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CHAPTER 1

Introduction

When a doctor is treating a patient, he1 is constantly facing decisions. From the
externally visible signs and symptoms he must establish a hypothesis of what might
be wrong with the patient. He must decide whether the signs and symptoms provide
ample evidence for this hypothesis, or whether it should be further verified by diag-
nostic testing. When the doctor is sufficiently certain which disease the patient has,
he must decide whether treatment is necessary, and if so, which treatment is most
suitable. The timing of treatment may also be critical: sometimes the condition of
the patient requires immediate action. In other cases such urgency is not required
and it may be beneficial to postpone risky interventions until the overall condition of
the patient has improved. After the treatment, the patient’s response to it must be
evaluated. Has the treatment been successful, or is further remedial action required?
If the treatment has not been successful, then maybe the initial hypothesis on the
underlying disease should be reconsidered. If the treatment has been successful, what
are the chances that the disease recurs in the future? Should the patient return for
investigations at some point in the future?

All these bedside decisions are not only unavoidable but must also be made under
conditions of uncertainty. The uncertainty arises from several sources, such as errors
in the results of diagnostic tests, limitations in medical knowledge, and unpredictabil-
ity of the future course of disease. Furthermore, clinical decisions are often highly
interrelated and can therefore not be made in isolation. For instance, when choosing
a diagnostic test to verify a hypothesis, it should be assessed whether such testing

1Anywhere we use the masculine form, the feminine form is understood as being included.
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will improve the ability to choose the right treatment. If only few treatment modali-
ties are available, then it is probably superfluous to conduct additional tests, as the
choice of treatment would not be influenced by the test result. Similarly, the choice of
treatment itself should take into account the possibility that the hypothesis is wrong
and the patient has a different disease. It is then advantageous to choose a treatment
whose consequences are amenable for correction in the future.

We will use the term patient management to refer to all types of decision making in
situations faced by a doctor at the bedside. Decision making under uncertainty is
traditionally studied in the field of decision theory, the mathematical theory of ratio-
nal choice. As patient management involves making a large number of interrelated
decisions, it can also be viewed as a form of action planning, traditionally a branch
of artificial intelligence (AI). Within this view, each decision consists of a choice be-
tween multiple clinical actions, and the sequence of actions chosen has the objective
of reaching a satisfactory health condition of the patient. The optimal approach to
solving the problem is formulating a detailed program of action, or a plan. In this
thesis, we study the problem of clinical patient management as action planning using
decision-theoretic principles, or decision-theoretic planning for short.

In the following sections, we will elaborate on this conception of clinical patient
management, and put it in perspective of the tradition of decision support in clinical
medicine. We conclude with listing the main research questions that motivate our
work, and by giving an overview of this thesis.

1.1 Supporting medical decisions

In both decision theory and AI, there exists an extensive literature on clinical-medical
reasoning and problem solving; the conception of clinical decision making as a form of
action planning, however, is not often adopted. In this section, we review the standard
procedure for clinical patient management that is followed in today’s clinical practice,
and discuss the decision-theoretic and AI approaches to clinical decision support.

1.1.1 The clinical procedure

When a patient becomes aware of particular symptoms or manifestations of disease,
he may decide to visit a doctor. The doctor will then roughly use the following
standard procedure, schematically depicted in Figure 1.1. Firstly, he interviews the
patient on his medical history and the case history of the present symptoms; this
is called history taking. The second and third steps consist of physical examination
of the patient and conducting routine diagnostic tests, respectively. The objective is
to establish a differential diagnosis, a set of possible explanations of the symptoms
along with their respective likelihoods. After this step it may be decided to choose
a therapy, or to conduct additional, non-routine diagnostic tests when too much
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Figure 1.1: The standard clinical procedure.

uncertainty remains on the diagnosis; one may also decide from the diagnosis to
forgo further clinical action. Non-routine diagnostic tests are often more intensive
than routine tests in that they involve pain or risks to the patient, or are more
costly or time-consuming. Therapy may be any collection of remedial actions that
relieves or cures the disease. Based on the patient’s response to therapy or the
results of the tests, this last step may be repeated several times; at each cycle,
the differential diagnosis is adjusted by incorporating the new information. The
condition of the patient that results afterwards is called the outcome of the procedure,
and his expected condition after a prolonged period of time (typically a significant
number of years) is his prognosis. It is customary in many clinical procedures that
the treatment has a follow-up in the form of regular tests to monitor the patient’s
condition. Outcome and prognosis are the major evaluation criteria for the sequence
of actions that has been undertaken.

Diagnostic tests can be characterised by a number of standards. Here, we will use
five test characteristics that are frequently used in all fields of clinical medicine.
Firstly, is the test invasive, i.e. does it involve insertion of an instrument or foreign
material into the body? Secondly, are there any health risks involved for the patient?
These risks divide into mortality (probability of death) and morbidity (probability of
complications). Thirdly, is the test procedure painful or otherwise burdening for the
patient? Fourthly, what are the associated costs, financial or otherwise? Fifth and
finally, what is the reliability of the test, i.e. what are the chances of obtaining a false
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test outcome? Generally speaking, non-invasive, inexpensive and reliable tests that
involve little risks and pain for the patients are preferred to other tests. Unfortunately,
reliability often comes at the price of invasiveness, which in turn increases health risks,
painfulness, and costs.

Medical therapy can be classified in various guises. The first distinction considers
the object of the therapy: we distinguish causal therapy, which aims to fight the
causes of the disease, and symptomatic therapy, which aims to suppress its symp-
toms. A second distinction is between curative therapy, which intends to cure the
patient completely from the disease and its underlying causes, and palliative ther-
apy, which intends to alleviate the patient’s suffering or to prolong his duration of
life. Palliative therapy is mostly symptomatic but can sometimes be classified as
causal. The choice of therapeutic regimen often depends on multiple criteria, but
expected outcome and prognosis are often decisive, especially for causal therapy. In
comparative studies, outcome is often measured in terms of survival and prognosis
in terms of life expectancy ; the preferred therapeutic choice is the one that optimises
both the chances of survival and the life expectancy afterwards. Of course, a tradeoff
between these objectives is sometimes unavoidable. In addition, one may consider
the expected health status of the patient: suffering from chronic post-therapeutic
disabilities reduces the quality of life and is therefore considered undesirable. A final
criterion may be the costs associated with the therapy.

It should be noted that the clinical procedure described so far is a correct but rather
simplified description of reality. For ease of understanding we have abstracted from
the roles of time and change in the description. Yet, there is often a considerable
course of time during the clinical management of individual patients, which may be
accompanied by many changes in the patient’s situation. The significance of this
fact for our conception of clinical management is threefold. First, the human body
can usually not be regarded as a passive entity that patiently undergoes a doctor’s
acts and remains otherwise unaltered. Biological processes influence the patient’s
condition over time, sometimes resulting in a substantial improvement but equally
often causing injurious complications. Second, it is not only the choice, but also the
timing of clinical actions that is subject to a tradeoff: the information that is obtained
from diagnostic procedures and the effectiveness of therapeutic actions may critically
depend on their moment of execution. And third, it is often no longer possible to
make a clear separation between the different phases of clinical management from
Figure 1.1. For instance, it may be required to re-assess the patient’s diagnosis
multiple times in the process of management. The purpose of diagnostic actions
is then not to simply refine one’s knowledge of the patient’s status, but also, or
primarily, to update this knowledge to the current state of affairs.

To summarise the above, we can state that acknowledging the role of time and change
in patient management leads to a re-conception of the clinical procedure. It departs
the static view on clinical decision making where all acting is concentrated in a
single abstract moment of time, and leads to a dynamic perspective where patient
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management is regarded as a process of ongoing interaction between patient and
clinician. This will be the leading perspective on clinical management in this thesis.

1.1.2 Clinical decision science

Decision theory and Artificial Intelligence (AI) emerged from research on systematic
methods for problem solving and decision making that blossomed in the 1940s. These
disciplines were stimulated by new possibilities for automated reasoning unleashed by
the development of the computer. But although the fields had common roots, they
soon grew out to become independent traditions. Decision theory favours carefully
quantified problem descriptions and the application of mathematical methods to sup-
port people in delineated parts of their decision-making tasks; the field is strongly
connected to probability theory and statistics. AI distinguishes itself in its concern
with autonomous problem solving, its emphasis on symbolic rather than numerical
information, and its interest in analogies between computer programs and human
thinking.

In this section, we discuss the decision-theoretic approach to clinical decision support.
Decision theory has been fruitfully applied to clinical decision-making problems, and
this has led to the maturation of a discipline that is now known as medical decision
analysis. Below, we first review the theoretical and social backgrounds of the med-
ical decision analysis; we will then sketch the standard method of analysing clinical
decisions in the field, and finally discuss some problems with the application of this
method in practice.

Decision theory

The roots of decision theory are found in the theory of games that was formulated
in the 1940s by Von Neumann and Morgenstern (1944). The theory of games is
based on a mathematical characterisation of rational choice called utility theory. The
central results of utility theory are that, given a number of assumptions on ratio-
nal behaviour, decision-making objectives can be expressed as numerical quantities
(called utilities), and optimal solutions to decision-making problems can be found by
numerical maximisation. As such, utility theory provides a firm mathematical basis
for decision making under uncertainty. The study of applying utility-theoretic prin-
ciples to varying situations of choice has become known as decision theory (Chernoff
and Moses, 1959; Raiffa and Schlaifer, 1961).2 In this thesis, we focus on Bayesian
decision theory, (Savage, 1972), the study of rational choice from given beliefs, as

2Sometimes, a distinction is made between descriptive, normative and prescriptive decision the-
ory, where descriptive decision theory is part of the social sciences and studies actual decision-making
behaviour, normative decision theory describes idealised decision-making behaviour as derived from
the axioms of utility theory, and prescriptive decision theory is concerned with the transformation
of actual to idealised decision-making behaviour. In this thesis, we are concerned with normative
decision theory.
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opposed to statistical decision theory, the study of comparative statistical inference
from given data, (Barnett, 1982). Bayesian decision theory can be regarded as the
synthesis of utility theory and Bayesian probability theory.

Bayesian decision theory identifies three fundamental components in each decision
problem: (i) the alternatives to choose from, generally in the form of different courses
of action or decision-making strategies, (ii) ones beliefs with respect to reality, ex-
pressed as probabilities on the possible outcomes after choosing an alternative, and
(iii) ones preferences with respect to these outcomes, expressed as utilities. From a
proper specification of these problem components, application of the theory provides
for making a rational decision that is consistent with ones beliefs and preferences,
and provably leads to the best expected outcome in the given circumstances. Impor-
tantly, decision theory distinguishes a preferable decision, i.e. a rational choice that
is expected to be optimal in general, from a preferable outcome, i.e. the result of a
choice that turns out to be desirable. If the effects of decisions are uncertain, then
we cannot hope to always achieve preferable outcomes. Yet, we can always make
preferable decisions, thus striving for the best expected outcome.

Evidence-based medicine

The methodology of applying decision theory to real-world clinical decision problems
is known as medical or (clinical) decision analysis, (Weinstein and Fineberg, 1980;
Pauker and Kassirer, 1987; Sox et al., 1988). Medical decision analysis emerged in the
1970s as a result of the rationalisation of medical practice that has taken place since
the 1960s. Power has increasingly slipped from the hands of physicians to those of
patients, governments, insurers, and other organisations; and simultaneously, the lim-
itations of medical reasoning were increasingly recognised, (Dowie and Elstein, 1988).
Although people are quite good at some complex tasks (e.g., pattern recognition, in-
formation synthesis and communication), they tend to fail equally often at others,
such as systematic and unbiased observation, and (probabilistic) belief revision given
new information. Furthermore, the number of diagnostic and therapeutic choices
available to physicians has dramatically increased. The response to this recognition
of medical reasoning’s limitations was an attempt to formalise medical practice and
to look for more rational, scientific ways to make clinical decisions. The leading
paradigm that has emerged from this formalisation is called evidence-based medicine.

Evidence-based medicine argues that medical decisions should be based on the best
available evidence from clinical research, as opposed to anecdote, habit, local prac-
tice patterns, and pathophysiological theory, (Sackett et al., 1996). The practice of
evidence-based medicine means that individual clinical expertise is integrated with
the best available external clinical evidence from systematic research. By best avail-
able external clinical evidence is meant clinically relevant research, often from the
basic sciences of medicine, but especially from patient centred, systematic clinical
research into the accuracy and precision of diagnostic tests, the power of prognostic
markers, and the efficacy and safety of therapeutic regimens.
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Figure 1.2: A decision tree for the management of patients with VSD.

Decision analysis

The field of medical decision analysis studies the preferred way of incorporating the
best available evidence into the everyday practice of clinical patient management. As
stated above, decision analysis is the methodology of applied decision theory; in a
clinical context, it aims at analysing and supporting all decisions regarding diagnostic
and remedial action. The traditional tool that is employed in the field is the decision
tree, (Raiffa, 1968). Given a decision problem under uncertainty, a decision tree
provides an explicit, graphical enumeration of a set of potential decision scenarios.
Its form is highly intuitive, and provides for easy communication with physicians.

An example decision tree, modelling the management of patients with the congenital
heart disease called ventricular septal defect (VSD), is depicted in Figure 1.2. We do
not describe the problem domain here as Chapter 2 provides an elaborate description
of this disease. For illustration purposes, the VSD management problem has been
reduced to two simple yes-or-no decisions in this example: the first being whether
or not to make an echocardiographic image, and the second being whether or not
to submit the patient to surgery. Both decisions are represented by small squares
in the tree, called decision nodes. Furthermore, two random variables pertaining to
the clinical state of the patient are used in the decision tree: one variable, called
VSD size, describing the size of the VSD as seen on an echocardiographic image, and
one variable, called Eisenmenger, describing occurrence of Eisenmenger’s complex,
the primary complicatory risk for VSD patients. Random variables are represented
by small circles, called chance nodes. Both random variables can take two possible
values, small and large, and yes and no, respectively. Each path in the tree ends
with a description of the associated outcome in a rectangular box. In the example,
we have distinguished the outcomes healthy, healthy after surgery, and pulmonary
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hypertension.

The branches emanating from a decision node correspond to the decision alterna-
tives available to the decision maker at that point in the decision-making process;
the branches emanating from a chance node correspond to the possible values of the
random variable modelled by the node. With each branch of the latter type, one
now associates an estimate of the probability that the random variable in question
takes that value under the given circumstances. To each possible outcome of the
decision process is assigned a numerical utility value that represents the relative de-
sirability of that outcome. A simple procedure, called fold-back analysis, computes
the decision strategy that is optimal in decision-theoretic terms. Subsequent sen-
sitivity analyses can point out the sensitivity of this strategy to potential errors in
the probability estimates, and to assumptions regarding tree structure and utility
assignments, (Habbema et al., 1990).

The problem of implementation

The results of a decision analysis are usually not implemented straight out in clinical
practice. Instead, making an analysis has the objective of gaining more insight in the
problem domain in general, and of improving the strategy for clinical management as
a whole. Such improved strategies are then often formalised in clinical guidelines that
are to be followed by all clinicians, to ensure uniform high quality of medical care.
Nevertheless, the usefulness of analysing medical decisions from decision-theoretic
principles has been subject to debate over the years, (e.g., see Hershey and Baron,
1987); we discuss two important arguments in this debate.

First, researchers in psychology have shown that people, including physicians, of-
ten do not follow decision-theoretic criteria when they make decisions (Kahneman
et al., 1982). In fact, it has been demonstrated that people exhibit stereotypical
deviations or biases from the criteria and their underlying assumptions. When rea-
soning with uncertain information, people tend not to adhere to the rules of proba-
bility theory. In clinical medicine for instance, many physicians tend to attach more
importance to the fact that a patient fits the classic description of a disease than
the high improbability of that disease due to its low prevalence, (Sox et al., 1988).
Also, diagnostic procedures are often employed to gather additional information that
is consistent but redundant; such procedures could therefore be omitted.

The fact that physicians normally do not conform to the criteria of decision the-
ory in their reasoning creates a tension when decision-analytic methods are applied
to clinical problems. Decision theory is normative in nature, and deviations from
decision-theoretic criteria are therefore classified as erroneous. But most experienced
physicians will be hard to convince that they are frequently making errors. Similarly,
the formalisation of preferred management strategies in clinical guidelines is seldom
effective: it has also been found that clinicians rarely use guidelines, no matter how
well-written and how evidence-based they are, (Berg, 1997).
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A second problem with the application of decision analysis in clinical practice concerns
the description of decision-making objectives. It is often felt that numerical utility
values fall short in expressing the difficult tradeoffs that are involved in medical care.
Furthermore, it is unclear who should assess these utilities. When the doctor is to
do so, he must decide on highly subjective matters for his patient. When the patient
is to do it, he must rate and value conditions which he has never experienced. In
response to an illness, patients have been found to commit themselves to choices that
they regret in retrospect, (Hilden et al., 1992).

1.1.3 Artificial intelligence in medicine

Soon after its inception, the digital computer started to inspire computer scientists to
design automated tools that could support medical workers in clinical judgement and
decision making. This has to the specialist field of artificial intelligence in medicine
as a branch of AI.

A key motivation for research in AI has always been the psychology of human problem
solving. This motivation was partly inspired by a paradigmatic shift in psychology
in the 1950s, where the leading behaviourist approach was traded for a cognitive
approach that emphasises symbolic information processing and problem solving; in
cognitive psychology, the primary metaphor for the human brain is the digital com-
puter. Correspondingly, researchers in AI favoured symbolic rather than numerical
problem representations; decision-theoretic and probabilistic reasoning were consid-
ered inadequate models of human problem solving, (e.g., see Simon, 1955). An ad-
ditional reason for rejecting the decision-theoretic approach was the computational
complexity of probabilistic inference: automated reasoning with uncertainty in a
mathematically-sound manner was conceived to be impossible. Alternative reason-
ing strategies and heuristic methods for decision making were therefore preferred in
AI.

Also in artificial intelligence in medicine, the usage of probability and decision theory
has been varying. The approach was abandoned in the 1970s due to disappointing
results; since the late 1980s however, decision theory has regained interest from work-
ers in the field as a result from progress in the field of probabilistic representation
and reasoning. Below, we give a brief historical overview of the intelligent decision-
support systems in medicine, highlighting the main developments that relate to our
work.

Diagnosis with naive Bayesian models

The earliest computer systems for clinical assistance focused on the problem of di-
agnostic assessment, and used a naive Bayesian model (“idiot’s Bayes”) to infer the
most likely diagnosis from a given set of findings, (e.g. Warner et al., 1961). A naive
Bayesian model is a simple probabilistic model where disease types and potential
findings are represented as statistical variables, and it is assumed that the findings
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are mutually independent if the patient’s disease status is known. The broader prob-
lem of diagnosis as both diagnostic inference and diagnostic test selection was first
considered by Gorry and Barnett (1968). In their system, diagnostic inference is
also performed from a naive Bayesian model, while test selection is based on heuris-
tic functions describing the cost of conducting diagnostic tests and the penalties of
misdiagnosing. In several experimental applications, it was found that the system
yielded a sharp reduction in the average number of tests performed, while establishing
a diagnosis at expert level.

Noteworthy is also the work by F. de Dombal and his colleagues, (Horrocks et al.,
1972; de Dombal et al., 1972; de Dombal et al., 1975), who developed a naive Bayesian
model for the diagnosis of acute abdominal pain: lacking highly specific tests, clinical
diagnosis of this complaint (which may be a sign of appendicitis) is a notorious prob-
lem in emergency medicine. In a series of studies in the early 1970s, De Dombal and
his colleagues devoted themselves to delivering diagnostic assistance by the computer
in an extremely practical format; this allowed to gain experience with the usefulness
of such systems in routine clinical practice. In a controlled prospective trial, it was
found that the system’s diagnostic accuracy was significantly higher than that of the
most senior member of the clinical team (91.8% versus 79.6%).

Notwithstanding these promising results, the probabilistic approach to diagnostic
assistance was departed in the 1970s. The assumption of mutual independence in
naive Bayesian models is often unsound, and may thus impede diagnostic accuracy.
Yet, probabilistic reasoning in general is highly combinatorial, and was therefore
held to be infeasible without the assumption of mutual independence. Furthermore,
the approach did not seem to leave room for incorporating the knowledge of clinical
experts. And finally, naive Bayesian models do not increase one’s understanding
of the domain under consideration, and are therefore soon disregarded by clinicians.
For these reasons, symbolic reasoning prevailed over probabilistic reasoning for almost
two decades; the predominant approach to medical decision support was within the
expert system paradigm.

Expert systems

An expert system is a computer program capable of giving some sort of reasoned
guidance on a small set of closely related problems. Research on expert systems
arose as a subfield of AI in the 1970s from the conviction that general reasoning
and problem solving by computer systems is probably an aim too high, but that
satisfying results may be obtained by restricting to tightly-delineated problem do-
mains. In these restricted settings, there was no need to mimic poorly-understood
human problem-solving methods such as analogical reasoning and “common sense”
inference; an expert system might be able to compete with human experts in the
domain under consideration. A traditional field of application for expert systems is
clinical medicine; medical specialities are thought to provide precisely the delineated
problem domains where these systems excel.
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One of the earliest and most influential expert systems developed was MYCIN, an
advisory system on the diagnosis and treatment of the infectious diseases septicaemia
and meningitis, (Shortliffe, 1976). The core of MYCIN is formed by a collection of
production rules that express causal and associational relationships in the problem
domain. The rules are processed by an inferential algorithm in response to queries
by the user. It was shown in the MYCIN project that these techniques could be
generalised for use in other domains through a separation of domain knowledge and
problem-solving inference. This type of separation has become a key characteristic of
expert systems: a knowledge base provides a declarative specification of all domain
knowledge, and a generic inference engine responds to the user’s queries by selecting
relevant items from the knowledge base and employing them in systematic reason-
ing. Domain knowledge may be obtained from several sources, but often originates
from human experts. Several other expert systems were developed by means of the
EMYCIN (Essential MYCIN) system, which was obtained from MYCIN by remov-
ing domain knowledge from the system. At present, programs such as EMYCIN are
known as expert system shells; the success of the EMYCIN system inspired many
others to develop similar systems.

An important topic in expert system design is the choice of knowledge-representation
formats. Many different representation formats have been used in expert systems or
suggested for that purpose, but a substantial number of them lacked a solid mathe-
matical basis. Therefore, only few types of knowledge representation have remained
over the years to be used and re-used in many systems; apart from the most popular
production-rule representation of MYCIN and EMYCIN, these are the frame-based
representation (Minsky, 1975) and first-order predicate logic.

We describe two more influential medical expert systems, as they relate most closely
to our work. CASNET (Weiss et al., 1978) is a system for assisting clinicians in
the diagnosis and long-term treatment of glaucoma. It is based on a representation
that models disease processes as a network of causal-associational relationships. The
CASNET system incorporates many features that are relevant for clinical reasoning
that were overlooked in other systems: the construction of a differential diagnosis,
the representation of severity and progression of disease, and the possibility to reason
with therapy and outcome.

ONCOCIN (Shortliffe et al., 1981) is a chemotherapy protocol advisor that combines
rules from clinical guidelines with judgements of oncologists who have experience ad-
justing therapy in complex clinical situations. An evaluation showed that ONCOCIN
provides advice on lymphoma treatment similar to the treatment provided in a uni-
versity oncology clinic, (Hickam et al., 1985). However, the system had difficulties
with anticipating problems with therapy, as this requires reasoning with uncertain
and incomplete information. Therefore, a successor system, called ONYX (Langlotz
et al., 1987), was designed to handle these difficult planning problems; it combines
decision-theoretic and AI approaches to planning. The system’s planning procedure
consists of three steps: (i) the use of production rules to generate a small set of
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plausible plans, (ii) the use of physiological knowledge to simulate the consequences
of each plan for the patient, and (iii) the use of decision theory to rank the plans
according to how well the results of each simulation meet the treatment objectives.

Probabilistic networks

The knowledge-representation formats that were developed in the field of expert
systems were symbolic rather than numerical in nature, and usually aimed at forms of
categorical inference. When a fully deterministic perspective on the problem domain
was inadequate, attention focused on qualitative ways of handling uncertainty such as
non-monotonic logic (Reiter, 1987), or on novel numerical schemes such as fuzzy logic
(Zadeh, 1965), certainty factors (Shortliffe and Buchanan, 1975), or Dempster-Shafer
belief functions (Shafer, 1976). Many researchers in the field held probability to be
inadequate as a representation of uncertain knowledge, and probabilistic inference, i.e.
the calculation of probabilities of interest, was considered computationally infeasible.

While research into the alternative representations of uncertainty continued to be
pursued, probability theory made a comeback. It was perceived that exploitation of
conditional independence assumptions, implicit in the qualitative structure of expert
knowledge, might reduce the problem of specification and evidence propagation to
a feasible level. The branch of graphical models (Whittaker, 1990) in statistics em-
phasised such qualitative structure over quantitative specification, and provided a
graphical representation of conditional independence statements. The major break-
through, halfway through 1980s, consisted of the development of methods for efficient
probabilistic inference with graphical representations, and yielded the formalism of
belief networks, (Kim and Pearl, 1983; Lauritzen and Spiegelhalter, 1988; Pearl, 1988).

Ever since, belief networks have enjoyed a rapid increase in popularity, and are now
the most widely-used formalism for handling quantified uncertainty in AI. Numer-
ous expert systems based on belief networks have been developed, with a substan-
tial number of applications in medicine (e.g. Andreassen et al., 1987; Andreassen
et al., 1998; Bellazzi et al., 1991; Middleton et al., 1991; Heckerman et al., 1992). A
renewed interest in decision theory has emerged, motivated by the new possibilities
to perform automated probabilistic reasoning. It was in fact found that a straight-
forward decision-theoretic extension to belief networks exists in the form of influence
diagrams, a representation that had concurrently been developed in the field of de-
cision analysis, (Howard and Matheson, 1981; Shachter, 1986). As such, influence
diagrams can be regarded as a true synthesis of the symbolic and numerical reason-
ing methods advocated by AI and decision theory.

1.2 The dynamic perspective on patient management

It was earlier described that time and change often play a significant role in clinical
situations; we concluded that patient management is therefore best regarded as a
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process of ongoing interaction between patient, disease, and clinician. Within this
process, the clinician faces the task of making a large number of interrelated decisions
over time, where each decision consists of a choice between multiple clinical actions.
The management task can thus be viewed as a form of action planning, where not
only the choice, but also the timing of clinical actions is important.

Although it was already noted by Gorry (1968; 1973) that a doctor can be thought
of as solving a sequence of similar decision problems, the dynamic perspective on
patient management is rarely found in the literature on medical decision support.
Similarly, the role of time and change in clinical reasoning has been largely neglected.
Most decision-support systems are characterised by a static perspective on the clin-
ical situation where time is left implicit, (Kahn, 1991). The crucial role of tempo-
ral reasoning for medical decision support systems is increasingly recognised, (Soper
et al., 1991; Aliferis et al., 1997; Peek, 1999a; Shahar, 1999), and there are experimen-
tal indications that temporal reasoning can indeed improve the accuracy of medical
decision-support systems; such was found, for instance, in the Heart Disease Program,
(Long et al., 1986; Long, 1996). Yet, it is hard to assess which type of temporal rep-
resentation is adequate for a given clinical domain, and even harder to design an
associated inference mechanism that correctly, and accurately, implements temporal
reasoning.

In this section, we elaborate on the conception of patient management as a form of
action planning under uncertainty. We will first, in Subsection 1.2.1, review the field
of planning in AI, where special attention is given to the increased interest in planning
under uncertain conditions that has emerged in the last decade. Decision-theoretic
planning is the synthesis of this type of planning with principles from decision theory.
We draw up an inventory of the abstract concepts that occur in decision-theoretic
planning in Subsection 1.2.2.

1.2.1 Action planning in AI

Early in the growth of the field of AI it was recognised that an important behaviour
for any intelligent system was the ability to plan a set of actions to accomplish its
goals. The attempt to realise programs with this ability has resulted in one of AI’s
main sub-disciplines – the field of planning. Since the first published papers on
planning in the late 1950s, this field has grown and now comprises a literature that
is quite diverse, as planning is related to many other subareas of AI. It is also the
field that has raised the most challenging problems from both practical, theoretical,
and philosophical standpoints.

The traditional approach to planning in AI employs a strictly symbolic language (e.g.
predicate logic) in the formalisation of planning tasks and makes several assumptions
on the type of problem that is to be solved, (McCarthy and Hayes, 1969; Fikes and
Nilsson, 1971). To be specific, it is assumed that if an agent performs actions within
a planning environment, the effects of these actions can be predicted with certainty,
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and are moreover known to the agent. Furthermore, there exist particular states of
the environment that are unambiguously preferred over others and therefore represent
the goal of the planning effort: the objective is to reach such a state while minimising
the number of actions. A sequence of actions that satisfies this objective is then
called an optimal plan. A common additional assumption is that the agent knows
the initial state of the environment; there is no hidden information.

Most of the research within the traditional planning approach has focused on possible
ways to formalise notions such as action, time, and change, (e.g. McDermott, 1982;
Allen, 1984; Lifschitz, 1987). Formal reasoning about the effects of actions over
time has turned out to be notorious in the generation of philosophical problems
such as the frame problem (McCarthy and Hayes, 1969), the qualification problem
(McCarthy, 1980), and the ramification problem (Finger, 1987). But even when
we disregard these problems and restrict the potential effects of actions by prior
assumptions, solving planning problems is computationally intractable as inspection
of an exponentially growing number of action sequences may be required to find a
goal state. Nevertheless, satisfying results are sometimes obtained by heuristically
searching the state space.

The last 10 to 15 years have shown a growing recognition that the assumptions of tra-
ditional planning research are unrealistic in most real-world settings, and the results
of the research efforts could therefore hardly ever be put to practice. An increasing
interest has emerged for planning under uncertainty, that is, planning in environ-
ments where the effects of actions are nondeterministic, and where part (or all) of
the state of the environment is unknown to the planning agent. These conditions have
important consequences for the notion of plan, and therefore also for the construction
of (optimal) plans, as they require that planned behaviour is adjusted dynamically
during plan execution on the basis of observations. Alternatively, a conditional plan-
ning structure must be developed that anticipates on all possible situations that
may be encountered during plan execution; we speak of a contingency plan. Several
planning systems have been described in the literature where a traditional approach
is adjusted to handle various types of uncertainty, (Peot and Smith, 1992; Draper
et al., 1993; Kushmerick et al., 1995).

Another traditional assumption that has been criticised is that there exist goal states,
states of the environment that are unambiguously preferred over others. It was argued
that a planning agent often has multiple, possibly competing planning objectives,
each of which is only partially satisfiable. And even if goal states can be identified,
they have to be approached differently under conditions of uncertainty as there will
generally not exist plans that guarantee such states to be reached. Therefore, part
of the planning task is to also make a tradeoff between multiple objectives and to
formulate a planning criterion that takes uncertainties into account.

In recent years, it was recognised that action planning under uncertainty can be
regarded as the task of controlling a stochastic process over time, a type of prob-
lem that has traditionally been within the realm of control theory, (Dean and Well-
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man, 1991; Bertsekas, 1995). Furthermore, multi-attribute utility theory (Keeney
and Raiffa, 1976), a specialisation of utility theory, was found to provide adequate
ways of incorporating multiple objectives in choices under uncertainty. The synthesis
of these ideas yields a form of planning that can be characterised as planning un-
der uncertainty using decision-theoretic principles, or decision-theoretic planning for
short.

1.2.2 Decision-theoretic planning

In this thesis, we study decision-theoretic planning as a formalisation of the dynamic
perspective on clinical patient management. There are three conditions that moti-
vate this choice of formalisation. First, this formalisation is rooted in well-established
mathematical theories with a clear, formal semantics, and a large body of known for-
mal properties. Second, the numerical basis of decision theory accords with the
quantitative tradition in evidence-based medicine. The decision-theoretic approach
allows us to use statistical data from clinical trials, improving the reliability of recom-
mended decisions and increasing the chances of acceptance in clinical environments.
And third, decision theory requires that knowledge encoded in a model or knowledge
base be self-consistent; contradictions in the knowledge will be found at the time of
building the model instead of while employing it.

We conclude this section with a conceptual framework for decision-theoretic planning,
where we identify the principal ingredients that occur in this type of reasoning. This
conceptual framework will serve as a starting-point for a formalisation of the task
in subsequent chapters of the thesis; we describe it in terms of its five principal
ingredients.

First of all, the notion of action planning assumes the existence of actions from which
choices are to be made. A specific choice of action will be called a decision; instead of
actions we will therefore also speak of decision alternatives or simply alternatives. A
person or artificial agent charged with the responsibility of choosing between decision
alternatives is called a decision maker. In the general case, multiple decision makers
may be involved in an action planning task, but in this thesis we will take the per-
spective of the individual clinician who is treating a patient; we will therefore speak
of the decision maker. We will assume that the object of decision making, i.e. the
environment or part of reality to which it pertains, can be viewed as a system, with
specific behaviour that is described in terms of system states. In turn, these states
are characterised in terms of a number of attributes. In a medical context, we iden-
tify the system under consideration with a patient who receives treatment, where the
states correspond to different conditions of that patient. We further assume that the
decision maker has limited information about the precise state of the system. This
relates to the fact that clinical settings limit the potential of knowing the patient’s
precise state; it is only observable in the form of symptoms, signs, and diagnostic
measurements. We therefore distinguish between the actual system state and the



16 Introduction

plan

domain
model

objectives

beliefs
action

evidence

states attributes

decision
maker

system

control observation

Figure 1.3: Decision maker controlling a partially-observable system by action planning.

decision maker’s limited information thereof, to which we refer as his knowledge.

An important characteristic of the system at hand is its dynamic nature: the system’s
state is subject to change over time. The second ingredient that needs distinction
is therefore the time frame for the planning task, and the potential changes in the
system that may accompany temporal progression. We identify two types of change:
endogenous and exogenous change. Endogenous changes are alterations to the sys-
tem’s state that occur independent of external intervention by the decision maker;
in clinical terms, this may be regarded as the natural history of disease. Exoge-
nous changes, in contrast, are induced by actions chosen by the decision maker;
these changes are typically regarded as the effects of clinical interventions such as
surgery. We assume that both types of change are, in general, nondeterministic, and
can therefore not be predicted with certainty. We recall that in the framework of
decision-theoretic planning, this type of action planning is regarded as the task of
controlling a stochastic process over time.

The third ingredient of our framework concerns the informational relation between
system and decision maker. We will assume that the decision maker has a model
of the domain that describes the system and the expected (yet uncertain) effects of
performing actions on the system state. Furthermore, actions may yield the opportu-
nity to observe parts of the system state. We refer to such observations as evidence;
the evidence that is collected over time constitutes the decision maker’s knowledge.
From the model and the evidence obtained, the decision maker develops an opinion
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on unobserved parts of the system. Note that we do not take the model to be a cor-
rect description of reality: it may be inaccurate or incomplete. The decision maker’s
opinion is therefore subjective in nature; to emphasise the inherent subjectivity, we
will rather speak of beliefs than of opinion. In line with our choice to use Bayesian
decision theory in the formalisation, we assume that the decision maker’s beliefs are
expressed as probabilities.

The fourth concept that needs distinction is the objective of planning. Generally
speaking, the motivation to select actions will be that certain system states are pre-
ferred over others, and that we hope to ‘move’ the system state in the preferred
‘direction’ by appropriate action choices. Of course, there may be multiple, compet-
ing objectives that require a tradeoff; these competing objectives are then expressed in
terms of different attributes of the system. We assume all preferences and objectives
to be quantifiable using the principles of utility theory.

Fifth and finally, we distinguish well-posed problems and solutions. A decision-
theoretic planning problem usually consists of a decision-making situation, expressed
in terms of all available information such as case-specific parameters and past obser-
vations and decisions. When the first decision is to be made, this will be limited to
case-specific parameters. In addition, there may be constraints on the possible choices
for the current or future decisions. As planning decisions can often not be made in
isolation, a well-posed solution should consist of a contingency plan that decides on
the current choice and anticipates on possible situations that may be encountered in
the future, while taking into account possible constraints that have been formulated
as part of the problem.

In Figure 1.3, we have illustrated our conceptual framework of planning under un-
certainty. It depicts the ingredients that were identified above, as well as the mutual
relationships that exist between these ingredients and their role in the planning task.

1.3 Overview of this thesis

We will now summarise the preceding sections and give an overview of the chapters to
come. In this thesis we employ a dynamic perspective on clinical patient management,
where doctor, patient, and disease engage in a process of continual interaction: the
doctor responds to observed signs, symptoms, and results of diagnostic procedures
by taking appropriate clinical action, and the patient’s condition changes over time
in response to the doctor’s actions. Within this process, the tasks of diagnostic
assessment, therapy selection, and prognostication are intertwined activities, and do
not form separate phases in the management procedure. The doctor is viewed as
solving a sequence of similar but mutually related decision problems over time; in
abstract terms, this task is characterised as action planning under uncertainty with
partial information and temporal constraints. As we employ decision theory at the
fundamental level of trading off alternative choices, the overall management task is
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characterised as a form of decision-theoretic planning.

The primary scientific contributions of this thesis are

1. the formalisation of the conceptual framework for decision-theoretic planning
that was put forward in the previous section, and

2. the subsequent interpretation of the proposed formal structures in clinical
terms.

Roughly, we first review several existing representation formalisms for decision-theo-
retic reasoning, and then propose a new formal framework that synthesises the ideas
from these representation formalisms and from the field of symbolic planning in AI.
We will then use the proposed formal framework to model a large number of aspects
related to clinical patient management.

A secondary contribution is the integration of decision-theoretic and AI approaches to
clinical decision support. On the one hand, we subscribe the decision-theoretic prin-
ciple that a decision-support system in medicine should not uncritically reproduce a
physician’s heuristics and biases, or mimic the casual habits of clinical practice. Fur-
thermore, a system should build on mathematical theories of information processing
and uncertainty reasoning, as people typically tend to have difficulties at this front.
Yet, we believe that important steps for applied decision theory lie at the interface
between descriptive, prescriptive, and normative accounts, all of which affect each
other. To address this interface, an explicit symbolic representation of the concepts
that underly clinical reasoning, is required: a decision-support system should not
only give advice, but also provide the user with additional insight in the problem
domain. As such, our work is rooted in the tradition of symbolic representation and
reasoning in AI.

Chapter 2

In Chapter 2, we describe the domain of congenital heart disease and the associated
decision problems in clinical practice. We will focus on the most frequently-occurring
congenital heart disease, called ventricular septal defect (VSD). This disorder is rel-
atively well-understood, and carries many clinical features that are characteristic for
congenital heart disease in general; it was therefore chosen as a case study in our
investigation. In the VSD domain, it is difficult to predict the future course of dis-
ease, and it is therefore hard to decide if, and when, a patient should be submitted
to surgery. A careful timing of diagnostic investigations can improve the quality of
predictions, but the risks and costs of invasive tests always have to be evaluated
against their potential benefits. We use small illustrations from the VSD domain in
Chapters 3 and 4, and use it as a more detailed case study in Chapter 6.
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Chapter 3

Chapter 3 discusses the formal foundations for decision making under uncertainty
within the decision-theoretic paradigm. It is described how probability theory, utility
theory, and their synthesis decision theory provide a framework for analysing various
types of choice under uncertain conditions. This chapter is introductory in nature
and may be skipped by readers that are already acquainted with these fields.

Chapter 4

Chapter 4 reviews the main existing representation formalisms that adhere to the
decision-theoretic perspective. Notwithstanding their common ground, these for-
malisms stem from separate traditions, and therefore come in different forms. We first
describe the earlier-mentioned belief networks and their decision-theoretic siblings in-
fluence diagrams. Influence diagrams provide a concise way of representing decision
problems by exploiting probabilistic independencies between variables in the prob-
lem domain; there have been several applications of influence diagrams to problems
of therapy planning in medicine, (Quaglini et al., 1989; Quaglini et al., 1993; Bielza
et al., 1999). In their basic form, however, influence diagrams are static in nature
and are therefore a poor formalisation of the concept of decision-theoretic planning.

The second representation we discuss is the Markov decision process. This is a math-
ematical model of stochastic control that incorporates many ingredients of decision-
theoretic planning, (Boutilier et al., 1999). There exist two variants: fully-observable
and partially-observable Markov decision processes. Partially-observable Markov de-
cision processes are more suited to the clinical situation, as they assume that part of
the problem situation remains hidden for the decision maker. These processes have
recently been applied to the problem of therapy planning for adults with acquired
cardiovascular diseases, (Hauskrecht, 1997b; Hauskrecht, 1998).

Although Markov decision processes have explicit notions of time and change, their
representation of temporal progression is rather coarse. A more delicate represen-
tation of stochastic processes is found in the dynamic variants of belief networks
and influence diagrams; this is the third and last type of representation discussed in
Chapter 4. Dynamic belief networks have been used for monitoring breast-cancer pa-
tients who are being given cycles of post-operative cytotoxic chemotherapy, (Bellazzi
et al., 1991). Dynamic influence diagrams can be integrated with Markov decision
processes; this type of representation is broadly regarded as one of the most powerful
formalisms for decision-theoretic modelling and reasoning to date.

Chapter 5

Although Markov decision processes and dynamic influence diagrams incorporate
many ingredients of decision-theoretic planning, most of these ingredients are still
derived, rather than primitive notions in the formalisation. In Chapter 5 we present
a formal framework that integrates probability theory, decision theory, and symbolic
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planning at a more fundamental level. Part of this framework is a language that allows
for direct manipulation of symbolic structures that describe states, events, observa-
tions, decisions and plans. The general notion of decision process is defined to cover all
influential relationships between system and decision maker over time; this allows to
express and study their mutual interaction more directly, and provides for analysing
the simplifying assumptions that are used to reduce the computational complexity
of problem solving. As an example, we re-evaluate and compare partially-observable
Markov decision processes and dynamic influence diagrams as implementations of
this notion.

A significant part of the chapter is devoted to a theory of contingency planning,
where plans are expressed as collections of decision rules. Decision rules allow for
easy communication with field experts and can be directly employed, for instance,
in clinical practice guidelines. Furthermore, this form of contingency plan enables us
to formulate decision-making strategies at different levels of detail and with varying
ranges of applicability; we investigate notions of plan consistency, plan coherence,
and plan completeness. A partial order on contingency plans, based on their range
of applicability, is defined; this paves the way for incremental procedures of plan
construction.

Chapter 6

In Chapter 6 we return to the starting-point of our study, decision making in med-
ical care. It is discussed how the framework from Chapter 5 is applied to decision
situations in clinical patient management. We first describe how the framework can
be used to create a formal description of a given clinical domain. This is essentially a
modelling activity; we use elaborate examples from the VSD domain to illustrate our
ideas. In the second part of the chapter, we assume a formal domain description to be
available, and investigate the formalisation of clinical reasoning tasks such as diagno-
sis, treatment planning, and prognosis, and their mutual alternation and interaction
in the dynamic perspective on patient management. We show that in each of these
tasks, our framework allows for capturing the purely decision-theoretic perspective,
but can also make explicit other, conceptual perspectives in clinical decision-making.
A related theme is the fact that our framework leaves room for variation in formal-
ising these reasoning tasks: as such, it allows for analysing, and comparing, existing
and novel approaches to formal decision support.

Chapter 7

Chapter 7 concludes the thesis with a summary of the main results and a discussion
of possible directions for further research.



CHAPTER 2

Treatment planning in paediatric cardiology

Each year, in the Netherlands approximately 1600 children are born with a heart dis-
ease. The severity of these diseases ranges from hardly noticeable to life-threatening.
Fortunately, the rapid evolution in both medical knowledge and clinical technology
has yielded the opportunity to manage the majority of these disorders successfully,
providing the patients a normal life-expectancy with little or no disabilities.

In this chapter, we describe the domain of congenital heart disease, and the associ-
ated decision problems the paediatric cardiologist faces. We will focus on the most
frequently-occurring congenital heart disease, called ventricular septal defect (VSD).
This disorder is relatively well-understood, and carries many clinical features that
are characteristic for congenital heart disease in general; it was therefore chosen as
a case study in our investigation. Of course, the methods and techniques to be pre-
sented are more general and can be applied to many different decision problems. In
Chapters 3 and 4, we will frequently use small illustrations from the VSD domain;
in Chapter 6, we describe an elaborate model of the domain, including the formal-
isation process from which it originated. To facilitate the reader’s understanding,
Appendix A provides a quick reference of the medical terms that are introduced in
this chapter.

We begin in Section 2.1 by describing the anatomy and physiology of the human heart;
readers with a medical background may wish to skip this section. Section 2.2 provides
a high-level introduction to the domain of congenital heart disease, and Section 2.3
gives a more detailed picture of VSD. We also describe the management of VSD
patients in today’s clinical practice. The chapter is concluded in Section 2.4, where
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Figure 2.1: Exterior of the human heart.

we discuss this management task in more general terms and sketch the potential for
formal decision support in the area.

2.1 Structure and function of the normal heart

The heart is a hollow muscular pump connected to an elaborate network of blood
vessels that is spread throughout the body. Heart and vessels thus jointly form
a circular transport system, usually called the cardiovascular system. Contractile
activity of the myocardium (heart muscle) is regulated in detail so that the heart can
pump either small or large amounts of blood as dictated by the needs of the body.

Below, we describe the anatomical structure of the heart and vessels, the circulation
of blood though the body, and the associated mechanics of the cardiovascular system.
We will generally confine ourselves to topics that are relevant for the discussion of
congenital heart diseases and in particular VSD that is to follow; for a more elaborate
treatment of the human cardiovascular system, we refer the reader to a textbook on
medical physiology (e.g., Ganong, 1997; Guyton, 1986), or a specialised book on the
subject (e.g. Katz, 1977).
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Figure 2.2: Schematic depiction of the heart. RA = right atrium, LA = left atrium, RV
= right ventricle, LV = left ventricle, AP = pulmonary artery (arteria pulmonalis), and
Ao = aorta.

Anatomy of the heart and vessels

The heart is built up from two halves, each of which is divided into two pumping
chambers: a thin-walled atrium, and a larger and thicker ventricle below. The left
and right atria are separated by what is called the atrial septum, and the left and
right ventricle are separated by the greater ventricular septum; both are walls of
muscular and fibrous tissue. Connected to the ventricles are the great arteries: the
pulmonary artery, which extends from the right ventricle and leads to the lungs,
and the aorta, which extends from the left ventricle and leads to the body. Bloods
enters the heart through the atria and is pumped into into the great arteries by the
contracting ventricles; in the schematic depiction of the heart of Figure 2.2, the blood
therefore flows from top to bottom. We note that in reality, pulmonary artery and
aorta extend from the upper side of the heart as in Figure 2.1: the arch-shaped aorta
is seen on top, and the trunc-shaped pulmonary artery lies directly below it.

The heart contains valves to prevent blood from flowing in a direction other than
towards the great arteries. Each valve can open only to one side and closes automat-
ically when pressure differences give rise to a blood flow in the reverse direction; the
valves are thus essential for the pumping activity of the heart. There are four heart
valves: two valves between the cavities of the atria and ventricles, called atrioven-
tricular valves, and two valves between the outflow tracts of the ventricles and the
great arteries, called semilunar valves. The semilunar valve between right ventricle
and pulmonary artery is called pulmonary valve, and the one between left ventricle
and aorta is called aortic valve.

The vascular system consists of a extensively branching network of vessels with a
large variation in size and capacity. The great arteries connected to the heart split
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Figure 2.3: The cardiovascular system. The dashes are used to indicate that the pulmonary
circulation is bypassed in the fetal circulation.

up in a number of small arteries, which in turn split up into a larger number of
smaller arterioles, and finally a huge number of tiny capillaries. The arterioles are
the major site of the resistance to blood flow in the cardiovascular system, and small
changes in their calibre, which is under nerve control, can cause large changes in the
total peripheral resistance. At each bifurcation in the vascular system, the cross-
sectional area of the branches exceeds that of the parent vessel. As a result, the
cross-sectional area in the capillaries is enormous, and the velocity of blood flow
through them is very low. Slow flow provides time for the necessary exchange of
substances with the surrounding tissue across the thin capillary walls. After the
exchange, the blood is collected by veins and carried back to the heart. Here, the
blood again accelerates as the cross-sectional area progressively decreases. However,
the calibre of the veins exceed that of the corresponding arteries, so the velocity of
venous blood only approaches and does not equal that of arterial blood.

Cardiac cycle and blood circulation

Rhythmic contraction of cardiac muscle is achieved by electrical excitation of special
pacemaker cells in the myocardium. The conduction system made up by these cells
spreads the impulses throughout the heart to let its parts beat in an orderly sequence:
contraction of the atria is followed by contraction of the ventricles, and subsequently
all four compartments are relaxed. All together, the events are called the cardiac
cycle, where the phase of contraction of the cardiac muscle is referred to as systole,
and the phase of relaxation is called diastole.
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The cardiovascular system has two distinct parts: pulmonary circulation and systemic
circulation1; this is schematically depicted in Figure 2.3a. Pulmonary circulation is
the movement of blood from the heart to the lungs and back, and is responsible for
the exchange of carbon dioxide and oxygen in the lungs. Systemic circulation is the
movement of blood from the heart to body tissue and back to the heart again; it
is responsible for supplying the tissue with nutrients and oxygen, and for collecting
waste products. As appears from the figure, the heart can be conceived as consisting
of two pumps in series with each other: the left side of the heart moves the blood
through the systemic circulation, whereas the right side of the heart moves the blood
through the pulmonary circulation.

The above description of the cardiovascular system pertains only to its functioning
after birth. During pregnancy, the basic functions of respiration, degradation and
elimination of waste products are carried out by the mother, and the cardiovascular
system of the foetus is adapted for intra-uterine existence. The fetal lungs are col-
lapsed and have no respiratory function. The flow of blood through the circulation is
largely diverted around the lungs; this is accomplished as follows (see Figure 2.3b).
Firstly, the small pulmonary arteries are diminished in internal diameter by a thick
media, thus preventing a large blood flow by their high resistance. Secondly, there
exists a special duct connecting aorta and pulmonary artery, called ductus arteriosus,
and an oval opening between the atria, called the foramen ovale, which functions as
a unidirectional flutter valve. Ductus arteriosus and foramen ovale act as bypasses,
permitting blood from the systemic veins to enter the systemic circulation without
passing through the lungs.

The critical dependence on oxygen requires rapid accommodation of the cardiovascu-
lar system to enable autonomous existence immediately after birth. In the newborn
infant, the pulmonary arterioles react to the initial inflation of the lungs with oxygen
by dilatation (expansion), resulting in a diminished pulmonary resistance; the pul-
monary blood flow is greatly increased. The ductus arteriosus is promptly constricted
so that aortic flow becomes separated from the pulmonary circuit. Furthermore, the
increased pulmonary flow elevates left atrial pressure sufficiently to functionally close
the foramen ovale. Anatomic obliteration of the potential aperture of the foramen
ovale requires much more time but should normally be completed at the age of 3
months. During the same period, the pulmonary arteries change to thin-walled struc-
tures with increased internal diameter; these changes are accompanied by a further
decrease in pulmonary resistance to blood flow.

Dynamics of the heart and circulation

The cardiovascular system functions like common hydraulic systems, and its prop-
erties can therefore be described in terms of physical quantities, such as location
or dimensions, time and force. Derived haemodynamic quantities like displacement,

1There is in fact a third part (called the coronary circulation) that supplies the heart with oxygen,
but this part is irrelevant for the present discussion.
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velocity, acceleration, flow and pressure of blood are generally used to characterise
cardiac action. The systemic stroke volume (Qs) is the volume of blood ejected into
the aorta during each cardiac cycle (± 70 mL in a human adult at rest). It is thus
equal to the volume of blood in the left ventricle at the moment it begins to con-
tract (left-ventricular end-diastolic volume, Qlved ; ± 130 mL) minus the volume that
remains after contraction (left-ventricular end-systolic volume, Qlves ; ± 60 mL):

Qs = Qlved −Qlves . (2.1)

The fraction of ejected blood (Qs/Qlved ; usually around 0.6 in adults) is called the
ejection fraction; forceful contraction of the heart can increase this fraction. The
pulmonary stroke volume Qp can be computed in a similar way the systemic stroke
volume Qs. It is easily seen, however, that under normal circumstances the volumes
are equal since they merely represent different points of a closed circulatory system.

The quantity of blood pumped into the aorta by the left ventricle each minute is a
volume flow rate (i.e., the displacement of a quantity of liquid per unit of time), and
is known as the systemic cardiac output. It can be calculated as stroke volume times
heart rate r, the number of beats per minute:

Q̇s = d
dt
Qs = Qs · r. (2.2)

Cardiac output is approximately 5–6 litres/min in a healthy adult in rest; this is also
roughly the complete volume of blood in the body. Again, the flow rates through
all the segments of the cardiovascular system must be essentially identical; the pul-
monary cardiac output Q̇p is therefore equal to its systemic counterpart Q̇s.

The autonomic nervous system regulates cardiac output by adjusting the heart rate
and, to a lesser extent, the force of myocardial contraction. Depending on the needs
of the body, cardiac output is easily doubled or tripled in this way; it may ultimately
grow with a factor 7. An important fact is that diastole is shortened to a much
greater degree than systole when the heart rate is increased. At high rates the filling
of the ventricle, which occurs in diastole, may therefore be compromised; a further
increase in heart rate is then ineffective. The factors controlling cardiac output are
depicted in Figure 2.4.

We note that although stroke volume and cardiac output are the same at both sides of
the heart, there are considerable pressure differences. The peak systolic left ventric-
ular pressure is about 120 mm Hg, and peak systolic right ventricular pressure is 25
mm Hg or less; there are similar differences between aortic and pulmonary pressures.

2.2 Congenital heart disease

Approximately 8 out of each 1000 newborn infants have a congenital heart disease.
These diseases are generally due to some anatomical malformation of the heart, great
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Figure 2.4: Interactions between the components that regulate cardiac output and arterial
pressure (modified from Braunwald, 1974).

vessels, or both; the severity of disease and the consequences for the child vary greatly.
In approximately 40% of the cases, medical intervention is not necessary as the mal-
formation disappears by itself, or hardly influences the child’s general condition and
life-expectancy. The remaining 60% is more serious and can be life-threatening; these
children therefore need clinical support, possibly including surgery. The majority of
the children with congenital heart disease, however, can lead a normal life without
surgical intervention.

Below in Section 2.2.1, we briefly discuss the three main groups of congenital disease
found in the human heart. We restrict ourselves to disorders that stem from devia-
tions in the anatomical disposition of the heart or great vessels; these can usually be
traced back to errors in the development of the fetal heart. Section 2.2.2 reviews the
management of patients with congenital heart disease in current medical practice.
For more information on congenital disorders of the human heart, we refer to the
books by Anderson et al. (1987), Garson et al. (1990), and Moss et al. (1995).

2.2.1 Types of disorders

Congenital cardiac disorders are usually classified into three groups; combinations of
various disorders, however, do occur.

I. The first group is referred to as heart defects, and is characterised by the exis-
tence of a connection between the pulmonary and systemic circulations.

II. The second group comprises stenoses (narrowings), which can occur at multiple
locations near or at the semilunar valves, and in the aortic arch.

III. The third group of disorders is characterised by central cyanosis: the systemic
arterial blood is undersaturated with oxygen.
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With the modern diagnostic techniques it is generally quite feasible to establish the
correct diagnosis of congenitally diseased heart patient. Yet in over 90% of the cases,
the preceding cause of a congenital heart disease cannot be established. It is assumed
that both hereditary disposition and environmental factors are involved. Below, we
elaborate on each of the three groups of congenital cardiac disorders, and on heart
failure, a condition that accompanies most congenital heart diseases. As our interest
is directed towards VSD, which belongs to the group of heart defects, we mostly
confine to disorders that may occur secondary to a VSD as complication; the disease
itself is described in detail in Section 2.3.

Heart defects

The existence of a connection between the two circulations causes a blood flow
through this connection when the heart contracts; this is called shunting. Since
the pressures in the systemic circulation and left side of the heart are higher than in
the pulmonary circulation and right side, shunting will generally occur from systemic
to pulmonary arteries, or from left to right sides of the heart; one speaks of left-to-
right shunting. The common characteristic of disorders with left-to-right shunting is
increased pulmonary blood flow. This causes an increased risk of pulmonary infec-
tions and, generally speaking, a decreased ability to exert. Examples of this type of
congenital heart disease are abnormal openings in the atrial and ventricular septum,
respectively called atrial septal defect (ASD) and, as mentioned before, ventricular
septal defect (VSD). Another type of heart defect is a persistent ductus arteriosus
(PDA). This pertains to the situation where the ductus arteriosus fails to close after
birth, and therefore continues to connect aorta and pulmonary artery. Both ASD
and PDA may occur secondary to VSD.

Stenotic disorders

The second group of congenital cardiac disorders comprises stenoses (localised nar-
rowings). They are categorised by their location: aortic stenosis is located at or
near the aortic valve, pulmonary stenosis is located at or near the pulmonary valve,
and coarctation is located within the aorta. We will not elaborate on the last type
of stenosis here, as the combination of VSD and coarctation is usually seen as an
independent disorder. Both aortic and pulmonary stenoses may however occur sec-
ondary to a VSD. When the orifices of these valves become stenotic, this affects the
pressures and flows within specific chambers of the heart and in the circulation as a
whole. The direct effects of aortic stenosis are related to the impediment to blood
flow across the aortic valve: it causes a pressure overload on the left ventricle, that
is, left ventricular systolic pressure must increase in order to force blood through
the narrowed aortic valve into the aorta. The haemodynamic effects of pulmonary
stenosis can be understood in a similar fashion to aortic stenosis, now producing a
pressure overload on the right ventricle.
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Cyanotic disorders

The third group of congenital heart disease is characterised by undersaturation of
the systemic arterial blood with oxygen. This occurs when venous and arterial blood
is mixed, and is visible from a dusky blue discolouration of the tongue, lips, and
conjunctivae; one speaks of (central) cyanosis. Similar to disorders from the group of
heart defects, these cyanotic disorders comprise a connection between the circulations
within or near the heart, but now the shunting of blood is directed from the right to
the left side of the heart; this explains the undersaturation with oxygen of the systemic
blood. Mixing of venous and arterial blood is dangerous and surgical correction is
therefore often emergent. Examples of cyanotic disorders are transposition of the
great vessels, where both the main arteries and veins are misconnected to the heart,
and Tetralogy of Fallot, a combination of VSD and pulmonary stenosis. Furthermore,
the congenital cardiac disorders from the first group (i.e., those characterised by left-
to-right shunting), may in time result in cyanosis. This is due to an adverse reaction
in the pulmonary circulation; the associated findings are referred to as Eisenmenger’s
syndrome. The syndrome and its underlying mechanisms is described in more detail
in Section 2.3.

Heart failure

A common characteristic of most congenital heart diseases is that the cardiovascular
system functions inadequate due to haemodynamic disturbances; this circumstance is
referred to as heart failure. The heart faces an increased workload as the functioning
of several vital organs critically depends on the systemic cardiac output and arterial
pressure; any disturbance must therefore be compensated for. The cardiac muscle is
however often so powerful during childhood that it can easily compensate for minor
failure. With moderate and especially severe heart failure, however, continuous addi-
tional effort is required; this is primarily accomplished by increasing the heart rate,
and to a lesser extent by narrowing the systemic arterioles to increase their resistance
to blood flow. These compensatory mechanisms maintain mean aortic pressure at or
near a normal level.

Heart failure is a circumstance that can be distinguished on either sides of the heart;
one then speaks of left and right heart failure, respectively. Left and right failure
of the heart vary considerably in their consequences. Left heart failure is generally
recognised by signs of the compensatory mechanisms described above; it is therefore
associated with a high heart rate and shortness of breath during rest, and a decreased
ability to exert. Because fluid will congest in the lungs, left heart failure also yields
an increased risk of pulmonary infections. Right heart failure is most apparent from
congestion of fluid in the body; typical signs are hepatomegaly (enlarged liver) and
oedema (accumulation of fluid in body tissue). Both left and right heart failure may
yield an enlargement of the heart (cardiomegaly). We note that since both sides of
the heart are part of a closed circulatory system, it is unavoidable that failure of the
one side of the heart results in failure of the other, albeit after some time.
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A final response to chronically increased haemodynamic demands is growth of the
size of cardiac muscular cells; this is called hypertrophy. To a certain extent, hyper-
trophy is beneficial as it increases the total capacity for cardiac work, but it is also a
sign of cardiovascular disease. Cardiac hypertrophy is generally distinguished by the
heart chamber to which it pertains; one speaks for instance of left-ventricular and
right-ventricular hypertrophy.

We conclude with a few figures on prevalence of congenital heart disease. The most
common congenital heart disease is VSD, with a reported prevalence of 24–35%,
(Anderson et al., 1987). Other frequently found diseases are PDA (6–12%), pul-
monary stenosis (3–14%), and ASD (6–11%).

2.2.2 Clinical paediatric cardiology

In this subsection, we discuss the modalities for the paediatric cardiologist within
the standard clinical procedure as described in Subsection 1.1.1. Congenital heart
diseases are generally either detected from one of the externally visible signs such as
cyanosis or breathing problems, or from the characteristic heart murmurs that ac-
company these disorders. These murmurs can be heard with cardiac auscultation, an
examination that is often routinely performed with newborn infants. After detection
of the disease, the infant is sent to the paediatric cardiologist for further management;
below we elaborate on the clinical modalities for the paediatric cardiologist.

Physical examination

Physical examination of a child with a (suspected) congenital heart disease may
consist of visual inspection of the patient, palpation, and auscultation of the heart
and lungs.

Visual inspection can be used to detect central cyanosis, breathing problems, and the
presence of oedema. Furthermore, the decreased systemic cardiac output with
large left-to-right shunts usually causes the infant to look pale and to sweat
easily.

Palpation of the chest and abdomen can be used to detect cardiomegaly and hep-
atomegaly, and the presence of thrill (abnormal vibrations of the heart).

Auscultation of the heart through a stethoscope reveals several sounds and possibly
also several murmurs. Heart sounds accompany the closure of heart valves and
are associated with the abrupt acceleration or deceleration of blood at these
times. Cardiac murmurs are abnormal sounds, and result from vibrations set
up in the bloodstream and the surrounding heart and great vessels as a result
of turbulent blood flow. The major causes of murmurs are stenoses, valve
insufficiencies, and heart defects.
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Auscultation of the lungs, finally, can reveal so-called pulmonary rales, which indi-
cate the presence of redundant fluid as a result of congestion in the pulmonary
circulation.

Diagnostic tests

Routine tests in today’s paediatric cardiology are electrocardiography and echocardio-
graphy; when needed, chest roentgenography, blood tests, cardiac catheterisation,
and open lung biopsy are also conducted.

Electrography is a non-invasive measurement technique that records fluctuations in
the action potentials of muscle cells. An electrocardiogram (ECG) is used to
investigate disorders of the heart’s electrical activation and conduction system.
It can also be employed to detect left- and right-ventricular hypertrophy. The
investigation is non-invasive, painless and has no risks for the patient. The
reliability of the ECG is however questionable.

Echography is a measurement technique that uses the body’s internal as an acous-
tic mirror. Application of this technique to the region of the heart is called
echocardiography. It permits continuous recording of the position and move-
ments of heart walls, valves and blood vessels. Additional information about
intra-cardiac blood flow patterns can be obtained by employing the Doppler
shift to compute blood cell velocity. The application of echocardiography is
non-invasive and painless, and carries no risks to the patient; the results are
reliable when the image is judged by an experienced cardiologist.

Roentgenography can be used by the paediatric cardiologist to obtain an undistorted
image of the heart and vessels. It provides a means to discover cardiomegaly
and increased pulmonary vascularity due to pulmonary hypertension. The pro-
cedure is non-invasive, painless, and reliable, but exposes the patient to a small
amount of noxious x-rays; the number of exposures should be minimised.

Blood tests are used to measure the level of hemoglobin and oxygen in the systemic
arterial blood, and to check levels of medicines and their potential side-effects.
A blood test is invasive but harmless to the patient.

Cardiac catheterisation is used to measure the pressures and oxygen saturations of
blood in the heart’s chambers, which allows, for instance, to calculate the size
of a left-to-right ventricular shunt. It is also possible to produce a moving
roentgenographic image of cardiac blood flows by injecting radiopaque contrast
media through the tip of the catheter. Because cardiac catheterisation is rather
painful and the procedure takes quite some time, young children are often
anaesthetised; hospitalisation may be required. The procedure carries a risk
of stroke (due to thrombus formation) and perforation of the heart or great
vessels; the usage of contrast media may cause allergic reactions, in particular
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anaphylactic shock. In a small number of cases, these complications are fatal;
the mortality risk is higher during the first months of life.

