleles to be

able to assess the magnitude of their relative contribution.

It is recognised that the chances of detecting a significant association (link-

age) between a variant (allele) and the disease is much greater if the allele is

rare, particularly in situations where the allele frequency approximates the

disease prevalence and few “healthy” persons carry the allele unlike the major-

ity of the diseased persons. In contrast, although some common alleles may

make a greater individual genetic contribution than rare alleles, this is prob-

ably more difficult to demonstrate due to the large number of “healthy” per-

sons carrying the allele. In addition, both rare and common genetic variants

are probably also affected by environmental risk factors.

What are the implications of these two different models in the search for

genes in type 2 diabetes mellitus? As described in chapter 1, two common

genetic approaches can be used to find the genetic variants (alleles) involved

in the aetiology of type 2 diabetes mellitus, namely association studies be-

tween the disease phenotype and sequence variants in defined candidate genes

and a genome-wide scan using highly polymorphic markers to identify chro-

mosome regions harbouring disease-risk genes. In the CD/RV model, it is

unlikely that association studies can be used, because they would probably

miss most of the variants involved (see section: The correct variant). However,

using a linkage approach (e.g. a genome-wide scan, see section: Genome-wide

scan) it should be possible to identify the genes involved, even if the variants

are rare. A consequence of the latter approach is that the population under

study needs to be homogenous and preferably isolated (e.g. described by Vaessen
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(2001)), so that the rare variants are more common in the selected population.

On the other hand, the CD/CV model opens the door to genome-wide asso-

ciation studies for type 2 diabetes mellitus and other “common” complex

diseases.

Association studies
Advances in our understanding of the physiology of nutrient regulation

and of diabetes pathogenesis are generating a constantly expanding list of

candidate genes that play a potential role in the pathways involved in insulin

control, glucose homeostasis, adipose tissue metabolism or in the develop-

ment of the pancreatic β-cell. The screening of these genes for sequence vari-

ants that may associate with type 2 diabetes mellitus is an important compo-

nent of diabetes research. The function of the majority of human genes (>70%)

is still unknown, so that statistically it is much more likely that a gene of

unknown function will prove to be the “correct” candidate (see section: The

correct variant).

The sequence variants can be of various types. Firstly, specific changes in

coding sequences give rise to various influences on the protein level. A pre-

mature stop can be introduced causing dysfunction of the protein, although

this is very unlikely to be the cause in complex traits such as type 2 diabetes

mellitus. It is more likely that the change is subtle, and involves a missense

mutation giving rise to molecular changes such as incorrect folding of the

protein and thereby altering the function. Secondly, specific changes in regu-

latory sequences give rise to modified expression levels of the protein that

contribute to the disease phenotype. Thirdly, the changes in coding or adja-

cent non-coding sequences may be neutral in their contribution to disease

phenotype but may be in linkage disequilibrium (LD) with a yet unrecognised

functional variant. Generally, an association study involves comparing the

allele frequency of a given variant between a random sample of unrelated type

2 diabetes mellitus patients with a matched control group. Statistically sig-

nificant differences in allele frequency between control and patient groups

may indicate a contribution of the given variant to the disease phenotype.
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Susceptibility effects have been claimed for variants in some of the gene

products involved in insulin secretion or insulin action, such as insulin recep-

tor substrate-1 (IRS-1) (Almind et al. 1993;  1996; Porzio et al. 1999), the

glucagon receptor (Hager et al. 1995; Hansen et al. 1996; Lok et al. 1994), the

sulfonylurea receptor (SUR) (Hani et al. 1997; Inoue et al. 1996; t Hart et al.

1999), the peroxisome proliferator-activated receptor-γ (PPARγ) (Altshuler et

al. 2000; Hegele et al. 2000) and the mitogen-activated protein kinase 8-

interacting protein 1 (MAPKBIP1) (Waeber et al. 2000).

The role for these candidate genes seems to be limited to a small percent-

age of type 2 diabetes mellitus patients or to specific populations (So et al.

2000; Velho and Froguel 1997). This limited success may result from two

situations, as discussed in the next section.

The correct variant

Following discovery of an association between a given variant and the

disease, the major question to be addressed is whether it is the correct variant.

The sequence variant may only present in one or a limited number of popula-

tions, even though the candidate gene concerned contributes to disease sus-

ceptibility in all populations (see section: Common variants and rare variants). So

multiple sequence variants within the same gene are associated with the dis-

ease (allelic heterogeneity, see also section: Complexity of type 2 diabetes mellitus),

and the correct variant in one population may therefore not be the correct

variant in another population. Thus, it is also possible that the correct variant

is in linkage disequilibrium (LD) with the variant under study.

Furthermore, most studies focus only on the coding region of the candi-

date gene, although the variant could be located in a regulatory gene sequence

region. These regulatory sequences may be the location of the true variants

concerned in type 2 diabetes mellitus. However, if there is strong LD between

certain variants in the gene and the correct variant in the regulatory sequence,

it should still be possible to find an association. On the other hand, it is

known that LD may vary between populations (see reviews (Ardlie et al. 2002a;

Pritchard and Przeworski 2001; Wright et al. 1999)), which may be due to
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differences in recombination, to a different historical set of events giving rise

to the LD in the first place, or to differences in mutation frequency.

The correct gene

The other problem limiting success of the candidate approach in type 2

diabetes mellitus is that the researchers have failed to study the “correct”

candidates genes because they are involved in, as yet, unknown pathways. As

mentioned above, the function of the majority of human genes is still un-

known, and it is much more likely that an unknown gene is involved in type

2 diabetes mellitus than a known gene.

This may be true for the genes considered in chapters 5 and 6, for which

no association was found between the candidate genes described and type 2

diabetes mellitus.

Replication of a reported association

A complication in the interpretation of candidate gene studies in type 2

diabetes mellitus has been the proliferation of small studies often resulting in

isolated reports of positive associations that have proved difficult or impos-

sible to replicate (Ardlie et al. 2002b; McCarthy and Froguel 2002). Explana-

tions for this lack of reproducibility can be found in small sample size or

incorrect assumptions about the underlying genetic architecture, leading to

inappropriate subgroup analysis and multiple testing, and often the use of

poorly matched control groups (as mentioned in chapter 6, e.g. the control

group used by Large et al. (1997) and (Cardon and Bell 2001).

This lack of reproducibility has led various authors to suggest that future

association studies with candidate genes should meet a minimum of five cri-

teria for the study design. These criteria include: (1) a justifiable biological

rationale; (2) appropriate selection and sampling of both cases and controls;

(3) rigorous and well documented phenotyping and genotyping procedures;

(4) large sample sizes; and (5) physiologically meaningful evidence support-

ing a functional role of the variant, by means of a transgenic study model that

produces the phenotypic effect, or a functional assay for that particular candi-
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date gene (Cardon and Bell 2001; Hegele 2002; Lander and Schork 1994;

McCarthy and Froguel 2002; Tabor et al. 2002). However, the last criterion,

involving the development of proper functional assays or the development of

the correct animal models, will slow down the research drastically.

Still, despite these known limitations, it has been claimed that the power

of association studies to detect a genetic contribution to a complex disease can

be much greater than that of linkage studies if the appropriate candidate genes

and gene variants are investigated (Risch 2000). This “correct” candidate can

also be chosen on the basis of the positional location found in linkage studies.

An even better approach would be to pick the correct candidate from more

elegant and comprehensive assessments of biological candidacy, e.g. through

expression profiling using microarrays involving significant up- and down-

regulation of transcription. However, it has not yet been demonstrated whether

this approach is feasible.

Genome-wide scan
The major drawback of the candidate gene approach is that it may not

lead to the identification of entirely new genes or pathways involved in type 2

diabetes mellitus. In order to identify new genes for the disease, genome-wide

scans using evenly spaced polymorphic markers need to be performed. Fur-

thermore, if the phenotypic variation in type 2 diabetes mellitus is caused by

numerous, individually rare, genetic variants at multiple loci, it will be im-

possible to find all these variants using the candidate gene approach.

The classic approach of gene localisation by linkage analysis in multi-

generational families is not the most suitable strategy for type 2 diabetes

mellitus, for several reasons. Firstly, there is the lack of a Mendelian inherit-

ance pattern. Secondly, the mean age of diagnosis is around 60 years, as a

consequence, one or both of the patient’s parents are often no longer available

for study. Thirdly, only affected individuals can be reliably used for linkage

studies because of the reduced and age-dependent penetrance.

