
Three-Dimensional Model-Based

Analysis of Vascular and Cardiac

Images

Alejandro F. Frangi



Colophon

This book was typeset by the author using LATEX2". The main body of the text was

set using a 10-points Computer Modern Roman font. All graphics and images were

included formatted as Encapsulated PostScript (TMAdobe Systems Incorporated).

The �nal PostScript output was converted to Portable Document Format (PDF) and

transferred to �lm for printing.

Copyright c
 2001 by Alejandro F Frangi. All rights reserved. No part of this publi-

cation may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopy, recording, or any information storage and retrieval

system, without permission in writing from the author.

ISBN 90-393-2647-9

This thesis was printed with �nancial support from PHILIPS Medical Systems

Nederland B.V. (EasyVision Advanced Development).

Printed by Ponsen & Looijen, Wageningen, The Netherlands.



Three-Dimensional Model-Based

Analysis of Vascular and Cardiac

Images

Driedimensionale Modelgestuurde Analyse

van Vaat- en Hartbeelden

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht

op gezag van de Rector Magnificus, Prof. Dr. W. H. Gispen, ingevolge

het besluit van het College voor Promoties in het openbaar te

verdedigen op maandag 2 april 2001 des ochtends te 10:30 uur

door

Alejandro Federico Frangi

geboren op 15 november 1972 te La Plata, Argentini�e.



Promotor: Prof. Dr. Ir. M. A. Viergever

University Medical Center Utrecht

Co-promotor: Dr. W. J. Niessen

University Medical Center Utrecht

Reading Committee: Dr. Ir. F. A. Gerritsen

Philips Medical Systems, Best, The Netherlands

Prof. Dr. D. J. Hawkes

Kings' College London, London, United Kingdom

Prof. Dr. B. Hillen

University Medical Center, Utrecht, The Netherlands

Prof. Dr. Ir. J. J. W. Lagendijk

University Medical Center, Utrecht, The Netherlands

Prof. Dr. Ir. A. W. M. Smeulders

University of Amsterdam, Amsterdam, The Netherlands

The research described in this thesis was carried out at the Image Sciences Institute,

University Medical Center Utrecht, The Netherlands, under the auspices of ImagO,

the Utrecht Graduate School for Biomedical Image Sciences. The project was �-

nancially supported by The Netherlands Ministry of Economic A�airs, within the

framework of the Innovation Oriented Research Programme (IOP Beeldverwerking,

project number IBV97009), and sponsored by Philips Medical Systems, EasyVision

Advanced Development.



To Silvia

Endowed with intellect and free will, each man is responsible

for his self-ful�llment even as he is for his salvation. He is

helped, and sometimes hindered, by his teachers and those

around him; yet whatever be the outside in
uences exerted

on him, he is the chief architect of his own success or fail-

ure. Utilizing only his talent and will-power, each man can

grow in humanity, enhance his personal worth, and perfect

himself.

{ Paul VI, Populorum Progressio, 15.





Preface

T
his thesis summarizes the work carried out during my Ph.D. studies at the Image

Sciences Institute (ISI) of the University Medical Center Utrecht, The Nether-

lands. The ISI is a multidisciplinary group comprising both technical and medical

research communities. Both disciplines have left their imprint on this thesis. The

chapters report on the development and evaluation of model-based algorithms for

medical image analysis.

Writing a thesis is a titanic enterprise, the result of which re
ects by no means

only the author's e�orts and dedication. Perhaps more than anyone else, I am aware

of how much help I have received during the last three and a half years. First o�, I

would like to thank my promotor Prof. Max Viergever for o�ering me the opportunity

to do this research within his group, and for providing the required �nancial support.

I am greatly indebted to my daily supervisor Wiro Niessen. Wiro, you were the one

who explained to me how to carry out research, and you bore most of my inexperience

in all matters. Looking back I think we made an excellent team ;-).

This work was done in collaboration with Philips Medical Systems, Department of

EasyVision Advanced Development. I would like to thank Frans Gerritsen, Steven Lo-

bregt, Marcel Breeuwer and Bert Verdonck (Philips Medical Systems, Best), Cristian

Lorenz and J�urgen Weese (Philips Research, Hamburg), and Sherif Makram-Ebeid

(Philips Research, Paris) for their input and critiques at several stages of my work.

Reconciling the interests of a company with those of a university is a challenging

task. I believe that this collaboration has assisted in shaping my personality, and has

instilled a particular 
avor into my Ph.D.

A number of people have been involved in the completion of this thesis: Jean-

nette Bakker, Michael Egmont-Petersen, Otto Elgersma, Romhild Hoogeveen, Paul

Nederkoorn, Prof. Johan Reiber, Daniel Rueckert, Jolanda Sche�ers, Julia Schnabel,

Koen Vincken, Theo van Walsum and Onno Wink. Several people have provided me

with data sets or with interesting applications. Prof. Mali (Department of Radiology)

from the University Medical Center Utrecht provided me with the carotid data sets for

the evaluation in Chapter 4. The Department of Psychiatry of the University Medical

Center Utrecht kindly provided me with the caudate nucleus data sets and manual

segmentations for Chapter 6. The radius data sets and segmentations used in the

same chapter were provided by Maarten Hoogbergen. Finally, the cardiac functional

MR data used in Chapter 7 was kindly provided by Warren J. Manning, co-director

of the Cardiac MR Center at the Beth Israel Deaconess Medical Center in Boston,

US.

Others have helped me in solving the many technical and administrative prob-

lems in the materialization of this thesis. I should mention Gerard van Hoorn, for
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his patience and assistance with computers; Rene Mandl and Hugo Schnack, for pro-

viding assistance in many practical issues; Sandra Boeijink, for easing the economical

matters, and Margo Agterberg for her help in all kinds of secretarial work.

It is diÆcult not to mention all my colleagues and friends that have given support

and enthusiasm during the years of my Ph.D.: Arjan, Astrid, Bart, Bram, Carolien,

Caroline, Clemens, Chris B, Chris K, Erik and Greetje, Evert-Jan, Estia, Freek, Herke

Jan, Hugo, Ingrid, Josien, Manon and Edward, Marco, Marleen, Marloes, Miriam,

Nelly, Remko and Adri, Robert, Shirley, Stiliyan, Tanja, Theo and Paula, andWilbert.

In particular I would like to mention Thijs and Joes since we started our Ph.D. on

the same day and we have been through many things together. Thanks to both for

agreeing to be \paranimf" during the public defense of my thesis. Also particular

thanks to Kees, Wiro and Wilbert who helped with the Nederlandse Samenvatting.

I also would like to express my gratitude to the people I have lived with during my

stay in The Netherlands, Mr Theo and Mrs Johnny Matton, and Pisit Suwannachot.

Thanks for making me feel \at home" in The Netherlands. I would like to thank Mrs

Ann Kearns who took care of me as if I were her own grandson during my stay in

London. A special word of thanks goes to Spain where I have so many friends that

have helped me during the last few years. Their friendship has stimulated me to carry

on through diÆcult periods. In particular I would like to thank Pere Talavera and

Javier L�opez for their visits to The Netherlands and their support.

The work described in the last two chapters of this thesis was carried out partly in

London, UK, during a combined three-month stay at the Visual Information Process-

ing Group, Department of Computing, Imperial College, and at the Computational

Imaging Science Group at Guy's Hospital, King's College London. I am very thankful

to Daniel Rueckert and Julia Schnabel for their help and enthusiasm in the last phase

of my project. I would also like to express my gratitude to Prof. David Hawkes for

his interest in my work and for agreeing to be an external examiner for my thesis.

I am particularly indebted to my parents, Jorge and Ana, and to my siblings:

Pablo, Leandro, Andr�es, Mariano, Luciana and Santiago. You have supported me

during all these years of my undergraduate and graduate studies. Although far away,

you know that you are close in my heart. Very special thanks to my girlfriend. Silvia,

thankyou for always helping me to put things into the right perspective. Without your

support this thesis would not have been completed. It is impossible not to conclude

by giving thanks to God for all the good things I received during my Ph.D. studies.

Beyond the in
uences exerted by any human or environmental factor, only within

Him may we �nd the deepest explanation to fully comprehend the trajectory of our

lives.

Alejandro F. Frangi

London/Utrecht, December 2000
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If we begin with certainties, we shall end in doubts; but if we

begin with doubts, and are patient in them, we shall end in

certainties.

| F. Bacon, 1561-1626

Chapter 1

Introduction and Summary

V
olumetric medical imaging techniques, such as Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),

Single Photon Emission Computed Tomography (SPECT) and Ultrasound

imaging (US), provide a large amount of anatomical and functional information to

clinicians and researchers. As a consequence, the demand for processing tools to

optimally bene�t from the wealth of information available has increased dramatically,

which has made computerized medical image analysis a vivid �eld of research.

Over the years, medical image analysis has enlarged its area of applications. Typ-

ical problems tackled by this discipline have been, amongst others, image registration,

quanti�cation, visualization of volumetric data sets, rigid and non-rigid motion anal-

ysis, image segmentation and pattern recognition. More recently, the introduction

of computer-assisted techniques in surgery and treatment planning has inspired new

research areas, such as the development of image analysis tools for surgical planning

and simulation, and intra-operative navigation.

Initially, many medical image analysis tasks were tackled by low-level mathemat-

ical operators followed by some sort of grouping strategy. For instance, in the area

of image segmentation, techniques like thresholding, region growing, statistical pixel

clustering and relaxation labeling are amongst the most popular techniques. These

bottom-up approaches were meant to be fully automatic. Although fully automatic

procedures seem to be ideal from an operator's standpoint, their eÆcacy has been

limited to applications where the structures of interest have a good contrast with

respect to the background. The local nature of these techniques makes them vulner-

able to the imperfections of real clinical data where image quality is limited by safety

considerations, constrained time windows and patient movement.

In the last two decades many top-down approaches have emerged in the medical

image analysis literature. In these approaches the key concept is the introduction

of prior knowledge in the form of a model that aids the image analysis task. A

model, referring to a simpli�cation of the physical world, is often used in science to

reduce a problem to manageable proportions. However, in medical image analysis,

model-based strategies are usually more sophisticated than model-free approaches.

The use of generic or prior contextual knowledge is particularly attractive in medical
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applications where the structure (tissue or organ) to be analyzed is usually known

beforehand as well as the imaging modality and the acquisition protocol.

Several arguments can be provided in favor of model-based medical image analysis.

In some cases, the use of prior models arises by necessity. This is typically the case

in images of poor quality where the solution space of a given processing task has to

be constrained with prior knowledge in order to reach a sensible solution. Another

advantage is that a higher level of abstraction in solving an analysis task can be

achieved. A few examples will clarify this. A shape model may be expressed in terms

of a few parameters that directly o�er diagnostic information. Also a geometric model

can be used to support user-friendly interaction, e.g.manipulating curves or surfaces

rather than interacting with the data at voxel level. A spatio-temporal model can

provide a compact description of the motion in an image sequence which can be more

robust to outlier frames and can incorporate prior constraints like motion periodicity.

A further reason to opt for a model-based approach is computational complexity.

Usually, the use of a model reduces the number of degrees of freedom with respect

to a model-free analysis. This is typically the case in shape models where a suitable

geometric representation can reduce the number of required parameters to describe

shape.

Frequently, model-based approaches deal with prior shape knowledge, i.e.the prior

is a geometric model. However, there are other sources of prior knowledge that can

be considered. In medical image analysis, at least three types of modeling can be

distinguished:

1. Modeling image acquisition. There are many factors that contribute to the

image formation process. The underlying physical imaging principle for image

contrast, the sampling strategy, the presence of possible image artifacts, the

imaging device, and environmental noise all a�ect the eventual image data.

Modeling this information can aid in deciding how to interpret the image data

or in improving the accuracy of algorithms.

2. Modeling the subject being imaged. Prior knowledge concerning the anatomy,

function, physiology and/or pathology of the structure of interest can be incor-

porated in the procedure.

Anatomical knowledge is probably one of the most common types of prior knowl-

edge. Incorporating this knowledge allows one to apply constraints that help

to regularize the image analysis task. For instance, shape knowledge can be

introduced by selecting a suitable model parameterization or by performing a

statistical shape analysis leading to a description of the average shape and its

variability over a population of subjects.

Modeling the subject being imaged is not necessarily restricted to shape mod-

eling. Sometimes the task is to relate the information present in the image data

to a model describing the underlying (patho)physiology of the subject under

investigation.

3. Modeling the human observer. This type of knowledge models the e�ect of

user interaction in clinical decision making. In clinical practice, manual image
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analysis procedures sometimes follow written protocols in order to maximize the

reproducibility of the results. A careful study of the protocol can provide hints

on which steps can be automated.

Another related issue is eÆcient user interaction. Currently, in most image anal-

ysis approaches, the user is kept outside the loop of the algorithm. Interaction

is restricted, in many cases, to editing the results of a more or less automatic

algorithm. An eÆcient interaction mechanism should allow the user to guide

the process in an intuitive manner; ideally small user actions should have a large

impact on the �nal result thus avoiding fully manual editing. At the same time

the results of the interaction should be intuitive and reproducible.

This thesis explores the potential of using the above mentioned types of knowledge

in 3-D model-based image analysis with the focus on vascular and cardiac MRI.

Chapters 2 to 4 present di�erent aspects of a model-based technique for semi-

automated quanti�cation of linear vessel segments from 3-D Magnetic Resonance

Angiography (MRA).

Chapter 2 is concerned with a multiscale �lter for the enhancement of vessels in

2-D and 3-D angiograms. Here, the prior knowledge is expressed in the form of a

local discriminant function that enhances tubular structures. This discriminant is

based on a suitable combination of the eigenvalues of the Hessian matrix of an image.

In the presence of a tubular structure, the eigenvalues of the Hessian matrix satisfy

certain relationships, which are used to discriminate between 3-D tubular patterns

and patterns corresponding to plate- or blob-like structures. The developed �lter

has proven useful as a preprocessing algorithm to highlight the vasculature from

other surrounding structures. This can be particularly appropriate for visualization

purposes. However, as this preprocessing step tends to introduce vessel narrowing, a

more accurate method for quantitative analysis of vessel morphology was developed

in the next chapter.

Chapter 3 applies the �lter developed in Chapter 2 to determine the central vessel

axis in 3-D MRA images. This procedure is initialized using an eÆcient user interac-

tion technique that naturally incorporates the knowledge of the operator about the

vessel of interest. Also in this chapter, a linear vessel model is used to recover the

position of the vessel wall in order to carry out an accurate quantitative analysis of

vascular morphology. Prior knowledge is provided in two main forms: a cylindrical

model introduces a shape prior while prior knowledge on the image acquisition (type

of MRA technique) is used to de�ne an appropriate vessel boundary criterion. Pre-

liminary in vivo and in vitro results illustrate that both geometric and acquisition

related knowledge can e�ectively be incorporated into the framework of deformable

models.

In order to gain clinical acceptance, evaluation of medical image analysis algo-

rithms is an important prerequisite. Accordingly, in Chapter 4 an extensive in vitro

and in vivo evaluation of the algorithm introduced in Chapter 3 is described. In vitro

experiments have the advantage that true dimensions (e.g.vessel radii) are known

and can be objectively compared to those obtained by other methods. On the other

hand, in vivo experiments represent a realistic clinical test case. In order to evalu-

ate the results, measurements carried out with the model-based technique have been
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compared to measurements obtained by means of expert readers. The in vitro ex-

periments show that the proposed method can achieve similar accuracy to manual

quanti�cation of vessel dimensions in the three major MR angiographic techniques

(time-of-
ight, phase contrast, and contrast-enhanced MRA). However, the bound-

ary criterion used for phase contrast angiography can be inaccurate in regions with

large 
ow variations (stenotic regions). The preliminary in vivo experiments carried

out using time-of-
ight MRA in Chapter 3 indicated that in highly stenotic vessels

the presence of 
ow artifacts can hamper the applicability of the model-based tech-

nique. Chapter 4 provides results on state-of-the-art contrast-enhanced MRA of the

carotid arteries where the model-based technique can provide estimates of the degree

of stenosis with an accuracy similar to that of manual operators. Additionally, where

this technique can be applied, a number of 3-D morphological parameters are readily

available.

Chapters 5 to 7 change the focus to cardiac image analysis, an area where the use

of model knowledge has been extensively explored.

Spatio-temporal cardiac images are currently acquired using various imaging mo-

dalities like CT, MRI and US. Images are usually acquired in a small temporal win-

dow which limits the achievable image quality. Moreover, a typical functional cardiac

study involves a large amount of (4-D) data which requires laborious manual post-

processing before the relevant information is obtained. Over the last two decades, a

rich bibliography has appeared in the area of 3-D cardiac modeling but no critical

review was available. Chapter 5 presents an extensive survey, a categorization and a

critical review of the �eld. The most important observation from this review is that

although many algorithms to model and recover cardiac shape and motion have been

presented in the literature, none of them has been able to completely achieve these

goals in an automatic fashion. From this survey it can also be noted that most of

the current approaches to cardiac modeling use standard geometrical primitives like

superquadrics, B-splines or polygonal meshes to recover the shape of the ventricles

of the heart. Shape recovery is usually achieved by solving an optimization problem

that balances image-guided terms (e.g.intensity- or gradient-based information) with

shape regularization terms that limit the 
exibility of the selected geometrical repre-

sentation. Whereas these shape constraints are usually rather general, a promising

methodology to limit the geometrical representations to plausible cardiac shapes are

statistical shape models. These models can describe the average shape and its vari-

ability over a population of sample shapes. However, this approach has not been used

for 3-D cardiac modeling. One possible explanation for this is the inherent diÆculty

in building 3-D statistical shape models which requires the extraction of a set of cor-

responding 3-D landmarks in a set of sample shapes. This problem is the main topic

addressed in the last two chapters.

Chapter 6 introduces a new algorithm to build 3-D statistical shape models from a

set of sample shapes. Existing approaches �rst landmark all shapes, and subsequently

determine landmark correspondences. In our approach, all shapes in the training set

inherit the landmarks from an atlas via volumetric elastic registration. This approach

presents some advantages over previously published methods: it can handle multiple-

part structures and requires less restrictive assumptions on the structure's topology.
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The applicability of the method has been illustrated by the construction of statistical

shape models of two anatomical structures: the radius, a bone of the wrist, and the

caudate nucleus, a deep structure of the brain.