Open lung biopsy is a procedure for obtaining a small specimen of pulmonary tissue
for microscopic analysis. It can point out whether there exists damage to the
pulmonary arterioles. Although an open lung biopsy is invasive, extremely
burdening to the patient, and not completely reliable, the procedure may be
performed because the state of the pulmonary arterioles has major consequences
for the choice of therapy.

Treatment modalities

The treatment modalities for the clinical cardiologist are medical treatment, cardiac
catheterisation, and cardiac surgery.

Medical treatment can be used to relieve the symptoms of heart failure in two ways:
cardiac glycosides enhance the strength of myocardial contraction, and diuretics
promote the excretion of urine through their effects on kidney function, thus
removing redundant fluid that is accumulating in body tissue. These treatments
carry negligible risk to the patient and have little or no side-effects.

Cardiac catheterisation can not only be used for diagnostic purposes, but also to
repair some cardiac lesions. Examples are stretching stenotic heart valves or
blood vessels with a balloon catheter and closing unwarranted connections and
defects by placing small umbrellas. The latter technique can sometimes be
employed to close a small VSD. As described earlier, catheterisation carries a
risk of complications and death, but it is significantly smaller than in the case
of surgery.

Cardiac surgery is one of the most difficult types of operation, especially with young
children. Although today it is possible to operate the heart of newborn infant
within days or even hours after birth, the risks of such a procedure are still
substantial. Possible postoperative complications are bleeding, arrhythmia, and
pulmonary hypertension; there is also a risk of death. When there is no need
for immediate intervention, as is the case with congenital heart defects such as
VSD, surgery is usually postponed. At the age of one year, the mortality risks
of cardiac surgery have dropped to roughly 1%. When the surgical procedure
is complicated and takes much time, the chances of complications and death
increase.

2.3 Ventricular septal defect

VSD (Gumbiner and Takao, 1990; Graham and Gutgesell, 1995) is a relatively well-
understood congenital cardiac disorder with many clinical features that are charac-
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Figure 2.5: Schematic depiction of a heart with a VSD and left-to-right ventricular shunt-
ing of blood.

teristic for congenital heart disease in general. Anatomically speaking, VSD is a hole
in the ventricular septum, the fibromuscular wall that separates the left and the right
ventricle. As noted in Section 2.2.1, it is also the most frequently occurring con-
genital heart disease, with a reported prevalence of 24–35%, (Anderson et al., 1987).
In approximately 80% of these cases, VSD is the sole lesion. In the Netherlands,
some 400 to 500 children are born each year with the disease; the incidence is 1.5
to 3.5 out of each 1000 newborn infants. VSD occurs 2 to 3 times more often with
premature births than with term births, and slightly more frequently with women
(56%) than with men (44%). It is also frequently found in patient’s with Down’s syn-
drome; the majority of all VSDs (>95%) is however not associated with chromosome
abnormalities.

In brief, the main pathophysiological consequences of the disease are left-to-right
shunting through the defect due to ventricular pressure differences (see Figure 2.5),
and as a result thereof pulmonary hypertension and heart failure; the main threat
is pulmonary arteriopathy and cyanosis (Eisenmenger’s syndrome). We will first
elaborate on the disease’s characteristics in Subsection 2.3.1, and then discuss the
management of VSD patients in Subsection 2.3.2.

2.3.1 Disease characteristics

In this subsection, we describe on morphological and pathophysiological aspects of
VSD, and discuss the possible complications that may accompany the disease. We
also describe Tetralogy of Fallot, a congenital heart disease that is strongly related
to VSD, and conclude with a summary of potential developments of VSD and its
complications over time.
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Morphology

A VSD is anatomically classified according to its size and its type, where type pertains
to its location in the ventricular septum. Furthermore, there may be more than one
defect in the septum. Below, we briefly elaborate on these classifications.

A most distinguishing feature of a VSD is its size. Defects may have different dimen-
sions and this has important physiological and clinical consequences. Unfortunately,
it is somewhat difficult to characterise the size of a given VSD as it is essentially
three-dimensional in shape. In clinical practice, it is customary to use the largest
diameter of the VSD to describe its size. This diameter may range up to 6 to 7 mm
at birth, and extend up to 20 mm during childhood as the heart grows and the VSD
expands with it; the relative size of the VSD does not increase though. Using the
diameter, one usually distinguishes small (up to 3 mm at birth), moderately large
(3–5 mm at birth, at most 10 mm thereafter), and large (more than 5 mm at birth,
later 10–20 mm) VSDs.

The type of a VSD refers to its location in the ventricular septum. The septum is
composed of a small membranous component that is surrounded by three muscular
components. A number of VSD typologies have been proposed in the literature; we
confine ourselves to the most widely used distinction proposed by Soto et al. (1980)
between

• perimembranous VSD (85–90%; located within the membranous component,
adjacent to the semilunar valves),

• subaortic VSD (5–7%; also located within the membranous component, located
just beneath the aortic valve), and

• muscular VSD (5–20%; located within the muscular apical septum in the lower
part of the heart, neither bordering on one of the heart valves nor on the
membranous component of the septum).

Additionally, a perimembranous VSD may extend into the muscular components near
the semilunar and atrioventricular valves.

There may be multiple defects in the ventricular septum: muscular defects may co-
occur with perimembranous and subaortic defects, and simultaneous occurrence of a
large number of small, muscular defects is also possible. This is called a Swiss cheese
septum and sometimes regarded as separate type of VSD. We note that singular VSDs
are however much more common than multiple VSDs.

It is possible, and even quite likely, that septal tissue grows on the borders of the
defect such that the VSD spontaneously decreases in size; it may result in eventual
closure of the defect. This is more likely to happen for small than for large VSDs;
especially small muscular VSDs are amenable to spontaneous closure. Overall, about
70% of all VSDs close spontaneously, (Krovetz, 1998), the majority (54%) closing in
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Figure 2.6: Exponential decay rate of closure. The x-axis shows age of the patients in
years, the y-axis shows the number of patients with a VSD that has not closed (yet);
taken from (Krovetz, 1998).

the first two years of life. Spontaneous closures have however been reported to occur
up to the age of 31 years, but the rate of closure appears to follow an exponential
decay rate; see the graph of Figure 2.6.

Pathophysiology

A defect in the ventricular septum yields a connection between the heart’s ventricles
through which blood shunts from left to right upon cardiac contraction; the disturbed
circulation is depicted in Figure 2.7. Physiologically, VSDs are therefore characterised
by the shunt size, the amount of blood flowing through the defect. Generally speaking,
the shunt size depends on the size of the defect and the vascular resistances to blood
flow. The type (location) of the VSD is physiologically speaking uninfluential.

The existence of a shunt invalidates many of the physiological rules that normally
apply to the heart and circulation. For instance, the flow rates through different
segments of the cardiovascular system are no longer identical. Left-to-right shunt-
ing causes oxygenous blood to be pumped back into the lungs again, and therefore
left-ventricular output and systemic flow are smaller than right-ventricular output
and pulmonary flow, respectively. The shunt size is usually described as the ratio
Q̇p : Q̇s of pulmonary and systemic blood flows. Under normal, healthy conditions,
the amounts of blood flowing through both circulations are necessarily equal, and
therefore Q̇p : Q̇s = 1 : 1. Left-to-right shunting will cause the ratio to go up; shunt



36 Treatment planning in paediatric cardiology

Body

L heart

Lungs

R heart

VSD
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sizes of 2:1, 3:1, and occasionally even higher may be found with large heart defects.
Conversely, right-to-left shunting will cause the ratio to decrease. It is not possible,
though, that pulmonary flow is substantially smaller than systemic flow because the
pressures on the right side of the heart cannot exceed those on the left side. As a
general rule, the shunt size is related to pressures and resistances in the cardiovascular
system as follows:

Q̇p : Q̇s =
∆Pp : ∆Ps
Rp : Rs

, (2.3)

where Rp : Rs is the ratio of pulmonary and systemic vascular resistances (normally
between 1:10 and 1:8), and ∆Pp : ∆Ps is the ratio of pulmonary and systemic pres-
sure lapses, that is, ∆Pp (∆Ps) is the difference between mean arterial and venous
pressures in the pulmonary (systemic) circulation. Because vascular resistances are
not influenced by blood flow rates (at least not directly), it follows that shunting will
induce abnormalities in pressure levels. With left-to-right shunting for instance, pul-
monary arterial pressure will rise; this is called pulmonary hypertension. One would
expect a corresponding pressure drop in the systemic arteries, but as the functioning
of several vital organs critically depends on the systemic arterial pressure, this is
immediately compensated for by sympathetic stimulation. In sum, both sides of the
heart face a higher workload with left-to-right shunting: the right ventricle must con-
tract more forcefully to push blood into the high-pressured pulmonary artery, while
the left ventricle most work harder to maintain systemic arterial pressure.

The main consequences of left-to-right shunting are ventricular hypertrophy and heart
failure. As blood flows through the VSD upon cardiac contraction, the (systolic)
pressure difference between the heart’s ventricles will diminish. When the VSD is
small and the pressure difference remains 25 mm Hg or higher, the VSD is said to be
obstructive. With large, typically non-obstructive VSDs, the mitral valve (between
left atrium and ventricle) may be too small for the increased amount of blood that
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has to flow through it, yielding signs of mitral stenosis. The valve is then said to be
functionally stenosed ; it is not truly narrowed.

VSD is accompanied by a number of pathophysiological developments during the first
years of life. In the first weeks following birth, the presence of a VSD usually has
little consequences. As described in Section 2.1, the muscular pulmonary arteries are
then small in diameter with a thick smooth muscular wall, thus preventing massive
shunting by their high resistance. During this period, the arteries change to thin-
walled structures with increased internal diameter. These changes are accompanied
by a decline in pulmonary vascular resistance, resulting in an increased shunt size and
the associated symptoms. After 6 to 12 weeks, the pulmonary arteries have obtained
their normal state, and the shunt size has reached its maximum. There are now
basically two potential developments: spontaneous closure of the VSD or increasing
pulmonary hypertension.

Eisenmenger’s syndrome

With the passage of time, left-to-right shunting may cause severe damage to the pul-
monary vascular bed, (Hopkins, 1995); this is called pulmonary arteriopathy. More
specifically, the continuous pulmonary hypertension and overflow cause an increase of
cells at the inner layer of pulmonary arterioles (intimal hyperplasia), a pathological
condition that increases their resistance to blood flow. As a result, the size of the
shunt is diminished while the pulmonary vascular pressure remains high. The initial
effects of the diminished shunt are an apparent improvement of the patient’s condi-
tion: the heart now faces a less extreme workload. Pulmonary arteriopathy should
however be avoided as it negatively affects the respiratory function: the patient will
increasingly have breathing problems.

Eventually, the pulmonary vascular resistance becomes so high as to cause reversal of
the direction of shunting, and the patient becomes centrally cyanosed (similar to pa-
tients with a congenital heart disease from the third group, discussed in Section 2.2.1).
The pulmonary arterioles have now become irreversibly damaged; the patient will de-
velop severe respiratory problems and has a strongly reduced life-expectancy. The
complex of findings associated with the final stage of this development is named
Eisenmenger’s syndrome, after its first describer.

Eisenmenger’s syndrome represents the major threat to patients with a VSD. It is
more likely to occur with large VSDs as there is then more blood shunting through
the defect. The rate at which the pulmonary vascular bed is damaged differs from
individual to individual, and the whole process up to the final, cyanotic stage may
take many years. Spontaneous closure of a VSD with Eisenmenger’s syndrome is
excluded.
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Complications

Several cardiac disorders may co-occur with a VSD: sometimes an additional disor-
der is present at birth, and it is also possible that a cardiac complication develops
over time. Below, we distinguish four types of possible complication related to the
heart; we restrict ourselves to cases where VSD is the primary disorder and all other
disorders are secondary; this occurs with approximately 20% of all VSDs.

The first type of complication is an additional congenital heart defect, an ASD (atrium
septum defect) or PDA (persistent ductus arteriosus). These complications have in
common that they increase the connectivity between pulmonary and systemic circu-
lation, and can be regarded as increasing the functional size of the VSD, that is, the
defect size that is relevant in haemodynamic respect. As a result, these complications
raise the size of the shunt, and aggravate all pathophysiological conditions associated
with VSD.

The second type of complication is a stenosis of the aortic or pulmonary valve. As
described in Subsection 2.2.1, such stenoses influence the pressures in the heart’s
ventricles as they obstruct the outflow of blood to the great arteries. In combination
with a VSD, this has primarily consequences for the size of the shunt. A pulmonary
stenosis reduces the shunt and is therefore beneficial from a haemodynamic point of
view. It does however cause right-ventricular hypertrophy, and hampers spontaneous
closure of the VSD. An aortic stenosis will increase the shunt and therefore worsen
the condition of the patient; it may also cause underdevelopment of the aorta.

The third type of complication is a malalignment of the outlet (or infundibular)
septum, the muscular component of the ventricular septum between the semilunar
valves. This means that the unimpaired parts of the ventricular septum are sometimes
not positioned in a single plane. In particular, the outlet septum is directed towards
either the left or the right side of the heart. When it occurs, this malalignment is
in fact the actual cause of the VSD; it will often also preclude spontaneous closure
of the VSD. Furthermore, a malalignment may induce several further complications
such as a pulmonary or aortic stenosis.

The complications described so far all constitute conditions that are present at birth.
The fourth and final complication, the aortic prolapse, does not, in contrast, occur at
birth but may develop in time; it may be caused by subaortic VSDs. Anatomically
speaking, each heart valve is built up from a few leaflets, called cusps; one of the
cusps of the aortic valve may prolapse into a subaortic VSD. The prolapsed cusp
may occlude the defect, and therefore diminishes the functional size of the VSD as
less blood will be able to flow through it. However, another result is that the aortic
valve becomes insufficient (leaky): during early diastole, when the pressure gradient
between the aorta and left ventricle is maximal, blood flows back from the aorta into
the left ventricle. An aortic prolapse thus causes additional failure of the left heart.
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Figure 2.8: Schematic depiction of a heart with Tetralogy of Fallot. The outlet component
of the ventricular septum is wrongly aligned.

Tetralogy of Fallot

The perimembranous VSD is from anatomical point of view closely related to an-
other congenital heart disease, Tetralogy of Fallot. Tetralogy of Fallot comprises four
lesions: a perimembranous VSD with extension to the outlet septum, an infundibu-
lar pulmonary stenosis, right-ventricular hypertrophy, and an overriding aorta. This
means that the aorta is moved away from its normal position so that it arises partly
from the right ventricle; the aorta is therefore positioned above (i.e., overrides) the
ventricular septum. The severity of the disease is often expressed in terms of the
amount of overriding. The actual cause of Tetralogy of Fallot is a right-malalignment
of the outlet septum (see Figure 2.8). With this malalignment, VSD, pulmonary
stenosis, and overriding aorta are unavoidable; right-ventricular hypertrophy is caused
by the stenosed outflow in the right ventricle. Tetralogy of Fallot is a cyanotic con-
genital heart disease that may be present at birth, but an acyanotic form exists as
large perimembranous VSD with an extension to the outlet area, accompanied by a
minor malalignment of the outlet septum. The symptoms are completely similar to
a normal VSD and it is usually diagnosed as such. As time progresses, the malalign-
ment may increase, resulting in more overriding of the aorta, increased narrowing of
right-ventricular outflow tract, and therefore a decrease in shunt size. Eventually,
the shunting becomes bi-directional (both left-to-right and right-to-left flow). At this
stage, the child is not cyanotic (yet), and one sometimes speaks of pink Fallot. When
the overriding of the aorta exceeds 50% (i.e., the ventricular septum is positioned
halfway the aorta valve), the child becomes cyanotic and the primary diagnosis is
Tetralogy of Fallot; this happens with approximately 10% of all VSDs.

Spontaneous closure of a VSD that is part of a Tetralogy of Fallot is impossible due
to the malalignment of the outlet septum. Typical symptoms of the disease are so-
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Figure 2.9: Stages in the pathophysiological development of a VSD.

called cyanotic spells, caused by spasms in the right-ventricular outflow tract; the
stenotic pulmonary valve is then temporarily completely occluded, and the patient
has an acute shortage of oxygen. Furthermore, because the pressure in the right
ventricle is much higher than normal, connective tissue may grow in this chamber
after some time. This will reduce the pumping ability of the heart and may cause
cardiac arrhythmia.

Summary of stages

We will now briefly summarise the possible developments over time for a VSD patient;
see the diagram of Figure 2.9. The first stage (Stage I in the diagram) follows birth
and is characterised by the presence of a VSD without much consequences. After 6
to 12 weeks (Stage II), the pulmonary vascular resistance has dropped, resulting in
increased left-to-right shunting, and possibly heart failure and the associated symp-
toms. It is now possible to assess the severity of the disease and its complications;
the size of the shunt will not become larger than it is at this stage. Subsequently
(Stage III), there are three potential developments: a) growth of septal tissue and
spontaneous closure of the VSD in Stage IV, b) increasing pulmonary hypertension
eventually leading to pulmonary arteriopathy in Stage IV, or c) increasing malalign-
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ment of the outlet septum, resulting in Tetralogy of Fallot in Stage IV. A fourth
possible development is d) that there are no significant changes. It should be noted
that with different patients there may be substantial differences between the rates
of these developments; Stages III-IV may cover anything between roughly 1 and 30
years.

2.3.2 Clinical management

In this subsection, we discuss the management of VSD patients in today’s clinical
practice. We will first follow the above division in disease stages and indicate which
of the clinical modalities described in Subsection 2.2.2 are generally employed at each
stage. Subsequently, we describe the management of complications that may accom-
pany a VSD, potential pitfalls for the clinician, and issues that are yet unresolved.

Management of stages I and II: diagnosis

As described above, the first stage of VSD covers the first 6 to 12 weeks of life and
is characterised by a gradual arise of left-to-right ventricular shunting. The shunt
yields a systolic murmur that is sometimes detected immediately after birth from
routine auscultation of the heart. Otherwise, the VSD remains unnoticed until the
first symptoms of left-to-right shunting and heart failure show up after a few weeks.
In either case, the patient should be sent to a paediatric cardiologist who can confirm
the diagnosis from echocardiographic investigation. The presence of a VSD causes
little or no harm to the patient at this stage, and the precise timing of its detection is
unimportant. It is very rare that a VSD remains undetected, unless it is very small
and therefore completely harmless.

The second stage is marked by the presence of typical signs and symptoms associated
with VSD, and provides the first opportunity to assess the severity of the disease.
With small defects (± 35%), there will be little or no haemodynamic abnormalities
and therefore hardly any symptoms. The main sign is that cardiac auscultation
reveals a systolic murmur that is characteristic for VSD. Moderate-sized defects (±
40%), induce more shunting and therefore some symptoms of heart failure such as
breathing problems and difficulties with drinking; in time there may be some growth
arrearage. Physical examination of the patient reveals a loud systolic murmur and a
thrill, and the ECG shows left-ventricular hypertrophy. Sometimes a murmur may
be audible during the diastole as well, caused by a functionally stenosed mitral valve.
Large defects (± 25%) induce a large shunt and severe symptoms of heart failure,
including a poor weight gain, cardiomegaly, oedema, hepatomegaly, and pulmonary
rales. Left-ventricular output is reduced, causing the patient to be sweating and to
have a pale facial colour; the ECG shows hypertrophy of both ventricles. The systolic
murmur will however be softer, as the pressure difference between both ventricles is
now smaller.

As appears from the above, the systolic murmur will vary in duration, volume and
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form depending on the shunt size; a trained physician will however recognise it as
produced by a VSD. Furthermore, the combination of systolic murmur and thrill is
symptomatic for VSD: no other disease causes simultaneous occurrence of these signs.
It is therefore rare that a VSD is wrongly diagnosed, but it does happen that the VSD
later turns out to be part of a Tetralogy of Fallot. Although the findings described
above provide an indication of the size of the shunt and, therefore, of the size of
the VSD, echocardiography is indispensable to assess the VSD’s precise size, (Geva
et al., 1988). Echocardiography can also show the location and number of defects,
and the presence of additional cardiac anomalies. Furthermore, Doppler techniques
can be used to establish the haemodynamic changes induced by the defect, (Helmcke
et al., 1989; Danford et al., 1997). Roentgenography is usually avoided because of
the noxious x-rays.

Management of stage III: the surgery decision

The principal strategy in the management of VSD patients is to avoid surgical in-
tervention when possible; this is the case when the VSD closes spontaneously due
to tissue growth, or when the defect causes little or no haemodynamic abnormali-
ties. With mild to moderate heart failure, medical treatment (i.e., cardiac glycosides
and diuretics) can be used to enhance the blood circulation, thereby supporting the
child’s functioning and development. We note that medical treatment cannot acceler-
ate spontaneous closure of the VSD or preclude pulmonary arteriopathy. A secondary
aim in VSD management is to avoid invasive diagnostic procedures such as cardiac
catheterisation and open lung biopsy. Whereas catheterisation was routinely per-
formed in the 1980s, it is now often obsolete because of the improved reliability of
echocardiography and associated Doppler techniques, (Danford et al., 1997).

With small VSDs, the clinical course is favourable throughout infancy and childhood
(Kidd et al., 1993), and these defects are likely to close spontaneously. Patients
with moderate-sized defects may develop large left-to-right shunts and associated
complications in infancy, but the majority of this group can also be managed medi-
cally without surgical intervention. Patients with large defects are more difficult to
manage, because of the risks of mortality in the first year of life due to heart fail-
ure and associated pulmonary infections. Furthermore, pulmonary arteriopathy and
cyanosis (Eisenmenger’s syndrome) may develop over time as a response to contin-
uous pulmonary overflow and hypertension. Early surgical intervention is therefore
recommended for these patients: once the pulmonary arteries are damaged, surgical
closure of the VSD will only worsen the condition of the patient.

For the treating clinician, the main problem is to decide if and when to submit a
patient to surgery. Usually, the patient’s condition is monitored without surgical
intervention during the first year of life. During this period, non-invasive diagnostic
tests such as cardiac auscultation, ECG, and echocardiography are conducted re-
peatedly, and when necessary, medical treatment is given to reduce heart failure and
improve the overall condition of the patient. Sometimes, roentgenographic images of
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the chest are made to inspect the size of the heart and pulmonary vascularity. After
the first year of life, the risks associated with surgical intervention have dropped, and
a decision whether surgery is necessary has to be made. Further tests may be per-
formed prior to that decision to obtain more information. Cardiac catheterisation is
employed when pulmonary hypertension due to pulmonary arteriopathy is suspected
and the results of auscultation and echocardiography are equivocal. When the results
of catheterisation are also unclear, the remaining option is use open lung biopsy to
inspect the state of the pulmonary arterioles directly; it is rarely the case that this
investigation is needed though.

From all diagnosed VSDs, only 1 to 2 out of 10 require surgical repair. When the
patient’s condition is very bad, a hospitalisation period may precede the operation
for purposes of improvement. Large defects have to be closed with a patch of syn-
thetic material; these patches sometimes hamper cardiac function. It does happen
that the surgeon fails to close a VSD completely, or fails to close all VSDs when mul-
tiple defects were present; a second operation is required when the remaining defects
cause haemodynamic abnormalities. The failure happens more often with muscular
VSDs, because these defects are difficult to access for the surgeon and often come in
multiples. Very large defects are always treated in two phases: the defect is reduced
in size during the first operation, and closed completely during the second. All these
circumstances increase both the mortality risks and the risks of permanent compli-
cations for the patient. The majority of patients with repair of uncomplicated VSD
in infancy or early childhood have however an excellent result with no clinical signs
or symptoms, and apparently normal life-expectancy, (Moller et al., 1991).

Management of stage IV: prognosis

The surgery decision at Stage III critically depends on the prognosis made by the
treating physician: the expected clinical development of the patient is crucial for
the preferred action. Unfortunately, even for an experienced cardiologist it is often
difficult to correctly assess the prognosis for a given VSD patient. Furthermore,
the three major developments (branches a,b, and c in the diagram of Figure 2.9)
have similar appearances at stage III: they initially induce a gradual diminishment
of most signs and symptoms as the child will suffer from less shunting and heart
failure. It therefore happens that the development is misjudged: sometimes increasing
pulmonary vascular resistance (Eisenmenger’s syndrome) or increasing overriding of
the aorta (pink Fallot), are falsely taken for spontaneous closure of the VSD. We
note that in principle, it is well possible to distinguish these developments using
echocardiography and cardiac catheterisation.

When the shunt size diminishes due to increased pulmonary vascular resistance, the
systolic murmur will first turn into an atypically-formed murmur before disappearing
completely. The patient will occasionally become cyanotic during exertion; in addi-
tion to the high systolic pulmonary arterial pressure, the diastolic pulmonary pressure
is now also increasing. It can be detected from insufficiency of the pulmonary valve,
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and confirmed by cardiac catheterisation. Although this finding indicates progressive
pulmonary arteriopathy, the condition may be reversible at this point, and surgical
closure of the VSD may still be possible. When the results of echocardiography and
catheterisation are equivocal, an open lung biopsy is sometimes performed to obtain
more certainty. The final stage of Eisenmenger’s syndrome is marked by continual
cyanosis, and is also recognisable from a loud second heart sound; the damage to
the pulmonary arterioles is then definitely irreversible. Surgical closure of the VSD
is discouraged as it will only worsen the patient’s condition. The only alternative
is lung and heart-lung transplantation, but the risks of this transplantation are ex-
tremely high, (Hopkins et al., 1996). A strongly reduced life-expectancy results for
these patients: they rarely live more than 30 years.

The third development, progressive overriding of the aorta as part of a Tetralogy of
Fallot also reduces shunting and heart failure. It is also sometimes falsely judged to be
a spontaneous closure of the VSD, which will later cause an unpleasant surprise when
the child becomes cyanotic. The mistake is however less dramatic than overseeing
increasing pulmonary vascular resistance, as there are little consequences for the
management strategy to be followed. Tetralogy of Fallot requires surgery in all cases,
because the patient otherwise has a life-expectancy of less than 20 years; the mortality
risk is approximately 5%. We do note that if the operation is performed too late, the
mortality risk is higher, and connective tissue that has grown in the right ventricle
may chronically hamper the pumping ability of the heart and cause arrhythmia.

Complications

In this subsection, we briefly discuss the effects of the complications ASD, PDA,
aortic and pulmonary stenoses, and valvular insufficiencies on the management of
VSD patients. We also describe the potential postoperative complications and their
long-term consequences.

As described in Section 2.3, when one of the defects ASD or PDA is present in
addition to a VSD, this will increase the shunt size and the associated symptoms.
As both ASD and PDA can be repaired with little risks, it is decided more quickly
to perform surgery with these complications. This is especially true for PDA, which
has a significant effect on shunting.

Stenoses of the aortic and pulmonary valve also require surgery: aortic stenoses be-
cause they increase the shunt and may cause underdevelopment of the aorta, and
pulmonary stenoses because they hamper spontaneous closure of the VSD. Unfortu-
nately, these anomalies cannot be repaired along with the VSD; two cardiac opera-
tions are needed. It does happen that a subvalvular aortic stenosis (which is found
relatively frequently in combination with subaortic VSDs), emerges after surgical re-
pair of the VSD. This possibility calls for careful postoperative examination of the
patient as a second operation is then required.

A possible complication of subaortic VSDs is a progressive prolapse of the aortic
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valve; without surgical intervention, this would happen with 2 to 5% of all VSDs. The
aortic prolapse will cause insufficiency of the aortic valve, which can be detected from
a specific diastolic murmur. Echocardiography is however also required as pulmonary
insufficiency yields exactly the same kind of murmur. Surgical closure of the VSD
after an aortic prolapse is problematic because the valve may become more leaky; the
prolapsed valve is also difficult to repair. Early intervention is therefore recommended.

Potential postoperative complications are pulmonary hypertension, infections, bleed-
ings, stenoses, hypertrophy of the cardiac muscle, and damage to the heart’s electrical
conductive tissue. These complications influence the patient’s life-expectancy.

Potential pitfalls

As noted above, the most dangerous error when treating a VSD patient is a failure
to recognise increasing pulmonary vascular resistance in time. When pulmonary
arteriopathy becomes irreversible, the patient cannot be treated anymore and has a
strongly reduced life-expectancy. A similar risk is the late detection of progressive
overriding of the aorta (Tetralogy of Fallot). Although this does not preclude the
possibility of surgery, the long-term risks for the patient will have increased. Finally,
overseeing the first signs of an aortic prolapse may complicate the possibilities of
treatment.

Although cardiac catheterisation can be valuable in assessing the actual development
of the disease, it is generally possible to avoid it by thorough and regular echocardio-
graphic examinations. Unnecessary catheterisation is therefore regarded as erroneous,
although the risks associated with it are small. Similar observations hold for open
lung biopsies. A more serious error is surgical repair of a small, closing, or otherwise
harmless VSD. Sometimes, this happens when after years of prosperous development,
the patient’s condition suddenly worsens due to a different cause but the worsening
is misattributed to the VSD.

In many hospitals, cardiac catheterisation and chest roentgenography are still per-
formed on a routine basis prior to surgical repair of a VSD. It was recently conjectured
by Magee et al. (1998) that routine pre-operative cardiac catheterisation is probably
no longer necessary because of the improved echocardiographic techniques.

2.4 Discussion

In this section, we look back on the domain of paediatric cardiology as described in
the previous sections and discuss the task of managing VSD patients in more general
terms. Furthermore, we give a brief historical overview of decision-support systems
in the field of congenital heart disease. We conclude with establishing the criteria for
a system that could presently support the paediatric cardiologist.
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Review of the application domain

If we regard the domain of paediatric cardiology, the following characteristics of its
current clinical practice emerge. First, little is known about what causes children to
be born with a congenital heart disease, and it is therefore not to be expected in the
near future that prevention is possible. The physiological mechanisms in the human
cardiovascular system are however well understood and allow for extensive modelling
(e.g., see John, 1995). Second, there have been rapid technological improvements over
the last decades, resulting in the possibility to perform cardiac surgery at low risks
and making accurate diagnostic assessments without employing invasive tests; this
has led to a considerably improved life-expectancy for the patients. For the majority
of VSD patients for instance, the expectations are presently very good with little
or no disabilities. Third, the domain becomes rapidly more complex when multiple
anomalies interact, and it is, even for uncomplicated lesions, often very difficult to
establish a reliable prognosis. The planning of therapy does however require the
ability to predict the interplay between the natural history of the disease and effects
of clinical actions: there is always a trade-off between the benefits gained by waiting
with surgical intervention in the hope that the patient’s condition will improve, and
the risks caused by the natural history of the disorder, (Macartney et al., 1987).
The fourth and last characteristic is therefore that due to the prognostic difficulties,
domain experts often differ in their opinions on management decisions, and different
treatment regimes are employed at different sites. Also, it is unclear in a number of
situations which diagnostic investigations should be conducted; a continual shift in
opinions, caused by the rapid technological developments, appears from the specialist
literature.

Past efforts on decision support

The field of paediatric cardiology has regularly inspired researchers in artificial in-
telligence in medicine to design decision-support systems. We give a brief historical
overview of the most well-known systems.

Early work in the field was performed by Warner et al. (1961), who developed a naive
Bayesian model for diagnosing congenital heart disease. In such a model, disease types
and potential clinical findings are represented as statistical variables, and it is assumed
that the findings are mutually independent if the disease is known. Historically,
this was the first application of this type of model whose later applications are too
numerous to list (e.g., de Dombal et al., 1972).

Whereas Warner et al. had concentrated on inferring the most likely diagnosis from
a given set of findings, Gorry and Barnett (1968) considered the broader problem of
diagnosis as both diagnostic inference and diagnostic test selection. They describe
a mathematical model and associated interactive computer program to support this
task. In the model, diagnostic inference is again performed from a naive Bayesian
model, while test selection is based on heuristic functions describing the cost of con-
ducting diagnostic tests and the penalties of misdiagnosing. In an application in the
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field of congenital heart disease, it was found that the model yields a sharp reduction
in the average number of tests performed, while establishing a diagnosis at expert
level.

In the early 1980s, a diagnostic expert system called Galen was developed by
Thompson et al. (1983). Galen’s knowledge base describes 70 congenital heart dis-
eases and disease variants, covering ± 95% of all cases found in hospital files. Galen

distinguishes possible forms of congenital heart disease in children given previous data
obtained from the patient’s history and current data obtained from physical examina-
tion, ECG, and roentgenography. Domain knowledge is represented as a combination
of production rules and frames.

Franklin et al. (1991) developed an algorithm to help the junior doctor reaching
a preliminary diagnosis for newborn babies with cyanotic congenital heart disease
using information reported over the telephone (concerning findings from physical ex-
amination, blood tests, ECG and roentgenography). The algorithm was evaluated
on 400 cases with encouraging results: the algorithm had a diagnostic accuracy of
76%, compared with 64% for the paediatric cardiologist and 45% for the referring
doctor. Although the algorithmic formulation was attractive in its simplicity and
transparency, it suffered from problems of observer variability and was unable to
handle missing data. It was therefore decided to reformulate the algorithm as a prob-
abilistic expert system as such systems are more forgiving of limitations in data, and
also provide the opportunity to incorporate statistical information extracted from
clinical data records. A Bayesian belief network was therefore developed to model
the domain. Initially, the naive Bayesian assumption was made for this network.
The results of experiments were however disappointing, and the conclusion was that
a “deeper” model comprising the underlying physiological mechanisms was more ap-
propriate, (Franklin et al., 1989). A more elaborate network, called Child, took such
mechanisms into account. It was found to perform better than the naive Bayesian
network, but still inferior to the original algorithm, (Spiegelhalter et al., 1993).

The most recent work on diagnosing congenital heart disease was performed by
Reed et al. (1997). Their system, called Fallot, allows for diagnosing multiple
co-occurring congenital heart diseases such as defects, stenoses, and absent or mis-
connected vessels. The system uses a database of expected cues for each disease,
and descriptions of how each type of cue combines when more than one disease is
present. Alternative solutions are compared by the ratio of explained normal cues
over total abnormal cues. Experiments showed that Fallot approaches the level of
field experts.

Present criteria for decision support

From the above review of systems that have been developed to support clinical de-
cision making in the field, it appears that diagnosing congenital heart disease has
received considerable attention, whereas therapeutic and prognostic decision making
has been largely neglected. In part, this can be explained by the fact that technolog-
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ical advances have only recently solved the problem of diagnosis in this field. Modern
echocardiographic techniques have emerged during the 1980s and are now available in
every hospital clinic; before that time however, correctly diagnosing cardiac disorders
was much harder. But probably, the emphasis on diagnostic decision support has also
been influenced by the greater availability of formal diagnostic tools and techniques,
and the widespread fallacy that diagnosis is the major problem to solve in clinical
medicine.

From our discussion of the VSD domain however, we conclude that presently, most
benefits can be expected from systems that support the clinician in predicting the
future course of disease. The primary focus of decision support should therefore be
prognosis. By weighing the risks associated with predicted developments, the clinician
should also be advised in the decision and timing of intervention. Furthermore, as
prognosis basically concerns the extrapolation of past and current findings to the
future, careful timing of clinical investigations can improve the quality of predictions.
Additionally, the risks and costs of invasive tests have to be evaluated against their
potential benefits, i.e. better management resulting from a gain in information. The
final task to support is therefore the choice and timing of diagnostic tests. In general
terms, the overall task of the envisioned support system may be characterised as
prognostic assessment and action planning under uncertainty, where the timing of
actions is essential.

Several additional requirements for decision support systems in the domain of congen-
ital heart disease can be identified. It is our conviction that the paediatric cardiologist
should be provided with flexible, interactive, and transparent decision support. Flex-
ibility is required because it is customary to employ a mixture of ‘hard’ and ‘soft’
preferences in many clinical decisions. Although considerations of life-expectancy
and life-quality are predominant, borderline cases may be decided by considering,
for instance, the parents’ reaction to the stress of raising a diseased child. A sys-
tem should be highly interactive as the treating clinician will want to inspect the
expected outcomes of alternative choices, and check his intuitions against the predic-
tions of the system. Transparency, finally, is a requirement as the structure of the
domain of application and the associated management problem should be apparent
from a system’s presentation. As noted above, the physiological mechanisms in the
cardiovascular system are well understood; explicit modelling of these mechanisms
will make an advisory system more liable to acceptance by clinicians in the field.



CHAPTER 3

Decision making under uncertainty

A variety of approaches exist to formalise problems of action planning under uncer-
tainty, each of them emphasising other aspects of this type of problem. As motivated
in Chapter 1, in this thesis we choose to employ (Bayesian) decision theory at the
fundamental level of comparing alternative actions in situations of choice. The basics
of decision theory are discussed in this chapter. Decision theory can be regarded as
synthesising (Bayesian) probability theory and utility theory. Here, probability theory
serves as a framework for reasoning with uncertainty, whereas utility theory provides
the guidelines for rational choice under uncertainty.

This chapter is structured as follows. We first discuss probability theory in Sec-
tion 3.1, and continue with utility theory in Section 3.2. The synthesis of both theo-
ries is given in Section 3.3, which also provides an overview of how different types of
decision problem are analysed with this type of reasoning. We conclude with a short
discussion in Section 3.4. The chapter also serves to introduce a number of formal
notations that will be used in subsequent chapters. Throughout, the various notions
that are introduced will be illustrated with examples from the domain of paediatric
cardiology as described in the previous chapter.

3.1 Probability theory

In this section, we review the main concepts from probability theory. Our review
will be concise, and is not intended to be exhaustive: it highlights the aspects of
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probability theory that are crucial in decision-theoretic reasoning; for a thorough
introduction to the theory, we refer to (Shiryayev, 1984; Grimmett and Stirzaker,
1992). We start introducing the language we will employ to describe elements from a
domain of interest; this language, a Boolean algebra, consists of Boolean expressions
over value assignments to a given set of variables (Birkhoff and MacLane, 1977). Let
dom(w) denote the domain of a given variable w, i.e. the set of possible values that
the variable may take.

Definition 3.1 (Boolean algebra) Let W be a set of variables. The Boolean al-
gebra spanned by W , denoted by β(W ), comprises all expressions built up from value
assignments to elements from W , the constants > (true) and ⊥ (false), the binary
operators ∧ (conjunction) and ∨ (disjunction), and the unary operator ¬ (negation).

In the Boolean algebra β(W ), value assignments to elements from W , i.e. expressions
of the form w = v, where w ∈W and v ∈ dom(w), act as Boolean variables. We use
ϕ ≡ ψ to indicate that the expressions ϕ, ψ ∈ β(W ) are equivalent under the usual
axioms. Furthermore, we will write ϕ ` ψ when ϕ ≡ ϕ ∧ ψ, or equally ψ ≡ ϕ ∨ ψ.
The constants ⊥ and > now denote the universal upper and lower bounds of the
distributive and complemented lattice on β(W ) induced by the relation `.

Within our theory, a prominent part is played by conjunctions of value assignments
to sets of variables; we will refer to such conjunctions as configurations.

Definition 3.2 (Configuration) Let W be a set of variables. A conjunction

cW =
∧
w∈W

w = v (3.1)

of value assignments to the variables from W is called a configuration of W . The set
of all configurations of W is called the universe of W , notation ΩW .

Note that ΩW ⊆ β(W ). Furthermore, there is but one configuration of the empty
set ∅, and this is the empty conjunction >. We will usually write cW to denote a
configuration of W (i.e. cW ∈ ΩW ); for a singleton set {w}, we will simply write cw
and Ωw instead of c{w} and Ω{w}, respectively. So,

Ωw = {w = v | v ∈ dom(w)} (3.2)

for each variable w.

Notation 3.3 Let W = {w1, . . . , wn} be a set of variables. We use

dom(W ) = dom(w1)× · · · × dom(wn) (3.3)

to denote the set of possible values of W , and W = V , where V ∈ dom(W ), V =
{v1, . . . , vn}, as an alternative notation for the configuration

cW ≡ w1 = v1 ∧ · · · ∧ wn = vn. (3.4)
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Variable Interpretation Domain

VSD VSD size null, small, moderate, large
shunt shunt size none, small, moderate, large, reversed
resis pulmonary vascular resistance normal, increased, high, very high
hfail heart failure absent, mild, moderate, severe
pmhyp pulmonary hypertension absent, mild, moderate, severe
pmart pulmonary arteriopathy false, true

closure spontaneous closure false, true
death death false, true

Table 3.1: Example variables for the VSD domain.

We will regard the expression W = V as an element of the Boolean algebra β(W ).

Notation 3.4 Let W be a set of variables. The expression CW =
∧
w∈W w is called

the configuration template of W . From the configuration template of W , any config-
uration cW ∈ ΩW can be obtained by substituting the variables with appropriate value
assignments.

We will generally use configuration templates within formulas. The templates then
provide for treating the formulas as schemata from which multiple instantiations can
be obtained by filling in values for the variables in the templates.

Given two sets Y and Z of variables, we say that their configurations cY and cZ are
compatible when cY ∧ cZ 6≡ ⊥. This holds when either Y and Z are disjoint, or cY
and cZ assign the same values to variables in Y ∩ Z. Otherwise, these configurations
are called incompatible.

Example 3.5 Consider the set of variables listed in Table 3.1, representing concepts
from the domain of paediatric cardiology; each of the variables describes a part of the
clinical state of VSD patients. Example configurations from the Boolean algebra of
propositions spanned by this set are

ϕ1 : VSD = small ∧ shunt = small ,
ϕ2 : shunt = small ∧ hfail = mild , and
ϕ3 : shunt = large ∧ hfail = severe.

We have that ϕ1 ∈ Ω{size,shunt}, and ϕ2, ϕ3 ∈ Ω{shunt,hfail}. Furthermore, ϕ1 and ϕ2

are compatible, whereas neither ϕ1 and ϕ3, nor ϕ2 and ϕ3 are.

We will now consider a set X of random variables, and define a joint probability
distribution on X as a function on the Boolean algebra of propositions spanned by
X.
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Definition 3.6 (Probability distribution) Let X be a set of random variables,
and let P : β(X)→ [0, 1] be a function such that

• P (>) = 1,

• P (ϕ) = 0 when ϕ ≡ ⊥, and

• if ϕ, ψ ∈ β(X) such that ϕ ∧ ψ ≡ ⊥, then P (ϕ ∨ ψ) = P (ϕ) + P (ψ).

Then, P is called a joint probability distribution on X. For each ϕ ∈ β(X), the
function value P (ϕ) is termed the probability of ϕ.

Note that we associate probabilities with Boolean expressions instead of with sets,
which is common in textbooks on probability theory. Both notions of probability
are however equally expressive, (de Finetti, 1970). We say that a joint probability
distribution P on X is degenerate when P (cX) ∈ {0, 1} for all cX ∈ ΩX ; otherwise,
it is non-degenerate. A non-degenerate distribution P is called strictly positive when
P (cX) > 0 for all cX ∈ ΩX ; it is uniform when all configurations of X have equal
probability, i.e. when P (cX) = 1/|ΩX | for all cX ∈ ΩX .

Definition 3.7 (Conditional probability) Let X be a set of random variables,
and let P be a joint probability distribution on X. For each ϕ, ψ ∈ β(X) such that
P (ψ) > 0, the conditional probability of ϕ given ψ is defined as

P (ϕ | ψ) =
P (ϕ ∧ ψ)

P (ψ)
. (3.5)

The conditional probability P (ϕ | ψ) expresses the amount of certainty concerning the
truth of proposition ϕ, given that the information ψ is known with certainty. We state
without proof that for a given ψ ∈ β(X) with P (ψ) > 0, the conditional probabilities
P (ϕ | ψ) for all ϕ ∈ β(X) once more constitute a joint probability distribution on
X. This distribution is called the conditional probability distribution given ψ, and
we also denote it by Pψ. Conditional probability distributions are also referred to
as posterior distributions, as they describe the respective probabilities posterior to
the incorporation of a piece of information; the original (unconditional) probability
distribution is then called the prior distribution.

The notion of conditional independence (Dawid, 1979) allows for qualification of the
relations between variables in a joint probability distribution; it underlies the graph-
ical representation of probability distributions which is discussed in Chapter 4.

Definition 3.8 (Conditional independence) Let X be a set of random variables,
let Y1, Y2, Z ⊆ X, and let P be a joint probability distribution on X. Then, the set
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Y1 is said to be conditionally independent of the set Y2 given the set Z under the
distribution P , notation Y1⊥⊥PY2 |Z, if

P (CY1 |CY2 ∧ CZ) = P (CY1 |CZ). (3.6)

If Z = ∅, we say that Y1 is marginally independent, or simply independent, of Y2,
and write Y1⊥⊥PY2.

Intuitively, Y1⊥⊥PY2 |Z means that if Z is known, then determining Y2 provides no
further knowledge about Y1. Recall that CY1, CY2 and CZ denote the configuration
templates of Y1, Y2, and Z, respectively, representing all possible configurations of
these sets. Note that conditional independence of Y1 from Y2 given Z is equivalent
with

P (CY1 ∧ CY2 |CZ) = P (CY1 |CZ) · P (CY2 |CZ). (3.7)

Therefore, conditional independence is symmetrical in Y1 and Y2.

We now recapitulate some well-known propositions from probability theory that allow
to make inferences from a given probability distribution. We assume that X is a set
of random variables, P is a strictly-positive joint probability distribution on X, and
that Y and Z are arbitrary subsets of X. Note that a joint probability distribution
P ′ on β(Y ) can be derived from the probabilities P (cY ) for all configurations of Y ;
P ′ is then called the marginal distribution on Y .

Proposition 3.9 (Chain rule)

P (CX) = P (CX\Y ∪Z | CY ∪Z) · P (CY | CZ) · P (CZ) (3.8)

Proof.

P (CX\Y ∪Z | CY ∪Z) · P (CY | CZ) · P (CZ) =

P (CX\Y ∪Z ∧ CY ∪Z)

P (CY ∪Z)
· P (CY ∧ CZ)

P (CZ)
· P (CZ) =

P (CX)

P (CY ∪Z)
· P (CY ∪Z)

P (CZ)
· P (CZ) = P (CX) (3.9)

�

Proposition 3.10 (Marginalisation)

P (CY ) =
∑

cZ∈ΩZ

P (CY ∧ cZ). (3.10)
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Proof. For each cY ∈ ΩY we have

cY ≡
∨

cZ∈ΩZ

cY ∧ cZ . (3.11)

As the disjuncts in this expression are mutually incompatible, i.e.

cY ∧ cZ) ∧ (cY ∧ c′Z) ≡ ⊥ (3.12)

for all cZ , c
′
Z ∈ ΩZ , cZ 6= c′Z), the sum of their respective probabilities equals the

marginal probability of cY . �

Proposition 3.11 (Conditioning)

P (CY ) =
∑

cZ∈ΩZ

P (CY | cZ) · P (cZ). (3.13)

Proof. Directly from the definition of conditional probability and the marginalisation
property. �

Theorem 3.12 (Bayes’ theorem)

P (CY | CZ) =
P (CZ | CY ) · P (CY )

P (CZ)
. (3.14)

Proof. Directly from the definition of conditional probability. �

We proceed by giving definitions of expectation and variance, which play a crucial
role in utility theory and decision theory. The expected or mean value of a function
f under distribution P is the weighted sum of its possible values where the weights
are probabilities.

Definition 3.13 (Expected value) Let f : ΩX → R be a function over the possible
configurations of X. The expected value of f under probability distribution P is
defined as

EP (f) =
∑

cX∈ΩX

P (cX) · f(cX). (3.15)

The variance of f is a measure of the spread around its mean; it is defined as the
expected squared deviation of the values f(cX), cX ∈ ΩX , from EP (f).
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Definition 3.14 (Variance) Let f : ΩX → R be a function over the possible config-
urations of X. The variance of f under probability distribution P is defined as

varP (f) = EP (g), (3.16)

where

g(cX) = (f(cX)− EP (f))2. (3.17)

Note that when P is degenerate probability distribution with P (cX) = 1 for some
cX ∈ ΩX , we have that EP (f) = f(cX) and varP (f) = 0.

We conclude this section by discussing the notion of entropy. Entropy was developed
by Shannon and Weaver (1949) to characterise the uncertainty in a given probability
distribution, which is regarded as inversely proportional to the information conveyed
by that distribution. Uniform distributions are seen as conveying the least, and
degenerate distributions as conveying the most information possible on the actual
state of the variables involved.

Definition 3.15 (Entropy) The entropy HP (Y ) of the set Y ⊆ X in probability
distribution P on X is defined as

HP (Y ) = −
∑

cY ∈ΩY

P (cY ) logP (cY ). (3.18)

Note that HP (Y ) ≥ 0 for all distributions P and sets Y . The value of HP (Y ) is
high when there is much uncertainty regarding the set Y , i.e. when all possible
configurations of Y have roughly the same marginal probability; the value of HP (Y )
is low when the marginal distribution on Y is more pronounced. If there is no
uncertainty, i.e. when P (cY ) = 1 for some cY ∈ ΩY , then HP (Y ) = 0.

3.2 Utility theory

Utility theory was formulated by Von Neumann and Morgenstern (1944) as an adjunct
to their theory of games. Others soon recognised it in its own right as an important
mathematical foundation for decision making under uncertainty. The central results
of utility theory are that, given a number of assumptions on rational choice, a pref-
erence order on decision-making outcomes can be expressed as a real-valued function
(called a utility function), and a preferred decision alternative is one that maximises
the expectation of this function (Chernoff and Moses, 1959; Savage, 1972; Raiffa
and Schlaifer, 1961); this is called the Maximum Expected Utility criterion, or MEU
criterion.

This section is divided into three subsections. Subsection 3.2.1 reviews the funda-
mentals of utility theory, and presents the MEU criterion. In Subsections 3.2.2 and
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3.2.3, we study further characteristics of utility functions, based on attitudes towards
risk and the existence of multiple objectives. We conclude in Subsection 3.2.4 with a
discussion of quasi-utility functions, functions that violate the assumptions of utility
theory, but may nevertheless prove useful in some circumstances.

3.2.1 The MEU criterion

Formally, in utility theory a decision is viewed as a choice from among one or more
lotteries. A lottery specifies a probability distribution over “prizes” (i.e. potential
outcomes of the decision) by listing them along with their respective probabilities.
The decision maker receives exactly one prize, drawn using the probability distribu-
tion specified by the lottery he has chosen.

Definition 3.16 (Lottery) Let W be a set of variables, jointly describing the pos-
sible outcomes of a decision. The set L(W ) of lotteries over W is defined as the
smallest set satisfying:

1. ΩW ⊂ L(W ), and

2. if l1, . . . , ln ∈ L(W ), n ∈ N, n ≥ 1, then (p1, l1; . . . ; pn, ln) ∈ L(W ),
where 0 ≤ pi ≤ 1, i = 1, . . . , n, and

∑n
i=1 pi = 1.

A configuration cW ∈ ΩW is also called an atomic lottery of L(W ). A lottery l =
(p1, l1; . . . ; pn, ln), is called a simple lottery if each li is atomic; otherwise l is called
a compound lottery. For a non-atomic lottery l = (p1, l1; . . . ; pn, ln), a pair (pi, li),
i = 1, . . . , n, is called a branch of l with sublottery li.

We note that the prizes in a simple lottery need not be distinct, and neither do
the prizes in sublotteries of a compound lottery. Furthermore, there are no formal
restrictions on the number of branches, or on the recursion depth in a lottery, except
that they are both finite. Without loss of generality, we do take non-atomic lotteries
to be non-degenerate, i.e. to have some branches with a probability 0 < p < 1, and
therefore involve a true gamble.

Example 3.17 Lotteries often are depicted graphically using rooted trees. Fig-
ure 3.1a shows the simple lottery (3/4, closure = true; 1/4, closure = false).
Figure 3.1b shows the compound lottery (1/2, (9/10, pmart = false ∧ death =
false; 1/10, pmart = false ∧ death = true); 1/2, pmart = true ∧ death = false).

A compound lottery (p1, l1; . . . ; pn, ln) is taken to yield the sublottery li with probabil-
ity pi, i = 1, . . . , n, where li in turn is interpreted as yielding some outcome or lottery.
It is easily seen that for each lottery l ∈ L(W ), there exists a unique corresponding
probability distribution Pl over W that satisfies the following conditions:
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closure=yes

closure=no

3/4

1/4

(a) A simple lottery.

pmart=true
death=false

1/2

1/2

pmart=false
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9/10

1/10

(b) A compound lottery.

Figure 3.1: Two lotteries.

1. if l ∈ ΩW , then Pl(l) = 1 and Pl(cW ) = 0 for all cW ∈ ΩW \ {l}, and

2. if l = (p1, l1; . . . ; pn, ln), then Pl(cW ) =
∑n

i=1 pi · Pli(cW ) for each cW ∈ ΩW .

From a formal point of view, the set L(W ) is therefore equivalent to the set of possible
probability distributions overW . The association with gambling-style lotteries, where
the outcomes typically involve winning or losing sums of money, is purely metaphoric.
It does help emphasise though the assumption that the decision maker is informed
about the probabilities associated with branches in a lottery and about the worths
of potential outcomes.

One of the results of the correspondence between lotteries and probability distribu-
tions is that compound lotteries can be reduced to simple ones using the chain rule
of probability theory (Proposition 3.9), without altering their interpretation.

Example 3.18 The compound lottery of figure 3.1b can be reduced to the simple
lottery (9/20, pmart = false ∧ death = false; 1/20, pmart = false ∧ death =
true; 1/2, pmart = true ∧ death = false) specifying the same probability distribution.

Utility theory assumes that the lotteries over a set W can be compared to each
other by the decision maker as to their desirability, meaning that there exists a
(subjective) preference ordering on the set L(W ) of all lotteries over W . For two
lotteries l, l′ ∈ L(W ), we will write l ≺ l′ to denote preference of l′ over l by the
decision maker, l � l′ for preference of l over l′, and l ' l′ for indifference of the
decision maker between l and l′. In the latter case, we will also say that l and l′ are
equally preferred. The symbol � will be used to denote preference over or indifference
between lotteries.
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Definition 3.19 (Preference ordering) Let W be a set of variables and let L(W )
be the set of lotteries over W . Then, a preference ordering on L(W ) is a relation
�⊆ L(W )× L(W ) that for all l, l′, l′′ ∈ L(W ) satisfies the following properties:

(P1) � is a linear ordering on L(W ); (Orderability)

(P2) if l � l′ � l′′, then there exists a p with 0 ≤ p ≤ 1
such that l′ ' (p, l; 1−p, l′′); (Continuity)

(P3) for all p with 0 ≤ p ≤ 1 we have
l ' l′ if and only if (p, l; 1−p, l′′) ' (p, l′; 1−p, l′′); (Substitutability)

(P4) if l � l′, then for all p,q with 0 ≤ p, q ≤ 1,
we have (p, l′; 1−p, l) � (q, l′; 1− q, l) if and only if p ≤ q; (Monotonicity)

(P5) for all p,q with 0 ≤ p, q ≤ 1, we have
(q, (p, l; 1−p, l′); 1−q, l′′) ' (qp, l; q(1−p), l′; 1−q, l′′). (Decomposability)

The properties P1 through P5 are generally called the axioms of preference. The
continuity axiom (P2) states that for any three lotteries l, l′, l′′ with l � l′ � l′′, there
exists a lottery composed of l and l′′ that is equally preferred to l′. If l′ is atomic,
i.e. l′ ∈ ΩW , then we say that l′ is the certainty equivalent of this compound lottery.
Axiom P3 asserts that lotteries that are equivalent when considered alone remain
equivalent as part of a larger context, and vice versa. The fourth axiom (P4, mono-
tonicity) asserts that a decision maker prefers the lottery that offers the greater chance
of receiving the better outcome. Finally, axiom P5 (decomposability) reformulates
the chain rule of probability theory in lottery terms, which accords the interpretation
of lotteries as probability distributions. This axiom is sometimes called “no fun in
gambling,” since it prohibits one to place value on the number of steps needed to
achieve an outcome.

Given a set of lotteries L ⊆ L(W ) and a preference ordering � on L(W ), we say that
l∗ ∈ L is a most preferred lottery of L with respect to �, when l′ � l∗ for all l′ ∈ L.
Note that most preferred lotteries need not be unique, but if there are multiple most
preferred lotteries in a given set, then these lotteries are all equally preferred.

For a given set of lotteries L(W ) and an associated preference ordering �, it can
be shown that the axioms of preference guarantee the existence of a real-valued
function over L(W ) that respects the decision maker’s preferences with respect to
these lotteries; such a function is called a utility function.

Theorem 3.20 (Utility function) Let W be a set of variables, and let � be a
preference ordering on L(W ). Then, there exists a function u� : L(W )→ R such
that for all l, l′ ∈ L(W ) we have

(U1) u�(l) ≤ u�(l′) if and only if l � l′, and
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(U2) if l = (p1, l1; . . . ; pn, ln), then u�(l) =
∑n

i=1 pi · u�(li).

We say that u� is a utility function for preference ordering �. The function value
u�(l) is called the utility of lottery l ∈ L(W ) under function u�.

Proof. See (Debreu, 1954). �

The rules U1 and U2 are often referred to as the axioms of utility, although they
describe derived, not assumed, properties of utility functions. The first axiom states
that the utility of a lottery l′ is greater than the utility of a lottery l if and only
if l′ is preferred to l. The second axiom says that we can compute the utility of a
compound lottery from the utilities of its constituents, using the rule of expectation
from probability theory: if Pl is the probability distribution over W that corresponds
to lottery l, then

u�(l) = EPl(u
m
� ), (3.19)

where um� is the function u� restricted to ΩW , i.e. um� = u�|ΩW . We refer to um� (cW )
as the marginal utility of outcome cW .

The axioms of preference (P1–P5) guarantee not only the existence but also the
uniqueness, up to positive linear transformations, of a utility function u for a given
preference ordering, (Debreu, 1954). That is, if u� is a utility function for preference
ordering �, then so is each function u′� for which

u′�(l) = a · u�(l) + b, (3.20)

for all l ∈ L(W ), where a, b ∈ R, a > 0. The significance of this result is that the
calibration commodity employed in utility functions is not the unit of outcomes’
worths, but uncertainty itself. That is, we can choose an arbitrary non-empty interval
[umin, umax] ⊂ R as the range of possible utilities, and calibrate the marginal utility
of outcome cW ∈ ΩW using

um� (cW ) = p · umin + (1− p) · umax (3.21)

if

cW ' (p, c−W ; 1−p, c+
W ), (3.22)

where c−W and c+
W are the least and most preferred outcomes, respectively. Note

that the continuity axiom (P3) guarantees the existence of the compound lottery
in Equation 3.22, because c−W � cW � c+

W . It also follows that um� (c−W ) = umin and
um� (c+

W ) = umax. A utility function is said to be normalised when umin = 0 and
umax = 1; such a function is unique given the corresponding preference ordering �.

The maximum expected utility (MEU) criterion states that a decision maker, when
confronted with a choice between multiple lotteries, should always choose the lottery
with maximum (expected) utility.
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Lemma 3.21 (MEU criterion) Let W be a set of variables, let � be a preference
ordering over L(W ), and let L ⊆ L(W ) be a non-empty set of lotteries over W .
Then, l∗ is a most preferred lottery of L with respect to � if and only if

l∗ = argmaxl{u�(l) | l ∈ L}, (3.23)

where u� is a utility function for �.

The MEU criterion follows from the axioms of preference and utility (see Heckerman,
1991, for an example of the proof). It is the main result of utility theory, as it
provides a recipe for rational behaviour in situations of choice under uncertainty. It
should be noted that such behaviour is guaranteed to yield preferred decisions (in the
sense that they are consistent with one’s preferences), but not necessarily preferred
outcomes: the result of a preferred decision may still turn out to be undesirable due
to the uncertainty involved.

Application of utility theory to concrete decision problems under uncertainty now
boils down to three steps: (1) identification of a set of variables W that jointly
cover all possible outcomes of decision making, (2) assessment of the marginal utility
um� (cW ) for each outcome cW ∈ ΩW , and (3) choosing the decision alternative that
maximises EP (um� ), where each decision alternative is taken to explicitly or implicitly
yield a probability distribution P on W .

To facilitate the assessment of the marginal utility function um� , several qualitative
characteristics of utility functions have been identified in the literature. Below, we
will discuss two types of characteristics. The first type of characteristic is based
on identifying a more or less objective worth, or value, with each lottery in L(W ),
and systematically comparing utilities with these values; this allows for assessing the
risk attitude of the decision maker. The second type of characteristic is based on
decomposition of the marginal utility function using subsets of variables from W ; the
individual variables are then referred to as attributes, and the composite function as
a multiattribute utility function.

3.2.2 Risk attitudes

Assume that with each element cW in the outcome space ΩW is associated a bounded
numerical value v(cW ) ∈ R. In a medical context, the value v(cW ) often represents
life-expectancy of the patient under the circumstance described by cW ; in an econom-
ical setting, it represents the monetary gain or loss associated with the outcome cW .
The expected value of lottery l ∈ L(W ) is now defined as ṽ(l) = EP (v), and its risk
as r(l) = varP (v), where P is the probability distribution on W that corresponds to l.
Note that ṽ(cW ) = v(cW ) and r(cW ) = 0 for all outcomes cW ∈ ΩW , as the probabil-
ity distributions associated with outcomes are degenerate. A decision maker is now
said to be risk-neutral if he is indifferent between all lotteries with the same expected
value. He is risk-averse if he always prefers the lottery with the smallest risk in such
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Figure 3.2: Different risk attitudes for monotonically increasing utility. The x-axis repre-
sents value, and the y-axis represents (normalised) utility; the dots correspond to elements
of ΩW , the set of all outcomes (atomic lotteries).

cases; he is risk-prone if he always prefers the largest risk. This is formalised in the
following definition.

Definition 3.22 (Risk attitude) Let W be a set of variables, let � be a preference
ordering on L(W ), and let v : ΩW → R be a value function for W . The decision
maker is

• risk-neutral if l′ ' l,

• risk-averse if l � l′, and

• risk-prone if l ≺ l′,

for all lotteries l, l′ ∈ L(W ) having ṽ(l) = ṽ(l′) and r(l) < r(l′). Risk aversion and
risk proneness are more generally referred to as risk sensitivity.

Risk neutrality is generally viewed as optimal in situations where the objective is to
maximise the cumulative result of a large sequence of similar decisions (e.g. gam-
bling), whereas risk sensitivity is also applicable in single-decision situations (e.g.
medical treatment).

The decision maker’s attitude towards risk can also be recognised from a plot of the
utilities and values in the (x, y)-plane; see Figure 3.2 for an example. We assume
here monotonically increasing utility, i.e. um� (cW ) ≥ um� (c′W ) if v(cW ) ≥ v(c′W ). This
is typically the case when v represents life-expectancy or monetary gain. Given a
certain outcome cW ∈ ΩW , a risk-neutral decision maker is indifferent between cW and
any non-atomic lottery l ∈ L(W ) having ṽ(l) = v(cW ). That is, um� (cW ) = u�(l); we
can in fact compute all marginal utilities as geometric means once the least and most
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preferred outcomes have been calibrated. Under monotonically increasing utility, risk
neutrality therefore implies that all outcomes cW ∈ ΩW are on the line

y =
x− vmin

vmax − vmin
(3.24)

where vmin = min{v(cW ) | cW ∈ ΩW} and vmax = max{v(cW ) | cW ∈ ΩW}. A
risk-averse decision maker will however prefer the certain outcome cW to lottery l, as
r(cW ) = 0 and r(l) > 0. The marginal utility um� (cW ) associated with cW will there-
fore be higher than one would expect by computing the geometric mean utility u�(l)
of lottery l; all certain outcomes except the least and most preferred are therefore
located above the line of Equation 3.24 in this case. A similar argument can show
that risk proneness implies that the certain outcomes lie below the line.

Under the (generally reasonable) assumption that the decision maker is indifferent
between outcomes in ΩW with equal values, it is possible to define marginal utility
as a function of outcome value. That is, we define a function uv : R→ R with the
restriction that

uv(EP (v)) = EP (uv ◦ v) (3.25)

for any joint probability distribution P on W (where ‘◦’ denotes functional compo-
sition), and take u�(l) = uv(ṽ(l)) for all l ∈ L(W ). Calibration of uv is achieved by
assessing the marginal utility of elements in outcome space directly, and by estab-
lishing the decision maker’s attitude towards risk. Note that monotonic utility now
corresponds to monotonicity of the function uv.