It is therefore not possible to use parametric linkage analysis and non-

parametric analysis methods need to be applied, since these require no prior
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knowledge of the mode of inheritance of the disease, the disease allele (gene)

frequencies, or the disease penetrance (Lander and Schork 1994). Currently,

the most commonly used non-parametric approach is that of the affected sibpair

(ASP), which ideally requires pairs of affected siblings and parents (Holmans

and Craddock 1997). The ASP approach is the only convenient method of

analysis for type 2 diabetes mellitus because only one or two generations in a

family with this disease are normally available.

The basis of the ASP analysis is that individuals concordant for a given

genetic trait should show greater than expected concordance for marker alle-

les that are closely linked to the disease. The most frequently used measure of

concordance for two siblings at a locus is the number of alleles they share

identical-by-descent (IBD). This method is more extensively described in box 1

in chapter 1.

To date, various research groups have completed genome-wide scans for

type 2 diabetes mellitus using affected sibpairs (Ehm et al. 2000; Ghosh et al.

1999; Ghosh et al. 2000; Hanis et al. 1996; Hegele et al. 1999; Ji et al. 1997;

Watanabe et al. 2000; Zouali et al. 1997) or small multi-generational families

(Duggirala et al. 1999; Elbein et al. 1999; Hanson et al. 1998; Ji et al. 1997;

Mahtani et al. 1996). Combined with the findings from our Breda study, de-

scribed in chapters 3 and 4, the conclusion from all these studies is that

there is no common susceptibility locus for type 2 diabetes mellitus. The

genes involved are presumed to make individually small contributions to the

development of the disease aetiology (see below).

Replication of reported linkage

Due to the limited power of linkage analysis based on IBD (identity-by-

descent) mapping, a genomic region linked to a complex disease is generally

very broad (often 20-40 cM) and often only a suggestive statistical signifi-

cance is achieved (i.e., 1 < LOD < 3.6 (Lander and Kruglyak 1995)). Putative

linkage results in this range of significance should be confirmed using a sepa-

rate group of affected sibling pairs before being considered indicative of

localisation of a disease susceptibility locus. The lack of replication with ge-
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nome-wide scans may be one of the reasons why no common susceptibility

locus has been found for type 2 diabetes mellitus.

There are various reasons why the majority of putative loci may prove

hard to replicate: firstly, the ethnic heterogeneity, secondly, the complexity of

the disease itself, and thirdly, differences in diagnostic criteria or ascertain-

ment of the patients (use of subphenotypes).

Ethnic heterogeneity

It may be that disease-susceptibility genes are so numerous and their in-

teraction so varied and context-dependent that there is a unique profile of

disease alleles for each population (see section: Common variants and rare vari-

ants). As a result, identification of disease genes in one population may be

difficult to replicate in another population and false-positive findings will be

hard to resolve if effects are population-specific. Furthermore, some loci may

have a higher contribution to the disease aetiology in one particular popula-

tion than others (Horikawa et al. 2000). This can be best illustrated by the

findings of Helege et al. (Hegele 1999; Hegele et al. 1999), who showed that

a single nucleotide polymorphism (SNP) in the hepatic nuclear factor 1 alpha

(HNF-1-_) gene is associated with type 2 diabetes mellitus in the Oji-Cree

Indians. This finding has not been replicated in other type 2 diabetes mellitus

populations. This gene is also implicated in a relatively rare form of diabetes

mellitus, maturity-onset diabetes mellitus of the young (MODY) type 3, which

is characterised by monogenic, autosomal dominant segregation and early age

of onset. Similarly, Horikawa et al. (2000) found a SNP associated with type

2 diabetes mellitus in the calpain 10 (CAPN10) gene in Mexican Americans,

but various studies in other populations could not confirm this association

(Elbein et al. 2002; Evans et al. 2001; Hegele et al. 2001).

Complexity of type 2 diabetes mellitus

Most genomic regions linked to type 2 diabetes mellitus are generally

very broad (often 20-40 cM, see also chapters 3 and 4 for examples). These

regions may contain hundreds of genes, each with its own variants (common
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or rare), giving rise to a vast genetic human diversity. However the relevant

human diversity is also quite limited, in that most candidate genes have only

a handful of common variants in their coding regions, while the vast majority

of alleles are exceedingly rare. Mutational diversity at each locus is high; each

mutation is rare, having occurred in recent human history (no earlier than

2,000 years ago) (Chakravarti 1999; Lander 1996).

However, much less is known about the allelic spectrum for genes under-

lying common disorders such as diabetes or asthma (Reich and Lander 2001).

It is suspected that the mutations that lead to a complex phenotype occur at

multiple genes. There are a number of possible models of allelic architecture

to be considered in complex diseases like type 2 diabetes mellitus (Terwilliger

and Weiss 1998).

Model 1: allelic homogeneity

The simplest model for the allelic complexity of genetic disease is model

1; all disease-predisposing alleles at a given locus are identical-by-descent in

the population, having been derived from a common ancestor. In this model,

it is assumed that in a given gene there is one – and only one – disease-

predisposing allele and this allele has an identical etiological effect in all indi-

viduals, whether related or not (Terwilliger and Weiss 1998). To employ this

model for a complex disease such as type 2 diabetes mellitus, multiple genes

must be involved. The model can be tested directly in an association study,

particularly using single nucleotide polymorphism (SNP) analysis to look for

these alleles (as previously described).

Model 2: allelic heterogeneity

A more representative model for type 2 diabetes would be model 2, a

common gene where multiple unique, but functionally equivalent, alleles give

rise to the disease. Furthermore, multiple modifier genes may also influence

this common gene. This model can also be tested directly in an association

study, particularly using single nucleotide polymorphism (SNP) analysis to

look for linkage disequilibrium of the various alleles in such a gene. A more
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complex and more realistic variation of model 2 is that various alleles in the

gene might have different quantitative effects on the phenotype. Addition-

ally, there may also be various variants in the modifier genes leading to vari-

able expression of the common gene. However, if the latter is true, it will be

more difficult to find association between the variants and the disease unless

variants in regulatory or modifier gene sequences are also studied. To date no

such detailed studies have been published. The use of an association study

design in this model is therefore not advisable. On the other hand, using a

linkage approach it might be possible to pick up at least the common gene.

Model 3: locus heterogeneity

An even more complex model, model 3, that is probably closer to the

reality in type 2 diabetes mellitus, is the combined effect of a collection of

alleles (variants) in a set of key genes, plus environmental factors, which to-

gether determine whether an individual will suffer from type 2 diabetes mel-

litus (Chakravarti 1999; Lander and Schork 1994; Terwilliger and Weiss 1998;

Weiss 1998). The potential level of complexity for type 2 diabetes mellitus

and other ‘complex diseases’ could be enormous. According to the model, the

number of key genes could vary between a few, tens, or even hundreds (oligo-

genic or polygenic). This has implications on the success of finding loci in a

genome-wide scan. The relative risk for type 2 diabetes mellitus is ~ 3.5 (λ
r
,

risk of a relative compared with the risk of the general population), which

means that if tens or hundreds of genes are involved, the individual contribu-

tion of these genes will be very small and it may therefore be impossible to

find these genes at all. On the other hand, the multiplicity of genes underly-

ing the complex phenotype of type 2 diabetes mellitus allows genetic map-

ping of key genes with a relatively large contribution in a genome-wide scan

(see section: Genome-wide scan).

Furthermore, it is suspected that the mutations that lead to a complex

phenotype occur at multiple genes. It is also plausible that these genes have

pervasive interactions with each other, that is, dominance and epistasis. The

first is a genetic interaction between two alleles at a locus, such that the phe-
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notype of heterozygotes deviates from the average of two homozygotes. The

second, refers to any genetic interaction in which the combined phenotypic

effect of two or more loci is less than (negative epistasis) or greater than (posi-

tive epistasis) the sum of effects at individual loci (Barton and Keightley 2002).

The mixture of genetic and environmental factors increases the complex-

ity of type 2 diabetes mellitus even further. It will take a long time (if ever, if

the contributions of the genes involved are very small) before all the possible

variants are found, together with the various possible inter-actions. Linking

all the data to a suitable model will be a daunting challenge.