In Chapter 7, the method as introduced in Chapter 6 is extended to build statis-

tical shape models from cardiac MRI data, containing both the endo- and epicardial

wall of the left ventricle and the endocardial wall of the right ventricle. Since anatom-

ical variability of the heart is quite large, the volumetric elastic registration algorithm

had to be modi�ed; a hierarchical approach was used to determine the deformation

�eld in a coarse-to-�ne manner. Additionally, whereas maximization of the normal-

ized mutual information was the registration measure employed in Chapter 6, a new

similarity measure coined label consistency has been introduced in this chapter. This

new measure is more suitable for images containing multiple objects. The combination

of the hierarchical representation of the deformation �eld and the new registration

measure could successfully cope with the large shape variability present among the

cardiac chambers of several subjects. The results presented in Chapter 7 pave the

way for 3-D cardiac MR image segmentation using statistical shape models.





A journey of a thousand miles begins with a single step.

| Confucius, 551-479 B.C.

Chapter 2

Multiscale vessel enhancement

�ltering

Abstract | The multiscale second order local structure of an image (Hessian) is

examined with the purpose of developing a vessel enhancement �lter. A measure

of vessel-likeliness is obtained on the basis of all eigenvalues of the Hessian. This

measure is tested on two-dimensional Digital Subtraction Angiography (DSA) and

three-dimensional aortoiliac and cerebral Magnetic Resonance Angiographic (MRA)

data. Its clinical utility is shown by the simultaneous noise and background sup-

pression and vessel enhancement in maximum intensity projections and volumetric

displays.

Adapted from: A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever (1998).
Multiscale vessel enhancement �ltering. Medical Image Computing & Computer Assisted
Interventions, MICCAI98 (Boston, USA), vol 1496 of Lecture Notes in Computer Science,
pp. 130{7.

2.1 Introduction

T
he development of accurate visualization and quanti�cation techniques for

the human vasculature is an important prerequisite for a number of clinical

procedures. Grading of stenoses is important in the diagnosis of the severity of

vascular disease since it determines the treatment therapy. Interventional procedures

such as the placement of a prosthesis in order to prevent aneurysm rupture or a bypass

operation require an accurate insight into the three dimensional vessel architecture.

Both two-dimensional projection techniques, such as Digital Subtraction An-

giography (DSA), and three-dimensional modalities as X-ray rotational angiography,

Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography

(MRA) are employed in clinical practice. Although CTA and MRA provide volu-

metric data, the common way of interpreting these images is by using a maximum

intensity projection.

The main drawbacks of maximum intensity projections are the overlap of non-

vascular structures and the fact that small vessels with low contrast are hardly visible.

This has been a main limitation in time-of-
ight MRA [84]. In contrast enhanced
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MRA [243] the delineation of these vessels is considerably improved, but other organs

can be still projected over the arteries.

The purpose of this chapter is to present a method to enhance vessel structures

with the eventual goal of vessel segmentation. A vessel enhancement procedure as a

preprocessing step for maximum intensity projection display will improve small vessel

delineation and reduce organ overprojection. Segmentation of the vascular tree will

facilitate volumetric display and will enable quantitative measurements of vascular

morphology.

There are several approaches to vessel enhancement. Some of them work at a �xed

scale and use (nonlinear) combinations of �nite di�erence operators applied in a set of

orientations [50, 83, 84]. Orkisz et al. [221] presents a method that applies a median

�lter in the direction of the vessel. All these methods have shown problems to detect

vessels over a large size range since they perform a �xed scale analysis. Moreover,

to handle voxel anisotropy, these methods usually need to resample the dataset or

to resource to 2 1
2
D processing [221]. Multi-scale approaches to vessel enhancement

include \cores" [13], steerable �lters [162,163], and assessment of local orientation via

eigenvalue analysis of the Hessian matrix [184,260].

The multiscale approach we discuss in this chapter is inspired by the work of

Sato et al. [260] and Lorenz et al. [184] who use the eigenvalues of the Hessian to

determine locally the likelihood that a vessel is present. We modify their approach

by considering all eigenvalues and giving the vessel likeliness measure an intuitive,

geometric interpretation. Examples on medical image data are included.

2.2 Method

In our approach we conceive vessel enhancement as a �ltering process that searches

for geometrical structures which can be regarded as tubular. Since vessels appear in

di�erent sizes it is important to introduce a measurement scale which varies within a

certain range.

A common approach to analyze the local behavior of an image, I(x), is to consider
its Taylor expansion in the neighborhood of a point xo,

I(xo + Æxo; �) � I(xo; �) + ÆxT
o
ro;� + ÆxT

o
Ho;�Æxo (2.1)

This expansion approximates the structure of the image up to second order. ro;�

and Ho;� are the gradient vector and Hessian matrix of the image computed in xo at

scale �. To calculate these di�erential operators of I(x) in a well-posed fashion we

use concepts of linear scale-space theory [102,160]. In this framework di�erentiation

is de�ned as a convolution with derivatives of Gaussians:

@

@x
I(x; �) = �
I(x) � @

@x
G(x; �) (2.2)

where the D-dimensional Gaussian is de�ned as:

G(x; �) =
1

(2��2)D=2
e�

kxk2

2�2 (2.3)
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The parameter 
 was introduced by Lindeberg [181] to de�ne a family of normalized

derivatives. This normalization is particularly important for a fair comparison of the

response of di�erential operators at multiple scales. When no scale is preferred 

should be set to unity.

Analyzing the second order information (Hessian) has an intuitive justi�cation in

the context of vessel detection. The second derivative of a Gaussian kernel at scale

� generates a probe kernel that measures the contrast between the regions inside

and outside the range (-�,�) in the direction of the derivative (Figure 2.1(a)). This

approach is the one followed in this work.
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(a) (b)

Figure 2.1. a) The second order derivative of a Gaussian kernel probes in-

side/outside contrast of the range (��,�). In this example � = 1. b) The second

order ellipsoid describes the local principal directions of curvature.

The third term in Equation (2.1) gives the second order directional derivative,

ÆxT
o
Ho;�Æxo = (

@

@Æxo
)(

@

@Æxo
)I(xo; �) (2.4)

The idea behind eigenvalue analysis of the Hessian is to extract the principal directions

in which the local second order structure of the image can be decomposed. Since this

directly gives the direction of smallest curvature (along the vessel) application of sev-

eral �lters in multiple orientations is avoided. This latter approach is computationally

more expensive and requires a discretization of the orientation space.

Let ��;k denote the eigenvalue corresponding to the k-th normalized eigenvector

û�;k of the Hessian Ho;� , all computed at scale �. From the de�nition of eigenvalues:

Ho;�û�;k = ��;kû�;k (2.5)

and it follows that

ûT�;kHo;�û�;k = ��;k (2.6)
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By analyzing Equations (2.4)-(2.6) a nice geometric interpretation arises. The eigen-

value decomposition extracts three orthonormal directions which are invariant up to

a scaling factor when mapped by the Hessian matrix. In particular, a spherical neigh-

borhood centered at xo with radius 1, Nxo
, will be mapped by Ho onto an ellipsoid

whose axes are along the directions given by the eigenvectors of the Hessian and the

corresponding axis' semi-lengths are the magnitudes of the respective eigenvalues.

This ellipsoid locally describes the second order structure of the image (thus we

coin it second order ellipsoid {Figure 2.1(b)-) and can be used as an intuitive construct

for the design of geometric similarity measures.

In the remainder of the chapter �k will be the eigenvalue with the k-th smallest

magnitude (j�1j � j�2j � j�3j). Under this assumption Table 2.1 summarizes the

relations that must hold between the eigenvalues of the Hessian for the detection of

di�erent structures. In particular, a pixel belonging to a vessel region will be signaled

by �1 being small (ideally zero), and �2 and �3 of a large magnitude and equal

sign (the sign is an indicator of brightness/darkness). The respective eigenvectors

point out singular directions: û1 indicates the direction along the vessel (minimum

intensity variation) and û2 and û3 form a base for the orthogonal plane. We are

interested in vessel likeliness measures suited for medical images. In MRA and CTA,

vessels emerge as bright tubular structures in a darker environment. This a priori

information related to the imaging modality can be used as a consistency check to

discard structures present in the dataset with a polarity di�erent than the one sought.

Accordingly, we shall look for structures whose �2 and �3 are both simultaneously

negative.

To summarize, for an ideal tubular structure in a 3-D image:

j�1j � 0 (2.7)

j�1j � j�2j (2.8)

�2 � �3 (2.9)

and the sign of �2 and �3 indicate its polarity.
We emphasize that all three eigenvalues play an important role in the discrim-

ination of the local orientation pattern. This will yield expressions that di�er from

2-D 3-D orientation pattern

�1 �2 �1 �2 �3

N N N N N noisy, no preferred direction

L L H- plate-like structure (bright)

L L H+ plate-like structure (dark)

L H- L H- H- tubular structure (bright)

L H+ L H+ H+ tubular structure (dark)

H- H- H- H- H- blob-like structure (bright)

H+ H+ H+ H+ H+ blob-like structure (dark)

Table 2.1. Possible patterns in 2-D and 3-D, depending on the value of the eigen-

values �k (H=high, L=low, N=noisy, usually small, +/- indicate the sign of the

eigenvalue). The eigenvalues are ordered: j�1j � j�2j � j�3j.
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the similarity measures proposed by Sato et al. [260] and Lorenz et al. [184] who

only make use of two eigenvalues in their respective 3-D line �lters. In particular,

Sato's approach [260] uses a di�erent eigenvalue ordering scheme: they are sorted in

increasing value (not magnitude), and only the two largest are considered in the line

�lter. This implies that dark and bright lines are not treated in a similar manner.

Our dissimilarity measure takes into account two geometric ratios based on the

second order ellipsoid. The �rst ratio accounts for the deviation from a blob-like

structure but cannot distinguish between a line- and a plate-like pattern:

RB =
Volume=(4�=3)

(Largest Cross-Section Area=�)3=2
=

j�1jp
j�2�3j

(2.10)

This ratio attains its maximum for a blob-like structure and is zero whenever �1 � 0,

or �1 and �2 tend to vanish (notice that �1=�2 remains bounded even when the second
eigenvalue is very small since its magnitude is always larger than the �rst).

The second ratio refers to the largest area cross-section of the ellipsoid (in the

plane orthogonal to û1) and accounts for the aspect ratio of the two largest second

order derivatives. This ratio is essential for distinguishing between plate-like and

line-like structures since only in the latter case it will be zero,

RA =
(Largest Cross-Section Area)=�

(Largest Axis Semi-length)
2 =

j�2j
j�3j (2.11)

The two geometric ratios we introduced so far are grey-level invariant (i.e., they

remain constant under intensity re-scalings). This ensures that our measures only

capture the geometric information of the image. However, in MRA and CTA im-

ages there is additional knowledge available: vessel structures are brighter than the

background and occupy a (relatively) small volume of the whole dataset. If this infor-

mation is not incorporated background pixels would produce an unpredictable �lter

response due to random noise 
uctuations. However, a distinguishing property of

background pixels is that the magnitude of the derivatives (and thus the eigenvalues)

is small, at least for typical signal-to-noise ratios present in acquired data sets. To

quantify this we propose the use of the norm of the Hessian. We use the Frobenius

matrix norm since it has a simple expression in terms of the eigenvalues when the

matrix is real and symmetric. Hence we de�ne the following measure of \second order

structureness",

S = kHkF =

sX
j�D

�2
j

(2.12)

where D is the dimension of the image.

This measure will be low in the background where no structure is present and

the eigenvalues are small owing to the lack of contrast. In regions with high contrast

compared to the background, the norm will become larger since at least one of the

eigenvalues will be large. We therefore propose the following combination of the
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components to de�ne a vessel likeliness function,

Vo(s) =
(
0 if �2 > 0 or �3 > 0;

(1� exp
�
�RA

2

2�2

�
) exp

�
�RB

2

2�2

�
(1� exp

�
� S

2

2c2

�
)

(2.13)

where �, � and c are thresholds which control the sensitivity of the line �lter to the

measures RA, RB and S. The idea behind this expression is to map the features

in Equations (2.10)-(2.12) into probability-like estimates of vessel likeliness according

to di�erent criteria. We combine the di�erent criteria using their product to ensure

that the response of the �lter is maximal only if all three criteria are ful�lled. In

all the results presented in this work � and � were �xed to 0.5. The value of the

threshold c depends on the grey-scale range of the image and a quarter of the value

of the maximum intensity at the vessels of interest has proven to work in most cases.

However, the results are fairly insensitive to this threshold and, for a standard imaging

protocol, it can be �xed.

The vessel likeliness measure in Equation (2.13) is analyzed at di�erent scales, �.
The response of the line �lter will be maximum at a scale that approximately matches

the size of the vessel to detect. We integrate the vessel likeliness measure provided

by the �lter response at di�erent scales to obtain a �nal estimate of vessel likeliness:

Vo(
) = max
�min����max

Vo(�; 
) (2.14)

where �min and �max are the maximum and minimum scales at which relevant struc-

tures are expected to be found. They can be chosen so that they will cover the range

of vessel widths.

For 2-D images we propose the following vessel likeliness measure which follows

from the same reasoning as in 3-D,

Vo(s) =
(
0 if �2 > 0;

exp
�
�RB

2

2�2

�
(1� exp

�
� S

2

2c2

�
)

(2.15)

Here, RB = �1=�2 is the blobness measure in 2-D and accounts for the eccentricity

of the second order ellipse.

Equations (2.13) and (2.15) are given for bright curvilinear structures (MRA and

CTA). For dark objects (as in DSA) the conditions (or the images) should be reversed.

2.3 Results

2.3.1 2-D Digital Substraction Angiography images

In this section we show some results of vessel enhancement �ltering in 2-D DSA im-

ages. These images are obtained by acquiring an X-ray projection when intra-arterial

contrast material is injected. A reference image is �rst acquired without contrast,

which is subtracted from the image with contrast for background suppression. If no

motion artifacts are present the subtracted images are of such good quality, that fur-

ther processing is not desirable. We therefore only apply our enhancement �lter to
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(a) (b) (c) (d)

Figure 2.2. a) Part of a contrast X-ray image of the peripheral vasculature. b) Cal-

culated vessel likeliness of the left image. c) Calculated vessel likeliness after inver-

sion of the grey-scale map. d) Image obtained by subtracting reference (without

contrast) image from left image; shown here to facilitate visual inspection of the

results of the �ltering procedure.

the contrast images directly, and use the subtracted images to be able to judge the

performance of the vessel enhancement �lter.

In Figure 2.2, a part of an image of the peripheral vasculature is shown, where

performance of subtraction is usually quite good. Although contrast is not very high

in the contrast images, the method detects most vessels, over a large size range.

Notice however that some artifacts where introduced in regions where background


uctuations have line patterns.

2.3.2 3-D Magnetic Resonance Angiography images

We have applied our method to three-dimensional aortoiliac and cerebral MRA data-

sets, to show the potential of enhancement �ltering to improve visualization of the

vasculature. In Figure 2.3 (left) we show a maximum intensity projection which is

applied directly to the grey-scale data of an MRA dataset of the aortoiliac arteries.

By determining the vessel likeliness of the MRA image at multiple scales we obtain

separate images depicting vessels of various widths. This is shown in Figure 2.4. Here

we plotted maximum intensity projections of the vessel likeliness at four scales. The

rightmost image shows how we can combine these multiscale measurements by using a

scale selection procedure (recall that we work with normalized derivatives), eventually
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(a) (b) (c)

Figure 2.3. a) Original maximum intensity projection of a contrast (Gd-DTPA)

MRA image. b) Maximum intensity projection of vessel enhanced image where good

background suppression has been achieved. c) Closest vessel projection, facilitated

by the �lter's ability to suppress background structures.

yielding a display of both the small and large vessels. Since the enhancement �ltering

does not give a high output at other structures, additional information can more easily

be visualized. In the middle frame of Figure 2.3 we show the maximum intensity

projection which is obtained after vessel enhancement �ltering. In the right frame a

closest vessel projection is shown. In this case, it is possible to determine the order in

depth of various vascular structures. The excellent noise and background suppression

provided by the vessel likeliness measure greatly facilitates the use of a closest vessel

projection. In order to compare the results of the vessel enhancement procedure with

renderings obtained using a threshold on the original image, we show both renderings

in Figure 2.5. We see that the original image has more background disturbance.

However, the vessels tend to be narrower in the vessel enhancement image compared

to the original dataset. This is due to the fact that at the boundaries of vessels the

vessel likeliness is not very high. The vessel enhancement �ltering should be used in a

subsequent segmentation procedure for obtaining quantitative measurements on the

vasculature.

As a last example of the utility of vessel enhancement �ltering we applied the

procedure to the MRA dataset of the cerebral vasculature of Figure 2.6(a). In order

to show the vessel enhancement with accompanying noise suppression, we both scaled

the original MRA dataset and the vessel likeliness measure between 0 and 1, and

window-leveled the image between 0 and 0.1. Figure 2.6(b) shows that the vessel
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(a) (b) (c) (d) (e)

Figure 2.4. a-d) Vessel likeliness obtained at increasing four increasing scales (� =

1, 2, 4 and 8 pixels). e) Result after scale selection.

enhancement procedure keeps the vascular structure while removing noise.

2.4 Discussion

We have presented a method for vessel enhancement �ltering which is based on local

structure. To this end we examined the local second order ellipsoid. Since we use

information about all axes of the second order ellipsoid (all eigenvalues), the approach

is a generalization of other existing approaches on the use of second order information

for line detection. Recently, Sato et al. [260] and Lorenz et al. [184] used eigenvalue

analysis of the Hessian for vessel enhancement, but they did not use all eigenvalues

simultaneously. We have shown the excellent noise and background suppression in a

two clinical imaging modalities, underlying the potential of the approach.

It is important to realize that we do not obtain a segmentation of the vasculature.