It can be shown that under monotonically increasing utility, a decision maker is
risk-neutral if and only if uv is a positive linear function, he is risk-averse if and
only if his marginal utility function is concave, and he is risk-prone if and only if his
marginal utility function is convex (Keeney and Raiffa, 1976); again, see Figure 3.2 for
illustrations. Intuitively, these correspondences can be understood as follows. Given
the prospect of obtaining some value v, vmin < v < vmax, a risk-neutral decision maker
is precisely twice as eager to obtain 2v, a risk-averse decision maker is less than twice
as eager to obtain 2v, and a risk-prone decision maker is more than twice as eager to
obtain 2v. A measure of risk aversion (proneness) is found in the local risk aversion
function

q(x) = −
d
dx2uv(x)
d
dx
uv(x)

. (3.26)

Concavity of uv causes q to be positive, where higher values of q indicate stronger
risk aversion; convexity of uv causes q to be negative, where lower values of q indi-
cate stronger risk proneness. Two utility functions are strategically equivalent (i.e.
correspond to the same preference order) if and only if they have the same local
risk aversion function (Keeney and Raiffa, 1976). Note that all risk-neutral utility
functions are strategically equivalent, as q(x) = 0 for all x for these functions.
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3.2.3 Multiattribute utility theory

In many decision problems under uncertainty, the assessment of a preference order
on the possible outcomes of decision making is hampered by the fact that there are
multiple objectives involved. It is very likely these objectives conflict with each other
in that the improved achievement with one objective can only be accomplished at
the expense of another. For instance, in a medical setting one may wish to maximise
the patient’s life-expectancy while minimising the costs of treatment. This requires,
however, establishing a tradeoff between improvements in life-expectancy and the
additional monetary costs.

Multiattribute utility theory (Keeney and Raiffa, 1976) is a framework for handling
the value tradeoffs and uncertainties in multi-objective decision problems. In multi-
attribute utility theory, the outcome space ΩW is divided into subspaces using the
variables w1, . . . , wk that constitute the set W ; these variables are generally referred
to as attributes. The basic approach is to identify regularities in the decision-making
objectives that provide for decomposition of the utility function um� to a form

um� (CW ) = f(uw1(Cw1), . . . , uwk(Cwk)). (3.27)

That is, with each attribute wi, i = 1, . . . , k, is associated a local utility function
uwi : Ωwi → R, and the utility values are subsequently combined by the function f
to obtain unidimensional utility. Fundamental to the identification of regularities in
the decision-maker’s objectives are the concepts of utility independence and additive
independence. These concepts pertain to the influence of individual attributes or
sets of attributes on the decision maker’s preferences: by restricting the possible
preference orderings on L(W ), they allow for simplifications in the associated utility
function. Below, we assume both the global utility function um� and all local utility
functions to be normalised.

We first discuss the concept of utility independence. The underlying notion is the
conditional preference ordering, which refers to the decision maker’s preferences with
respect to all lotteries over a set Y ⊆ W of attributes, obtained from the preference
ordering on L(W ) by holding the other attributes fixed at a given value.

Definition 3.23 (Conditional preference ordering) Let W be a set of variables,
and let � be a preference ordering on L(W ). Furthermore, let Y ⊆ W , and let cY ∈
ΩY be a configuration of its complementary set Y = W\Y . The conditional preference
ordering on L(Y ) induced by cY , notation �cY

, is defined as

lY �cY
l′Y if l � l′ (3.28)

for all lotteries lY , l
′
Y ∈ L(Y ), where l and l′ are the lotteries over W obtained by

replacing each cY ∈ ΩY with cY ∧ cY in lY and l′Y , respectively.

We now say that the set Y is utility independent of the remaining variables when the
conditional preferences for lotteries over Y are the same, regardless of the configura-
tion of Y = W \ Y .
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Definition 3.24 (Utility independence) Let W be a set of variables, and let �
be a preference ordering on L(W ). The set Y ⊆W is utility independent (of its
complementary set Y ) when each configuration cY ∈ ΩY induces the same conditional
preference ordering �cY

on L(Y ). The variables from W are said to be mutually
utility independent if every subset Y of W is utility independent of its complementary
set Y .

When each configuration cY ∈ ΩY induces the same conditional preference ordering
�cY

on the lotteries over Y , it is reasonable to speak the preference ordering on L(Y )
and similarly the utility function for Y , independently of the other attributes. As
a result, we can speak of the least and most preferred configurations c−Y and c+

Y of
Y , independently of the values of other attributes. When all attributes are utility
independent, the following simplified form of utility function can be derived.

Theorem 3.25 (Multilinear utility) If the variables of W are mutually utility in-
dependent, then there exist functions uw : Ωw → R, w ∈W , such that

um� (CW ) =
∑

Y⊆W,Y 6=∅
k|Y |−1

∏
w∈Y

kwuw(Cw) (3.29)

where kw = um� (c+
w ∧ c−W\{w}) is the weight factor for variable w ∈ W , and k is a

scaling constant that is a solution to

1 + k =
∏
w∈W

(1 + k · kw). (3.30)

Proof. See (Keeney and Raiffa, 1976). �

The result of this theorem seems impractical as the right-hand side of Equation 3.29,
which is referred to as a multilinear utility function, is rather awkward. Fortunately,
there exist simplified forms of this formula that are more intuitive.

The first form of simplified multilinear utility function is obtained from the assump-
tion of mutually additive independence of the utility attributes, (Fishburn, 1970).
Under mutually additive independence, we have that

um� (c+
W ) =

∑
w∈W

um� (c+
w ∧ c−W\{w}), (3.31)

or equally, that
∑

w∈W kw = 1. It then follows that k = 0, and the multilinear utility
function reduces to the following additive form:

um� (CW ) =
∑
w∈W

kwuw(Cw). (3.32)

Intuitively, the attributes of utility are independent additive contributors to global
utility, and in optimising an individual attribute w ∈W , we do not have to care about
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the values of other variables. The additive utility function is therefore characterised
by much robustness; it is typically employed in cases where the attributes of utility
represent independent factors of income.

The second form of simplified multilinear utility function is obtained from the assump-
tion of mutually multiplicative independence of the utility attributes. This assumption
states that for each configuration cw ∈ Ωw of an individual attribute w ∈ W , the ratio

um� (cw ∧ cW\{w})

um� (c+
w ∧ cW\{w})

(3.33)

is the same for all configurations cW\{w} of the set W \ {w} of remaining attributes.
We can then use uw(cw) to denote this ratio, and the multilinear utility function
reduces to the following multiplicative form:

um� (CW ) = k|W |−1 ·
∏
w∈W

kwuw(Cw). (3.34)

It models a situation where each fluctuation in local utility has a proportional effect
on global utility. A multiplicative utility function is therefore not very robust: it
is sometimes compared to a chain that is only as strong as its weakest link. One
typically employs such a function in the case where each attribute of utility represents
an independent factor of risk.

3.2.4 Quasi-utility functions

The axioms of preference from Definition 3.19 have not been beyond dispute. Over the
years, each of the axioms P1 through P5 has been criticised, for various reasons (see
Bell and Raiffa, 1988, for a discussion), and many alternatives have been formulated
(e.g. Fishburn, 1988). Although the five axioms still constitute the most popular
formalisation of preference under uncertainty, there are sometimes reasons to depart
from them. Evaluation functions that violate one or more of the axioms of preference
are called quasi-utility functions. In this subsection, we discuss such a function and
motivate the reasons for its application.

Suppose that the decision maker indicates that he wants to minimise the uncertainty
with respect to the set W of variables. That is, atomic lotteries cW ∈ ΩW are
preferred over (non-degenerate) non-atomic lotteries. More generally put, from a set
of lotteries L ⊆ L(W ), the decision maker prefers the lottery l ∈ L that minimises
the entropy HPl(W ) of W , or equivalently, maximises the negative entropy −HPl(W ).
An appropriate utility would therefore seem

u(l) = −HPl(W ). (3.35)

However u is not a utility function, as it violates the second axiom of utility (U2;
see Theorem 3.20 on p. 58): the function regards atomic lotteries as equally (and
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maximally) preferred. In a given lottery

l = (p1, c
1
W ; . . . ; pn, c

n
W ) (3.36)

we can therefore substitute each ciW , i = 1, . . . , n with some arbitrary cW ∈ ΩW

because it is equally preferred. Then, we obtain the equivalent lottery

l′ = (p1, cW ; . . . ; pn, cW ). (3.37)

However, l′ yields the outcome cW with certainty, and is therefore equivalent to the
atomic lottery cW itself. As a result, all lotteries from L(W ) should be equally
preferred under the preference ordering encoded by the function u. This however
contradicts the fact that u will yield lower (negative) values when a lottery involves
much uncertainty. The function u is therefore not a utility function but a quasi-utility
function.

The reasons for the invalidity of the function u as a utility function can intuitively
be understood from the following principle: it is only useful to strive for more cer-
tainty when this allows for appropriate (i.e. utility-increasing) action. In a medical
setting, for instance, gathering more information on the clinical state of a patient by
performing a diagnostic test is considered useful only when the resulting improved
diagnosis allows for better treatment. Otherwise, the adverse effects of the test such
as stress, costs, or risks prove unnecessary and the test should be avoided.

Although the above principle is generally held to be sound, there may still be reasons
to use a quasi-utility function that solely aims to decrease uncertainty. We distin-
guish three possible reasons for doing so. Firstly, information may be of prognostic
value independent of its usefulness in determining treatment, (Asch et al., 1990). For
instance, many patients would be willing to pay substantial sums of money simply to
know more about their disease and its probable developments. Secondly, the formal-
isation of the decision problem may not cover all potential treatment strategies. In
particular, this may be so when the formalisation aims to support only the diagnos-
tic process, (Gorry and Barnett, 1968). Thirdly, some (complex) decision problems
suffer from a combinatorial explosion in the number of possible decision policies, and
can only be solved using heuristic measures. The quasi-utility function u may then be
helpful in estimating the value of diagnostic tests, (Glasziou and Hilden, 1989). We
will return to complexity issues in decision making at the end of the next section.

3.3 Decision-theoretic analysis

Probability theory and utility theory provide the building blocks for decision theory,
the discipline that formulates the principles of rational decision making under condi-
tions of uncertainty. The art and science of analysing real-life decision problems from
these principles is called decision analysis. In this section, we provide a sketch of the
field by analysing a number of prototypical decision problems under uncertainty using
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Action Interpretation

echo echocardiography
med medical treatment
cath cardiac catheterisation
biop open lung biopsy
surg perform surgery

Table 3.2: Example decision alternatives for the VSD domain.

decision-theoretic principles. Decision-theoretic reasoning is characterised by the fact
that each situation of choice is ultimately reduced to a utility-theoretic tradeoff; from
a conceptual point of view, however, these choice situations may be very different.
We will see that a number of concepts, pertaining to the role of actions, informa-
tion and time, are significant in many decision problems. While in utility theory,
these concepts are left implicit, they are typically made explicit in decision-theoretic
analyses. This section aims to introduce the reader to these concepts and their role
decision-theoretic reasoning.

Below, we analyse three simple decision problems: (i) making a single choice under
uncertainty without prior information, (ii) making such a choice with problem-specific
information, and (iii) a two-stage decision problem comprising a choice whether or
not to gather information and a choice that can exploit that information. In the
analyses, we confine ourselves to descriptions from sets of variables with a finite set
of possible values. The choices faced by a decision maker are represented by decision
variables; the values that a decision variable may take represent a mutually exclu-
sive and exhaustive set of actions from which a choice is made at some point in the
decision problem. Such actions may include the options of waiting for something
to happen, inspecting or activating a given measuring device, and gathering or in-
vesting physical resources to enable future actions. We will refer to configurations
of decision variables as decision alternatives. The uncertain events that are relevant
to the decision problem but are beyond the (direct) control of the decision maker
are represented by random variables. In the terminology of Subsection 1.2.2, these
random variables describe a system under control by the decision maker, and their
possible configurations represent potential system states; we will henceforth refer to
them as state variables.

Example 3.26 Table 3.2 provides an example set of clinical actions that are available
to a paediatric cardiologist for the management of VSD patients. Medical treatment
may be used to control heart failure, and surgery may be used to close the defect.
Information concerning the clinical state of the patient may be obtained by making
echocardiographic images, cardiac catheterisation, and open lung biopsies. Through-
out the remainder of this chapter, we will use examples with decision variables that
range over this set of actions, and state variables that are taken from Table 3.1.
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To visualise the various types of decision problem, we will use decision trees (Raiffa,
1968), the traditional tool for decision-theoretic analysis. A decision tree is a rooted
tree that provides an explicit, graphical enumeration of the potential scenarios in-
volved in a given decision problem; each path from root to leaf describes such a sce-
nario. The internal nodes of the tree represent either decisions or uncertain events,
and the leaf nodes represent outcomes of the decision process. As such, a decision tree
highlights the structural components of the problem, i.e. (i) the alternative actions
that are available to the decision maker, (ii) the events that follow from and affect
these actions, and (iii) the outcomes that are associated with each possible scenario
of actions and events. We note that the structure of a decision-theoretic analysis
and the corresponding decision tree describe a decision problem from the perspective
of the person solving the decision problem. An analysis is limited to the details of
the problem relevant for choosing the optimal decision alternative(s), and ignores all
other characteristics of the problem.

Decision making in ignorance

The simplest type of decision problem under uncertainty is where there is a single
moment of choice, and there is no problem-specific information available prior to that
decision: the decision maker is completely ignorant of the current state of affairs.
The decision maker’s choice influences the system, and has the objective of reaching
a satisfying system state, but the decision alternatives themselves are also subject to
a tradeoff as they involve particular costs or risks. Using the results of Section 3.2,
we will assume the decision maker’s preferences are expressed as marginal utilities for
all combinations of states and choices; the underlying preference order is left implicit
from now on.

Example 3.27 Faced with a patient that has a VSD, the primary decision that needs
to be made by the clinician is whether or not to submit this patient to surgery, i.e.
whether or not to select the decision alternative surg. On the one hand, operating
the patient will generally result in successful closure of the defect (size = null),
improving the patient’s condition (shunt = none, hfail = absent), and eliminating
the risks of complications such as Eisenmenger’s complex (represented by high values
of the variable resis). On the other hand, a number of patients do not survive
open-heart surgery (i.e. death = true).

Formally, let d be a decision variable, and let X be a set of state variables whose joint
probability distribution depends on d. Let Pcd be the distribution on X associated
with decision alternative cd ∈ Ωd. For convenience, we will use p(cX | cd) as a short-
hand notation for Pcd(cX).1 Furthermore, a marginal utility function u is defined

1Note that, notwithstanding the notation, p(cX | cd) is not a conditional probability as there are
no marginal probabilities defined for variable d.
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Figure 3.3: Decision tree representing singular choice under uncertainty.

over ΩX × Ωd. The expected utility of alternative cd, denoted by ũ(cd), now equals

ũ(cd) =
∑

cX∈ΩX

u(cX , cd) · p(cX | cd). (3.38)

Following the MEU criterion, a preferred, or optimal alternative c∗d is one that max-
imises expected utility, i.e.,

c∗d = argmaxcd
{ũ(cd) | cd ∈ Ωd}. (3.39)

Note that there need not be a unique preferred alternative. The term regret refers to
the expected utility that is ‘missed’ by choosing a sub-optimal decision alternative.

Definition 3.28 (Regret) The regret of decision cd is defined as ũ(cd) − ũ(c∗d),
where c∗d is an optimal alternative.

It is easily seen that regret is non-positive, and the lower the regret, the worse the
decision.

The decision problem described above is represented by the decision tree of Figure 3.3.
Decisions are depicted by squares, called decision nodes, and labelled with the name
of the corresponding decision variable; the branches emanating from a decision node
correspond to the possible decision alternatives (in this case c1

d, . . . , c
n
d). Uncertain

events are depicted by circles, called chance nodes, and labelled with the name of
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the corresponding set of random variables. In general, there may be multiple nodes
in a decision tree representing the same decision or uncertain event (albeit under
different circumstances); in this case, there are n chance nodes, each representing
the uncertain event with possible outcomes in the universe ΩX of the set X. The
branches emanating from a chance node correspond to these possible outcomes (in
this case c1

X , . . . , c
m
X). With each of the branches is associated the probability that

the event takes place in that context; for instance, the upper branch emanating from
the middle chance node has associated probability p(c1

X | cid). These probabilities are
not shown in the figure. Leaf nodes of the tree represent potential outcomes of the
decision-making process; each leaf node is labelled with the utility that corresponds
to the sequence of decisions and events along the unique path to that node starting
at the root.

As is seen from the figure, the decision-tree representation of decision problems re-
flects the utility-theoretic conception of decisions as choices between lotteries. By
evaluating or solving a decision tree is meant finding an optimal policy for the tree,
i.e. selecting an optimal branch for each decision node in the tree. In this case, there
is only one decision node, and an optimal branch is one which corresponds to an
alternative that satisfies the condition in Equation 3.39.

We conclude the analysis of this decision problem by noting that it is well possible
that one or more state variables are unaffected by the decision, i.e. that there exists
a subset Y ⊆ X for which

Pcid
(CY ) = Pcjd

(CY ) (3.40)

for all cid, c
j
d ∈ Ωd. We can then regard these variables as receiving their values

prior to decision making. Recall, however, that a decision analysis solely reflects
the perspective of the decision maker. The circumstance described therefore has no
consequences for the analysis of the decision problem, as we have assumed the decision
maker to be ignorant of the values of state variables when making the decision.
Below, we will lift the assumption of complete ignorance, and analyse the effect of
observations.

Decision making with prior observations

It often comes about that a decision maker has some information regarding the state
of the system to which his decisions pertain. In our formalisation, this information
consists of configurations of one or more state variables; we will refer to these configu-
rations as evidence. We will first discuss case parameters, the special type of evidence
that is received prior to making the (first) decision, and turn later to observations
that are received as a result of specific choices by the decision maker. In a medi-
cal setting, case parameters typically consist of patient-specific information such as
personal and historical data, symptoms, and findings from physical examination.

Example 3.29 In the VSD example, case parameters consist of externally visible
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signs and symptoms, typically caused by heart failure and shunting: shortness of
breath, feeding and growing problems (comprised in the variable symp in Table 3.1),
and occurrence of central cyanosis (cyan = true).

Formally, let as before X be a set of random variables, let d be a decision variable, and
let u be a marginal utility function over ΩX ×Ωd. Now, assume that Y ⊆ X is a set
of state variables that receive their values prior to decision making, and are observed
at that time. We use pY (cY ) to denote the marginal probability of configuration cY ,
i.e. pY (cY ) = Pcd(cY ) for any cd ∈ Ωd, and use

pX\Y (cX\Y | cY , cd) = Pcd(cX\Y | cY ) (3.41)

to denote the conditional probability of configuration cX\Y given cY when choosing
alternative cd; the derived conditional distribution pX\Y can be seen as describing the
effects of the variables from Y on the variables from X \ Y under the various decision
alternatives.

Example 3.30 Let X = {shunt, hfail} and consider the decision to administer
cardiac glycosides to enhance the strength of myocardial contraction. This decision
will not affect the shunt, but it does in general reduce heart failure. Taking Y =
{shunt}, the conditional probability pX\Y describes the effects of shunting on heart
failure under both decision alternatives. In general, larger shunt sizes will increase the
risk of (severe) heart failure, but the risk will decrease under treatment with glycosides.

The decision tree depicted in Figure 3.4 models the decision problem with prior
observations. The root of the tree is a chance node representing the observed set Y
of state variables, and is followed by decision d. The configuration of Y , which is then
known to the decision maker, is used to optimise the decision. Generally speaking, all
variables preceding a decision node in a decision tree are assumed to be known when
making the decision; this may also include earlier decisions and observations that
result from specific choices. Chance nodes not followed by a decision node, in this
case representing the set X \ Y , either represent attributes of the system that remain
hidden from observation, or model an uncertain event in the future. Recall that with
each branch emanating from a chance node is associated the conditional probability
of the uncertain event given the history of past decisions and events along the path
that leads from the root to the node; here, the history consists of configurations of
the set Y ∪ {d}.

The form of the tree stresses the fact that with each observation from ΩY , we face a
different subproblem, and each of these subproblems may have its own optimal solu-
tion. To formulate solutions to observation-dependent subproblems, we use decision
functions.

Definition 3.31 (Decision function) Let W be a set of variables, and let d be a
decision variable. A decision function for d is a function δ : ΩW → Ωd. Configu-
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Figure 3.4: Decision tree with an observation prior to decision making.

rations of W are called inputs to the decision function δ. The set of all decision
functions for d with inputs from ΩW is written ∆W→d.

Both configurations of decision variables and random variables can serve as inputs
to a decision function. Note that when W = ∅, then the function simply picks an
alternative from Ωd; such functions can therefore be used for decisions without prior
observations.

The problem faced by the decision maker is to solve the decision tree by selecting
an optimal branch for each of the tree’s decision nodes, or equivalently, to choose
the optimal decision function for d with inputs from ΩY . We define the conditional
expected utility of decision cd ∈ Ωd given observation cY , notation ũ(cd | cY ), as

ũ(cd | cY ) =
∑

cX\Y ∈ΩX\Y

u(cY ∧ cX\Y , cd) · pX\Y (cX\Y | cY , cd), (3.42)
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and the (unconditional) expected utility ũ(δ) of decision function δ as

ũ(δ) =
∑

cY ∈ΩY

ũ(δ(cY ) | cY ) · pY (cY ). (3.43)

The optimal decision function is

δ∗ = argmaxδ{ũ(δ) | δ ∈ ∆Y→d}, (3.44)

or equivalently, the function for which

δ∗(cY ) = argmaxcd
{ũ(cd | cY ) | cd ∈ Ωd}. (3.45)

for all cY ∈ ΩY . The latter formulation reflects the fact that there are |ΩY | different
subproblems, for each of which an optimal solution has to be found. We remark
that the notion of regret from Definition 3.28 can be defined analogously for decision
functions.

The following notion is due to Howard (1966).

Definition 3.32 (Value of information) The expected value of information of
the set Y , notation EVI(Y ), is defined as

EVI(Y ) = ũ(δ∗)− ũ(c∗d), (3.46)

where ũ(δ∗) is the optimal decision function with inputs from ΩY , and c∗d is the optimal
decision alternative without prior information.

If Y is the largest set of state variables uninfluenced by the decision, this means
that an observed configuration of Y represents all there is to know of the problem
prior to decision making. We then refer to EVI(Y ) as the expected value of perfect
information (EVPI).

Proposition 3.33 now expresses the decision-theoretic principle that a decision maker
should always use as much of the available information as possible, as long as the
information is freely available.

Proposition 3.33 The expected value of information EVI(Y ) of any set Y is non-
negative.

Proof. Let c∗d as before be the decision alternative that expectedly optimises utility
when there is no prior information, and let δb be the constant decision function that
selects c∗d whatever evidence on the set Y is received (where b refers to the ‘blindness’
of this decision function). From Equation 3.43, we have that

ũ(δb) =
∑

cY ∈ΩY
ũ(c∗d | cY ) · pY (cY ) = ũ(c∗d). (3.47)
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Now, as δ∗ maximises ũ(δ∗(cY ) | cY ) for each cY ∈ ΩY (Equation 3.45), we have that

ũ(δ∗(cY ) | cY ) ≥ ũ(δb(cY ) | cY ) (3.48)

for all cY ∈ ΩY , and therefore

ũ(δ∗) ≥ ũ(δb), (3.49)

so

ũ(δ∗) ≥ ũ(c∗d). (3.50)

�

It appears from the proof that the expected value of information of Y can be viewed
as the negative regret of ignoring the evidence by using the blind decision function
δb.

We note that it is possible to re-formulate a decision problem with prior observations
as a singular choice without prior observations. Let d′ be a new decision variable,
taking values from ∆Y→d, and define, for each alternative δ ∈ ∆Y→d,

p′X\Y (cX\Y | d′ = δ) =
∑

cY ∈ΩY

pY (cY ) · pX\Y (cX\Y | cY ∧ δ(cX)), (3.51)

and

ũ′(d′ = δ) =
∑

cX\Y ∈ΩX\Y

u(cY ∧ cX\Y , δ(cY )) · p′X\Y (cX\Y | d′ = δ). (3.52)

We then have that ũ′(d′ = δ) = ũ(δ). In this formulation, the corresponding decision
tree again has the form of the tree depicted in Figure 3.3. The number of branches
emanating from the root decision will however be much larger, as there exist nz pos-
sible decision functions for d with inputs from Y if n = |Ωd| is the number of decision
alternatives and z = |ΩY | is the number of possible observations. This is much more
than the number of n decision alternatives when there is no prior evidence. We
conclude that the possibility to observe prior evidence does not introduce a funda-
mental difference to the type of tradeoff involved, but there is a substantial increase
in complexity of the problem.

Deciding upon intermediate observations

In the previous decision problem, we assumed that evidence was freely available,
and therefore provided a guaranteed increase in expected utility. In many decision
problems, evidence concerning the system state is however not freely available but
comes forth as a result of specific choices made during the decision process; we will
refer to such choices as test decisions.
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Definition 3.34 (Test decision) A test decision is a decision with the objective to
gather evidence.

On the one hand, the evidence obtained from test decisions can be used to optimise
subsequent decisions, but on the other hand the conduction of tests will generally
involve certain costs or risks. In a decision-theoretic analysis, these costs and risks are
discounted as a decrease in utility. The question is therefore whether this immediate
decrease in utility is justified by the expected increase in utility that results from
improved future decision making.

Example 3.35 A cardiologist may choose to make an echographic image of the heart
of a VSD patient (the decision alternative echo), providing information about the
size of the VSD (the state variable size). In addition, cardiac catheterisation (cath)
may be used to obtain evidence on shunting and vascular resistances (variables shunt
and resis), and the state of the pulmonary arterioles (pmart) can be examined by
open lung biopsy (the alternative biop). Each of these types of evidence is helpful in
assessing the severity of disease, and therefore in deciding upon the need for surgery.

We formalise this situation as follows. Let d1, d2 be decision variables, where d1

denotes a test decision; it takes one of the values test and no test. When d1 = test ,
the decision maker receives evidence on the set Y ⊆ X of state variables; otherwise,
he has no information on the state of the system. The probability distribution P on
X is not influenced by d1 and therefore only parametrised by d2; the utility function
u depends on X, d1, and d2.

The decision tree that corresponds to this problem is shown in Figure 3.5. As appears
from the figure, the test decision is basically a choice between a decision with prior
observations (represented by the upper half of the tree) and the same decision without
observations (represented by the lower half of the tree). Also note that in contrast
with the trees of Figures 3.3 and 3.4, the tree of Figure 3.5 is not symmetrical: the
two halves of the tree are structurally different. We will refer to this phenomenon,
which is induced by test decisions, as informational asymmetry. Informational asym-
metry abounds in all decision problems that involve test decisions, and is therefore a
significant phenomenon in decision-theoretic representation and reasoning.

Due to the asymmetric nature of the problem, the analysis is also split into two parts:
one part where it is decided to perform the test, and one where it is decided to skip
it. First, suppose that d1 = test is selected. This means that information on the
configuration of Y becomes available, and we can use this information to optimise
decision d2. That is, we will then choose a decision function δ ∈ ∆Y→d2 for d2, and
the expected utility of this function is

ũ(δ | d1 = test) =
∑

cY ∈ΩY

pY (cY ) · ũ(δ(cY ) | cY , d1 = test), (3.53)
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Figure 3.5: Decision tree with a test decision.
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where the expected utility ũ(cd | cY , d1 = test) of decision alternative cd2 given
d1 = test and evidence cY is defined as

ũ(cd2 | cY , d1 = test) =∑
cX\Y ∈ΩX\Y

u(cY ∧ cX\Y , d1 = test , cd2) · pX\Y (cX\Y | cY ∧ cd2). (3.54)

Note that δ(cY ) in Equation 3.53 yields such a decision alternative for decision d,
based on the evidence cY . The (maximum) expected utility of making the observation
is therefore

ũ(d1 = test) = max{ũ(δ | d1 = test) | δ ∈ ∆Y→d2}. (3.55)

In contrast, when we decide to choose no test for decision d1, then no information
about Y comes available and all we can do is select the alternative from Ωd2 that is
expected to be optimal given the prior distribution on X. The expected utility of
alternative cd2 ∈ Ωd2 equals

ũ(cd2 | d1 = no test) =
∑

cX∈ΩX

pX(cX) · u(cX , d1 = no test , cd2), (3.56)

and the (maximum) expected utility of not observing is

ũ(d1 = no test) = max{ũ(cd2 | d1 = no test) | cd2 ∈ Ωd2}. (3.57)

If ũ(d1 = test) > ũ(d1 = no test), then we perform the test and apply the optimal de-
cision function for variable d2 afterwards; otherwise, we do not make the observation
and select the optimal alternative from Ωd2.

The difference ũ(d1 = test)− ũ(d1 = no test) in maximum expected utilities between
testing and not testing is sometimes referred to as the expected test value. Note that
when the test decision does not affect utility, i.e. when

u(CX , d1 = test ,Cd2) = u(CX , d1 = no test ,Cd2) (3.58)

then the expected test value equals the expected value of information EVI(Y ) of the
set Y . If follows from Proposition 3.33 that the expected test value then be non-
negative, and it is therefore recommended to perform it. In most practical settings,
however, information will not be available ‘for free’. That is, we usually have that

u(CX , d1 = test ,Cd2) < u(CX , d1 = no test ,Cd2), (3.59)

and there is a tradeoff between loss in utility on the one hand and gain in information
that may compensate that loss on the other hand.

We conclude this subsection with a few notes on the generalised problem where mul-
tiple tests are available that can be conducted serially. An example of this situation
is found in the differential diagnosis task described in Subsection 2.2.2, where the
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physician repeatedly selects diagnostic tests until sufficient information is available
to choose appropriate therapy. Firstly, if the tests can be performed in any order,
their expected values depend on the actual order in which the tests are performed, and
can therefore not be assessed in isolation. The problem becomes highly combinatorial
as in principle, any sequence of tests should be considered.

Example 3.36 Suppose that a paediatric cardiologists suspects that a VSD patient
suffers from pulmonary hypertension due to pulmonary arteriopathy. If his suspicion
is correct, surgical closure of the VSD will worsen the patient’s condition. He may
now consider the tests cath (cardiac catheterisation) to inspect intra-cardiac flows and
pressures and biop (open lung biopsy) to inspect the pulmonary arterioles directly.
Both tests are invasive but not completely reliable. When a test is chosen and the
results are equivocal, additional testing is required.

Secondly, the existence of multiple tests will generally induce relevantial asymmetry
in the formal analysis of the problem. This can be understood as follows. Suppose
that d1, . . . , dk denote test decisions, where each di, i = 1, . . . , k, takes values from an
arbitrary set of tests A. Now, if a ∈ A denotes a test that is guaranteed to provide
evidence that is free of measurement errors, then selecting di = a, i = 1, . . . , k − 1,
rules out the necessity to consider test a for any future decision dj, j = i + 1, . . . , k,
as conducting the test would not provide any further information: the option a has
become irrelevant. Relevantial asymmetry is reminiscent of informational asymmetry,
but pertains to decision variables instead of state variables; it generally occurs in
problems where decisions (not necessarily pertaining to tests) may be repeated.

Example 3.37 Consider once more the above example. If we assume that an open
lung biopsy provides reliable information on the state of the pulmonary arterioles,
then it is unnecessary to repeat this test once it has been performed.

3.4 Discussion

In the previous sections, we have discussed the formal foundations for decision making
under uncertainty within the decision-theoretic paradigm. It was described how the
synthesis of probability theory and utility theory provides a framework for analysing
various types of choice under uncertain conditions. Within this framework, probabil-
ity theory serves to formalise the reasoning about uncertain events, whereas utility
theory provides the guidelines for rational choice under uncertainty. The principal
rule in any circumstance is that a person facing a decision should make the choice
that is expectedly optimal with respect to his preferences.

Although decision theory is a normative theory as it prescribes the preferred be-
haviour of a decision maker, in part it also has a descriptive character (Kyburg, 1991).
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One would expect the goal of a normative theory of decision to provide rules that
would unconditionally optimise one’s preferences. This is however not the goal of
decision theory because we take it for granted that no theory can do this: it is part
of the human condition that we cannot predict the future perfectly, and therefore
cannot choose the course of action that will in fact maximise our satisfactions. So,
what we take as a normative theory, depends on what we take to be possible for
human agents – a matter of descriptive rather than normative character.

The implications of this ‘realistic’ character of decision theory are more than purely
philosophical. The complexity of most practical decision problems stems from the
circumstance that there is a large number of decisions involved, and each potential
policy for making these decisions induces a multitude of possible scenarios. As we
cannot hope to fulfil our preferences completely, we are ultimately forced to evaluate
all policies by inspecting each possible scenario. In other words, practical application
of decision theory is hampered by the facts that decisions can often not be made
in isolation but instead have to be evaluated in the context of other decisions, and
that all possible consequences of decisions have to be taken into account in these
evaluations.

To illustrate the highly combinatorial nature of decision problems, consider a prob-
lem that involves k subsequent decisions.2 If z is an upper bound on the number
of different observations that may be obtained before each decision, and n is the
maximum number of alternatives for each decision, then there exist O(nz

k
) different

decision functions for the kth decision. In a decision-tree analysis of k subsequent de-
cisions, the tree will have O(nkzk) nodes. Evaluation of all decision-making policies,
or equivalently, solving the decision tree, is therefore hopelessly intractable when k is
large. It should be noted though, that the complexity of the problem does not alter
the nature of the tradeoff between decision alternatives on utility-theoretic grounds:
there is no fundamental difference between a simple choice between decision alter-
natives in a single-decision problem and a choice between policies in a problem with
multiple decisions.

The decision-theoretic analyses in this chapter have been illustrated with decision
trees. Decision trees are frequently used in the field of clinical decision analysis
(Weinstein and Fineberg, 1980; Pauker and Kassirer, 1987) as they provide an in-
tuitive representation of decision problems and can easily be constructed in coop-
eration with experienced clinicians. They are however not suited as a knowledge-
representation formalism for automated reasoning systems. The reasons for this are
threefold. First, decision trees describe decision problems from the viewpoint of the
decision maker while leaving most of the underlying knowledge of the problem domain
implicit. Second, as we discussed above, the size of a decision tree grows exponentially
in the size of the problem because a tree explicitly enumerates all possible decision-
making policies. Third, they can only be used to solve a single problem case, whereas

2We assume that there are no concurrent actions. This is sometimes referred to as the single
decision maker assumption.
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a knowledge-based system would typically cover a range of problem cases within a
given domain.

While decision trees are impractical as a knowledge-representation formalism for
decision-theoretic reasoning systems, there exists several other representation for-
malisms that adhere to the decision-theoretic perspective, and may be used as a
basis for intelligent reasoning. These formalisms are discussed in the next chapter.



CHAPTER 4

Decision-theoretic representation formalisms

It was explained in the previous chapter that decision-theoretic reasoning is charac-
terised by the fact that each situation of choice is ultimately reduced to a utility-
theoretic comparison. Yet, these choice situations may be very different from a con-
ceptual point of view, and involve rather incomparable concepts pertaining to the role
of actions, information and time. In utility theory, these concepts are left implicit;
the task of decision-theoretic representations is to allow for explicit reasoning with
these concepts.

In this chapter, we review the main formalisms for decision-theoretic representa-
tion and reasoning in intelligent systems. Notwithstanding their common decision-
theoretic ground, these formalisms stem from separate fields, and therefore come in
different forms. The first formalism to be discussed, in Section 4.1, is the influence
diagram, a graphical representation of decision problems under uncertainty. Influ-
ence diagrams provide a concise way of representing these problems by exploiting
independencies between the variables involved. In their basic form however, influ-
ence diagrams are static in nature and are therefore primarily suited to evaluate and
compare a pre-specified set of decision-making scenarios. When part of the problem
is to determine the number and timing of decisions, the expressiveness of influence
diagrams falls short.

Section 4.2 deals with decision-theoretic reasoning where problem specifications call
for the generation of decision-making scenarios; this is a form of decision-theoretic
planning. We will review the formalism that is now most widely adopted for this
type of reasoning, the Markov decision process. The expressiveness of this formalism



82 Decision-theoretic representation formalisms

comes at the price of a combinatorial explosion in larger problem domains, render-
ing it then impractical. An integration of influence diagrams and Markov decision
processes exists in the form of dynamic influence diagrams ; these are discussed in
Section 4.3. The chapter is concluded in Section 4.4 by re-evaluating and comparing
the representation formalisms described. As before, examples will be taken from the
domain of paediatric cardiology.

4.1 Graphical representations

One of the approaches to handle the combinatorial nature of decision making un-
der uncertainty is exploiting independencies between the variables involved. This
approach is advocated by formalisms based on graphical representations. Graphical
representation formalisms explicitly separate qualitative and quantitative informa-
tion on the problem domain, where the qualitative information comprises a collection
of independency statements expressed in a graph. The graphical representation of
decision problems under uncertainty that is most popular today is the influence di-
agram, which is the subject of this section. As a preliminary, we will first discuss
belief networks in Subsection 4.1.1, a formalism for representing and reasoning with
multivariate probability distributions. The belief-network formalism itself does not
cover decision making under uncertainty, but can be readily extended to deal with
decision-theoretic concepts. Influence diagrams provide such an extension, and as
such offer a compact way of representing of decision problems; they are discussed in
Subsection 4.1.2.

4.1.1 Belief networks

A (Bayesian) belief network (Pearl, 1988) is a concise, graphical representation of
a joint probability distribution on a set of random variables. In a belief network,
conciseness of representation is arrived at by explicit separation of information about
the probabilistic independencies holding among the variables in the distribution and
the numerical quantities involved. Below, we first discuss the representation of prob-
abilistic independence in directed graphs; we then proceed to give a formal definition
of belief networks.

The graphical representation of conditional independence

Conditional independence relations can be modelled in directed and undirected
graphs. Each vertex in the graph then represents one of the variables involved,
and the presence of an arc (or edge, in the undirected case) between two vertices
indicates that there exists a direct, influential relationship between the correspond-
ing variables. Absence of an arc (edge) generally means that there exists some form
of conditional independence. Here, we restrict ourselves to the representation of
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conditional independence relations in directed graphs, formalised by the notion of
d-separation, (Pearl, 1988; Geiger et al., 1990). This type of representation of con-
ditional independence is used in belief networks; a prerequisite is that the graph be
acyclic.

We assume the reader to be familiar with the concept of directed graph; for a useful
compendium of many definitions and results from graph theory, we refer to the book
by Harary (1969).

Notation 4.1 (Directed graph) We use G = (V (G), A(G)) to denote a directed
graph, where V (G) denotes the vertices in G and A(G) denotes its arcs. When
v1 → v2 ∈ A(G), v1, v2 ∈ V (G), we say that vertex v1 is a predecessor of v2, and
conversely that v2 is a successor of v1. We write ρG(v2) for the set of all predecessors
of vertex v2.

• A (directed) path in graph G is a sequence v1, . . . , vn of vertices where for each
i = 1, . . . , n− 1 we have vi → vi+1 ∈ A(G).

• A cycle in graph G is a path v1, . . . , vn in G where v0 = vn.

• A chain in graph G is a sequence v1, . . . , vn of vertices where for each i =
1, . . . , n− 1 we have either vi → vi+1 ∈ A(G) or vi+1 → vi ∈ A(G).

• A loop in graph G is a chain v1, . . . , vn in G where v0 = vn.

If v1, . . . , vn is a path in graph G, then each vi, i = 1, . . . , n is called a descendant of
vertex v1. When the graph G does not contain any cycles, it is called acyclic.

Chains and loops in a directed graph G can also be viewed as paths and cycles,
respectively, in the underlying, undirected graph of G.

Definition 4.2 (Chain blocking) Let G = (V (G), A(G)) be an acyclic, directed
graph, and let v1, . . . , vn be a chain in G. We say that this chain is blocked by a set
of vertices W ⊆ V (G) if it contains three consecutive vertices vi−1, vi, vi+1, 1 < i < n,
for which one of the following conditions holds:

• arcs vi−1 ← vi and vi → vi+1 are on the chain s, and vi ∈W ;

• arcs vi−1 → vi and vi → vi+1 are on the chain s, and vi ∈W ;

• arcs vi−1 → vi and vi ← vi+1 are on the chain s, and neither vi or any of its
descendants is comprised in W .

We use the above definitions to define the d-separation criterion, (Pearl, 1988).
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Definition 4.3 (d-Separation) Let G = (V (G), A(G)) be an acyclic, directed graph,
and let U, V,W ⊆ V (G) be (disjoint) sets of vertices in G. Then, W is said to d-
separate U from V , notation 〈U | W | V 〉dG, if every chain in G from a vertex in U
to a vertex in V is blocked by W .

The d-separation criterion provides for reading independency statements from a di-
rected graph where the vertices represent random variables.

Definition 4.4 (I-map) Let G = (V (G), A(G)) be an acyclic, directed graph where
the vertices in G represent random variables, and let P be a joint probability distri-
bution on V (G). The graph G is called an independency map, or I-map, for P if for
all U, V,W ⊆ V (G) holds:

if 〈U | W | V 〉dG then U⊥⊥PV |W. (4.1)

In an I-map for distribution P , any probabilistic dependency between random vari-
ables is covered by the arcs of the graph. The converse is however not true: there
may be probabilistic independencies that are not covered by the absence of arcs: any
fully-connected, acyclic graph is an I-map for the variables discerned. We therefore
strive to use minimal I-maps, i.e. graphs where no arc could be omitted without
violating condition in Equation 4.1. In the extreme case, we have that all indepen-
dencies are covered by the graph topology, i.e. U⊥⊥PV |W implies 〈U | W | V 〉dG; the
graph G is then said to be a perfect map for P . Unfortunately, there does not exist
a perfect map for every probability distribution, (Pearl et al., 1990).

The belief-network formalism

As mentioned earlier, a belief network is a concise representation of a joint proba-
bility distribution P on a set of random variables; it consists of a qualitative and
a quantitative part. The qualitative part of the network is an I-map for P ; the
quantitative part of the network comprises the specification of a local conditional
probability distribution for each vertex in the graph. Recall that ρG(v) denotes the
set of all predecessors of vertex v in graph G.

Definition 4.5 (Belief network) Let X be a finite set of random variables. A
belief network over X is a pair B = (G,Γ) where

• G = (V (G), A(G)) is an acyclic, directed graph,

• V (G) = X, and

• Γ = {γx : Ωx × ΩρG(x) → [0, 1] | x ∈ X} is a set of (conditional) probability as-
sessment functions, such that for each variable x ∈ X and each configuration
cρG(x) of its predecessors ρG(x) it holds that∑

cx∈Ωx

γx(cx | cρG(x)) = 1. (4.2)
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Figure 4.1: An example belief network for the VSD domain.

Example 4.6 Figure 4.1 shows the graphical part of an example belief network for
the VSD domain. The network comprises the 8 variables from Table 3.1, represent-
ing (from top to bottom) size of the VSD, pulmonary vascular resistance, spontaneous
closure of the VSD, shunting, pulmonary hypertension, heart failure, pulmonary arte-
riopathy, and death. Note that the variables closure and pmart pertain to potential
future developments. The conditional probabilities that constitute the quantitative part
of the belief network are listed in Appendix B.

The following theorem now states that the probability assessment functions taken
together uniquely define a joint probability distribution on the variables discerned,
that respects the independency relation portrayed by the graphical part of the net-
work. Henceforth, we will call this distribution the distribution that is defined by the
belief network.

Theorem 4.7 Let X be a set of random variables, let B = (G,Γ) be a belief network
over X, and let P be a joint probability distribution on X that is defined as follows:

P (CX) =
∏
x∈X

γx(Cx |CρG(x)). (4.3)

Then G is an I-map for P .

Proof. The acyclicity of G allows for a total topological ordering of the vertices in
V (G); in this ordering, each variable is conditioned only on variables preceding it
when we apply the chain rule of probability. This enables to exploit the conditional
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independency relations portrayed by G. By taking P (cx | cρG(x)) = γx(cx | cρG(x)) for
each x ∈ X and all configurations cx ∈ Ωx and cρG(x) ∈ ΩρG(x), the property stated in
the theorem follows immediately. For further details, we refer to (Kiiveri et al., 1984).
�

Since a belief network B = (G,Γ) defines a unique joint probability distribution on
the variables involved, it allows for computing any marginal or conditional probabil-
ity regarding these variables. As such, the belief-network formalism offers a powerful
framework for reasoning with uncertainty in a mathematically correct manner. More-
over, the graphical representation of conditional independence offers an intuitively
appealing modelling language. Belief networks have therefore enjoyed a rapidly in-
creasing popularity in AI since their introduction in the 1980s.

Several algorithms have been developed to infer probabilities from a given belief net-
work, the most popular being the clique-tree propagation algorithm, (Lauritzen and
Spiegelhalter, 1988; Jensen et al., 1990). In this algorithm, the belief network is ‘com-
piled’ to a computational architecture called a junction tree (or clique tree) prior to
the actual inference. The worst-case computational complexity of the algorithm is
exponential in the size of the graph. This is not surprising, as the problem of general
probabilistic inference has been shown to be NP-hard, (Cooper, 1990). Modern com-
puters are however capable of inferring a probability of interest within seconds for
networks up to hundreds of variables, depending on the connectivity of the graph.

Problem solving with belief networks

Reasoning with a belief network generally proceeds as follows. Initially, no observa-
tions are assumed, and the marginal probability distribution of each network variable
is computed. Based on these distributions, an information-gathering procedure now
selects variables for which an observation should be obtained, or a decision-making
procedure selects variables that are set to specific values by external intervention.
After the user has obtained and entered the observations or decisions, these variables
are instantiated (‘freezed’) to their values, and the posterior distributions are com-
puted for the remaining variables in the network. This process is repeated until a
pre-defined stopping criterion is met.

From the above description, it becomes apparent that the belief-network framework
is limited to the representation of random variables and their uncertain relations and
does not cover the problem-solving knowledge involved. Application of belief net-
works therefore requires extension of the basic framework with representations of the
envisioned problem-solving task. We distinguish two types of extension that have
been proposed in the literature. The first type of extension adds problem-solving
knowledge at the graphical level of representation within in a belief network. An
exemplary instance of this type of extension is the influence diagram representation,
that is to be discussed in the subsection to follow. The second type of extension
embeds the belief network in a larger problem-solving architecture, where a separate
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meta layer

network layer

Figure 4.2: A 2-layered architecture for belief networks.

meta layer is designed to provide for control over problem-solving; see Figure 4.2.
This type of architecture is implicitly present in many belief-network applications,
but was first explicitly described by Van der Gaag and Wessels (1993). In their pro-
posal, the control layer implements an information-gathering procedure for diagnostic
reasoning. For further details on this architecture, we refer to the article in question.

4.1.2 Influence diagrams

An influence diagram (Howard and Matheson, 1981; Shachter, 1986) is a graphical
representation of a decision problem under uncertainty. The representation is closely
related to that of belief networks: an explicit separation is made between qualita-
tive and quantitative information on the problem, where qualitative information is
captured by an acyclic directed graph, and quantitative information is laid down in
assessment functions associated with vertices in that graph. The main difference is
the addition of one or more decision nodes and a single value node to the graph,
where decision nodes represent decision variables and the value node accommodates
a utility function. Influence diagrams are also closely related to decision trees, but
they provide a far more concise representation of decision problems. We follow the
type of formalisation employed in (Ndilikilikesha, 1994) and (Zhang, 1998).

Definition 4.8 (Influence diagram) Let X be a finite set of random variables. An
influence diagram over X is a triple ID = (G,Γ, u), where

• G = (V (G), A(G)) is an acyclic, directed graph,

• V (G) = X ∪D ∪ {v}, where D = {d1, . . . , dk} is a set of decision variables,

• the value node v has no successors in G,

• Γ = {γx |x ∈ X} is a set of conditional probability assessment functions for the
variables from X,
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Figure 4.3: An example influence diagram for the VSD domain.

• u is a function u : ΩρG(v) → R.

In an influence diagram ID = (G,Γ, u), the interpretation of an arc in A(G) depends
on the node in the graph that it points to. The direct predecessors ρG(x) of a random
variable x ∈ X represent direct influences (conditioning variables) on that variable.
These arcs jointly describe conditional independence relations, as in a belief network;
the definition of the set Γ of conditional probability assessment functions is the same
as for belief networks. The direct predecessors ρG(d) of a decision variable d ∈ D are
taken to represent the available information when deciding upon decision d; this type
of arc therefore models informational constraints on the various decisions. The direct
predecessors ρG(v) of the value node v again represent direct influences, but now on
the decision maker’s preferences (utility).

Example 4.9 Figure 4.3 shows an example influence diagram for the VSD domain.
The diagram extends the belief network from Figure 4.1 with 3 decision nodes, echo
(echocardiography), cath (cardiac catheterisation), and surg (cardiac surgery), and
a value node. Each of the decision nodes can take the values ‘yes’ and ‘no’. Echocar-
diography reveals the size of the VSD, catheterisation reveals the shunt, and surgery
may be used to close the defect. Direct influences of these decisions on utility (as
for echo and surg) relate to definite increases or decreases in utility caused by the
decision (e.g., costs), whereas indirect influences on utility (through the variables
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closure, pmart, and death) relate to contingent changes in utility (e.g. risks). The
quantitative part of the influence diagram is provided in Appendix B.

The informational constraints expressed by arcs leading to a decision node d ∈ D have
the following interpretation: it is assumed that at the time of choosing an alternative
for variable d, a value is known for each of its predecessors in the graph. These values
are either known by observation (for random variables) or because they were earlier
chosen by the decision maker himself (for decision variables). A configuration cρG(d)

of the predecessors of decision node d ∈ D is therefore interpreted as describing an
information history for decision d. We will assume a linear order on the decision
variables involved in the decision problem, which determines the temporal order in
which they are given a value. This is enforced by the regularity constraint.

Definition 4.10 (Regularity) Let ID = (G,Γ, u) be an influence diagram. We say
that the diagram ID is regular when there exists a (directed) path d1, . . . , dk in G
comprising all decision variables.

Another common assumption is that when making decision di, 1 < i ≤ k, all the
information that was available when making decisions d1, . . . , di−1 is taken into ac-
count. That is, node d inherits the predecessors of nodes d1, . . . , di−1 in the graph;
this assumption is referred to as no forgetting.

Definition 4.11 (No forgetting) Let ID = (G,Γ, u) be an influence diagram. It is
said that the no-forgetting property holds in diagram ID when for each pair of distinct
decision nodes di, dj ∈ D we have that ρG(dj) ⊆ ρG(di) whenever dj ∈ ρG(di).

Example 4.12 The influence diagram of Figure 4.3 is regular but does not have
the no-forgetting property. For this property to hold, the arcs echo→ surg and
VSD→ surg should be added to the diagram.

The direct predecessors ρG(v) of the value node v designate which variables influence
the decision maker’s preferences: the value of the variable v is determined by applying
the function u to v’s predecessors ρG(v) in the graph. Given a configuration cρG(v) of
this set, the value of v is invariant under the possible values for all other variables.
For convenience, however, we will write u(c) to denote the utility value associated
with a given configuration c ∈ ΩX∪D of all variables in the diagram.

An influence diagram represents a decision problem, for which a solution takes the
form of a set of decision functions, jointly called a policy.

Definition 4.13 (Decision function and policy) Let ID = (G,Γ, u) be an influ-
ence diagram. A decision function for decision variable d ∈ D is a mapping

δd : ΩρG(d) → Ωd. (4.4)
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A policy for ID is a set π = {δd | d ∈ D} of decision functions for all decision nodes
in ID.

Given a policy π, a probability distribution Pπ over X ∪D is induced as follows:

Pπ(CX∪D) =
∏
x∈X

γx(Cx | CρG(x)) ·
∏
d∈D

π̂(Cd | CρG(d)), (4.5)

where

π̂(cd | cρG(d)) =

{
1, if δd ∈ π, δd(cρG(d)) = cd,
0, otherwise.

(4.6)

Configuration cY of Y ⊆ X ∪D is said to be consistent with policy π if Pπ(cY ) > 0.
The expected utility of policy π given such a configuration cY equals

ũ(π | cY ) =
∑

c∈ΩX∪D

u(c) · Pπ(c | cY ). (4.7)

Expected utility is undefined for inconsistent configurations. Evaluating or solving an
influence diagram is the problem of finding a policy π∗ that maximises (unconditional)
expected utility, i.e. ũ(π∗) ≥ ũ(π) for any policy π. The policy π∗ and the decision
functions it comprises are called optimal.

Example 4.14 For the influence diagram of Figure 4.3, the unique optimal policy
π∗ consists of the following decision functions:

δecho(>) = yes,

δcath(echo = yes, VSD = s) = no,

for all possible values s ∈ dom(VSD), and

δsurg(echo = yes, cath = no, VSD = s) =

{
yes, if s = large,
no, otherwise.

In words, it is advised to conduct echocardiography, but not cardiac catheterisation,
regardless of the VSD size that has been observed. Surgery is recommended with large
VSDs.

Evaluating influence diagrams

A variety of methods exists to evaluate a given influence diagram; each of them basi-
cally consists of performing a sequence of alternating steps of probabilistic inference
and utility maximisation. We can distinguish methods that perform the evaluation
in situ, i.e. operating directly on the diagram given, and those that perform the
evaluation after transforming the diagram into an alternative representation. The



4.1 Graphical representations 91

first and still most well-known in situ method was described by Shachter (1986). His
algorithm consists of a series of transformations on the graph that result in removal
of decision nodes and chance nodes; the optimal policy is computed as a side-effect.
The main drawback of the algorithm is that sometimes arcs in the graph have to
reversed before a node can be removed. Arc reversal is a computationally costly op-
eration that corresponds to application of Bayes’ rule. When the influence diagram
comprises nodes with a large number of direct predecessors, the reversal of arcs may
result in lengthy computation times.

Another approach to solving influence diagrams is based on transforming the diagram
into a belief network. This approach was first proposed by Cooper (1988) and later
refined by Shachter and Peot (1992) and Zhang (1998). The transformation of influ-
ence diagram ID = (G,Γ, u) proceeds as follows. The topology of the graph remains
unaltered but now all the nodes in V (G) are taken to represent random variables.
Decision variables are initialised with arbitrary conditional probability assessment
functions, and later adjusted to represent optimal decision functions. The value node
v is provided with a binary universe Ωv = {c−v , c+

v }, and

γv(c
+
v | cρG(v)) = f(u(cρG(v))) (4.8)

where f : R→ [0, 1] is a positive linear function. Maximising the probability of c+
v in

the belief network now corresponds to utility maximisation in the original influence
diagram; the optimal policy can therefore be found using probabilistic inference on
the resulting belief network. A related method transforms the influence diagram
into a junction tree that is suited for probabilistic inference using the clique-tree
propagation algorithm, (Shenoy, 1992; Jensen et al., 1994). Each of the solution
methods mentioned here solves the diagram by considering the decision variables
in reverse order: the decision function for last decision dk ∈ D is constructed first,
and the decision function for the first decision d1 ∈ D is constructed last. This type
of solution strategy is more generally referred to as backward induction. Backward
induction usually performs well on problems of limited size, but becomes intractable
in larger domains.

Remarks on the influence-diagram representation

An influence diagram of size m = |V (G)| corresponds to a symmetrical decision tree
of depth m, (Howard and Matheson, 1981; Olmsted, 1983). The correspondence is
obtained by mapping the variable at rank i (1 ≤ i ≤ m) in a topological sort of the
variables in the diagram to the nodes at depth i in the tree; the arcs emanating from
a node in the tree correspond to its possible values. It is easily seen though, that
the influence-diagram representation is characterised by far more conciseness than
the representation in decision trees. Similar to belief networks, influence diagrams
explicitly separate qualitative and quantitative information: qualitative information
is expressed in the graph, and quantitative information is laid down in probabil-
ity assessment and utility functions. As a result, the size of the graph is directly
proportional to the number of variables involved in the problem.
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A drawback to the influence-diagram representation is that it has problems with the
handling of asymmetry in decision problems. Recall from Section 3.3 that informa-
tional asymmetry stems from test decisions and pertains to structural differences in
available information for future decisions; relevantial asymmetry occurs in problems
where decisions may be repeated and pertains to the irrelevance of considering par-
ticular alternatives twice. Informational asymmetry is hard to model in an influence
diagram because the structure of decision functions is fixed by the graph’s topology;
the decision function for decision d ∈ D always takes in inputs from ΩρG(d), whereas
in reality the availability of observations on the set ρG(d) may depend on previous
decisions. Relevantial asymmetry is hard to model because in all situations the same
set Ωd of alternatives is considered relevant for decision variable d, and one cannot
explicitly ignore alternatives in specific situations.

Example 4.15 In the influence diagram of Figure 4.3, it is assumed that the variable
VSD is known when the second decision (catheterisation) is made. Similarly, the vari-
able shunt is assumed to be observed prior to the third decision (surgery). However,
these observations are only available when the previous decisions were affirmative. In
the optimal policy described in Example 4.14, this has already been taken into account.

We will now first discuss how both problems can be dealt with without modifications
to the basic representation, and then briefly review some solutions proposed in the
literature that extend the influence-diagram representation.

To start with informational asymmetry, suppose that the set Ωdi of alternatives for
decision variable di ∈ D encompasses an action cdi that uniquely yields an observa-
tion for random variable x ∈ X. Ideally, this configuration of x is only included in
situations for a subsequent decision dj , j > i, when cdi was chosen for di. But in the
influence-diagram representation, x is made a parent of decision dj , and always needs
to have a value when deciding upon dj. So the informational asymmetry that results
from observations cannot be represented graphically. Still, we can solve the problem
by prohibiting that decision dj takes advantage of information on variable x when cdi
was not selected. That is, if ρG(dj) = {di, x}∪Z is the set of predecessors of decision
variable dj , we require that for all configurations c′di ∈ Ωdi other than cdi that

δdj (c
′
di
∧ cx ∧ CZ) = δdj (c

′
di
∧ c′x ∧ CZ) (4.9)

for all configurations cx, c
′
x ∈ Ωx. So the decision maker is effectively forced to

disregard the value of x in deciding upon dj when configuration cdi was not chosen
for the earlier decision di.

We now turn to relevantial asymmetry. Suppose that we want to ignore the alternative
cd for decision variable d in situation cρG(d) because we consider cd irrelevant in that
situation. We can enforce this by choosing an appropriate utility function u. Let c′d
be an arbitrary alternative for decision d other than cd. We take

u(cρG(d) ∧ cd ∧ cY ) < u(cρG(d) ∧ c′d ∧ cY ), (4.10)
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for each configuration cY of the set Y = (X ∪D) \ ({d} ∪ ρG(d)) of remaining nodes
in the diagram. It then follows that cd cannot be used to maximise utility in situation
cρG(v), and will therefore be ignored. Note that this solution requires that there are
arcs in the graph from node d and ρG(d) to the value node v; it therefore induces
an increase in computational complexity if one of the above solution methods is
employed.

Both solutions described above have the disadvantage of encoding qualitative rela-
tionships of asymmetry at the quantitative (numerical) level of the representation.
As such, these relationships remain implicit in the representation, and can only be
uncovered from a given influence diagram by laborious examination of the specified
quantities. This situation has inspired several authors to propose extensions to in-
fluence diagrams that allow for explicit representation of asymmetry. Jenzarli (1995)
provides a treatment of relevantial asymmetry by employing relevance arcs to con-
strain the set of possible values of a decision node; the extended representations
are called information/relevance diagrams. Smith et al. (1993) provide a treatment
of both types of asymmetry in influence diagrams by adding a tree-based graphical
language to specify value domains, probability assessment functions, and utility func-
tions. Both extensions require specialised methods to compute the optimal policy.

4.2 Decision-theoretic planning

In this section, we focus on decision-theoretic representation formalisms that allow for
generation of decision-making scenarios. Such representation formalisms are prefer-
able when part of the decision problem is to assess the number and timing of actions.
In these formalisms, the primitives consist of a system that evolves over time, and
a set of actions from which the decision maker may choose to influence the system
dynamics and to make observations. Generally speaking, the objective is to achieve
a long-term goal (in terms of preferred system state), taking into account particular
short-term restrictions (e.g., the costs of performing actions). As was described in
Chapter 1, in AI this type of reasoning is referred to as planning, (Fikes and Nils-
son, 1971; Allen et al., 1990). The essential part of solving a planning problem is
to consider the consequences of actions before being forced to experience them; the
result of these considerations is a detailed formulation of a program of action, called
a plan.

When competing plans are compared using decision-theoretic principles, one speaks of
decision-theoretic planning, (Dean and Wellman, 1991). We will focus on Markov de-
cision processes (MDPs), the currently predominant approach to formalising decision-
theoretic planning, (Boutilier et al., 1999). MDPs are models for sequential decision
making based on random Markov processes; the underlying conceptualisation can be
described as follows. At a specified point in time, a decision maker observes the state
of a dynamic system. Based on this observation, he chooses an action. The action
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Figure 4.4: The decision process depicted.

choice produces two results: the decision maker receives an immediate reward, and
the system evolves to a new state at a subsequent point in time according to an effect
determined by the action choice. At this subsequent point in time, the decision maker
faces a similar problem, but now the system may be in a different state. This con-
ceptualisation is depicted in Figure 4.4. The decision maker’s objective is to develop
a decision-making policy that maximises the expected total reward over a predefined
period of time.

The concept of decision making as described above is very general and thus covers
a wide variety of decision-theoretic planning problems. Consequently, MDPs come
with various characteristics, but a most important distinction is between full and
partial observability of the system state. Fully-observable Markov decision processes
(FOMDPs) are discussed in Section 4.2.1; partially-observable Markov decision pro-
cesses (POMDPs) are discussed in Section 4.2.2.

4.2.1 Fully-observable Markov decision processes

Research on MDP theory and algorithms was initiated in the 1950s and 1960s by
R. Bellman and R. Howard. Here, we follow the model formulation of Blackwell
(1965) with slight adjustments, and analyse some of the central properties of fully-
observable MDPs. For an in-depth analysis of FOMDPs, we refer the reader to the
monograph by Puterman (1994).

Definition 4.16 (MDP model) Let X be a finite set of random variables. A
Markov decision process over X is described by a 4-tuple M = (T,A,Θ, R), where

• T is a set of linearly ordered decision moments,

• A is a set of available actions,

• Θ = {θt : dom(X) × A × dom(X) → [0, 1] | t ∈ T} is a set of transition
probability functions, and

• R = {rt : dom(X)× A→ R | t ∈ T} is a set of reward functions.
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Figure 4.5: Process dynamics in MDPs.

In principle, few restrictions exist on the above elements of M in order to jointly
qualify as an MDP. The primary characteristic of an MDP is the Markov property :
the effects of actions are described by stochastic transitions on the system state that
depend on the last state and action choice only; the sequence of subsequent system
states within a given evolution of the decision process is therefore a Markov chain.
We restrict the discussion of MDPs to cases where the set T is discrete, and the sets
X and A are finite. As in the previous sections, by finiteness of X we mean that X
is a finite set of discrete variables with a finite domain, and therefore the set dom(X)
of system states is also finite. Below, we will first describe the process dynamics
in MDPs. We then turn to criteria to evaluate and compare decision processes,
and to the formulation of decision-making policies for FOMDPs. We conclude the
section with a brief discussion of solution methods, and some remarks on the FOMDP
representation.

Process dynamics

In an MDP modelM = (T,A,Θ, R), the set T explicitly denotes the times at which
the decision maker is expected to choose an action; the explicitness in the representa-
tion of these decision moments contrasts with the earlier discussed decision-theoretic
representation formalisms where the notion of time was left implicit. As we take T
to be discrete, we can assume without loss of generality that T = {0, 1, 2, . . .} ⊆ N,
where the ordering < on the natural numbers represents temporal precedence; the
time point t = 0 is called the initial moment of the decision process. When there ex-
ists a finite maximum element N ∈ N in T , the model is said to have a finite horizon
of length N ; otherwise, it is said to have an infinite horizon. In the present discussion,
we will focus on finite-horizon models and make a few remarks on the generalisation
to infinite horizons. Note that in the finite case, the action choice at the final decision
moment t = N is meaningless with respect to evolution of the system state.