Subphenotypes

A possibility of increasing the power of a genome-wide scan approach is

the use of subphenotypes. As mentioned in chapter 1, type 2 diabetes melli-

tus often occurs together with obesity and hypertension, but each may have

its own genetic origin.

It is often debated whether it is better to attempt to perform positional

cloning of complex disease susceptibility genes using the total disease pheno-

type or a subphenotype such as insulin resistance or obesity. Analyses of

subphenotypes are potentially advantageous because the study group will be-

come more homogeneous and potentially fewer genetic determinants will be

involved than in the full disease phenotype. (See figure 1).

Most observable variation between individuals in disease susceptibility is

quantitative, with population variation often approximating a statistical nor-

mal distribution, such as body mass index (BMI). Subphenotypes are gener-

ally quantitative traits and may be more informative than the dichotomy of

affected versus unaffected persons. However, in contrast to traits controlled

by one or a few loci with large effects, variations in quantitative traits are

caused by segregation at multiple quantitative trait loci (QTL) with indi-

vidually small effects that are sensitive to the environment (model 3). For

complex traits, such as type 2 diabetes mellitus, the relationship between

genotype and phenotype is not simple, and QTL genotypes cannot be deter-

mined from segregation of phenotypes in defined crosses within human pedi-
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grees (Mackay 2001).
Figure 1. A possible schematic represen-
tation of the complexity of type 2 diabetes
mellitus (T2D). Genes A may have a direct
influence on the disease aetiology, or may
together with environmental factors (env)
influence other genes. Genes B may be in-
volved in impaired insulin secretion (IIS),
which in the end will lead to impaired glu-
cose tolerance (IGT). IGT will in the end
lead to T2D (obese driven or lean driven).
This is similar for genes F, which may be
involved in insulin resistance (IR). Genes
C, together with environmental factors
(such as a high fat diet) are involved in obe-
sity, one of the highest risk factors for de-
veloping “obese” T2D. Other genes, under

the influence of different environmental factors (stress) may also cause obesity, but may also
directly have an impact on “obese” T2D. Genes E may have a direct involvement in’“lean” T2D.
Furthermore, Genes D, E and F may have a combined effect (epistasis) on the disease aetiology.

Since the effects of individual QTLs are too small to be tracked by segre-

gation in pedigrees, QTLs are mapped in a similar way as described above

using the genome-wide scan approach. The principle of QTL mapping is simple

and was noted 80 years ago by Sax (1923). If a QTL is linked to a marker

locus, there will be a difference in mean values of the quantitative trait (e.g.

BMI) among individuals with different genotypes at the marker locus. If the

QTL and marker locus are unlinked, the mean value of the quantitative trait

will be the same for each of the marker genotypes. The closer the QTL and

marker locus, the larger the difference in trait phenotype between the marker

genotypes. The marker in a local region exhibiting the greatest difference in

the mean value of the trait is thus the one closest to the QTL (Mackay 2001).

Various subphenotypes (QTL) may influence type 2 diabetes mellitus (e.g.

obesity, hyperinsulinemia, insulin resistance and fasting C-peptide/glucose).

However, several factors make it difficult to estimate the true numbers and

effects of loci that influence a quantitative trait. Closely linked QTLs with

opposite effects tend to be missed. Similarly, closely linked QTLs with effects

in the same direction tend to give the appearance of a single QTL of larger
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effect. There is a lower limit for the phenotypic contribution of a QTL that

can be detected, which will vary according to the size of the experiment (number

of sib-pairs used) and the properties of the trait; real QTL with effects below

this lower limit nearly always remain undetected (Barton and Keightley 2002).

It would be very interesting to map these multiple QTLs or various sub-

groups and see if they are linked and/or interact with each other. It is therefore

necessary to study the genetics of QTLs in normal controls and in twin studies

to find the right cut-off point for the QTLs under investigation (e.g. the varia-

tion of insulin resistance in normal individuals is unknown). Interacting QTLs

are of particular interest as they indicate regions of the genome that might

not otherwise be associated with the disease using a one-dimensional search.

Although the concept of locating multiple, interacting QTLs is straightfor-

ward, implementation is quite difficult due to the huge number of potential

QTLs and their interactions within these subgroups. This will lead to innu-

merable statistical models and heavy demand on computational facilities.

In chapters 3 and 4, it was observed that the Breda study cohort con-

sisted of various arbitrarily defined subgroups of type 2 diabetes mellitus pa-

tients (a lean group and an obese group). One approach may therefore be to

compare genome-wide scans of patients with obesity as well as type 2 diabetes

mellitus with scans of patients having “only” one of these diseases, preferably

in the same ethnic population (Parker et al. 2001; Perusse et al. 2001).

Study design

Often the initial study design does not take into account the various

subphenotypes that can be analysed. This may indicate a possible disadvan-

tage of the subphenotype approach. A clear subphenotype description is needed

in which clear-cut parameters and standardised norms are used (non-affected

versus affected). For example, some authors may define obesity as BMI > 27

kg/m2, while others may use BMI >30 kg/m2 as a threshold, whereas others

may propose using measurements of visceral adiposity. A way to circumvent

arbitrarily defined cut-offs is to perform a genome-wide scan in at least 1,000

healthy subjects and to search for the “true” cut-off.
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Not incorporating a clear subphenotype in the study design often greatly

limits the numbers of relative pairs that can be obtained for a genomic scan

and linkage analyses for that particular subphenotype, and has consequences

for the power and the homogeneity of the obtained subphenotype. Given the

limited power of linkage analysis to localize genes for non-Mendelian traits,

having fewer relative pairs for analyses is a major drawback (Bogardus et al.

2002). On the other hand, obtaining a more homogeneous group will also

limit the variants involved (see section: Common variants and rare variants) and

therefore increase the power to detect linkage.

Locus position

It has also become clear that when two or more studies find suggestive

evidence for a particular region of the genome, there may be a large degree of

variation in the specific position that gives maximum evidence for linkage. A

priori, this variation might represent chance variation around a single genetic

signal, the presence of multiple genetic signals, or one or more false-positive

signals (Roberts et al. 1999).

It is suggested that the variability in maximum LOD position is substan-

tial for loci of complex disorders, such as type 2 diabetes mellitus, with 95%

confidence intervals covering tens of cM in samples consisting of relatively

large numbers of families. Notably, most studies use sample sizes of less than

200 families (Roberts et al. 1999), similar to the Breda study cohort described

in this thesis. This broad interval means that some studies which have claimed

to detect a unique locus within a chromosome region have not done so, but

they have detected the same locus as others, albeit with a different position for

their maximum LOD.

Alternatively, multiple positive replications for closely linked regions might

indicate that the findings are true and that the regions actually are multiple

susceptibility loci close to each other that should be further explored.
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Fine-mapping
What should be done if a putative linkage is replicated in additional stud-

ies? The first step is to narrow down the genomic region harbouring the puta-

tive susceptibility gene by means of fine mapping, which can be performed

by saturating the region with additional markers. The maximum power in an

affected sibpair approach (with no available parents) in type 2 diabetes melli-

tus was reached with an average marker spacing of 5 cM; adding more mark-

ers did not increase the power, because the maximum information was already

extracted from the markers.

Another method for narrowing the interval in which the disease gene may

lie is to use linkage disequilibrium (LD), or association testing, between ge-

netic markers and the disease. If most affected individuals in a population

share the same mutant allele at a causative locus, it is possible to narrow down

the genetic interval around the disease locus by detecting disequilibrium be-

tween nearby markers and the disease locus (see section: Common variants and

rare variants) (Jorde 1995; Lander and Schork 1994). However, the early ap-

plications of LD mapping were limited to rare diseases in a few favourable

populations.

LD mapping is performed using single nucleotide polymorphisms (SNPs)

since they are an abundant form of genome variation, occurring about every

1000 base pairs, and are mutably very stable (Gray et al. 2000; Wang et al.

1998). They are also mostly biallelic and thus easy to assay. More importantly,

SNPs allow the unification of a candidate gene approach and association-based

fine mapping to identify gene(s) of interest. They also aid in association of

linkage analysis to the phenotypic and genotypic data giving rise to haplo-

type analysis. Automated genotyping would be a major advantage since local-

ization of a susceptibility allele that has only a small phenotypic effect will

require genotyping of a large number of SNPs in a large number of individu-

als (Brookes 1999; Lai 2001).