Only if an accurate model of the typical luminance in the perpendicular direction of

the vessel is known, an estimate of the size of the vessel can be made based on the

response of the �lter over scales. However this is often not the case. For example,

in MRI it is common to reduce the reconstruction time by restricting the number

of lines in k-space (scan percentage) which accounts for a reduction of the e�ective

Fourier spectrum of the measured signal. This technique can lead to ringing artifacts

(overshoot) in high transition steps (for example, in vessels boundaries) thus violating

simpli�ed pro�le models (Gaussian/bar-like [163,184]). The vessel likeliness measure

can serve as a preprocessing step for visualization and segmentation of this type of

images.
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(a) (b)

Figure 2.5. a) Volume rendering based on threshold of the original dataset. b) Vol-

ume rendering based on threshold of the vessel likeliness image.

(a) (b)

Figure 2.6. a) Original maximum intensity projection of a contrast-enhanced MRA

dataset of the cerebral vasculature. The image is window-leveled to ten percent of

the grey-value range to visualize the noise. b) Maximum intensity projection of the

vessel likeliness measure with the same window-level settings. Noise is suppressed

while largely maintaining the vasculature.



People seldom improve when they have no other model

but themselves to copy after.

| O. Goldsmith, 1730-1774

Chapter 3

Model-based quantitation of 3-D

Magnetic Resonance angiographic

images

Abstract | Quanti�cation of the degree of stenosis or vessel dimensions is impor-

tant for diagnosis of vascular diseases and planning vascular interventions. Although

diagnosis from 3-D Magnetic Resonance Angiograms (MRA) is mainly performed

on 2-D maximum intensity projections, automated quanti�cation of vascular seg-

ments directly from the 3-D dataset is desirable to provide accurate and objective

measurements of the 3-D anatomy.

A model-based method for quantitative 3-D MRA is proposed. Linear vessel seg-

ments are modeled with a central vessel axis curve coupled to a vessel wall surface.

A novel image feature to guide the deformation of the central vessel axis is intro-

duced. Subsequently, concepts of deformable models are combined with knowledge

of the physics of the acquisition technique to accurately segment the vessel wall and

compute the vessel diameter and other geometrical properties.

The method is illustrated and validated on a carotid bifurcation phantom, with

ground truth and medical experts as comparisons. Also, results on 3-D Time-Of-

Flight (TOF) MRA images of the carotids are shown. The approach is a promising

technique to assess several geometrical vascular parameters, directly on the source

3-D images, providing an objective mechanism for stenosis grading.

Adapted from: A.F. Frangi, W.J. Niessen, R.M. Hoogeveen, Th. van Walsum, and
M.A. Viergever (1999). Model-based quantitation of 3D magnetic resonance angiographic
images. IEEE Traps Med Imaging, 18(10):946{56, October 1999.

3.1 Introduction

A
ccurate determination of vessel width is important in grading vascular steno-

sis. Stenosis quanti�cation in the carotid arteries, for instance, determines the

choice of stroke treatment. Studies have revealed that a patient with a severe

(> 70%) symptomatic stenosis in the carotids should be operated while patients with

stenoses smaller than 30% should not undergo surgical treatment [92,216]. The ben-

e�t of surgery in cases of stenosis with severity between 30% and 70% is still under
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investigation [91, 92]. These �ndings support the relevance of accurate measurement

techniques of vascular segments.

Magnetic Resonance Angiography (MRA) is a technique which can supply 3-D in-

formation of the vasculature. Although evaluation by radiologists is mainly performed

on 2-D Maximum Intensity Projections (MIP) [53], it is known that these lead to ves-

sel width underestimation and decreased Contrast-to-Noise Ratio (CNR) [7, 53, 263].

In order to improve grading of stenoses it would be desirable to obtain quantitative

morphological information directly from the original 3-D images, and not only from

their projections [6,67,134]. To this end, accurate 3-D segmentation tools are required.

Vessel enhancement and segmentation of 3-D images has been investigated by

many researchers (Table 3.1). A number of approaches analyze the images at a single

scale [49, 83, 84, 171,221,282,314], which limits their applicability to images in which

the range of vessel widths is small. This is probably the reason of the observation

made [49,83,84] that small vessels are better enhanced than large vessels. A number

of papers have acknowledged the importance of multi-scale algorithms that can cope

with vessel width variability [13, 106,163,167,168,184,239,260,261,286].

The majority of approaches for vessel enhancement and segmentation [13, 106,

163, 167, 168, 184, 261] rely on purely morphological criteria.1 This has the advan-

tage that the method is applicable to a wide variety of imaging modalities. How-

ever, the physics of the image formation in
uences the eventual depiction of the

vessels and not taking this into account may lead to important structural measure-

ment errors. Consider, for instance, the multi-scale approaches that estimate ves-

sel width on the basis of the scale of maximum response of some di�erential op-

erator [13, 106, 163, 167, 168, 184, 239, 260, 261] as suggested in the seminal work on

scale selection by Lindeberg [182]. In these approaches, a number of assumptions

are made: the vessel is circular with radius equal to some empirical function of

scale [13, 167, 168, 184, 260, 261]. This leads to the fact that the discretization of

the scale parameter a priori determines the possible vessel diameters. This is spe-

cially problematic when one considers that the number of scales is in general small to

reduce the computational burden involved in multi-scale methods. However, multi-

scale vessel enhancement methods have proven to be very useful for reconstructing

the vessel tree in order to provide a 3-D visualization. This can be highly valuable for

surgical planning where the relative location of the vessels, rather than their precise

width, is the important issue. However accurate quanti�cation in these approaches is

limited since the underlying assumptions are often not valid, especially in patholog-

ical conditions [90, 227]. The fact that very few quantitative evaluation results have

been reported in the literature reveals, to some extent, the diÆculty of obtaining ac-

curate measurements with purely geometry guided algorithms. To our knowledge, a

few schemes have been proposed for automated quantitative angiography which focus

on quantitative coronary angiography (QCA) [158,250] from 2-D X-ray DSA images.

Little work has been reported, however, on automated quantitative MR angiography

directly from the 3-D data. So, whereas the area of vessel enhancement and seg-

mentation has received considerable attention, there is still progress to be made in

1Summers et al. [286], however, used phase-contrast MR images and, therefore, could also in-

corporate 
ow directionality information. Note that in this chapter our main concern is to obtain

accurate vessel dimensions and not 
ow information.
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Table 3.1. Summary of literature on vessel enhancement and segmentation.

Reference D
Multi

scale
Method Application

Aylward [13] 3-D Y

segmentation of tubular objects

based on medial representation and

cores [238]

Generic

(MRA and CT)

Chen [50] 3-D N
analysis of the dispersion range of

directional �lters
(TOF) MRA

Du [83] 3-D N
non linear combination of second

order �nite di�erence �lter
TOF MRA

Du [84] 3-D N
long range correlation �lter based

on local orientation coherence
TOF MRA

Frangi [106] 2/3-D Y eigenanalysis of Hessian matrix
Generic

(MRA and DSA)

Koller [163] 2/3-D Y
non linear combination of linear �l-

ters

Generic

(MRA, aerial imagery)

Krissian [167] 3-D Y

�ltering algorithm based on eigen-

analysis of the Hessian matrix and

integration of the gradient �eld

3-D X-ray angiography

Lorenz [184] 2/3-D Y eigenanalysis of Hessian matrix
Generic

(MRA and DSA)

Orkisz [221] 2 1
2
-D N non linear anisotropic �lter CE MRA

Poli [239] 2-D Y
�lters steered to vessel width and

orientation
coronary angiograms

Sato [260,261] 3-D Y eigenanalysis of Hessian matrix
Generic

(MRA and CT)

Summers [286] 3-D Y
recursive decision making based on

occupancy rules and 
ow features
PC MRA

Wilson [314] 3-D N model based statistical classi�er TOF MRA
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automated quantitative 3-D MRA.

In this chapter we suggest a novel scheme for quantitative vessel analysis from

MRA that uses knowledge of the image formation process to accurately de�ne vessel

boundaries. The procedure operates on the 3-D source images (not their projections)

using a 3-D deformable model. The model consists of a representation of a central

vessel axis coupled to a vessel wall surface. The use of a B-spline representation for

the curve and surface models enables the use of already existing, powerful interac-

tion mechanisms inherited from Computer Assisted Design (CAD). For initialization,

which is an important step in segmentation schemes based on deformable models,

we introduce a technique based on an iso-surface rendering of the vasculature which

allows for intuitive and eÆcient interaction in a 3-D setting.

The chapter is organized as follows. In Section 3.2 we introduce a model-based

approach to estimate the central axis and width of a vessel. Section 3.3 discusses some

implementation details. Section 3.4 describes the materials and methods involved in

the validation of our algorithm with phantom experiments and clinical MRA datasets.

After the results of the validation are presented in Section 3.5, the chapter is concluded

with a discussion (Section 3.6).

3.2 Model-based vessel segmentation

In this section, a two-step vessel segmentation procedure is proposed. First, a repre-

sentation of the central vessel axis is obtained. This axis is subsequently used as a

reference for extracting the boundaries of the vessel.

3.2.1 Central vessel axis model

The central vessel axis, C(v), is modeled using a B-spline curve of degree n with s+1

control points. This representation enforces the lumen line to be connected

C(v) =

sX
i=0

Nin(v)Pi (3.1)

Here Pi are the control points, Nin(v) is the i-th B-spline basis function of order

n [97] and v 2 [0; 1]. The model (sometimes referred to as snake) deforms towards

the center of the vessel by minimizing an energy functional, EC , containing terms

associated with the shape of the spline and the image contents [149,292]

EC = ECexternal + 
Cs ECstretching + 
Cb ECbending (3.2)
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where

ECstretching =
1

`

Z 1

0

kCv(v)k2 kCv(v)k dv (3.3)

ECbending =
1

`

Z 1

0

kCvv(v)k2 kCv(v)k dv (3.4)

` =

Z 1

0

kCv(v)k dv (3.5)

provide the internal constraints over the �rst and second order parametric deriva-

tives. If we consider the central vessel axis as a physical string, these constraints

are associated with simple approximations [313] to its stretch and bending energies

respectively. The constants 
C
s
and 
C

b
regulate the contribution of the internal forces

with respect to that of the external (or image driven) force. In the physical analogy,

the optimization process is interpreted as the evolution of the model towards a state

of minimal energy.

The external energy is used to attract the curve towards points which have a high

likelihood of lying along the central vessel axis. For this purpose, a new �lter has been

developed in Chapter 2 that has the following properties: i) �lters out non line-like

structures, ii) is maximum at the center of the vessel, and iii) is sensitive to vessels

of di�erent sizes.

The �lter computes the eigenvalues and eigenvectors of the Hessian matrix at

multiple scales, �. The eigenvalues are then combined into a discriminant function

that has maximum response for structures behaving as a tube at scale �.

We shall now formalize these ideas. Let H�(x) be the Hessian matrix at a given

voxel x

H�(x) =

24Ixx(x) Ixy(x) Ixz(x)
Iyx(x) Iyy(x) Iyz(x)
Izx(x) Izy(x) Izz(x)

35 (3.6)

where Iuv(x) denote regularized derivatives of the image I(x), which are obtained
by convolving the image with the derivatives of the Gaussian kernel at scale � [102,160]

Iuv(x) , �2
@2G(x; �)

@u@v
� I(x) (3.7)

G(x; �) ,
1p

(2��2)3
e�

kxk2

2�2 (3.8)

In the remainder of the chapter �k will denote the eigenvalue with the k-th smallest
magnitude (j�1j � j�2j � j�3j). Under this assumption Table 3.2 summarizes the

relations that must hold between the eigenvalues of the Hessian for the detection of

di�erent structures. In particular, a pixel belonging to a vessel region will be signaled

by �1 being small (ideally zero), and �2 and �3 being large and of equal sign (the sign
is an indicator of brightness/darkness). The respective eigenvectors correspond to



22 3 Model-based quantitation of 3-D MRA images

Table 3.2. Possible patterns in 3-D based on Hessian eigenanalysis @

�1 �2 �3 orientation pattern

N N N noisy, no preferred direction

L L H{ plate-like structure (bright)

L L H+ plate-like structure (dark)

L H{ H{ tubular structure (bright)

L H+ H+ tubular structure (dark)

H{ H{ H{ blob-like structure (bright)

H+ H+ H+ blob-like structure (dark)

@ H=high, L=low, N=noisy and usually small, � indicates the sign of the eigenvalue.

Note that j�1j � j�2j � j�3j.

particular directions: û1 indicates the direction along the vessel (minimum intensity

variation) and û2 and û3 form a basis for the orthogonal plane.

Based on these observations we developed a discriminant function in Chapter 2

that enhances tubular structures while reducing the e�ect of other morphologies. The

discriminant function can be expressed as

V(x; �) ,
(
0 if �2 > 0 or �3 > 0;h
1� exp

�
�R

2
A

2�2

�i
exp

�
�R

2
B

2�2

�h
1� exp

�
� S

2

2c2

�i (3.9)

RA ,
j�2j
j�3j ; RB ,

j�1jp
j�2�3j

(3.10)

S , kH�kF =

sX
j

�2
j

(3.11)

where RA, RB and S correspond to local measures of cross-sectional asymmetry,

blobness and degree of image structure [106]. The parameters �, � and c tune the
sensitivity of the �lter to deviations in RA, RB and S relative to the ideal behavior

for a line structure.

In Figure 3.1, a typical �lter output for a straight vessel model with Gaussian

luminance cross-section is shown. The maximum is achieved at the center, while the

signal decays smoothly towards the boundaries. This behavior is desirable since it

implies that a long range potential will attract the spline towards the center. Similar

results can be derived for other symmetric luminance models which is consistent with

results reported on previously published �lters [184,260,261].

Equation (3.9) explicitly states that the �lter response is a function of the scale at

which the Gaussian derivatives are computed. The �lter is applied at multiple scales

that span the range of expected vessel widths according to the imaged anatomy. In

order to provide a unique �lter output for each pixel, the multiple scale outputs
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undergo a scale selection procedure [182]. This amounts to computing the maximum

�lter response across scales

V (x) = max
�min����max

V(x; �) (3.12)

In this way, vessels of di�erent size will be detected at their corresponding scales

and both small and large vessels will be captured with the same scheme. In order to

deform the vessel central axis, we chose for the following external energy formulation

ECexternal = �1

`

Z 1

0

V (C(v)) kCv(v)k dv (3.13)

Minimization of this energy will move the model towards the central axis of the

vessel. Note that all terms in Equation (3.2) are normalized with respect to the length

of the vessel axis. This avoids a decrease in the bending and stretching energies which

would result in an artifactual shrinkage.

To investigate the e�ects of vessel curvature on the response of the �lter, we

analyzed a toroidal vessel model (Figure 3.2) with width 2s, radius R, and a Gaussian
cross-sectional luminance pro�le

I(x) , G(x; s) = 1p
(2�s2)3

e�
D
2(x)

2s2 (3.14)

where D(x) is the distance between the point x and the axis of the torus. The

Hessian matrix for this model and its eigen-decomposition were computed analytically

by Krissian et al. [167]. We summarize the relevant results in Appendix 3.A. By using

the analytic expressions for the di�erent eigenvalues, �k , it is possible to analytically
evaluate the response of the �lter for this vessel model.

Figure 3.3 shows the response of the �lter in the radial direction. This radius was

computed in the XZ plane. From this �gure we conclude that curved vessels will

only be distorted when the radius of curvature is of the order of their width (which

only occurs in extremely tortuous vessel paths). For vessels with a radius of curvature

larger than twice the vessel width the �lter response is still maximum at the central

vessel axis.

As noticed in Chapter 2, the proposed �lter is not well suited for vessel segmenta-

tion on its own, since width estimation is only possible if a model of the cross-sectional

luminance pro�le is known, which varies depending on the acquisition technique and

owing to the large variation in patient anatomy.

However, the �lter is useful for localization of the central vessel axis since it repre-

sents an image feature which smoothly decays from the central vessel axis towards the

vessel wall. This image feature provides a long range potential map which also avoids

inter-vessel response interference given its zero value beyond vessel boundaries. The

response of the �lter is only marginally dependent on the curvature of the vessel which

makes it even suited for �nding tortuous segments. Finally, as shown in Chapter 2,

the �lter provides excellent noise suppression which will improve the convergence

properties of the central vessel axis model. Noise reduction is both a consequence of

the multi-scale nature of the �lter and the discriminant function (specially the factor

containing S).
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Figure 3.1. Typical �lter response at single scale. The parameter c controls the

in
uence of the image contrast and represents the sensitivity of the �lter as a per-

centage of the maximum grey-level value at the center of the vessel. Parameters

� and � control the sensitivity to the vessel radial asymmetry and similarity with

a blob-like structure respectively. In all experiments we use � = � = 0:5 and

c = 0:25 � Imax, where Imax is the maximum luminance value in a region-of-interest

inside the vessel [106]. This �lter creates a long range potential which assures that

the maximum is found even if the initialization of the vessel axis is signi�cantly o�.

Figure 3.2. Toroidal vessel model with outer radius R and a Gaussian luminance

pro�le of width 2s. D(x) is the distance between the central axis of the torus and

a point x in the orthogonal plane.
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Figure 3.3. Simulation of the in
uence of vessel curvature on �lter response at a

single scale. For very small radii of curvature, the response of the �lter increases

towards the boundaries of the vessel, the strongest e�ect being observed in the

direction of the center of curvature. Simulation performed when � ! 0. In general,

replace s 7!
p
s2 + �2.

Bifurcations are not incorporated in our local vessel model (a tubular structure).

For instance, in bifurcations lying in a plane (
b
) there is signal loss, in the �ltered

image, around the joint. Such bifurcation behaves halfway between a plate and a

tubular structure. The eigenvector with the highest magnitude eigenvalue is directed

across the plane de�ned by the bifurcation. The other two eigenvectors point in the

same direction as the branches of the bifurcation but form an angle of 90Æ regardless

of the bifurcation angle. The magnitude of these two eigenvalues depends on the

symmetry of the bifurcation, the bifurcation angle, etc. In the case of a symmetric

bifurcation the magnitude of these eigenvalues will not be zero (as in a plate) but

similar to each other and smaller than the third eigenvalue. In this situation, the

factors in Equation (3.9) will only di�er from the tubular case in that the term in

RB will be smaller. Despite this fact, in the experiments reported in this chapter we

have not seen that this e�ect imposes a severe obstacle for a reasonable detection of

the vessel axis at the joint.