The dynamic system under (partial) control by the decision maker is described by a
set X of random variables, where each joint value S ∈ dom(X) represents a possible
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state of that system.1 Similar to the representation of time, state dynamics are made
explicit in MDPs: all the variables in X obtain a new value at each decision moment
(although it is possible that some values have not changed as compared to their
previous values). An expression of the form X = S states that the system occupies
state S ∈ dom(X); we regard the elements of the set X as attributes, each describing
a different aspect of the dynamic system. The number of possible system states equals
|dom(X)| = |ΩX |. The set A represents the actions, or equally, decision alternatives,
that are available to the decision maker at each decision moment. Note that there
are no restrictions on the action-selection procedure: actions may be chosen multiple
times, and it is even possible to repeat a single action all the time. Figure 4.5
schematically depicts the described process dynamics.

The effects of actions on system dynamics are described by the set Θ of time- and
action-dependent transition probability functions, where θt(S, a, S

′), θt ∈ Θ, denotes
the probability that state S ′ ∈ dom(X) results after performing action a ∈ A in state
S ∈ dom(X) at decision moment t ∈ T . In infinite-horizon MDPs, action effects are
usually assumed to be independent of time, i.e. θt = θt′ for all time points t, t′ ∈ T ;
the transition probabilities are then said to be stationary. A special case exists when
the action effects are deterministic, i.e. θt(S, a, S

′) ∈ {0, 1} for all t ∈ T , a ∈ A, and
S, S ′ ∈ dom(X). Then, a given initial system state and sequence of action choices
fixes the evolution of the system over time. Generally speaking, however, the effects
are stochastic and a multitude of evolutions is possible.

We will now introduce some notations to guide the remaining discussion. Let τ ∈ T
be a decision moment. A sequence

σ = S0, . . . , Sτ (4.11)

of subsequent system states (i.e. St ∈ dom(X), t = 0, . . . , τ) represents a potential
evolution of the system and is called a state sequence up to time point τ . If m = |ΩX |
is the cardinality of the state space, there exist mτ+1 different state sequences up to
that time point. A sequence

α = a0, . . . , aτ (4.12)

of subsequent action choices (i.e. at ∈ A, t = 0, . . . , τ) represents concrete decision-
making behaviour and is called an action sequence up to time point τ . If there are
k = |A| different actions to choose from, there exist kτ+1 different action sequences
up to that time point. The pair h = (σ, α) represents a potential realisation of the
decision process and is called a decision-making history. We will use Hτ to denote
the set of all possible histories up to time point τ . The set of full-length histories HN

now represents all potential outcomes of the decision process; the cardinality of HN

is (mk)N+1.

Given an action sequence α = a0, a1, . . . , aτ and an initial state S ∈ dom(X), a (con-

ditional) probability distribution P
(S,α)
τ on state sequences up to time point τ ∈ T is

1Recall from Section 3.1 that dom(X) = dom(x1)× · · · × dom(xn) if X = {x1, . . . , xn}.
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induced as follows:

P (S,α)
τ (σ) =

τ−1∏
t=0

θt(St, at, St+1) (4.13)

for all state sequences σ = S0, . . . , Sτ having S0 = S, and P
(S,α)
τ (σ) = 0 for all other

state sequences. In this probability distribution, the system state at time point t is
independent of the decision-making history given the action choice and system state
at time point t − 1; the sequence of subsequent system states is therefore a Markov
chain. Furthermore, the action aτ at time point τ does not appear in the equation
and is uninfluential. In the overall decision problem, the action choice at the last
decision moment t = N , is therefore irrelevant to the system’s evolution.

Example 4.17 An example MDP model for the VSD domain can be devised as fol-
lows. The set X represents the clinical state of the patient and is composed of the
attributes VSD, resis, shunt, pmhyp, pmart, hfail, and death. There are 6 deci-
sion moments, at respectively 3 months, 6 months, 12 months, 24 months, 4 years,
and 8 years after birth. The available actions, finally, are the modalities available to
the cardiologist to manage a VSD patient: A = {echo, med, cath, surg, biop}. Note
that in this MDP model, spontaneous closure of the VSD is represented implicitly by
diminishing values for the attribute VSD at subsequent decision moments. Similarly,
the Eisenmenger syndrome is represented by increasing values for pmhyp (pulmonary
hypertension) due to pulmonary arteriopathy (pmart=true).

Evaluation criteria

In an MDP model M = (T,A, P,R), the set R comprises reward functions rt,
t ∈ T , that describe time-dependent preferences of the decision maker with respect
to states and actions: rt(S, a), rt ∈ R, denotes the (numerical) reward received when
the decision maker chooses action a ∈ A at time point t ∈ T and the current state
is S ∈ dom(X). It is important to note that this reward value reflects relative
(un)desirability of that state and action at time point t only; states and actions
at other time points are disregarded within the reward functions. Furthermore, re-
ward values may be positive as well as negative; in the latter case one often speaks
of costs. Similar to transition probability functions, we speak of stationary reward
functions when they are independent of time, i.e. when rt = rt′ for all t, t′ ∈ T ; this
is customary for infinite-horizon models. We note that although the action choice
at the final decision moment t = N will not influence the system’s evolution, it does
affect the reward received at that time point.

To rank the potential outcomes h ∈ HN of a decision process, the rewards received at
subsequent time points have to be combined using an evaluation metric. Examples
of such metrics are total reward, average reward, and variations thereof. We focus
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here on the total discounted reward metric, which is defined as

u(h) =
N∑
t=0

λtrt(St, at), (4.14)

where h = (S0, . . . , SN , a0, . . . , aN ), and 0 < λ ≤ 1 is a real-valued discount factor.
The value u(h) is the total discounted reward associated with history h, and is also
referred to as its utility under this metric; when λ = 1, we simply speak of total
reward. From a utility-theoretic point of view, the function u provides a preference
ordering on the set HN of outcomes, where the states and actions at subsequent time
points are taken to be additive-independent attributes of utility. The discount factor
is generally justified economically (as a representation of interest, when the rewards
represent monetary gains), mechanically (as a representation of physical decay), or
psychologically (people tend to care more about near than about distant future).
The discount factor is also a prerequisite to infinite-horizon MDPs, as there would
otherwise be no upper bound on the function u.

Given an action sequence α = a0, . . . , aN , the expected utility ũα(S) of initial system
state S is now defined as

ũα(S) =
∑

h∈HN , h=(σ,α)

u(h) · P (S,α)
N (σ). (4.15)

The decision maker’s objective is to maximise expected utility by choosing an appro-
priate sequence of actions.

Formulation of solutions

As the evolution of the system cannot be predicted with certainty, the decision maker
will have to respond to observations in due course when choosing his actions; other-
wise, expected-utility maximisation is not guaranteed. Under the assumption of full
observability, solving the decision problem formulated by an MDP model therefore
amounts to finding a policy π = {δt | t ∈ T}, where

δt : dom(X)→ A (4.16)

is a decision function prescribing the action choice at time point t ∈ T given the
actual system state. Potentially, there are km different decision functions to choose
from at each time point, where again k = |A| and m = |ΩX |. The number of different

policies is therefore km
(N+1)

. If the functions are identical for all time points, i.e.
when δt = δt′ for all t, t′ ∈ T , then the policy is said to be stationary ; the number
of different policies than reduces to km. Stationarity of the policy can be assumed
when both the transition probability and the reward functions are stationary; in that
case, investigating non-stationary policies would not help to increase expected utility.
Such policies are therefore the standard type of solution to infinite-horizon FOMDPs.
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Given a policy π = {δt | t ∈ T} and an initial system state S ∈ dom(X), a (condi-

tional) probability distribution P
(S,π)
τ on histories up to time point τ is induced as

follows:

P (S,π)
τ (h) =

τ−1∏
t=0

θt(St, at, St+1) (4.17)

for all h = (S0, . . . , Sτ , a0, . . . , aτ ) having S0 = S and δt(St) = at; for all other h ∈ Hτ ,

we have P
(S,π)
τ (h) = 0. The expected utility ũπ(S) of initial system state S under

policy π now equals

ũπ(S) = E
P

(S,π)
N

(u)

=
∑
h∈HN

u(h) · P (S,π)
N (h). (4.18)

The task of computing ũπ(S) for a given policy π and initial state S is called pol-
icy evaluation. We say that a policy is optimal when it maximises ũπ(S) for all
S ∈ dom(X); the task of finding such a policy is called solving the FOMDP. Note
that the utility function must have an upper bound in order to compare policies; this
condition is satisfied when all the reward functions are bounded, and, in the case of
infinite-horizon models, the discount rate λ is smaller than 1.

Solution methods

The standard approach to solving FOMDPs is based on decomposing the decision
process using the Markov property. Define the maximum expected partial utility
ν̃∗t (St) of state St ∈ dom(X) at time point t ∈ T as follows:

ν̃∗t (St) = max
at∈A

rt(St, at) + λ ·
∑

St+1∈dom(X)

θt(St, at, St+1) · ν̃∗t+1(St+1)

 ,(4.19)

if t < N , and ν̃∗N (SN) = maxaN∈A{rN(SN , aN )}, otherwise. The value ν̃∗t (St) is the
maximum expected total reward that is to be received during the future steps of the
decision process. If π∗ is an optimal policy, we have that

ũπ∗(S) = ν̃∗0(S) (4.20)

for all initial system states S ∈ dom(X). The recursion described by Equation 4.19 is
usually named a Bellman equation, after Richard Bellman, the researcher who intro-
duced this method. It reflects the fact in the FOMDP representation, a multi-stage
decision problem can be reduced to a series of inductively-defined single-stage deci-
sion problems. Computational methods based on Bellman equations are generally
referred to as stochastic dynamic programming ; as they solve decision problems in re-
verse order are considered to be an efficient form of backward induction. An example
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method is the value iteration algorithm (Bellman, 1957), which finds the maximum
expected utility for a given FOMDP by iteratively computing ν̃∗N , ν̃

∗
N−1, . . . , ν̃

∗
0 ; the

optimal policy is inductively constructed as a side-effect. For finite-horizon FOMDPs,
the algorithm has a computational complexity that is polynomial in the size of the
state space |ΩX |, the number of actions |A|, and horizon length N . Value iteration
can also be used to compute approximately optimal stationary policies for infinite-
horizon FOMDPs, given a predefined bound on the loss in expected utility that the
decision maker is willing to accept. It is possible though that the number of required
iterations grows exponentially in the discount rate λ, (Puterman, 1994).

Remarks on the FOMDP representation

Markov decision processes provide an intuitive and expressive representation for de-
cision problems that involve temporal progression and continuous interaction of a
decision maker with a dynamic system. The underlying theory of stochastic Markov
processes has been studied extensively in control theory. Although the Markov prop-
erty on temporal evolution of the system may seem restrictive, it is not truly pro-
hibitive: any non-Markovian system of finite order (i.e. whose dynamics depend
on at most n previous states for some finite n ∈ N) can be converted to an equiva-
lent, though larger Markovian model, (Luenberger, 1979). So, the Markov property
essentially applies to the model and not to the system itself.

We have discussed FOMDPs with finite and infinite planning horizons. Conceptually
speaking, there exists a third possibility where it is not possible to determine the
number of action choices needed to solve a particular decision problem in advance;
the horizon is then said to be indefinite. Such problems can be cast in FOMDPs with
a finite horizon, where a number of decision moments remain unused; the horizon
length N serves as an upper bound on the number of decisions. The set A of actions
then has to be supplemented with a special action ε, which has the interpretation
of skipping the current decision moment without taking action. With this action,
it is also possible to model decision-making scenarios where only a small number of
moments are selected for intervention whereas the other moments pass uncontrolled.
In other words, it allows us to model the timing of actions. We do note, however, that
from a formal point of view there exists no difference between ε and other actions in
A.

There are two significant drawbacks to FOMDPs that appear in their application to
real-world problems. The first drawback to FOMDPs is their coarse representational
granularity: the transition probabilities and rewards are described by functions whose
complexity grows polynomially in the size of the state space and number of actions.
In many problem domains, the number of probabilities and rewards that have to be
specified is therefore enormous.

Example 4.18 In the MDP model for VSD of Example 4.17, there are |ΩX | = 4 · 4 ·
4 · 4 · 2 · 4 · 2 = 4096 possible clinical states, and there are 5 actions to choose from.
Therefore, 4096 · 5 · 4096 ≈ 8.4 · 106 transition probabilities need to be specified for
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each decision moment (assuming non-stationarity). Furthermore, reward values have
to be assessed for 4096 · 5 = 20480 state-action pairs.

Furthermore, when the system dynamics and reward mechanisms consist of several
interacting factors, little insight is to be gained from a system whose reasoning is
based on a representation where such factors remain completely implicit. The second
drawback to FOMDPs is the assumption of full observability of the system state. In
many decision problems under uncertainty, this assumption is highly unrealistic. In
medical domains, for example, it is often the underlying, unobservable physiological
state of the patient that determines state progression over time, and a model in which
this mechanism is ignored will rarely be adequate.

Example 4.19 In the VSD domain, the attributes hfail (heart failure) and death

can be easily observed in all circumstances. This is however not the case for the other
attributes of the model in Example 4.17: size of the VSD, pulmonary arteriopathy,
pulmonary vascular resistance, shunting, and pulmonary hypertension are attributes
whose precise values often remain hidden for the treating clinician.

Both drawbacks can be alleviated by extending the basic FOMDP formalism. In the
next subsection, we discuss partially-observable Markov decision processes. In these
processes, the assumption of full observability is lifted. In Section 4.3 we discuss the
alternative representation of transition probability functions in dynamic probabilis-
tic networks, which allows for a representation of system dynamics at the level of
individual state attributes.

4.2.2 Partially-observable Markov decision processes

Partially observable Markov decision processes, or POMDPs for short, are a gener-
alisation of FOMDPs that allow for uncertainty regarding the system state from the
perspective of the decision maker: instead of observing the entire state of the system
prior to each decision, the decision maker now observes a subset of state variables
after the decision, where the action that is chosen determines the observability of
state variables. Therefore the tradeoff between actions now does not only concern
their immediate and long-term effects, but also their information-gathering proper-
ties. This introduces severe complications to the decision problem, especially when
the observation opportunities are limited; in those cases, complex decision strategies
may be needed to guarantee optimal control of the system. POMDPs were first de-
scribed in the literature by A. Drake in 1962, and later (independently) by K. Aström
in 1965.

Definition 4.20 (POMDP model) Let X be a set of random variables. A partially-
observable Markov decision process over X is a 5-tupleMPO = (T,A,Θ, R,O), where
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• (T,A,Θ, R) describes a Markov decision process over X, and

• O = {ot : A→ ℘(X) | t ∈ T} is a set of observation functions.

When the decision maker chooses action a ∈ A at time point t ∈ T , he receives
evidence on the subset of state variables Y = ot(a) immediately thereafter, i.e. the
actual configuration of Y is observed; the state transition that results from the action
choice takes place afterwards. When ot(a) = X for all time points t ∈ T and all
actions a ∈ A and the initial system state is known to the decision maker, the model
reduces to a FOMDP. In the typical case though, we have that ot(a) ( X, and at
each time point, part of the system state remains hidden for the decision maker.
The initial state is equally unknown; instead, a probability distribution P0 on the
initial state is given. This distribution may implicitly contain evidence on a set of
case parameters Y ⊆ X, i.e. when P0(Y = SY ) = 1 for some Sy ∈ dom(Y ). Process
dynamics and evaluation criteria are the same as in the fully-observable case; we will
therefore not elaborate on them. The formulation of solutions and the algorithmic
methods to solve POMDPs are however significantly different; we will focus on these
issues in the discussion below.

Example 4.21 The FOMDP model for the VSD domain from Example 4.17 can be
extended to a POMDP with a set O of observations functions, where for each ot ∈ O
we have ot(echo) = {VSD, hfail, death},

ot(med) = {hfail, death},
ot(cath) = {shunt, hfail, death},
ot(surg) = {VSD, hfail, death}, and
ot(biop) = {pmart, hfail, death}.

The variables hfail and death are always observable and therefore included in each
of the observation sets.

Formulation of solutions

The principal difference between FOMDPs and POMDPs is that under partial ob-
servability, the stochastic process is non-Markovian from the viewpoint of the decision
maker. This is due to the uncertainty regarding the system states: any of the past
actions and observations in a concrete evolution of the decision process may influence
the decision maker’s beliefs concerning the current system state. Decision-making
policies therefore have to be based on all what is known from the past if we want
to maximise expected utility; simply considering the most recent observation is in-
sufficient. The result of this fact is that the problem of solving an infinite-horizon
POMDP is undecidable, (Madani et al., 1999).

Formally, the decision maker’s knowledge ψ of the past will consist of a sequence of
alternating action choices and observations:

ψ = a0, SY0 , a1, SY1, . . . , aτ , SYτ (4.21)
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where SYt ∈ dom(Yt) and Yt = ot(at) for all t = 0, . . . , τ ; we refer to ψ as a decision-
making context. Note that the observation at time point t follows the action choice
at that time point. Let Ψτ be the set of all possible decision-making contexts up to
time point τ ∈ T . In POMDPs, a decision function δPO

t for time point t ∈ T , t > 0,
in policy π is a partial function

δPO
t : Ψt−1 → A, (4.22)

and a decision function δPO
0 for the initial time point t = 0 is a constant from the set

of actions (i.e. δPO
0 ∈ A) as the decision-making context is then empty. It will often

be an action that is expected to provide much evidence and to have little impact
on the system state. The functions for non-initial time points only need to cover
decision-making contexts that are compatible with earlier decision functions and can
therefore be defined as partial functions.

Now, let Hτ as in the previous subsection denote the set of all possible decision-
making histories up to decision moment τ ∈ T , i.e. each h ∈ Hτ consists of sequences
of entire system states and action choices up to that moment. We define the mapping
oτ ′ : Hτ → Ψτ ′ , τ

′ ≤ τ , from decision-making histories to contexts as follows:

oτ ′(h) = a0, SY0, . . . , aτ ′ , SYτ ′ (4.23)

if h = (S0, . . . , Sτ , a0, . . . , aτ ), where for all t = 0, . . . , τ ′ we have ot(at) = Yt and SYt
is the subvalue associated with Yt in St, i.e. X = St ` Yt = SYt . In words, oτ ′(h)
is the context that represents precisely the decision maker’s knowledge of history h
up to time point τ ′. Given a policy π = {δPO

t | t ∈ T} and an initial system state

S ∈ ΩX , a (conditional) probability distribution P
(S,π)
τ on decision-making histories

up to time point τ is again induced using

P (S,π)
τ (h) =

τ−1∏
t=0

θt(St, at, St+1) (4.24)

for all h = (S0, . . . , Sτ , a0, . . . , aτ ) having S0 = S and δPO
t (ot(h)) = at. As with

FOMDPs, we have P
(S,π)
τ (h) = 0 for all other histories h ∈ Hτ . Given a probabil-

ity distribution P0 on initial states, the expected utility ũπ of policy π equals

ũπ =
∑
S∈ΩX

P0(S) · E
P

(S,π)
N

(u)

=
∑
S∈ΩX

P0(S) ·
∑
h∈HN

u(h) · P (S,π)
N (h). (4.25)

In principle, this provides the criterion to compare decision-making policies and there-
fore to computationally solve POMDPs. Unfortunately, the space of possible policies
is immense, and in the worst case each possible policy needs to be considered when
solving a POMDP. When k = |A| is the number of available actions and

m = max{|ΩY | | Y = ot(a), t ∈ T, a ∈ A} (4.26)
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is an upper bound on the number of possible observations, then the size of decision-
making policies is bounded by mN and the number of distinct policies isO(km

N
). As a

consequence, the problem of solving a POMDP is PSPACE-complete, (Papadimitriou
and Tsitsiklis, 1987).

Throughout the years, several simpler types of POMDP policy have been investigated.
The simplest type of POMDP policy basically ignores the unreliability caused by
partial observability, and bases action choices on the most recent observation only;
such a policy is called memoryless. Memoryless policies often have a very poor
performance, but notwithstanding their simple formulation, the problem of finding
the optimal memoryless policy is NP-hard, (Littman, 1994; Littman, 1996). Better
performance can be achieved by taking into account a number of recent actions and
observations; we then speak of a history-window policy, (White and Scherer, 1994;
Platzman, 1977). More generally, we can think of finite-memory policies, which base
decisions on a finite amount of information about the past, but unlike in history-
window policies, the information can be obtained arbitrarily long ago. Because they
are more expressive, general finite-memory policies can be defined that perform better
that any history-window policy. However, there are also POMDP problems for which
no finite memory is sufficient to guarantee optimality, and we have to resort to general
context-dependent policies.

Solution methods

The fact that system states are partially unknown to the decision maker in a POMDP
also means that we cannot decompose the decision problem using the Markov prop-
erty (as in Equation 4.19 on page 99). Therefore, stochastic dynamic programming
techniques do not apply, and we seem to be forced to explicitly search through the
space of policies, and evaluate each of them by iterating over all possible decision-
making histories. This approach is not feasible because of the highly combinatorial
nature of these structures. Fortunately, there exists an alternative way to solve
POMDPs which is more efficient: we can transform the POMDP into an equivalent
model where stochastic dynamic programming is applicable. This is the predominant
approach to solving POMDPs, and we will briefly describe it here.

The key insight underlying the approach is that from the probability distribution P0

on initial states and a context ψ ∈ Ψt of actions and observations, we can compute
a probability distribution Pt+1 on system states at time point t + 1 that adequately
summarises all the available information. Such a probability distribution is called a
belief state at time point t + 1, as it can be regarded as representing the beliefs of
the decision maker concerning the system state at that time point. As belief states
provide an adequate summary of the decision-making context, the Markov property
is regained. From a given belief state Pt at time point t ∈ T , and an action choice
at ∈ A and observation SYt that follow, we can compute the next belief state Pt+1:

Pt+1(St+1) =
∑
St∈ΩX

θt(St, at, St+1) · Pt(St | SYt) (4.27)
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for all St+1 ∈ ΩX . Therefore, the Pt+1 is independent of P0, . . . , Pt−1 given Pt, action
at, and observation SYt : the sequence of belief states is a Markov chain. We can
therefore transform any POMDP to a fully-observable MDP over belief states; we
refer to a transformed POMDP as a belief MDP. The belief MDP has the property
that an optimal Markovian policy for it will give rise to optimal behaviour for the
original POMDP, (Aström, 1965; Smallwood and Sondik, 1973).

The belief MDP is Markovian, and can therefore be solved using value iteration,
(Sondik, 1971). However, the state space of the belief MDP is the set of all probability
distributions over X. When the state space in the original POMDP contains m
states, i.e. |ΩX | = m, then the corresponding belief space has the complexity of the
m-dimensional unit simplex [0, 1]m. Value functions and policies have to be defined as
functions over this highly complex, continuous space. This is the main obstacle that
now needs to be overcome and most algorithms for solving POMDPs are actually
different approaches to handle it. The details of these approaches fall outside the
scope of this thesis; we refer the interested reader to the surveys by Monahan (1982)
and Lovejoy (1991), and to the papers by Littman et al. (1995) and Cassandra et al.
(1997) for recent advances.

Remarks on the POMDP representation

POMDPs provide a powerful framework for decision-theoretic planning where both
uncertainty in action effects and imperfect observability are essential. They allow
for the expression of many decision-making scenarios, including reasoning with in-
complete information, and planning of both information-gathering and intervening
actions. POMDP models have been developed in such diverse domains as machine
maintenance, medical diagnosis and treatment planning, and acquisition of cognitive
skills.

In contrast with influence diagrams, POMDPs have no problems with the represen-
tation of informational asymmetry. Observability of state variables is associated with
actions instead of decision moments; the asymmetric nature of decision problems with
imperfect observability is therefore easily handled by the formalism, a point which is
also illustrated by Example 4.21 on page 102. Dealing with relevantial asymmetry is
more troublesome. It is possible to extend the basic formalism with a specification
of explicitly excluded actions in various decision-making contexts, but the standard
method of solving POMDPs by stochastic dynamic programming on the belief MDP
is unable to take such exclusions into account, as it solves the decision problem in
reverse order.

As was noted above, the problem of solving POMDPs without restrictions is PSPACE-
complete, and therefore the applicability of exact solution methods is necessarily
limited to (very) small POMDPs. To make things worse, also the problem of com-
puting approximately-optimal policies is extremely demanding from a computational
point of view, and the same holds even for the seemingly uncomplicated problem of
evaluating a given policy, (Goldsmith and Mundhenk, 1998). Any attempt to apply
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POMDPs of considerable size without restrictions is deemed to run aground in in-
tractability. Recent years have shown a growing interest in POMDPs from within the
AI community, and several new algorithmic results have been obtained, (Cassandra
et al., 1997; Zhang and Lee, 1998). It remains an open issue whether feasible solu-
tion methods can be developed for practical applications, and if so, which problem
characteristics enable feasibility.

To date, little attention has been given to special forms of POMDP, where one or more
domain-dependent restrictions are assumed on the components of a POMDP model.
For instance, in certain domains one might assume that several actions have similar
effects on state evolution or observability. Another, often reasonable assumption
is that a partial ordering on system states exists, where state transitions can only
lead to ‘higher’ states in the ordering. Probably, such assumptions can effectively
be exploited by solution methods and the improved efficiency might enable practical
application of POMDPs to certain domains. We will return to this issue in subsequent
chapters.

Although POMDPs alleviate one of the main drawbacks to FOMDPs, the assumption
of full observability, this does not hold for the other drawback, their coarse repre-
sentational granularity. In the next section, we discuss the alternative, fine-grained
representation of transition probability functions in dynamic probabilistic networks.

4.3 Dynamic networks

In this section we will discuss extensions to graphical representation formalisms that
allows for explicit temporal modelling and reasoning. As we saw in the examples of
Section 4.1, it often occurs that the variables in belief network and influence diagrams
refer to events at different time points. This is in fact unavoidable in influence dia-
grams, as in that case the decision variables represent a temporally ordered sequence
of decisions. However, the notion of time is left implicit in the representation, which
is unsatisfactorily when it plays an important role in the problem domain. Both
belief networks and influence diagrams have been extended to handle temporal mod-
elling and reasoning, and the latter extension can moreover be used as a graphical
representation of Markov decision processes.

Dynamic belief networks

Throughout the years, several temporal extensions to belief networks have been pro-
posed in the literature (e.g. Berzuini, 1990; Dagum et al., 1992; Hanks et al., 1995; Al-
iferis and Cooper, 1996). Although these extensions differ in a number of respects,
the unifying idea is to replicate a set of random variables X over a predefined set T
of points in time, and define a probabilistic network over the resulting set of variable
replications. We refer to this set as the temporal extension of X; as in the previous
section, we assume that T = {0, . . . , N} ⊂ N.
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Definition 4.22 (Temporal extension) Let X be a set of random variables, and
let T be a set of time points. The temporal extension of X over T is defined as the
set X(T ) = {x(t) | x ∈ X, t ∈ T} of temporally indexed random variables, where each
x(t) ∈ X(T ) can take the same values as x.

Within the temporal extension X(T ) of X over T , the subset X(t) = {x(t) | x ∈ X},
t ∈ T , is called the time slice at time point t; it represents the state of the variables
of X at that time point.

A dynamic belief network (DBN) now is a belief network over a temporally extended
set of random variables, with the restriction that arcs in the graph may not point to
variables in the past.

Definition 4.23 (Dynamic belief network) Let X be a finite set of random vari-
ables, and let T = {0, . . . , N} be a set of time points. A dynamic belief network over
X and T is a belief network B = (G,Γ) over the temporal extension X(T ) (of X over
T ), where x1(t1)→ x2(t2) ∈ A(G) only if t1 ≤ t2.

An arc between variables within a single time slice is called synchronous and is seen
to represent a causal or influential mechanism whose realisation takes negligible time
as compared to the time steps in T . An arc between variables of different time
slices is called temporal and represents a mechanism that is more time-consuming
(a process or evolution). The topological restriction is that temporal arcs may not
point “backwards” in time; the obvious underpinning is that otherwise the causal
interpretation of arcs is lost. The restriction can also be formulated as the requirement
that a variable’s predecessors are not located in future time slices, i.e.

ρG(x(t)) ∩X({t+ 1, . . . , N}) = ∅ (4.28)

for all x ∈ X and t ∈ T , t < N . A further restriction may be that each variable’s
predecessors are located in the same or previous time slice; we then say that the
network is Markovian.

Definition 4.24 (Markovian DBN) Let B = (G,Γ) be a dynamic belief network
over X and T . We say that B is Markovian when for all x ∈ X and t ∈ T , t > 0,
we have

ρG(x(t)) ⊂ X(t− 1) ∪X(t). (4.29)

Proposition 4.25 A Markovian DBN represents a Markov process over X.
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Figure 4.6: A dynamic belief network for the VSD domain.

Proof. Let B = (G,Γ) be a Markovian DBN over X and T . Now, let t ∈ T , t > 1,
and consider an arbitrary chain in G from a variable in one of the time slices
X(0), . . . , X(t − 1) to a variable in time slice X(t). From the topological restric-
tions on Markovian DBNs it follows that the chain is blocked by time slice X(t− 1).
As a result, we have that

〈X(t) | X(t− 1) | X({0, . . . , t− 1})〉dG, (4.30)

and therefore

X(t)⊥⊥P X({0, . . . , t− 1}) | X(t− 1) (4.31)

for all probability distributions P on X(T ) for which G is an I-map. �

Example 4.26 A dynamic belief network for the VSD domain is shown in Fig-
ure 4.6. The network is Markovian, and contains 7 of the 8 variables that were
used in the static belief network of Example 4.6: the variable closure is omitted as
spontaneous closure of the VSD is modelled implicitly by diminishing values over time
for the variable VSD.

DBNs allow for explicit temporal reasoning over the variables involved, and are there-
fore preferred over static belief networks when time and change are essential ingredi-
ents of the problem domain. The improved expressiveness of DBNs comes however
at the price of a significantly increased computational cost of probabilistic inference.
Recall from Subsection 4.1.1 that probabilistic inference in general is NP-hard: the
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number of computations may be exponential in the number of variables involved.
As DBNs are defined over the temporal extension of the set of domain variables,
inference may quickly become intractable in these networks when the set T is large.
Under certain conditions, tractable inference is possible though. An example is found
in the Kjærulff’s (1992) work, which extends the clique-tree propagation method for
belief-network inference to Markovian DBNs.

Dynamic influence diagrams

Dynamic influence diagrams (DIDs; Dean and Kanazawa, 1989; Tatman and Shachter,
1990; Provan and Clarke, 1993) are defined in a similar way as DBNs. As with their
static counterparts, the main difference is that influence diagrams include a set of
decision variables and a value node. In a DID, each decision node is associated with
one of the time points involved.

Definition 4.27 (Dynamic influence diagram) Let X be a set of random vari-
ables, and let T = {0, . . . , N} be a set of time points. A dynamic influence diagram
over X and T is an influence diagram DID = (G,Γ, u) over X(T ), where

• V (G) = X(T ) ∪D(T ) ∪ {v},

• D(T ) = {d(t) | t ∈ T} is a set of temporally indexed decision variables,

• d(t)→ d(t+ 1) ∈ A(G) for all t = 0, . . . , N − 1,

• for all variables y(t1), z(t2) ∈ X(T ) ∪D(T ) we have that y(t1)→ z(t2) ∈ A(G)
only if t1 ≤ t2.

In the graph of a DID there exists a directed path comprising all decision variables;
any DID is therefore a regular influence diagram. The interpretation of the various
types of arcs in a DID is completely similar to their interpretation in influence di-
agrams; we therefore do not elaborate on it here. Furthermore, the value node v
is again a sink node in G and u is a utility function over the universe ΩρG(v) of its
predecessors.

Example 4.28 Figure 4.7 shows a DID for the VSD domain that extends the earlier
described DBN with three decision nodes d(0), d(1), and d(2) and a value node. It is
assumed that each of decision variables can take one of the values echo, cath, biop,
surg, and ε; the latter value again has the interpretation of skipping the current
decision moment without taking action. The utility function associated with the value
node is based on the three decisions and the values of three random variables from the
last time slice, representing final size of the VSD, state of the pulmonary arterioles,
and mortality.

The Markov property can also be formulated for dynamic influence diagrams.
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Figure 4.7: A dynamic influence diagram for the VSD domain.

Definition 4.29 (Markovian DID) Let DID = (G,Γ, u) be a dynamic influence
diagram over X and T . We say that the diagram is Markovian when for all x ∈ X
and t ∈ T , t > 0, we have

ρG(x(t)) ⊂ X(t− 1) ∪X(t) ∪ {d(t)}. (4.32)

Note that the above topological restriction only pertains to arcs leading to random
variables in the diagram, and is therefore essentially a restriction on the conditional
independency structure of the underlying probability distribution. There are no spe-
cific restrictions on the arcs leading to decision variables (modelling informational
constraints) or to the value node (modelling influences on utility) other than those
for DIDs in general. We remark that the DID of Figure 4.7 is Markovian as all arcs
leading to random variables depart from the same or the previous time slice.

Graphical representation of POMDPs

Both POMDPs and Markovian DIDs are representations of sequential decision prob-
lems under uncertainty that include notions of time, state dynamics, and observabil-
ity, and both representations incorporate the Markov assumption. It is not surprising
then, that we can sometimes regard a Markovian DID as a graphical representation
of an underlying POMDP. Unfortunately, this not always true: there exists POMDPs
than cannot be expressed as a Markovian DID, and conversely, there exist Markovian
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DIDs that cannot be taken to represent a POMDP. The main reasons that the cor-
respondence does not always hold is that POMDPs make certain assumptions on the
structure of the utility function where DIDs do not, and that the notions of observ-
ability differ in both formalisms. When the correspondence does hold, the graphical
representation of POMDPs in DIDs integrates all concepts that were described in this
chapter; it is broadly regarded as one of the most powerful formalisms for decision-
theoretic modelling and reasoning to date. Note that a DID is much more economical
in its space requirement than a POMDP and is therefore the preferred representation
in practical settings; we will shortly illustrate this with an example.

A Markovian dynamic influence diagram DID = (G,Γ, u) can be viewed as repre-
senting a POMDP under the following three conditions. First, there should be no
observations prior to the first decision (as POMDPs do not know case parameters).
That is, decision variable d(0) may not have predecessors in the graph. Second, there
may not be observational time lags, i.e. a given variable x(t1) becomes observable im-
mediately at t1 + 1, or not at all. Formally, if x(t1) ∈ ρG(d(t2)) for some t2 > t1 + 1,
then also x(t1) ∈ ρG(d(t1 + 1)). Third, the utility function can be written as the
(discounted) sum of temporal rewards. That is, there exist a set of reward functions
R = {rt : ΩX(t) × Ωd(t) → R | t ∈ T} and a discount factor λ ∈ R such that

u(CρG(v)) =
N∑
t=0

λtrt(CX(t),Cd(t)). (4.33)

So, the time slices of the diagram are mutually additive independent sets in the
preference ordering induced by the utility function; this is called time separability
(Luenberger, 1973), and can be exploited to perform stochastic dynamic programming
to solve the diagram, (Tatman and Shachter, 1990). Note that if ρG(d(t)) = X(t−1)
for all time points t ∈ T , t > 1, in a dynamic influence diagram, then the under-
lying Markov decision process is de facto fully observable; otherwise, it is partially
observable.

We can also follow the opposite direction and ask ourselves under which conditions
a given POMDP MPO = (T,A,Θ, R,O) can be represented by a Markovian DID.
This is possible when the observation functions in O are symmetrical; recall from
Subsection 4.1.2 that influence diagrams cannot handle informational asymmetry.
That is, a DID representation for the POMDP exists when ot(a1) = ot(a2) for all
decision moments t ∈ T and actions a1, a2 ∈ A; no further conditions on the POMDP
are required.

Example 4.30 The POMDP for the VSD domain of Example 4.21 (page 102) can-
not be represented by a DID as it embodies informational asymmetry. If we take
ot(a) = {VSD, shunt} for all actions a ∈ {echo, med, cath, surg, biop} however,
then the Markovian DID of Figure 4.7 represents the POMDP, provided that a time-
separable utility function is employed.
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It should be noted that in the DID representation, conditional independence relations
are exploited to arrive at a model of much finer representational granularity than in
the MDP representation: probabilistic relations are quantified at the level of individ-
ual variables instead of at the level of complete time slices. The main advantages are
(i) a significant reduction in the number of probabilities that have to be specified, and
(ii) a model that is easier to comprehend, and therefore easier constructed and main-
tained. Similar observations hold for the specification of rewards: the fact that often
many variables are uninfluential on utility is readily exploited in the representation.

Example 4.31 Recall from Example 4.18 that the FOMDP and POMDP models
for the VSD domain described in the previous section required the specification of
8, 4 · 106 transition probabilities and 20480 reward values. The DID representation of
Figure 4.7, requires “only” 2150 conditional probabilities and 2000 utility values.

We do not study the correspondence between Markovian DIDs and POMDPs in more
detail here; this is done in Section 5.5 of the next chapter. In that chapter, we develop
a formal framework for decision-theoretic planning that is more expressive than both
POMDPs and DIDs and therefore allows for a smooth comparison.

4.4 Discussion

In this section, we summarise this chapter’s review of representation formalisms and
evaluate these formalisms with respect to their expressiveness, flexibility, compact-
ness, and representational granularity. The evaluation will provide the motivation for
a new, more elaborate framework for decision-theoretic planning which is presented
in Chapter 5.

The first decision-theoretic representation formalism discussed in this chapter was
the influence diagram. Influence diagrams are graphical representations that can
be viewed as extending the belief-network representation with (i) decision variables
to model the relevant moments of choice, and (ii) a value node to encode a utility
function over the network variables that influence the decision maker’s preferences.
Influence diagrams can also be regarded as a compact representation of symmetric
decision trees: whereas the size of a decision tree grows exponentially in the number
of variables involved, the size of an influence diagram will be proportional to that
number. It should be noted though that the complexity of a variable’s conditional
probability assessment function grows exponentially in the number of the variable’s
parents in graph. The complexity of these functions may therefore be considerable
in dense graphs.

There are several drawbacks to the influence-diagram representation. The meaning
of arcs in the graph depends on the type of node to which they lead, which is often
felt as confusing. Influence diagrams are therefore generally judged as being less
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comprehensive than their purely probabilistic siblings, belief networks, especially in
large domains. Another drawback is that influence diagrams have difficulties with
handling asymmetry in decision problems. Also, influence diagrams are designed
to solve a limited number of decision problems for which a set of decision policies
is implicitly pre-specified in the representation; they lack the generative character
of planning formalisms. These drawbacks can be largely traced back to the fact
that influence diagrams strongly interweave different types of domain knowledge into
a single representation. The resulting compactness comes at the price of limited
flexibility and expressiveness.

A possible way to overcome this problem is to use an underlying, generative model
of the problem domain and construct suitable influence diagrams from it for specific
problem types; this is called knowledge-based model construction, (Breese et al., 1994).
Examples are found in the work of Agosta (1996), who uses classical (i.e. non-
probabilistic) planning methods to construct the decisional part of an influence dia-
gram, and Egar et al. (1992), who describe a method for the automatic generation of
influence diagrams using a graph-grammar and a set of pre-defined network chunks.

The underlying domain model for an influence diagram can also be cast as a Markov
decision process, the second decision-theoretic representation discussed in this chap-
ter. In contrast with influence diagrams, MDPs possess the characteristic proper-
ties of a planning formalism: MDPs allow for the generation of a large number of
decision-making scenarios from generic definitions of the interactions between domain
elements. MDPs also explicitly cover the notions of time and change, which are indis-
pensable for a true planning system. A drawback to the original MDP representation
is that the effects of actions are expressed at the level of system states rather than at
the level of individual variables. If we choose to express state dynamics in dynamic
influence diagrams however, then we can alleviate this drawback and take advan-
tage of probabilistic independencies between domain variables in representation and
reasoning.

Dynamic influence diagrams were the third and last representation formalism dis-
cussed in this chapter, and can be regarded as the most powerful formalism for
decision-theoretic planning to date. Although it captures important qualitative and
quantitative features of a decision process, it considers all state variables and all
decisions as similar: it does not identify the roles of different variables within that
process. If we revert to the type of decision-making task we are seeking to support,
the planning of clinical diagnostic and therapeutic actions, then it appears that we
can identify very different roles of variables and decisions, and that these roles are
crucial in problem solving. For instance, diagnostic decisions are aimed at gathering
more information about a patient, whereas treatment decisions aim to cure the pa-
tient on the basis of that information. It is immediately apparent that one would not
consider a decision policy that performs diagnosis after treatment. Similarly, some
state variables pertain to the internal physiological state of a patient, whereas others
may represent the outcomes of investigative procedures.
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In the next chapter, we present a formal framework for decision-theoretic planning
that builds on the ideas that underlie the representation formalisms discussed here.
The approach we take is however more fundamental as we define concepts such as
choice, history, decision process, prediction, and plan directly from the primitive
elements of a planning domain, instead of indirectly from a given representation.
Among the framework’s components are symbolic and probabilistic languages to allow
for explicit reasoning with these concepts, and to analyse and describe their mutual
relationships.



CHAPTER 5

A framework for decision-theoretic planning

Making a sequence of decisions under conditions of uncertainty can be regarded as
a form of planning – this was one of the introductory remarks to Markov decision
processes in the previous chapter. However true this may be, the standard formulation
of these processes hardly reminds of the type of symbolic planning that is traditionally
studied in AI. In particular, it does not allow for reasoning about the relations between
decisions and states at the level of individual variables, or for problem solving through
explicit manipulation of symbolic plans.

In this chapter, we present a formal framework for planning under uncertainty that
obviates these deficiencies by integrating probabilistic and symbolic reasoning. The
objective is to provide a language for decision-theoretic planning domains which al-
lows for direct manipulation of symbolic structures that describe decisions and plans.
The essence of planning under uncertainty is the continual existence of contingencies
that should be taken into account when action choices are made; a significant part
of this chapter is therefore devoted to a theory of contingency planning. The frame-
work links up with the decision-theoretic representation formalisms of the previous
chapter, but takes a more fundamental approach in the formalisation of planning
and decision processes. The main difference is that our framework is not intended
as a computational architecture, but serves to study the nature of decision-theoretic
planning problems.

This chapter is organised as follows. In Section 5.1, we develop a general, formal lan-
guage to describe probabilistic planning processes. Section 5.2 discusses the notions
of control and observability for this language. Then, in Section 5.3, we develop the
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theory of contingency planning within our framework. In Section 5.4 we describe the
formulation of planning objectives in a decision-theoretic fashion. This completes our
framework and provides the opportunity to re-evaluate and compare the representa-
tion formalisms of the previous chapter; this is the subject of Section 5.5. The chapter
is concluded with a discussion in Section 5.6, where we evaluate the framework and
discuss related work by other authors.

5.1 Formal foundations

In this section we develop the formal structures to describe planning processes under
uncertainty in our framework. Conceptually speaking, our framework is reminiscent
of the formalism of partially-observable Markov decision processes: the planning task
is envisioned as the problem of controlling a dynamic system over time, where the
effects of action choices are uncertain and the state of the system is partially hidden
from observation. We will no longer refer to a person that decides upon the action
choices as a decision maker but use the term planning agent instead. It emphasises the
fact that making decisions is just one of the tasks that this person faces, among other
tasks such as evaluating and repairing given plans and investigating various properties
of plans such as their robustness, the associated costs and risks, and expected effects
on the system.

We start this section by developing a symbolic language over the elements of a plan-
ning domain (Subsection 5.1.1); this is followed by the formal characterisation of
decision processes (Subsection 5.1.2).

5.1.1 The planning language

The starting point of our framework for decision-theoretic planning is a specification
of the state space of a dynamic system, an action set constituting the alternatives
that are available to the planning agent, and a time frame that is considered relevant
for the planning task. A joint specification of these elements will be called a decision
basis.

Definition 5.1 (Decision basis) A decision basis is a tuple B = (X,A, T ), where
X is a set of system attributes, A is a set of actions, and T is a time frame.

In a decision basis B = (X,A, T ), the set X consists of variables that jointly describe
the state space of a dynamic system. Conceptually, each variable x ∈ X describes
some attribute of this system, and we therefore use the term system attributes. As
in the previous chapters, the notion of configuration is used as a shorthand notation
for the joint assignment of values to a set of variables. With this notation, the set
ΩX of configurations of X covers all possible states that the system may occupy. The
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set A of actions models the decision alternatives that are potentially available to the
planning agent; it represents the available means to control and observe the dynamic
system. The set T is a linearly ordered set of points in time where a snapshot of the
current system state is considered and the decision maker can choose an action.

A decision basis describes the principal elements of a planning domain but not their
various types of interaction. To specify such interactions, a decision basis is supple-
mented with models of observation and control. Control models, defined in Subsec-
tion 5.2.1, describe the effects of action choices on the dynamic system. Observation
models, which are introduced in Section 5.2.2, describe the observability of that sys-
tem under different action choices.

As in the previous chapters, we assume state spaces and action sets to be finite un-
less stated otherwise. The reason for this assumption is that the finite case links up
with current medical practice: clinical decision problems and solutions are generally
described in finitely discretised variables. Furthermore, infinite and especially contin-
uous sets radically change the nature of the mathematics involved; they are therefore
not covered in the present exposition. We note that finiteness of a state space implies
that it is described by a finite number of attributes, and each attribute has a finite
value domain.

Time and change

The time frame T is a set of points in time, or decision moments, relevant to the
planning task. A linear ordering, representing temporal precedence, is assumed to
exist on this set. A most general option would be to assume T being a closed interval
of the set of the real numbers, and use the ordering < on R for temporal prece-
dence. As we want also to restrict ourselves to finiteness for time frames, we take
T = {0, 1, . . . , N} ⊂ N. The elements t = 0 and t = N are called the initial and final
moments in T , respectively.

Definition 5.2 (Time segment) Let T be a finite, linearly ordered set of time
points. A subset T ′ ⊆ T of subsequent points in T is called a time segment in T ,
notation T ′ v T . We say that inf T ′ and supT ′ are the initial and final moments of
T ′, and |T ′| is called its length. If, in addition, inf T ′ = inf T , then T ′ is called an
initial segment of T ; if supT ′ = supT , then T ′ is called a final segment of T .

As the segment relation is reflexive, the time frame T itself is also a segment, with
the unique property that it is both initial and final.

Notation 5.3 For t1, t2 ∈ T , we will use [ t1, t2] as a shorthand notation for the time
segment {t ∈ T | t1 ≤ t ≤ t2}.

As temporal progression is of central concern in our framework, an important role
is played by the dynamics of the system’s state and changes in the planning agent’s
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behaviour over time. A natural way to formalise such changes is accomplished by
regarding state and behaviour as functions of time; we refer to such functions are
state and action sequences, respectively.

Definition 5.4 (Sequence) Let T ′ be a time segment in T . A state sequence over
T ′ is a mapping σ : T ′ → dom(X), and an action sequence over T ′ is a mapping
α : T ′ → A. The sets of all possible state and action sequences over T ′ are denoted
by S(T ′) and A(T ′), respectively.

A state sequence σ over time segment T ′ describes states of the dynamic system at
subsequent time points in T ′. There exist |ΩX |n possible state sequences over T ′

when n = |T ′|; we use σ to denote the unique ‘empty’ state sequence over the empty
time segment T ′ = ∅. Conceptually, σ̌ describes the system’s dynamics prior to the
realisation of a concrete state. Similarly, an action sequence α over T ′ describes
all subsequent decisions during the time segment. There exist |A|n possible action
sequences over T ′; we use α̌ to denote the unique ‘empty’ action sequence over the
empty time segment. Conceptually, this action sequence represents behaviour of the
planning agent prior to any moment of choice.

A planning history is a pair of state and action sequences, and thus provides a com-
plete description of the planning process over the time segment at hand.

Definition 5.5 (History) Let T ′ be a time segment. A planning history over T ′ is
a pair h = (σ, α), where σ and α are a state sequence and an action sequence over
T ′, respectively. The set of all possible histories over T ′ is denoted by H(T ′).

We assume that at each time point t during the realisation of a history h = (σ, α),
the dynamic system has occupied state σ(t) before action α(t) is chosen, and that
information on that state σ(t) may be used by the planning agent in his choice.
There exist |ΩX |n · |A|n possible histories over time segment T ′ when n = |T ′|. To
avoid abundance of parentheses, we will write S[t1, t2], A[t1, t2], and H[t1, t2] instead
of S([t1, t2]), A([t1, t2]), and H([t1, t2]), respectively.

Planning expressions

We will now define a symbolic planning language from the elements of a decision
basis. The planning language builds on the definition of Boolean algebra of logical
propositions over value assignments from Section 3.1. Whereas in the previous chap-
ters such algebras were primarily used to capture joint value assignments to sets of
variables (configurations), we will employ their full expressive power in the current
framework.

Definition 5.6 (Planning expression) Let B = (X,A, T ) be a decision basis. The
set Φ(T ) of planning expressions over T is the Boolean algebra β(W ) spanned by the
set W = X(T ) ∪D(T ), where
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• X(T ) = {x(t) | x ∈ X, t ∈ T} is the temporal extension of X over T where
each x(t) ∈ X(T ) takes values from dom(x), and

• D(T ) = {d(t) | t ∈ T} is a set of decision variables for T , where each d(t) ∈
D(T ) takes values from the action set A.

The elements of X(T ) will be called state variables; the variable x(t) ∈ X(T ) de-
scribes the state of system attribute x ∈ X at time point t ∈ T . The planning lan-
guage associated with a given decision basis B = (X,A, T ) allows to describe various
types of statement concerning the evolution of a decision process over time frame T
by combining value assignments to state and decision variables. We say that a given
expression ϕ ∈ Φ(T ) is consistent when ϕ 6≡ ⊥; otherwise, it is said to be inconsis-
tent. For a given time segment T ′ = [t1, t2], we will also use X[t1, t2] and D[t1, t2]
instead of X([t1, t2]) and D([t1, t2]) as a shorthand notation for sets of state and de-
cision variables over T ′. As was described above, we will assume that the timing of
decisions and events follows the ordering of T , where at each time point t ∈ T , the
uncertain event described by the set X(t) precedes decision d(t).

We will now assume that B = (X,A, T ) is a decision basis and distinguish a number of
special types of planning expression from Φ(T ). The first type of planning expression
we distinguish is a simple fact regarding the system at an isolated time point; it
formalises the notion of system state.

Definition 5.7 (System state) A configuration cY (t) ∈ Φ(T ) of a set of state vari-
ables Y (t) ⊆ X(t) is called a system state at time point t ∈ T . When Y (t) is strictly
smaller than X(t), the system state is said to be partial; otherwise, it is said to be
complete.

Note that the system states cY (t1) and cY (t2) cannot be conflicting when t1 6= t2, as
Y (t1) and Y (t2) are then disjoint sets of variables.

The second type of expression denotes the planning agent’s behaviour at an isolated
time point and is called an action choice.

Definition 5.8 (Action choice) An assignment d(t) = a of action a ∈ A to deci-
sion variable d(t) is called a decision or action choice at time point t ∈ T .

As the expression d(t) = a is a configuration of variable d(t), we will also write cd(t)

to denote a decision at time point t, thus leaving implicit which action is chosen.
The partial versus complete distinction does not exist for action choices. Also action
choices for different time points cannot be conflicting.

A third type of expression is obtained when we collect a set of complete system states
over a given time segment T ′ v T . This yields a configuration cX(T ′) of X(T ′), the
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temporal extension of X over T ′. It is easily seen that there exists for such a con-
figuration a unique corresponding state sequence σ ∈ S(T ′) whose value assignments
are compatible with the assignments in cX(T ′) at all time points in T ′, i.e.

if σ(t) = S then cX(T ′) ` X(t) = S (5.1)

for all t ∈ T ′ and S ∈ dom(X). In cases where there is no type confusion, we will use
σ to denote cX(T ′), and consider it to be an element of the planning language Φ(T ).

Similarly, a collection of action choices over T ′ yields a configuration cD(T ′) of the
set D(T ′), which uniquely corresponds to action sequence α ∈ A(T ′) if cD(T ′) and α
choose the same actions at each time point t ∈ T ′, or formally,

if α(t) = a then cD(T ′) ` d(t) = a (5.2)

for all t ∈ T ′ and a ∈ A. We will also write α instead of cD(T ′) when there is no
ambiguity. Note that with these correspondences, we have that σ̌ ≡ > and α̌ ≡ > as
these empty sequences represent empty conjunctions.

The fifth type of expression we distinguish is a conjunction σ ∧ α of state and action
sequences σ and α over a given time segment T ′. This conjunction trivially corre-
sponds to the planning history h = (σ, α) over T ′, and also in this case we will use
these notions interchangeably, i.e. we generally take h ∈ Φ(T ), where h is a config-
uration of the set X(T ′) ∪D(T ′). Using this notation, we can write each planning
expression as a disjunction of planning histories.

Proposition 5.9 Let T ′ be a non-empty time segment, and let ϕ ∈ Φ(T ′) be an ar-
bitrary planning expression over T ′. Then,

ϕ ≡ h1 ∨ · · · ∨ hk, (5.3)

where h1, . . . , hk ∈ ΩX(T ′)∪D(T ′).

Proof. We construct the set Hϕ = {h1, · · · , hk} by induction on ϕ.

• If ϕ ≡ > then Hϕ = H(T ′) and if ϕ ≡ ⊥ then Hϕ = ∅;

• if ϕ ≡ x(t) = s, where x ∈ X and t ∈ T ′,
then Hϕ = {(σ, α) ∈ H(T ′) | σ(t) = S, X = S ` x = s};

• if ϕ ≡ d(t) = a, where a ∈ A and t ∈ T ′,
then Hϕ = {(σ, α) ∈ H(T ′) | α(t) = a};

• if ϕ ≡ ψ ∧ ψ′ then Hϕ = Hψ ∩Hψ′ ;

• if ϕ ≡ ψ ∨ ψ′ then Hϕ = Hψ ∪Hψ′ ; and
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• if ϕ ≡ ¬ψ then Hϕ = H(T ′) \Hψ.

It is easily verified that ϕ ≡
∨
h∈Hϕ h for each ϕ ∈ Φ(T ′). �

We will refer to the right-hand side of Equation 5.3 as the normal form of expression
ϕ. If ϕ represents the planning agent’s knowledge, then we can think of the histories
h1, . . . , hk as the actual range of possibilities over the given time segment. Each of
these histories comprises statements of which the agent is uncertain; the number k
provides an indication of his uncertainty. For instance, k = |H(T ′)| if ϕ ≡ >, k = 1
if ϕ ≡ h for some h ∈ H(T ′), and k = 0 if ϕ ≡ ⊥.

Decision rules

We now turn to expressions that explicitly guide the action choices of the planning
agent; such expressions will be called decision rules. We first introduce the notion of
choice context, which refers to expressions that denote possible information that may
be used in choosing an action at a given time point. Recall that each decision may be
based on all decisions and system states in the past and the contemporaneous system
state.

Definition 5.10 (Choice context) Let t ∈ T be a decision moment. Any configu-
ration of a subset of X[0, t] ∪D[0, t− 1] is called a choice context for moment t.

When ϕ ` cx(t1) (i.e. cx(t1) is one of the conjuncts in ϕ), we say that state variable
x(t1) is covered by ϕ, and similarly if ϕ ` cd(t2) we say that ϕ covers a decision at
time point t2. Note that by definition, t1 ≤ t and t2 < t if ϕ is a choice context for
moment t. It is possible that a choice context does not cover any state variables and
it is also possible that a choice context does not cover any decisions.

A choice context for time point t does not commit to a decision for that time point;
such commitments are expressed in decision rules. In the notation of these rules, we
write ϕ→ ψ instead of ¬ϕ ∨ ψ.

Definition 5.11 (Decision rule) A decision rule for time point t ∈ T is an expres-
sion of the form

ϕ → d(t)=a, (5.4)

where ϕ is a choice context for t. We refer to ϕ as the antecedent of the rule and to
d(t) = a as its consequent.

The above decision rule prescribes to choose action a at time point t given the infor-
mation conveyed by choice context ϕ. It is said to be applicable in all choice contexts
ψ for time point t satisfying ψ ` ϕ. The number of variables that is referred to in ϕ
is the complexity of the rule.
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Two decision rules ϕ1 → d(t)=a1 and ϕ2 → d(t)=a2 are said to be conflicting when
their choice contexts are compatible (i.e. ϕ1 ∧ ϕ2 6≡ ⊥), but they do prescribe dif-
ferent action choices (i.e. a1 6= a2). Conflicting rules induce a contradiction once
we start reasoning with evidence that renders both rules applicable: if ψ is a choice
context satisfying ψ ` ϕ1 ∧ ϕ2, then

ψ ∧ (ϕ1 → d(t)=a1) ∧ (ϕ2 → d(t)=a2) ` ⊥. (5.5)

In Section 5.2, we will discuss observability of system states and the consequences
thereof for the possibilities to apply decision rules. If the choice context ϕ in decision
rule ϕ → d(t) = a is observable, then it is straightforward for the planning agent
to determine the applicability of the rule. Otherwise, the planning agent will be
uncertain about the truth of ϕ, and straightforward application of the rule is not
possible. A solution may be found in considering a more general rule that abstracts
from unobservable variables; such a rule is called a generalisation.

Definition 5.12 (Generalisation) The decision rule ϕ1 → d(t) = a is called an
generalisation of the rule ϕ2 → d(t)=a when ϕ2 ` ϕ1.

Conversely, we say that ϕ2 → d(t)=a is a specialisation of ϕ1 → d(t)=a in that case.
Because a generalisation is less restrictive in its antecedent, a wider range of cases
will render it applicable; the rule is also less complex. When ϕ1 6≡ ϕ2, we will speak
of proper generalisation and proper specialisation, respectively.

5.1.2 Decision processes

Using the language of planning expressions, we now formally define the notion of
decision process.

Definition 5.13 (Decision process) Let B = (X,A, T ) be decision basis. A deci-
sion process for B is a joint probability distribution P on X(T ) ∪D(T ).

A decision process P describes the intertwined reaction over time of the dynamic
system to the behaviour of the planning agent and vice versa: it covers the state
changes induced by control properties of the actions chosen and the agent’s responses
to his perceptions of those changes. As such, a decision process P comprises both
a description of the planning domain and a decision-making strategy: it implements
the meta-level perspective from an external observer. Because we are concerned with
action planning under uncertainty, we have chosen to model a decision process as
a joint probability distribution on the variables of the planning domain. We will
make extensive use of the fact that all probabilistic expressions pertaining to decision
processes take arguments from the language Φ(T ).
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Definition 5.14 (Possibility) Let B = (X,A, T ) be decision basis and let P be
a decision process for B. We say that the proposition ϕ ∈ Φ(T ) is possible in P
when P (ϕ) > 0; otherwise, ϕ is impossible. Proposition ϕ is inevitable in P when
P (ϕ) = 1.

Impossibility and inevitability of propositions are extreme and usually rare conditions,
given the probabilistic nature of the planning problems that we investigate. Note that
inevitability of ϕ renders ¬ϕ impossible and vice versa.

When solving a particular problem, we will generally consider a family of related
decision processes and attempt to select the process that is expected to provide a most
satisfying fulfilment of our objectives. As each decision process implicitly defines a
decision-making strategy for the domain in question, this can also be regarded as a
procedure for plan selection. We will return to this topic in Section 5.3 on contingency
planning. In this section, we first discuss probabilistic expressions that describe
predictions in decision processes, and then investigate the relation between symbolic
decision rules and decision processes. We will throughout assume that B = (X,A, T )
is a decision basis.

State predictions and system dynamics

We distinguish two types of probabilistic expression that are centrally important
in the characterisation of decision processes: choice and state predictions. A state
prediction is a probabilistic expression with respect to the expected system at some
time point, given (partial) information on the past history of states and action choices.

Definition 5.15 (State prediction) Let P be a decision process. An expression
of the form P (cY (t) | ϕ), where ϕ ∈ Φ[0, t− 1] and Y (t) ⊆ X(t), is called a state
prediction for time point t ∈ T . If ϕ ≡ h for some history h ∈ H[0, t− 1], then the
expression is a minimal state prediction. We say that ϕ is sufficient knowledge for
state predictions for time point t ∈ T if ϕ is possible in P and

ψ ` ϕ ⇒ P (CX(t) | ψ) = P (CX(t) | ϕ) (5.6)

for all ψ ∈ Φ[0, t− 1] possible in P . When there is no other ϕ′ ∈ Φ[0, t− 1], ϕ ` ϕ′,
such that ϕ′ is also sufficient knowledge for state predictions for that time point, then
ϕ is called minimally sufficient knowledge.

The term minimal state prediction for expressions of the form P (cY (t) | h) refers to
the fact that the planning history h provides a maximum of information on the past
and therefore this type of prediction requires less predictive ‘effort’ than all other
types of state predictions. Minimal state predictions have the special property that
they provide ‘pure’ descriptions of the dynamic system under consideration, while
non-minimal state predictions also involve the effects of choices that are made by the
planning agent.



124 A framework for decision-theoretic planning

The intuition behind Equation 5.6 is as follows. If ϕ is sufficient knowledge for
predictions at time point t, then knowing ϕ is sufficient to calculate the associated
probabilities, and no additional information of the history over [0, t−1] would change
that probability. If ϕ is, in addition, minimally sufficient knowledge, then that prop-
erty does no longer hold once we remove information from ϕ. Note that each history
h ∈ H[0, t−1] that is possible in P is trivially sufficient knowledge for state predictions
at time point t, but often not minimally sufficient.

The system dynamics are deterministic in decision process P when each minimal
state prediction with respect to the complete system state is certain (i.e. either 0 or
1).

Definition 5.16 (Deterministic system dynamics) The system dynamics in de-
cision process P are said to be deterministic if for each time point t ∈ T we have

P (CX(t) | CX[0,t−1]∪D[0,t−1]) ∈ {0, 1}. (5.7)

Otherwise, the system dynamics are stochastic.

Note that the configuration template CX[0,t−1]∪D[0,t−1] in this equation is used as
a shorthand for all possible planning histories over time segment [0, t − 1]. The
assumption of deterministic system dynamics is common in the symbolic planning
formalisms that have traditionally been studied in AI. Here, we will assume that the
behaviour is generally stochastic, although it may be possible to foretell some events
with certainty.

In many planning problems it will be final state predictions that are of particular
interest. For instance, given an initial configuration S1 ∈ dom(X) of the system,
one may be interested in the probability of reaching a particular goal configuration
S2 ∈ dom(X) at the final time point t = N (i.e. a configuration that is preferred over
all others), which is expressed by the state prediction P (X(N) = S2 | X(0) = S1).
Alternatively, one may ask what that probability is if we assume that action sequence
α ∈ A(T ) is followed; the corresponding prediction is P (X(N) = S2 | X(0) = S1, α).
Generalisations to multiple (equally preferred) goal configurations, or planning with
less prior information, are straightforward.

We now recapitulate some notions from the theory of random processes within our
framework. The first notion, accessibility, concerns the possibility to travel between
state values.

Definition 5.17 (Accessibility) Let P be a decision process, let x ∈ X be a system
attribute, and let s1, s2 ∈ dom(x) be possible values of x. If

P (x(t2) = s2 | x(t1) = s1) > 0 (5.8)

for all time points t1, t2 ∈ T , t2 > t1, where x(t1) = s1 is possible, then we say that
value s2 is accessible from value s1 in P .
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An attribute is said to be progressive when the accessibility relation among its values
is limited to following a total ordering.

Definition 5.18 (Progression) System attribute x ∈ X is progressive in decision
process P when there exist a total ordering �x on its possible values such that value
s2 ∈ dom(x) is accessible from value s1 ∈ dom(x) in P only if s1 �x s2.

Values from which no further evolution is possible are called absorbing.

Definition 5.19 (Absorption) The value s ∈ dom(x) is said to be absorbing in
decision process P if neither other value of attribute x is accessible from it in P .

Note that this implies that P (x(t) = s | x(t− 1) = s) = 1 whenever x(t − 1) = s is
possible, for all non-initial time points t ∈ T . We exclude the trivial case of absorption
where x(t) = s is inevitable for all t > 0.

Proposition 5.20 A progressive attribute has absorbing values.

Proof. Let x ∈ X be a progressive attribute in decision process P , where �x is the
ordering on its possible values. The maximal element with respect to �x is only
accessible from itself. �

Definition 5.21 (Static attribute) Attribute x ∈ X is said to be static in decision
process P when all its values are absorbing in P .

A static attribute can be regarded as obtaining its value at the initial time point,
from which it never departs thereafter. Again, we exclude the trivial case where
x(t) = s is inevitable for some s ∈ dom(x) and all t ∈ T . In a medical context, the
patient’s gender, chromosome abnormalities, and chronic diseases would typically be
represented by static attributes.