The SNP analysis strategy can potentially narrow a broad region of link-

age (commonly 10-40 cM) to a physically small region of association (<1Mb)

for intensive and thorough analysis for possible candidate genes. The final
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step is to find functional variants within these genes to be associated with the

disease to pinpoint the right candidate gene.

The general sibpair approach followed by LD mapping to identify candi-

date genes for a complex disease was successfully used to find the diabetes

mellitus susceptibility gene CAPN10 (Horikawa et al. 2000; Wang et al. 1998)

and more recently, to identify polymorphisms in the NOD2/CARD15 gene

causing Crohn’s disease (Hugot et al. 2001) and to identify polymorphisms in

ADAM33, a putative asthma susceptibility gene (Van Eerdewegh et al. 2002).

SNPs at a frequency of less than 20% are of particular interest to research-

ers in complex diseases such as diabetes because it is presumed that the vari-

ant causing the disease should be at a frequency prevalent enough to represent

the frequency of the disease in the population.

SNPs can now be obtained for most genomic regions from public data-

bases (Sachidanandam et al. 2001) such as the SNP consortium (TSC). How-

ever, only a small percentage of the SNPs have been validated, that is, tested

on a significant number of chromosomes in order to derive an accurate allele

frequency for a given population. At this time the majority SNPs do not have

valid population frequency data but this will improve soon we hope. For ex-

ample, in January 2002, in a chromosomal region of 12.4 Mb, 5,714 unique

SNPs were analysed of which only 129 (2%) had been validated (had con-

firmed frequency information in a population sample). The same chromo-

somal region analysed in July 2002 contained 7000+ SNPs of which 494

(~7%) had some frequency information. So for the time being, far fewer than

10% of the SNPs in the database have been validated (M. Erdos, The Na-

tional Human Genome Research Institute, NIH, Bethesda, USA, personal

communication).

Also, gaps remain in the human genome draft sequence, leaving some

genomic regions with no known SNPs. To fill in these gaps with novel SNPs

for a particular positional cloning project is very time-consuming and costly.

How many SNPs need to be genotyped to definitively identify a disease-

associated locus is still under debate (Kruglyak 1999; Weiss and Terwilliger

2000). In some genes, there are multiple SNPs in varying degrees of linkage
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disequilibrium with one another, while in other areas, a high degree of link-

age disequilibrium extends over large genomic regions (Daly et al. 2001).

Thus, it remains unclear exactly what SNP density is required to find a dis-

ease-associated SNP (or SNPs). LD maps need to be established to see how

many SNPs are needed for a certain region (e.g. a large LD block needs fewer

SNPs). Another important question is whether the patterns of LD, obtained

by SNP analysis, found in one population will be replicated in other popula-

tions with a different population history (Gabriel et al. 2002; Reich et al.

2001; Zavattari et al. 2000).

However, to improve the rate of finding new susceptibility genes for com-

plex diseases, the construction of a reliable SNP linkage map will be neces-

sary. The volume of genotyping in LD studies will be enormous, particular if

the number of cases is large. Pooling the DNA of the cases and controls and

then estimating marker allele frequencies in each of the pooled samples could

reduce the workload and costs (Barcellos et al. 1997). However, the pooling

strategy does not allow haplotype analysis, so other techniques need to be

applied to find all the possible haplotypes, such as large family studies or the

use of somatic cell hybrids.

New and improved technologies, such as microarrays or mass spectros-

copy that can type thousands of SNPs in a single assay will be of great impor-

tance. Easy-to-use bioinformatic tools will also need to be developed to pro-

cess the vast amount of data generated by these types of studies.

Hopefully, combining these technologies, will narrow the list of poten-

tially biologically relevant genes to a relatively small number of candidates

involved in type 2 diabetes mellitus.

Future prospects
The semi-completion of the human genome project (HGP) has produced

a vast amount of new information, which will lead to annotation of all human

genes. The HGP will also circumscribe human variation and the extent and

distribution of linkage disequilibrium. Other follow-ups to the HPG will

include the initiation of functional studies on a genome-wide basis. These
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will give insight into the function of all human genes, the possible interac-

tions between various genes, and their involvement in various pathways asso-

ciated with different diseases. Such studies will also provide insight into tran-

scriptional regulation. It is not yet possible to efficiently integrate the various

types of data, so new and more sophisticated computational tools will be re-

quired to achieve this. Such tools should permit incorporation of expression

data from specific tissues with the possible interactions between genes and

with the possible interactions between genes and the environment.

In addition, it is important that much more wide-scale collaboration should

be established by sharing the available patient resources. This is particularly

acute in the field of diabetes research. Sharing patient samples would reduce

the cost of many studies because the collection and characterisation of patient

material is time consuming and expensive. For example, in our own case, we

were obliged to collect our own samples, despite the fact that the Dutch Dia-

betes Fund had previously financed the collection of diabetes samples for the

Hoorn and Rotterdam studies. There may, of course, be compelling reasons to

resample, such as inappropriate study design or not having DNA samples

from sufficient family members to carry out identity-by-descent estimates.

However, a critical evaluation should be made before yet another patient col-

lection is initiated.

A useful model for tackling this problem would be to adopt the existing

guidelines used by NIH, where patient collections are made available to other

studies for the purposes of confirming results or analysing new aspects, so

that resources are not wasted. This approach requires, of course, adjustment of

the initial aims in setting up studies so that the study criteria are broadly

established and samples can be used for several projects rather than only one.

Such an enlightened policy should be seriously considered by funding agen-

cies, which could implement such guidelines in the selection and assignment

of new grants. Such a policy would also promote more collaboration, both at

national and international levels.

For example, in the Netherlands although a large proportion of the avail-

able financial resources for research into type 2 diabetes mellitus has been put
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in to work on candidate genes in well-characterised population cohorts, there

are no possibilities for making the samples readily available to other research-

ers. The scientific boards of the funding agencies could decide on the appro-

priateness of allowing other individuals or groups to make use of the same

resources. A consequence of such a policy would be the need to standardise

the storage of patient information and biological samples, whilst always pay-

ing due care and attention to protecting the privacy of participants.

In conclusion, combining the results of genome-wide scans, followed by

association studies with genes found in the regions reported by the genome-

wide scans, will provide further significant new insights into disease aetiol-

ogy. Our own results demonstrate that a genome-wide scan can identify pre-

viously unknown loci and confirm previously describe regions. Hopefully,

subsequent association studies will be effective in defining new candidate

genes and pathways involved in type 2 diabetes mellitus.

Together with previously reported results, the results described in this

thesis will accelerate the efforts to identify the correct susceptibility genes

located in the regions described. Combined with new developments in the

fields of bioinformatics, genomics and proteomics, this will lead to a greater

understanding of the pathogenesis of type 2 diabetes mellitus. Identifying

new pathways involved in the disease aetiology may help determine new thera-

peutic targets and direct efforts to target therapies at relevant tissues.

There is little doubt that a detailed genetic dissection of type 2 diabetes

mellitus will lead to an improved classification of type 2 diabetes. Together

with new insights into pharmacogenetics, such genetic information will form

the basis for the design and development of new drug therapies based on

individual specificities rather than on a concept of type 2 diabetes mellitus as

a global, homogeneous disease. Only then will pharmacotherapy be able to

lead to an effective cure and/or prevention of type 2 diabetes mellitus.



Chapter 7

124

References

Almind K, Bjorbaek C, Vestergaard H, Hansen T, Echwald S, Pedersen O, Aminoacid
polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus.
Lancet, 1993. 342(8875): p. 828-32.

Almind K, Inoue G, Pedersen O, Kahn CR, A common amino acid polymorphism in insulin
receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J
Clin Invest, 1996. 97(11): p. 2569-75.

Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J,
Lane CR, et al, The common PPARgamma Pro12Ala polymorphism is associated with
decreased risk of type 2 diabetes. Nat Genet, 2000. 26(1): p. 76-80.

Ardlie KG, Kruglyak L, Seielstad M, Patterns of linkage disequilibrium in the human
genome. Nat Rev Genet, 2002a. 3(4): p. 299-309.