3.2.2 Diameter criterion for MRA

Once the central vessel axis is estimated we proceed to capture the boundary of the

vessel and, therefore, its width. To this end a priori knowledge of the MRA image ac-

quisition is exploited. In a previous work by Hoogeveen et al. [140], the factors that

can hamper accurate vessel width assessment from MRA were identi�ed. Intrinsic

limitations in the image formation/reconstruction process, �nite spatial resolution,

gridding artifacts and interpolation determine the achievable accuracy. If the acqui-

sition process is accurately modeled, it is possible to �nd precise diameter criteria for
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the three MRA types most frequently used for stenosis grading and/or 
ow quanti�-

cation, namely Time-Of-Flight (TOF), Phase-Contrast (PC) and Contrast Enhanced

(CE) MRA. The boundary criteria are de�ned as a percentage roll-o� factor with

respect to the maximum luminal MR signal.2 For TOF and CE MRA the full-width-

half-maximum (FWHM) criteria is applied while for PC MRA the criteria used is the

full-width-10%-maximum (FWTM).

These criteria can provide accurate diameter estimates for TOF, PC and CEMRA

if the acquisition meets a number of requirements [140]: i) resolution is suÆciently

high (at least 3 pixels/diameter), ii) saturation due to slow in
ow at the borders is

limited (only for TOF MRA), and iii) 
ow artifacts are negligible.

For smaller vessels, diameter quanti�cation is still possible but a more complex

model of the acquisition is required which also incorporates tissue properties and

parameters of the MR imaging sequence [141].

3.2.3 Vessel wall model

The vessel wall is modeled using a tensor product B-spline surface [236]

W(v; u) =

qX
j=0

rX
k=0

Njl(u)Nkm(v)Pjk (3.15)

where Pjk are ((q+1)�(r+1)) control points, Njl(u) is the j-th B-spline periodic

basis function of order l and u 2 [0; 2�), Nkm(v) is the k-th B-spline non-periodic basis
function of order m and v 2 [0; 1]. The parameters u and v traverse the surface in

the circumferential and longitudinal directions respectively.3 We have deliberately

coupled the longitudinal parameter (v) of the vessel wall and central vessel axis since

both span the vessel in the longitudinal direction. This coupling makes it possible to

relate central vessel axis points with the corresponding boundary points.

The model can be initialized using a standard CAD technique known as swept

surfaces [236]. A prototype cross-section (viz. a circle with a radius equal to the

expected average vessel width) is swept along the central vessel axis, and orthogonal

to the curve at every point. In this way, the model is initialized as a 
exible cylinder.

To �t the vessel wall model in a smooth fashion we use an approach similar to

the one applied in Section 3.2.1, extending the concept from curves to surfaces. The

wall model is deformed in a way that maximizes the following integral criterion

EW = EW
external

+ ~
W
s
� ~EW

stretching
+ ~
W

b
� ~EW

bending
(3.16)

where

~EW
stretching

=
1

S

Z 1

0

Z 2�

0

�kWvk2
kWuk2

�
kWv �Wuk dvdu (3.17)

2Compared to [140] the criterion has been made more robust to noise by using as a reference

the average of the MR signal in a small neighborhood along the central vessel axis. Although the

derivation of the FWHM in [140] was done only for TOF MRA, the same criterion is valid for CE

MRA since it is based on assuming a step-like intensity function. This function corresponds to full

in
ow, an assumption also valid in CE MRA.
3For the sake of simplicity, the arguments of the vessel wall model will be henceforth omitted,

i.e. W ,W(v; u).
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~EW
bending

=
1

S

Z 1

0

Z 2�

0

0@ kWvvk2
2 kWvuk2
kWuuk2

1A kWv �Wuk dvdu (3.18)

S =

Z 1

0

Z 2�

0

kWv �Wuk dvdu (3.19)

~
W
s

= (
W
sv
; 
W

su
) (3.20)

~
W
b

= (
W
bvv

; 
W
bvu

; 
W
buu

) (3.21)

where ~
Ws and ~
W
b

are vectors of weight factors for the internal energy terms.

The stretching energy term can be physically interpreted as an approximation to the

energy of a thin plate under tension while the bending energy is related to the rigidity

of the deformable surface [313].

So far the vessel wall model is purely geometric. To further incorporate prior

knowledge of the acquisition, let us assume that the maximum MR signal intensity

is attained at the central vessel axis. Although this assumption might be violated in

certain cases, it provides a simpli�ed formulation of the problem that leads to accurate

results in most situations. Under this assumption we can cast the diameter criteria

of Section 3.2.2 into the external energy term of the deformable wall as follows

EW
external

=
1

S

Z 1

0

Z 2�

0

�����acq � I(W(v; u))

I(C(v))

���� kWv �Wuk dvdu (3.22)

where �acq is a threshold that introduces the knowledge about the type of MRA

imaging technique. This constant equals 0:5 for TOF and CE MRA, and 0:1 for PC
MRA (cf. Section 3.2.2).

3.3 Implementation issues

3.3.1 Image resampling

In order to reduce the e�ect of gridding artifacts due to the MR image reconstruction,

the original image was interpolated to a two-fold larger reconstruction matrix. Based

on the properties of the MR image formation process, Du et al. [85] showed that

partial volume e�ect in MR can be reduced with sinc interpolation. They also sug-

gested an eÆcient implementation based on zero-�lled interpolation. We have used

an approximation to sinc interpolation based on cubic convolution which is compu-

tationally more eÆcient than zero-�lled interpolation and has extremely good sinc

approximating properties [201].

3.3.2 Scenario for 3-D interaction

Although deformable models have been shown to be useful in a variety of 3-D ap-

plications, it has been recognized that initialization and interaction in 3-D is, in

general, an open problem. On the other hand, it has also been acknowledged that
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proper initialization is a requirement for good convergence of most deformable model

approaches.

We suggest the use of an iso-surface rendering for interactively inspecting the vas-

cular anatomy and for selecting the target segment in which the quantitative analysis

will be performed. In Figure 3.4 the steps of the procedure are highlighted. Firstly,

an iso-surface rendering of the original angiogram is generated { Figure 3.4(a). This

is accomplished using marching cubes [183]. We are aware that this step implies the

selection of a threshold. However, we recall that the only purpose of this step is

to provide a support for visual interaction. Secondly, the operator de�nes a vessel

segment by clicking two points on the iso-surface which de�ne the end-points of a

geodesic path.4 This path is used for initializing the central vessel axis after it has

been converted into B-spline form using a least squares approximation { Figure 3.4(b).

Thirdly, once the central vessel axis has been determined, the vessel wall has to be

initialized. This can be accomplished with no extra user interaction by computing

a radius function as the distance between the central vessel axis and the geodesic

path. Since the geodesic path lies somewhere close to the vessel boundary, its dis-

tance to the vessel axis provides a rough approximation of the vessel radius at every

point along the center line. This function is subsequently used to modulate the radius

while sweeping a circular cross-section along the vessel axis { Figure 3.4(c). Figure

3.4(d) shows the �nal result of the �tting procedure. Once the model is obtained, a

report can be generated indicating cross-sectional area as well as minimum, maximum

and average vessel diameter along the vessel axis.

3.3.3 Model optimization

Having speci�ed the energy functionals for the central vessel axis and vessel wall, we

have to choose how to optimize the degrees of freedom of these geometric models (the

control points of the B-curve/surface).

The optimization is performed in two steps. First the central vessel axis is de-

formed according to Equation (3.2). Once it converges, the initial guess of the vessel

wall is generated by sweeping along the central vessel axis. Subsequently, the model

of the vessel wall is deformed to reach the vessel boundary following Equation (3.16).

The deformation process of both the central vessel axis and vessel wall is performed us-

ing the conjugate gradient [241] algorithm with analytical derivatives (Appendix 3.B).

The energy integrals involved in Equations (3.2) and (3.16) were computed numeri-

cally using Gauss-Legendre quadrature formulas [241].

To avoid surface self-intersections during the deformation process of the wall

model, we constrain the movement of the control points. Each subset of control

points sharing the same column index (i.e. a�ecting the same circumferential wall

strip) are constrained to move in a plane perpendicular to the central vessel axis

(Figure 3.5). Mathematically

Pjko = C(vko) + rjko cos �jko N(vko) + rjko sin �jko B(vko) (3.23)

4Given two points on a surface, a geodesic is de�ned as the shortest path on the surface connecting

them.
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where C, N and B are the central vessel axis coordinates, and the central vessel

axis normal and binormal vectors of its Frenet frame at parameter value vko .
5 In

this expression (rjk ; �jk) represents the location of the control point Pjk in polar

coordinates of the local cross-sectional plane. By restricting rjk � 0 and �j�1;k �
�j;k � �j+1;k

6, the central vessel axis is enforced to lie inside the boundaries of the

vessel wall.

Figure 3.5. The control points of the vessel wall model are restricted to move in a

plane orthogonal to the vessel axis.

3.3.4 Geometric modeling

In Table 3.3 the parameters of the vessel model for the carotid bifurcation segment

are summarized. Note that the internal energy weights are small (the external energy

range typically from 0 to 1) such that, unless the model is subjected to large stretch-

ing or bending deformations, it will be mainly guided by the external energy term.

Problems often attributed to deformable models are the ad hoc nature of the selection

of weights, and the fact that they have to be tuned for each application (which most

of the times means \each image"). In our implementation we chose to normalize each

internal energy term with respect to its value in the initialization. By proceeding in

this way, we obtain internal energy terms that are dimensionless and that were suited

for all the experiments we carried out (Table 3.3). Moreover, internal energy terms

and the external energy are now commensurable, and it is possible to incorporate an

extra coeÆcient in the weights that represents their relative contribution to the total

energy. Note that using such normalization factors is justi�ed if the initial shape of

the models is representative of their �nal shape which is ensured by our initialization

procedure.

5Here, vko is the parametric value, v, where the basis function Nkom(v) is maximal. This corre-

sponds to the parameter value for which Pjko have maximum in
uence on the curve, for all j.
6In this expression j denotes a cyclic index with period q.
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Table 3.3. Geometric Model Parameters

Vessel Axis

n B-spline curve order 3

s+ 1 Number of control points 15


Cs Stretching weight 0.1/EC
s


C
b

Bending weight 0.05/EC
b

Vessel Wall

l B-spline surface order (circ.) 3

q + 1 Number of control points (circ.) 5

m B-spline surface order (long.) 2

r + 1 Number of control points (long.) 25


Wsu Stretching weight (circ.) 0.1/EW
su


Wsv Stretching weight (long.) 0.1/EW
sv


Wbuu
Bending weight (circ.) 0.05/EW

buu


Wbvu
Bending weight (mixed) 0.05/EW

bvu


Wbvv
Bending weight (long.) 0.05/EW

bvv

3.4 In vitro evaluation

3.4.1 Phantom and image acquisition

In order to assess the performance of the algorithm we addressed the problem of

diameter measurements for stenosis grading in an MR compatible, carotid bifurca-

tion phantom with an asymmetric stenosis (R.G. Shelley Ltd., North York, Ontario,

Canada). A photograph of this phantom is shown in Figure 3.6. The phantom is

embedded in a rigid, transparent acrylic and manufactured to reproduce normal di-

mensions in the human vasculature [275].

Images were acquired on a 1.5 Tesla MR imaging system (Philips Gyroscan ACS-

NT, PowerTrak 6000 gradients, Philips Medical Systems, Best, The Netherlands)

with a quadrature head-neck receiver coil. Imaging parameters for experiments on

the carotid bifurcation phantom were as follows. Three-dimensional TOF MRA ac-

quisition: echo time (TE) 1.9 ms, repetition time (TR) 25.0 ms and 
ip angle (�)
15Æ, slice thickness 1.0 mm. CE MRA acquisition: TE 2.0 ms, TR 6.6 ms, � 40Æ, slice

thickness 1.0 mm. Both acquisitions: FOV 256 mm, scan matrix 256�256. First order

ow compensation was applied in the TOF MRA acquisition. The 
ow was regulated

by a computer-controlled pump (Quest Image Inc., London, Ontario, Canada). Wa-

ter was guided through the phantom with constant velocity (5 ml/s) and a long inlet

length was taken to assure that laminar 
ow was established. For CE MRA acqui-

sitions a 5-mM solution of gadopentetate dimeglumine (Magnevist, Schering, Berlin,

Germany) was used under the same 
ow conditions as the TOF MRA acquisition.
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Figure 3.6. Carotid bifurcation phantom with a 70% asymmetric stenosis. Two

indexes (NASCET and CC) are usually used to quantify stenosis in the carotids

with di�erent reference diameters.

3.4.2 Performance assessment

We assessed the performance of the algorithm in comparison with a human opera-

tor and the ground truth as gold standard. To this end, the stenosis in the carotid

phantom was graded by two experts following a manual procedure. This is based on

visual inspection of vessel dimensions on a Multi Planar Reformatted (MPR) image.

The reformatting was generated by manually drawing a central vessel axis and subse-

quently computing the plane perpendicular to it. This procedure was performed on a

clinical workstation (EasyVision, Philips Medical Systems, Best, The Netherlands).

In order to compare the measurements provided by the experts and the results

obtained with our algorithm, a measurement protocol was established. The degree of

stenosis was computed using the NASCET index [216]. A second measure of steno-

sis, taken relative to the common carotid artery (CC index), was also computed for

comparison.7 To incorporate the variability inherent to the de�nition of the steno-

sis diameter, our protocol required that the experts measured the distal diameter

at D = 15 mm from the center of the stenosis and repeated the measurements for

two other successive planes separated by d = 5 mm. For each plane, the minimum

and maximum observed diameters were recorded. All measurements were done twice

by the same expert with enough delay to disregard any possible bias in the second

measurement. The average stenosis grade and the 99% con�dence interval (CI) were

computed for each observer, for both observers and for the proposed algorithm. The

statistics of stenosis grading with the model-based approach were computed based on

all possible values of the degree of stenosis for a region of 2 mm around the stenosis

7The de�nition of the two indexes can be found in the inset of Figure 3.6.
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and a region of 2d = 10 mm centered at a distance D+ d = 20 mm from the stenosis.

This yields a measure of stability of the model-based measurements in the region

where the operators performed the manual analysis.

3.5 Results

3.5.1 Carotid bifurcation phantom

In Figure 3.7 the average diameter measurements are shown (the average diameter in

the orthogonal plane, at a given location along the central vessel axis). For comparison

purposes, it also includes, at three points, diameter values from the speci�cations of

the phantom [275]. From this �gure it is apparent that manual assessment su�ers

from a large variability. This can be attributed to factors such as the window leveling

settings of the MR console and the subjective criterion that each radiologist uses to

de�ne the \boundaries" of the vessel. This is further aggravated by the fact that

even circular vessels will show di�erent apparent cross-sections [140] depending on

the e�ective resolution (the number of pixels per diameter).
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Figure 3.7. Average diameter of the carotid bifurcation phantom. The average is

performed over all pairs of antipodal points at a given point along the vessel axis.

The diameter of the phantom (estimated from phantom speci�cations [275]) and

the box-and-whisker plots corresponding to the measurements performed by two

experts are also included (average between min and max diameter). For the sake of

clarity, the average abscissa of each pair of boxes corresponds to the place were the

measurements were carried out.

In Table 3.4, the statistics of the stenosis grading are summarized. The phantom

we used has a stenosis index of 69.2% according to NASCET and 78.5% according

to CC [275]. The table shows that the method improves stenosis grading, with an

absolute error smaller than 3.3% for both criteria. Moreover reproducibility is much
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Table 3.4. Stenosis Grading Summary: carotid bifurcation phantom with asym-

metric stenosis@. Within (WO1, WO2) and between observer (BO12) statistics of

two experts compared to the model-based approach (MB).

WO1 WO2 BO12 MB

Criterion Acquisition %D � CI99%%D � CI99%%D � CI99%%D � CI99%

CC

(78.5% �0.6%)
3-D TOF MRA 69:8 � 3:5 62:8 � 5:3 66:3 � 3:2 76:7 � 0:2

3-D CE MRA 68:4 � 1:4 62:8 � 4:1 65:6 � 2:3 76:0 � 0:2

NASCET

(69.2% �0.9%)
3-D TOF MRA 55:2 � 4:1 39:1 � 7:5 47:2 � 5:2 67:6 � 0:1

3-D CE MRA 55:8 � 3:3 48:3 � 5:2 52:1 � 3:4 65:9 � 0:2

@ Stenosis indexes according to CC and NASCET criterion.

True values are indicated in the �rst column.

better in the model-based approach.

3.5.2 Illustration of the algorithm on patient data

In Figure 3.8, results of the algorithm on patient data are shown. Figure 3.8(a)

and 3.8(b) show MIPs of 3-D TOF angiograms of the left (mild stenosis) and right

(severe stenosis) carotids of the same patient, respectively. Figure 3.8(c) shows the

left carotids of a second patient with a mild stenosis. The datasets are part of an

on-going trial in our hospital to compare several imaging techniques for stenosis grad-

ing [90]. The parameters of the 3-D TOF MRA sequence were as follows: TR 30.6 ms,

TE 6.8 ms, � 15Æ, with a pixel size of 0.5 mm, slice thickness of 1.0 mm and a slice

gap of 0.5 mm.

A summary of quantitative results for stenosis grading of these data is given in

Table 3.5. In the same table, stenosis grades assessed by a radiologist from MIPs of

3-D TOF MRA images and 2-D DSA projections are also included for comparison. To

illustrate that in our model there is no assumption of circularity, we show in Figure 3.9

several shape characteristics such as the minimum, maximum and average diameter,

and cross-sectional area measurements for the examples of Figure 3.8(a) and 3.8(c).

Our model-based method correlates better with DSA, which is the gold standard in

many radiological studies [6, 67, 134], than the manual assessment from 3-D TOF.

Flow artifacts were small in the in vitro experiments. In patient data, however,

the algorithm performs well for non-severe stenosis and/or when 
ow artifacts are

negligible. This was one of the assumptions for the validity of the FWHM criterion.

In Figure 3.8(b) an example of a severe stenosis is shown. Post-stenotic 
ow artifacts

hampered good �t of the model at the stenosis and distal to it. At the stenosis, the

luminal intensity has a cloudy appearance and the vessel axis in this region is mainly

guided by the internal energy term which forces the axis model to extrapolate the

non-stenosed vessel axis. Even when the degree of stenosis, occasionally, agrees with

the expert's grading based on DSA, if the vessel axis falls outside the vessel lumen,

the vessel wall determination cannot be accurate. We therefore considered this as a

failure case (noted between parenthesis). When images contain large 
ow artifacts,
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manual assessment of the degree of stenosis is also diÆcult and more susceptible to

intra observer variability.