It should be noted that each of the notions accessibility, progression, absorption,
and static are defined here in terms of non-minimal state predictions, and therefore
partially derive from the planning agent’s behaviour. As an example, consider the
decision process P where action a ∈ A is chosen unconditionally and with certainty
at all times (i.e. d(t) = a is inevitable for all t ∈ T ), and suppose that

P (x(t) = false | x(t− 1) = true, d(t− 1) = a) = 0 (5.9)

for some Boolean attribute x ∈ X and all time points t ∈ T , t > 0. Then, the value
false is not accessible from the value true. Moreover, the attribute x is progressive and
has absorbing value true. Yet, all these properties might not have hold were another
decision-making strategy employed in process P . It would therefore be premature to
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think of these properties as pertaining to the dynamic system only: they also stem, in
part, from the planning agent’s behaviour. We will return to this topic in Section 5.2,
where the notions are generalised to properties of dynamic systems.

We conclude the discussion of state predictions and system dynamics by remarking
that our formalisation of decision-theoretic planning also allows for the reverse type
of reasoning. That is, instead of predicting a system state in the future, we can also
derive what has probably occurred in the past. For instance, consider once again the
goal state S2 ∈ dom(X) in decision process P . By inspecting probabilities of the form
P (X(0) = S1 | X(N) = S2), we can get a feeling for which initial states S1 ∈ dom(X)
are likely to lead to the goal S2, given the decision-making strategy implemented by
P .

Choice predictions and planning behaviour

A choice prediction is a probabilistic expression with respect to the expected decision
at some time point, given (partial) information on the past history of states and
action choices and the contemporaneous system state.

Definition 5.22 (Choice prediction) Let P be a decision process. An expression
of the form P (cd(t) | ϕ), where ϕ is a choice context for time point t ∈ T , is called
a choice prediction for that time point. If ϕ ≡ c for some configuration c of the set
X[0, t] ∪D[0, t− 1], then the expression is a minimal choice prediction. We say that
ϕ is sufficient knowledge for choice predictions for time point t ∈ T if ϕ is possible
in P and

ψ ` ϕ ⇒ P (Cd(t) | ψ) = P (Cd(t) | ϕ) (5.10)

for all choice predictions ψ for time point t that are possible in P . When no other
choice context ϕ′ for t, ϕ ` ϕ′, is also sufficient knowledge for choice predictions for
that time point, then ϕ is called minimally sufficient knowledge.

Choice predictions essentially encode the behaviour of the planning agent in a decision
process. This behaviour is deterministic when each minimal choice prediction is
certain; otherwise his behaviour is (at least partially) randomised.

Definition 5.23 (Deterministic planning behaviour) A decision process P is
said to comprise deterministic planning behaviour if for each time point t ∈ T we
have

P (Cd(t) | CX[0,t]∪D[0,t−1]) ∈ {0, 1}. (5.11)

Otherwise, the process comprises randomised planning behaviour.

Note that this condition implies that all choice predictions based on sufficient knowl-
edge are certain.
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We will generally not consider randomised behaviours as satisfying solutions to plan-
ning problems, but similar to incomplete contingency plans, there exists a theoretical
interest for them as intermediate representations during problem solving. If both the
dynamics of the system and the planning agent’s behaviour are deterministic, and the
marginal distribution over initial system states is degenerate, then P is also degener-
ate and it is possible to make all state and choice predictions with certainty. These
conditions therefore obviate the usage of probability distributions (or any other repre-
sentation of uncertainty) in the formalisation. In any other case, there exist uncertain
state and choice predictions.

Proposition 5.24 Let P be a decision process with deterministic planning behaviour.
Then, for all time points t ∈ T and state sequences σ ∈ S[0, t] that are possible in P
there exists a unique action sequence α ∈ A[0, t] having P (α | σ) = 1.

Proof. We will prove this property by induction on T . First, let t = 0. Then P (α | σ)
is a minimal choice prediction for each α ∈ A[0, t], and there can only be one state
sequence α ∈ A[0, t] having P (α | σ) = 1, whereas it is zero for all others. Now,
suppose that the property holds for time points 0, . . . , t, t < N . Let σ ∈ S[0, t] be
a state sequence with P (σ) > 0 and let α ∈ A[0, t] be the unique action sequence
such that P (α | σ) = 1. Consider a state sequence σ ∧ cX(t+1) ∈ S[0, t+ 1] for which
P (σ∧ cX(t+1)) > 0. Again we have that P (cd(t+1) | α∧σ∧ cX(t+1)) is a minimal choice
prediction for each cd(t+1) ∈ Ωd(t+1), and is therefore deterministic; let cd(t+1) be the
unique action choice for which the prediction is certain. It now follows that

P (α ∧ cd(t+1) | σ ∧ cX(t+1)) = P (cd(t+1) | α ∧ σ ∧ cX(t+1)) · P (α | σ ∧ cX(t+1))

= P (cd(t+1) | α ∧ σ ∧ cX(t+1)) · P (α | σ)

= 1, (5.12)

and P (α′ ∧ c′d(t+1) | σ ∧ cX(t+1)) = 0 for all other α′ ∧ c′d(t+1) ∈ A[0, t+ 1]. �

We will now relate the planning behaviour that is explicitly described by decision
rules to the behaviour that is implicitly present in decision processes.

Definition 5.25 (Implementation) Decision process P is said to implement the
decision rule ϕ→ cd(t) when ϕ→ cd(t) is inevitable in P ; the implementation is strict
if in addition ϕ is possible.

Implementation of decision rule ϕ→ cd(t) by decision process P refers to the situation
where the logical implication of action choice cd(t) in choice context ϕ is acknowledged
by the fact that P (ϕ→ cd(t)) = 1. The next proposition serves to sharpen the intu-
itions for this concept a bit further.

Proposition 5.26 Let P be a decision process. The following statements are equiv-
alent:
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1. P implements the decision rule ϕ→ cd(t);

2. P (ϕ ∧ cd(t)) = P (ϕ); and

3. P (ϕ ∧ ¬cd(t)) = 0.

Proof. Using the marginalisation property P (cd(t)) = P (ϕ∧ cd(t)) + P (¬ϕ∧ cd(t)), we
find that the first two statements are equivalent as

P (ϕ→ cd(t)) = P (¬ϕ ∨ cd(t))

= P (¬ϕ) + P (cd(t))− P (¬ϕ ∧ cd(t))

= P (¬ϕ) + P (ϕ ∧ cd(t))

= 1− P (ϕ) + P (ϕ ∧ cd(t)), (5.13)

and therefore

P (ϕ→ cd(t)) = 1 ⇔ P (ϕ ∧ cd(t))− P (ϕ) = 0

⇔ P (ϕ ∧ cd(t)) = P (ϕ). (5.14)

Equivalence of the first and third statements follows from the fact that

¬(ϕ→ cd(t)) ≡ ¬(¬ϕ ∨ cd(t))

≡ ϕ ∧ ¬cd(t),

and so

P (ϕ ∧ ¬cd(t)) = 1− P (ϕ→ cd(t)).

�

As appears from the proof, decision rule implementation is a trivial matter when ϕ
is impossible in P , because then P (ϕ ∧ ψ) = 0 for any proposition ψ ∈ Φ(T ), and
any decision rule having ϕ as its antecedent is thus implemented by P . For this
reason, it is often useful to require strict implementation, where P (ϕ) > 0, and so
Equation 5.14 can be rewritten to

P (cd(t) | ϕ) = 1. (5.15)

Proposition 5.27 If decision process P implements decision rule ϕ→ d(t)=a, then
it also implements each specialisation of that rule.

Proof. Let ψ → d(t) = a be a specialisation of ϕ → d(t) = a, i.e. ψ is a choice
context for time point t such that ψ ` ϕ. If ϕ is impossible in P , then so is ψ,
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and P (ψ ∧ d(t)=a) = 0; hence, ψ → d(t) = a is trivially implemented by P . If ϕ is
possible in P , then

P (ψ) = P (ψ ∧ ϕ) (as ψ ` ϕ)

=
∑

cd(t)∈Ωd(t)

P (ψ ∧ ϕ ∧ cd(t)) (marginalisation)

=
∑

cd(t)∈Ωd(t)

P (ψ | ϕ ∧ cd(t)) · P (cd(t) | ϕ) · P (ϕ) (chain rule)

= P (ψ | ϕ ∧ d(t)=a) · P (ϕ) (Equation 5.15)

=
P (ψ ∧ ϕ ∧ d(t)=a)

P (ϕ ∧ d(t)=a)
· P (ϕ) (conditional prob.)

= P (ψ ∧ ϕ ∧ d(t)=a) (Proposition 5.26)

= P (ψ ∧ d(t)=a), (as ψ ≡ ψ ∧ ϕ)

so the rule ψ → d(t)=a is then also implemented by P . �

Note that P may strictly implement the rule ϕ→ d(t)=a, but that the implementa-
tion of some (or all) of its specialisations may be non-strict.

Corollary 5.28 If decision rule ϕ→ d(t)=a is strictly implemented by decision pro-
cess P , then its antecedent ϕ is sufficient knowledge for choice predictions at time
point t in P .

Proof. This follows immediately from the fact that all specialisations of the rule are
also implemented by P . �

It is also easily seen that if decision process P implements the decision rule ϕ →
d(t) =a and ϕ is minimally sufficient knowledge for choice predictions at time point
t (implying that the implementation is strict), then there is no proper generalisation
of the rule that is also implemented by P .

5.2 Control and observation

We now turn to models that describe the effects of action choices on the evolution of
the dynamic system under consideration, and to models that describe their effects on
the planning agent’s knowledge of that system. The former type of model is called a
control model ; the latter type is called an observation model. Throughout we assume
B = (X,A, T ) to be a decision basis.



130 A framework for decision-theoretic planning

5.2.1 Models of control

A model of control describes the stochastic behaviour of the dynamic system over
time under different action regimes.

Definition 5.29 (Control model) A control model for decision basis B is a set
Ξ = {ξα | α ∈ A(T )} of probability distributions on X(T ), where for all time points
t ∈ T and all actions sequences α1, α2 ∈ A(T ) we have

ξα1(CX[0,t]) = ξα2(CX[0,t]) (5.16)

whenever α1 and α2 are identical over time segment [0, t− 1].

The effects of a given action sequence α ∈ A(T ) on the dynamic system is expressed by
the probability distribution ξα ∈ Ξ on X(T ); we refer to ξα as the control distribution
for sequence α. As control distributions describe how the dynamic system will react
to choosing action sequences, we can infer how the planning agent exerts control over
that system by comparing different control distributions. Because we have assumed
that

X(0), d(0), X(1), d(1), . . . , X(N), d(N) (5.17)

is the alternating sequence events and choices in a decision process, it is not possible
for an action choice at time point t ∈ T or thereafter to influence the uncertain events
at time points 0, . . . , t: these events have then already been realised as the past
sequence of system states. The resulting restriction on models of control, expressed
in Equation 5.16, is therefore that the marginal distributions on X[0, t] induced by
action sequences α1 and α2 are the same when α1(i) = α2(i) for all i = 0, . . . , t − 1.
Note that the action choice at time point t = N will not influence any system state.

A result from this property, that actions in the present and future cannot change the
system in the past, is that each partial action sequence over some segment [0, t− 1],
t ∈ T , induces a unique probability distribution over X[0, t]: no knowledge of further
actions would help to predict the system’s states so far. As it is often convenient to
be able to refer to such distributions directly, we introduce a separate notation for
them.

Notation 5.30 Let Ξ be a control model for decision basis B, and let t ∈ T be a
point in time. Given an action sequence α ∈ A[0, t − 1], we use ξtα to denote the
unique probability distribution on X[0, t] induced by Ξ.

That is,

ξtα(CX[0,t]) = ξα′(CX[0,t]) (5.18)
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for all α′ ∈ A(T ) that extend α, i.e. α′ ` α. A special case is found at the initial time
point t = 0; here, the only possible action sequence is the empty action sequence α̌.
As such, ξ0

α̌ specifies the unique distribution on initial system states, which withdraws
from control by the planning agent.

It should be noted that the restriction from Equation 5.16 does not hold for decision
processes. Decision processes implement the perspective of an external observant that
regards system and agent involved in their interaction. For the observant, seeing that
the planning agent decides to choose d(t) = a, a ∈ A, provides indirect information on
earlier system states if he is aware of the planning agent’s decision-making strategy.
For instance, if the planning agent is known to choose d(t) = a only when x(t− 1) = s,
x ∈ X, s ∈ dom(x), then observing decision d(t) = a will make the external observant
infer that x(t− 1) = s holds. This will even apply if all action choices over time
segment [0, t−1] were already known. So, while action choices cannot change the past,
they can change an external observant’s beliefs with respect to the past. The effects
of the agent’s choices can furthermore be perfectly in line with the specifications of
a control model; we will shortly return to this issue.

We will assume the general form of Definition 5.29 for control models, although it
is not practical for concrete applications of the framework. Its complexity stems
from the fact that it provides an extensional description of the effects of all possible
actions on all possible state variables over time, and that no attempt is made to
avoid such descriptions for state variables that essentially remain unaffected. A more
manageable control specification would typically use smaller descriptions, building on
one or more frame axioms, assumptions of unaffectedness for variables not mentioned
in the description (McCarthy and Hayes, 1969). We return to this subject in due
course.

A control model Ξ is said to be strictly positive when

ξα(CX(T )) > 0 (5.19)

for all control distributions ξα ∈ Ξ. In words, this means that “everything is always
possible” with respect to the dynamic system. In a mathematical sense, this is a
convenient condition, but it will often be regarded as unnatural in real-world settings;
we will only assume it when explicitly stated so.

Control and decision processes

Given a control model Ξ, we say that decision process P is compliant with (or complies
with) that model when its probabilities are fully consistent with the ones provided
by the model.

Definition 5.31 (Control compliance) Decision process P is compliant with con-
trol model Ξ when

P (CX(T ) | α) = ξα(CX(T )) (5.20)
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for each action sequence α ∈ A[0, t− 1] that is possible in P .

The control model can then be regarded as providing one ‘half’ of the decision process,
the behaviour of the dynamic system.

Proposition 5.32 A control model determines all minimal state predictions in a
decision process.

Proof. Let Ξ be a control model for decision basis B = (X,A, T ), and let P be a
compliant decision processes. Furthermore, let t ∈ T , h ∈ H[0, t− 1], and cX(t) ∈
ΩX(t). If t = 0, then h is empty and

P (cX(t) | h) = ξ0
α̌(cX(t)). (5.21)

If t > 0, we write h ≡ σ ∧ α, and

P (cX(t) | h) =
P (cX(t) ∧ σ ∧ α)

P (σ ∧ α)

=
P (cX(t) ∧ σ | α) · P (α)

P (σ | α) · P (α)

=
P (cX(t) ∧ σ | α)

P (σ | α)

=
ξtα(σ ∧ cX(t))

ξt−1
α′ (σ)

(5.22)

where α′ ∈ A[0, t− 2] is the action sequence obtained by removing α(t− 1) from α.
The equality P (σ | α) = ξt−1

α′ (σ) follows from the requirement in Definition 5.29 that
the action choice at time point t − 1 cannot influence the states at preceding time
points. �

When two decision processes both comply with the same control model, then they
will have the same minimal state predictions and we say they are control-equivalent.
Note that not necessarily all state predictions are the same in these decision processes:
non-minimal predictions will generally differ as they also depend on the implemented
behaviour of the planning agent.

Notation 5.33 Given a control model Ξ, we will use

• PΞ to denote the set of all decision processes that comply with it, and

• P det
Ξ to denote its proper subset of decision processes with deterministic planning

behaviour.

Note that the set PΞ is uncountable as it comprises all decision process with ran-
domised planning behaviour; the set P det

Ξ is finite.
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System dynamics revisited

Given the relation between models of control and decision processes, we can now
reconsider the notions of accessibility and progression, absorption, and static attribute
(Definitions 5.17, 5.18, 5.19, and 5.21, respectively). These notions have been defined
above for decision processes, but allow for straightforward generalisations to models
of control.

Given a model of control Ξ and a system attribute x ∈ X, we will say that value
s2 ∈ dom(x) is accessible from value s1 ∈ dom(x) under Ξ when there exists an action
sequence α ∈ A(T ) such that

ξα(x(t2) = s2 | x(t1) = s1) > 0 (5.23)

for all time points t1, t2 ∈ T , t2 > t1, where ξα(x(t1) = s1) > 0. This is equivalent to
the statement that there exists a compliant decision process P in which s2 is accessible
from s1, as is expressed by the next proposition.

Proposition 5.34 Let Ξ be a control model, let x ∈ X be a system attribute, and
let s1, s2 ∈ dom(x) be possible value of x. Then, s2 is accessible from value s1 under
Ξ if and only if there exists a decision process P ∈ PΞ in which s2 is accessible from
value s1.

Proof. (⇒) Let α ∈ A(T ) be an action sequence for which

ξα(x(t2) = s2 | x(t1) = s1) > 0 (5.24)

for all time points t1, t2 ∈ T , t2 > t1, where ξα(x(t1) = s1) > 0, and let P be a
decision process that complies with Ξ and in which α is inevitable, i.e. P (α) = 1.
Then, P ∈ PΞ and s2 is accessible from s1 in P .
(⇐) Let P ∈ PΞ be a decision process such that

P (x(t2) = s2 | x(t1) = s1) > 0 (5.25)

for all time points t1, t2 ∈ T , t2 > t1, where x(t1) = s1 is possible. Then, there must
exist an action sequence α ∈ A(T ) that is possible in P and

P (x(t2) = s2 | x(t1) = s1, α) > 0 (5.26)

for t1, t2 as above, and as P complies with Ξ, we then also find that

ξα(x(t2) = s2 | x(t1) = s1) > 0. (5.27)

Hence, s2 is accessible from s1 under Ξ. �

The notion of progression is now generalised to models of control by taking it to be
applicable to attribute x when there exists a total ordering �x on its possible values
such that value s2 is accessible from value s1 under model Ξ only if s1 �x s2.
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Corollary 5.35 The attribute x ∈ X is progressive under control model Ξ if and
only if it is progressive in each decision process P ∈ PΞ.

Proof. Directly from Proposition 5.34 and the generalised notion of progression. �

Note that attribute x may be progressive in some compliant decision processes al-
though it is generally not progressive under control model Ξ; this is then due to the
behaviour of the planning agent in these processes. It does imply that the model
Ξ allows for this type of control, and that the system dynamics are to some extent
deterministic.

We say that the value s ∈ dom(x) absorbing under control model Ξ if neither other
value of attribute x is accessible from it under Ξ. As with decision processes, we
exclude the trivial case of absorption where ξα(x(t) = s) = 1 for all ξα ∈ Ξ and all
t ∈ T .

Corollary 5.36 The value s ∈ dom(x) is absorbing under control model Ξ if and
only if it is absorbing in each decision process P ∈ PΞ.

Proof. Directly from Proposition 5.34 and the generalisation of absorption. �

Again there may be compliant decision processes in which s is absorbing while this
does not hold in general under the given control model. In such decision processes,
the planning agent is apparently holding x in value s once this value has been reached.
Such a decision-making strategy may be employed when s is strongly preferred over
the other values of x.

The notion of static attribute finally, is generalised by taking it to be applicable to
x under control model Ξ when all its values are absorbing under Ξ. Here we again
exclude the trivial case where ξα(x(t) = s) = 1 for some s ∈ dom(X) and all ξα ∈ Ξ,
t ∈ T .

Corollary 5.37 Attribute x ∈ X is static under control model Ξ if and only if it is
static in each decision process P ∈ PΞ.

Proof. Directly from Proposition 5.34 and the generalised notion of static. �

Unresponsiveness and influence

We now turn to control relations at the level of individual actions and state vari-
ables. These relations concern the question whether action choices can influence a
given state variable, and if so, the extend to which this is possible. The basis for
investigating these relations is provided by the notion of unresponsiveness, which is
due to (Heckerman and Shachter, 1995).
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Definition 5.38 (Unresponsiveness) Let Ξ be a model of control, let t ∈ T be a
time point, and let Y, Z ⊆ X[0, t]. We say that the set Y is conditionally unresponsive
to a choice between action sequences α1, α2 ∈ A[0, t− 1] given Z when

ξtα1
(CY | CZ) = ξtα2

(CY | CZ). (5.28)

When Z = ∅, we say that Y unconditionally unresponsive to that choice.

In words, this means that knowing which of these action sequences was chosen does
not influence our beliefs with respect the set Y once we know the configuration of Z.
The condition can also be formulated as

P (CY | CZ , α1) = P (CY | CZ , α2) (5.29)

for all decision processes P ∈ PΞ where both α1 and α2 are possible. It is trivially true
when Y ⊆ Z; in all other cases, it provides us with information regarding the influence
of action choices on state variables. For instance, if the set Y is unconditionally
unresponsive to choosing between any pair action sequences, then Y is apparently
completely beyond the decision maker’s control. In the special case where Y = x(T )
for some system attribute x ∈ X, we will say that this attribute is uncontrollable.

Definition 5.39 (Controllability) We say that system attribute x ∈ X is uncon-
trollable when x(T ) is unconditionally unresponsive to a choice between any pair of
action sequences from A(T ).

Unresponsiveness is a rather course-grained notion as it considers the relation between
complete action sequences and sets of state variables. One will often be interested
in control relations between individual action choices and state variables. A first
step towards describing these relations is made by the notion of influence, where the
decisional side of the relation is limited to a single action choice.

Definition 5.40 (Influence) Let Ξ be a model of control, let t1, t2 ∈ T be time
points where t1 < t2, and let Y, Z ⊆ X[0, t2]. We say that the set Y is conditionally
uninfluenced by the action choice at time point t1 given Z, when Y is conditionally
unresponsive given Z to a choice between any pair α1, α2 ∈ A[0, t2 − 1] of action
sequences satisfying α1(t) = α2(t) for all t = 0, . . . , t1 − 1, t1 + 1, . . . , t2 − 1.

In words, this means that knowing the action choice at time point t1 does not influence
our beliefs with respect the set Y once we know the configuration of Z. The condition
can also be formulated as

P (CY | CZ , d(t1) = a1) = P (CY | CZ , d(t1) = a2) (5.30)

for all decision processes P ∈ PΞ and all actions a1, a2 ∈ A. Again, it is trivially
true when Y ⊆ Z, but highly informative in other cases. Statements of the form of
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Equation 5.30 are sometimes regarded as frame axioms, as they identify aspects of the
system that are not changed by certain decisions under given conditions, (Darwiche
and Pearl, 1994). Examples are the Markov assumption in Markov decision processes
and the conditional independency statements depicted by the graph of an influence
diagram; we will return to this topic in Section 5.5.

Given a particular decision d(t1) ∈ D(T ), we now identify three types of state vari-
ables: those that are never influenced by the decision, those that may be uninfluenced
if we have enough information, and those that remain to be influenced even if we know
all other variables.

Definition 5.41 (Affectedness) Let Ξ be a model of control, and let t1, t2 ∈ T be
time points.

• State variable x(t2) is unaffected by decision d(t1) when {x(t2)} is uncondition-
ally uninfluenced by that choice.

• State variable x(t2) is indirectly affected by decision d(t1) when x(t2) is not
unaffected but {x(t2)} is conditionally uninfluenced by that choice given the set
X[0, t2] \ {x(t2)}.

• Otherwise, x(t2) is directly affected by the choice.

Note that x(t2) is definitely unaffected by the action choice at time point t1 when
t1 ≥ t2, as we have required in the definition of control models that the past cannot
be changed. The same holds when attribute x is uncontrollable, as is stated by the
next proposition.

Proposition 5.42 If system attribute x ∈ X is uncontrollable, then for each time
point t ∈ T , state variable x(t) is unaffected by all decisions.

Proof. If there were some x(t) ∈ X(T ) that was not unaffected by all decisions, then
{x(t)} would be responsive to a choice of action sequence, contradicting the definition
of uncontrollability. �

If state variable x(t2) is affected by the action choice at time point t1, this may proceed
in a direct and in an indirect fashion. In the latter case, the effect of the decision on
x(t2) can be regarded as a ramification of the effect on one or more directly affected
state variables, (Dean and Wellman, 1991). The variable x(t2) must therefore be
related to one or more of these directly affected state variables.

Proposition 5.43 Let Ξ be a model of control, and let t1, t2 ∈ T be time points. If
variable x(t2) is indirectly affected by the decision at time point t1, then there exists
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a state variable x′(t3) ∈ X[0, t2] \ {x(t2)} that is directly affected by the decision, and
a decision process P ∈ PΞ where

{x(t2)} 6⊥⊥P {x′(t3)} | {d(t1)}. (5.31)

Proof. Suppose that

{x(t2)}⊥⊥P {x′(t3)} | {d(t1)} (5.32)

for all decision processes P ∈ PΞ and all state variables x′(t3) ∈ X[0, t2] \ {x(t2)}.
Then also

{x(t2)}⊥⊥P X[0, t2] \ {x(t2)} | {d(t1)} (5.33)

for all decision processes P ∈ PΞ. Yet, as x(t2) is indirectly affected by the decision,
we have

{x(t2)}⊥⊥P {d(t1)} | X[0, t2] \ {x(t2)} (5.34)

for all decision processes P ∈ PΞ. Therefore, variable x(t2) must be unconditionally
independent of decision d(t1). This contradicts the assumption that x(t2) is indirectly
affected, and therefore not unaffected, by the action choice at time point t1. �

We conclude this section with noting that direct and indirect affectedness are proper-
ties of control models that cannot necessarily be retraced in every compliant decision
process. For instance, in some decision processes all system attributes may occupy an
absorbing state at the very beginning, preventing any change and therefore any in-
fluence from the planning agent. Furthermore, knowing that such relations hold in a
given model of control is, in general, insufficient for drawing conclusions with respect
to state dynamics: the underlying attributes of affected and unaffected variables may
exhibit all types of behaviour over time, ranging from complete inertia to permanent
change. Another point to note (again) is that decision processes encode responses of
the system to the decision-making behaviour of the planning agent and the agent’s
responses to observed system states. As a result, knowing that the planning agent
chose action a ∈ A at time point t ∈ T will not only influence our beliefs with respect
to present and future state variables that are known to be affected by that decision,
but also with respect to past state variables that are known to have influenced the
planning agent’s decision.

5.2.2 Models of observation

We will now formulate the notion of observability within our framework. As in the
POMDP formalism, it is assumed that action choices may yield the opportunity to
inspect part of the system state. Whereas in POMDPs such opportunities immedi-
ately follow the action choices, our definition is more loose and allows for more types
of observability.
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Definition 5.44 (Observation model) Let B = (X,A, T ) be a decision basis. An
observation model for B is a set O = {ot | t ∈ T} of functions

ot : A[0, t− 1]→ ℘(X[0, t]). (5.35)

We refer to ot ∈ O as the observation function for time point t ∈ T . The set ot(α) ⊆
X[0, t] of state variables can be observed by the planning agent at that time point,
given that he performed the action choices in sequence α ∈ A[0, t− 1]. A special case
is the observation function for the initial time point t = 0, which is essentially typed

o0 : {α̌} → ℘(X(0)). (5.36)

This function provides the subset of observable variables from X(0) before any de-
cision has been made; following the terminology of Chapter 3, we will refer to o0(α̌)
as the set of case parameters. Furthermore, note that no observation function takes
the last decision (at time point t = N) into account; this decision is therefore not
only uninfluential with respect to the system’s evolution, but also with respect to
observability.

Assumption 5.45 (Monotonicity of observation) We take each observation mo-
del O to be monotonic, i.e.

ot(α) ⊆ ot+1(α ∧ d(t) = a) (5.37)

for all time points t ∈ T , t < N , action sequences α ∈ A[0, t − 1], and each action
a ∈ A.

Monotonicity of observation means that observability persists through time: ot(α)
remains observable at future time points under any additional action choices. This is
comparable to the ‘no-forgetting’ property (Definition 4.11 on page 89) in influence
diagrams.

The typical kind of planning behaviour in our framework can now be described as
follows. At time point t = 0, the planning agent observes the state of the set of
case parameters Y0 = o0(α̌). Let ψ0 ∈ ΩY0 denote the observed configuration of
Y0; we refer to ψ0 as evidence. We can also regard ψ0 as a choice context for time
point t = 0; it is indeed the choice context that is used by the planning agent to
select his first action, say a0 ∈ A. The action choice extends his knowledge of the
decision process to ψ0 ∧ d(0) = a0. In addition, he is now able to observe the state
of the variables in Y1 = o1(d(0) = a0) \ Y0 (the set Y0 remains observable because of
the assumption of monotonicity, but it does not add new information). Let ψ1 be
the observed configuration of Y1. The joint evidence now available is ψ0 ∧ ψ1; the
planning agent’s knowledge of the decision process equals ψ0 ∧ d(0) = a0 ∧ ψ1. It is
this knowledge, a choice context for time point t = 1, that is used to make the next
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decision. This procedure continues to the final decision moment, each time extending
the planning agent’s information on past and present.

We do note that it is well possible that the planning agent does not always use all his
knowledge in choosing his actions. He may be convinced that some evidence, or some
earlier decisions, have become irrelevant for the planning of future actions in the light
of other knowledge. Of course, there may also be practical reasons for such ignorance
in the planning process: as time proceeds, the wealth of available information may
exceed the computational capacity of the agent. In either case, the complexity of
decision rules used by the planning agent is smaller than what is potentially possible,
and sufficient knowledge for predictions regarding the agent’s action choices is easier
obtained than one might theoretically expect.

Manifest and hidden variables

From the coarse grained definition of observability above we now derive a more del-
icate relation between individual decisions and state variables. We say that a state
variable is manifest (at a given time point) under some decision when that decision
leads to observability of that state variable.

Definition 5.46 (Manifestness) Let O = {ot | t ∈ T} be an observation model for
decision basis B = (X,A, T ), let t1, t2, t3 ∈ T be arbitrary time points, where t1 < t3.

• State variable x(t2) ∈ X(t2) is called manifest at time point t3 under decision
d(t1) = a when x(t2) ∈ ot3(α) for each action sequence α ∈ A[0, t3 − 1] having
α(t1) = a.

• State variable x(t2) is called potentially manifest at time point t3 when there
exists an action sequence α ∈ A[0, t3 − 1] such that x(t2) ∈ ot3(α).

• State variable x(t2) is called absolutely manifest at t3 when x(t2) ∈ ot3(α) for
all action sequences α ∈ A[0, t3 − 1].

Note that any form of manifestness implicitly requires that t2 ≤ t3 (“we cannot glance
into the future”). Potential manifestness of state variable x(t2) means that it is
possible to choose an action sequence such that the variable is observable at time
point t3. State variables that lack this property withdraw from observation in all
scenarios and are said to be hidden at time point t3. Absolute manifestness of state
variable x(t2) means that one can always observe its value at time point t3, irrespective
of the actions chosen. This holds, for instance, always for the set of case parameters.

Proposition 5.47 Let O be an observation model. All variables from the set o0(α̌),
the case parameters under O, are absolutely manifest at all time points.
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Proof. Directly from the assumption of observational monotonicity. �

Potential and absolute manifestness actually coincide at the initial time point, as
observability withdraws from the planning agent’s influence there.

Example 5.48 In a clinical setting, potentially manifest variables typically describe
signs and symptoms of disease and outcomes of diagnostic tests. It depends on the
formalisation of the planning problem that is faced by the treating clinician whether
such variables are also absolutely manifest. If each decision moment denotes a point
in time where the patient is seen by the clinician, then all symptoms are absolutely
manifest at all times. In contrast, when part of the planning problem is to decide
when the patient should visit the clinic, then these variables are manifest only upon
such visits.

There are some further subtleties to be noted when state variable x(t2) is manifest
at time point t3 under decision d(t1) = a; these subtleties are related to time. For
clarity, we assume that decision d(t1) = a is not only a sufficient but also a necessary
condition for the manifestness of x(t2) at time point t3 just now, i.e. x(t2) ∈ ot3(α)
only if α(t1) = a. When t2 < t1, this means that the decision allows to inspect x(t2)
with hindsight, where it was previously unobservable; we can think of seeing the light
of a star that has actually ceased to exist already. When t1 = t2, observing x(t2)
coincides with the moment of action; this is what we find in POMDPs. When t2 > t1
finally, there is a time lag between the decision and the actual moment of observation.
In a medical setting, this occurs for instance with the decision to apply cell cultures
for inspecting body tissue.

Below, we will first investigate the role of observations in action planning, and then
the relation between observability and decision processes.

Verifiable choice contexts and operational rules

A most important aspect of observability relates to contingency planning. An obser-
vation model specifies which information on the dynamic system potentially belongs
to the planning agent’s knowledge: such information can therefore be used in making
decisions.

Definition 5.49 (Verifiability) Let O be an observation model and let ϕ be a choice
context for time point t3 ∈ T . We say that ϕ is verifiable under O when each state
variable x(t2) ∈ X[0, t3] covered by ϕ is manifest at t3 under some decision cd(t1) where
ϕ ` cd(t1).

Note that again we may have either t1 < t2, t1 = t2 or t1 > t2. The empty choice con-
text > is trivially verifiable under each observation model. From all other verifiable
choice contexts we can obtain (strictly) smaller choice contexts that are also verifiable
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by removing evidence, or, when the choice context does not contain evidence, deci-
sions. The converse is not true: we cannot always extend a verifiable choice context
to obtain a great choice context that is also verifiable. In those cases, the context in
question represents maximal information for the next decision from the viewpoint of
the planning agent. These choice context have the form α ∧ cZ , where α ∈ A[0, t− 1]
and cZ ∈ ΩZ , Z = ot(α).

If choice context ϕ in decision rule ϕ → d(t) = a is verifiable under a given obser-
vation model O, then it is straightforward for the planning agent to determine the
applicability of the rule; we say that the rule is operational under O.

Definition 5.50 (Operationality) Let O be an observation model. A decision rule
δ is operational under O when that model renders the antecedent of δ verifiable;
otherwise, the rule is non-operational under O.

From the above observation that each verifiable choice context subsumes smaller
choice contexts that are also verifiable, we can conclude that each operational decision
rule has operational generalisations.

Observability and decision processes

We have seen in Subsection 5.1.2 that decision processes implicitly define the plan-
ning agent’s behaviour. We will now examine the relation between observability and
this implicit behaviour; more specifically, we will examine the extent to which this
behaviour is truly based on the planning agent’s knowledge under a given observation
model.

Recall that the notion of sufficient knowledge from Definition 5.22 provides a means to
discover the information that is used in planning decisions in a given decision process
P . If choice context ϕ is sufficient knowledge for choice predictions at time point
t ∈ T , then adding more information to ϕ will not help to improve those predictions.
For instance, if the planning behaviour is deterministic, then knowing ϕ is sufficient
to determine the action choice at time point t with certainty, but this does not hold
for choice contexts with less information. If, in addition, ϕ is minimally sufficient
knowledge, then we cannot leave out any of the information in ϕ without introducing
more uncertainty in the predictions. Therefore, if ϕ is minimally sufficient knowledge
but not verifiable under a given observation model O, this behaviour could not be
implemented by the planning agent.

This brings us to the following definition.

Definition 5.51 (Observational compliance) We say that decision process P is
compliant with observation model O, if a choice context ϕ is verifiable under O
whenever it is minimally sufficient knowledge for choice predictions at some time
point.
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Notation 5.52 Let Ξ and O be control and observation models, respectively. We use

• PO to denote that the set of all decision processes that are compliant with O,

• P det
O to denote that the set of all decision processes with deterministic planning

behaviour that are compliant with O, and

• P det
Ξ,O = P det

Ξ ∩P det
O to denote the set of all decision processes with deterministic

planning behaviour that are compliant with both Ξ and O.

Proposition 5.53 Let O be an observation model and let P ∈ PO. If P strictly
implements the decision rule δ and none of its proper generalisations, then δ is oper-
ational under O.

Proof. Assume that δ ≡ ϕ → cd(t). As the implementation of δ is strict, we know
that P (ϕ) > 0. From Corollary 5.28 on page 129, we also know that ϕ is sufficient
knowledge for choice predictions at time point t. Now suppose that ϕ is not verifiable
under O and hence the rule is not operational. Apparently, ϕ is not minimally
sufficient knowledge for choice predictions at time point t. This contradicts the
assumption that no proper generalisation of δ is implemented by P . �

Note that if decision process P implements a rule δ non-strictly, then that rule is not
guaranteed to be operational under model O. However, this is not problematic as its
antecedent is impossible in that process, and therefore the rule is not applied.

5.3 Contingency planning

In this section we investigate the notion of contingency plan. Such a plan prescribes
decision-making behaviour for a large number of situations in a planning problem
under uncertainty. Recall from Section 5.1 that decision rules express action choices
contingent upon preceding events and decisions. We define a set of decision rules for
mutually exclusive situations to be a contingency plan, or plan for short.

Definition 5.54 (Plan) A contingency plan is a set π of decision rules, where for
each pair ϕ1 → cd(t1), ϕ2 → cd(t2) ∈ π of rules we have either t1 6= t2 or ϕ1 ∧ ϕ2 ≡ ⊥.

A contingency plan π prescribes action choices for a collection of choice contexts
in a given planning domain. We require that all rules for a given time point have
mutually incompatible antecedents; a plan can therefore not contain conflicting rules
or generalisations of its own rules. We note that the size of a plan π may (and often
will) exceed the length of time frame T , as many decision rules for a single time point
can co-exist without being conflicting: these rules then prescribe action choices for
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different contexts. Furthermore, informational asymmetry in the decision problem is
easily handled by varying the observed state variables in rules’ antecedents with the
actions chosen.

The motivation to describe planning behaviour by sets of decision rules is twofold.
First, this notion of plan is very flexible as it allows for describing planning behaviour
at varying levels of complexity. Within a single plan, some decision rules may consider
a large number of past actions and observations in their antecedent, whereas others
consider only a few. This is a significant difference with the representation formalisms
of Chapter 4, where plans consist of sets of functions, and each of these functions has
a fixed complexity. Second, as a plan is a set of rules, we can construct a plan by
iteratively adding decision rules for arbitrary time points and choice contexts. This
paves the way for new algorithms for decision-theoretic planning that are based on
manipulation of symbolic structures.

Below, we first define a partial ordering on contingency plans and a normal form
of plans (Subsection 5.3.1), and subsequently discuss the relation between contin-
gency plans and decision processes (Subsection 5.3.2), the notion of plan complete-
ness (Subsection 5.3.3), and finally the operationality of plans under a given model
of observation (Subsection 5.3.4).

5.3.1 Plan ordering and normal form

In this subsection, we define an ordering relation on the set of all contingency plans
for a given decision basis. In addition, a notion of plan equivalence, and a normal
form of plans are introduced.

We will start with defining the notion of coverage, which provides the basis for com-
paring contingency plans. The underlying idea is that a given choice context ψ for
time point t ∈ T essentially represents a multitude of more specific contexts – that
is, unless ψ is a most specific choice context for that time point. Recall that ψ is
most specific when it is a configuration of the set X[0, t] ∪D[0, t− 1]; otherwise, more
specific contexts are obtained by adding information to ψ.

We now say that context ψ is covered by a given plan π, if one of the decision rules
in π applies in context ψ, or if we can always find an applicable rule in the plan by
adding information to ψ. In the former case, we have that ϕ → cd(t) ∈ π for some
cd(t) ∈ Ωd(t), where ψ ` ϕ. In the latter case, there exist a collection of mutually
incompatible choice contexts ϕ1, . . . , ϕm, each covered by π and more informative
than ψ, and such that

ψ ≡ ϕ1 ∨ · · · ∨ ϕm. (5.38)

This is not a trivial condition, as choice contexts are defined to be conjunctions of
positive literals (value assignments). Therefore, the above equivalence implies that
there exist a set Y ⊆ X[0, t] ∪D[0, t− 1] of variables, such that each ϕi, i = 1, . . . ,m,
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extends ψ with a different configuration ciY of Y , and that the enumeration of these
configurations by ϕ1, . . . , ϕm is exhaustive. That is, ϕi ≡ ψ ∧ ciY for all i = 1, . . . ,m,
and

ΩY = {c1
Y , . . . , c

m
Y }. (5.39)

Therefore, we can regard context ψ as covered by the plan: irrespective of the actual
configuration of Y , we can always find an applicable rule. It should be noted that
the rules associated with ϕ1, . . . , ϕm may prescribe different actions choices; context
ψ is thus not specific enough provide an unambiguous choice, although it is covered
by the plan.

The notion of coverage is now formally defined as follows.

Definition 5.55 (Coverage) The coverage of contingency plan π at time point
t ∈ T , written cover(π, t), is the smallest set of choice contexts for time point t such
that ψ ∈ cover(π, t) if

• ψ → cd(t) ∈ π for some cd(t) ∈ Ωd(t),

• ϕ ∈ cover(π, t) and ψ ` ϕ, or

• ϕ1, . . . , ϕm ∈ cover(π, t) and ψ ≡ ϕ1 ∨ · · · ∨ ϕm.

When ψ ∈ cover(π, t), we use πt(ψ) ⊆ A to denote the set of actions that may be
prescribed by plan π in that context, i.e., a ∈ πt(ψ) if and only if there exists a rule
ϕ→ d(t)=a ∈ π such that ψ ∧ ϕ 6≡ ⊥.

The first and second clause jointly describe the former case identified above, while
the third clause describes the latter case.

Given that ψ ∈ cover(π, t), the plan π is said to be equivocal for context ψ when
|πt(ψ)| > 1; otherwise, the plan is called unequivocal for that context. As a result
of our definition of contingency plan, equivocality is avoided for context ψ when ψ
is covered by π due to the former case described above. Then, there exists a rule
ϕ → d(t) = a ∈ π such that ψ ` ϕ; as there can be no other rule in π that applies
in context ψ, we have πt(ψ) = {a}. The latter case described above may induce
equivocality, although this is not necessarily so. When context ψ is covered by π
at time point t, but ψ is not specific enough to permit a single decision rule to be
applicable, then each of the more specific contexts ϕi, i = 1, . . . ,m, may lead to a
different decision d(t) = ai. As a result, πt(ψ) = {a1, . . . , am}, and π is equivocal for
context ψ. Notwithstanding the ambivalence, if a 6∈ πt(ψ) then π will certainly not
prescribe the action choice d(t)=a in context ψ or any of its specialisations; we say
this action choice is not an option in context ψ at time point t. Also note that we
may have that ai = aj for all i, j = 1, . . . ,m, rendering π unequivocal for context ψ.

A plan is guaranteed to be unequivocal when ψ is a most specific choice context for
time point t and ψ ∈ cover(π, t).
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Proposition 5.56 Let π be a contingency plan, and let ψ ∈ cover(π, t). If ψ ≡ c
for some configuration c of the set X[0, t]∪D[0, t− 1], then π is unequivocal for ψ at
time point t.

Proof. Suppose that |πt(c)| > 1. This means that there exists different rules ϕ1 →
d(t) = a1, ϕ2 → d(t) = a2 ∈ π, such that both c ∧ ϕ1 6≡ ⊥ and c ∧ ϕ1 6≡ ⊥. As c is
a most specific choice context for this time point, it follows that c ` ϕ1 ∧ ϕ2, and
therefore ϕ1 ∧ ϕ2 6≡ ⊥. By Definition 5.54, this implies that π is not a proper plan.
�

For choice contexts covered by a given plan, we can determine the set of options by
inspecting all choice contexts that are more informative.

Proposition 5.57 Let π be a contingency plan. If ψ ∈ cover(π, t), then

πt(ψ) =
⋃

ϕ∈cover(π,t), ϕ`ψ

πt(ϕ). (5.40)

Proof. We will first proof that if a ∈ πt(ψ), then a ∈ πt(ϕ) for some ϕ ∈ cover(π, t),
ϕ ` ψ, and then that the converse statement also holds.

• Suppose that a ∈ πt(ψ). By Definition 5.55, we know that there exists a rule
ϕ′ → d(t)=a ∈ π such that ψ∧ϕ′ 6≡ ⊥. From the second clause in the definition
we have that ψ ∧ ϕ′ ∈ cover(π, t) as ψ ∧ ϕ′ ` ϕ′. We find that a ∈ πt(ψ ∧ ϕ′),
which completes this part of the proof as ψ ∧ ϕ′ ` ψ.

• Now suppose that a ∈ πt(ϕ) for some ϕ ∈ cover(π, t) that is more informative
than ψ, i.e. ϕ ` ψ. Then ϕ ∧ ψ 6≡ ⊥, and again by Definition 5.55, it follows
that a ∈ πt(ψ).

�

Given the notion of coverage, we can now define the subplan-superplan relation.

Definition 5.58 (Subplan) Let π, π′ be contingency plans. The plan π′ is said to
be a subplan of π when for each time point t ∈ T , ψ ∈ cover(π′, t) implies that
ψ ∈ cover(π, t) and π′t(ψ) ⊆ πt(ψ).

Conversely, we say that π is a superplan of π′ in that case. The next proposition
states that the subplan-superplan relation is completely determined by those choice
contexts for which the subplan is unequivocal.

Proposition 5.59 Let π, π′ be contingency plans. The following two statements are
equivalent:
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1. π′ is a subplan of π; and

2. for all t ∈ T , if ϕ ∈ cover(π′, t) and π′t(ϕ) = {a}, then ϕ ∈ cover(π, t) and
πt(ϕ) = {a}.

Proof. We only prove the non-trivial case that the second statement implies the first,
and in particular that a correct result is obtained for choice contexts for which plan
π′ is unequivocal. Let t ∈ T , and let ϕ ∈ cover(π′, t), where |π′t(ϕ)| > 1. We have
to prove that also ϕ ∈ cover(π, t), and π′t(ψ) ⊆ πt(ψ). Now, by the definition of
coverage, we know that for each action a ∈ π′t(ϕ) there exists a more informative
choice context ψ ∈ cover(π′, t) such that π′t(ψ) = {a}. The second statement above
now says that also ψ ∈ cover(π, t) and πt(ψ) = {a}; as a consequence, we have for
the less informative choice context ϕ that ϕ ∈ cover(π, t) and a ∈ πt(ϕ). �

An instance of the subplan-superplan relation is found in cases where for each decision
rule δ ∈ π′ there exists an generalisation in π; this will extend the coverage of the plan
without modifying the action prescriptions. As each rule is a trivial generalisation of
itself, π′ is also a subplan of π when π′ ⊆ π.

The notion of subplan induces a partial ordering on the set of all possible contingency
plans for a given decision basis. Here, the empty plan π = ∅ is the universal lower
bound (as it is a subplan of all plans including itself). There is no universal upper
bound: any plan that does not allow extension without introducing a rule conflict
is maximal with respect to the ordering. When two plans share their place in the
ordering, we say that they are equivalent.

Definition 5.60 (Plan equivalence) We say that contingency plans π and π′ are
equivalent when π is a subplan of π′ and vice versa.

We will henceforth refer to a non-equivalent subplan (superplan) as a proper subplan
(superplan). Equivalent plans represent the same planning behaviour but it should
be noted that they may be syntactically different. We will regard them as different
representations of the same planning strategy, and prefer the smallest representation.
This representation is called the normal form.

Definition 5.61 (Normal form) We say that contingency plan π is in normal form
when for all time points t ∈ T and choice contexts ψ, if |πt(ψ)| = 1, then there exists
a decision rule δ ∈ π that is applicable in context ψ.

Proposition 5.62 If contingency plan π is in normal form, then there does not exist
an equivalent plan with less decision rules.

Proof. Suppose that π is in normal form, but there exists an equivalent plan π′ with
less rules. The latter circumstance implies that there exists a time point t ∈ T and
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a choice context ψ for t such that |πt(ψ)| = 1 (and therefore |π′t(ψ)| = 1) but plan π
uses more rules than plan π′ to prescribe this behaviour. That is, the coverage of ψ
at time point t in plan π must be realised by a set of rules

{ϕ1 → d(t)=a, . . . , ϕm → d(t)=a} ⊆ π, (5.41)

m > 1, where each antecedent ϕi, i = 1, . . . ,m, is strictly more specific than ψ (i.e.
ϕi ` ψ and ϕi 6≡ ψ), but they jointly cover the context ψ (i.e. ϕ1 ∨ · · · ∨ ϕm ≡ ψ),
and therefore πt(ψ) = a. However, this contradicts our earlier assumption that ψ is
in normal form, and we conclude that there does not exist such a plan π′. �

To summarise, a plan that is not in normal form contains a subset of related decision
rules that can jointly be described by a single, more general rule. In the normal form
of plans, such savings are not possible: a plan in normal form uses as less rules as
possible, and all rules have the highest level of generalisation that is possible without
sacrificing precision. To inspect the ‘true’ complexity of a contingency plan, one
should therefore inspect the complexity of its rules in normal form.

5.3.2 Plans and decision process

We now turn to the implementation of contingency plans by decision processes. A
plan is said to be implemented by a given process when that process implements
all its decision rules. Recall that a decision rule is strictly implemented when its
antecedent has nonzero probability.

Definition 5.63 (Implementation of plans) Let P be a decision process, and let
π be a contingency plan. The process P is said to implement the plan π when it
implements all decision rules δ ∈ π, and to strictly implement that plan when it
strictly implements all its rules.

It was earlier shown in the discussion of subplan-superplan relations that a contin-
gency plan is fully determined by the choice contexts for which it is unequivocal in
its prescribed action choice. Here, we will prove a similar property with respect to
plan implementation.

Proposition 5.64 Let P be a decision process, and let π be a contingency plan.
Then, the following two statements are equivalent.

1. P strictly implements π; and

2. for all t ∈ T , ψ ∈ cover(π, t) with πt(ψ) = {a} it holds that P (d(t) = a | ψ) = 1.
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Proof. (1 ⇒ 2) Suppose that P implements π, and let t ∈ T be a time point and
ψ ∈ cover(π, t) be a choice context such that πt(ψ) = {a}. From these conditions we
know that π has a subset

{ϕ1 → d(t)=a, . . . , ϕm → d(t)=a}, (5.42)

m ≥ 1, of decision rules such that ϕ1 ∨ · · · ∨ ϕm ≡ ψ. Each of these rules is strictly
implemented by P , so

P (d(t)=a | ϕ1 ∨ · · · ∨ ϕm) = 1, (5.43)

and therefore

P (d(t)=a | ψ) = 1. (5.44)

(2 ⇒ 1) Consider an arbitrary decision rule ϕ → d(t) = a in plan π. We have that
ϕ ∈ cover(π, t), and πt(ϕ) = {a}. So P (d(t) = a | ϕ) = 1, and P strictly implements
the rule, and therefore also strictly implements the plan π. �

We note that as the above proposition holds for strict implementation, it also holds
for implementation in general (strict and non-strict).

The next two corollaries follow directly from Propositions 5.59 and 5.64.

Corollary 5.65 If a decision process strictly implements contingency plan π, then it
also strictly implements all its subplans.

Corollary 5.66 If a decision process strictly implements contingency plan π, then it
also strictly implements all its equivalent plans.

Again, these statements also hold for the weaker concept of implementation in general.

The next proposition says that any action choice that is not an option in a given
choice context is also excluded by a decision process that implements the plan.

Proposition 5.67 Let P be a decision process that implements contingency plan π.
If ψ ∈ cover(π, t) and a 6∈ πt(ψ), then P (ψ ∧ d(t)=a) = 0.

Proof. Let ϕ1, . . . , ϕm be the smallest set of most specific choice contexts for time
point t such that ψ ≡ ϕ1 ∨ · · · ∨ ϕm. As ψ ∈ cover(π, t) and each ϕi, i = 1, . . . ,m,
is more specific than ψ, we also have ϕi ∈ cover(π, t). Furthermore, |πt(ϕi)| = 1 as
it is most specific (Proposition 5.56). However, a 6∈ πt(ϕi); otherwise we would also
have that a ∈ πt(ψ). By Proposition 5.64, we know that P (ϕi ∧ d(t) = a) = 0, and
therefore

P (ψ ∧ d(t)=a) = P ((ϕ1 ∧ d(t)=a) ∨ · · · ∨ (ϕm ∧ d(t)=a)) = 0.
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�

We have earlier seen that decision-rule implementation is a trivial matter when the
antecedent of the rule has zero probability in the given decision process; the notion
of strict implementation is therefore much stronger and more interesting. Unfortu-
nately, not all contingency plans permit strict implementation. This is due to the
fact that the flexible nature of contingency plans allows for several forms of internal
contradiction in plans. In the remainder of this subsection, we will further investigate
this topic.

Definition 5.68 (Presupposition) The expression ϕ1∧ cd(t1), where ϕ1 is a choice
context for time point t1, is called a presupposition of decision rule ϕ2 → cd(t2) when
t1 < t2 and ϕ2 ` ϕ1 ∧ cd(t1).

Intuitively, presuppositions of a given decision rule describe planning behaviour that
must have been present for the rule to be applicable. When the rule’s antecedent
does not contain action choices, then the rule does not make any presuppositions.
Note, however, that a presupposition of the form ϕ1 ∧ cd(t1) does not express that
decision cd(t1) is necessarily made in context ϕ1. It says that decision cd(t1) has been
made in that context, and the rule making the presupposition implicitly asserts that
such is possible.

Definition 5.69 (Exclusion) Let π be a contingency plan. We say that planning
history h ∈ H(T ) is excluded by π when there exists a decision rule δ ∈ π such that
h ∧ δ ≡ ⊥. The set of all planning histories excluded by plan π is denoted by H−π .

Exclusion of planning history h stems from the fact that it matches with the an-
tecedent ϕ of some decision rule ϕ → d(t) = a ∈ π, while contradicting the action
choice d(t) = a. Then, h ∧ δ ≡ ⊥, and it is easily seen that we could never obtain
history h by following the plan.

Proposition 5.70 Let π be a contingency plan and let P be a decision process that
implements π. Then, P (h) = 0 for all excluded histories h ∈ H−π .

Proof. Let h ∈ H−π be an excluded planning history and let ϕ → cd(t) ∈ π be the
decision rule that is responsible for its exclusion, i.e. h ` ϕ ∧ ¬cd(t) (there may be
more rules with this property but that is irrelevant for the argument). From the
implementation of π by P and Proposition 5.26, we have that P (ϕ∧¬cd(t)) = 0, and
so P (h) = 0. �

More generally, we also say that proposition ϕ ∈ Φ(T ) is excluded by plan π when
each h ∈ H(T ), h ` ϕ, is excluded by π. It follows that also P (ϕ) = 0 when decision
process P implements π.
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The forms of internal plan contradiction mentioned above can be traced back to
‘wrong’ presuppositions. We can identify two cases where this happens. The first
case is where a presupposition is directly contradicted by other rules in the plan
through exclusions; we then say that the plan is inconsistent.

Definition 5.71 (Plan consistency) A contingency plan π is said to be inconsis-
tent if one of its rules makes a presupposition that is excluded by the plan itself.
Otherwise, the plan is consistent.

Proposition 5.72 An inconsistent plan does not permit strict implementation.

Proof. Suppose that decision process P implements contingency plan π, and assume
that the plan is inconsistent. So there exists a decision rule δ ∈ π that presupposes
ϕ ∧ d(t)=a, while this situation is excluded by the plan itself. It follows that P (ϕ ∧
d(t)=a) = 0 and therefore the antecedent of rule δ also has zero probability in process
P . We conclude that the rule is not strictly implemented by P . �

Note that we cannot restore consistency by adding rules to an inconsistent plan: any
superplan of an inconsistent plan is also inconsistent.

Inconsistent plans do not permit strict implementation, but unfortunately, there exist
also consistent plans that do not permit that. This is then caused by the second case
of internal plan contradiction, where multiple presuppositions are contradictory. In
this case, the plan is said to be incoherent.

Definition 5.73 (Plan coherence) Let π be a contingency plan. We say that the
plan is incoherent if there exist decision rules δ1, δ2 ∈ π that presuppose σ ∧ d(t)=a1

and σ ∧ d(t) =a2, respectively, where σ ∈ S[0, t] and a1 6= a2. Otherwise, the plan is
said to be coherent.

Proposition 5.74 An incoherent plan does not permit strict implementation by a
decision process with deterministic planning behaviour.

Proof. Suppose that P is a decision process with deterministic planning behaviour
that strictly implements the incoherent plan π. The incoherence of π implies that
there exist decision rules δ1, δ2 ∈ π which presuppose σ ∧ d(t)=a1 and σ ∧ d(t)=a2,
respectively, where σ ∈ S[0, t] and a1 6= a2. Furthermore, from the strictness of
the implementation we must have P (σ) > 0. Now, recall from Proposition 5.24 on
page 127 that there exists a unique action sequence α ∈ A[0, t] for which P (α | σ) = 1,
and P (α′ | σ) = 0 for all other α′ ∈ A[0, t]. It follows that P (d(t) = α(t) | σ) = 1,
and P (d(t) = a | σ) = 0 for all actions a ∈ A, a 6= α(t). Therefore, we cannot have
both P (σ∧d(t)=a1) > 0 and P (σ∧d(t)=a2) > 0 as a1 6= a2. So, the implementation
by P of either rule δ1 or rule δ2 is non-strict. �

Also the superplans of an incoherent plan are incoherent.
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5.3.3 Plan completeness

We now turn to the notion of plan completeness. We say that a contingency plan
is complete when it covers all possible initial states at time point t = 0, and covers
all choice contexts for future time points that are compatible with prescribed action
choices.

Definition 5.75 (Plan completeness) A contingency plan π is complete when

1. if c is a configuration of X(0), then c ∈ cover(π, 0), and

2. for all t < N , if c is a configuration of X[0, t] ∪D[0, t− 1] and c ∈ cover(π, t),
then c ∧ d(t)=a ∈ cover(π, t+ 1) where πt(c) = {a}.

Otherwise, the plan is said to be incomplete.

Intuitively, the property of plan completeness ensures that we always know which
action to choose if we have followed the plan at the preceding time points, whatever
states the system occupies. Note that the requirement that c∧d(t)=a ∈ cover(π, t+1)
does not imply the existence of a rule with that antecedent in π: there will typically
be rules that take into account some observation at time point t+ 1 while being less
specific with respect to preceding time points. These rules should however jointly
cover the case c ∧ d(t)=a.

We can identify two types of plan that are trivially complete. The first type of plan
does not take any state information into account and has the form

π = {> → d(t) = α(t) | t ∈ T} (5.45)

where α ∈ A(T ) is an action sequence over T . The second type of plan takes all
possible state information into account and comprises a rule of the form

cX(0) → cd(0) (5.46)

for each cX(0) ∈ ΩX(0), and a rule of the form

cX(0) ∧ cd(0) ∧ cX(1) ∧ cd(1) ∧ · · · cX(t−1) → cd(t) (5.47)

for all time points t ∈ T , t > 0, and all configurations of X(0), . . . , X(t), where
cd(0), . . . , cd(t−1) are the unique decisions for these configurations prescribed by other
rules of the plan.

It is easily seen that both of these plans prescribe a unique sequence of decisions
when all possible state information is provided. This is, in fact, a general property
of complete plans.
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Proposition 5.76 A complete contingency plan prescribes a unique action sequence
for each state sequence over T .

Proof. Let π be a complete plan, and let σ ∈ S(T ) be a state sequence over T =
{0, . . . , N}, where σ ≡ cX(0)∧· · ·∧ cX(N). We will prove the proposition by induction
on T . For the base case, the completeness of π ensures that cX(0) ∈ cover(π, 0).
Furthermore, |πt(cX(0))| = 1 as cX(0) is a most specific context for time point t = 0
(Proposition 5.56). So, the plan prescribes a unique initial action. For the induction
step, suppose that given σ, the plan prescribes a sequence cd(0), . . . , cd(t) of decisions
up to time point t < N . Now, let

ψ = cX(0) ∧ cd(0) ∧ cX(1) ∧ · · · ∧ cd(t−1) ∧ cX(t). (5.48)

Apparently, ψ ∈ cover(π, t) and πt(ψ) = {a}, where cd(t) ≡ d(t) = a. The complete-
ness of plan π now ensures that ψ∧cd(t) ∈ cover(π, t+1), and so also the more specific
ψ ∧ cd(t) ∧ cX(t+1) ∈ cover(π, t + 1). Again using Proposition 5.56, we conclude that
π prescribes a unique decision at time point t+ 1 for this context. �

The trivially complete plan of Equation 5.45 does of course always prescribe the same
action sequence α, regardless of the states of the dynamic system.

The result of Proposition 5.76 proves to be quite useful in the establishment of addi-
tional properties of complete plans, as it allows us to conclude that planning history
h = (σ, α) is excluded by complete plan π when α is not the unique action sequence
prescribed by π given state sequence σ. The next proposition shows that complete
plans are the uppermost plans in the partial ordering that are of practical use, as
greater plans are always inconsistent. Note that any superplan of a complete plan is
also complete.

Proposition 5.77 A complete plan does not have proper superplans that are consis-
tent.

Proof. Suppose that contingency plan π is complete, and that π′ is a consistent,
proper superplan of π. That is, for all t ∈ T and choice contexts ψ, if πt(ψ) = {a}
then also π′t(ψ) = {a} (Proposition 5.59), but there exists a time point t ∈ T and a
choice context ψ ∈ cover(π′, t) for which π′t(ψ) = {a}, but ψ 6∈ cover(π, t). Assuming
that both π and π′ are written in normal form, we know that there exists a decision
rule ϕ→ d(t)=a ∈ π′ that applies in context ψ (i.e. ψ ` ϕ). This rule is however not
contained in π. Now, let h ∈ H(T ), h = (σ, α), be a planning history such that h ` ϕ;
from Proposition 5.76 we know that α is the unique action sequence prescribed by π′

for state sequence σ. We distinguish two cases:

1. If α is also prescribed by plan π, there must exist a rule ϕ′ → d(t)=a ∈ π with
h ` ϕ′. But then π′ cannot be a proper plan as also ϕ′ → d(t) = a ∈ π′ and
ϕ ∧ ϕ′ 6≡ ⊥.
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2. If α is not prescribed by plan π, then h must be excluded by π: there exists a
decision rule δ ∈ π for which h ∧ δ ≡ ⊥. As π′ is a superplan of π, this rule is
also contained in π′, and history h is similarly excluded by π′. We can repeat
this argument for each history h for which h ` ϕ; therefore, ϕ is itself excluded
by π′: the plan π′ is inconsistent.

We conclude that such a consistent, proper superplan of π does not exist. �

Corollary 5.78 A consistent and complete plan does not have proper subplans that
are complete.

Proof. By contrapositioning Proposition 5.77 �

Definition 5.79 (Completion) Let π be a plan. A consistent and complete super-
plan of π is called a completion of π.

We can think of an incomplete plan as a concise representation of all its completions.
By adding decision rules to the plan, the range of possible completions is narrowed
until a single consistent and complete plan remains. A incoherent plan does not
have any completions as its incoherence unavoidably leads to inconsistencies when
completeness is approached.

Proposition 5.80 A consistent and complete plan is coherent.

Proof. Suppose that plan π is consistent and complete, and moreover incoherent. The
latter assumption implies that there exist decision rules δ1, δ2 ∈ π that presuppose
some σ∧d(t)=a1 and σ∧d(t)=a2, respectively, where σ ∈ S[0, t] and a1 6= a2. Now,
let α ∈ A[0, t] be the unique action sequence up to time point t that is prescribed by
π given state sequence σ. We cannot have both α(t) = a1 and α(t) = a2. This means
that either one of the presuppositions is excluded by π, contradicting our earlier
assumption that π is consistent. We conclude that π must be coherent. �

Corollary 5.81 An incoherent plan does not have any completions.

Proof. Directly from Proposition 5.80 and the fact that any superplan of an incoherent
plan is also incoherent. �

Below, we assume all plans to be consistent, but we will tolerate incomplete yet
coherent plans as intermediate steps in a solution process. These incomplete plans
are then taken to represent a set of possible complete plans.
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As we saw in Proposition 5.76, a principal property of complete plans is that they
prescribe a unique sequence of actions, given a complete sequence of system states
over the time frame T . This reminds of the similar finding for decision processes with
deterministic planning behaviour of Proposition 5.24 in Subsection 5.1.2. There does
indeed exist an intimate relationship between complete plans and such processes; we
conclude this subsection with a further investigation of this relationship.

We first establish that there is only one decision process that implements a given
complete plan under an assumed model of control.

Theorem 5.82 Let Ξ be a control model, and let π be a complete contingency plan
for decision basis B. Then, the decision process P ∈ PΞ that implements π is unique.