Ardlie KG, Lunetta KL, Seielstad M, Testing for population subdivision and association in
four case-control studies. Am J Hum Genet, 2002b. 71(2): p. 304-11.

Barcellos LF, Klitz W, Field LL, Tobias R, Bowcock AM, Wilson R, Nelson MP, et al,
Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum
Genet, 1997. 61(3): p. 734-47.

Barton NH, Keightley PD, Understanding quantitative genetic variation. Nat Rev Genet,
2002. 3(1): p. 11-21.

Bogardus C, Baier L, Permana P, Prochazka M, Wolford J, Hanson R, Identification of
susceptibility genes for complex metabolic diseases. Ann N Y Acad Sci, 2002. 967: p. 1-
6.

Brookes AJ, The essence of SNPs. Gene, 1999. 234(2): p. 177-86.
Cardon LR, Bell JI, Association study designs for complex diseases. Nat Rev Genet, 2001.

2(2): p. 91-9.
Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, et al, Character-

ization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet,
1999. 22(3): p. 231-8.

Chakravarti A, Population genetics—making sense out of sequence. Nat Genet, 1999. 21(1
Suppl): p. 56-60.

Collins FS, Guyer MS, Charkravarti A, Variations on a theme: cataloging human DNA
sequence variation. Science, 1997. 278(5343): p. 1580-1.

Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES, High-resolution haplotype
structure in the human genome. Nat Genet, 2001. 29(2): p. 229-32.

DeFronzo RA, Pathogenesis of type 2 diabetes: metabolic and molecular implications for iden-
tifying diabetes genes. Diabetes Reviews, 1997. 5(3): p. 177-269.

Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, O’Connell P,
et al, Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromo-



General Discussion

125

some 10q in Mexican Americans. Am J Hum Genet, 1999. 64(4): p. 1127-40.
Ehm MG, Karnoub MC, Sakul H, Gottschalk K, Holt DC, Weber JL, Vaske D, et al,

Genomewide Search for Type 2 Diabetes Susceptibility Genes in Four American Popula-
tions. Am J Hum Genet, 2000. 66(6): p. 1871-1881.

Elbein SC, Chu W, Ren Q, Hemphill C, Schay J, Cox NJ, Hanis CL, et al, Role of
calpain-10 gene variants in familial type 2 diabetes in Caucasians. J Clin Endocrinol
Metab, 2002. 87(2): p. 650-4.

Elbein SC, Hoffman MD, Teng K, Leppert MF, Hasstedt SJ, A genome-wide search for
type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes, 1999. 48(5): p. 1175-
82.

Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, et al,
Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the
United Kingdom. Am J Hum Genet, 2001. 69(3): p. 544-52.

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, et
al, The structure of haplotype blocks in the human genome. Science, 2002. 296(5576): p.
2225-9.

Ghosh S, Watanabe RM, Hauser ER, Valle T, Magnuson VL, Erdos MR, Langefeld
CD, et al, Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected
sib pairs. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2198-203.

Ghosh S, Watanabe RM, Valle TT, Hauser ER, Magnuson VL, Langefeld CD, Ally
DS, et al, The Finland-United States Investigation of Non-Insulin-Dependent Diabetes
Mellitus Genetics (FUSION) Study. I. An Autosomal Genome Scan for Genes That Pre-
dispose to Type 2 Diabetes. Am J Hum Genet, 2000. 67(5): p. 1174-1185.

Gray IC, Campbell DA, Spurr NK, Single nucleotide polymorphisms as tools in human
genetics. Hum Mol Genet, 2000. 9(16): p. 2403-8.

Hager J, Hansen L, Vaisse C, Vionnet N, Philippi A, Poller W, Velho G, et al, A
missense mutation in the glucagon receptor gene is associated with non-insulin-dependent
diabetes mellitus. Nat Genet, 1995. 9(3): p. 299-304.

Hani EH, Clement K, Velho G, Vionnet N, Hager J, Philippi A, Dina C, et al, Genetic
studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among
French Caucasians. Diabetes, 1997. 46(4): p. 688-94.

Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B,
Morrison VA, et al, A genome-wide search for human non-insulin-dependent (type 2)
diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet, 1996.
13(2): p. 161-6.

Hansen LH, Abrahamsen N, Hager J, Jelinek L, Kindsvogel W, Froguel P, Nishimura
E, The Gly40Ser mutation in the human glucagon receptor gene associated with NIDDM
results in a receptor with reduced sensitivity to glucagon. Diabetes, 1996. 45(6): p. 725-
30.

Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB, Timberlake D, Foroud



Chapter 7

126

T, et al, An autosomal genomic scan for loci linked to type II diabetes mellitus and body-
mass index in Pima Indians. Am J Hum Genet, 1998. 63(4): p. 1130-8.

Hegele RA, Genetic prediction of coronary heart disease: lessons from Canada. Scand J Clin
Lab Invest Suppl, 1999. 230: p. 153-67.

Hegele RA, SNP judgments and freedom of association. Arterioscler Thromb Vasc Biol,
2002. 22(7): p. 1058-61.

Hegele RA, Cao H, Harris SB, Zinman B, Hanley AJ, Anderson CM, Peroxisome
proliferator-activated receptor-gamma2 P12A and type 2 diabetes in Canadian Oji-Cree.
J Clin Endocrinol Metab, 2000. 85(5): p. 2014-9.

Hegele RA, Harris SB, Zinman B, Hanley AJ, Cao H, Absence of association of type 2
diabetes with CAPN10 and PC-1 polymorphisms in Oji-Cree. Diabetes Care, 2001.
24(8): p. 1498-9.

Hegele RA, Sun F, Harris SB, Anderson C, Hanley AJ, Zinman B, Genome-wide scan-
ning for type 2 diabetes susceptibility in Canadian Oji- Cree, using 190 microsatellite
markers. J Hum Genet, 1999. 44(1): p. 10-4.

Holmans P, Craddock N, Efficient strategies for genome scanning using maximum-likelihood
affected-sib-pair analysis. Am J Hum Genet, 1997. 60(3): p. 657-66.

Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, et al,
Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes melli-
tus. Nat Genet, 2000. 26(2): p. 163-75.

Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, et al,
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.
Nature, 2001. 411(6837): p. 599-603.

Inoue H, Ferrer J, Welling CM, Elbein SC, Hoffman M, Mayorga R, Warren-Perry M,
et al, Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM
in Caucasians. Diabetes, 1996. 45(6): p. 825-31.

Ji L, Malecki M, Warram JH, Yang Y, Rich SS, Krolewski AS, New susceptibility locus
for NIDDM is localized to human chromosome 20q. Diabetes, 1997. 46(5): p. 876-81.

Jorde LB, Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet, 1995. 56(1):
p. 11-4.

Kahn CR, Vicent D, Doria A, Genetics of non-insulin-dependent (type-II) diabetes mellitus.
Annu Rev Med, 1996. 47: p. 509-31.

Kruglyak L, Prospects for whole-genome linkage disequilibrium mapping of common disease
genes. Nat Genet, 1999. 22(2): p. 139-44.

Lai E, Application of SNP technologies in medicine: lessons learned and future challenges. Ge-
nome Res, 2001. 11(6): p. 927-9.

Lander E, Kruglyak L, Genetic dissection of complex traits: guidelines for interpreting and
reporting linkage results. Nat Genet, 1995. 11(3): p. 241-7.

Lander ES, The new genomics: global views of biology. Science, 1996. 274(5287): p. 536-9.
Lander ES, Schork NJ,ÄGenetic dissection of complex traits. Science, 1994. 265(5181): p.



General Discussion

127

2037-48.
Large V, Hellstrom L, Reynisdottir S, Lonnqvist F, Eriksson P, Lannfelt L, Arner P,

Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate
with altered adipocyte beta-2 adrenoceptor function. J Clin Invest, 1997. 100(12): p.
3005-13.

Lok S, Kuijper JL, Jelinek LJ, Kramer JM, Whitmore TE, Sprecher CA, Mathewes S,
et al, The human glucagon receptor encoding gene: structure, cDNA sequence and chromo-
somal localization. Gene, 1994. 140(2): p. 203-9.

Mackay TF, The genetic architecture of quantitative traits. Annu Rev Genet, 2001. 35: p.
303-39.