Table 3.5. In-Vivo Stenosis Grading of the Carotids Manual (3-D TOF and DSA)

and Model-Based (3-D TOF)

Patient 3-D TOF DSA 3-D TOF (MB)

%D %D %D

A { L ICA (Figure 3.8(a)) 28% 36% 38%

A { R ICA (Figure 3.8(b)) 90% 53% (48%)

B { L ICA (Figure 3.8(c)) 53% 34% 28%

B { R ICA 74% 53% 49%

The stenosis index follows the NASCET criterion. L = left R = right

3.6 Discussion

We devised a method to perform quantitative diameter assessment with sub-voxel

precision. The method shares some features with multi-scale vessel enhancement

algorithms based on eigenvalue analysis of the Hessian originally proposed by Koller

and co-workers [163] and further modi�ed by Sato et al. [260, 261] and Lorenz et al.

[184]. However in these approaches a segmentation of the vasculature was obtained

by estimating the vessel width as a function of the scale of maximum response. The

accuracy of these algorithms is therefore a priori limited by the discretization of

the scale parameter. This limits the applicability of these methods to give a general

overview of the vasculature; for stenosis grading a more accurate approach is required.

Our method performs quantitative analysis based on the original three-dimension-

al images. It is known from the literature [6,67,134] that assessment of stenosis based

on MIPs tends to overestimate the degree of stenosis. Table 3.5 nicely exempli�es

this fact. This artifact is not only attributed to 
ow related signal loss but also

to the image processing involved in generating the MIPs [7, 53, 263]. In order to

avoid this artifact, some authors have argued in favor of methods that avoid the MIP

operation. Anderson et al. [6], for instance, have suggested to grade stenoses based

on the source images. De Marco et al. [67] resourced to MPR images which allow

for better visualization of the vessel lumen in a plane orthogonal to the vessel axis.

De Marco et al. [67] compared stenosis grading based on MIPs and MPR images of

3-D TOF MR angiograms, and used intra-arterial angiography (DSA) as standard of

reference. They reported a statistically signi�cant di�erence between MIPs and DSA

scores with an average absolute error�9% (SD�14%). MPR images provided a better

agreement with DSA, and a negligible bias. Although this study suggests the potential

bene�t of MPR-based diagnosis, generation and inspection of MPRs is relatively time

consuming. Our method shares the basic idea behind MPR-based measurements. We

apply an objective vessel diameter criterion in planes orthogonal to the vessel axis

and, therefore, similarly to the radiologists when analyzing MPR images. On the

other hand, the method is objective (does not depend on window leveling settings)
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(a) (b) (c)

Figure 3.8. Stenosed left internal carotid arteries (ICA). The top row shows MIPs

of 3-D TOF datasets of the ICA. a) and b) correspond to the left and right ICA of

the same patient and c) corresponds to the left ICA of a second patient. In the lower

row we show the corresponding vessel models. The models are quite accurate for the

two left ICA cases shown. For the right ICA, however, the presence of 
ow artifacts

close to the severe stenosis (90% graded on MRA and 53% on DSA according to

NASCET) precluded following the vessel axis.
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Figure 3.9. Stenosed ICA. Area and (min/max/average) diameter measurements

of the left ICA long the vessel axis, for the patient in Figure 3.8(a). Stenosis index

computed based on the maximal vessel narrowing and the average distal diameter.

and requires little interaction. We hypothesize that this correspondence between our

method and MPR-based diagnosis is responsible for the smaller bias in our method

(vs DSA) compared to manual assessment based on MIPs (vs DSA). This hypothesis,

however, has to be further evaluated on a larger number of patients. The di�erences

observed between our model-based method and DSA are close to the �gures reported

in the literature for intra-observer di�erences using DSA. Anderson et al. [6], for

instance, reported intra-observer absolute di�erences of 5% but they can be as high

as 30% [34]. Therefore, the di�erence between the model-based method and DSA

may not be statistically signi�cant. Compared to measurements based on DSA, our

method avoids the diÆculties of selecting a suitable projection angle [258] by providing

true three-dimensional measurements.

We have applied an algorithm which estimates the boundaries of the vessels us-

ing knowledge of the MRA image acquisition technique. This is a distinguishing

property of our method compared to other previously published multi-scale tech-

niques [13, 106, 163, 167, 168, 184, 239, 260, 261]. Whereas the algorithm contains a

scale selection procedure in the determination of the central vessel axis, this does not

in
uence the diameter assessment. Moreover, our model based on splines can model

non-circular vessel cross-sections. Although often it is assumed that vessels have a

circular cross-section, ex vivo measurements [227] have shown that this assumption

is rather simplistic and, especially at the stenosis, a wide variety of geometric shapes

can be observed. Elgersma and co-workers [90] have supported this idea based on in

vivo measurements from multiple projections of 3-D rotational angiography (RA) im-

ages and concluded that this imposes a severe limitation to measurements performed
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on (only two or three) 2-D projections. Three dimensional approaches, as the one

presented in this work, provide a basis for both the description of the actual cross-

sectional shape and its quanti�cation. They also allow de�nition of stenosis indexes

based on cross-sectional area reduction (cf. Figure 3.9) which are more robust than

those based on diameter reduction.

The method has been illustrated on phantom and patient data. In the phantom

data the method obtained diameter and stenosis measurements with an accuracy

which was considerably better than the experts. Although the results on the clinical

data are promising, a thorough validation is still required.

Other aspects of the methodology need further research. The in
uence of vessel

bifurcations in the deformation of the model has to be better understood. Appar-

ently, if the stenosis is reasonably away from the 
ow divider, stenosis assessment can

be performed with good accuracy. This was observed, for instance, in the carotid

bifurcation phantom and in the patient data of Figure 3.8(a). However, it is clear

that with a tubular model there will always be a region were \diameter" measure-

ments will be an extrapolation of the diameters before and after the bifurcation (see

Figure 3.8(c)). Note, however, that in such situations a radiologist would also have

to mentally perform such an extrapolation.

The method performed poorly in the presence of large 
ow artifacts (see Fig-

ure 3.8(b)). This is a potential limitation of the methodology when applied to 3-D

TOF MRA since stenoses are usually regions of disturbed 
ow. In such situations,

however, manual assessment of stenosis is also delicate. Our method is in principle

applicable to other techniques like CE or blood pool agent (BPA) MRA, which are

less sensitive to disturbed 
ow. In the next chapter we will evaluate our methodology

in a larger set of CE MRA images.

Finally, it would be interesting to analyze a large set of vascular segments and

study the in
uence of the number of control points of the B-spline representation

on the accuracy of the measurements. This analysis will probably give a basis for

building a database of models tailored to di�erent applications (carotids, aorta, etc.).

Each model would consist not only on the optimum number of degrees of freedom of

the geometric model but also suitable weights for the energy terms. It is known that

the weighting factors present in the formulation of deformable models are generally

chosen in and ad hoc fashion. However, for a given application suitable values can be

found based on the analysis of a representative set of data. This is especially feasible

in medical applications where images are acquired according to strict protocols.

3.A Appendix: Analytical model of a toroidal vessel

Krissian et al. [167] proposed a vessel model with a Gaussian luminance pro�le.

Although this is a simpli�cation, it allows us to carry out some analytical simulations

that would be otherwise quite cumbersome, if at all possible. In this appendix we

summarize the results for a toroidal model. An analogous formulation can be derived

for a cylindrical model [167].

The vessel is modeled by a torus whose outer circle is parallel to the plane XY
and has radius R. The small circle has radius s (Figure 3.2). For the toroidal model
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of Equation (3.14), the distance from a point x = (x; y; z) to the axis of the torus is

D(x) =

r�
R �

p
x2 + y2

�2
+ z2 (3.24)

From the circular symmetry around the Z axis we can choose y = 0 and x > 0. The

Hessian matrix can be expressed as

H =
I(x)

s4

24(R � x)2 � s2 0 �z(R� x)

0
(R�x)s2

x
0

�z(R� x) 0 z2 � s2

35 (3.25)

Eigenvalue analysis of Equation (3.25) results in

�1 = �I(x)

s2

�
x�R

x

�
~u1 = (0; 1; 0) (3.26)

�2 = �I(x)

s2

"
1�

�
D(x)

s

�2
#

~u2 = (x �R; 0; z) (3.27)

�3 = �I(x)

s2
~u3 = (z; 0; R� x) (3.28)

where �i and ~ui denote eigenvalues and eigenvectors, respectively.

3.B Appendix: Analytical expression for the gradi-

ent of Equation (3.16)

In this appendix an analytic expression for the gradient of Equation (3.16) is derived.

This expression can be used to speed-up the deformation of the vessel model when

using optimization techniques that employ the gradient of the energy function. In our

case we have used Conjugate Gradient [241] as optimization technique. Conjugate

Gradient is a good choice in terms of convergence speed. Schemes that do not use

gradient information require much more function evaluations to �nd a local minimum.

If the evaluation time of the function is comparable to the evaluation of the gradient,

use of the later can avoid many useless function evaluations. Explicit gradient-descent

algorithms are more eÆcient than algorithms like Powel or Simplex that only rely on

function evaluations.

In summary, the gradient of EW with respect to each of the (q + 1) � (r + 1)

3-D control points, Pjk , has to be computed. Once this is computed, it is trivial to

apply the chain rule and to �nd the gradient of the energy function with respect to

the radial and angular degrees of freedom of Equation (3.23).

Before deriving the expression of the analytic gradient, it is convenient to estimate

the achievable computational speed-up. Let us assume that we have a control point

mesh of 5 � 15 (q = 4, r = 14). The easiest way to estimate the gradient of the

energy function is to approximate it numerically. A simple calculation will rule out



40 3 Model-based quantitation of 3-D MRA images

this alternative. Assume that evaluation of the energy functional takes Tf seconds.8

Centered �nite di�erence approximation of the gradient would take roughly 2�3�(q+
1)� (r+1)Tf = 450Tf seconds. If the number of control points in the circumferential
direction, q+1, is �xed, and the number of control points in the longitudinal direction

is proportional to the vessel length, the computational burden involved in estimating

the gradient grows linearly with the length of the vessel. Notice that this is even

aggravated by the fact that Tf itself grows linearly.9 If, however, we could compute

the gradient analytically in a time, Tg , comparable to Tf , a considerable speed-up

would be obtained. In our application it was empirically observed that Tg � 4Tf .
Moreover, the complexity of computing the energy gradient and the energy function

(in Tf units) will not depend on the vessel length.

In the following, we derive the analytic expression for the gradient of EW . Know-

ing how to compute the whole gradient boils down to know the derivative of the

energy function for an arbitrary control point Pjk

@EW
@Pjk

=
@

@Pjk

(
EW
external

+ ~
W
s
� ~EW

stretching
+ ~
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b
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Let us start by computing the derivatives of the total area of the vessel wall, S,
of Equation (3.19)

@S
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=
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jWv �Wuj dvdu (3.31)

=

ZZ
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@Pjk

p
a � a dvdu (3.32)

=

ZZ
aT

jaj
@a

@Pjk

dvdu (3.33)

where10

8The exact value of Tf depends on the order of the employed numerical integration scheme and

on the computer architecture. In a typical vessel model using a 3 � 5 Gauss-Legendre quadrature

scheme per B-spline knot span, Tf � 0:2 s in a SUN Ultra 60.
9The integral in Equation (3.16) has to be integrated numerically. It can be shown that, for a �xed

number of circumferential control points, the number of samples to integrate the energy function is

proportional to the number of control points in the longitudinal direction.
10In the reminder of this appendix, superscripts letters will indicate the components (x; y; z) of

the corresponding vectors, a prime as superscript will indicate parametric derivatives of the B-spline

basis functions, and bold letters with tilde a matrix. Note that in an abuse of notation we will mostly

omit the arguments in W(u; v), Nj(u) and Nk(v). For the sake of parsimony, we will also omit the

order of the B-spline basis functions, i.e., Nj = Njl and Nk = Nkm.
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Finally, the gradient of the wall surface is,

@S

@Pjk

=

ZZ
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jaj
eAjk dvdu (3.36)

Before deriving the gradient of the internal (stretching and bending) energy terms,

let us compute the following gradient

@jW��j2
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(�)
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where � and � stand for the order of parametric derivatives in the u and v
direction, respectively.

Using the result from Equations (3.34) and (3.37), we can now write the expression

for the gradient of the stretching and bending terms (total internal energy)
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Finally, the gradient of the external energy term is
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where

F (W) =

�����acq � I(W(v; u))

I(C(v))

���� (3.40)

and

@F (W)

@Pjk

= �sign
�
�acq � I(W)

I(C)

� rI(W)

I(C)
(3.41)

Here, rI(W) stands for the gradient of the original image evaluated at the surface

point. This term can be evaluated either using �nite di�erences or by precomputing

the image gradient using, i.e., Gaussian derivatives.

To summarize, by replacing Equations (3.35), (3.36) (3.38), and (3.39) into (3.30),

one is able to compute the analytical gradient of the energy function. Although this

derivation might seem cumbersome, it is a mere \advanced" exercise of application

of the chain rule and properties of the B-splines. From a computational point of

view, evaluation of the gradient is not much more demanding than the function itself

once that one realizes that several quantities are shared by most of the terms in the

gradient and, therefore, can be used several times after having been computed.

There is a last property of the B-spline basis that can be applied, viz. local

support : at any given parametric value (u; v) there are at most (l+1)� (m+1) basis

functions that are non-zero11, where l and m are the degrees of the B-Spline in the u
and v directions respectively. It is possible to show that this is equivalent to say that

for any point (u; v) there are only (l + 1)� (m+ 1) control points that contribute to

the surface and, thereby, to the gradient. It is not the intention of this appendix to

give a detailed account of the implementation of the energy and gradient computation

but application of the local support property allows, with minimum bookkeeping, to

further speed-up the computations.

Finally, this appendix has shown the derivation of the gradient of Equation (3.16),

i.e., the vessel wall energy. However, similar ideas can be applied to compute the

gradient of the central vessel axis energy of Equation (3.2).

3.C Appendix: Segmental vessel wall deformation

In this appendix an incremental optimization scheme for the deformation of the vessel

wall will be introduced. The basic idea is to subdivide the vessel wall model into

vessel wall strips (or segments) that are optimized sequentially. We coin this method

segmental optimization [104]. Basically, the deformation is started from one end of

the vessel wall and it proceeds segment-wise towards the other end.

By taking advantage of the local support property of the B-splines, the deforma-

tion of the vessel wall can be broken into several independent optimization problems

11A derivation of this property is beyond the scope of this appendix. For a thorough analysis of

this and other B-Spline properties, the interested reader is referred to, i.e., the monograph by Piegl

and Tiller [236].
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in a lower dimensional space. Although the overall computation load provided by

this method is similar to the full-dimensional optimization (all control points simul-

taneously), this method is able to provide a better local �t. When optimizing all the

control points simultaneously, the objective function averages the measure of �t over

the whole surface Equation (3.22). Therefore, the e�ect of small regions of the vessel

wall model having a bad local �t would tend to be averaged out. Since in optimizing

each vessel strip the objective function only gathers information of a portion of the

vessel wall, the segmental optimization yields a better �t along the whole model.

In order to formulate this optimization strategy, let us start o� by introducing the

parameters that de�ne a B-spline surface model. A B-spline surface of degree l (m)

and q+1 (r+1) control points in the u (v) direction, is de�ned by a bidirectional net

of control points, Pjk , two knot vectors, U = fuj ; j = 0 : : : q+ l+1g and V = fvk; k =
0 � � � r +m+ 1g, and the product of univariate B-spline basis functions. This kind of

surfaces are also known as tensor product surfaces (cf. Equation (3.15)). To break

the optimization problem of vessel wall model into wall strips optimized sequentially,

the parameter space subdivision has to ful�ll the following requirements.12

Requirements. Let a B-spline vessel wall model be de�ned on the longitudinal

parameter v 2 [0; 1]. A partitioning of this space, Vi 2 [v̂i; v̂l+1), suitable for segmental

optimization has to ful�ll the following requirements 13

1.
S
i
Vi = [0; 1],

2.
T
i
Vi = �,

3. If Pi is the subset of control points whose local support in
uences in Vi,
then Pi

TPi+1 = fPji; j = 0 : : : qg.

Condition (1) and (2) simply state that our subdivision of the longitudinal pa-

rameter space is complete and non-overlapping. Condition (3) states that after we

have optimized the vessel wall in the i-th strip, we can leave q + 1 control points

�xed. This ensures that after we advance one strip in the segmental optimization, the

position of some of the control points can be regarded as optimal. In fact, it is this

last condition which ensures that the problem can be broken into small subproblems.

Under clamp-end boundary conditions [236] the knot vector, V , of a B-spline

surface has the following form

V = f0; : : : ; 0| {z }
m+1

; vm+1; : : : ; vr�1; 1; : : : ; 1| {z }
m+1

g (3.42)

If, additionally, multiple knots are not allowed, the following lemma follows from

the local support properties of the B-splines [236]

Lemma. A partition of the parameter space v that exactly ful�ll all the above-

mentioned requirements is the partition generated by the knot vector V without re-

peating the begin and end knots, i.e., v̂i � vm+l with l = 0 : : : r � m. Finally,

Pi � fPjk; j = 0 : : : q; k = l : : : l +mg.
12In the remainder of the discussion it is assumed that the model will only be chunked in the

longitudinal direction, i.e., with respect to the parameter v.
13Special care must be taken with the last Vi to also include the value v = 1.
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In summary, optimizing the energy integral of Equation (3.22) entails solving an

optimization problem with 3(q + 1) � (r + 1) variables. The same problem can be

broken into r�m+1 subsequent optimizations with 3(q+1)�(m+1) variables. After

each subproblem is solved, one row of circumferential control points is frozen, since

their values do not in
uence the subsequent optimization problems. The segmental

approach obtains a substantial decrease in dimensionality and, moreover, the dimen-

sionality of each subproblem is independent of the total vessel length. When solving

the i-th optimization problem, the support of the double integral in Equation (3.22)

can be reduced to the region that is in
uenced by Pi. It is possible to show that this

corresponds to a surface patch such that u 2 [0; 2�) and v 2 [vmax (0;i�m); vi+1).