Proof. Suppose that P1, P2 ∈ PΞ are different decision processes that both implement
π. If P1 and P2 are different, then there must exist a proposition ϕ ∈ Φ(T ) for which
P1(ϕ) 6= P2(ϕ). As we can write ϕ as a disjunction of mutually incompatible decision-
making histories over T (as in Equation 5.3), this would imply that there exists a
history h ∈ H(T ) for which P1(h) 6= P2(h). We will now prove by induction on T
that such a history does not exist under the given conditions.
The base case consists of proving that P1 and P2 induce the same marginal probability
distribution on X(0) ∪ {d(0)}. This proceeds as follows. First, as P1 and P2 both
comply with model Ξ, we have that

P1(CX(0)) = P2(CX(0)). (5.49)

Second, as P1 and P2 both implement the complete plan π, we also have that

P1(Cd(0) | cX(0)) = P2(Cd(0) | cX(0)) (5.50)

for all cX(0) ∈ ΩX(0) for which P1(cX(0)), P2(cX(0)) > 0, and therefore

P1(CX(0)∪{d(0)}) = P2(CX(0)∪{d(0)}). (5.51)

The induction hypothesis is that

P1(CX[0,t]∪D[0,t]) = P2(CX[0,t]∪D[0,t]) (5.52)

for t < N , from which we have to show that the same equality holds for the next
point in time. Again we use the joint compliance of P1 and P2 with control model Ξ,
now yielding

P1(CX(t+1) | CX[0,t]∪D[0,t]) = P2(CX(t+1) | CX[0,t]∪D[0,t]), (5.53)

and therefore

P1(CX[0,t+1]∪D[0,t]) = P2(CX[0,t+1]∪D[0,t]). (5.54)
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As P1 and P2 both implement the same complete plan, we have

P1(Cd(t+1) | CX[0,t+1]∪D[0,t]) = P2(Cd(t+1) | CX[0,t+1]∪D[0,t]), (5.55)

and so

P1(CX[0,t+1]∪D[0,t+1]) = P2(CX[0,t+1]∪D[0,t+1]). (5.56)

By induction on T we now find that

P1(h) = P2(h) (5.57)

for all decision-making histories h over T . �

It is easily seen from the proof that the decision process P ∈ PΞ implementing a given
plan π is not only unique, but also has deterministic planning behaviour. Conversely,
a given decision process with such behaviour can be shown to implement a consistent
and complete plan.

Theorem 5.83 Let Ξ be a control model. Each decision process P ∈ P det
Ξ implements

a consistent and complete contingency plan for decision basis B.

Proof. We construct the plan π that is implemented by P as follows. Initialise π = ∅.
For each cX(0) ∈ ΩX(0) we find a configuration cd(0) of decision variable d(0) such that

P (cX(0) ∧ cd(0)) = P (cX(0)). (5.58)

and add the decision rule cX(0) → cd(0) to π. Note that such a configuration of decision
variable d(0) exists for each cX(0) ∈ ΩX(0) as the planning behaviour is deterministic
in process P . Then, for each cX[0,1] ∈ ΩX[0,1] we find configurations cd(0) and cd(1) of
decision variables d(0) and d(1) such that

P (cX[0,1] ∧ cd(0)) = P (cX[0,1]) (5.59)

and

P (cX[0,1] ∧ cd(0) ∧ cd(1)) = P (cX[0,1] ∧ cd(0)). (5.60)

This time we add the rule cX[0,1] ∧ cd(0) → cd(1) to π. Again we are sure to find con-
figurations satisfying these requirements given the deterministic planning behaviour
in P . We can now repeat the second step for time points t = 2, . . . , N ; it is easily
verified that the plan thus obtained is consistent and complete, and implemented by
P . �

One might be inclined to think that there must exist a bijection between P det
Ξ and

the set of all consistent and complete plans for a given decision basis. This is not the
case as our representation of decision strategies is not unique: multiple, syntactically
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different plans may occupy the same place in the plan lattice and therefore describe
the same strategy; such plans have previously been defined to be equivalent. There
is however only one plan at each place in the lattice that has the normal form. We
will refer to the consistent and complete plan π in normal form as the complete plan
that is implemented by decision process P ∈ P det

Ξ .

It should be noted that the above theorems deal with implementation in general,
not strict implementation. The possibility to strictly implement complete plans crit-
ically depends on the characteristics of the control model Ξ: only when the model
is strictly positive, we are sure to find a decision process P ∈ P det

Ξ that strictly im-
plements a complete plan π. Therefore, Theorems 5.82 and 5.83 only apply to strict
implementation when the control model in question is strictly positive.

5.3.4 Plan operationality

The final topic of contingency plans to be discussed is their operationality. Recall that
we have previously defined a decision rule to be operational under a given observation
model when its antecedent is verifiable under that model. The definition of plan
operationality is a straightforward generalisation.

Definition 5.84 (Plan operationality) Let O be an observation model. A contin-
gency plan π is said to be operational under O when each of its decision rules is
operational under that model.

The following result is of crucial importance for incremental procedures of plan con-
struction.

Proposition 5.85 Let O be an observation model. Any consistent and coherent plan
that is operational under O has an operational completion.

Proof. Let π be a plan that is operational under O. We will add operational rules to
the plan until it is complete, thus obtaining an operational completion. As the given
plan is coherent, we are sure to be able to do this without introducing inconsistencies.
Suppose that π is complete for time points 0, . . . , t − 1 but not thereafter: t is the
first point in time for which the plan does not always prescribe a unique action choice
when a state sequence over [0, t] is given. As π is complete for the preceding time
points, there exists a unique action sequence α ∈ A[0, t − 1] that is prescribed by π
for σ(0), . . . , σ(t− 1) (Proposition 5.76). Now, let cY be the unique configuration of
Y = ot(α) smaller than σ, i.e. σ ` cY . We add an operational rule

α ∧ cY → d(t)=a, (5.61)

a ∈ A, to the plan π, yielding an operational superplan. If the plan is now complete
for time point t, we proceed with the next time point; otherwise, the procedure is
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repeated for other state sequences. The plan that is finally obtained is a complete
superplan of the original plan π that is operational under O. �

Without proof we remark that each operational plan has an operational normal form.

We have also defined a decision process P to comply with a given observation model O
if minimally sufficient knowledge for choice predictions is always verifiable under the
model: only then the planning behaviour that is implicitly specified by the process
is reproducible under the limitations in observability described by O. It followed
that if P strictly implements the rule δ and neither of its proper generalisations, that
rule must be operational under O (Proposition 5.53). The next proposition is an
immediate result hereof.

Proposition 5.86 Let O be an observation model and let P ∈ PO. Any complete
plan that is strictly implemented by P is operational under O.

Proof. As P strictly implements a complete plan, it necessarily comprises deter-
ministic planning behaviour (i.e. P ∈ P det

O ), and the complete and consistent plan
implemented by it is unique up to equivalence. Let π denote this plan in normal
form. We have to prove that P does not implement any proper generalisation of a
decision rule in δ ∈ π; the operationality of π under O then follows from Proposi-
tion 5.53. Now, suppose the ϕ → d(t) = a ∈ π, so P (d(t) = a | ϕ) = 1, but there
is also a proper generalisation ψ → d(t) = a of that rule (i.e. ϕ ` ψ, ϕ 6≡ ψ) for
which P (d(t)=a | ψ) = 1. This generalisation must be comprised in a complete and
consistent plan π′ that is implemented by P and equivalent to π. But then there
must be a subset {ϕ1 → d(t) =a, . . . , ϕm → d(t) =a} ⊆ π, m > 1, of rules in π such
that ψ ≡ ϕ1 ∨ · · · ∨ ϕm, ϕ = ϕi for some 1 ≤ i ≤ m. This contradicts our earlier
assumption that the plan π was in normal form, and we conclude that P does not
implement any proper generalisation of a decision rule δ ∈ π. Hence, each of its rules
is operational under O. �

5.4 Planning objectives

In this section we discuss the guidance of the planning agent’s behaviour through for-
malisation of his planning objectives; this will complete our framework for decision-
theoretic planning. To fulfil the principles of decision theory, the objectives of plan-
ning for a given domain should be formulated using a utility function. Given a utility
function, we can start reasoning about the value and validity of choosing decision
alternatives, observing state information, applying decision rules, and choosing con-
tingency plans.
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Utility and preference

Recall from Sections 3.2 and 3.3 of Chapter 3 that we can express a preference order
on probability distributions by a numerical utility function, and that utilities asso-
ciated with nondeterminate, uncertain scenarios (i.e. probability distributions over
outcomes) can be derived from the utilities associated with outcomes using the rule of
expectation from probability theory. It is therefore sufficient to specify a utility value
for each possible outcome of the planning process to lay down a complete specifica-
tion of the planning objectives; such utility values are called marginal utilities, and
the values associated with uncertain scenarios are called expected utilities. Within
our framework, the set H(T ) of full-length planning histories represents all possible
outcomes of decision processes for decision basis B = (X,A, T ). We therefore take
the objectives of planning to be formulated using a marginal utility function

u : H(T )→ R (5.62)

on this set; the value u(h) is the marginal utility associated with planning history
h ∈ H(T ). We now define the notions of conditional utility and conditional preference.

Definition 5.87 (Conditional utility and preference) Let u be a marginal util-
ity function for decision basis B = (X,A, T ), and let ϕ ∈ Φ(T ) be a planning ex-
pression. The (expected) conditional utility ũϕ(P ) of decision process P given ϕ is
defined as

ũϕ(P ) =
∑

h∈H(T )

P (h | ϕ) · u(h), (5.63)

provided that ϕ is possible in P ; otherwise, ũϕ(P ) is undefined. We say that P is
conditionally preferred to decision process P ′ given ϕ when ũϕ(P ) ≥ ũϕ(P ′).

Sometimes, we refer to

ũ>(P ) =
∑

h∈H(T )

P (h) · u(h) = EP (u) (5.64)

as the (expected) utility of decision process P , and omit the subscript, i.e. ũ(P ) =
ũ>(P ). The notion of conditional preference induces a preference ordering on decision
processes, which allows us to formalise the concept of optimality.

Definition 5.88 (Optimality) Let u be a utility function for decision basis B =
(X,A, T ), and let ϕ ∈ Φ(T ) be a planning expression. Given a set of P of decision
processes, we refer to the process

P ∗ϕ = arg maxP{ũϕ(P ) | P ∈ P} (5.65)

as optimal given u and ϕ. A contingency plan π is said to be optimal given u, ϕ,
and P, when there exists an optimal decision process P ∗ϕ that strictly implements π;
each of the decision rules in π is then also called optimal given u, ϕ, P.
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Note that this definition is simply a reformulation of the MEU criterion (Lemma
3.21 on page 60) in terms of our framework. As with any application of utility-
theoretic principles, optimality does not guarantee uniqueness: that there may be
multiple optimal decision processes in P for a given utility function and planning
expression. Another point to note is that decision rule δ is optimal under the above
definition whenever there exists an optimal decision process that strictly implements
δ. However, a contingency plan that is assembled by collecting such rules need not
be optimal: each of the rules may be part of a different optimal solution.

If we employ our framework purely for decision-theoretic action planning, the con-
struction of optimal plans can be regarded as searching the set of PΞ,O of decision
processes that comply given models Ξ and O and control and observation to find the
unconditionally optimal process P ∗ ∈ PΞ,O under a given utility function u. From
the normative decision-theoretic perspective, the planning behaviour implemented
by process P ∗ is then preferred over any other type of behaviour under the circum-
stances described by Ξ and O. It is generally reasonable to restrict the search to
the subset P det

Ξ,O of decision processes that implement fully deterministic planning be-
haviour. Then, each process corresponds to a complete and consistent contingency
plan π that is operational under O. Using the theory of contingency planning from the
previous section, plan construction can then be formulated as a procedure of adding
optimal operational decision rules to an optimal, consistent and coherent plan until
that plan is complete.

The contributors to utility

It will often occur that there is a particular set of variables that designate utility
values, while the other variables are, strictly speaking, unimportant. Variables from
this first set are then called direct contributors to utility.

Definition 5.89 (Contribution) Let u be a utility function for decision basis B =
(X,A, T ). The set of direct contributors to u is the smallest set Y ⊆ X(T ) ∪D(T )
such that

u(CY ∧ cZ) = u(CY ∧ c′Z) (5.66)

for all configurations cZ , c
′
Z of the complementary set Z = (X(T ) ∪D(T )) \ Y .

If, in a given decision process P , the values of all direct contributors to utility are
known, then the values of other variables are irrelevant to determine the utility value
of that process. It is easily seen that this paves the way for a simplified form of
marginal utility function.

Proposition 5.90 Let u be a utility function for decision basis B = (X,A, T ), and
let Y be the set of all direct contributors to u. Then, there exists a function u′ :
ΩY → R such that for each history h ∈ H(T ) we have u(h) = u′(cY ), where h ` cY .
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Furthermore, the expected conditional utility of decision process P given planning
expression ϕ ∈ Φ(T ) equals

ũϕ(P ) =
∑

cZ∈ΩZ

P (cY | ϕ) · u′(cY ), (5.67)

if ϕ is possible in P .

Proof. The result follows immediately if we take u′(cY ) = u(cY ∧ cZ), where cZ is an
arbitrary configuration of the set Z = (X(T ) ∪D(T )) \ Y . �

Note, that if we do not know the values of all direct contributors to utility, then all
information may influence the expected utility of a given decision process; this is not
limited to information on direct contributors. Instead of referring to individual state
variables, we will often say that system attribute x ∈ X is an direct contributor to
utility, to mean that this holds for all variables x(t), x(t) ∈ x(T ).

Time-separable utility

In Subsection 3.2.3 of Section 3.2 we discussed multiattribute utility theory and the
notion of utility independence, which builds on the concept of conditional preference
ordering. In the current formulation, a given set Y ⊆ X(T ) ∪ D(T ) of variables
is utility independent (of the other variables) when each configuration of Y induces
the same conditional preference ordering on decision processes. We now define the
notion of time-separability, which is derived from this concept. A utility function is
time-separable when all planning histories over a limited time segment induce the
same conditional preference ordering on decision processes.

Definition 5.91 (Time-separability) A utility function u is time-separable when
for each time segment T ′ v T and each pair of decision process P1, P2 we have

ũh1(P1) ≤ ũh1(P2) ⇒ ũh2(P1) ≤ ũh2(P2) (5.68)

for all histories h1, h2 ∈ H(T ′).

It follows from Theorem 3.25 on page 64 that under the assumption of time-separability,
marginal utilities can be written as a multilinear function of independent utility values
for subsequent time points:

u(h) =
∑

T ′vT,T ′ 6=∅
k|T

′|−1
∏
t∈T ′

ut(σ(t), α(t)), (5.69)

where h = (σ, α), ut : dom(X) × A → R is the subutility function associated with
time point t ∈ T , and k is a scaling constant; we do not use weight factors here as
normalisation of the utility functions is not assumed. A special case of time-separable
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utility occurs when ut1 = ut2 for all time points t1, t2 ∈ T . The procedure for judging
state-action pairs is then essentially the same at all time points; we speak of stationary
subutility.

It was also discussed in Subsection 3.2.3 that under various additional assumptions,
more convenient forms of multiattribute utility function are derivable; we described
the additive and the multiplicative utility functions. We will now focus on both types
of multiattribute function as specialisations of time-separable utility functions.

In the time-separable additive utility function, marginal utility values are equal to
the sum of subutility values for subsequent time points:

u(h) =
∑
t∈T

ut(σ(t), α(t)) (5.70)

where h = (σ, α). As described in the previous chapter, time-separable additive utility
models are employed in Markov decision processes; we will return to this topic in the
next section where partially-observable Markov decision processes are reconsidered
in the light of our framework. Here, we give two examples of time-separable additive
utility, one where subutilities are solely dependent on action choices (and represent
costs), and one where subutilities are solely dependent on system states (and represent
planning goals).

Example 5.92 (Action costs) An example of time-separable additive utility is found
in models where each action has a particular cost, and the objective is to minimise the
total costs. Let cost(a) denote the cost associated with action a ∈ A; it is interpreted
as the negative stationary subutility associated with choosing that action, i.e.

ut(S, a) = −cost(a) (5.71)

for all S ∈ dom(X). The marginal utility of decision-making history h ∈ H(T ),
h = (σ, α), equals

u(h) =
∑
t∈T

ut(σ(t), α(t)) = −
∑
t∈T

cost(α(t)). (5.72)

Note that in this example, the decision variables are direct contributors to utility.

Example 5.93 (Goal-directed planning) We can also employ time-separable ad-
ditive utility functions to induce goal-directed behaviour in planning systems. The
underlying conception of a planning problem is then a disparity between the current
state and an envisioned state; the subutilities therefore depend on the states occupied
by the dynamic system. Let Y ⊆ X be a set of system attributes, let SY ∈ dom(Y ) be
the goal configuration of Y , and let u be a time-separable additive utility function.
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• To express that SY is always preferred over other values of Y , we use stationary
subutilities, where

ut(SX , a) =

{
1, if X = SX ` Y = SY ,
0, otherwise,

(5.73)

for all t ∈ T , SX ∈ dom(X) and a ∈ A. That is, a unit subutility value is
obtained each time that SY is the substate for Y in the overall system state SX .
The expected utility ũ(P ) of decision process P equals the expected number of
occurrences of value SY during time frame T .

• To express that SY is a final-state goal (i.e. SY should be achieved at the final
time point t = N), we use

ut(SX , a) =

{
1, if X = SX ` Y = SY and t = N,
0, otherwise,

(5.74)

for all t ∈ T , SX ∈ dom(X) and a ∈ A. The unit subutility value is obtained
only when SY is the substate for Y at time point t = N . The expected util-
ity ũ(P ) of decision process P now equals the probability that Y (N) = SY is
achieved: ũ1(P ) = P (Y (N) = SY ).

This type of utility function can also be extended to cover deadline goals, goals of pre-
vention, and goals of maintenance; see (Haddawy and Hanks, 1998) for a discussion.

In the above example, neither decision variables nor system attributes from the set
X \ Y contribute directly to utility. When SY is a final-state goal, only state variables
from the set Y (N) are direct contributors.

The second type of time-separable utility function we discuss is called multiplicative,
and takes the form

u(h) =
∏
t∈T

ut(σ(t), α(t)) (5.75)

where h = (σ, α). We recall that this type of function is characterised by much less
robustness than the additive type of function: it can be compared to a chain that is
only as strong as its weakest link. A typical application of such functions is found in
cases where subutilities represent complemented risks.

Example 5.94 (Survival probability) Let risk t(S, a) be the risk of contracting
some particular damage or disorder at time point t ∈ T in system state X(t) = S
under action choice d(t) = a. In a medical setting, we can think of the risk of par-
ticular complications or death. When the objective is to minimise the overall risks
during the planning process, this is accomplished by maximising the multiplicative
time-separable utility function of Equation 5.75, where

ut(S, a) = 1− risk t(S, a) (5.76)
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for all t ∈ T , S ∈ dom(X) and a ∈ A. The marginal utility u(h) now expresses the
probability that the risk is avoided during time frame T under history h ∈ H(T ), and
is consequently called the survival probability of outcome h. The expected utility
ũ(P ) of decision process P ∈ P det

Ξ,O expresses the probability of avoiding the risk when
executing the contingency plan associated with P .

5.5 POMDPs and DIDs revisited

We now return to the decision-theoretic representation formalisms that were dis-
cussed in Chapter 4, to re-evaluate and compare them in the light of our framework.
In that chapter, we concluded that partially-observable Markov decision processes
(POMDPs) and dynamic influence diagrams (DIDs) provide the most powerful rep-
resentations of decision-making problems to date: these representation formalisms
cover notions as time, action, uncertainty, state dynamics, contingent choice, and
utility. Below, we will describe both types of representation in our framework (Sub-
section 5.5.1 and 5.5.2, respectively), highlighting the characteristics of these rep-
resentations, and discussing the aspects where they are restrictive or make implicit
assumptions. We conclude with a comparison in Subsection 5.5.3.

5.5.1 POMDPs

Recall from Section 4.2 that a Markov decision process is a stochastic Markov process
where the transition probabilities are chosen by a planning agent1: each action has
an associated transition probability function. In the partially-observable case, which
we consider here, these action choices also influence the planning agent’s possibilities
to inspect the state of the system. Furthermore, at each point in time, a reward is
received that depends on the current system state and action choice; the objective is
to maximise the expected sum of all rewards.

Formally, a POMDP over a given set X of system attributes is described by a 5-tuple
MPO = (T,A,Θ, R,O), where T is a set of decision moments, A is a set of possible
actions, Θ is a set of transition probability functions, R is a set of reward functions,
and O is a set of observation functions. In addition, a probability distribution P0 on
initial system states is given.

We can reformulate this specification in our framework, where B = (X,A, T ) is the
induced decision basis; no modifications to the sets X, A, and T are required. Below,
we describe how associated models of control and observation and a utility function
are induced from Θ, O, and R, respectively; we also describe the type of contingency
plan that serves as a solution to the given POMDP.

1We use the term planning agent instead of decision maker in this chapter.
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Control

In the POMDP model MPO, the planning agent’s control over the dynamic system
is described by the set

Θ = {θt : dom(X)× A× dom(X)→ [0, 1] | t ∈ T} (5.77)

of time- and action-dependent transition probability functions: if S1 ∈ dom(X) is
the system state at time point t ∈ T , t < N , and the planning agent chooses action
a ∈ A, the system occupies state S2 ∈ dom(X) at time point t + 1 with probability
θt(S1, a, S2). So, we can regard control model Ξ for decision basis B as a translation
of Θ if and only if

P (X(t+ 1) = S2 | X(t) = S1, d(t) = a) = θt(S1, a, S2) (5.78)

for all decision processes P ∈ PΞ, time points t ∈ T , t < N , actions a ∈ A, and
states S1, S2 ∈ dom(X). It is assumed in these decision processes that the Markov
condition holds, i.e. no states or decisions prior to time point t influence this transition
probability:

X(t+ 1) ⊥⊥P X[0, t], D[0, t] | X(t), d(t). (5.79)

Consequently, the probability that action sequence α ∈ A(T ) yields state sequence
σ ∈ S(T ) is obtained by simply multiplying the associated transition probabilities:

ξα(σ) = P0(X = σ(0)) ·
N−1∏
t=0

θt(σ(t), α(t), σ(t + 1)), (5.80)

where P0 is the probability distribution on initial states. In this way, we can derive
the control distribution ξα for each action sequence α ∈ A(T ), thus obtaining the
model of control Ξ induced by Θ.

The Markov assumption is impractical when (part of) the system described by the set
X may be subject to changes that are best understood as accumulative effects of cer-
tain conditions over time. We recall however from Section 4.2 that from a theoretical
perspective, the assumption is not truly restrictive as a given non-Markovian specifi-
cation can always be converted to a Markovian specification by extending the set X
with ‘memory’ attributes, (Luenberger, 1979): the Markov property essentially ap-
plies to the specification and not to the system itself. Yet, the smaller, non-Markovian
representation may be preferred for practical reasons in some domains.

In terms of influence, we can say that at each time point t ∈ T , t < N , the set
X[t + 1, N ] is conditionally uninfluenced by decisions prior to time point t given
X(t). As the POMDP formalism does however not specify control relations below
the level of complete system states, we cannot make statements about the effect of
decisions on individual state variables without inspecting large numbers of transition
probabilities. For instance, we cannot tell whether a state variable x(t) ∈ X(t) is
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unaffected, directly affected, or indirectly affected by the decision at time point t−1.
The same holds for accessibility relations, properties of progression and absorption,
and the existence of static attributes: these notions may well apply to parts of the
system under consideration, but such will not show from the representation.

Observability

Observability in the POMDPMPO is specified by the set O of observation functions.
Each of these functions has the form

ot : A→ ℘(X), (5.81)

where ot(a) ⊆ X is the set of system attributes that is observable at time point
t ∈ T when choosing action a ∈ A. So, a state variable x(t) is manifest at future time
points only when the decision at time point t caused it to be so; neither future nor past
decisions can influence its manifestness. In addition, there may be system attributes
whose marginal probabilities in the initial state distribution P0 are degenerate; we
consider these variables as case parameters, i.e. as variables that are observed prior
to the first decision.

We now translate the above observation functions to an observation model O′ for
decision basis B as follows. Let Y ⊆ X be the set of all case parameters, i.e. Y
the largest subset of system attributes for which P0(cY ) = 1 for some configuration
cY ∈ ΩY . For the initial time point t = 0, we take

o0(α̌) = Y (0) (5.82)

and for each other time point t ∈ T , t > 0, we take

o′t(α) = Y (0) ∪ o0(α(0)) ∪ · · · ∪ ot−1(α(t− 1)) (5.83)

for all action sequences α ∈ A[0, t− 1].

We have already discussed that a principal property of case parameters is that they
are absolutely manifest at all time points; here, this holds therefore for elements of the
set Y (0). Any other state variable x(t) ∈ X(T ) \ Y (0) is absolutely manifest at future
time points in observation model O′ if and only if x ∈ ot(a) for all actions a ∈ A. In
general, state variable x(t) ∈ X(t) \ Y (0) is manifest at time points greater than t
only under decision d(t)=a when x ∈ ot(a). Potential manifestness of the variable
is determined by checking if there exists an action a ∈ A such that x ∈ ot(a); as
there are no time lags between action and observing in the POMDP formalism, no
other time points need to be inspected. We deduce that a given choice context ϕ for
time point t ∈ T is verifiable under observation model O′, if for each state variable
x(t′) ∈ X[0, t] covered by ϕ we have x(t′) ∈ Y (0) or x ∈ ot(a), where d(t′)=a is a
decision in ϕ.
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Utility function

In the Markov decision processes described byMPO, a reward rt(S, a) received at time
point t ∈ T when the decision maker chooses action a ∈ A and the system occupies
state S ∈ dom(X). The objective is to maximise the discounted sum of expected
rewards of the entire time frame T ; the utility function employed in these processes
can therefore be characterised as time-separable additive:

u(σ, α) =
∑
t∈T

λt · rt(σ(t), α(t)) (5.84)

for all histories (σ, α) ∈ H(T ), where λ is the discount factor employed. We recall
that the subsequent rewards associated with a given planning history can be regarded
as independent factors of income, where the discount factor represents a form of
interest (when the rewards represent monetary gains), physical decay, or psychological
preference of near over distant future. There are no possibilities in the POMDP
representation to use utility functions that are not time-separable additive, or to
make an explicit distinction between direct and indirect contributors to utility: each
reward function takes the action choice and the complete system state into account.

Solution form

Recall that a decision-making policy for a given POMDP consists of a set π = {δPO
t |

t ∈ T} of decision functions of the form

δPO
t : Ψt → A, (5.85)

where Ψt is a set of choice contexts for time point t. In Section 4.2, we assumed that
each Ψt, t ∈ T , comprised all maximally-informative choice contexts for time point t;
here we will make the weaker assumption that the elements of each Ψt are mutually
exclusive, i.e. ϕ1 ∧ ϕ2 ≡ ⊥ for all ϕ1, ϕ2 ∈ Ψt, ϕ1 6= ϕ2. Such a policy is translated
to a contingency plan π′ for decision basis B as follows:

π′ = {ϕ→ d(t)=a | t ∈ T, ϕ ∈ Ψt, a = δPO
t (ϕ)}. (5.86)

The set of decision rules thus obtained is a proper contingency plan in the sense of
Definition 5.54, as the elements of each Ψt, t ∈ T , are mutually exclusive and the func-
tional formulation prohibits multiple action choices to be assigned to a single choice
context. The plan π′ is not necessarily complete, consistent or coherent; for these
conditions to hold, the policy π must have additional properties that are derived from
Definitions 5.75, 5.71, and 5.73. As these derivations are relatively straightforward,
we do not elaborate on these properties here.

Recall that a given choice context ϕ for time point t ∈ T is verifiable, when each state
variable x(t′) ∈ X[0, t] covered by ϕ is a case parameter (and t′ = 0), or is manifest
under some decision d(t′)=a in ϕ. Therefore, if all choice contexts in Ψ0, . . . ,ΨN

obey this restriction, then the plan π′ is operational under observation model O′.
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One might for instance require, as we did in the previous chapter, that each ϕ ∈ Ψt

has the form

ϕ ≡ α ∧ cZ (5.87)

where α ∈ A[0, t− 1] denotes all previous decisions, and cZ is a configuration of the
set Z = o′t(α) of all state variables that are observable under α. The decision rules are
then based on maximal information for the planning agent as each context ϕ ∈ Ψt,
t ∈ T is verifiable under O′, but no greater context is also verifiable. As a result, any
optimal contingency plan can be expressed in this form. The plan formulation under
this requirement is however also the least efficient: there may be smaller, equivalent
plans when particular information is not really used in making the decisions. It is
possible that this holds for the optimal decision-making policy; unfortunately, such
cannot, in general, be determined in advance.

5.5.2 DIDs

Dynamic influence diagrams are graphical representations of sequential decision-
making problems under uncertainty. Their attractiveness as a representation formal-
ism stems to a great extent from the ability to depict influential and observational
relations between state variables, decision variables, and utility. Formally, a dynamic
influence diagram over a set of system attributes X and a time frame T is described
by a triple DID = (G,Γ, u), where G is a directed graph over X(T ), D(T ), and a
value node v, Γ is a set of probability assessment functions for the variables from
X(T ), and u is a utility function.

We derive a decision basis B = (X,A, T ) from the diagram by taking A = dom(d(0))∪
· · ·∪dom(d(N)) to be the set available actions; the necessary restriction at each time
point t ∈ T is that action choice d(t)=a is excluded when a 6∈ dom(d(t)). We will
now formulate the models and control and observation and the utility function for
decision basis B = (X,A, T ) that correspond to the influence diagram DID .

Control

The general, non-Markovian type of dynamic influence diagram places little restric-
tions on the possibilities for the planning agent to influence the evolution of the sys-
tem state; the primary characteristic of the influence-diagram representation is that
it takes advantage of probabilistic independencies and has a graphical way of expres-
sion influential relations among decision and state variables. From the definition of
dynamic influence diagram, it follows that the probabilistic relations expressed by
the set of probability assessment functions Γ = {γx(t) | x ∈ X, t ∈ T} are translated
to a control model Ξ = {ξα | α ∈ A(T )} as

ξα(σ) =
∏

x(t)∈X(T )

γx(t)(cx(t) | cρG(x(t))) (5.88)



168 A framework for decision-theoretic planning

for each action sequence α ∈ A(T ) and state sequence σ ∈ S(T ), where for all
x(t) ∈ X(T ), cx(t) and cρG(x(t)) are the configurations of x(t) and ρG(x(t)) in planning
history h = (σ, α), i.e. h ` cx(t) ∧ cρG(x(t)). Note that it is possible that there is
no configuration cρG(x(t)) of the set of the parents ρG(x(t)) of variable x(t) that is
compatible with action sequence α; this occurs when there is a decision variable
d(t′) ∈ ρG(x(t)) and α(t′) 6∈ dom(d(t′)). It is then immaterial which probability is
assigned to ξα(σ) as this action choice is excluded when solving the planning problem.

The very strength of the influence-diagram formalism is that we can read off influential
relations between decisions and state variables directly from the graph G: a state
variable x(t1) ∈ X(T ) is affected by decision d(t2) ∈ D(T ) if and only if d(t2) is an
ascendant of x(t1) in G. If, in addition, d(t2) is a direct ascendant (i.e. predecessor)
of x(t1) in G, then x(t1) is directly affected by d(t2). If for a given system attribute
x ∈ X, x(t) does not have decisional ascendants for any time point t ∈ T , then x is
uncontrollable. The explicit, graphical representation of these relations provides the
possibility to exploit them during problem solving without inspecting large numbers
of control probabilities that give rise to them. It is not possible to make accessibility
relations, properties of progression and absorption, or the existence of static attributes
explicit in influence diagrams.

An additional Markov assumption can be employed in dynamic influence diagrams;
the assumption then appears from the graph as

ρG(x(t)) ⊂ X(t− 1) ∪X(t) ∪ {d(t)} (5.89)

for all x ∈ X and t ∈ T , t > 0. As with POMDPs, it implies that at each time point
t ∈ T , t < N , the set X[t + 1, N ] is conditionally uninfluenced by decisions prior to
time point t given X(t).

Observability

Observability is a more constrained notion in influence diagrams. Recall that upon
making decision d(t), t ∈ T , all predecessors of variable d(t) in graph G are assumed
to be manifest. So, the observation function for time point t is induced as

ot(α) = X[0, t] ∩ ρG(d(t)) (5.90)

for all action sequences α ∈ A[0, t− 1]; variable d(t) cannot have predecessors in
X[t+1, N ]. When t = 0, we have o0(α̌) = ρG(d(0)); the predecessors of decision d(0),
necessarily a subset of X(0), therefore act as case parameters. The influence-diagram
formalism requires that set of predecessors of any future decision variable d(t) ∈ D(T )
should include all earlier decisions and their predecessors (the ‘no-forgetting’ prop-
erty), to assure that all information that was earlier available can also be used for
decision d(t). Formally, we have

ρG(d(t)) ⊃ ρG(d(t− 1)) (5.91)
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for all t > 0, and therefore

ot(α) ⊇ ot−1(α′) (5.92)

for all action sequences α ∈ A[0, t − 1] and α′ ∈ A[0, t − 2], where α ` α′. So,
this requirement corresponds to the condition of monotonicity of observation in our
framework (Assumption 5.45 on page 138).

Verifiability of a given choice context ϕ for time point t under the observation model
thus obtained is easily determined: the context is verifiable whenever each state vari-
able x(t′) covered by ϕ is an element of ρG(d(t)). It is not necessary to inspect the
action choices in ϕ; there is no distinction between potential and absolute manifest-
ness of state variables in influence diagrams. This illustrates an important character-
istic of the influence-diagram representation of observability that needs mentioning
here once more. The manifestness of state variables simply progresses with time and
does not depend on the actual actions chosen. We have already discussed this point
in Chapter 4, where we have termed this phenomenon informational symmetry ; it
prohibits the representation of information-seeking actions and is therefore a serious
restriction.

Utility function

The utility function u employed in influence diagram DID is a function of the prede-
cessors of the value node v, i.e.

u : ΩρG(v) → R. (5.93)

In terms of our framework, the predecessors of node v are direct contributors to utility,
whereas all other variables are indirect contributors. Generalisation to marginal
and expected utilities proceeds as in Proposition 5.90: the marginal utility um(h)
of planning history h ∈ H(T ) equals u(cρG(v)), where cρG(v) is configuration of the set
ρG(v) in h, i.e. h ` cρG(v). The expected conditional utility of decision process P
given planning expression ϕ ∈ Φ(T ) equals

ũϕ(P ) =
∑

cρG(v)∈ΩρG(v)

P (cρG(v) | ϕ) · u(cρG(v)), (5.94)

if ϕ is possible in P .

It is well possible that the induced marginal utility function um is time-separable,
but this cannot be made explicit in the influence-diagram representation of utility;
we can only detect it by inspecting large numbers of utility values. In the literature,
extensions to the representation have been proposed where time-separability is made
explicit through the usage of multiple value nodes; we refer to the paper by Tatman
and Shachter (1990) for further details of this extension.
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Solution form

A decision-making policy for the dynamic influence diagram takes the form of a set

π = {δd(t) | d(t) ∈ D(T )} (5.95)

where each δd(t) ∈ π is a function

δd(t) : ΩρG(d(t)) → dom(d(t)) (5.96)

that selects an action a ∈ dom(d(t)) for each possible configuration cρG(d(t)) of the
predecessors of d(t) in the graph. To translate this policy to a contingency plan π′

for decision basis B, each decision function δd(t) ∈ π is converted to a set of decision
rules of the form

cρG(d(t)) → d(t) = a, (5.97)

where cρG(d(t)) ∈ ΩρG(d(t)) and a = δd(t)(cρG(d(t))). It is easily seen that the antecedents
of these rules are verifiable as all non-decisional predecessors of d(t) are assumed to
be manifest at time point t. We conclude that the plan thus obtained consists of
operational decision rules and is therefore also operational itself. In fact, we could
only obtain non-operational plans if we included non-predecessors in the domain of
a decision variable’s function.

The contingency plan π′ that is obtained from translating a decision-making policy
for the influence diagram is complete as it provides, at each time point, a decision
rule for each possible combination of past decisions and observations. For the same
reason, the plan will also be more than complete as it specifies more decision-making
information that is strictly necessary. As a result, the plan is inconsistent and has
many decision rules that will never be applied; strict implementation of the plan is
impossible. To avoid this redundancy, one could decide to use partial functions in
the policy π. To obtain a complete plan, it is sufficient that

cρG(d(t−1)) ∧ d(t− 1)=a ∈ cover(π′, t), (5.98)

when cρG(d(t−1)) ∈ cover(π′, t) and π′t−1(cρG(d(t−1))) = {a}, for all non-initial time points
t ∈ T . So, δd(t) need not be defined for all configurations of ρG(d(t)), but only for
those where

cρG(d(t+1)) ` cρG(d(t−1)) ∧ d(t− 1)=a, (5.99)

and δd(t−1)(cρG(d(t−1))) = a. Omitting any of these choice context renders the plan π′

incomplete, while including more choice contexts unavoidably yields inconsistencies.
The initial time point is an exception to this rule; decision function δd(0) needs to be
defined for all configurations of ρG(d(t)), so that

ΩX(0) ⊆ cover(π′, 0) (5.100)
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and the plan π′ is therefore complete.

It is worthwhile to note that the standard form of policy representation in influence
diagrams is rather rigid. Decision functions are always expressed in terms of maximal
information; when it is possible to make optimal decisions with less information, the
formalism does not allow one to exploit this circumstance to arrive at a smaller
representation; the true complexity of a given policy can only be determined after
extensive analysis.

5.5.3 Comparison

We conclude this section with a brief summary and comparison of our findings with
respect to the POMDPs and DID representations. We have shown that our frame-
work is more general than both POMDPs and DIDs in the sense that it allows to
reformulate domain specifications in either type of representation. Note this also
holds for fully-observable Markov decision processes (FOMDPs), as this type of rep-
resentation is essentially a restricted form of POMDP; we have not elaborated on
FOMDPs as we regard partial observability as an essential ingredient to action plan-
ning under uncertainty. Another point to note is that both POMDPs and DIDs also
serve as computational architectures for problem solving, and several characteristics
of these formalisms have computational motivations. Yet, as we currently do not con-
sider computational aspects, we have excluded them from the discussion and have
restricted ourselves to considering representational issues.

POMDPs incorporate a strong notion of temporal locality in the representation of
control, observation, and utility: the Markov assumption exists in their notion of
control, state observation proceeds instantaneous without time lags, and the utility
function is time-separable and additive. Yet, POMDPs also have a rather coarse
representation of control and utility as they do not specify control relations or reward
functions below the level of complete system states. There is a significant potential
for more economic representations at these points.

DIDs make less global assumptions than POMDPs and arrive at a compact represen-
tation by making the various relations among domain variables explicit in a directed
graph. As such, the representation of control and utility is more fine-grained and
provides for reading off relations of direct and indirect affectedness, and of direct and
indirect contribution to utility. A drawback to the graphical representation is that it
is unable to handle informational asymmetry, and therefore has problems to model
test decisions. Furthermore, the standard form of decision-making policies for DIDs
does not allow for representational savings when decisions can be made on the basis
of less than maximal information.

Given the above translations of POMDPs and DIDs to our framework, we can iden-
tify the problem types for which either type of representation can be used. When
a decision-theoretic planning problem has Markovian control and observation, and
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a time-separable additive utility function, then it can be expressed as a POMDP.
When a problem has a symmetrical observation model, it can be expressed as a DID.
When all these conditions apply, the problem can be cast both as a POMDP and a
(Markovian) DID.

5.6 Discussion

In this section we evaluate our framework for decision-theoretic planning and relate
it to the work of Poole (1993; 1996) and Haddawy (1996).

We have presented a formal framework that integrates notions from Bayesian prob-
ability theory, decision theory, and symbolic planning. The building blocks of our
framework are the elements of a decision basis: a specification of a dynamic system
in terms of its attributes and possible values, the possible actions to choose from,
and the time frame for a planning task under consideration. From these elements
we derived a Boolean planning language for the given specification, and defined the
notion of decision process as a probability distribution over planning expressions. We
believe that the strength of our framework is that given these definitions, we can
express most concepts that occur in decision-theoretic planning. We have described
how to formalise a large number of concepts related to stochastic control, partial
observability, contingency planning, and decision-theoretic planning objectives. As
was shown in Section 5.5, the framework allows to describe and analyse existing
representation formalisms such as POMDPs and DIDs.

In our framework, decision processes provide a meta-level description of the inter-
twined dynamics of planning agent and stochastic system. Using the rules of con-
ditional probability, we can switch from this description to object levels that focus
on the agent’s behaviour (using choice predictions) or on the system’s reactions to
that behaviour (using state predictions). The approach we have taken can be re-
garded as strictly Bayesian: the collection of marginal probabilities on initial states
serves as a prior distribution, and observations and the (expected) effects of action
choices are used to repeatedly update this distribution. It is mainly a matter of
convenience that decision processes integrate all these distributions over time: this
type of formalisation supports a smooth analysis of the relations between subsequent
distributions.

Although the chapter has focused on an integrated approach to decision-theoretic
planning, most ingredients of our framework could well be used in isolation, or in
combination with other formalisms. For instance, the elaborate theory of contingency
planning that was presented in Section 5.3 is valuable in its own right and has a
potential for application in combinations with other formalisms for reasoning with
uncertainty and incomplete information.

We note that it is not necessary to employ our framework in its full generality: it is
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also suited to analyse and compare planning tasks in more restricted circumstances.
For instance, one may consider planning with deterministic system dynamics but an
unknown initial state, or planning to reach a goal state in a stochastic environment
without any observations. Another possibility is to assume that the planning agent
does not have a correct conception of reality and reasons from erroneous models
of control or observation, or, more radically, that he does not have such models at
all. When a (correct) model of control is lacking, the agent’s assignment can then
be regarded as a reinforcement learning task (Kaelbling et al., 1996; Sutton and
Barto, 1998). When a (correct) model of observation is lacking, prospective planning
by formulating decision rules is no longer useful as the operationality of these rules
is uncertain; the only resort for the planning agent is performing real-time planning,
where the choice of actions and their execution coincide.

The framework of D. Poole

D. Poole (1993; 1996) has developed a framework that combines notions from proba-
bility theory, decision theory and symbolic planning. The framework aims at symbolic
reasoning over contingency plans in uncertain environments, where the objective is
to maximise expected utility. The main differences with our work are that Poole
(i) uses acyclic Horn clauses to specify the effects of actions on states, (ii) borrows
the notion of situation from the situation calculus (McCarthy and Hayes, 1969) to
specify action sequences, and (iii) introduces uncertainty by setting the truth of cer-
tain combinations of logical atoms externally through a stochastic mechanism. The
result of such uncertainty is that situations (i.e. action sequences) do not uniquely
determine the resulting state (as is traditionally the case in the situation calculus),
but yields a probability distribution on states instead.

The usage of Horn clauses to specify the effects of actions builds on the conception
that action effects are in principle deterministic and known to the planning agent, but
there may be conditions in the effect description that are subject to uncertainty and
whose truths are moreover unknown to the planning agent. Using a frame axiom, per-
sistence of all facts not mentioned in the effect description is assumed. The Markov
assumption is implicitly present in the semantics of effect descriptions. The specifica-
tion of utility values is also structured into Horn clauses, and allows for various types
of decomposition (e.g. additivity and multiplicativity). A contingency plan has the
form of an algorithmic procedure with sequencing and conditioning operators. Such
a plan selects a situation (i.e. sequence of actions), depending on the observations in
due course. A more general form of plan that includes loops, nondeterministic choice,
and procedural abstraction is possible.

The framework of P. Haddawy

P. Haddawy (1996) has developed a first-order logical language called Ltca that in-
tegrates earlier work on temporal logics, probability logics, and action modelling.
This language is not intended as a computational architecture (it is, in fact, not
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finitely axiomatizable), but serves as a formal foundation and analytical framework
for planning systems.

Haddawy’s language is characterised by a high level of expressiveness, which is al-
ready reflected at the most basic level. In the description of a planning domain, an
explicit distinction is made between facts and events, and various types of interaction
between these entities are possible. The underlying notion of time is continuous, and
temporal reasoning is not based on time points but on time intervals. Furthermore,
the language allows for concurrent actions.

The notions of probability and possibility (and its pendant inevitability) are for-
malised by modal operators with an indication of time. Possibility is defined inde-
pendently of probability, for the reason that in an uncountably infinite outcome space,
events can have zero probability but are still possible. The choice of formalisation of
these notions has important semantic consequences. First, probabilistic expressions
can be nested and combined with possibility and inevitability. The nesting of proba-
bilistic expressions requires higher-order probabilistic semantics. This is resolved by
making the assumption that probability equals the expected value of a distribution
over probability distributions. Second, Haddawy’s language incorporates a dynamic
perspective on time as each of these modal operators incorporates a reference to a
time point. Thus, the probability and possibility of facts and events to occur are
relative to the point in time that represents ‘now’.

The language comes equipped with an elaborate model-theoretic semantics; a number
of intuitively appealing properties are obtained by placing constraints on the models.
For instance, it is ensured that the past is inevitable and cannot be influenced by
actions or events. Furthermore, when actions are chosen, this results in attempts,
which may or may not succeed. A successful attempt yields one of the potential
effects of the action; each potential effect is described indirectly in the language by
a secondary event that induces the effect upon successful action completion. The
reasoning about effects of actions is therefore highly qualitative in nature.

Conclusion

To conclude we provide a brief comparison of the three frameworks. From a con-
ceptual point of view, our framework is most closely related to the framework of
D. Poole, as they are both founded on the conception of a planning agent that is
controlling and observing a dynamic system over time. This is the same conception
that underlies the POMDP representation formalism. Both frameworks are further
characterised by a static perspective on time, and a considerable attention to the
notion of contingency plan. Poole’s framework is however, in terms of expressiveness,
also comparable to POMDPs, whereas our work explicitly seeks more expressiveness:
we believe that the assumptions underlying POMDPs can be too restrictive, and
should be not be incorporated in a general framework. Additionally, the framework
of Poole employs a large variety in formal structures that jointly provide for succinct
symbolic representation of decision-theoretic planning notions. But the disadvantage
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of this approach is that it obscures rather than illuminates a theoretical analysis: it
allows for switching between various types of representation, but leaves the underly-
ing, integrating perspective unaddressed. Our framework in contrast highlights this
perspective through a unity in formalisation.

The similarity between our framework and P. Haddawy’s logical language Ltca is that
both are characterised by a high level of uniformity in the formalisation with the ob-
jective of supporting a clear analysis and insight to the type of problem that is being
studied. An important difference is that Haddawy’s work is rooted in the traditional,
logical-analytical approach to formalising planning problems. An asset of the logi-
cal language Ltca is that it is highly expressive: it incorporates uncountably infinite
outcome spaces, a distinction between facts and events, higher-order probabilities, a
dynamic perspective on time, and a notion of possibility that is independent of prob-
ability. However, there is no concept of information or observation in the language.
Therefore, Haddawy’s notion of plan is rather naive: it simply consists of a collection
of action attempts, with the objective of achieving a propositional goal; the concept
of planning for contingencies is not included. Similarly, the concept of planning ob-
jective is weak: it is assumed that a planning agent aims at reaching a propositional
goal, while utility-theoretic notions are lacking. We believe that these notions are
indispensable in domains where uncertainty truly abounds; they are therefore promi-
nent in our framework. It is questionable whether the language Ltca is truly suited for
analysing and founding decision-theoretic planning systems: higher-order probabili-
ties and uncountably infinite outcome spaces are superfluous for this task, while the
notions of observation, contingency plan, and expected utility are most important.





CHAPTER 6

Clinical modelling and reasoning

In this chapter we return to the starting-point of our study, decision making in
medical care. It is discussed how the framework for decision-theoretic planning that
was developed in the previous chapter is applied to model medical-clinical domains,
and to implement patient management tasks.

The chapter is organised as follows. Section 6.1 describes how the components of our
framework can be used to develop a model of given clinical domain. To illustrate
our ideas, we will use examples from the application domain that was described
in Chapter 2, the domain of paediatric cardiology. In previous chapters we have
used examples of the disorder VSD to illustrate various parts of the theory, but
these examples have often been small and greatly simplified representations of reality;
here, we will use more comprehensive and realistic examples. We recall that for the
reader’s convenience, a glossary of specialist terms from the VSD domain is found in
Appendix A.

Section 6.2 focuses on the medical reasoning tasks of diagnosis, therapy planning, and
prognosis. We investigate how these tasks can be approached within our framework,
and how they relate to each other in the dynamic perspective on patient management
that was sketched in Chapter 1. A number of concepts that occur in everyday clinical
reasoning, such as diagnostic hypothesis, clinical indication, and future scenario, are
formalised in the framework and their role in clinical reasoning is analysed. We
conclude the chapter in Section 6.3 with a discussion of our findings.
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6.1 Building a domain model

In general terms, the projection of a given clinical domain to our framework’s compo-
nents is envisioned as follows. In a decision basis B = (X,A, T ), the system attributes
of the set X describe the condition of a patient that requires or undergoes clinical
management. The set A of actions comprises the diagnostic and therapeutic modal-
ities that are available to the treating clinician. The time frame T finally represents
the space of time for the task at hand, and the potential moments of clinical ac-
tion. Describing these sets is typically the first phase in the formalisation of a given
domain; we discuss it thoroughly in Subsections 6.1.1 and 6.1.2.

The second phase will often consist of specifying the domain’s control and observation
models. A model of control Ξ has basically two functions: it specifies intra-state rela-
tions between attributes (such as the probabilities of making particular observations)
and the developments of the patient’s condition over time under different therapeu-
tic regimens (such as the likelihood of disease progression and complications). A
model of observation O specifies which attributes of the patient’s condition can be
inspected by performing diagnostic tests, and the time scale at which these tests yield
the evidence longed for. The specification of control and observation is discussed in
Subsections 6.1.3 and 6.1.4.

The third and final phase concerns modelling the objectives of patient management
with a utility function; optimal decisions in varying clinical circumstances can then
be derived from this function. In Subsection 6.1.5, we describe the possibilities one
has in formalising the objectives of management with a utility function.

6.1.1 Describing the patient’s condition

As stated above the attributes from the set X jointly describe the condition of a
patient that requires or undergoes clinical management. The set ΩX of all possible
configurations of X should therefore cover the range of all possible patient conditions
that are considered relevant in this respect. Instead of system state we will rather
speak of clinical state in this chapter, to emphasise the role of state variables. We
take the clinical state description provided by the set X to include a description
of disease in terms of both its underlying, internal pathophysiology (i.e. disease
and complications) and its external manifestations (i.e. signs, symptoms, and test
results). Therefore, the set X is assumed to be composed of a set I of internal and
a set E of external attributes, i.e.

X = I ∪ E, (6.1)

where the sets I and E are disjoint. The set I represents the internal, pathophysio-
logical state of a patient: these attributes determine the patient’s health in present
and future and are therefore of principal interest to the treating physician. The set
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E represents manifestations of the internal state and consists of attributes that are
(at least potentially) observable.

Example 6.1 In order to find a suitable description of the VSD domain in terms
of a set of clinical attributes, the following procedure was employed. First, the field
expert was interviewed to elicit the main terms and concepts of the problem domain.
Using this informal domain description, we discerned seven groups of attributes:

1. VSD pathology, describing the primary pathological condition,

2. cardiac complications, i.e. additional abnormalities of the heart and main ar-
teries,

3. physiology, pertaining to the haemodynamics of the circulatory system, such as
blood pressures, shunting, and vascular resistances,

4. pulmonary complications resulting from haemodynamic abnormalities,

5. clinical complications resulting from diagnostic or therapeutic procedures,

6. signs and symptoms obtained from history taking and physical examination of
the patient, and finally

7. clinical measurements obtained from diagnostic investigations.

Here, groups 1–5 jointly constitute the set of I of internal attributes, and groups 6
and 7 jointly constitute the set E of external attributes. The second step consisted of
searching through the literature on congenital heart disease and VSD, which brought
a number of refinements to the pathophysiological part of the attribute set, i.e. groups
1–4. The third and final step was to study medical records of VSD patients that were
treated during the years 1981–1996 at the Leiden University Medical Center; these
records were then also collected in a database. This provided a thorough inventory
of the types of information on VSD patients that is available to the clinician, and
yielded refinements to groups 6 and 7.

Table 6.1 lists all internal attributes from the VSD domain. The attributes in group 6
(signs and symptoms) are observable through physical examination of the patient; they
are shown in Table 6.4 on page 192. The attributes of group 7 (clinical measurements)
are observable through a variety of diagnostic procedures; they are listed in Table 6.5
on page 194.

When all clinical attributes have been identified, the next task is to establish their
value domains. As our framework assumes all value domains to be finite, this requires
(finite) discretization of continuous-valued attributes. In cases where this is done,
it is recommendable to keep track of the fact that the underlying concept is non-
discrete, and furthermore that the values of such an attribute, both before and after
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Group Name Description
1 VSD pathology outlet pos malalignment of the outlet septum

VSD type type (location) of the VSD
VSD ext extension of the VSD
VSD size size of the VSD

2 cardiac complications ASD atrium septum defect
PDA persistent ductus arteriosus
aort sten aortic stenosis
aort prolapse aortic prolapse
pulm sten pulmonary stenosis

3 physiology resis pulmonary vascular resistance
shunt direction and size of shunting
ventr press interventricular pressure ratio
art press interarterial pressure ratio
aort regurg aortic valve regurgitation
pulm regurg pulmonary valve regurgitation
pulm flow hyp pulmonary flow-hypertension
cardiomegaly cardiomegaly
LVH left-ventricular hypertrophy
RVH right-ventricular hypertrophy
ox sat oxygen saturation of the blood

4 pulmonary complications pulm inf pulmonary infections
pulm art pulmonary arteriopathy

5 clinical complications stroke stroke
bleeding bleeding
arrhythmia arrhythmia
perforation perforation of the heart or great vessels
death death

Table 6.1: Internal attributes for the VSD domain.
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Name: VSD type

Definition: Type (location) of the VSD

Group: 1 (VSD pathology)

Domain: perimembranous (adjacent to triscuspid and mitral valve, with
possible extensions into the inlet and/or outlet area)

subaortic (located in the outlet area just beneath the aortic valve,
non-perimembranous)

muscular (surrounded by muscular tissue,
non-perimembranous, non-subaortic)

Type: unordered categorical

Comments: We exclude the rare subpulmonary and doubly-committed (= both subaortic
and subpulmonary) VSDs. Note that when VSD size = null, apparently there is no
VSD present (anymore), and this variable is meaningless.

Figure 6.1: Model description of the attribute VSD type.

discretisation, permit a linear ordering. Furthermore, one should preferably postpone
the discretisation step as long as possible, and once it is carried out, it should be well-
documented and possibly verified after the model is completed.

Example 6.2 For each attribute in the VSD domain, we established a value do-
main in cooperation with the field expert. An example description, for the attribute
VSD type, is given in Figure 6.1. Several attributes (e.g. VSD size, shunt, and
ox sat) are continuous-valued in their natural form. However, we found that there
existed commonly-used discretizations for such attributes in clinical practice. Where
possible we used these discretisations, thus staying as close as possible to the clini-
cian’s vocabulary. An example is provided in Figure 6.2, which describes the attribute
VSD size; this attribute has an age-dependent discretization.

6.1.2 Clinical modalities

We now turn to the modalities for the clinician in managing patients. These are
classified along two dimensions. First, the actions that the clinician may choose from
must be distinguished; this yields the set A of the decision basis. Second, the moments
in time where such actions may be performed have to be established, providing the
time frame T .

Diagnostic and therapeutic actions

We now turn the second element of a decision basis, the action set A. This set
should comprise all diagnostic and therapeutic modalities that are available to the



182 Clinical modelling and reasoning

Name: VSD size

Definition: Largest diameter of the VSD

Group: 1 (VSD pathology)

Domain: null (no defect)
small (1–3 mm at 0–6 months, 1–5 mm thereafter)
moderate (3–5 mm at 0–6 months, 5–10 mm thereafter)
large (> 5 mm at 0–6 months, > 10 mm thereafter)

Type: ordered discretized

Comments: A perimembranous VSD without extension(s) is by definition small; otherwise,
it is moderately large or large.

Figure 6.2: Model description of the attribute VSD size.

treating clinician, including the most basic modality in all circumstances, the absence
of taking action. We take the set A therefore to be composed of three disjoint sets,
comprising test actions, treatment actions, and a single empty action:

A = Atest ∪ Atreat ∪ {ε}. (6.2)

Test actions are characterised by the fact that they yield the opportunity to observe
one or more external state variables. Treatment actions are distinguished by their
potential to produce changes in the clinical state of the patient. Theoretically speak-
ing, the distinction may become blurred as test actions might also affect the patient’s
state and treatment actions sometimes provide observations. It is nevertheless useful
to maintain the distinction between these action types as they are conceptually very
different, and this allows for reasoning with the purpose of action choices. Further-
more, one will rarely have difficulties with distinguishing test actions from treatment
actions in a given clinical domain.

The empty action ε denotes the absence of taking action; we use this action to skip
decision moments when future times seem more appropriate for activity, or to ‘fill
up’ the remaining points in a time frame when our objectives are already met at
an early stage. The empty action does neither yield observations nor induce state
changes. We note that a result of our assumptions is that no action exists that yields
observations on internal variables.1

Example 6.3 For the VSD model, we have identified 7 test actions and 2 treatment
actions; they are listed in Table 6.2. The first test action, physical examination of the
patient provides for observing all clinical attributes from group 6 (signs and symp-
toms). The other test actions represent diagnostic procedures that are more involved;

1This is not really a restriction as one could always add an external variable that represents the
outcome of a perfect test on one of the internal variables.
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Type Action Description

test exam physical examination
ECG electrocardiography
echo echocardiography
Xray chest roentgenography
bltest blood test
cath cardiac catheterisation
biop open lung biopsy

treat med medical treatment
surg cardiac surgery

Table 6.2: Clinical actions for the VSD domain.

each of them yields observations for attributes of group 7 (clinical measurements).
The available treatment modalities are medical treatment (reducing the symptoms of
heart failure with cardiac glycosides and diuretics), and surgical repair of the cardiac
lesion.

When test actions change the patient’s state this is generally due to adverse (and un-
intended) effects: some diagnostic procedures, typically those that are invasive, may
cause complications or even death. There are basically two options for incorporating
such effects in a decision-theoretic model. The first option is to model these effects
explicitly by having clinical attributes that describe potential complications. These
attributes are then directly (though nondeterministically) affected by decisions to
perform such actions, while the attributes themselves are direct (and negative) con-
tributors to utility. As a result, the decisions are indirect contributors to utility. The
second option leaves the adverse effects of test actions implicit and has the decisions
as direct contributors to utility. This option will generally yield a simpler model (as it
has less clinical attributes), but this model is also less expressive and less transparent.
A mixture of both options was employed in the VSD model.

Example 6.4 In the current formalisation of the VSD domain, the only test action
that affects the patient’s state is cardiac catheterisation: it may cause clinical com-
plications such as stroke, perforation of the heart or great vessels, and even death.
The other test actions do not affect the patient’s clinical state in the model. This
is not fully realistic for chest roentgenography and open lung biopsies: roentgenogra-
phy exposes the patient to a small amount noxious x-rays and an open lung biopsy
removes a small specimen of tissue from the lungs. There is widespread consensus
that these investigations should be avoided if possible, and otherwise be minimised in
the number of times they are employed. In both cases we have therefore chosen to let
these actions contribute directly, and negatively, to utility.
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Time frame and temporal map

To complete the specification of a decision basis, one needs to assess the space of time
for the task at hand, and the potential moments of clinical action. This information
is then translated to a time frame T ; as before we will assume time frames to be finite,
and to have the form T = {0, 1, . . . , N} ⊂ N. The number N , which represents the
maximum number of actions chosen, should be chosen sufficiently large to provide for
accomplishing the medical task at hand.2 Furthermore, one should be aware of the
envisioned range of operational time that planning task takes, and the actual periods
of time between subsequent decision moments. We formalise this by associating a
temporal map with a time frame T of decision moments.

Definition 6.5 (Temporal map) A temporal map for time frame T is a mono-
tonically non-decreasing function τ : T → R.

A temporal map τ allows for projecting the decision moments in T onto arbitrarily
distributed points on the real line, where the real numbers are in turn interpreted
on a linear time scale (e.g., minutes, days, years). We assume that the function τ is
non-decreasing, i.e. if t1, t2 ∈ T and t1 < t2, then also τ(t1) ≤ τ(t2). The difference
between τ(t) and τ(t + 1), t ∈ T , t < N , now represents the actual period of time
between time points t and t + 1; we refer to these time periods as episodes. We
allow that episodes differ considerably in size, thus lifting the implicit assumption
that decision moments are uniformly spread across time.

We will often use τ(t) to represent the age of a patient at decision moment t ∈ T ;
this has also been our modelling choice in the VSD domain.

Example 6.6 A paediatric cardiologist typically wants to see a VSD patient a number
of times during childhood to monitor the patient’s development. After the first visit
where the VSD is diagnosed (usually in the first 3 months of life), this is often at 6
months, 12 months, and 24 months after birth, and, if necessary, at the ages of 4 and
8 years. In a naive formalisation of this domain we would therefore use a time frame
with 6 decision moments (i.e. N = 6), and use τ(t), t ∈ T , to represent the number
of months since the patient’s birth, i.e. τ(0) = 3, τ(1) = 6, τ(2) = 12, τ(3) = 24,
τ(4) = 48, τ(5) = 96. This formalisation has however the disadvantage that we can
only choose one action at each consultation. In reality, multiple diagnostic actions
and possibly a treatment action are performed each time.

To overcome the problem in the above example, we can use a special construction
where τ(t) = τ(t+ 1) for one or more decision moments t ∈ T . This means that the
passage of time between decision moments t and t+1 is considered negligible in terms

2Recall that the final decision moment in a time frame is virtually meaningless as we cannot
model its future consequences. This moment serves to evaluate the post-therapeutic state of the
patient.
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of the model and is therefore abstracted from. Yet, the precedence relation between
these moments, as provided by the ordering on time frame T , remains: the decision
at time point t is made before the decision at time point t+ 1.

Example 6.7 A more realistic formalisation of the VSD domain has 8 decision mo-
ments at each of the ages where the cardiologist may see the patient. That is, N = 48,
where

τ(0) = . . . = τ(7) = 3,
τ(8) = . . . = τ(15) = 6,
...

τ(40) = . . . = τ(47) = 96.

This allows to perform the maximum of 7 diagnostic actions and a single treatment
action at each age; the possibility to perform multiple treatment actions is not required
as the treatments are mutually exclusive. The outcome of the decision process is
evaluated also at the age of 8 years, i.e. τ(48) = 96.

Given a decision basis B = (X,A, T ), elements of the planning language Φ(T ) for
that basis describe situations, events, and scenarios that may occur in the clinical
management of patients. Decision processes provides an integrated perspective on
the management process, by describing the relationships between them. It describes
how the internal and external attributes of a patient’s clinical state are related, how
the treating physician responds to observed external manifestations, and how in turn
the patient’s internal state develops over time in response to this treatment. We
recall from the previous chapter that decision processes are thought as being derived
from specifications of the temporal, informational, and probabilistic relations between
system (patient) and planning agent (physician). In the next subsection, we consider
the models of control and observation, that specify effects of the physician’s actions
on the patient’s development and on his own informational situation.

6.1.3 Prognostic models of disease

After the basic ingredients of a problem domain have been formalised in a decision
basis, one needs to construct models of control and observation. These models are
crucial for virtually all reasoning tasks one might wish to implement, and their roles in
clinical problem solving are also, to some extent, intertwined. The latter circumstance
is due to the fact that we can identify three aspects of control models in clinical
settings. The first aspect concerns the target population of the envisioned application:
the model of control characterises this population. The second aspect concerns the
development of disease and complications over time; here, temporal relations between
internal clinical states are predominant. The third aspect, finally, concerns diagnostic
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aspects of the problem domain, as cast in the probabilistic relations between internal
and external variables.

The first and second aspects of control models are basically prognostic in nature;
these aspects are discussed in this subsection. In the third aspect, a model of con-
trol interacts with the employed notion of observability; this aspect is discussed in
Subsection 6.1.4, in combination with the role of observation models in clinical speci-
fications. Note that from all formal standpoint, all three aspects concern probabilistic
properties of the domain at hand; this is the reason that in our framework, a single
model incorporates these conceptually rather dissimilar aspects.