Mahtani MM, Widen E, Lehto M, Thomas J, McCarthy M, Brayer J, Bryant B, et al,
Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome
scan in Finnish families. Nat Genet, 1996. 14(1): p. 90-4.

Marx J, Unraveling the causes of diabetes. Science, 2002. 296(5568): p. 686-9.
McCarthy D, Zimmet P, Diabetes 1994 to 2010: global estimates and projections. 1994.

Leverkusen: Bayer AG: p. 1-46.
McCarthy MI, Froguel P, Genetic approaches to the molecular understanding of type 2 diabe-

tes. Am J Physiol Endocrinol Metab, 2002. 283(2): p. E217-25.
Parker A, Meyer J, Lewitzky S, Rennich JS, Chan G, Thomas JD, Orho-Melander M,

et al, A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located
on chromosome 18p11. Diabetes, 2001. 50(3): p. 675-80.

Perusse L, Rice T, Chagnon YC, Despres JP, Lemieux S, Roy S, Lacaille M, et al, A
genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family
Study. Diabetes, 2001. 50(3): p. 614-21.

Porzio O, Federici M, Hribal ML, Lauro D, Accili D, Lauro R, Borboni P, et al, The
Gly972—>Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancre-
atic beta cells. J Clin Invest, 1999. 104(3): p. 357-64.

Pritchard JK, Are rare variants responsible for susceptibility to complex diseases? Am J Hum
Genet, 2001. 69(1): p. 124-37.

Pritchard JK, Przeworski M, Linkage disequilibrium in humans: models and data. Am J
Hum Genet, 2001. 69(1): p. 1-14.

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, et al, Linkage
disequilibrium in the human genome. Nature, 2001. 411(6834): p. 199-204.

Reich DE, Lander ES, On the allelic spectrum of human disease. Trends Genet, 2001. 17(9):
p. 502-10.

Risch NJ, Searching for genetic determinants in the new millennium. Nature, 2000. 405(6788):
p. 847-56.

Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS, Replication of linkage studies
of complex traits: an examination of variation in location estimates. Am J Hum Genet,
1999. 65(3): p. 876-84.



Chapter 7

128

Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S,
et al, A map of human genome sequence variation containing 1.42 million single nucleotide
polymorphisms. Nature, 2001. 409(6822): p. 928-33.

Sax K, The association of size differences with seed-coat pattern and pigmentation in Phaseolus
vulgaris. Genetics, 1923. 8: p. 552-60.

So WY, Ng MC, Lee SC, Sanke T, Lee HK, Chan JC, Genetics of type 2 diabetes mellitus.
Hong Kong Med J, 2000. 6(1): p. 69-76.

t Hart LM, Stolk RP, Dekker JM, Nijpels G, Grobbee DE, Heine RJ, Maassen JA,
Prevalence of variants in candidate genes for type 2 diabetes mellitus in The Netherlands:
the Rotterdam study and the Hoorn study. J Clin Endocrinol Metab, 1999. 84(3): p.
1002-6.

Tabor HK, Risch NJ, Myers RM, Opinion: Candidate-gene approaches for studying complex
genetic traits: practical considerations. Nat Rev Genet, 2002. 3(5): p. 391-7.

Terwilliger JD, Weiss KM, Linkage disequilibrium mapping of complex disease: fantasy or
reality? Curr Opin Biotechnol, 1998. 9(6): p. 578-94.

Vaessen N (2001) Genetic determinants of diabetes and vascular complications. Ph.D. thesis,
Department of Epidemiology & Biostatistics; Erasmus Medical Center, Rotterdam,
pp 167.

Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, Torrey D, et
al, Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness.
Nature, 2002. 418(6896): p. 426-30.

Velho G, Froguel P, Genetic determinants of non-insulin-dependent diabetes mellitus: strate-
gies and recent results. Diabetes Metab, 1997. 23(1): p. 7-17.

Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C, Maillard
A, et al, The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes.
Nat Genet, 2000. 24(3): p. 291-5.

Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, et al, Large-
scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the
human genome. Science, 1998. 280(5366): p. 1077-82.

Watanabe RM, Ghosh S, Langefeld CD, Valle TT, Hauser ER, Magnuson VL, Mohlke
KL, et al, The Finland-United States Investigation of Non-Insulin-Dependent Diabetes
Mellitus Genetics (FUSION) Study. II. An Autosomal Genome Scan for Diabetes-Related
Quantitative-Trait Loci. Am J Hum Genet, 2000. 67(5): p. 1186-1200.

Weiss KM, In search of human variation. Genome Res, 1998. 8(7): p. 691-7.
Weiss KM, Terwilliger JD, How many diseases does it take to map a gene with SNPs? Nat

Genet, 2000. 26(2): p. 151-7.
Wright AF, Carothers AD, Pirastu M, Population choice in mapping genes for complex dis-

eases. Nat Genet, 1999. 23(4): p. 397-404.
Zavattari P, Deidda E, Whalen M, Lampis R, Mulargia A, Loddo M, Eaves I, et al,

Major factors influencing linkage disequilibrium by analysis of different chromosome re-



General Discussion

129

gions in distinct populations: demography, chromosome recombination frequency and selec-
tion. Hum Mol Genet, 2000. 9(20): p. 2947-57.

Zimmet P, Alberti KG, Shaw J, Global and societal implications of the diabetes epidemic.
Nature, 2001. 414(6865): p. 782-7.

Zimmet PZ, Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia,
1999. 42(5): p. 499-518.

Zouali H, Hani EH, Philippi A, Vionnet N, Beckmann JS, Demenais F, Froguel P, A
susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to
chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet,
1997. 6(9): p. 1401-8.





Chapter 88

English Summary



Chapter 8

132

Little is known about the nature of genetic variation underlying complex

diseases in humans. The recognition that susceptibility to type 2 diabetes

mellitus has a strong inherited component provides a mechanism for develop-

ing the molecular understanding of the pathogenesis of type 2 diabetes melli-

tus through various genetic approaches. The main aim of the Breda study

described in this thesis was to identify genetic factors involved in type 2 dia-

betes mellitus in a defined Dutch population.

Chapter 1 gives an overview of the approaches that can be used to iden-

tify genetic factors in type 2 diabetes mellitus and, in particular, the role of

candidate gene analysis and genome-wide scanning is emphasised. Chapter 2

describes the collection of the Breda Cohort together with the clinical data

obtained from all participants. The objective to collect at least 250 affected

sibpairs with type 2 diabetes mellitus was met, with a total of 312 affected

sibpairs from 178 families being sampled. These families were used for the

genome-wide scans described in chapters 3 and 4. The Breda cohort also

contained 542 independent patients with type 2 diabetes mellitus, which

were subsequently used in the candidate gene analyses, as described in chap-

ters 5 and 6.

Chapter 3 describes the results of a genome-wide scan performed for type

2 diabetes mellitus in a defined Dutch population. The genome-wide scan

was carried out using identity-by-descent analysis in affected sibpairs. Since

obesity and type 2 diabetes mellitus are inter-related, the data set was strati-

fied for the sub-phenotype body mass index (BMI), corrected for age and gen-

der. This resulted in a suggestive maximum multi-point LOD score of 2.3 (p

value 9.7 x 10–4) for the most obese 20% pedigrees of the data set in the

region flanked by marker loci D18S471 and D18S843 (chromosome region

18p11). We hereby confirmed the presence of a susceptibility locus on chro-

mosome 18, reported earlier from a Finnish/Swedish population. This finding

provided solid and independent evidence that the chromosome 18p11 locus is

of definite interest for type 2 diabetes mellitus in connection with obesity in

the Breda study cohort. In addition, we demonstrated that in the lowest 80%

obese pedigrees (“lean” type 2 diabetes mellitus) two interesting loci on chro-
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mosomes 2 and 19 were found with LODs of 1.5 and 1.3, respectively (p-

values 7.5 x 10–3 and–11.2 x 10–3).