True genius resides in the capacity for evaluation of

uncertain, hazardous, and con
icting information.

| W. Churchill, 1874-1965

Chapter 4

Quantitative analysis of vascular

morphology from 3-D MRA:

in vitro and in vivo results

Abstract | A three-dimensional model-based approach for quanti�cation of vas-

cular morphology from several MRA acquisition protocols is evaluated. Accuracy,

reproducibility, and in
uence of the image acquisition technique were studied via

in vitro experiments with ground truth diameters and the measurements of two ex-

pert readers as reference. The performance of the method was similar to or more

accurate than the manual assessments and reproducibility also was improved. The

methodology was applied to stenosis grading of carotid arteries from CE MRA data.

In eleven patients, the approach was compared to manual scores (NASCET crite-

rion) on CE MRA and DSA images, with the result that the model-based technique

better correlates with DSA than the manual scores. Spearman's correlation coeÆ-

cient was 0.91 (p < 0:001) for the model-based technique and DSA, versus 0.80 and

0.84 (p < 0:001) between the manual scores and DSA. From the results it can be

concluded that the approach is a promising objective technique to assess geometrical

vascular parameters, including degree of stenosis.

Adapted from: A.F. Frangi, W.J. Niessen, P.J. Nederkoorn, J. Bakker, W.P.Th.M. Mali,
and M.A. Viergever (2001). Quantitative analysis of vessel morphology from 3D MR an-
giograms: in vitro and in vivo results. Magnetic Resonance in Medicine, 45(2):311{22,
February 2001.

4.1 Introduction

A
n important prerequisite for planning vascular surgical procedures and for

treatment selection of vascular diseases is the quanti�cation of vessel mor-

phology. A relevant application is quanti�cation of the lumen diameter, for

instance, to determine the proper dimensions of vascular prostheses, or for accu-

rate stenosis grading. This work, in particular, focuses on the development of a

three-dimensional technique to model linear vascular segments and its application to

diameter and stenosis quanti�cation.

Treatment selection for patients with carotid artery disease is an example of

the need for accurate stenosis grading. The North American Symptomatic Carotid
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Endarterectomy Trial (NASCET) [216] and the European Carotid Surgery Trial

(ECST) [92], both established that carotid endarterectomy is bene�cial for patients

with a severe symptomatic (70{99%) carotid artery stenosis.

Two-dimensional DSA has for long time been the gold standard for stenosis grad-

ing. Unfortunately, it is a projection technique which introduces problems related to

the selection of the optimal projection angle [258], especially in asymmetric stenoses,

and to the correction of motion artifacts [200], which is a three-dimensional phe-

nomenon. From projection images, it is generally non-trivial to accurately assess

vessel diameter and, especially, cross-sectional area. This last parameter is often de-

rived from the vessel radius [169] under the assumption of a circular cross-section

(thus being directly dependent on the vessel radius and not providing additional in-

formation).

Although X-ray rotational angiography [298] (RA) can provide a 3-D reconstruc-

tion of vessels with high resolution, this technique is still in a research phase and not

widely used. Finally, a drawback shared by both DSA and rotational angiography

is that they can lead to complications due to invasive catheter manipulations and to

the exposure to ionizing radiation. In addition, the contrast agents required for these

techniques represent a risk factor themselves [310].

Computed Tomography Angiography (CTA) [253] acquires moderately high res-

olution images containing high-contrast, artifact-free, vascular signals that are sur-

rounded by a conventional CT scan. The presence of anatomical information, which

is not present in the previous techniques, is useful for localizing the vasculature with

respect to other organs. A major advantage of CTA with respect to DSA is the ability

to retrospectively re-project the information from arbitrary angles. In comparison to

MRA, CTA does not su�er from intra-voxel de-phasing and spin saturation which

lead to image artifacts. A limitation of CT angiography is the requirement for large

quantities of iodinated contrast material. Moreover, the subsequent opaci�cation of

all vessels due to the large bolus of contrast prevents a multi-injection/multi-site

examination.

Magnetic Resonance Angiography (MRA) is increasingly used [33,62,88,165,179,

180, 191, 300, 301] to replace DSA in diagnostic procedures. Mistretta [207] has ana-

lyzed the relative characteristics of MRA in comparison with other alternative vascular

imaging techniques. The advantages of MRA are that it is non-invasive, it does not in-

volve ionizing radiation, and available contrast agents are safer and injected in smaller

doses. Whereas the in-plane resolution of MRA is lower than for 2-D DSA, three-

dimensional (isotropic) data can be acquired. The introduction of contrast agents, as

gadopentetate dimeglumine [243], has considerably improved the clinical applicability

of MRA compared to non-enhanced MRA techniques like Time-Of-Flight (TOF) and

Phase Contrast (PC) angiography. Contrast-enhanced techniques allow for higher

contrast, shorter scan times, arbitrarily positioned imaging planes and reduced 
ow

artifacts. Recent developments with new contrast media such as blood pool agents

may further improve image quality.

In clinical practice, analysis of 3-D MRA data sets is mainly performed using

Maximum Intensity Projections (MIPs) or Multi Planar Reformatting (MPR) of the

three-dimensional volume. The �rst is known to introduce image artifacts [7,53,263]

while the second requires precise delineation of a central vessel axis. Although MRA
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can provide three-dimensional information, the manual quanti�cation of the vascu-

lature is still tedious and subjective. In Chapter 3, we proposed a scheme for an

interactive quantitative analysis of 3-D MR angiograms. The approach uses prior

knowledge of the image formation process to accurately de�ne the boundaries of the

vessels. In this chapter, this methodology is extended and validated in vitro to deter-

mine its accuracy and reproducibility, and its dependence on the image acquisition

protocol. Moreover, in vivo experiments are carried out to determine its potential

for clinical use. Ground truth diameters (in vitro experiments) and measurements by

medical experts (in vitro and in vivo experiments) are used to validate the method.

The chapter is organized as follows. In Section 4.2 the main ideas underlying

the model-based approach to estimate the central axis and width of a vessel are

described. Section 4.3 describes the materials and methods involved in the validation

of our algorithm. The results of the in vitro and in vivo validation are presented in

Sections 4.4 and 4.5, respectively. Section 4.6 concludes the chapter with a discussion.

4.2 Algorithm overview

Our model-based vascular segmentation procedure consists of two main steps. First,

the central vessel axis is computed. Subsequently, a three-dimensional boundary

model is initialized and �tted to the image data using a boundary criterion derived

from information on the image acquisition technique. The di�erent steps in the algo-

rithm can be summarized as follows (Figure 4.1):

1. Using a rough iso-surface rendering of the vessel(s) of interest, the user selects a

couple of points indicating the segment to be measured (Figure 4.1(a)). These

points are joined with a geodesic curve that runs on the iso-surface and which

forms a coarse initialization of the central vessel axis (Figure 4.1(b)). This

initialization only requires a simple and intuitive interaction.

2. The central vessel axis, C(v), is approximated using a B-spline curve of degree

n with s + 1 control points. This representation enforces the lumen line to be

connected

C(v) =

sX
i=0

Nin(v)Pi (4.1)

Here Pi are the control points, Nin(v) denotes the i-th B-spline basis function

of order n [236], and v 2 [0; 1].

3. To �t the vessel axis to the image data, we used a �lter based on a local operator

that analyzes the eigenvalues of the Hessian matrix computed at each voxel of

the image. The �lter has the following properties:

i. de-enhances non-tubular structures,

ii. has maximum response at the center of the vessel,
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iii. analyzes the image at multiple scales to be sensitive to vessels of varying

width,

iv. incorporates directional information.

This �lter, as used in this chapter, is an extension of the �lter proposed in

Chapter 2 and is described in the Appendix 4.A.

4. The vessel wall, W(v; u), is modeled using a tensor product B-spline sur-

face [236]

W(v; u) =

qX
j=0

rX
k=0

Njl(u)Nkm(v)Pjk (4.2)

where Pjk are ((q + 1) � (r + 1)) control points, Njl(u) is the j-th B-spline

periodic basis function of order l and u 2 [0; 2�); Nkm(v) is the k-th B-spline

non-periodic basis function of order m and v 2 [0; 1]. The parameters u and v
traverse the surface in the circumferential and longitudinal directions, respec-

tively. The model can be initialized using a standard Computer Assisted Design

(CAD) technique known as swept surfaces [236]. A circular cross section with a

radius equal to the distance between the �nal central vessel axis and its initial-

ization on the iso-surface is swept along the central vessel axis and orthogonal to

the curve at every point (Figure 4.1(c)). This results in a deformable cylinder

along the previously computed vascular axis.

5. The vessel wall model is �tted to the boundaries of the underlying vessel (Figure

4.1(d)). Here, the information on the image acquisition is introduced. In an

earlier study [140], it was shown that the full-width-half-maximum (FWHM)

criterion is a reliable estimate of vessel width in TOF and CE images. For PC,

however, the full-width-10%-maximum (FWTM) is preferred. Therefore, we

freely deform the vessel wall so the luminance ratio between the voxels on the

wall model and on the centerline model ful�lls the FWHM or FWTM criterion,

respectively. Mathematically, the model is deformed to minimize the function:

EW =
1

S

Z 1

0

Z 2�

0

�����acq � I(W(v; u))

I(C(v))

���� dvdu+R(W) (4.3)

where I(x) denotes the image gray-level at position x, S is the total vessel

wall area, and �acq is a threshold that incorporates information on the type of

MRA imaging technique. This constant equals 0:5 for TOF and CE, and 0:1
for PC MR angiography. Finally, R(W) is a regularization term that imposes

smoothness constraints on the vessel wall surface [103].

The validity of the FWHM and FWTM criteria is dependent on a few assumptions

about the image acquisition [103]: a) the resolution should be suÆciently high (at

least 3 pixels/diameter), b) the saturation due to slow in
ow at the borders is limited

(only for TOF MRA), and c) 
ow artifacts can be neglected. Although it would be
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possible to improve on the model of the image acquisition used here (e.g., see [141]),

the modeling of signal voids is a more complex issue requiring prior knowledge of the

geometry of the vessel, which is precisely what we want to estimate. In practice, this

implies that (almost) total occlusions leading to (almost) total signal voids should

be interpreted by an expert, whereas accurate estimates should be obtainable in the

cases of small to severe stenoses. Evaluation of images in the presence of signal voids

usually requires interpretation by an expert. Moreover, in the context of carotid artery

disease, clinically, it is only necessary to identify residual lumina smaller than 1 mm.

In this case, the stenosis is known to exceed 80% in any event. In other words, the

method would be clinically useful if at least can handle moderate voids appearing in

non-severe stenoses.

(a) (b) (c) (d)

Figure 4.1. Algorithm overview. a) The user pinpoints the begin and end position

of the segment to be analyzed. From these seeds, a geodesic path is computed.

b) The geodesic path is deformed until the central vessel axis is determined. c)

A circular cross section is swept along the axis to generate an initialization of the

vessel wall model. d) Vessel wall (after deformation) and central vessel axis.

4.3 Materials and methods

4.3.1 Phantoms

To assess the performance of the algorithm, we addressed the problem of diameter

measurements which is a prerequisite for stenosis grading. Three phantoms with

varying degrees of complexity were analyzed (see Figure 4.2).
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The �rst phantom is a synthetic tube (Elspec Kynar 3/13-X, Aalsmeer, The

Netherlands) with a 4.98-mm diameter and a stenosis of 1.73 mm which simulates a

stenotic linear vessel (see Figure 4.2(a)). The tube wall thickness (0.1 mm) was small

compared to the pixel size (0.5{1.5 mm), so the in
uence of the wall is expected to

be negligible.

The second phantom simulates a carotid bifurcation with an asymmetric stenosis

(R.G. Shelley Lt., North York, Ontario, Canada). A photograph of this phantom is

shown in Figure 4.2(b). The phantom is embedded in a rigid, transparent acrylic and

manufactured to reproduce normal dimensions in the human vasculature [275].

Third, an anthropomorphic phantom of the cerebral vasculature (Instrumenta-

tion Department, University Medical Center, Utrecht, The Netherlands) which is

embedded within a rigid, transparent acrylic was used. Although it presents a chal-

lenging and realistic geometry, no accurate reference dimensions were available from

this phantom.

(a) (b) (c)

Figure 4.2. Phantoms used in this study. a) Linear stenotic phantom. b) Carotid

bifurcation phantom. c) Cerebral vasculature phantom.
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4.3.2 Image acquisition

Phantom data

All images were acquired on a 1.5 Tesla MR imaging system (Philips Gyroscan ACS-

NT, PowerTrak 6000 gradients, software release 6, Philips Medical Systems, Best,

The Netherlands) with a quadrature head-neck receiver coil.

The protocols and imaging parameters used in the experiments with the linear (I),

carotid bifurcation (Y), and cerebral vasculature (C) phantoms are summarized in

Table 4.1. Multiple 2-D TOF images were acquired at three di�erent pixel sizes (0.5

mm, 1.0 mm and 1.5 mm) to investigate the e�ect of in-plane resolution. First order


ow compensation was applied to all TOF experiments. The 
ow was regulated by a

computer-controlled pump (Quest Image Inc., London, Ontario, Canada). Water was

channeled through the tube at a constant velocity (5 ml/s) and a long inlet length was

taken to assure that laminar 
ow was established. The tube was surrounded by the

same, but stationary water in all experiments. For CE acquisitions, a 5-mM solution of

gadopentetate dimeglumine (Magnevist, Schering, Berlin, Germany) was used under

the same 
ow conditions as the TOF acquisitions.

Reference diameters for the linear and bifurcation phantoms were measured with a

Philips Integris V3000 angiographic unit (Philips Medical Systems, Best, The Nether-

lands), while the phantoms were �lled with standard contrast agent (Ultravist, Scher-

ing AG, Berlin, Germany). The pixel size was 0.23 mm, and a caliper was available

to perform absolute diameter measurements.

Before applying the model-based technique, all images were resampled to have

0.5-mm cubic voxels using sinc interpolation. This procedure does not increase the

resolution of the acquisition, but reduces partial volume and gridding artifacts [85].

Table 4.1. MRA sequences for the three phantom studies: linear (I), carotid

bifurcation (Y) and cerebral (C) phantoms. TE = echo time, TR = repetition time,

� = 
ip-angle, FOV = �eld-of-view.

Imaging Phantom In-plane Resolution TE TR � Slice Thickness FOV }

Protocol [mm] [ms] [ms] [Æ] [mm] [mm]

2-D TOF I/Y 0.5 3:4 18:0 30 4:0 128

2-D TOF I/Y 1.0 2:7 18:0 30 4:0 256

2-D TOF I/Y 1.5 2:5 18:0 30 4:0 384

3-D TOF I/Y 1.0 1:9 25:0 15 1:0 256

3-D PCN I/Y 1.0 4:0 8:9 15 1:0 256

3-D CE I/Y 1.0 2:0 6:6 40 1:0 256

3-D CE C 1.0 3:1 11:0 40 1:0 256

} Matrix size 256 � 256 in all acquisitions N
venc = 200 cm/s in all directions
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Patient data

Eleven patients suspected of carotid artery disease were screened with carotid du-

plex. All of them had a peak systolic velocity value in the internal carotid artery

(ICA) larger than 150 cm/s. Subsequently, each patient underwent a standard clin-

ical MRA protocol including three-dimensional Contrast-Enhanced (CE) MRA. Bo-

lusTrak (Philips Medical Systems, Best, The Netherlands) was used to determine the

arrival of the contrast bolus. Image acquisition was carried out in the same scanner

used for the phantom experiments. The scan parameters were: repetition time, TR

4.4 ms; echo time, TE 1.5 ms; 
ip angle, � 40Æ; slice thickness, 1.2 mm; slice gap, -0.6

mm; a 512�280 image matrix, and a 256�140-mm2 rectangular �eld-of-view. The

contrast material used was a 5-mM solution of gadopentetate dimeglumine (Mag-

nevist, Schering, Berlin, Germany). Before applying the model-based technique, all

images were resampled to have 0.5-mm cubic voxels using sinc interpolation.

Each patient also underwent a DSA examination. DSA was performed with a

Philips Integris V3000 angiographic unit (Philips Medical Systems, Best, The Nether-

lands) with an image intensi�er matrix of 1024�1024. Using the Seldinger technique,
the tip of a 5-F catheter was guided from the femoral artery to the ascending aorta

and positioned in the right and subsequently in the left common carotid arteries. Two

or three projections (posteroanterior, oblique and possibly lateral) were acquired for

each carotid bifurcation. For each projection 6 ml of a contrast agent (Ultravist, 300

mg I/ml, Schering AG, Berlin, Germany) was injected at a constant 
ow of 3 ml/s.

From the total of twenty-two carotid arteries, three arteries were excluded from

the quantitative analysis because of total occlusion. The remaining nineteen vessels

ranged from normal/mild to severe stenoses. Manual measurements on MRA and DSA

were taken from printed hard copies using a digital display caliper (PAV Electronic,

0.01-mm resolution).

4.3.3 Geometric modeling

In the B-spline representation of the vessel model a few parameters have to be speci�ed

{ Equations (4.1) and (4.2). In our experiments, third-order (cubic) B-spline curves

and surfaces were used (l = m = n = 3). The number of control points for the central

vessel axis (s+1) and the vessel wall (r+1) models were determined from their length.

A control point was placed every 2.0{2.5 mm in the central vessel axis. For the vessel

wall model, a ring of �ve control points was placed every 5.0 mm orthogonal to the

central vessel axis. By means of preliminary experiments with a di�erent number of

control points, it was observed that these densities yielded a good trade-o� between

ability to capture the shape of the in vivo carotids and model complexity. Similar

parameters were used in the in vitro experiments.

4.4 In vitro results

Phantom experiments of varying geometrical complexity were used to assess the per-

formance of the proposed method. First, the accuracy in diameter quanti�cation and

the dependence on the image acquisition parameters were studied in simple geometries
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where ground truth diameters were available (Section 4.4.1). Finally, experiments

were conducted on more complex geometries, with the manual measurements as ref-

erence, to assess the robustness to user initialization and the accuracy in diameter

measurements (Section 4.4.2).