Recall from Section 5.2 that formally, a model of control for a given decision basis
B = (X,A, T ) is a set Ξ = {ξα | α ∈ A(T )} of probability distributions on X(T ),
with the restriction that

ξα1(CX[0,t]) = ξα2(CX[0,t]) (6.3)

for all time points t ∈ T and all action sequences α1, α2 ∈ A(T ) that are identical
over time segment [0, t − 1]. In words: action choices cannot change the past. As
in the previous chapter, we use ξtα as a shorthand notation for the unique marginal
probability distribution on X[0, t] under action sequence α ∈ A[0, t], given model
Ξ. When a temporal map τ is employed to model the operational time for the
management task at hand, a model of control should preferably be expressed in
terms of the image of time frame T under τ instead of T itself; we do not elaborate
on this issue here.

Target population

Given a model of control Ξ, the probability distribution on initial clinical states is
described by ξ0

α̌, where α̌ ∈ A(∅) is the unique action sequence over the empty
time segment. So, ξ0

α̌(I(0) = S) is the probability that a patient has internal state
S ∈ dom(I) at the start of the decision process. The distribution ξ0

α̌ thus describes
the characteristics of the target population of patients we wish to manage: it incor-
porates assumptions with respect to delimitation of the problem domain, restrictions
stemming from choices in the formalisation, and domain knowledge in form of figures
on the prevalence of diseases and complications, prior to clinical management.

Delimitations of the problem domain are normally categorical and will therefore in-
duce extreme probabilities in the distribution ξ0

α̌.

Example 6.8 It was noted in Chapter 2 that the improved echocardiographic imaging
of recent years techniques have virtually solved the problem of correctly diagnosing a
VSD. A global assumption in our model is therefore that VSD is the primary and
correct diagnosis at the start of the decision process. That is,

ξ0
α̌(VSD size(0) = null) = 0,
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or equally, each of the individuals in the target population has a VSD at time point
t = 0. Furthermore,

ξ0
α̌(outlet pos(0) = severe right) = 0,
ξ0
α̌(outlet pos(0) = very severe right) = 0,

as severe malalignments of the infundibular septum indicate the existence of Tetralogy
of Fallot. This would invalidate VSD being the primary diagnosis.

Also restrictions stemming from choices in the formalisation often result in extreme
probabilities.

Example 6.9 With a perimembranous VSD, the small membranous component of
the ventricular septum is completely lacking. In addition, muscular parts of the sep-
tum may fail to exist when that VSD is moderate or large in size. Depending on the
location of the missing parts, the VSD is then said to extend in the direction of the
inlet or outlet areas, or both. In the VSD model, we use the internal attribute VSD ext

to describe these extensions. They can only occur with perimembranous VSDs, not
subaortic or muscular ones:

ξ0
α̌(VSD ext(0) = none | VSD type(0) = subaortic) = 1,

ξ0
α̌(VSD ext(0) = none | VSD type(0) = muscular) = 1.

Furthermore, a perimembranous VSD without extension(s) is by definition small, and
with extension(s), it is moderately large or large:

ξ0
α̌(VSD size(0) = small | VSD ext(0) = none,

VSD type(0) = perimembranous) = 1,

ξ0
α̌(VSD size(0) = small | VSD ext(0) 6= none,

VSD type(0) = perimembranous) = 0.

A final example illustrates the role of figures on the prevalence on diseases and com-
plications, prior to clinical management, in the probability distribution on initial
states.

Example 6.10 The literature on VSD reports the following prevalence of different
VSD types:

ξ0
α̌(VSD type(0) = perimembranous) = 0.85,
ξ0
α̌(VSD type(0) = subaortic) = 0.05, and
ξ0
α̌(VSD type(0) = muscular) = 0.10.

We also know that 80% of all VSDs is not accompanied by cardiac complications:

ξ0
α̌(ASD(0) = none, PDA(0) = none, aort sten(0) = none,

pulm sten(0) = none) = 0.80.
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Characteristics of the target population, as described by ξ0
α̌, can be regarded as

static prognostic features of the domain: they allow us to make predictions about
individuals in the population without having any further information about them.
We now turn to dynamic prognostic features of the problem domain, as described by
the temporal relations between internal states.

Natural history

The developments in patients’ internal states over time are described by probability
distributions on the set I(T ); these distributions are also induced by the control model
Ξ. For instance, given an initial internal state S1 ∈ dom(I) and a specific choice of ac-
tion sequence α ∈ A(T ), the probability of reaching internal state S2 ∈ dom(I) at the
final time point t = N equals ξα(I(N) = S2 | I(0) = S1). We first discuss the special
case where action sequence α incorporates the empty action choice at all time points,
i.e. α(t) = ε for all t ∈ T . This action sequence denotes the absence of all action,
and the associated probability distribution can therefore be taken to model the nat-
ural history of disease. The effects of other action choices, in particular (treatment)
actions aimed at altering the patient’s development, are discussed thereafter.

Example 6.11 The natural history of VSD patients is often mild, as the majority
(± 70%) of defects closes spontaneously due to tissue growth:

ξα(VSD size(N) = null | VSD size(0) 6= null) = 0.70

if α denotes the absence of all action. The majority (54%) of defects even closes in
the first two years of life:

ξα(VSD size(t) = null | VSD size(0) 6= null) = 0.54

if α denotes the absence of all action and τ(t) = 24 (months).

In general, if changes may occur to internal attributes in the absence of action, we
say that the patient’s clinical state is subject to endogenous changes.

Definition 6.12 (Endogenous change) Let α ∈ A(T ) be the action sequence that
denotes absence of all action, i.e. α(t) = ε for all t ∈ T . The clinical state described
by the set X is subject to endogenous changes when

ξα(I(t) = S | I(0) = S) 6= 1 (6.4)

for some time point t ∈ T and internal state S ∈ dom(I).

If the clinical state is not subject to endogenous changes, the planning agent holds the
initiative for state transitions, as all internal attributes remain static in the absence
of action. This circumstance will facilitate the planning task, but unfortunately, it
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Action Precondition attributes Postcondition attributes
decisive additional target complicatory

med shunt – LV failure –
resis

surg outlet pos LV failure outlet pos bleeding
VSD type RV failure VSD size arrhythmia
VSD size pulm inf ASD death
resis PDA

aort prolapse

Table 6.3: VSD treatments with pre- and postcondition attributes.

is rather rare in medical domains. The human body can usually not be regarded
as a passive entity that patiently undergoes a doctor’s acts and remains otherwise
unaltered; the spontaneous closure of VSDs as described in Example 6.11 provides
an illustration.

The natural history in medical domains is often characterised by a mixture of static
and non-static internal attributes, where state dynamics are further restricted by
progression and absorption of one or more non-static attributes.

Example 6.13 The type of a VSD is fixed as the location of a given defect cannot
change; the attribute VSD type is therefore static. As described above, however, the
size of a VSD will often decrease, and an increase in size is impossible; so, the
attribute VSD size is progressive. The presence of a subaortic VSD may cause an
aortic valve prolapse, and this complication will then become increasingly more serious
over time; the attribute aort prolapse is progressive. Similarly, a large left-to-right
shunt may cause pulmonary arteriopathy over time (Eisenmenger’s reaction); the
damage to the pulmonary arterioles is initially reversible, but eventually becomes
irreversible; the value irreversible arteriopathy of the attribute pulm art is absorbing.

In the above example we have assumed absence of medical interference. Some, but
not all, of the clinical attributes mentioned have different properties under treatment;
the effects of performing treatment actions are discussed next.

Effects of treatment

Generally speaking, the goal of remedial clinical action is to ‘move’ the patient’s state
into a preferred ‘direction’ with the ultimate objective of reaching a healthy condition.
It depends on the state of the patient whether this is possible: the effectiveness of
clinical therapies varies with the condition to which they are applied. We can therefore
think of the current clinical state of the patient as a precondition that influences the
effectiveness of treatment actions. In this precondition, there will often be a small
number of decisive attributes for successful treatment, while the risk of complications
depends on additional attributes, related to the general condition of the patient.
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Example 6.14 There are two treatment modalities in the VSD domain: medical
treatment with cardiac glycosides (to reduce the effects of left-to-right shunting) and
cardiac surgery (to close the VSD and repair possible other malformations of the
heart). Medical treatment will be effective when the heart is potentially capable of
compensating the haemodynamic disturbance caused by shunting; the shunt size and
vascular resistances are primary factors in this respect. Surgical closure of VSDs is
usually successful, but may fail with severe malalignments of the outlet septum, with
VSDs that are difficult the access (e.g. muscular defects), and with VSDs that are very
large in size. Furthermore, when a VSD is closed in the presence of high pulmonary
vascular resistance, this will cause acute right-ventricular failure and death. There is
an increased risk of other complications when the general condition of the patient is
bad because he suffers from severe (chronic) heart failure and pulmonary infections.
Both treatment modalities and their respective precondition attributes are shown in
Table 6.3.

Upon successful application of treatment, one or more attributes of the patient’s con-
dition will change to a more desirable state. When the treatment fails, such a state is
not reached, or it is reached at the price of complications. In sum, we can say that the
patient’s state after treatment is a postcondition that results from application of the
treatment under the precondition that was present in the patient’s state beforehand.
In terms of Subsection 5.2.1, postcondition attributes are the attributes in state vari-
ables that are directly affected by the action. If a state variable is indirectly affected,
we do not consider its attribute a part of the action’s postcondition, because changes
to that variable can be understood in terms of changes to directly affected variables
and the normal mechanisms that relate directly and indirectly affected variables. We
illustrate this with an example.

Example 6.15 The delivery of cardiac glycosides directly affects the severity of heart
failure from which a VSD patient suffers; indirect results of the treatment are a reduc-
tion in heart size (when it was increased), and a diminished risk of pulmonary infec-
tions. These indirect results are however normal consequences of a reduction in heart
failure; the only postcondition attribute of the action ‘med’ is therefore LV failure.
Similarly, surgical closure of a VSD eliminates the haemodynamic disturbances caused
by the defect, and therefore indirectly affects attributes such as shunt, art press,
ventr press, and many other related physiological, complicatory, and symptomatic
attributes. The relevant postcondition attribute of the action ‘surg’ in this respect
is VSD size; once the situation of VSD size = null is reached, the haemodynamic
situation becomes the same as in a healthy patient.

Again, two types of postcondition attributes are identified: target attributes, i.e. at-
tributes whose state we wish to change by application of the action, and complicatory
attributes, i.e. attributes that come into play involuntarily. Complicatory attributes
describe the possible side effects of drugs and the potential complications of clinical
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interventions. We note that this distinction is, in general, context-sensitive: what is
considered a complication in some domains may be seen as a target in other. From
a probabilistic point of view, there is neither a difference between decisive and ad-
ditional precondition attributes, nor between target and complicatory postcondition
attributes; we could never make such distinctions from a given model of control. It is
possible though, to employ additional structures to formalise these distinctions; we
do not elaborate on this issue.

Now, let Y1 and Y2 be the sets of pre- and postcondition attributes of treatment action
a ∈ Atreat. If we assume that the effects of actions are both immediate, i.e. do not
require additional time, and short-lived, i.e. do not extend over future time points,
then specifying the effects of action a boils down to establishing, for each non-final
time point t ∈ T and each of pair of configurations (cY1(t), cY2(t+1)) ∈ ΩY1(t) × ΩY2(t+1),
the probability that cY2(t+1) results when d(t)=a is chosen in the context of cY1(t).
This approach to modelling treatment effects described above can be regarded as
probabilistic version of the STRIPS method of modelling actions effects, (Fikes and
Nilsson, 1971). This method was developed for classical, logic-based planning sys-
tems; recently, a similar probabilistic version was used by Boutilier et al. (1997) in
an algorithm for solving (fully-observable) Markov decision processes.

From a planning perspective, it is important to recognise the extent to which treat-
ment actions can alter the normal course of disease. More particularly, it should be
assessed which types of endogenous change can be speeded up, slowed down, stopped,
or undone. One will generally find that static, progressive, or absorbing attributes
that occur in the postcondition of some treatment action cease to have this prop-
erty under effective application of the action; attributes that do not occur in any
postcondition may withdraw from this type of control.

Example 6.16 Recall from Example 6.13 that the attribute VSD size is progressive,
with smaller defect sizes being more likely over time; surgical closure of the VSD
can be seen as speeding up this process. Furthermore, it was described that an aortic
valve prolapse may complicate a subaortic VSD, and that this complication will then
become increasingly more serious over time. Surgical repair of the VSD will however
stop this progression; moreover, repair of the prolapsed valve is often possible. Both
circumstances appear implicitly from the fact that VSD size and aort prolapse are
postcondition attributes of the action ‘surg’, as listed in Table 6.3. Finally, the at-
tribute pulm art was described to have absorbing state irreversible arteriopathy. In
contrast with the previous conditions, there is no clinical means to undo this compli-
cation: pulm art is not a postcondition attribute of any treatment action.

6.1.4 Clinical findings

We now turn to the specification of clinical findings of disease in our framework; these
include symptoms reported by the patient, signs appearing from physical examina-



192 Clinical modelling and reasoning

Name Description
LV failure left-ventricular failure
RV failure right-ventricular failure
paleness pale facial colour
sweating sweating
sys mur systolic murmurs
dia mur diastolic murmurs
heart sounds heart sounds
thrill thrill
vous card voussure cardiaque
cyanosis central cyanosis

Table 6.4: Attributes representing signs and symptoms (group 6).

tion and measurements obtained from diagnostic procedures. There are two basic
relations that are important here. First, the model of observation O describes which
external attributes are observable under different types of action choice. Second, in
the model of control Ξ we find described the reliability of observations with respect
to the internal condition of the patient. In the fields of medical decision analysis
and biostatistics, it is customary to express this reliability in term of sensitivity and
specificity. Below, we will first discuss the possibilities to observe external variables,
and then describe how sensitivity and specificity of observations are cast in control
functions.

External manifestation

Recall that a model of observation for decision basis B takes the form of a setO = {ot |
t ∈ T} of functions ot : A[0, t− 1]→ ℘(X[0, t]), with the restriction of monotonicity,
i.e. that

ot(α) ⊆ ot+1(α ∧ d(t) = a) (6.5)

for all time points t ∈ T , t < N , action sequences α ∈ A[0, t − 1], and each action
a ∈ A.

In Subsection 5.2.2, we derived the notion of manifestness from a given model of ob-
servation O; a distinction was made between potentially manifest, absolutely manifest,
and hidden variables. In a clinical setting, potentially manifest variables typically de-
scribe signs and symptoms of disease and outcomes of diagnostic tests. So from our
earlier assumptions, it follows that variables from the set E(T ) are potentially mani-
fest. It depends on the formalisation of the clinical problem whether such potentially
manifest variables are also absolutely manifest. If each decision moment denotes a
point in time where the patient is seen by the clinician, then all variables that rep-
resent clinical symptoms are absolutely manifest at all times. In contrast, when part
of the planning problem is to decide if and when the patient should visit the clinic,
these variables are manifest only upon such visits. Variables from the set I(T ) are
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never observable and therefore hidden under all circumstances.

Example 6.17 One of the aspects in the management of VSD patients is the plan-
ning and timing of clinical visits. When a patient visits the clinic at decision moment
t ∈ T , his signs and symptoms at that moment are assessed by the paediatric cardi-
ologist; the attributes representing signs and symptoms in the VSD domain are listed
in Table 6.4. Depending on his findings, the cardiologist can now decide to postpone
further action to a next visit, to conduct additional diagnostic tests, or to submit the
patient surgery; the latter decision will however not be taken without further investiga-
tions. The possibilities for diagnostic investigation are ECG, echocardiography, blood
tests, cardiac catheterisation, and open lung biopsies. The attributes that represent
measurements obtained from these tests are shown in Table 6.5.

The reliability of observations

Generally speaking, observing an external attribute has the objective of getting a
better picture of one or more internal attributes. As the relationship between inter-
nal and external attributes is usually stochastic in nature, one could say that these
internal attributes are observed indirectly, through a noisy channel; we say that the
external attribute provides a measurement on the internal attributes. Frequently,
there exist multiple measurements on a given internal attribute, each differing in
reliability, or, in other words, in the amount of ‘noise’ on the channel.

Example 6.18 It was described in Chapter 2 that continual left-to-right shunting
through a VSD may cause severe damage to the pulmonary arterioles (Eisenmenger’s
reaction). The damaged arterioles have an increased resistance to blood flow, causing
a reduced shunt. Eventually, the resistance becomes so high as to cause reversal of
the shunt direction; the venous and arterial blood are now mixed in the heart, yielding
an undersaturation of the systemic arterial blood with oxygen. To assess whether
this condition applies to a given patient, one can measure the oxygen saturation with
a blood test; in our formalisation, the external attribute oxsat test represents a
measurement of the internal attribute oxsat. In addition, undersaturation yields a
dusky blue discolouration of the tongue, lips, and conjunctivae. These clinical signs,
jointly referred to as cyanosis, are easily detected from visual inspection of the patient.
In our formalisation, the external attribute cyanosis therefore represents a second,
but less reliable measurement on the internal attribute oxsat.

To establish the reliability of indirect observations, we must assess the properties
of the channel through which they are made. Let internal variable x(t) ∈ I(T ) be
indirectly observable by measuring the value of external variable y(t) ∈ E(T ),3 and
suppose we are interested in knowing whether x(t) has the value s ∈ dom(x), because

3For brevity, we assume that there is no time lag between these internal and external events.
One could however also assume that attribute y is observed at some later time point.
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Name Description Test
LVH ECG LVH measurement ECG
RVH ECG RVH measurement ECG
CT-ratio cor-thoracic ratio roentgenography
pulm vasc pulmonary vascularity roentgenography
outlet pos echo observed malalignment echocardiography
VSD type echo observed VSD type echocardiography
VSD ext echo observed VSD extension echocardiography
VSD size echo observed VSD size echocardiography
PDA echo observed PDA echocardiography
aort sten echo observed aortic stenosis echocardiography
aort prolapse echo observed aortic prolapse echocardiography
pulm sten echo observed pulmonary stenosis echocardiography
aort regurg echo aortic valve regurgitation echocardiography
pulm regurg echo pulmonary valve regurgitation echocardiography
ox sat test oxygen saturation of the blood blood test
shunt cath observed shunt catheterisation
LV press cath observed left-ventricular pressure catheterisation
RV press cath observed right-ventricular pressure catheterisation
aort press cath observed aortic pressure catheterisation
pulm press cath observed pulmonary wedge pressure catheterisation
pulm art biop open-lung biopsy result open lung biopsy

Table 6.5: Attributes representing clinical measurements (group 7).

that value is crucial for the patient’s prognosis. We briefly describe the decision-
theoretic approach for using observations on y(t) to estimate whether this is the
case; for details, we refer to (Weinstein and Fineberg, 1980). First, we choose a
subset M+

s of values from dom(y) that we associate with value s. If there exists a
linear ordering �y on dom(y), this will usually amount to selecting two cut-off values
m−s ,m

+
s ∈ dom(y) such that

M+
s = {m ∈ dom(y) | m−s �y m �y m+

s }

We say that y(t) and M+
s provide a test on x(t) = s.

The sensitivity, or true-positives rate, of this test is now defined as the proportion of
patients where x(t) = s is true, and a ‘positive’ test result, i.e. a value from M+

s , is
found; it is equal to ∑

m∈M+
s

ξtα(y(t) = m | x(t) = s), (6.6)

where α ∈ A[0, t−1] is the past sequence of actions. The specificity, or true-negatives
rate, of the test is defined as the proportion of patients where x(t) = s is false, and a
‘negative’ test result, i.e. a value outside M+

s , is found; it is equal to∑
m∈M−s

ξtα(y(t) = m | x(t) 6= s) (6.7)
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where M−
s = dom(y) \M+

s .

Example 6.19 Cyanosis is not a fully reliable indication of the oxygen saturation
of the systemic arterial blood. When the oxygen saturation has the normal level of
93% or higher, cyanosis is still seen in 2% of the cases. When the oxygen saturation
is below 93% but above 86%, cyanosis is seen in 60% of the cases. Otherwise, the
cyanotic features are definitely present. So, if we are interested in the value ‘> 93%’
of attribute oxsat, the sensitivity of a test with attribute cyanosis and value ‘no’
has a sensitivity 0.98. If we assume that oxygen saturations below 86% occur with
5% of the patients and saturations between 86% and 93% with 15% of the patients, a
specificity of 0.7 is obtained.

6.1.5 Specification of objectives

In the previous section, we have explained how a decision basis and models of control
and observation can be employed to develop a formal description of a given clinical
domain. We now arrive at the two remaining components of our framework: utility
functions and contingency plans. In the traditional decision-theoretic approach, the
components are purely prescriptive in character. One then uses a utility function u to
specify the objectives of clinical decision making, and the associated computational
problem is to derive a contingency plan π that is operational under the given model of
observation, and is optimal with respect to the function u. The plan π then describes
the ideal, rational decision-making behaviour that is consistent with the objectives
described by the utility function.

In this subsection we concentrate on tradeoffs in the design of a utility function that
is to be employed within this traditional decision-theoretic approach. This is not to
say, however, that other approaches to decision making and planning are excluded.
In Subsection 6.2.2, for instance, we will use a set of pre-specified heuristic decision
rules to guide decision making.

We will investigate two possible methods to formalising the objectives of patient man-
agement with a utility function. The first method stems from the classical planning
systems in AI and identifies goal states. The second method is usually employed in
clinical decision analysis and is based on metrics for duration and quality of life. It is
assumed that a decision basis B = (X,A, T ) and models of control and observation Ξ
and O are given, where as before, a distinction is made between internal and external
attributes of clinical states.

Planning for clinical goals

A most basic way of formalising planning objectives with goal states exists in the
assumption of final-state goals. As described in Section 5.4, a final-state goal is a
condition that is unambiguously preferred at the end of the decision process. Here,
we assume that such goals are formulated in terms of a set Y ⊆ I of internal attributes



196 Clinical modelling and reasoning

that are considered most relevant for the well-being of the patient. We now distinguish
a subset G ⊂ dom(Y ) of states of the set Y that we would like to achieve at the final
time point t = N ; the corresponding utility function u1 defined as

u1(h) =

{
1, if h ` Y (N) = SY and SY ∈ G,
0, otherwise.

(6.8)

In clinical settings, final-state goals will usually be expressed in terms of the internal
attributes that are crucial for the patient’s post-therapeutic condition.

Example 6.20 The management of a VSD patient is considered successful when, at
the end of the management process, the VSD is closed without further complications.
In particular, pulmonary arteriopathy must have been avoided. Furthermore, when
surgery was necessary to close the defect, one prefers the situation where this has not
yielded any clinical complications. A final-state goal for the VSD domain is therefore

VSD size(N) = null ∧ ASD(N) = none ∧ PDA(N) = none
∧ aort sten(N) = none ∧ aort prolapse(N) = none
∧ pulm sten(N) = none ∧ pulm art(N) = normal
∧ arrhythmia(N) = false ∧ perforation(N) = false
∧ stroke(N) = false ∧ bleeding(N) = false ∧ death(N) = false.

(6.9)

One of the drawbacks to the assumption of final-state goals is that temporal aspects
of management objectives are neglected. The clinical condition of Example 6.20 is
typically preferred at all times; one would want to achieve it as soon as possible, but
this aspect of the objective is not formalised by function u1. A more sophisticated
approach is therefore to use the time-separable additive function u2, defined as

u2(h) =
∑
t∈T

kt · r(σ(t)), (6.10)

for h = (σ, α), where

r(SX) =

{
1, if X(t) = SX ` Y (t) = SY and SY ∈ G,
0, otherwise,

(6.11)

and k0, . . . , kN are scaling constants. Function u2 counts the number of decision
moments during time frame T where a goal state is occupied. In principle, a unit
reward is received for each of these moments. The scaling factors can be used to
incorporate the fact that decision moments may not be distributed uniformly over
time under a given temporal map τ , by taking

kt = τ(t+ 1)− τ(t), (6.12)

for all t < N . Occupying a goal state at non-final decision moment t ∈ T is now
rewarded directly proportional to the period of real time between t and its successor
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moment. The factor kN is typically much greater, as reaching a goal state at the final
time point t = N is crucial for the patient’s post-therapeutic prognosis.

A second drawback, to both functions u1 and u2, is that they neglect the actions
that are undertaken during the management process. In practice, we will want to
minimise the number of actions taken, especially those that involve high costs or a lot
of discomfort for the patient. To incorporate this secondary objective into function
u2, we associate a numerical penalty cost(a) with each action a ∈ A, and try to
minimise the total costs during the management process:

u3(h) = u2(h)−m ·
∑
t∈T

cost(α(t))

=
∑
t∈T

kt · r(σ(t))−m · cost(α(t)), (6.13)

for h = (σ, α), where m is a factor that weighs the action costs with the rewards
that are received from achieving goal states. If we assume that the penalty function
cost yields monetary values, then the weight factor m is assessed by determining the
average amount of money one is willing to pay for reaching a goal state. Note that
the benefits of reaching a goal state highly depend on one’s current condition, and
that it may therefore be difficult to assess the factor m.

Example 6.21 In the VSD domain, one would typically associate high costs with
diagnostic actions such as cardiac catheterisation and open lung biopsy, and very
high costs with cardiac surgery. The latter costs cause one to postpone a decision to
operate a VSD patient as long as the chances of spontaneous closure are high, and
the costs of surgery are not outweighed by the reward of reaching the goal condition
(of a closed VSD) earlier.

A final drawback to functions u1, u2, and u3 is that they do not formulate a tradeoff
between reaching and not reaching a goal state: goal states are basically rated in-
finitely more valuable than other states. This is problematic when goal states cannot
be reached with certainty; striving for a less ideal condition might be better than
pursuing the unreachable. A possible way to obviate this drawback is introducing a
value function

v : dom(Y )→ [0, 1], (6.14)

where v(SY )/v(S ′Y ) = j, SY , S
′
Y ∈ dom(Y ) expresses that state SY is j times more

desirable than state S ′Y . Typically, goal states will be considered more desirable than
non-goal states, i.e. v(SY ) > v(S ′Y ) if SY ∈ G and S ′Y 6∈ G, but the precise definition
of the function v depends on subjective preferences. This leads to utility function u4,
in which the binary function r is replaced by the value function v:

u4(h) =
∑
t∈T

qt(σ(t))−m · cost(α(t)), (6.15)
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for h = (σ, α), where

qt(SX) =

{
(τ(t+ 1)− τ(t)) · v(SY ), if t < N,
kN · v(SY ), if t = N,

(6.16)

and SY ∈ dom(Y ) is the subvalue associated with Y in SX . This is roughly the point
where the symbolic, qualitative type of modelling from AI is traded for an approach
that is more numerical in character.

Maximising life-expectancy

We now turn to the second approach to formalising clinical objectives, stemming from
the field of clinical decision analysis. In this approach, a quantitative performance
metric is designed, usually based on duration and quality of life. We first focus
on duration, i.e. life-expectancy, and incorporate life-quality thereafter. As above,
we assume Y ⊆ I to be a set of internal attributes that is crucial for the patient’s
condition in present and future. Furthermore, this set is taken to comprise a Boolean
state variable death, whose state true is absorbing, i.e.

ξα(death(t+ 1) = true | death(t) = true) = 1 (6.17)

for all control functions ξα ∈ Ξ and time points t ∈ T , t < N , where

ξα(death(t) = true) > 0. (6.18)

We assume that when death(t)=false, the mortality risk at time point t + 1 is de-
termined by the state and action at that time point; these risks are encoded in the
model of control Ξ. The probability of survival up to time point t ∈ T in decision
process P equals P (death(t) = false).

A simple way of formalising life-expectancy is to estimate it from the final state of
the set Y . That is, we use a prognostic function

LE : dom(Y )→ R (6.19)

that specifies the (estimated) post-therapeutic life-expectancy of the patient, given
the final state of the set Y , and on the scale of the temporal map τ . Naturally,
LE(SY ) = 0 for all states SY ∈ dom(Y ) that comprise the value true for the variable
death. For other states of Y , we must assess some life-expectancy estimate from clin-
ical studies or field experts; note that this may be as difficult as obtaining probability
assessments for a model of control.

Example 6.22 The attributes of the final-state goal in Example 6.20 are the ones
that determine a patient’s life-expectancy. Patients for which the goal state is achieved
have a normal life-expectancy; when a minor disorder such as a small VSD or a
cardiac arrhythmia remains, this life-expectancy is somewhat reduced. More serious
are stenoses of the aortic and pulmonary valve, and an aortic valve prolapse. Patients
with pulmonary arteriopathy have a strongly-reduced life-expectancy: they usually do
not reach middle age.
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The utility associated with outcome h ∈ H(T ) is now defined as

u5(h) = LE(SY ), (6.20)

where SY ∈ dom(Y ) is the (unique) state of Y for which h ` Y (N) = SY .

It is interesting to note that we can actually regard utility function u1 of Equation 6.8,
the function that implements the simplest form of planning for final-state goals, as
a qualitative abstraction of function u5, where all states that have an associated
life-expectancy above some predefined level l are treated as goals:

G = {SY ∈ dom(Y ) | LE(SY ) > l}. (6.21)

Utility function u5 also suffers from a similar shortcoming as function u1: it neglects
the temporal aspects of clinical objectives. Function u5 falls short when the man-
agement process itself takes considerable time and carries non-negligible mortality
risks; these circumstances are found, for instance, in the management of chronic dis-
eases (e.g. acquired cardiovascular disorders) and incurable diseases (e.g. cancer
and AIDS). We can solve this by adding the life time during the decision process to
function u5:

u6(h) = u5(h) + max{τ(t)− τ(0) | h ` death(t) = false}. (6.22)

The utility value u6(h) is equal to the difference τ(t) − τ(0) when the patient dies
at time point t ∈ T in history h. In words, this is the amount of real life time
(on the scale of the temporal map τ) the patient has had during the management
process. Otherwise, u6(h) equals LE(SY ) + τ(N)− τ(0), where h ` Y (N) = SY : the
post-therapeutic life-expectancy plus the life time during clinical management.

Functions u5 and u6 now both suffer from a similar shortcoming as functions u1 and
u2: they neglect the actions that are undertaken during the management process.
Here, the solution we employ is completely the same as earlier: we take penalties
associated with actions into account to avoid abundant clinical activity. This yields
the refined function u7, defined as

u7(h) = u6(h)−m′ ·
∑
t∈T

cost(α(t)), (6.23)

for h = (σ, α), where m′ is again a weight factor. If we assume that the penalty func-
tion cost yields monetary values, then the weight factor m′ is assessed by determining
the amount of money one is willing to pay for a given period of life (e.g. a year) in
a healthy condition. This type of tradeoff is characteristic for the decision-theoretic
approach to clinical decision support; how difficult it may be to determine such an
amount of money, it does assign a clear, context-independent meaning to the factor
m′. Recall that the interpretation of the comparable weight factor m in Equation 6.13
was much more problematic.
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It is customary in clinical decision analysis to also include a measure of life quality
in utility functions: a shorter life time in good health is often preferred over a longer
life time with disease or disabilities. To this end, we introduce an additional function

Q : dom(Y )→ [0, 1], (6.24)

where Q(SY ) is a subjective, relative measure of life quality for state Y =SY . We have
Q(SY ) = 1 when SY is a state of good health, and have lower values for states with
disease or disability. These lower values are calibrated as follows: when Q(SY ) = q,
0 < q < 1, this means that the patient is indifferent between 1 year in a healthy
condition and 1/q years in state Y = SY . Finally, if Y =SY ` death= true, then
Q(SY ) = 0.

We now arrive at the following definition for a utility function that is based on
quality-adjusted life-expectancy, discounted by action costs:

u8(h) =
∑
t∈T

q′t(σ(t))−m′ · cost(α(t)), (6.25)

for h = (σ, α), where

q′t(SX) =

{
Q(SY ) · (τ(t+ 1)− τ(t)), if t < N,
Q(SY ) · LE(SY ), if t = N,

(6.26)

and SY ∈ dom(Y ) such that X=SX ` Y =SY .

If we compare Equations 6.15 and 6.16 with Equations 6.25 and 6.26, it appears
immediately that we have now reached a point where the two approaches to formal-
ising clinical objectives coincide. If the weight factors m and m′ and the functions
v and Q are equal, and moreover LE(SY ) = kN for all SY ∈ dom(Y ), then there is
no difference between functions u4 and u8. Where the first two assumptions seem
perfectly reasonable, the third assumption, that LE is a constant function, curtails
the expressiveness of utility function u8. We conclude that the goal-based approach
to formalising clinical objectives approximates the decision-analytic approach based
on duration and quality of life. The latter approach is slightly more expressive, and
has, in addition, some semantical advantages; it does require though the assessment
of a prognostic function for life-expectancy.

6.2 Supporting management tasks

In the preceding section, the emphasis has been on modelling and specification of
clinical domains; the remainder of this chapter is devoted to the clinical tasks of
diagnosing, treating, and prognosticating a patient. Starting from our framework for
decision-theoretic planning, we describe various choices one has in formalising these
tasks, and the consequences of these choices from conceptual and formal perspectives.



6.2 Supporting management tasks 201

Throughout we assume that a given clinical domain is described by a decision basis
B = (X,A, T ), and that Ξ and O are associated models of control and observation.
As before, we take the set X to be composed of sets I and E of internal and external
variables, and the set A to comprise the empty action ε. Furthermore, a utility
function u is taken to describe the clinical objectives of managing patients in the
domain under consideration; it is assumed that u is normalised, i.e. 0 ≤ u(h) ≤ 1 for
all histories h ∈ H(T ).4

In each of the subsections to come, we will start from the following setting. A physi-
cian faces the problem of choosing an action at time point t ∈ T during the manage-
ment process. At the time points preceding t, various events and actions have taken
place; this past clinical history of the patient is described by history h ∈ H[0, t− 1],
where h = (σ, α). Furthermore, the present clinical state of the patient is described
by the configuration cX(t) ∈ ΩX(t). Of course, this description of the state of affairs is
based on an omniscient perspective; the treating physician is typically equipped with
much less information. The sequence α consists of clinical actions that have previ-
ously been undertaken, and is therefore known to the physician, but the patient’s
past and present clinical conditions will be partially (or largely) unknown to him. To
some extent, these conditions have been observed in the form of external manifes-
tations of disease; we use χ ∈ Φ(T ) to represent the collected findings. We assume
that χ is a configuration of the observable set ot(α), where ot ∈ O is the observation
function for time point t. We will refer to χ as the evidence at time point t, and to
α ∧ χ as the clinician’s knowledge.

Conceptually, the physician’s problem can now be summarised as follows. From
the available evidence χ, he must establish a diagnosis for the patient. Using the
diagnosis, an action choice for the current time point is to be made; the tradeoff
between possible actions should take into account the associated prospects for the
patient in the future, as far the knowledge α ∧ χ allows for making such predictions.
Furthermore, the physician must be aware of his own management strategy in the
future as this may have consequences for the present choice. Overall, we can therefore
say that the decision involves diagnostic, therapeutic, and prognostic aspects that are
highly intertwined. This holds in fact for all decisions during the management process;
the main difference is that they are based on different information and with varying
prospects for the patient. In the subsections below, we will now successively consider
the diagnostic, therapeutic, and prognostic aspects of such decisions.

6.2.1 Diagnosis

Diagnosis is the task of determining the likely cause(s) of observed findings. Often
medical diagnostic systems simply generate a list of diseases that might account
for the given findings; we find this for instance in the classical diagnostic system

4This is purely a matter of convenience and does not affect generality: recall that for any utility
function u there exist an equivalent utility function u′ that is normalised.
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INTERNIST-1, (Miller et al., 1982). It depends on the domain under consideration
and the purpose of the diagnosis whether such is adequate. In complex domains with
multiple interacting mechanisms leading to the observations, diagnosis often requires
the reconstruction of the likely scenario that produced them, as further management
of the patient is otherwise too difficult. Furthermore, in a domain with a significant
degree of uncertainty, one can often not reliably determine the operational (i.e. ‘true’)
cause of pathological findings, and a set of possible explanations, called the differential
diagnosis, has to be generated.

Before any type of diagnostic reasoning can take place, one must establish the uni-
verse of potential diagnostic hypotheses in a given domain. There are, already at
this preliminary point, various choices involved; we will first draw up an inventory of
the possibilities here. Thereafter, we will formalise the notion of diagnostic explana-
tion, and consider some possibilities to formalise the diagnostic relevance of potential
explanations. We finally discuss possibilities to make diagnoses more concise, and
briefly touch upon diagnostic test selection.

The diagnostic hypothesis

A first step in any formalisation of diagnostic problem solving consists of identifying
the potential diagnostic hypotheses in the domain under consideration. In general,
we can say that diagnostic hypotheses at time point t aim to classify disorders in
the unobserved, internal part of past and present clinical conditions, described by
σ ∧ cX(t). We will therefore assume that diagnostic hypotheses are planning expres-
sions from Φ(T ) that refer to variables from I[0, t] only. We will use Ψt to denote all
possible hypotheses that are considered in diagnostic reasoning when deciding upon
the action choice at time point t, where each hypothesis ψ ∈ Ψt is a conjunction
of value assignments. Note that from an omniscient perspective, we can state that
hypothesis ψ is correct in when σ ∧ cX(t) ` ψ.

We now shift our focus of attention from the concept of ‘hypothesis’ to the concept
of ‘disorder’. Hypotheses from the set Ψt are taken to describe possible disorders of
the patient, but surely, not every expression that refers to variables from I[0, t] would
be considered to do so. The questions arise as to which type of expression would
be considered to describe a disorder, and which set of expressions would cover the
complete range of possible disorders? These questions are in fact quite challenging;
the concept of ‘disease’ has not without reason been called a “many-headed monster”
(Habbema and Hilden, 1981). We describe four distinctions, relating to temporal
scope, pathological interpretation, exclusiveness, and exhaustiveness of diagnostic hy-
potheses.

Temporal scope The first distinction concerns the temporal scope of reference of
disorders. When diagnostic hypotheses only aim to classify the internal state of the
patient at time point t, we speak of static disorder descriptions. The elements from Ψt

then only refer to variables from I(t). A more general approach is when hypotheses
may also extend over the past, and elements of Ψt may thus include a description
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of the disease history. We speak of dynamic disorder descriptions; an example of
this type of disorder description is used in the system Casnet, (Weiss et al., 1978).
The use of dynamic disorder descriptions is motivated by the fact that classifying the
present disease status of a patient is often insufficient for purposes of management;
the degree of progression and severity of disease need also to be taken into account.
We find this in the domain of paediatric cardiology.

Example 6.23 Consider the diagnostic hypothesis “an originally moderately-sized
VSD that is now closed”. This is expressed by the conjunction

VSD size(t) = null ∧ VSD size(0) = moderate.

The hypothesis “a large perimembranous VSD that has progressed into a Tetralogy of
Fallot” is formalised as

VSD size(t) = large ∧ outlet pos(t) = severe right ∧
VSD size(0) = large ∧ VSD type(0) = perimembranous,

and “a muscular VSD with recently acquired, reversible pulmonary arteriopathy” as

pulm art(t) = reversible arteriopathy ∧ pulm art(t− 1) = normal ∧
VSD type(0) = muscular .

The increased expressiveness of the dynamic disorder descriptions comes at the price
of an exponentially growing universe of possible disorders: if one distinguishes k
disorders in static descriptions, there are potentially kt+1 different disorder histories
to be considered in dynamic descriptions at time point t. Of course, often many
of these histories would a priori be ruled out because of their high implausibility.
We note that there exists a relationship between the restriction to static disorder
descriptions and the Markov assumption in decision processes: in both cases one
considers the past to be irrelevant with respect to the future, given the present state
of affairs.

Pathological interpretation A second distinction concerns the pathological in-
terpretation of diagnostic hypotheses. One may choose to let hypotheses represent
normal states of affairs or abnormal states of affairs, and a mixture of types of also
possible. When all hypotheses represent a normal, healthy condition, diagnostic rea-
soning proceeds from the apparent mismatch between given findings and those that
would be expected; the objective is to find out which hypothesis cannot possibly be
true, which thus localises the disorder. When all hypotheses represent an abnor-
mal, pathological condition, diagnostic reasoning consists of finding the hypothesis
that best predicts the given findings, again localising the disorder. The distinction
between models of normal and abnormal conditions is often used in model-based di-
agnosis, (Reiter, 1987; de Kleer et al., 1992; Lucas, 1998), where reasoning proceeds
from a behavioural or causal model that describes a system in terms of functional
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relations. Model-based diagnosis is traditionally formalised using classical and non-
monotonic logic, and implements a form of purely symbolic reasoning.

The distinction between normal and abnormal situations is seldomly encountered in
the literature on diagnosis in probabilistic and decision-theoretic settings, because
probabilistic reasoning does not, in principle, require this distinction to be made.
From a semantical point of view, the distinction is of course equally valid; the hidden
assumption is generally that both normal and abnormal conditions occur in diagnostic
universes.

Exclusiveness The third distinction concerns the exclusion of hypotheses by oth-
ers. If the elements of Ψt are mutually exclusive (i.e. ψ1 ∧ ψ2 ≡ ⊥ for all ψ1, ψ2 ∈ Ψt,
ψ1 6= ψ2), then Ψt provides a set of competing hypotheses, and only one hypothesis
can describe the true state of affairs in a given situation. This is often a convenient
property in formal diagnostic reasoning; it is frequently employed in probabilistic and
decision-theoretic settings. Note that if x1 and x2 are internal attributes that are con-
sidered relevant for the patient’s diagnosis, then configurations of x1(t) and x2(t) can
be regarded as partial (single-disorder) hypotheses about the patient’s state, while
configurations of the set {x1(t), x2(t)} are compound (multiple-disorder) hypotheses.
The assumption of mutual exclusion however thwarts this possibility, as configura-
tions of x1(t) and x2(t) do not exclude each other and could therefore not be both
elements of the universe of hypotheses.

Exhaustiveness The fourth and final distinction concerns the range of disorders
identified: the universe Ψt of disorders may or may not be exhaustive. We say
that such is the case when for each possible past state sequence σ ∈ S[0, t− 1] and
each possible present state cX(t) ∈ ΩX(t) there exists a correct hypothesis ψ ∈ Ψt (i.e.
σ ∧ cX(t) ` ψ). If this is not the case, then we may find ourselves in the situation that
we cannot find an explanation in Ψt for a given set of findings χ, and the diagnostic
procedure stalls at its very first step because of a failure to generate hypotheses. It
may simply indicate that the patient is healthy and no clinical action is required, but
also that we have crossed the boundaries of our formalisation’s application domain.
Exhaustiveness therefore interacts with the pathological interpretation of hypotheses
in the diagnostic universe: a non-exhaustive universe may indicate that only healthy
or only pathological conditions are covered. In contrast, we would usually expect an
exhaustive universe to contain at least one element that represents a healthy condi-
tion.

Example 6.24 Let Y be the group of internal clinical attributes that describe VSD
pathology, i.e. Y = {VSD size, VSD type, VSD ext, outlet pos}. The set

Ψt = {ψ | ψ ∈ ΩY (t)}

is a universe of static and mutually-exclusive disorder descriptions at time point
t ∈ T that is exhaustive. Note that some hypotheses in Ψt are redundant: the at-
tribute VSD ext for instance, can only have the value ‘none’ when VSD type 6=
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perimembranous (See Example 6.9 on page 187). All hypotheses in Ψt that are con-
sistent with

VSD size(t) = null ∧ outlet pos(t) = normal

represent healthy conditions; all others represent pathological conditions where (at
least) a VSD exists.

The set

Ψ′t = {ψ | ψ ∈ ΩY [0,t]}

is a universe of dynamic disorder descriptions with the same properties. In Ψ′t, even
much more hypotheses are redundant. For instance, the attribute VSD type is static,
but Ψ′t includes all scenarios where the attributes changes over time. Now, let Y =
{VSD size, outlet pos} and Z = {VSD type, VSD ext}. The set

Ψ′′t ⊆ Ψt ∪ {ψ1 ∧ ψ2 | ψ1 ∈ ΩY [0,t], ψ2 ∈ ΩZ(t)}

is a universe of (partially) dynamic disorder descriptions; the elements of this uni-
verse may no longer be mutually exclusive. The pathological interpretation of hy-
potheses in Ψ′t and Ψ′′t is similar to the interpretation of hypotheses in Ψt. The set
Ψ′′t is exhaustive if Ψ′′t = ΩY [0,t]∪Z(t).

Diagnostic explanations

Once it is decided which universes of diagnostic hypotheses are considered, we can
focus on diagnostic reasoning. There are basically two conceptions of diagnostic
reasoning, a narrow and a broad conception. In the narrow conception, diagnostic
reasoning is restricted to determining the likely cause(s) of observed findings. This
is purely a matter of inference and does not involve decision making. The broad
conception of diagnosis also considers the selection of test actions to gather additional
observations on the patient’s state. Diagnosis is then regarded as a sequential decision
problem where diagnostic inference and test selection alternate, (Gorry and Barnett,
1968).

Here, we focus on the narrow conception of diagnostic reasoning. We will introduce a
number of abstract concepts related to this task; throughout we discuss the possibil-
ities one has to make these concepts concrete when implementing a particular form
of diagnosis. We remark that the analyses here start with a given model of control Ξ
and the assumption that this model is known to the diagnosing clinician; he is only
limited in his information about the internal state of the patient. Furthermore, we
assume that Ψt is a universe of mutually exclusive and jointly exhaustive diagnos-
tic hypotheses. From the exhaustiveness of Ψt, it follows that its elements describe
both healthy and pathological conditions; we do not make assumptions regarding the
temporal scope of hypotheses in Ψt.

We say that hypothesis ψ ∈ Ψt is a potential explanation of the evidence χ when it
might have produced that evidence under action sequence α.
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Definition 6.25 (Explanation) Let α∧χ be the available knowledge at time point
t ∈ T . Diagnostic hypothesis ψ ∈ Ψt potentially explains the evidence χ under action
sequence α when

ξtα(ψ ∧ χ) > 0, (6.27)

where ξtα is the control distribution for time point t under action sequence α. The set
of all potential explanations of χ is denoted by expl t(α, χ).

The set expl t(α, χ) of potential explanations may be empty for two reasons. The
first reason is that ξtα(χ) = 0, and therefore there are no potential explanations of
evidence χ: the model does not cover the possibility that χ occurs. The patient under
consideration is therefore someone outside the target population of our formalisation.

Example 6.26 Thrill (abnormal vibrations of the heart) and a typical systolic mur-
mur heard by auscultation of the heart are characteristic signs of a VSD. Any patient
having a large VSD with moderate heart failure in the first year of life will show these
signs. A patient that seems to have heart failure but misses thrill and murmur will
not have a VSD, and is therefore not part of the target population of our formalisation
of the VSD domain:

ξtα(thrill(t) = no ∧ sys mur(t) = no ∧ LV failure(t) = moderate) = 0

for all action sequences α ∈ A[0, t− 1] and all time points t ∈ T where τ(t) ≤ 12
(months).

The second reason is that although the patient is part of our target population, i.e.
ξtα(χ) > 0, there is no diagnostic hypothesis in the universe Ψt that is consistent with
it, i.e. ξtα(ψ ∧ χ) = 0. This situation can only occur when the universe Ψt is not
exhaustive. Depending on the pathological interpretation of the hypotheses in Ψt, it
may indicate that the patient is healthy, or rather diseased, but further information
is not available at this point.

In what follows, we will assume that ξtα(χ) > 0, and that the set expl t(α, χ) of poten-
tial explanations is non-empty. We note that expl t(α, χ) is often much greater than
the set Ψt \ expl t(α, χ) of diagnostic hypotheses that are rejected under evidence ψ.
Furthermore, the latter set also bears interesting information, as these hypotheses
identify what definitely not applies to the patient.

The concept of relevance

When uncertainty abounds in the domain of application, and this often occurs in
clinical medicine, the set expl t(α, χ) will be large and therefore impractical. The
solution that is generally employed in medicine is to order the set expl t(α, χ) using a
concept of relevance. We thus obtain a list of diagnoses that are ranked from most to
least relevant given the available knowledge with respect to the patient’s state; such
a list is called a differential diagnosis.
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Definition 6.27 (Differential diagnosis) Let α ∧ χ be the available knowledge at
time point t ∈ T . A differential diagnosis for α and χ is a set

dd t(α, χ) = {(ψ, r) | ψ ∈ expl t(α, χ), r ∈ [0, 1]} (6.28)

of pairs (ψ, r), where r = rα,χ(ψ) is the diagnostic relevance of hypothesis ψ in the
light of α and χ.

There are several ways to implement the concept of relevance. Perhaps the most
straightforward implementation is based on likelihood, or equally, posterior probabil-
ity. The relevance of hypothesis ψ ∈ expl t(α, χ) is then defined as

rα,χ(ψ) = ξtα(ψ | χ). (6.29)

The most relevant hypothesis is therefore the one that is most likely given the available
knowledge. Note that this implementation of relevance implies that when rα,χ(ψ) = 1
for some ψ ∈ Ψt, then all other explanations of χ are excluded from the differential
diagnosis as they have zero probability. Conversely, when a differential diagnosis has
only one element (ψ, r), this implies that the hypothesis ψ has unit relevance.

The differential diagnosis will usually be a starting point for further clinical action;
this may consist of diagnostic testing to gather more information on the patient’s
condition, or may consist of therapy aimed to improve that condition. In both cases,
the objective is to reach a better prognosis for the patient: indirectly through better
opportunities to treat the patient with the information gathered, or directly through
reaching a hopefully better health status. The above implementation of relevance
does however not consider the patient’s prognosis in ranking the explanations, and
may therefore fall short in providing directions for further management.

The second implementation of relevance we describe is based on the impact of diag-
nostic information on the patient’s prognosis, as expressed by expected utility, and
in particular its impact on future decisions; we refer to it as prognostic relevance. Let

ũ∗(ϕ) = max{ũP (ϕ) | P ∈ P det
Ξ,O, P (ϕ) > 0} (6.30)

be the maximum expected utility of the situation described by ϕ. That is, ũ∗(ϕ) is
a measure for the patient’s prognosis under the best possible management for situa-
tion ϕ. With this notation, ũ∗(α ∧ χ) is the maximum expected utility in the given
decision-making context described by α and χ, and ũ∗(α ∧ χ ∧ ψ) is the maximum
expected utility when it is known that ψ ∈ expl t(α, χ) is the operational cause of the
evidence χ. Note that when action a ∈ A is an optimal choice for time point t in that
situation, then

ũ∗(α ∧ χ ∧ ψ) = ũ∗(α ∧ χ ∧ ψ ∧ d(t)=a) (6.31)

as the function u∗ implicitly assumes an optimal contingency plan to be followed, and
α ∧ ψ provide sufficient knowledge for predicting the choice at time point t.
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The prognostic relevance of hypothesis ψ ∈ expl t(α, χ) is now defined as

r′α,χ(ψ) =
ũ∗(α ∧ χ ∧ ψ)− ũ−(α ∧ χ ∧ ψ)

1− ũ−(α ∧ χ ∧ ψ)
· ξtα(ψ | χ), (6.32)

where

ũ−(α ∧ χ ∧ ψ) = min{ũ∗(α ∧ χ ∧ ψ ∧ d(t)=a) | a ∈ A} (6.33)

is the maximum expected utility of the worst action choice at time point t when
hypothesis ψ is true. That is, a diagnostic hypothesis ψ ∈ expl t(α, χ) is irrelevant
(i.e. r′α,χ(ψ) = 0), when the present action choice is uninfluential with respect to
the patient’s prognosis, i.e. ũ∗(α ∧ χ ∧ ψ) = ũ−(α ∧ χ ∧ ψ), or ψ does not explain
the evidence, i.e. ξtα(ψ | χ) = 0. The relevance of hypothesis ψ increases with the
influence of the action choice to follow when ψ is the true cause, and the probability
ξtα(ψ | χ) that ψ is indeed the case, given α and χ.

Two remarks are in place here. First, our notion of prognostic relevance at time point
t is strongly connected to the action choice at that very moment, and disregards the
effects of all other decisions. Theoretically speaking, a hypothesis that is considered
virtually irrelevant now may be of the greatest importance at the next time point,
and vice versa. Although this scenario is not to be expected in most domains, it
does illustrate the temporal character of diagnostic concepts employed here. Second,
the prognostic implementation of relevance may cause the correct hypothesis ψ to be
excluded from the differential diagnosis, regardless of its likelihood: the fact that ψ is
correct does not preclude that ũ∗(α ∧ χ ∧ ψ) = ũ−(α ∧ χ ∧ ψ). The likelihood-based
implementation of relevance will in contrast always include the correct hypothesis.

Prognostic relevance reduces to likelihood-based relevance when

ũ∗(α ∧ χ ∧ ψ) = 1, (6.34)

for all explanations ψ ∈ expl t(α, χ), meaning that knowing the cause of disease would
always, and unconditionally, yield the opportunity of giving the patient the best
possible prognosis; indeed, a highly unlikely situation. On the other hand, it must
be acknowledged that the prognostic perspective may consider a highly probably
(and maybe true) hypothesis as most irrelevant. This seems undesirable from a
conceptual point of view; one could therefore choose to present both likelihood-based
and prognostic relevances to the user of a decision-support system.

Conciseness in diagnosis

It is often complained that diagnostic programs produce moderately long lists of
diagnoses, containing many diagnoses that a knowledgeable physician would regard
as completely irrelevant, (Berner et al., 1994). When the evidence χ is little symp-
tomatic (i.e. does not exclude many explanations from the differential diagnosis), our
approach carries the risk of meeting a similar complaint.
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To anticipate this situation, we now lift the requirement that all explanations of given
evidence be contained in a differential diagnosis. That is, we define a differential
diagnosis to be a subset

dd t(α, χ) ⊆ {(ψ, r) | ψ ∈ expl t(α, χ), r > 0} (6.35)

of possible explanations and their associated relevances; one typically omits the ex-
planations that are found to be little relevant. Of course, this carries the risk that
the correct hypothesis is no longer included.

The most basic strategy is now to define a relevance threshold p, and to limit the
explanations in the differential diagnosis to those whose relevance exceeds this thresh-
old:

dd t(α, χ) = {(ψ, r) | ψ ∈ expl t(α, χ), r > p}. (6.36)

The probability q that the correct hypothesis is still contained the differential diag-
nosis equals

q = ξtα(
∨

(ψ,r)∈ddt(α,χ)

ψ | χ), (6.37)

which can be rewritten to

q =
∑

(ψ,r)∈ddt(α,χ)

ξtα(ψ | χ), (6.38)

in the case that all hypotheses are mutually exclusive, as we have assumed here.

Now, if the implementation of relevance is based on likelihood, it is not very probable
that we omit the correct hypothesis from the differential diagnosis if the threshold
p is small. Yet, the prognostic implications of the unlikely hypotheses that are be-
ing omitted may be considerable. If, in contrast, the prognostic implementation of
relevance is employed, we may be omitting all highly plausible hypotheses, possi-
ble including the correct one, simply because their impact on the future is modest.
Again, this seems undesirable if we want the user of a decision support system to
understand the system’s recommendations.

We therefore propose to assemble differential diagnoses using a mixture of both ap-
proaches: while prognostic value is of principal importance for decision making, highly
likely explanations should also be presented to the user. In this mixed approach, a
differential diagnosis for α and χ is defined as

dd t(α, χ) ⊆ {(ψ, r) | ψ ∈ expl t(α, χ)},

where for each pair (ψ, r) ∈ dd t(α, χ) we have

ξtα(ψ | χ) ≥ p1 or ũ∗(α ∧ χ ∧ ψ)− ũ−(α ∧ χ ∧ ψ) ≥ p2,

where 0 < p1 � 1 is a likelihood threshold, and 0 < p2 � 1 is threshold for prognostic
value.
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Test selection

The established differential diagnosis dd t(α, χ) now provides a starting-point for
choosing the action at time point t. Generally speaking, there are three possibili-
ties for this choice. The first possibility is to decide that no action is required at the
current time point (and possibly thereafter), and to select the empty action ε. This
may be reasonable when the diagnosis indicates that the patient is in healthy condi-
tion, or when the prognostic relevance of all potential explanations of the evidence χ
is low: this would indicate that acting is presently little helpful.

The second possibility is that the diagnosis indicates that therapy is required for
the patient, because a disorder has been identified and there exists a remedial action
a ∈ Atreat for it. We will describe this possibility in more detail in the next subsection.
It usually requires that one is sufficiently certain about the disorder; preferably, a
single explanation in the differential diagnosis stands out with high relevance, or
multiple explanations are equally relevant but require the same therapy. The third
possibility is that one is not sufficiently certain about the disorder to start with
therapy, and therefore wants to refine the differential diagnosis first. This requires
a test action a ∈ Atest to be selected at the present time point. We conclude this
subsection on diagnosis with a brief and informal discussion of this possibility.

In general, we can say that the usefulness of a diagnostic test a ∈ Atest is assessed
by considering its expected gain in information compared to its associated costs and
risks. The tradeoff in test selection therefore requires some information measure on
differential diagnoses to be formulated. As with the concept of diagnostic relevance,
information measures can be defined in purely probabilistic terms, but it is also possi-
ble to take a decision-theoretic approach where the (impact of diagnostic information
on) the patient’s prognosis is important. For a review of information measures in
diagnostic test selection, we refer to (Glasziou and Hilden, 1989).

Now, if α ∧ χ represents the available knowledge at time point t, and action a is
chosen, then

Y = ot+1(α ∧ d(t)=a) \ ot(α) (6.39)

is the set of additionally observed variables at time point t + 1. Depending on the
configuration of Y that is actually observed, this may help to increase the diagnos-
tic information. Of course, it is not known in advance which configuration will be
observed; the probability of observing configuration cY ∈ ΩY is

ξt+1
α∧d(t)=a(cY | χ), (6.40)

and this leads to new, updated differential diagnosis dd t+1(α ∧ d(t)=a, χ ∧ cY ) at
time point t + 1. Given a measure of information, one can derive the expected gain
in information from action a by considering these possibilities.

We do not pursue the matter of test selection here, and conclude this subsection
with noting that the dynamic perspective employed here involves that diagnostic
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assessment is performed whenever new information comes available. In principle,
this happens at each time point during the decision process; the diagnostic process
is therefore never regarded as ‘finished’.

6.2.2 Therapy selection

From a strictly decision-theoretic standpoint, there can only be one criterion for action
selection in decision processes, which is the maximisation of expected utility. This
holds for all actions, include those that pertain to therapy. Conceptually speaking,
however, most clinical decisions are not guided by the objective of expected-utility
maximisation, but are typically based on a mixture of considerations regarding the
patient’s condition, pathophysiological knowledge, the clinical modalities at hand,
and experience with similar patients. Of course, such considerations are also implicitly
present in any utility-theoretic tradeoff.

In this subsection, we describe a therapy selection method that starts from a symbolic
description of pathophysiological knowledge. This knowledge is taken to be expressed
as a contingency plan π with non-operational decision rules, that select action choices
on the basis of diagnostic hypotheses. The underlying idea is as follows. In many
clinical domains, most physicians would be able to indicate the best therapy for a
given patient if the disease were known with certainty. Such indications are then
simply derived from pathophysiological knowledge of the domain that provides for
predicting the future course of disease with high confidence.

Example 6.28 In the VSD domain, a clinician would normally submit a patient to
surgery if he is sure that the patient’s VSD is accompanied with a malalignment of
the outlet septum or an aortic prolapse. It is known that in both cases, recovery of the
patient is excluded without clinical intervention. Malalignments of the outlet septum
prohibit spontaneous closure of the VSD; while this is not the case with prolapsed
aortic valves, a prolapse will progressively cause aortic insufficiency and heart failure,
even if the VSD closes spontaneously.

Formally, we assume that the plan π comprises decision rules of the form

ψ → d(t)=a (6.41)

where ψ ∈ Ψt describes a possible disorder at time point t, and a ∈ Atreat is a treat-
ment action. These rules are non-operational as the expressions in the set Ψt pertain
to internal, hidden state variables: such as expressions are usually not part of the clin-
ician’s knowledge, thus prohibiting straightforward application of the plan in practice.
There are no specific requirements with respect to the plan π in terms of complete-
ness, consistency, or coherence: we only assume that it is a proper plan in the sense
that its rules are non-contradictory.
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We assume that some notion of diagnosis is employed which has yielded a differential
diagnosis dd t(α, χ) from the knowledge α ∧ χ that is available. Our aim now is to
arrive, from this differential diagnosis, at a differential indication for time point t.

Definition 6.29 (Differential indication) Let α∧χ be the available knowledge at
time point t ∈ T . A differential indication for time point t given α and χ is a function

diα,χ : Atreat → [0, 1], (6.42)

such that
∑

a∈A diα,χ(a) = 1.

A differential indication diα,χ assigns a real number diα,χ(a) to each possible action
a ∈ A, given α and χ: this number is interpreted as a measure of confidence that
d(t)=a is the best action choice in the given circumstances. The indication can
thus be regarded as a stochastic decision rule for time point t with antecedent α ∧ χ.
When diα,χ(a) = 1 for some action a ∈ Atreat, the differential indication is equivalent
to the (deterministic) decision rule α ∧ χ→ d(t)=a; we say that the indication is
unambiguous. When there is less clarity, i.e. when diα,χ(a) > 0 for multiple actions
a ∈ Atreat, the differential indication does not provide an unambiguously preferred
action choice, and a more elaborate tradeoff is necessary. In such cases, one has to
resort to an explicit prognostic analysis.

We now propose the following therapy selection procedure. Let α ∧ χ be the available
knowledge at time point t, and let dd t(α, χ) be the associated differential diagnosis.
It is immaterial which notion of diagnosis has lead to the realisation of dd t(α, χ);
but we do assume that dd t(α, χ) is non-empty. The associated differential indication
diα,χ is constructed as follows:

diα,χ(a) = m ·
∑

(ψ,r)∈ddt(α,χ)

r · gπ(ψ, a) (6.43)

for all actions a ∈ Atreat, where

gπ(ψ, a) =

{
1, if ψ → d(t)=a ∈ π,
0, otherwise,

(6.44)

and m ∈ R is a normalisation factor to ensure that
∑

a∈Atreat
diα,χ(a) = 1.

This procedure can be understood as follows. We consider all explanations in the
differential diagnosis to derive an indication for treatment, and no other explanations.
If, for some explanation ψ in dd t(α, χ), a decision rule ψ → d(t)=a exists in π,
then gπ(ψ, a) = 1, and therefore the relevance r associated with ψ is added to the
confidence we have in action a (Equation 6.43). The simplest case is therefore when

dd t(α, χ) = {(ψ, 1)} (6.45)
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and

ψ → d(t)=a ∈ π, (6.46)

and thus the differential indication diα,χ selects action a unambiguously, diα,χ(a) = 1,
an intuitive result. The same indication would however be arrived at when

dd t(α, χ) = {(ψ, r)} (6.47)

for some r > 0, because the differential indication is being normalised after all expla-
nations have been considered. When multiple explanations occur in the differential
diagnosis and each of them has an associated decision rule in π, the differential in-
dication will only be unambiguous when all these rules point at the same action
choice. Otherwise, it will reflect the relevances of the corresponding explanations in
the diagnosis.

The procedure described above may fail if for some reason (for instance a lack of
pathophysiological knowledge), one is unable to formulate decision rules for partic-
ular disorders. The procedure will simply neglect these omissions in the plan π, as
gπ(ψ, a) = 0 for all a ∈ Atreat when ψ 6∈ covert(π). Still, ψ may be a relevant expla-
nation of the evidence χ, and call for remedial action. Below, we discuss two possible
solutions to this problem.

The first solution consists of assuming a default level of confidence 0 < ε� 1 for
each action a ∈ Atreat in cases where an explanation in the differential diagnosis is
not covered by the plan π. It requires the following modification to the function gπ:

g′π(ψ, a) =


1, if ψ → d(t)=a ∈ π,
ε, if ψ 6∈ covert(π),
0, otherwise.

(6.48)

Note that the third clause applies when there exists a rule ψ → d(t)=a′ ∈ π, a′ 6= a,
and therefore ψ ∈ covert(π). The above modification to the function g has the effect
of ‘flattening’ the differential indication in the presence of an explanation that is not
covered by the plan π; extreme measures of confidence (0 and 1) are then excluded.
The extent of flattening depends on the parameter ε and on the relevance of ex-
planations for which no decision rule exists: the term ε · r is added for each action
a ∈ Atreat. Of course, a normalisation step follows thereafter. In case that π = ∅, we
obtain diα,χ(a) = 1/k for all a ∈ Atreat, where k = |Atreat|.

The second solution we describe is based on the observation that in some cases,
inadequate pathophysiological knowledge does not prohibit one to formulate negative
decision rules, or, in the clinical jargon, contra-indications.