Chapter 4 describes the analysis for linkage to loci influencing BMI (us-

ing quantitative trait locus (QTL) mapping) in 420 type 2 diabetes mellitus

patients from the Breda cohort for which BMI values where available. Subse-

quently, the genotype data from the 20% most obese type 2 diabetes mellitus

pedigrees (“obese” type 2 diabetes mellitus) was also analysed for linkage to

type 2 diabetes mellitus using the ASP analysis. The quantitative (QTL map-

ping) approach was completely different to the categorical clinical definition

used in the ASP analysis described in chapter 3. The QTL results support

previous findings of a susceptibility locus (QTL) influencing BMI in type 2

diabetes mellitus residing on chromosome region 11q. In addition, sugges-

tive evidence was found and previous findings confirmed for linkage with

type 2 diabetes mellitus on chromosome regions 1q, 11p, and 12q. In gen-

eral, it appears that the linkage found for type 2 diabetes mellitus in the

present cohort is strongly influenced by obesity. This supports the notion that

a genetic predisposition to obesity is closely intertwined with one predisposi-

tion to type 2 diabetes mellitus. However, our study fails to determine to

what extent obesity and type 2 diabetes mellitus are genetically unique enti-

ties in their own right.

Chapter 5 describes the results of an association study with the

sulphonylurea receptor 1 (SUR1) gene and type 2 diabetes mellitus. The SUR1

is a major determinant of normal glucose-induced insulin secretion in the

pancreatic β-cell, and is a target for sulphonylurea type medication. More-

over, the SUR1 gene is located in the chromosomal region 11p, which we

identified in the 20% most obese type 2 diabetes mellitus pedigrees (described

in chapter 4). Previous studies by others had shown an association between a

single nucleotide polymorphism (SNP) of exon 16 (SNP16) of SUR1 with

type 2 diabetes mellitus in some populations. In our cohort, no such signifi-

cant association was found and the frequency of the SNP16 variant of the

SUR1 gene was only slightly lower in patients than controls, although not

significantly so (p = 0.10).
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Finally, Chapter 6 describes the results of an association study with the

beta-adrenergic receptor-2 (B2ADR) gene and obesity in type 2 diabetes mel-

litus subjects from the Breda study cohort. The adrenergic receptor genes are

candidate genes for obesity because they regulate lipid mobilisation, energy

expenditure and glycogen breakdown. A few studies have indicated an asso-

ciation between a SNP in codon 27 (SNP27) of B2ADR with obesity in non-

diabetic (Swedish) subjects; in a group of women, but not men, the Gln27

variant was markedly associated with obesity.

The genotypes of SNP27 in the B2ADR gene were matched to the BMI

values of 542 patients in our cohort and were compared using ANOVA with

age and gender as covariates. No statistically significant difference was ob-

served between the various groups, implying that, in our cohort, this poly-

morphism has no important effect on body mass index. We also found no

effect from the polymorphism on either the age of diagnosis of diabetes or on

plasma lipids levels.

The results of this thesis will, together with previously reported results,

help accelerate the efforts to identify susceptibility genes for type 2 diabetes

mellitus located in the regions described above. Combined with new develop-

ments in the fields of bioinformatics, genomics and proteomics, this will lead

to a greater understanding of the pathogenesis of type 2 diabetes mellitus.

Identifying new pathways involved in the disease aetiology may help identify

new therapeutic goals, and direct efforts to target therapies to relevant tissues.

By improving the classification of type 2 diabetes, together with new insights

in pharmacogenetics, this genetic information may form the basis for the de-

velopment of new drug therapies and hopefully, in the future, will lead to the

prevention of type 2 diabetes mellitus.
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Chapter 9

Type 2 diabetes mellitus komt vaak binnen families voor en is een

multifactoriële aandoening, d.w.z. dat meerdere erfelijke factoren samen met

omgevingsfactoren een rol spelen in het ontstaan van type 2 diabetes. Er zijn

tot dusver enkele zeldzame vormen van erfelijke diabetes ontdekt (MODY en

MIDD). De genetische oorzaak van de meest voorkomende vorm van type 2

diabetes is echter volledig onbekend.

Het doel van de Breda studie, beschreven in dit proefschrift, was het vinden

van genen die betrokken zijn bij het verkrijgen van type 2 diabetes in een

gekarakteriseerde Nederlandse populatie.  Voor dit onderzoek hebben we

gebruik gemaakt van families waarin bij broers en/of zussen diabetes voorkomt

(zgn. aangedane sibparen). Eventuele niet zieke broers of zussen zijn ook

betrokken bij het onderzoek om de overerving beter te volgen in deze fami-

lies.

In hoofdstuk 1 wordt een overzicht gegeven over de mogelijk genetische

onderzoek methoden om de genetische factoren op te sporen bij complexe

ziekten zoals type 2 diabetes mellitus. Zo wordt er aandacht besteed aan de

twee meest gebruikte methoden, de kandidaat gen aanpak en de genome wijde

scan aanpak. Vervolgens wordt in hoofdstuk 2 beschreven hoe het Breda

Studie Cohort werd samengesteld. Het doel om tenminste 250 aangedane

sibparen te verzamelen werd ruimschoots gehaald met uiteindelijk 312

aangedane sibparen uit 178 families.

Van alle aangedane sibparen en de extra broers/zussen werd DNA verzameld

(± 1000 personen). Het DNA werd vervolgens onderzocht met een groot

aantal DNA markers (± 300) die verspreid liggen over alle chromosomen.

Vervolgens werd het genetisch materiaal van de aangedane sibparen met elkaar

vergeleken. Sibparen zijn voor gemiddeld 50% van hun erfelijk materiaal aan

elkaar gelijk. Als blijkt dat ze voor bepaalde delen van het erfelijk materiaal

meer dan de verwachte 50% met elkaar gemeen hebben, is dit een aanwijzing

dat zich op die plaats een gen kan bevinden dat betrokken is bij het ontstaan

van type 2 diabetes.  Hiermee kan hopelijk worden vastgesteld welke stukjes

van de chromosomen samenhangen met het ontstaan van type 2 diabetes.

Dit deel van het onderzoek wordt beschreven in hoofdstuk 3 en 4. Het
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Breda Studie Cohort bevat naast de 312 aangedane sibparen ook 542

onafhankelijke (geen familie van elkaar) patiënten met type 2 diabetes melli-

tus. Het DNA van deze 542 onafhankelijke patiënten werd gebruikt om naar

twee verschillende kandidaat genen te kijken, dit deel van het onderzoek wordt

beschreven in hoofdstuk 5 en 6.

Zoals gezegd, in hoofdstuk 3 worden de resultaten beschreven van de

genome wijde scan aanpak in onze populatie van 312 aangedane sibparen.

Het is gebleken, uit ander onderzoek, dat zwaarlijvigheid en type 2 diabetes

mellitus veel met elkaar te maken hebben en ook vaak te gelijkertijd voorkomen

bij patiënten. Het cohort van 178 families werd gestratificeerd op het

subfenotype body mass index (BMI = een maat om zwaarlijvigheid mee te

bepalen), deze waarden werden gecorrigeerd voor leeftijd en geslacht. Dit

resulteerde, voor een gebied op chromosoom 18, in een LOD score (een maat

om aan te geven of er werkelijk een gen ligt dat betrokken is bij de ziekte) van

2.3 in de 20% meest zwaarlijvige families in ons Cohort. Het blijkt dat dit

resultaat voor chromosoom 18 overeenkomt met een zelfde gebied wat

gevonden is in zwaarlijvige Zweden en Finnen, en al eerder is beschreven.

Ons resultaat geeft dus een onafhankelijk bewijs dat er mogelijk een gen ligt

op chromosoom 18 dat betrokken is bij het verkrijgen van type 2 diabetes

mellitus. Naast dit resultaat hebben we ook nog twee andere gebieden gevonden

op de chromosomen 2 en 19, alleen nu in de magere families met type 2

diabetes mellitus.

In hoofdstuk 4 wordt het onderzoek beschreven naar chromosoom

gebieden die BMI beïnvloeden in 420 type 2 diabetes patiënten van het Breda

Studie Cohort (zgn. Quantitative Trait Locus-analyse). Tevens is er ook gekeken

welke gebieden nog meer betrokken zijn bij de zwaarlijvige type 2 diabetes

mellitus patiënten.