4.4.1 Linear and carotid bifurcation phantoms

Two experts performed diameter measurements at di�erent points of the linear and

carotid bifurcation phantoms. The measurements were taken from Multi Planar Re-

formatted (MPR) images which were generated by manually drawing a central vessel

axis and subsequently computing perpendicular planes along this axis at each mea-

surement point. This procedure was done using the facilities of a clinical workstation

(EasyVision, Philips Medical Systems, Best, The Netherlands).

To compare the measurements provided by the experts and the results obtained

with our algorithm, a measurement protocol was de�ned as indicated in Figure 4.3.

The location of the stenosis (maximum vessel narrowing) was used as a reference

point. Distal and proximal diameter measurements were carried out on both phan-

toms at 20 mm and 25 mm from the stenosis center. For each cross-sectional plane,

the minimum and maximum observed diameters were recorded. For the carotid bifur-

cation phantom, two extra planes were analyzed and these were placed 5 mm at both

sides of the stenosis center. All measurements were done twice by the same expert

with enough delay between the sessions to consider the measurements independent.

The semi-automated method was run twice with di�erent initializations of the

central vessel axis. For each run, we recorded the minimum and maximum diameter

at the same points where the observers performed their measurements.

For each session (run) and observer (semi-automated method) the absolute er-

ror in the vessel diameter was computed. Average error and its standard deviation

(SD) were calculated to analyze the precision and accuracy of the manual and semi-

automated procedures. Since the images of the linear and carotid phantoms were

acquired simultaneously (same �eld-of-view), errors for both phantoms were averaged

to have an overall error assessment for each modality.

Diameter quanti�cation: in
uence of imaging protocol

Table 4.2 summarizes the statistics of the measurement error for a �xed resolution

(1 mm) and di�erent acquisition protocols. This table compares the results for the

two expert readers (Obs I and II) and for the model-based technique (MB). In the

case of multiple 2-D TOF, 3-D TOF and CE MRA, the model-based method performs

similarly to or better than the observers. In all three modalities, our method slightly

overestimates the diameter (0.08{0.34 mm) but the bias, when compared between

sessions, is more systematic than for the observers. Precision of the measurements

was 0.42{0.67 mm for the model-based method and 0.29{1.13 mm for the observers.

Phase contrast angiography is the only technique that uses a di�erent criterion

for boundary de�nition, namely, the FWTM [140]. In our experience, this criterion

is not very robust when there are large variations in blood velocity along the selected

vascular segment. This occurs, for instance, in the presence of a severe stenosis. In
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Figure 4.3. Manual measurement protocols: d1 = 15 mm and d2 = 5 mm. a) Tube

phantom. b) Carotid bifurcation phantom.

this case, the velocity encoding is tuned to the highest velocity, which is achieved

near the minimum lumen diameter. Therefore, in low velocity regions, the FWTM

will indicate boundary points with very low luminance and small signal-to-noise ratio.

As a consequence, the model-based technique is prone to becoming trapped in local

minima during the �tting procedure. Finally, the bias is smaller with the model-based

technique and has an opposite sign. The latter indicates that the visually perceived

\boundary" corresponds to a roll-o� factor higher than 10%.

Diameter quanti�cation: in
uence of in-plane resolution (2-D TOF MRA)

Table 4.3 summarizes the mean error in diameter estimation for the linear phantom

(I) for the three di�erent in-plane resolutions (0.5, 1.0 and 1.5 mm) of the multi-slice

2-D TOF protocol (cf. Table 4.1). Both accuracy (mean error) and precision (SD)

for the two observers and the model-based technique are reported in millimeters.

The results show that the model-based technique performs similar to the manual

assessment. However, the di�erence in bias between sessions (or runs) is smaller for

the model-based technique, indicating a higher reproducibility of the results.

As expected, increasing voxel size tends to overestimate the vessel width (in-

creased positive bias). This e�ect is mainly observed at the place of the stenosis

where the diameter becomes in the order of the voxel size. This can be appreciated

from Figure 4.4 where the average diameter pro�le for the three resolutions is shown.

Box plots summarizing the measurements of all sessions and of the two observers in

the planes that are distal and proximal to the stenosis and at the stenosis itself, are

overlaid for comparison. The degradation of the model-based measurements with a

decrease in voxel size is consistent with the measurements of the experts.
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Table 4.2. Luminal diameter absolute error for four imaging protocols. True

phantom diameters ranged from 1.18 mm to 7.37 mm. Here, n denotes the total

number of measurements per session.

Imaging protocol Phantom Session n Obs I Obs II MB

mean (SD) mean (SD) mean (SD)

2-D TOF 1.0 mm I 1 14 �0:24 � 0:51 +0:44� 0:29 +0:25 � 0:42

I 2 14 �0:76 � 0:98 +0:11� 0:36 +0:20 � 0:42

3-D TOF 1.0 mm I/Y 1 32 +0:10 � 0:83 +0:58� 0:53 +0:08 � 0:67

I/Y 2 32 +0:00 � 0:80 +0:35� 0:50 +0:09 � 0:62

3-D PCA 1.0 mm I/Y 1 32 �0:68 � 1:08 �0:52� 1:25 +0:37 � 1:32

I/Y 2 32 �1:29 � 1:51 �1:08� 1:40 +0:21 � 1:18

3-D CEA 1.0 mm I/Y 1 32 �0:30 � 1:13 +0:63� 0:49 +0:34 � 0:46

I/Y 2 32 �0:26 � 0:82 +0:70� 0:61 +0:22 � 0:42

Table 4.3. Luminal absolute diameter error for three in-plane resolutions using

2-D TOF acquisition. True phantom diameters ranged from 1.73-mm to 4.98-mm.

Here, n denotes the total number of measurements per session.

Imaging protocol Phantom Session n Obs I Obs II MB

mean (SD) mean (SD) mean (SD)

2-D TOF 0.5 mm I 1 14 �0:11� 0:64 +0:27� 0:26 +0:17 � 0:45

I 2 14 �0:23� 0:48 +0:14� 0:30 +0:21 � 0:41

2-D TOF 1.0 mm I 1 14 �0:24� 0:51 +0:44� 0:29 +0:25 � 0:42

I 2 14 �0:76� 0:98 +0:11� 0:36 +0:20 � 0:42

2-D TOF 1.5 mm I 1 14 +0:26� 0:92 +0:92� 0:74 +0:32 � 0:46

I 2 14 +0:13� 0:69 +0:83� 0:70 +0:73 � 0:42
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Figure 4.4. Diameter-vs-length (L) plots for the linear stenotic phantom images

acquired with the 2-D TOF protocol at three in-plane resolutions: 0.5 mm, 1.0

mm and 1.5 mm. All images were resampled to 0.5 mm cubic voxels using sinc

interpolation prior to applying the model-based algorithm. For the sake of clar-

ity, the average abscissa of each triad of boxes corresponds to the place where the

measurements were carried out.

4.4.2 Cerebral vasculature phantom

Robustness to user initialization

The cerebral vasculature phantom was used to analyze the robustness of the algorithm

to di�erent initializations. Figure 4.5(a) shows an iso-surface rendering of the anterior

cerebral artery (ACA) segment of the cerebral vasculature phantom. Three observers

were asked to initialize the central vessel axis by drawing a geodesic path on the iso-

surface. The only guide they were provided with was the four landmarks included in

the �gure, and the remark that the initialization should be close to, but not necessarily

through the landmarks. This ensures that they all select the same target vessels and

thus allows the assessment of variability caused by initialization of the model for a

prede�ned task. Figure 4.5(b) shows the mean luminal diameter along the central

vessel axis averaged over the three initializations. The 95% con�dence interval is

represented as a needle plot. In the regions where lateral vessels connect into the

target segment, the variability is higher. This can be attributed to the fact that at

these points the \boundaries" are ill-de�ned.

Eight centerline points were selected to compare the variability in vessel dimen-

sions caused by di�erent model initializations to the variation caused by multiple

readings of the experts. Two observers performed measurements on the source im-
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ages using the MPR facility of a clinical workstation (EasyVision, Philips Medical

Systems, Best, The Netherlands) and they read the minimum and maximum vessel

diameter at each location twice. The average vessel diameter was then estimated

with the mean of the minimum and maximum diameters. In Figure 4.5(b), box plots

summarizing the four measurements per location are overlaid for comparison. The

measurements close to the branch at B show a large variability partially because the

observers had to extrapolate diameter measurements at the branch. Although the

model-based method does not explicitly model the bifurcation, it provides an approx-

imation of the extrapolated diameter at these points. Finally, the overall diameter

variability of the expert readings is larger than the variability related to multiple

initializations of the model-based method.
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Figure 4.5. In
uence of user initialization. a) Iso-surface rendering of the anterior

cerebral artery segment of the cerebral vasculature phantom (CE MRA protocol).

b) Diameter-vs-length (L) plot showing the average value (dots, solid line) and 95%

con�dence interval (needles) of the mean cross-sectional diameter for three di�erent

initializations of the algorithm described in Section 4.2. The initializations were

performed by three observers guided only by the four markers indicated in the

rendering (a) to unambiguously specify a common portion of the vessel. Box plots

indicating the overall variability of the observers for some sample points are overlaid

for comparison.

Diameter quanti�cation

Two segments of the cerebral vasculature phantom were used to estimate the perfor-

mance of the method in a complex geometry. The central vessel axis (as computed

with our algorithm) was given to the experts to ensure that the measurements of

vessel diameter were compared at the same location and that only the variability

arising from boundary determination was analyzed. A few sample points along the

central vessel axis were selected and each observer performed diameter and area mea-

surements at those locations. The observers did the measurements twice with enough

delay between observations to consider them independent.
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Figure 4.6 contains diameter (D) and area (A) measurements in the left external

carotid artery (ECA) segment of the anthropomorphic cerebral phantom. Box plots

summarizing the measurements of the two sessions of the two observers at each posi-

tion are overlaid. Notice that for the measurements inside the common carotid artery

and close to the 
ow divider (shaded zone of Figure 4.6) there is limited agreement

between our method and the observers. If the segment to be measured contains one

branch, positioned very close to one of the ends of the model, the �tting close to the

short end tends to be poor. This leads to incorrect extrapolation of the diameter

values around the branch.
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Figure 4.6. Cerebral vasculature phantom: left external carotid artery segment.

Comparison of average diameter and cross-sectional area along the vessel (L) as

assessed by a human observer and with the model-based approach. The shaded

region on the graph corresponds to the measurements that are inside the bifurcation.

Since no ground truth diameters were available for the cerebral vasculature phan-

tom, we compared the average diameters measured by observers with those of the

model-based approach. Figure 4.7 gives plots as proposed by Bland and Altman [32]

indicating repeatability for each \method", ObsI, ObsII and MB (Figure 4.7(a)), and

the agreement between pairs of methods (Figure 4.7(b)). We have excluded from the

analysis the two measurements in the shaded zone of Figure 4.6 which can be re-

garded as outliers. In general, the model should be initialized such that the region of

interest is not close to the end points. In this case the method is accurate even if a

stenosis is close to a branch. The measurements of Section 4.4.2 were also included

in Figure 4.7.

Following Bland and Altman [32], repeatability is de�ned as �1.96�SD of the

relative diameter di�erence between two sessions. This gives a measurement of the

inter-observer variability, or to the variability related to multiple initializations of



4.5 In vivo results 61

the model-based technique. The repeatability for the three methods was compara-

ble, ObsI/ObsII/MB = 8.6%/10.7%/8.9% with a bias (average of relative diameter

di�erences between sessions) of +1.6%/+0.98%/-0.3%, respectively. To compare two

alternative measurement methods, Bland and Altman de�ne an agreement coeÆcient

as �1.96�SD of the relative diameter di�erence provided by the two methods with

a correction for repeated measurements [32]. The agreement coeÆcient was 18.3%

between the two experts, against 16.9% and 17% between each observer and the

model-based method. Repeatability was particularly low in the measurements of the

anterior cerebral artery (ACA) compared to those of the ECA segment. The former

had a number of locations at which the diameters had to be extrapolated due to

the presence of side branches, and where repeatability was poorer. If only the mea-

surements at the ECA are considered, the repeatability improves (ObsI/ObsII/MB

= 4.5%/5.1%/1.7%) and this indicates that where no extrapolation is needed the re-

peatability is higher with our method, and that otherwise the repeatability is similar

to that of the experts.
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Figure 4.7. Performance in complex geometries. a) Repeatability plot indi-

cating the relative diameter di�erences between the two sessions (%" = 100% �
(%D1�%D2)=%D) against the corresponding mean value (%D = (%D1+%D2)=2).

b) Agreement plot indicating the relative diameter di�erences between pairs of

\methods" (%" = 100% � (%DA � %DB)=%D) against their mean value (%D =

(%DA + %DB)=2). The measurements compared in the agreement plot are the

average of the measurements of the two sessions used for the repeatability plot [32].

4.5 In vivo results

Nineteen internal carotid arteries were analyzed by two experts independently. Ste-

noses were quanti�ed according to the NASCET index [216]. This index quanti�es

the percentage of vessel diameter narrowing as %D = 100% � (1 � b=a), where b
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and a stand respectively for the vessel diameters at the stenosis, and distal to it,

after the post-stenotic bulb (Figure 3.6). Grading of DSA images was performed by

averaging the scores from all the available projections without vessel over-projection.

Quanti�cation of CE MR angiograms was done by averaging the degree of stenosis

computed from maximum intensity projections in the posteroanterior, oblique and

lateral views without vessel over-projection. The same arteries were graded with

the model-based technique using the NASCET criterion reading the diameters from

the diameter-vs-length plots. Figure 4.8 illustrates the results of the internal carotid

artery (ICA) models that were �tted to several patients. Figures 4.8(a) and 4.8(b)

exemplify the models of normal and mildly stenotic ICAs, respectively. Figures 4.8(c)

to 4.8(f) are examples of stenotic ICAs with Figs. 4.8(e) and 4.8(f) showing examples

of models �tted in the presence of signal loss at the stenosis and distal to the stenosis,

respectively. In the latter case, signal voids are present due to poor synchronization

between the acquisition and the contrast bolus arrival.

Figure 4.9 shows the linear regression between the DSA and the CE MRA scores

of the nineteen carotid arteries included in this study. The scores obtained from the

model-based technique were compared against the average of the DSA scores of the

two observers for the same artery. In the same �gure, the 95% con�dence intervals

and the 95% prediction intervals for the linear regressions are included. From this

analysis, it is concluded that the model-based technique presents tighter con�dence

bounds than those of the two observers. The slopes of the linear regressions (cf.

Table 4.4) indicate that the model-based technique consistently underestimates the

degree of stenosis compared to DSA, although this is also the case for one of the

observers.

Table 4.4 shows the quantitative comparison between DSA and CE MRA for the

two observers and the model-based technique. Spearman's coeÆcient indicates a good

correlation between the model-based technique and DSA. The Wilcoxon test indicates

no statistically signi�cant di�erence in the latter case, nor for the observers at a 5%

con�dence level. We also computed the Bland and Altman [32] plots to establish the

bias between the DSA and CE MRA scores and the 95% agreement intervals for the

two observers and the model-based technique. The results are summarized in the

third column of Table 4.4, and they agree with the prediction intervals of the linear

regression, namely, the model-based technique has a smaller dispersion compared to

the manual assessment.

Table 4.4. DSA vs CE MRA results for both observers (I and II) and the model-

based (MB) technique. Bias and 95% bounds of agreement are in units of %D.

DSA vs CE MRA Slope %D: Bias (�1.96SD) Spearman's rs (p) Wilcoxon p

Obs I 0.981 +6.3 (�28.5) 0.80 (< 0.001) 0.13

Obs II 0.860 +7.2 (�31.1) 0.84 (< 0.001) 0.09

MB 0.846 -5.0 (�19.9) 0.91 (< 0.001) 0.97



4.6 Discussion and conclusion 63

4.6 Discussion and conclusion

A technique for semi-automated three-dimensional quantitative analysis of vascular

morphology from MRA has been presented and evaluated. The method incorporates

prior knowledge of the image formation process and can handle irregular vascular

cross sections. The method has the additional advantage that it yields a complete

description of vascular morphology. Thus, next to vessel diameter, vascular cross-

sectional area and vessel wall shape irregularity can be quanti�ed.

The method may replace and supplement manual stenosis assessments which are

subject to inter and intra-observer variability. Both accuracy and reproducibility of

the method were tested in phantom studies. With no gold standard available, the

accuracy of the model-based diameter measurements was compared to the expert

readings. The results of the in vitro experiments showed that the semi-automated

method performed similar to or more accurately than the experts. Moreover, repro-

ducibility of the measurements is improved. Tests showed that the results were not

very sensitive to di�erent user initializations.

In Section 4.4.1, it was shown that there is a small bias in the diameters obtained

with the model-based technique. This indicates that the FWHM criteria introduce a

systematic error. Hoogeveen et al. [140] have demonstrated that this is indeed the case

in vessels with a resolution of less than 3 pixels/diameter. For vessels in the range 1{3

pixels/diameter there is a maximum systematic underestimation of 20% and for vessels

smaller than 1 pixel/diameter the FWHM overestimates the diameter by a maximum

of 20%. For vessels larger than 3 pixels/diameter, the bias is negligible (< 5%).

This last result is also in agreement with the bias obtained in the experiments with

the phantom of the cerebral vasculature where all the measurements corresponded to

diameters in the latter range.

In the in vitro experiments, the method was compared with those made by the

experts who measured the diameter in cross-sectional planes orthogonal to the vessel.

In most clinical situations, stenoses are graded from MIP images, as in our in vivo

study. Our method uses a three-dimensional model which operates directly on the

three-dimensional data, and thus no errors owing to projections are introduced [7,53,

263].