Example 6.30 Surgical closure of a VSD is strongly discouraged in the presence of
irreversible pulmonary arteriopathy. The increased resistance to blood flow in the
pulmonary system will then cause a high pressure overload on the right ventricle,
possibly resulting in acute cardiac death.
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We will now allow that the plan π also comprises decision rules of the form

ψ → d(t) 6=a, (6.49)

where again ψ ∈ Ψt describes a possible disorder at time point t, and a ∈ Atreat is a
treatment action. This form of rule says that action choice d(t)=a is dissuaded when
ψ is the cause of disease. We allow that multiple contra-indications are associated
with a single disorder ψ, but not that all possible action choices are dissuaded for
ψ. When a ‘normal’, positive decision rule ψ → d(t)=a occurs in π, we do not allow
any other rule, positive or negative, to occur in π having ψ as its antecedent.

Example 6.31 Formally, the contra-indication described in Example 6.30 has the
form

pulm art(t1) = irreversible arteriopathy → d(t2) 6= surg

for all time points t1, t2 ∈ T , t1 ≤ t2.

The therapy selection procedure is modified as follows. First, a penalty is given to
actions for which a contra-indication exists in π:

g′′π(ψ, a) =


1, if ψ → d(t)=a ∈ π,
−1, if ψ → d(t) 6=a ∈ π,

0, otherwise
(6.50)

This means that we are basically weighing the arguments against and in favour of
particular treatments, where the weights’ sizes are obtained from the relevances of
explanations in the differential diagnosis, and their signs are provided by decision
rules. The modification does imply that a total negative weight may be assigned
to some action. As this would conflict with our definition of differential diagnosis,
normalisation now requires that

di ′′α,χ(a) = m1 · (
∑

(ψ,r)∈ddt(α,χ)

r · g′′π(ψ, a) + m2), (6.51)

for all a ∈ Atreat, where m1,m2 ∈ R are normalisation factors.

We note that it is well possible to combine both solutions to the problem of inade-
quate knowledge; we do not pursue that possibility here. To conclude this subsection
we remark that the procedure outlined above selects treatment actions directly on
the basis of a differential diagnosis and a collection of heuristic rules that formalise a
clinician’s knowledge and experience. Consequently, the reliability of this procedure
crucially depends on the quality of both, and on the quality of their synergy. If the
relevance measure used in assembling the differential diagnosis is based on likelihood,
then the decision rules should embody long-term prognostic knowledge; if the rele-
vance measure itself is based on long-term prognosis, then the rules may be aimed at
a short-term result.
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Finally, even if the quality of both sources and their synergy is high, the procedure
may fail to provide a pronounced indication for therapeutic action. Such happens, for
instance, when there are multiple explanations in the diagnosis that are more or less
equally relevant, but different treatment actions are associated with them. A more
elaborate prognostic analysis of the possible choices is then required; this is discussed
in the next subsection.

6.2.3 Prognostic assessment

In this subsection we consider the final reasoning task in clinical medicine: prognosti-
cation, assessing a patient’s prognosis. The notion of prognosis has already occurred
in the context of diagnosis, where it was used as a measure for the relevance of di-
agnostic hypotheses. It was however given a mostly numerical characterisation: the
maximum expected utility was taken to characterise the patient’s prognosis. In this
section, we investigate a more symbolic approach to the notion of prognosis.

We develop a notion of prognosis that is patient-centred and builds on the concepts
of future scenario and differential prognosis. Here, a future scenario is an explicit
symbolic description of future events, and a differential prognosis is a set of such
scenarios and their associated importances in the given clinical situation. The dif-
ferential prognosis aims to provide a picture of the patient’s prospects, where the
associated expected utility provides a summarising aggregate of these prospects. We
will see that this approach yields a number of similarities between the notions of
diagnosis and prognosis.

Future scenarios

In general, the set H[t + 1, N ] of planning histories over time segment [t + 1, N ]
denotes the full range of prospective possibilities at time point t; of course, it will
often occur that many of these possibilities are highly implausible or even excluded in
a given situation. We can nevertheless think of H[t+ 1, N ] to represent all potential
future scenarios at time point t. However, the level of detail within these scenarios
is too high. When the length of time segment [t+ 1, N ] is considerable, each history
h ∈ H[t+ 1, N ] contains a torrent of information, and the number of possible histories
is enormous. It is then simply not feasible to form a picture of the patient’s prospects
by inspecting all scenarios that seem reasonable in a given situation.

We therefore seek to design a universe Ωt of future scenarios at time point t at
a higher level of abstraction than H[t + 1, N ]. The elements of Ωt are planning
expressions that describe a number of events during time segment [t+ 1, N ], but
much less than complete planning histories over this time segment: information that
is irrelevant for prognostic purposes is omitted. We assume that the elements of Ωt

are mutually exclusive, i.e. ω1 ∧ ω2 ≡ ⊥ for all scenarios ω1, ω2 ∈ Ω, ω1 6= ω2, and
jointly exhaustive, i.e. for all histories h ∈ H[t+ 1, N ] there exists a scenario ω ∈ Ωt

such that h ` ω.
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It must now be decided which information is irrelevant for prognostic purposes. There
exist multiple ways of doing so, and the tradeoff involved is ultimately subjective.
Yet, we can establish guidelines for separating relevant from irrelevant prognostic
information. We describe an informal and a formal guideline here.

The informal guideline is based on the general objective of therapy and the char-
acteristic prospects for patients in the domain under consideration. If the therapy
is curative and there is good hope of obtaining a healthy condition at the end of
the management process, one will focus on the internal clinical attributes, as these
attributes represent the primary factors of the patient’s condition. Furthermore, the
final outcome will be considered more relevant than the trajectory leading to it: both
clinical states prior to the final time point t = N and clinical actions required to
reach the healthy condition may be largely neglected. So, in this case, the universe
Ωt of future scenarios would contain expressions that mostly refer to variables from
I(N). If, on the other hand, the prospects are worse and the current management
strategy is palliative rather than curative in character, external attributes, especially
those pertaining to the symptoms of disease, may considered as more relevant. In
addition, events at near rather distant time points will be emphasised, and there will
be more attention to clinical actions if they involve a lot of discomfort; the patient
may wish to forego such actions unless they really improve his prospects. In this
case, the universe Ωt would contain expressions that refer to a number of variables
from E[t+ 1, N ], most decision variables from D[t+ 1, N ], and probably also a small
number of variables from I[t+ 1, N ].

The formal guideline for separating relevant from irrelevant prognostic informa-
tion is based on the notion of direct contribution to utility from Definition 5.89 on
page 159. Recall that the elements of Z are direct contributors to utility when
Z ⊆ X(T ) ∪D(T ) is the smallest set such that

u(CZ ∧ cY ) = u(CZ ∧ c′Y ) (6.52)

for all configurations cY , c
′
Y of the complementary set Y = (X(T ) ∪D(T )) \ Z, con-

sisting of indirect contributors to utility. It depends on the type of utility function
employed which variables contribute directly to utility; for example, a utility func-
tion based solely on final-state goals (as described in Section 6.1.5), would only have
variables from I(N) contribute directly. In general, variables from the set

Zt = Z ∩ (X[t+ 1, N ] ∪D[t+ 1, N ]) (6.53)

are prognostic variables at time point t that contribute directly to utility. Given a
future configuration cZt ∈ ΩZt of this set, the other prognostic variables are irrelevant
for determining the associated utility. From a formal standpoint, the set ΩZt of all
configurations of Zt is therefore a most suitable universe of future scenarios.

We note that ideally, both guidelines lead to the same set of variables that is consid-
ered relevant for prognostic purposes: a utility function should reflect one’s attitude
towards future developments.
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Differential prognosis

We now turn to the notion of differential prognosis, which is defined analogously to
the notion of differential diagnosis; the roles of diagnostic explanations are filled by
future scenarios. As before, we assume that the physician faces a choice at time point
t ∈ T , while having performed action sequence α ∈ A[0, t− 1] and obtained evidence
χ ∈ Φ(T ). The choice at time point t is taken to be restricted to some candidate set
At ⊆ A, |At| ≥ 1, of actions that have previously been selected, for instance using
the procedure described in the previous subsection. In addition, it is assumed that
some future management strategy for time points t+ 1, . . . , N , is available; only the
action choice at the current time point t, or equivalently, the decision rule for time
point t with antecedent α ∧ χ, has yet to be decided upon. It is irrelevant what the
strategy for time point t+1, . . . , N , looks like: it may range from complete absence of
action (i.e. d(t′) = ε for all t′ ∈ [t+ 1, N ]) to a detailed plan of action that anticipates
many contingencies. In either case, we take a partial contingency plan π, consisting
of decision rules for time points t + 1, . . . , N , to describe the strategy; we think of
plan π as the available knowledge of the future.

Now, note that at time point t, it is immaterial which considerations have led to
choosing the actions α(0), . . . , α(t − 1) in sequence α. These choices will probably
have resulted from following some decision-making strategy, but with hindsight, the
only relevant fact is that this has led to choosing the actions mentioned. A similar
observation holds for the action choice at time point t. In a prognostic evaluation of
decision d(t)=a, we do not care about the reasons for this choice, but only about its
consequences. We can therefore think of the physician as choosing from the set

P = {Pa ∈ P det
Ξ,O | a ∈ At} (6.54)

of decision processes, where each Pa ∈ P implements action sequence α, decision
d(t)=a, and plan π. With each action choice d(t)=a, a ∈ At, is now also associated
a differential prognosis that is based on the universe of future scenarios Ωt and whose
concrete form derives from Pa; the decision among these choices is made by comparing
prognoses. The notion of differential prognosis is defined as follows.

Definition 6.32 (Differential prognosis) Let Ωt be the universe of future scenar-
ios at time point t ∈ T , t < N . A differential prognosis at time point t is a set

dpt = {(ω, q) | ω ∈ Ωt, q ∈ [0, 1]}, (6.55)

of pairs (ω, q), where q is called the prognostic importance of scenario ω in differential
prognosis dpt.

As with differential diagnoses, where only explanations of nonzero relevance were
included, we assume that q > 0 for each element (ω, q) of a differential prognosis dpt.
Another correspondence between the two notions is that there exist different ways
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for obtaining the numbers associated with the elements of differential sets. We have
earlier discussed several implementations of the concept of diagnostic relevance; we
will now discuss three possibilities to implement the notion of prognostic importance.

The first, and most obvious, implementation is based on the likelihood of future
scenarios. From the above observation is follows that, given a particular choice of
action a ∈ At, the likelihood q of future scenario ω ∈ Ωt equals

q = Pa(ω | χ), (6.56)

where Pa ∈ P. This implementation of importance emphasises the probability of
future scenarios: the most important scenario ω is the one that is most likely given
the available knowledge about past and future. When scenario ω has unit likelihood
(q = 1), this implies that ω is also the only future scenario in the differential prognosis
dpat associated with decision d(t)=a, i.e. dpat = {(ω, 1)}. Such may occur when we
are approaching the final point in the time frame, or when many internal variables
have reached an absorbing state. Otherwise, there will be multiple scenarios with
nonzero likelihood; one may choose to omit highly unlikely scenarios to obtain a
succinct picture of the patient’s prospects.

The likelihood-based implementation of prognostic importance does not reflect the
preferences for different future scenarios: it neglects utility. The second implementa-
tion of importance we discuss in contrast neglects likelihood, and focuses completely
on utility: it regards future scenarios with little utility as most important, as these
scenarios are to be avoided. That is, the importance q associated future scenario ω
now equals

q =

{
1− ũχ∧ω(Pa), if Pa(ω | χ) > 0,
0, otherwise,

(6.57)

where

ũχ∧ω(Pa) =
∑

h∈H(T )

Pa(h | χ, ω) · u(h) (6.58)

is the expected conditional utility of decision process Pa given χ and ω, as defined
in Definition 5.87 on page 158. This implementation of importance provides for
making worst-case and best-case analyses, by considering the smallest and largest
importances found in a differential prognosis. If the difference between these two
extremes is small, then the patient faces a stable future in terms of his preferences;
note that this also occur when there is much uncertainty regarding which concrete
scenario is to be expected. Furthermore, the importances in a differential prognosis
will not sum to unity, and at least theoretically, all importances may be 0 or 1.

A disadvantage of the utility-based implementation of importance is the fact that sce-
narios marked by very high or low expected utility may have a very low likelihood;
the insight gained from worst-case and best-case analyses is then rather limited. The
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third implementation of importance therefore synthesises the two implementations
described above by weighing utility with likelihood. That is, the importance q asso-
ciated future scenario ω is defined as

q =

{
Pa(ω | χ) · (1− ũχ∧ω(Pa)), if Pa(ω | χ) > 0,
0, otherwise.

(6.59)

With this implementation, a future scenario obtains high importance only if it is
likely but undesirable; other scenarios are considered less important. An noticeable
property is now that the importances in the differential prognosis dpat associated
with decision d(t)=a will sum to the complement of ũχ(Pa), the expected conditional
utility of decision process Pa given χ:∑

(ω,q)∈dpat

q =
∑
ω∈Ωt

Pa(ω | χ) · (1− ũχ∧ω(Pa))

= 1−
∑
ω∈Ωt

Pa(ω | χ) · ũχ∧ω(Pa)

= 1− ũχ(Pa). (6.60)

As such, this implementation of importance reflects the decision-theoretic viewpoint;
an optimal action choice a∗ ∈ At is one that minimises this sum, and therefore max-
imises expected utility:

a∗ = argmina∈At{
∑

(ω,q)∈dpat

q}

= argmina∈At{1− ũχ(Pa)}
= argmaxa∈At{ũχ(Pa)}. (6.61)

We note that it depends on the purpose of prognostication which implementation of
prognostic importance is most suitable. When the purpose is to select an action that
is optimal in decision-theoretic terms, then the third implementation, that is based
on weighed utilities of future scenarios, is the best choice. Prognostic information can
however also have a value in itself, without contributing to optimal decision making,
(Asch et al., 1990). When the purpose of prognostication is merely to inform the
patient on his prospects, the likelihood-based and utility-based implementation of
prognostic importance may be preferable.

Concluding remarks

We conclude this subsection with some further remarks on the approach to prognos-
tication that was described above.

A first remark concerns the fact that with the likelihood-based implementation of
importance in differential prognoses, we have basically returned to the formal foun-
dation of decision theory: we can then interpret a differential prognosis dpt as a
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simple lottery over the universe Ωt of future scenarios. Formally, the corresponding
lottery is

l = (q1, ω1; . . . ; qn, ωn), (6.62)

if Ωt = {ω1, . . . , ωn}, and qi, i = 1, . . . , n, is the importance (i.e. likelihood) associated
with scenario ωi. As we constructed a differential prognosis for each possible action
choice d(t)=a at time point t, this means that we have reduced this decision to a
choice between lotteries, which is also the starting-point of utility theory.

A second remark concerns the fact that multiple situations may give rise to equal
expected utilities for two actions a1, a2 ∈ A, i.e. to

ũχ(Pa1) = ũχ(Pa2). (6.63)

The first situation is where all future scenarios are expected with the same likelihoods
for both actions, and the action choice itself does not affect utility. One can then truly
say that there is absolutely no difference between these actions in the given situation.
The second situation is where differences in likelihood only pertain to variables that
do not influence utility directly. This may happen, for instance, if the utility function
focuses on a small number of attributes that have already reached an absorbing state
at time point t. The fact that other attributes may show considerable differences
in their probable developments under actions a1 and a2 will then be masked by the
selective nature of the utility function. The third situation, finally, is where also the
probable developments for direct contributors to utility differ, but the weighed sum of
utilities associated with future scenarios is still the same. In utility-theoretic terms,
this means that one is indifferent between the lotteries represented by prognoses dpa1

t

and dpa2
t .

Finally, we have seen that the considerations that surround the notion of differential
prognosis are roughly similar as those surrounding the notion of differential diagnosis,
discussed in Subsection 6.2.1. Notwithstanding these similarities, however, there is an
importance difference between diagnostic and prognostic reasoning. The diagnostic
task concerns inferring the probable or relevant causes of given evidence; this is
often called evidential reasoning, as reasoning proceeds from the evidence. Prognosis,
in contrast, concerns the prediction of effects from given causes; this is therefore
often called causal reasoning. In a probabilistic formalisation, as we employ here,
both types of reasoning ultimately reduce to probabilistic inference. Yet, evidential
reasoning seeks to uncover what is truly the case, and can strictly speaking come up
with only one correct answer. Causal reasoning, in contrast, is unavoidably at error
when it comes up with only one answer in a domain with inherent uncertainty: the
essence of the future is contingency.
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6.3 Discussion

In this chapter we have described how the framework of Chapter 5 can be employed
to implement the dynamic perspective on patient management that was sketched in
Chapter 1. Many notions related to clinical modelling and reasoning have passed in
review in the preceding sections. It has, however, by no means been our intention
to be in some sense ‘complete’; we have shown how many clinical decision-making
notions can be formalised within our framework, but equally many notions have been
left out of consideration. Instead, we have aimed to stress that there is often room
for substantial variation when formalising clinical notions within the framework; our
purpose has been to illustrate the choices one has during the formalisation process,
and in particular, how the effects of such choices are analysed.

The first part of the chapter concentrated on translating the ingredients of a given
clinical domain to formal structures of our framework. In Section 6.1 we have succes-
sively considered the formal description of a patient’s clinical condition, modalities
for the treating physician, prognostic aspects of the domain at hand, and findings
from diagnostic investigations. In addition, we have compared two approaches to
formalising the objectives of patient management: one approach, from the field of
symbolic planning, based on the identification of goal states, and one approach based
on duration and quality of life, from clinical decision analysis. It was concluded
that, notwithstanding the conceptual differences, these two approaches may ulti-
mately coincide. Overall, we have tried to give the reader a feeling for the role of the
framework’s components in clinical decision-support settings.

The second part of the chapter focused on the clinical tasks of diagnosis, therapy se-
lection, and prognosis; in particular, we have formally investigated the roles of these
tasks within the dynamic perspective on patient management that is advocated in
this thesis. From a strictly decision-theoretic standpoint, there can only be one crite-
rion for action selection in decision processes, which is the maximisation of expected
utility. Conceptually speaking, however, clinical patient management is not guided by
the objective of expected-utility maximisation, but typically based on considerations
regarding the explanatory power of competing diagnostic classifications, pathophys-
iological knowledge of the domain, experience with the application of therapy, and
future scenarios for the patient’s development. We have shown how these consider-
ations can be made explicit in the reasoning process, without losing the underlying
decision-theoretic tradeoff.

We now conclude the chapter by covering a subject that has been largely neglected:
the difficult practice of clinical modelling. Furthermore, we re-evaluate our framework
in the light of the experience gained, and compare our work with related investigations
by other authors.
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Name: LV failure

Definition: left-ventricular failure

Group: 5 (signs and symptoms)

Domain: none
mild (tiredness, increased heart rate and breathing frequency)
moderate (also feeding problems, failure to thrive)
severe (also pulmonary rales)

Type: ordered categorical

Comments: Tiredness, feeding problems and “failure to thrive” (growing problems, unhap-
piness) are subjective measures. Furthermore, heart rate is subject to large variations.

Figure 6.3: Model description of the attribute LV failure.

The practice of clinical modelling

Constructing a model from medical reality is often hard and laborious; it is sometimes
considered to be the major obstacle building decision-support systems. We have
hardly touched upon this issue in the preceding sections, as it is beyond the scope of
this thesis. Yet, to give an impression of the type of difficulties one may encounter,
we will here discuss three problems we had during the modelling of the VSD domain.

The first problem concerned the proper description of clinical states. We believe that
it is generally recommendable to mimic the clinical vocabulary as much as possi-
ble when a domain is formalised. Unfortunately, one may then encounter problems
with finding precise, unambiguous definitions for clinical attributes and their value
domains. This is due to the fact that there are often concepts that are used in ev-
eryday clinical practice whose definition is rather imprecise. In the VSD domain, we
encountered this problem with the ‘fuzzy’ concept heart failure.

As described in Chapter 2, the heart is said to fail when it cannot fulfil its primary
function, circulating the blood through the body. Recall that this condition may
be the result of left-to-right shunting of blood through a VSD. However, the very
moment that there are signs of heart failure, the body will respond by preventing
a decrease in arterial blood flow and pressure: the heart rate will increase and the
systemic vascular resistance is increased by narrowing many small blood vessels in
the body. So the effects of shunting on the circulation are immediately compensated
for, and it is really the effects of the compensatory mechanisms (e.g., shortness of
breath) that are observable to the clinician. We therefore decided to define the notion
of heart failure purely on the basis of these symptomatic effects; see the full model
description for the attribute in Figure 6.3 for details.

The second and third problems concerned the construction of models of control. For
the VSD domain, we have constructed a dynamic belief network (as described in Sec-
tion 4.3) to model the probable developments in clinical state over time. In building
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a belief network, two closely related tasks can be discerned: the construction of the
graphical part of the network, and its subsequent quantification. Constructing the
graphical part of a network consists of designing a directed acyclic graph that ade-
quately models the conditional independence relations holding between the domain
variables; the quantification of a probabilistic network consists of assessing the proba-
bilistic parameters that are needed to calibrate the probability distribution modelled
by the network.

Both tasks turned out to be, to some extent, problematic. The construction of
the graph was hampered by the circumstance that the human cardiovascular system
contains several homeostatic feedback mechanisms. It is often not possible to identify
conditional independence relations between the variables involved, and therefore all
these variables (representing flows, pressures, and resistances in different parts of
circulation) will have to be directly connected to each other in the graph. This causes
another problem, as the number of probabilistic parameters associated with network
variables grows exponentially in their numbers of predecessor variables. Furthermore,
it is generally unclear what the direction of the arcs between such variables should be,
as their relationship is best characterised as one of continual mutual interaction. For
a more elaborate discussion of the problem related to modelling the cardiovascular
system with belief networks, we refer to the papers by Peek and Ottenkamp (1997)
and Long et al. (1997).

Even more difficult it was to quantify the network thus obtained. This was, in fact,
little surprising and certainly not unique for the VSD application: belief-network
quantification requires the assessment of numerous probabilities, and is therefore a
notorious bottleneck in building belief-network applications, (Druzdzel et al., 1995).
Probability assessment is a topic of active methodological research in the field of
uncertainty reasoning, (e.g., see Spiegelhalter et al., 1990; Druzdzel and Van der
Gaag, 1995; Renooij and Witteman, 1999). In medical domains, probabilities are
normally obtained from frequencies reported in the literature, statistics from clinical
databases, or subjective estimation by clinical experts; it is also possible to employ
a combination of sources.

During the construction of the dynamic belief network for VSD, a recently proposed
method for efficient belief-network quantification was experimentally verified with
a (static) part the network. This method, developed by Coupé et al. (1998), is
based on performing sensitivity analyses to identify the most influential probabilistic
parameters. The main idea is to quantify a belief network by iteratively refining
highly-influential probabilities, while the network is initially supplied with rough es-
timates. Instead of putting an effort in obtaining accurate probability estimates for
all network parameters, this approach thus focuses on those parameters that are most
influential on the network’s performance. The procedure was experimentally verified
on a belief network for the VSD domain that was supplied with subjective probabili-
ties. The results suggest that the approach is indeed successful: a satisfying network
performance is obtained when a limited number of highly-influential probabilities is
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elicited from a “high-quality source” (in this case, a field expert) while the others
are obtained from less informed sources. However, the effects of the refinements on
network performance were found to be non-monotonic; in practice it is therefore dif-
ficult to establish the number of refinements that is required. For further details of
this investigation, we refer to (Coupé et al., 1999) and (Peek et al., 1999).

Re-evaluation of the framework

From the experience gained in this chapter with applying our framework for decision-
theoretic planning in clinical settings, we can now make a re-evaluation. We list
some strengths and weaknesses of the framework that have shown up in the preceding
sections.

A first and foremost strength of the framework is definitely the fact that time is a
primitive, not a derived, concept, and that all compound concepts involve references
to time. This allows to describe clinical patient management in a highly dynamic
fashion; notions of time and change are not restricted to isolated parts of the for-
malisation, as occurs in most decision-analytic tools (e.g. Hazen, 1992; Sonnenberg
and Beck, 1993). The second strength is the expressive symbolic planning language
Φ(T ) within the framework. This enabled us, in Section 6.2, to formalise the notions
of diagnosis and prognosis as collections of past and future scenarios respectively,
thus emphasising their dynamic characters. A final advantage of the framework is
that it leaves room for approaching the concepts that occur in clinical reasoning from
multiple perspectives within a single formalisation. In the formalisms discussed in
Chapter 4 for instance, this is only possible by introducing additional representations
of the same problem.

Of course, we have also seen that the current framework has several limitations. First,
all attributes from the set X occur as clinical variables at all time points. This is
sometimes unnatural from a conceptual point of view, and somewhat awkward in
formal respects. In some situations, particular attributes are redundant and do not
have a clear interpretation. For instance, when there is no VSD, it seems strange to
speak of its size and type. Yet, the attributes VSD size and VSD type necessarily
occur at all time points in the VSD model. Second, the point-based formalisation of
time in our framework is limited in its expressiveness and flexibility; this required,
for instance, the introduction of a temporal map τ to model the “true” passage of
time between decision moments. Third and finally, the probabilistic foundation for
modelling the effects of action choices is semantically rather weak. As we saw in
Subsection 6.1.3, one would preferable distinguish between decisive and additional
preconditions, and target and complicatory postconditions of clinical actions; from a
probabilistic standpoint, however, this distinction is meaningless.

Related work

We conclude with a brief comparison of the work by Magni and Bellazzi (1997; 1998),
Leong (1998a; 1998b), and Hauskrecht (1997a; 1997c), with our investigation.
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P. Magni and R. Bellazzi (1997; 1998) propose to employ fully-observable Markov
decision processes for therapy planning in medicine. They explore a novel graphical
formalism, called influence view, for describing the transition probability functions
in an MDP model. Roughly, an influence view is a dynamic belief network with two
time slices that models the transition probability function associated with a given
action. In addition to the variables describing the patient’s clinical states, influence
views contain context variables for population-specific parametrisation of the transi-
tion probabilities, and transition variables that facilitate the modelling process. The
technique has been applied on the problem of therapy planning for patients with
hereditary spherocytosis. With moderate and severe forms of this disease, surgical
removal of the spleen is recommended, but the mild variant is more difficult to de-
cide upon. Traditional decision-analytic approaches based on decision trees typically
model static therapies where surgery is considered only once at some given age of
the patient. The authors show the MDP approach allows to reconsider surgery each
year: a dynamic therapy.

T.-Y. Leong (1998a; 1998b) has developed a framework planning under uncertainty
called DYNAMOL (for DYNamic decision MOdeling Language). Similar to our
framework, it integrates ideas from AI, decision theory, and control theory, and is
aimed at analysing and supporting decision making in clinical medicine. In DY-
NAMOL, planning problems are cast as semi-Markov decision processes, a generalisa-
tion of fully-observable Markov decision processes where the state transitions induced
by action choices take a variable, and stochastic, amount of time; the underlying no-
tion of time is however discrete. Considerable attention is spent in the DYNAMOL
framework to the graphical representation of transition probability functions.

An important drawback to the work of both Magni and Bellazzi, and Leong, is the
assumption of full observability at all times. This is awkward in clinical medicine,
and therefore yields a rather simplified description of reality: informational relations
among patient, disease, and physician cannot be analysed. The approach precludes,
for instance, to analyse the notion of diagnosis in clinical reasoning, in the manner
of Subsection 6.2.1.

M. Hauskrecht (1997a; 1997c) employs partially-observable Markov decision processes
(POMDPs) to model clinical management problems. As he correctly states, the issue
of imperfect information in clinical management is often significant, and can therefore
not be neglected. Hauskrecht also employs a graphical representation of transition
probability functions. This representation has a unique hierarchical feature: the
state description is considered at multiple levels of complexity, where state attributes
are only included when they are relevant for the clinical condition at hand. Such
an approach solves the above described problem that all clinical attributes occur as
variables at all time points in our framework. The work of Hauskrecht focuses on
methods for approximately solving POMDP problems where the additional hierar-
chical structure is exploited; it leaves most issues regarding clinical modelling and
reasoning unaddressed.
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A drawback to all the work described above is that it hardly extends beyond the clas-
sical description of Markov decision processes. The primary additions are graphical
representations, while an expressive language for decision-theoretic planning concepts
is lacking. In this chapter, we have shown that our framework is more expressive,
and thus allows a thorough analysis of these concepts in clinical modelling and rea-
soning.



CHAPTER 7

Conclusions

This chapter finishes the thesis with a review of the topics that have been in ad-
dressed; throughout, we summarise the main conclusions of our work. As each of
the Chapters 2 to 6 has already provided a detailed discussion of results obtained,
a general perspective is adopted here. We conclude with some directions for future
research.

The dynamic perspective on patient management

The starting point of our investigation has been a dynamic perspective on clinical
patient management, where doctor, patient, and disease engage in a process of con-
tinual interaction: the doctor responds to observed signs, symptoms, and results of
diagnostic procedures by taking appropriate clinical action, and the patient’s con-
dition changes over time in response to the doctor’s actions. Within this process,
the tasks of diagnostic assessment, therapy selection, and prognostication are inter-
twined activities, and do not form separate phases in the management procedure.
The doctor is viewed as solving a sequence of similar and mutually related decision
problems over time; this task was characterised as action planning under uncertainty
with partial information and temporal constraints.

Decision-theoretic representation and reasoning

We have employed Bayesian decision theory at the fundamental level of trading off al-
ternative choices in decision making. Decision theory builds on probability theory for
reasoning with uncertainty, and utility theory for rational choice under uncertainty.
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The traditional tool for decision-theoretic analysis is the decision tree; decision trees
were used to illustrate the decision-theoretic analyses in Chapter 3. Decision trees
provide an intuitive representation of decision problems and can easily be constructed
in cooperation with field experts. They are however not suited as a knowledge-
representation formalism for automated reasoning systems, because they restrict to
a single problem case and adhere to a single viewpoint on that problem. Further-
more, decision trees explicitly enumerate all potential scenarios in a decision problem,
yielding a representation that grows exponentially in size with the size of the prob-
lem. These observations motivated a review of other decision-theoretic representation
formalisms in Chapter 4.

Three representation formalisms were reviewed: influence diagrams, Markov decision
processes, and dynamic influence diagrams. Influence diagrams provide a concise way
of representing decision-theoretic problems by exploiting probabilistic independencies
between variables in the problem domain. They do have the drawback however of
mixing different types of knowledge in a single representation, which hampers their
expressiveness; in addition, they do not include notions of time or change. Markov
decision processes are mathematical models of stochastic control that incorporate
the decision-theoretic perspective on choice tradeoffs; the partially-observable vari-
ant (POMDP) adheres to the clinical situation where part of a problem’s information
is hidden for the decision maker. Markov decision processes have explicit notions of
time and change, but their representation of temporal progression is rather coarse.
A more delicate representation is found in dynamic influence diagrams. These dia-
grams extend traditional influence diagrams with a notion of time, which makes them
suitable for representing decision-theoretic planning problems. Dynamic influence di-
agrams can also be integrated with Markov decision processes, thus combining both
approaches.

Integrating planning and decision theory

The core of our own work was presented in Chapters 5 and 6. In Chapter 5, we
presented a formal framework for decision-theoretic planning that was subsequently
used to model and analyse problems of clinical patient management in Chapter 6.
The framework integrates notions from decision theory, uncertainty reasoning, and
symbolic planning, and provides a broader perspective on decision-theoretic planning
that the representation formalisms of Chapter 4. In brief, its building blocks consist of
a decision basis, models of control and observation, and a utility function. The three
elements X, A, and T of a decision basis describe the fundamental components of a
problem domain: the dynamic system under partial control by the planning agent,
the possible actions to choose from, and the time frame for the planning task. These
elements give rise to a propositional algebra that serves as a planning language for
the domain, and allows for direct manipulation of symbolic structures that describe
the logical relations between states, events, observations, decisions and plans.

A second fundamental notion in our framework is the decision process. A decision
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process provides a meta-level description of the intertwined dynamics of planning
agent and stochastic system. Using the rules of probability theory, we can switch
from this meta-level description to object levels that focus on the agent’s behaviour
(using choice predictions) or on the system’s reactions to that behaviour (using state
predictions). Furthermore, by analysing conditional independence relations in a deci-
sion process, we can identify the influential and informational relationships between
system states and decisions: this provides for characterising the extent to which ac-
tion choices can change the system’s development, and the extent to which observed
state information is used in making these choices.

Contingency planning

A significant part of Chapter 5 was devoted to a theory of contingency planning. In
our framework, plans are expressed as collections of symbolic decision rules. These
rules allow for easy communication with field experts and can be directly employed,
for instance, in clinical guidelines. Furthermore, this form of contingency plan enables
us to formulate decision-making strategies at different levels of detail and with varying
ranges of applicability. We investigated properties of contingency plans related to
their completeness, consistency, coherence, and operationality under a given model
of observation. In addition, it was analysed how decision processes can implement
contingency plans, and shown how the properties mentioned above then appear as
properties from these decision processes. We conclude that a successful synthesis of
symbolic and numerical approaches to planning has been obtained in our framework,
and that this synthesis provides for thoroughly analysing the concepts that come into
play when time and change are essential in decision making under uncertainty.

Explicit prognostic models

In Chapter 6 we discussed how the framework for decision-theoretic planning is ap-
plied to model medical-clinical domains, and to implement patient management tasks.
The first part of the chapter concentrated on modelling : translating the ingredients
of a given clinical domain to formal structures. A notable property of our framework
is that it allows to develop an explicit prognostic model that describes the probable
developments in a patient’s clinical condition over time. Prognostic models found in
the literature usually concentrate on a single aspect of the patient’s condition (most
often, mortality), and supplement a decision-making scheme without being part of it,
(Wyatt and Altman, 1995; Lucas and Abu-Hanna, 1999). In our approach, prognosis
concerns all of the patient’s condition, and is fully integrated with the model for
decision making. While this approach is more involved and requires a more elaborate
domain specification to be assessed, it is also more realistic from a clinical point of
view: prognosis concerns both near and distant future, and multiple aspects of the
patient’s condition should be taken into account in prognostication.
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Explicit clinical reasoning

A leading theme in our work has been the explicit representation of concepts that
are involved in decision making and planning under uncertainty. Decision-theoretic
reasoning is characterised by the fact that each situation of choice is ultimately re-
duced to a utility-theoretic tradeoff; from a conceptual point of view, however, these
choice situations may be very different. A number of concepts, pertaining to the role
of actions, information and time, are significant in many planning problems; our aim
has been to allow for explicit reasoning with these concepts, while adhering to the
decision-theoretic perspective.

The second part of Chapter 6 focused on the medical reasoning tasks of diagnosis,
therapy planning, and prognosis. We investigated how these tasks can be described
within our framework, and how they relate to each other in the dynamic perspec-
tive on patient management. The clinical management of patients is often based on
considerations regarding the explanatory power of competing diagnostic classifica-
tions, pathophysiological knowledge of the domain, experience with the application
of therapy, and future scenarios for the patient’s development. It was shown how
these considerations can be made explicit in the reasoning process, without losing
the underlying decision-theoretic tradeoff. It is our firm belief that such will facil-
itate the user’s understanding, and hence acceptance, of the recommendations of a
decision-support system.

Future research

A number of topics in our work have received only modest attention and require fur-
ther investigation; there are also several starting-points for continuation. We describe
the main directions for future research.

Computational methods A most glaring omission in our work has been the anal-
ysis of computational methods for decision making. It was already noted in Chapter 3
that practical application of decision-theoretic methods is hampered by the fact that
decision-theoretic reasoning is often highly combinatorial, because all contingencies,
with respect to both future events and future decisions, have to be taken into ac-
count when making a choice. As discussed in Chapter 4, this circumstance has been
found to impede the application of partially-observable Markov decision processes in
practice, because the associated methods for constructing optimal decision-making
policies are intractable. We have decided to drop the matter of computation in our
investigation, and focus on representation and reasoning. For any practical applica-
tion of the results, however, further inquiries regarding computational methods are
indispensable.

We believe that a promising approach to enhancing the feasibility of computational
methods is the exploitation of domain-dependent constraints, specialised medical
knowledge, and clinical experience. For instance, the theory of contingency planning
from Section 5.3 paves the way for incremental procedures of plan construction, as it
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shows how a collection of decision rules may serve as a partial solution to the planning
problem, and indicates which extensions lead to a complete solution. As such, one
may start with a given collection of rules that are employed by field experts, and
extend this collection to obtain a complete contingency plan; this obviates the need
to exhaustively search the space of all plans. A related approach starts from rules
that require some modification, for instance because they are yet non-operational.
An example of this type of approach was already given in Subsection 6.2.2, where
a collection of such non-operational decision rules was used for decision-making by
relating them to a given differential diagnosis.

Another possibility is to place formal constraints on the type of contingency plan
allowed as a solution to planning problems. In the VSD domain for instance, it
is reasonable to assume that surgery is required at most once for a given patient,
and that surgery is never considered before routine clinical investigations have been
performed. This restricts the space of possible plans to inspect when devising a
management strategy; we have earlier investigated this approach in the context of
POMDPs, (Peek, 1999b). Placing such constraints can be regarded as employing
an informed heuristic method for decision making; it may be able to compete well
with exact reasoning methods. As was shown in Chapter 6, our framework allows to
incorporate and analyse such heuristics.

Representation and modelling A second omission in Chapters 5 and 6 has been
the concrete representation of the framework’s components. Before any practical
application can be realised, data structures must be designed that can describe these
components; this holds in particular for models of control. Note that under restricted
conditions (as described in Section 5.5) it may be possible to use a POMDP or
dynamic influence diagram for this purpose; in general, however, this is not possible
as our framework is less restrictive than these representation formalisms. For the VSD
domain, we have employed a dynamic belief network to represent the model of control,
where a number of probability assessment functions are parametrised to specify the
influence of actions on state variables; unfortunately, the belief network was not
yet completed as of writing this thesis. The approach seems however reasonable in
general, but must be further investigated.

A related issue is the fact that structured methods for knowledge acquisition and mod-
elling are required to make practical applications of the framework within reach; we
have already touched upon this issue in the concluding discussion of the preceding
chapter. Again, this concerns in particular models of control, as these models re-
quire the assessment of many probabilistic parameters. Furthermore, the framework
presently does not incorporate a mechanism to update its probabilistic parameters in
the wake of new evidence. Such a mechanism is however needed allow for handling
inter-patient variability. For instance, where some VSD patients show many symp-
toms of little left-to-right shunting, others are in better condition and show little
symptoms of much shunting. The treating physician will often discover this, and
adjust his expectations with respect to the patient in question.
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Extending the framework An interesting topic for future research is extending
the current framework to increase its expressiveness and range of applicability. It was
already noted that the representation of time in our framework is not very flexible
and may hamper temporal reasoning in practice. This drawback might be obviated
by employing an interval-based temporal representation, where the underling time
axis is continuous. In addition, the planning language may be extended to allow
for more expressive temporal reasoning. Possibilities are the inclusion of existential
and universal temporal quantifiers, and the addition of modal operators to capture a
dynamic perspective on time.

It is also possible to investigate a multi-agent approach to decision making and plan-
ning in our framework. In many domains, including clinical medicine, planning tasks
that are accomplished in collaboration or competition with others. This requires an
extension of the framework with multiple, parallel decisions at each time point. Fur-
thermore, one will need to model how information is exchanged between the agents
making these decisions, and what their respective planning objectives are.

Other applications in health care Finally, the current framework has other po-
tential applications in clinical health care that have not been addressed here, but
may provide fruitful lines of future research. In particular, the framework provides
starting-points to analyse existing clinical practice or clinical guidelines. This is envi-
sioned as follows. To analyse existing clinical practice, a registration of decisions in a
real-world clinical setting, over some period of time, is required. This registration can
be summarised as a decision process in our framework, and then allows for analysing
the decision-making behaviour. One may investigate the consistency of the recorded
behaviour, its implicit clinical objectives, and the information that is used in making
decisions. An existing set of clinical guidelines is analysed by translating them to a
contingency plan in our framework; they are then amenable to formal study. The plan
may be characterised in terms of completeness, consistency, and coherence, and again
one can investigate the implicit objectives of the guidelines, and which information
is used in making decisions.
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Glossary of medical terms

aorta (Ao) largest artery of the systemic circulation

aortic insufficiency abnormal regurgitant flow of blood
through an incompetent aortic valve

aortic stenosis (AoS) narrowing at or near the aortic valve orifice

aortic prolapse downward displacement of aortic cuspal material

aortic valve valve between left ventricle and aorta

arteriole small artery

atrioventricular valves heart valves between atria en ventricles

atrial septum the wall that separates left and right atrium

atrial septal defect (ASD) abnormal opening in the atrial septum

atrium upper heart chamber

capillary minute blood vessel

cardiac cycle the sequence of contraction and relaxation
of the cardiac muscle

cardiac output the volume of blood ejected by the heart
per minute
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cardiomegaly pathological enlargement of the heart

cardiovascular system the circulatory system of heart and vessels

coarctation narrowing of the aortic arch

cyanosis bluish discolouration of skin
and mucous membranes

diastole the phase of relaxation in the cardiac cycle

ductus arteriosus short vessel connecting PA and Ao before birth

Eisenmenger’s syndrome the complex of findings associated with a VSD,
severe pulmonary hypertension, and cyanosis

foramen ovale communication between the two atria
of the foetal heart

heart failure ineffective pumping of the heart

hepatomegaly enlarged liver

hypertrophy overgrowth of cardiac muscle

mitral valve valve between left atrium and ventricle

myocardium heart muscle

oedema accumulation of fluid in body tissue

outlet septum the part of the ventricular septum
between both semilunar valves

overriding aorta misplacement of the aorta
above the ventricular septum

persistent ductus arteriosus failure of closure of the ductus arteriosus at birth
(PDA)

pulmonary arteriopathy a pathological condition of arterioles

pulmonary artery (PA) short wide vessel arising from the right ventricle
and conveying deoxygenated blood to the lungs

pulmonary circulation the circulation of blood through the lungs

pulmonary hypertension abnormally elevated blood pressure within
the pulmonary circulation

pulmonary insufficiency abnormal regurgitant flow of blood
through an incompetent pulmonary valve
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pulmonary stenosis narrowing at or near the pulmonary valve orifice

pulmonary valve valve between right ventricle and pulmonary artery

semilunar valves valves between ventricles and great arteries

shunt a passage or anastomosis between two natural

channels or chambers

stenosis localised narrowing or stricture of a duct or canal

stroke volume the volume of blood ejected by the heart
at one stroke

systemic circulation the circulation of blood through the body

systole the phase of contraction of the heart

Tetralogy of Fallot a congenital disorder which consists of pulmonary
stenosis, VSD, overriding of the aorta and
right-ventricular hypertrophy

thrill abnormal vibrations of the heart

tricuspid valve valve between right atrium and ventricle

ventricle lower heart chamber

ventricular septum the wall that separates left and right ventricle

ventricular septal defect abnormal opening in the ventricular septum
(VSD)
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Network quantifications

In this appendix we list the quantifications of the belief network from Figure 4.1
and the influence diagram from Figure 4.3. These estimates were provided by J. Ot-
tenkamp, a senior paediatric cardiologist of the Leiden University Medical Center in
the Netherlands. For each conditional probability P (cx | cρG(x)), we was asked to
estimate the number of patients satisfying the statement cx, out of a given hunderd
patient conforming to the statements in configuration cρG(x). Consequently, we do
not list probabilities here but numbers in the range 0 . . . 100. The utility function
for the influence diagram is based on interviews with the cardiologist on the VSD
domain; we will motivate it at the definition.

B.1 Belief network

VSD (existence and size of a VSD)

prior distribution of VSD values

none small moderate large

0 35 40 25
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resis (pulmonary vascular resistance)

prior distribution of resis values

normal increased high very high

82 10 7 1

closure (spontaneous closure of the VSD)

given conditional distribution of closure values

VSD true false

none 100 0

small 95 5

moderate 70 30

large 25 75

shunt (size and direction of shunting)

given conditional distribution of shunt values

VSD resis none small moderate large reversed

none anything 100 0 0 0 0

small normal 0 98 2 0 0

increased 0 99 1 0 0

high 0 100 0 0 0

very high 2 89 0 0 9

moderate normal 0 40 40 20 0

increased 0 45 40 15 0

high 0 60 30 10 0

very high 3 64 18 5 10

large normal 0 10 30 60 0

increased 0 15 35 50 0

high 0 30 40 30 0

very high 6 59 14 9 12
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pmhyp (pulmonary hypertension)

given conditional distribution of pmhyp values

resis shunt absent mild moderate severe

normal none 99 1 0 0

small 94 5 1
2

1
2

moderate 98 2 0 0

large 95 3 2 0

increased none 3 95 2 0

small 30 60 91
2

1
2

moderate 40 55 3 2

large 60 39 1 0

high none 1 2 95 2

small 20 45 30 5

moderate 5 30 65 0

large 30 65 5 0

very high none 0 0 2 98

small 10 20 45 25

moderate 2 10 40 48

large 8 30 52 10

anything reversed 0 0 0 100

hfail (heart failure)

given conditional distribution of hfail values

shunt absent mild moderate severe

none 98 1 1
2

1
2

small 92 5 2 1

moderate 15 70 10 5

large 5 30 50 15

reversed 1 14 35 50
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pmart (pulmonary arteriopathy)

given conditional distribution of pmart values

closure shunt true false

true none 0 100

small 0 100

moderate 1 99

large 5 95

reversed 80 20

false none 0 100

small 5 95

moderate 15 85

large 571
2 421

2

reversed 100 0

death (death)

We assume that the predecessors pmhyp and hfail of death are independent con-
tributors to mortality risks and use a multiplicative model to combine their influence
on death.

given conditional distribution of death values

pmhyp true false

absent 0 100

mild 1
2 991

2

moderate 2 98

severe 5 95

given conditional distribution of death values

hfail true false

absent 0 100

mild 0 100

moderate 1 99

severe 4 96

For example: the mortality risk associated with mild pulmonary hypertension and
moderate heart failure is 1 − (0.995 · 0.99) ≈ 0.015, and the risk associated with
moderate pulmonary hypertension and severe heart failure is 1− (0.98 · 0.96) ≈ 0.06.
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B.2 Influence diagram

The influence diagram of Figure 4.3 extends the belief network with three decision
nodes and a value node. We provide the extended tables for the variables closure and
death (to which a decisional predecessor has been added), and the utility function.

closure (spontaneous closure of the VSD)

given conditional distribution of closure values

VSD surg true false

none yes 100 0

small 99 1

moderate 95 5

large 85 15

none no 100 0

small 95 5

moderate 70 30

large 25 75

death (death)
We extend the multiplicative model for the variable death with providing the
risk factors associated with cardiac catheterisation and surgery.

given conditional distribution of death values

cath true false

no 0 100

yes 1
2 991

2

given conditional distribution of death values

surg true false

no 0 100

yes 5 95
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utility function

The predecessors of the value node are the random variables closure, pmart, and
death, and the decision variables echo, cath, and surg. The utility function is
calibrated on a scale of 0 to 100, where 0 is associated with the least, and 100 is
associated with the most preferred outcome. A utility of 0 is associated with all
outcomes where death = true.

given

death pmart closure surg cath echo utility

false false true no no no 100

yes 99

yes no 96

yes 95

yes no no 90

yes 89

yes no 86

yes 85

false false false no no no 90

yes 89

yes no 86

yes 85

yes no no 80

yes 79

yes no 76

yes 75

false true false no no any 30

yes any 29

yes any any 25

false true true no any any 20

yes any any 15

true any any any any any 0
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Peek, N.B., Coupé, V. and Ottenkamp, J. (1999). Focused quantification of a be-
lief network using sensitivity analysis, Proceedings of the Eleventh Belgium-
Netherlands Conference on Artificial Intelligence, pp. 123–130.

Peek, N.B. and Ottenkamp, J. (1997). Developing a decision-theoretic network for a
congenital heart disease, in Keravnou et al. (1997), pp. 157–168.

Peot, M. and Smith, D. (1992). Conditional nonlinear planning, Proceedings of
the First International Conference on Artificial Intelligence Planning Systems,
pp. 189–197.

Platzman, L.K. (1977). Finite-memory Estimation and Control of Finite Probabilis-
tic Systems, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks, Artificial
Intelligence 64: 81–129.

Poole, D. (1996). A framework for decision-theoretic planning I: combining the sit-
uation calculus, conditional plans, probability and utility, Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI–96),
Morgan Kaufmann Publishers, Palo Alto, California, pp. 436–445.

Provan, G.M. and Clarke, J.R. (1993). Dynamic network construction and updating
techniques for the diagnosis of acute abdominal pain, IEEE Transactions on
Pattern Analysis and Machine Intelligence 15(3): 299–307.

Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming, John Wiley & Sons, New York.

Quaglini, S., Bellazzi, R., Stefanelli, M. and Locatelli, F. (1993). Sharing and reusing
therapeutic knowledge for managing leukemic children, in S. Andreassen, R. En-
gelbrecht and J. Wyatt (eds), AIME ’93: Proceedings of the Fourth Conference



255

on Artificial Intelligence in Medicine Europe, IOS Press, Amsterdam, pp. 319–
330.

Quaglini, S., Berzuini, C., Bellazzi, R., Stefanelli, M. and Barosi, G. (1989). Therapy
planning by combining AI and decision theoretic techniques, in D. Hunter (ed.),
Proceedings of the Second Conference on Artificial Intelligence in Medicine,
pp. 125–134.

Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choice under Uncer-
tainty, Addison-Wesley, Reading, Massachusetts.

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory, Addison-
Wesley, Reading, Massachusetts.

Reed, N.E., Gini, M., Johnson, P.E. and Moller, J.H. (1997). Diagnosing congenital
heart defects using the Fallot computational model, Artificial Intelligence in
Medicine 10: 25–40.

Reiter, R. (1987). A theory of diagnosis from first principles, Artificial Intelligence
32: 57–95.

Renooij, S. and Witteman, C. (1999). Talking probabilities: communicating proba-
bilistic information with words and numbers, International Journal of Approxi-
mate Reasoning 22: 169–194.

Sackett, D.L., Rosenberg, W.M.C., Gray, J.A.M., Haynes, R.B. and Richardson, W.S.
(1996). Evidence-based medicine: What it is and what it isn’t, British Medical
Journal 312: 71–72.

Savage, L.J. (1972). The Foundations of Statistics, Dover, New York.

Shachter, R.D. (1986). Evaluating influence diagrams, Operations Research 34(6): 79–
90.

Shachter, R.D. and Peot, M.A. (1992). Decision making using probabilistic inference
methods, Proceedings of the Eighth Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI–92), Morgan Kaufmann Publishers, Palo Alto, California,
pp. 276–283.

Shafer, G.R. (1976). A Mathematical Theory of Evidence, Princeton University Press,
Princeton, New Jersey.

Shahar, Y. (1999). Timing is everything: temporal reasoning and temporal data
maintenance in medicine, in Horn et al. (1999), pp. 30–46.

Shannon, C.E. and Weaver, W. (1949). The Mathematical Theory of Communication,
University of Illinois Press, Urbana, Illinois.



256 Bibliography

Shenoy, P.P. (1992). Valuation-based systems for Bayesian decision analysis, Opera-
tions Research 40(3): 463–484.

Shiryayev, A.N. (1984). Probability Theory, Springer, Berlin.

Shortliffe, E.H. (1976). Computer-based Medical Consultations: MYCIN, Elsevier,
New York.

Shortliffe, E.H. and Buchanan, B. (1975). A model of inexact reasoning in medicine,
Mathematical Biosciences 23: 351–379.

Shortliffe, E.H., Scott, A.C., Bischoff, M.B., Campbell, A.B., van Melle, W. and
Jacobs, C.D. (1981). ONCOCIN: An expert system for oncology protocol man-
agement, Proceedings of the Seventh International Joint Conference on Artificial
Intelligence (IJCAI–81), pp. 876–881.

Simon, H.A. (1955). A behavioral model of rational choice, Quarterly Journal of
Economics 69: 99–118.

Smallwood, R.D. and Sondik, E.J. (1973). The optimal control of partially observable
Markov processes over a finite horizon, Operations Research 21: 1071–1088.

Smith, J.Q., Holtzman, S. and Matheson, J. (1993). Structuring conditional relation-
ships in influence diagrams, Operations Research 41(2): 280–297.

Sondik, E.J. (1971). The Optimal Control of Partially Observable Markov Processes,
Ph.D. thesis, Department of of Electrical Engineering, Stanford University.

Sonnenberg, F.A. and Beck, J.R. (1993). Markov models in medical decision making:
a practical guide, Medical Decision Making 13: 322–338.

Soper, P., Ranaboldo, C. and Abeysinghe, G. (1991). A temporal model for clinical
and resource management in vascular surgery, in D. Karagiannis (ed.), Database
and Expert Systems Applications, Springer-Verlag, Berlin, pp. 549–552.

Soto, B., Becker, A.E., Moulaert, A.J., Lie, J.T. and Anderson, R.H. (1980). Classi-
fication of ventricular septal defect, British Heart Journal 43: 332–343.

Sox, H.C., Blatt, M.A., Higgins, M.C. and Marton, K.I. (1988). Medical Decision
Making, Butterworths, Boston, Massachusetts.

Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L. and Cowell, R.G. (1993). Bayesian
analysis in expert systems, Statistical Science 8(3): 219–283.

Spiegelhalter, D.J., Franklin, R.C.G. and Bull, K. (1990). Assessment, criticism and
improvement of imprecise subjective probabilities for a medical expert system,
in Henrion et al. (1990), pp. 285–294.



257

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT
Press, Cambridge, Massachusetts.

Tatman, J.A. and Shachter, R.D. (1990). Dynamic programming and influence dia-
grams, IEEE Transactions on Systems, Man, and Cybernetics 20(2): 365–379.

Thompson, W.B., Johnson, P.E. and Moen, J.B. (1983). Recognition-based diagnostic
reasoning, Proceedings of the Eighth International Joint Conference on Artificial
Intelligence (IJCAI–83), pp. 236–238.

Van der Gaag, L.C. and Wessels, M.L. (1993). Selective evidence gathering for diag-
nostic belief networks, AISB Quarterly (86): 23–34.

Von Neumann, J. and Morgenstern, O. (1944). The Theory of Games and Economic
Behavior, John Wiley & Sons, New York.

Warner, H.R., Toronto, A.F., Veasy, L.G. and Stephenson, R. (1961). A mathematical
approach to medical diagnosis: application to congenital heart disease, Journal
of the American Medical Association 177: 177–183.

Weinstein, M.C. and Fineberg, H.V. (1980). Clinical Decision Analysis, Saunders,
Philadelphia, Pennsylvania.

Weiss, S.M., Kulikowski, C.A., Amarel, S. and Safir, A. (1978). A model-based
method for computer-aided medical decision making, Artificial Intelligence
11: 145–172.

White, C.C. and Scherer, W.T. (1994). Finite-memory suboptimal design for partially
observed Markov decision processes, Operations Research 42(3): 439–455.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics, John Wiley
& Sons, New York.

Wyatt, J.C. and Altman, D.G. (1995). Commentary: Prognostic models: clinically
useful of quickly forgotten?, British Medical Journal 311: 1539–1541.

Zadeh, L.A. (1965). Fuzzy sets, Information and Control 8: 338–353.

Zhang, N.L. (1998). Probabilistic inference in influence diagrams, Computational
Intelligence 14(4): 476–497.

Zhang, N.L. and Lee, S.S. (1998). Planning with partially observable Markov decision
processes: advances in exact solution method, Proceedings of the Fourteenth
Annual Conference on Uncertainty in Artificial Intelligence (UAI–98), Morgan
Kaufmann Publishers, Palo Alto, California, pp. 523–530.





Samenvatting

In de geneeskundige zorg voor individuele patiënten moet een arts voortdurend beslis-
singen nemen. Op basis van klachten en symptomen moet hij een hypothese vormen
over de mogelijke kwaal van de patiënt, hij moet vaststellen of nader diagnostisch
onderzoek nodig is om deze hypothese te bevestigen, hij moet besluiten of thera-
peutisch handelen vereist is, en beslissen waaruit het zorgtraject na een eventuele
ingreep moet bestaan. Al deze beslissingen zijn aan elkaar gerelateerd, en het geheel
kan daarom opgevat worden als een vorm van plannen. In de artificiële intelligentie
(AI) wordt plannen van oudsher bestudeerd voor situaties die een grote mate van
voorspelbaarheid kennen. Een belangrijke karakteristiek van medische beslissingen
is evenwel de rol van onzekerheid: de kwaal van de patiënt is niet altijd met zeker-
heid vast te stellen, en ook is de patiënts toekomstige ontwikkeling vaak niet goed
te voorspellen. Het nemen van beslissingen onder onzekerheid is het terrein van de
besliskunde; in dit proefschrift onderzoeken we het medisch beslisproces als een vorm
van plannen met besliskundige principes, oftewel besliskundig plannen.

Het is gebruikelijk om een onderscheid te maken tussen drie basisproblemen in de
kliniek: diagnose (wat is er mis?), therapieselectie (wat kan er aan gedaan worden?),
en prognose (wat zal er gebeuren?). In de literatuur worden deze drie problemen
vaak apart bestudeerd, en ook beslissingsondersteunende systemen concentreren zich
doorgaans op een van deze problemen. De achterliggende gedachte is dat het zorgpro-
ces een relatief statische procedure is waarin deze drie problemen na elkaar worden
opgelost. Deze problemen kennen echter een zodanige onderlinge samenhang dat zij
niet afzonderlijk kunnen worden opgelost; zij spelen allen voortdurend een rol in het
zorgproces. In ons onderzoek gaan we daarom uit van een dynamisch perspectief op
medische zorg, waarbij op gezette tijden interactie plaatsvindt tussen arts en patiënt,
en de verandering in de klinische toestand van de patiënt over de tijd centraal staat.



260 Samenvatting

Deze interactiemomenten strekken zich, afhankelijk van aard van de kwaal, uit over
een kortere of langere tijdspanne, en kennen in principe allen diagnostische, thera-
peutische, en prognostische aspecten. Op alle interactiemomenten moeten door de
arts een of meer beslissingen genomen worden, en vaak is ook de timing van interac-
tiemomenten van belang.

De theorie in het proefschrift wordt gëıllustreerd met voorbeelden uit het domein van
aangeboren hartafwijkingen. In het bijzonder wordt ingegaan op de behandeling van
patiënten met een ventrikelseptumdefekt (VSD), de meest voorkomende hartafwijking
bij pasgeborenen. Hoofdstuk 2 geeft een inleiding tot dit domein, en bespreekt de
klinische en pathofysiologische karakteristieken van het VSD. De aandoening is niet
acuut en kent bovendien in veel gevallen een voorspoedig natuurlijk verloop; het is
echter ook mogelijk dat ernstige pulmonale complicaties optreden. De behandeling
van een VSD patiënt is een proces dat zich doorgaans uitstrekt over meerdere jaren.
De centrale beslissing is of, en zo ja, wanneer, een chirurgische ingreep nodig is.
Daarnaast moet worden vastgesteld met welke frequentie de patiënt gezien wordt
door de kindercardioloog, en in hoeverre invasief diagnostisch onderzoek noodzakelijk
is.

In Hoofdstuk 3 worden de formele beginselen van de besliskunde besproken. De be-
sliskunde is gebaseerd op de kansrekening voor het redeneren met onzekerheid, en
op de utiliteitstheorie voor het maken van rationele keuzes bij beslissingen onder
onzekerheid. In het hoofdstuk wordt onder andere getoond hoe deze eenvoudige uit-
gangspunten de mogelijkheid bieden om allerlei verschillende soorten beslisproblemen
te analyseren.

De besliskunde ligt ook ten grondslag aan diverse representatieformalismen voor be-
slissingsondersteunende systemen. In Hoofdstuk 4 beschrijven en analyseren we drie
van dergelijke representatieformalismen: influence diagrams, Markov beslisprocessen,
en dynamische influence diagrams. Het influence diagram (ID) is een grafische repre-
sentatie die nauw verwant is aan het belief-network formalisme voor probabilistisch
redeneren. Influence diagrams worden een gekenmerkt door een grote mate van com-
pactheid, maar ondersteunen alleen beslisproblemen met een statisch karakter; zij
vormen daarom een zwakke implementatie van het concept besliskundig plannen. In
Markov beslisprocessen spelen tijd en toestandsdynamiek wel een grote rol: hierin
wordt het nemen van beslissingen geformaliseerd als het besturen van een stochas-
tisch Markovproces. Met name de partieel-observeerbare variant (partially-observable
Markov decision process, POMDP), waarin keuzes genomen moeten worden op ba-
sis van beperkte informatie, sluit goed aan bij de klinische situatie. Een nadeel van
POMDPs is evenwel dat zij een aantal sterke assumpties met betrekking tot het toe-
passingsdomein bevatten, en dat de representatie zeer snel groeit in de grootte van
het probleem. Het dynamische influence diagram is een uitbreiding van het influence
diagram met een expliciete notie van tijd en toestandsverandering. Het is mogelijk
om dit formalisme te combineren met POMDPs; deze combinatie van formalismen
vormt op dit moment een van de krachtigste besliskundige representaties.



261

De belangrijkste innovatieve bijdragen van het proefschrift worden geleverd in Hoofd-
stukken 5 en 6. In Hoofdstuk 5 verlaten we concrete representatievormen, en beschou-
wen het begrip ‘besliskundig plannen’ op een fundamenteler niveau. We ontwikkelen
een uitgebreid theoretisch raamwerk voor deze vorm van plannen met een minimum
aan restrictieve assumpties; dit stelt ons onder andere in staat om de eerder besproken
representatieformalismen beter te analyseren. Het uitgangspunt van het raamwerk
is, net als bij POMDPs, het perspectief van een planning agent die probeert een
dynamisch systeem te ‘besturen’ op basis van partiële informatie over de toestand
van dat systeem. De kern van het raamwerk wordt gevormd door een Boolse algebra
waarin de noties van systeemtoestand, gebeurtenis, observatie, beslissing, en plan
worden geformaliseerd. Hieruit wordt vervolgens het begrip beslisproces geconstru-
eerd; een beslisproces beschrijft alle probabilistische en informationele relaties tussen
de planning agent en het dynamische systeem over de tijd.

Het hoofdstuk bevat een uitgebreide theorie van voorwaardelijk plannen, waarbij een
plan wordt uitgedrukt als een verzameling (conditionele) beslisregels. Dergelijke re-
gels zijn eenvoudig te communiceren met specialisten op het toepassingsgebied, en
kunnen bijvoorbeeld worden gebruikt in klinische protocollen. Omgekeerd biedt de
theorie de mogelijkheid om een verzameling gegeven beslisregels (bijvoorbeeld gefor-
muleerd door een specialist of afkomstig uit een richtlijn of protocol), te controleren
op interne consistentie en samenhang, volledigheid, en performance met betrekking
tot een zekere klinische doelstelling. Daarnaast is het mogelijk om beslisregels te
formuleren op verschillende detailniveaus en met een variërend toepassingsbereik.

Hoofdstuk 6 bestaat uit twee delen. In het eerste deel bespreken we hoe een gegeven
klinisch toepassingsdomein geformaliseerd kan worden in het raamwerk, oftewel, hoe
we de verschillende aspecten van zo’n domein kunnen modelleren. Met behulp van
uitgebreide illustraties uit het VSD-domein, gaan we in op het modelleren van een
patiënts pathofysiologische conditie, van de klinische modaliteiten voor de behan-
delend arts, en van bevindingen zoals resultaten van diagnostiek. Daarnaast wordt
beschreven hoe we in het raamwerk het verwachte verloop van een patiënts conditie
over de tijd, en de invloed daarop van de diverse modaliteiten, kunnen formalise-
ren. Ook bespreken we de specificatie van klinische doelstellingen; we vergelijken op
doeltoestand gebaseerde specificaties (zoals vaak wordt gebruikt in AI-benaderingen
van plannen) met op levensverwachting gebaseerde specificaties (zoals vaak wordt
gebruikt in de klinische besliskunde).

Ten slotte keren we in het tweede deel van Hoofdstuk 6 terug naar het uitgangspunt
van ons onderzoek, het dynamisch perspectief op klinische zorg. Vanuit het raam-
werk voor besliskundig plannen bestuderen we de diagnostische, therapeutische, en
prognostische aspecten van afzonderlijke beslissingen, en onderzoeken we ook de re-
laties tussen deze aspecten. Het raamwerk biedt steeds een zekere mate vrijheid bij
het formaliseren van deze onderdelen van het klinisch redeneren; we laten zien hoe
een strikt besliskundige benadering verruild kan worden voor een meer heuristische
benadering, en wat het effect van zo’n keuze is.
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