De resultaten van de QTL-analyse onderschrijven eerdere bevindingen van

gebieden die BMI beïnvloeden in type 2 diabetes mellitus patiënten, zoals

een gebied op chromosoom lange arm van chromosoom 11. Naast het al

beschreven gebied op chromosoom 18 (hoofdstuk 4) hebben we tevens nog

drie andere gebieden gevonden op chromosomen 1, 11 (korte arm) en 12. Het
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blijkt echter dat de gebieden gevonden voor type 2 diabetes mellitus in het

Breda Studie Cohort zeer sterk beïnvloed worden door zwaarlijvigheid. Dit

onderschrijft de notie dat een genetische gevoeligheid voor type 2 diabetes

mellitus zeer sterk verbonden is met een genetische gevoeligheid voor

zwaarlijvigheid. Helaas is het in onze studies niet gelukt om een duidelijk

onderscheid te maken in hoever zwaarlijvigheid en type 2 diabetes mellitus

twee genetisch onafhankelijke unieke ziekten zijn.

In hoofdstuk 5 en 6 worden de resultaten beschreven van twee

onderzoeken naar mogelijke kandidaat genen die betrokken kunnen zijn bij

type 2 diabetes mellitus.

In hoofdstuk 5 wordt het resultaat beschreven van een associatie studie

tussen variaties in het SUR1 gen (sulphonylurea receptor 1 gen) en type 2

diabetes mellitus. Het SUR1 gen is een determinant van normaal geïnduceerde

insuline secretie in de pancreas (alvleesklier), het is ook het doel van de

sulphonylurea type medicijnen. Het blijkt ook dat dit gen ligt op de korte

arm van chromosoom 11 in het zelfde gebied wat wordt gevonden in

zwaarlijvige type 2 diabetes mellitus patiënten (hoofdstuk 4).

Uit eerdere studies is gebleken dat een bepaalde variant van het gen (een

single nucleotide polymorphism (SNP)) geassocieerd is met type 2 diabetes

mellitus in verschillende populaties. De SNP, gelegen in exon 16 van het

SUR1 gen, blijkt in onze populatie niet geassocieerd te zijn met type 2 diabe-

tes mellitus.

In hoofdstuk 6 wordt het resultaat beschreven van een associatie studie

tussen een variant van het beta adrenergic receptor 2 gen (B2ADR) en

zwaarlijvigheid in type 2 diabetes patiënten. Dit type adrenergic receptor

genen zijn goede kandidaat genen voor zwaarlijvigheid omdat zijn de vet

mobilisatie, energie verbruik en glycogeen afbraak reguleren. Enkele studies

hebben aangegeven dat er een mogelijke associatie is tussen een SNP in codon

27 van het gen en zwaarlijvigheid in niet diabetes patiënten. Helaas was deze

SNP van het B2ADR gen niet geassocieerd in onze Breda Studie Cohort en

type 2 diabetes patiënten.

De resultaten beschreven in dit proefschrift zullen hopelijk, samen met
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eerder beschreven resultaten, bijdragen aan het vinden en identificeren van

genen betrokken bij type 2 diabetes mellitus in de beschreven chromosoom

gebieden. Gecombineerd met nieuwe ontwikkelingen op het gebied van bio-

informatica, genomics, en proteomics zal dit uiteindelijk leiden naar een beter

inzicht in het ontstaan en de ziekte-ontwikkeling van type 2 diabetes melli-

tus. Het identificeren van nieuwe routes betrokken bij de ziekte kunnen

mogelijk helpen bij het ontwikkelen van nieuwe medicijnen.

Door het beter indelen van type 2 diabetes mellitus in diverse subgroepen

en een beter inzicht in pharmacogenetica, kan deze genetische informatie een

basis vormen voor het ontwikkelen van nieuwe therapieën een hopelijk, in de

toekomst leiden tot het voorkomen van type 2 diabetes mellitus.
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Tja, tot slot, is het dus tijd om een aantal mensen te bedanken voor de hulp

met het volbrengen van dit proefschrift in het wel bekende dankwoord.

En ja, waar te beginnen …

Allereerst wil ik alle families bedanken voor hun deelname aan het

onderzoek en voor hun bereidwilligheid om bloed af te staan. Natuurlijk ook

de 80 huisartsen uit de omgeving Breda die hun patiënten hebben

aangemoedigd om mee te doen aan het onderzoek. Niet te vergeten natuurlijk

Marjan de Jong en Erdtsienk Ernste, de onderzoek coördinatoren van de

Stichting Huisartsen Laboratorium Breda zonder wie het onmogelijk was

geweest om de bloed afnamen zo efficiënt te laten verlopen, dit natuurlijk

met de hulp van een grote hoeveelheid afnameverplegers(sters).

Peter, het was een zware bevalling maar toch, alles is op z’n pootjes terecht

gekomen. Toch, bedankt voor de getoonde interesse en de vruchtbare discussies

vooral met betrekking tot de general discussion.

Timon, je bent een zeer deskundige copromotor; bedankt voor je

vakkundige inbreng en soms kritische noot in het gehele onderzoek. Ook

voor je af en toe relativerende woorden als het tegen zat.

Cisca, hoe moet ik jou bedanken, je hebt me laten inzien dat onderzoek

wel degelijk leuk kan zijn, ondanks alle tegenslagen. Ben je erg dankbaar

voor alle inspirerende woorden tijdens onze gespreken en geloof in het

onderzoek. De jaarlijkse bbq’s en nieuwjaars borrels waren voortreffelijk, was

onmogelijk om deze over te slaan door het heerlijke eten wat altijd aanwezig

was. De aubergines van de barbecue en de heerlijke sushi zal ik nooit vergeten,

en dat zijn maar enkele voorbeelden. Niet alleen een voortreffelijke

wetenschapper, maar ook nog een keuken prinses waar vindt je dat

hedentendagen. Bedankt voor alles.

Eric, waar zou ik zijn zonder ..., ja waarschijnlijk nog steeds aan het PCR-

en en runnen van alle samples. Dat fijne stukje techniek bleek niet te doen

wat was beloofd. De hierdoor opgelopen achterstand hebben wij toch mooi in

een maand of twee weer ingehaald, wel natuurlijk door met z’n tweeën op te

gaan in een goed geoliede machine en 7 dagen per week te werken. Te gek en
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hartstikke bedankt voor dit alles.

Had het niet beter kunnen treffen met jou als analist en nu als paranimf.

Verder wil ik natuurlijk alle collegae bij de Divisie Medische Genetica

bedanken voor de gezellige tijd samen en een paar in het bijzonder.

Harry, bedankt voor de grote hoeveelheid patiënten informatie die je hebt

ingevoerd in onze database en het stickeren van alle brieven. Tineke, jij

natuurlijk bedankt voor je voortreffelijke doorzettingsvermogen om toch alle

mogelijke familieleden boven water te krijgen en te overreden om toch ook

mee te doen zelfs als ze zelf niet ziek waren.

Jackie, jij bedankt voor al het correctie werk, van alle manuscripten en

natuurlijk dit proefschrift, vraag me soms wel eens af waar we, als vakgroep,

zouden zijn zonder jou Engelstalige inbreng, je bent een fantastische editor,

bedankt.

Harm, bedankt voor je heerlijk relativerend vermogen, wat is het leven

toch ... (je standaard zin) en voor alle gezellige sneak-avonden en discussies

over alles en nog wat, gelukkig ben je niet zo uitgesproken (hum). Bart, ook

jij bedankt voor de vermakelijke uurtjes in de AIO kamer, heel veel succes in

de States en wie weet …

Leida bedankt voor je werk aan beide kandidaat genen, en Tjing jij bedankt

voor je werk aan chromosoom 18, jullie waren twee voortreffelijke studenten

en wens jullie veel succes met jullie, mogelijke, wetenschappelijke carriëre.

Jos & Stephan, Marcel, Sjoerd,  bedankt dat jullie er voor mij waren in die

moeilijke perioden van de afgelopen 4 jaar, echte vrienden.

Toos, bedankt dat je me weer op het juiste pad hebt geholpen, je massages

waren en zijn heerlijk en ontspannend, bedankt voor je liefde.

Anneke, bedankt dat je me weer gevonden heb, me alles in perspectief

laat zien. Alles is compleet met jou. Lief, ‘k hou van je.

Peter en Ine, hoezo cliché, zonder jullie had ik dit punt nooit bereikt in

mijn leven. Dankzij jullie geloof in mij en jullie onvoorwaardelijke steun en

liefde is dit allemaal tot stand gekomen, kan onmogelijk verwoorden hoe zeer

ik jullie dankbaar ben voor alles wat jullie de afgelopen 32 jaar voor mij

hebben gedaan.
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