In general, it is assumed that the vessel wall has a circular cross section. Ex vivo

measurements [227] have shown that this assumption is simplistic and, especially at

the stenosis, a wide variety of geometric shapes can be observed. Elgersma and co-

workers [90] have supported this idea based on in vivo measurements from multiple

projections of three-dimensional reconstructions obtained with a rotational angiogra-

phy system, and concluded that this imposes a severe limitation on the measurements

done from (a limited number of) 2-D projections. Three-dimensional approaches, like

the one presented in this work, provide a basis for both the description of the actual

cross-sectional shape and its quanti�cation. They also allow the de�nition of stenosis

indexes based on cross-sectional area reduction which are more representative of 
ow

obstruction than those only based on diameter narrowing.
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The in vivo experiments indicate the potential of the proposed method in a clinical

setting. In the previous chapter, a few examples on 3-D TOF MR angiograms were

presented. As we had pointed out, applicability of the method is limited to TOF

MRA data sets without signi�cant 
ow artifacts. In this chapter we analyzed 3-D CE

MRA data sets which, in principle, are less sensitive to 
ow-induced artifacts. An

analysis of a series of CE MRA clinical data sets was presented with promising results.

Although CEMRA reduces the problems related to 
ow voids, diÆculties in triggering

the acquisition start can still in
uence the results. Premature triggering can yield a

turbulent appearance in the luminal intensity because of an inhomogeneous mixture of

blood and contrast medium. Although the validity of our boundary criterion and the

accuracy of the measurements can be in
uenced, the results presented indicate that

the model-based technique correlates better with DSA than manual measurements.

Spearman's correlation coeÆcient was 0.91 (p < 0:001) for the model-based technique
against 0.80 (p < 0:001) and 0.84 (p < 0:001) for the two experts. We expect that

future improvements in acquisitions that use contrast agents will eventually lead to

more accurate measurements.

From the geometric modeling standpoint, a possible improvement of the method is

to introduce spatially varying model 
exibility (control points of the B-spline model).

In the present formulation, the control points of the vessel wall model are evenly

distributed along the vessel. This distribution was adequate for the phantom ex-

periments and, to an extent, for the patient data presented in this chapter. This

situation, however, is not optimal since some vessel parts have an almost constant di-

ameter while other parts, viz. around the stenosis, have abrupt diameter changes over

very short distances. An adaptive mechanism to adjust the density of control points

as a function of the local diameter changes would be preferred. This would allow for

more accurate modeling of shape variations in the stenotic region while capturing the

average diameter of the distal portion where the diameter variations are smaller.

4.A Appendix: Central vessel axis image feature

In this appendix we describe the image feature used to guide the �tting of the central

vessel axis, which is based on the eigenvectors and eigenvalues of the image Hessian

matrix.

Let I(x) and H�(x) be the intensity function (Figure 4.10(a)) and the associated

Hessian matrix at a given voxel x

H�(x) =

24Ixx(x) Ixy(x) Ixz(x)
Iyx(x) Iyy(x) Iyz(x)
Izx(x) Izy(x) Izz(x)

35 (4.4)

where I�1�2(x) denote regularized derivatives of the image I(x), which are ob-

tained by convolving the image with the derivatives of the Gaussian kernel at scale

� [160]
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I�1�2(x) = �2
@2G(x; �)

@�1@�2
� I(x) (4.5)

G(x; �) =
1p

(2��2)3
e�

kxk2

2�2 (4.6)

Here �k will denote the eigenvalue with the k-th smallest magnitude (j�1j �
j�2j � j�3j). A pixel belonging to a vascular region will be signaled by �1 being

small (ideally zero), and �2 and �3 being large and of equal sign (the sign is an

indicator of brightness/darkness). The respective eigenvectors correspond to singular

orientations: û1 indicates the orientation of the vessel (minimum intensity variation)

and û2 and û3 form a basis for the orthogonal plane.

To enhance bright vessel-like structures we have proposed in Chapter 2 the fol-

lowing discriminant function. This function performs a non-linear combination of the

eigenvalues of the Hessian matrix in such a way that linear structures are enhanced

while noise and non-tubular structures are smoothed out.

V(x; �) =

(
0 if �2 > 0 or �3 > 0;h
1� exp

�
�R

2
A

2�2

�i
exp

�
�R

2
B

2�2

�h
1� exp

�
� S

2

2c2

�i
; otherwise

(4.7)

RA =
j�2j
j�3j ; (4.8)

RB =
j�1jp
j�2�3j

(4.9)

S = kH�k =
sX

j

�2
j

(4.10)

Here RA, RB and S correspond to local measures of cross-sectional asymmetry,

local sphericity and degree of image structure [106]. The parameters �, � and c
tune the sensitivity of the �lter to deviations in RA, RB and S relative to the ideal

behavior for a line structure.

Equation (4.7) explicitly states that the �lter response is a function of the scale at

which the Gaussian derivatives are computed. The �lter is applied at multiple scales

that span the range of expected vessel widths according to the imaged anatomy. To

provide a unique �lter output for each pixel, the multiple scale outputs undergo a scale

selection procedure [182]. This amounts to computing the maximum �lter response

across scales

V (x) = max
�min����max

V(x; �) (4.11)

In this way, di�erent vessel sizes will be detected at their corresponding scales and

both small and large vessels will be captured with the same scheme (Figure 4.10(b)).
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Compared to the original implementation of Chapter 3, improved results have

been obtained in experiments by incorporating directional information. The orienta-

tion of the vessel at voxel x corresponds to that of the smallest-magnitude eigenvalue

at that location, û1(x). This orientation is computed at the same scale at which the

�lter output yielded maximum response {Equation (4.11).

If t̂(v) is the tangent vector to the B-spline central vessel axis model at parameter
value v, the centerline will be obtained by optimizing the following criterion

EC = �1

`

Z 1

0

V (C(v)) jht̂(v); û1(C(v))ij dv +Q(C) (4.12)

where ` is the centerline length, and Q(C) is a regularization term depending

only on the central vessel axis model (cf. Chapter 3), and h�; �i stands for the scalar
product. The extra factor, ht̂(v); û1(C(v))i, enforces that the tangent to the central

vessel axis model is parallel to the vessel orientation as inferred from the image. Since

the eigenvectors of the Hessian matrix only provide an orientation (not a direction)

only the magnitude of the scalar product is relevant. Therefore, the model will not

only go through the voxels of maximum �lter output, but will smoothly vary in

orientation according to the variations of the underlying vasculature (Figure 4.10(c)).

In particular, we have observed that the addition of this factor improves the �t of the

model extremes which will be enforced to end with the same orientation of the vessel.
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(a) (b) (c)

Figure 4.10. Filter performance at a severe stenosis. a) MIP of the original

CE MRA data set of the carotid arteries. b) MIP of the amplitude of the �lter

output. c) Three-dimensional rendering of the vasculature near the stenosis with

small needles indicating the local orientation inferred from the Hessian matrix. The

centerline, nicely conforming to the orientation �eld, is also indicated for comparison.





When possible make the decisions now, even if action is in the future.

A reviewed decision usually is better than one reached at the last

moment.
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Chapter 5

Three-dimensional modeling for

functional analysis of cardiac

images { A review

Abstract | Three-dimensional (3-D) imaging of the heart is a rapidly developing

area of research in medical imaging. Advances in hardware and methods for fast

spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and

research on cardiovascular diseases.

In the last few years, many approaches have been proposed to analyze images and

extract parameters of cardiac shape and function from a variety of cardiac imag-

ing modalities. In particular, techniques based on spatio-temporal geometric mod-

els have received considerable attention. This paper surveys the literature of two

decades of research on cardiac modeling. The contribution of the paper is three-fold:

1) to serve as a tutorial of the �eld for both clinicians and technologists, 2) to pro-

vide an extensive account of modeling techniques in a comprehensive and systematic

manner, and 3) to critically review these approaches in terms of their performance

and degree of clinical evaluation with respect to the �nal goal of cardiac functional

analysis. From this review it is concluded that whereas three-dimensional model-

based approaches have the capability to improve the diagnostic value of cardiac

images, issues as robustness, 3-D interaction, computational complexity and clinical

validation still require signi�cant attention.

Adapted from: A.F. Frangi, W.J. Niessen, and M.A. Viergever (2001). Three-dimensional
modeling for functional analysis of cardiac images: A review. IEEE Trans Med Imaging, in
press.

5.1 Introduction

C
ardiovascular disease (CVD) has been the number one cause of death in the

United States since 1900 in every year but one (1918). More than 2,600 Amer-

icans die each day of CVD; an average of one death every 33 seconds [3]. CVD

claims more lives each year than the next seven leading causes of death combined.

According to the most recent computations of the Centers for Disease Control and

Prevention of the National Center for Health Statistics (CDC/NCHS), if all forms of



72 5 3-D Modeling in cardiac imaging { A review

major CVD were eliminated, life expectancy would rise by almost 10 years while with

elimination of all forms of cancer the gain would be 3 years [3].1

Nowadays, there is a multitude of techniques available for cardiac imaging which

provide qualitative and quantitative information about morphology and function of

the heart and great vessels (Figure 5.1). Use of these technologies can help in guid-

ing clinical diagnosis, treatment, and follow-up of cardiac diseases. Spatio-temporal

imaging is a valuable research tool to understand cardiac motion and perfusion, and

their relationship with stages of disease.

Technological advances in cardiac imaging techniques provide 3-D information

with continuously increasing spatial and temporal resolution. Therefore, a single

cardiac examination can result in a large amount of data (particularly in multi-phase

3-D studies). These advances have led to an increasing need for eÆcient algorithms

to plan 3-D acquisitions, automate the extraction of clinically relevant parameters,

and provide tools for their visualization.

Segmentation of cardiac chambers is an invariable prerequisite for quantitative

functional analysis. Although many clinical studies still rely on manual delineation

of chamber boundaries, this procedure is time-consuming and prone to intra- and

inter-observer variability. Therefore, many researchers have addressed the problem

of automatic left (LV) and right (RV) ventricle segmentation. Since the shape of

the cardiac ventricles is approximately known, it seems natural to incorporate prior

shape knowledge into the segmentation process. Such model-driven techniques have

received ample attention in medical image analysis in the last decade [197, 274]. A

few advantages over model-free approaches are: a) the model itself can constrain the

segmentation process that is ill-posed in nature owing to noise and image artifacts;

b) segmentation, image analysis and shape modeling are simultaneously addressed in

a common framework; c) models can be coarse or detailed depending on the desired

degree of abstraction; d) in some approaches, most of the chamber's shape can be

explained with a few comprehensible parameters which can subsequently be used as

cardiac indices (cf. [20, 218,219,232,233] among others).

Use of geometric models is not completely new to the analysis of cardiac images.

As a matter of fact, traditional methods of obtaining parameters such as left ven-

tricular volume and mass from echo- and angiocardiography were based on (simple)

geometrical models [66, 79, 136, 152]. However, their use was mainly motivated by

the need of extracting 3-D parameters from two-dimensional (2-D) images and their

accuracy was therefore limited [306].

The literature on model-driven segmentation of cardiac images has grown rapidly

in the last few years and this trend is likely to continue. To the best of our knowledge

no survey is available that reviews this work.2 This paper presents a comprehen-

1At the time of writing, the authors could not �nd similar statistics for Europe. There is, however,

an ongoing European survey on CVDs whose results are expected to appear soon [273].
2After this chapter has been accepted for publication in journal form [105], the authors have found

a very recent parallel review paper by Suri [287]. Suri's review is complementary to ours in that it

also surveys the literature on two-dimensional and model-free cardiac image analysis. However, it

is less extensive in terms of three-dimensional modeling. The main conclusions of that review are

similar to ours. Although many approaches have been presented in the literature, most of them

are not yet ripe for clinical use. One of the main topics to be addressed in the future is clinical

evaluation.
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sive and critical review of the state-of-the-art in geometric modeling of the cardiac

chambers, notably the LV, and their potential for functional analysis. In order to

set reasonable bounds to the extent of this survey, we have con�ned ourselves to

peer-reviewed archival publications3 proposing methods for LV (RV) segmentation,

shape representation, and functional and/or motion analysis, that ful�ll the following

selection criteria:

� the technique is model-based,

� the reconstructed model is 3-D,4

� illustration on cardiac images is provided.

This chapter is organized as follows. Section 5.2 gives a brief overview of the

di�erent acquisition modalities that have been used in imaging the heart. Section 5.3

overviews and de�nes the most relevant clinical parameters that provide information

on cardiac function. Section 5.4 presents a systematic classi�cation of cardiac models

by type of geometrical representation/parameterization. Attention is also given to

the di�erent types of input data and features for model recovery. This section is

summarized in Table 5.1. Section 5.5 discusses cardiac modeling approaches with

respect to the functional parameters they provide and the degree of evaluation of these

methods. This section leads to Table 5.2 that links the clinical target of obtaining

functional information of the heart (Section 5.3) to the various technical approaches

presented in Section 5.4. Finally, Section 5.6 closes the survey with conclusions and

suggestions for future research.

5.2 Imaging techniques for cardiac examination

The physical properties on the basis of which the imaging device reconstructs an im-

age (e.g., radioactive emission of an isotope) are intimately related to some speci�c

functional aspects of the heart (e.g., its perfusion properties). Each imaging modality

presents advantages and limitations that in
uence the achievable modeling accuracy.

This section brie
y reviews the techniques most frequently used for 3-D clinical in-

vestigation of the heart. More extensive reviews and complementary readings can be

found in [38, 137,194,214,244,248,252,315].

5.2.1 Angiocardiography

Angiocardiography is the X-ray imaging of the heart following the injection of a

radio-opaque contrast medium. Although 2-D in principle, this technique can pro-

vide projections from two angles using a biplane system. Selective enhancement of

the lesion to be demonstrated can be accomplished by positioning an intra-vascular

3A few exceptions were made when the approaches were considered relevant and journal versions

were not available.
4Even if the imaging technique is not 3-D like, for instance, in the reconstruction of 3-D models

from multiple non parallel slices or from multiple 2-D projections.
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Figure 5.1. Diagram of the heart.

catheter through which the contrast medium is guided and injected. Angiocardiog-

raphy is usually good at anatomic delineation of lesions but much less satisfactory in

determining their severity and the degree of hemodynamic disturbance that they have

produced. This technique has been used for a long time to assess ejection fraction

and volumes [152] based on simpli�ed geometric models [66, 79, 136] of the LV, but

most radiologists use visual assessment based on experience [248].

5.2.2 Cardiac ultrasound

Two-dimensional ultrasonic imaging (US) of the heart or \echocardiography" [194,

244] allows the anatomy and movements of intra-cardiac structures to be studied non-

invasively. The application of pulsed and continuous-wave Doppler principles to 2-D

echocardiography (2DE) permits blood 
ow direction and magnitude to be derived

and mapped onto a small region-of-interest of the 2DE image. In color 
ow Doppler

mapping (CFM), the pulsed-wave signal with respect to blood velocity and direction

of 
ow throughout the imaging plane is color coded, and produces a color map over

the 2DE image. One of the limiting factors of 2DE is the ultrasound window (presence

of attenuating tissues in the interface between the US transducer and the organ of

interest). To overcome this problem transesophageal echocardiography can be used,

which allows for high-quality color 
ow images at the expense of being invasive.

Three-dimensional echocardiography (3DE) [214] is a relatively new development

in US that allows 3-D quantitation of organ geometry since the complete organ

structure can be imaged. This technique has been used to compute LV volume and

mass [8, 59, 120,174,283,294] and to perform wall motion analysis [187].
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5.2.3 Isotope imaging

Isotopes have been used to study left ventricular function and myocardial perfusion.

Radionuclide techniques for monitoring global and regional ventricular function fall

into two major categories: a) �rst-pass studies in which the injected bolus dose is

monitored during its �rst passage through the heart and great vessels; and b) gated

equilibrium studies, in which the tracer mixes with the blood pool before data col-

lection. First pass acquisitions are typically 2-D, while gated equilibrium studies can

be 2-D or 3-D (Single Photon Emission Computed Tomography { SPECT). Isotope

imaging can be used to assess parameters like ejection fraction [114] and regional wall

motion analysis [93, 96, 114]. It is also used to study myocardial perfusion [115] in

cases of ischemia or myocardial infarction, and to assess myocardial viability. The

overwhelming majority of radionuclide studies performed for perfusion assessment are

SPECT.

5.2.4 Cardiac Computed Tomography

Conventional Computed Tomography (CT) [38] had virtually no place in cardiovascu-

lar examinations. Nowadays spiral CT [159,220] is becoming increasingly popular for

cardiac imaging, with image quality rivaling that of magnetic resonance. Dynamical

Spatial Reconstruction [252] (DSR) uses multiple X-ray tubes and image intensi�er

chains to produce \real time" multiple cross-sections with similar acquisition times

to ultrafast CT but is not commercially available [248]. Electron Beam Computed

Tomography (EBCT) [37] or Ultrafast CT is both relatively inexpensive to perform

and capable of providing 3-D information on coronary calcium deposits (plaque) and

cardiac cavities' anatomy and function. A current limitation of this system (relative

to DSR) is that the spatial resolution in the transaxial direction is much less than in

the in-plane (often transverse) direction.

5.2.5 Magnetic Resonance Imaging

Cardiac Magnetic Resonance Imaging [315] (MRI) is now an established, although

still rapidly advancing, technique providing information on morphology and function

of the cardiovascular system [138]. Advantages of cardiac MRI include a wide topo-

graphical �eld of view with visualization of the heart and its internal morphology and

surrounding mediastinal structures, the capability of multiple imaging planes, and a

high soft-tissue contrast discrimination between the 
owing blood and myocardium

without the need for contrast medium or invasive techniques. Long- and short-axis

views of the heart, as used in echocardiography, can be obtained routinely since ar-

bitrary imaging planes can be selected.

Another advantage of MRI is that it can provide both anatomical and functional

information about the heart. Several researchers have used MRI to assess global and

regional, right and left ventricular function as represented by stroke volume, ejection

fraction and LV mass [60, 86, 151, 185, 192,299], wall-thickening [30], myocardial mo-

tion [198], and circumferential shortening of myocardial �bers [51]. Data from MRI is

more accurate than that derived from left ventricular angiocardiography, where the
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calculation is based on the assumption that the LV is ellipsoidal in shape. Volume

measurements by MRI are independent of cavity shape, with the area from contiguous

slices integrated over the chamber of interest.

In contrast with other techniques, including 2DE and angiocardiography, anatomic

information is easily de�ned on MRI. The advantages of MRI over 2DE are a wider

topographical window and a superior contrast resolution.

A decade ago, MR tagging was introduced independently by Zerhouni [326] and

Axel [12]. This technique is able to create and track material points (points at-

tached to a �xed location of the myocardium) over time. Myocardial deformations

can therefore be studied in a non-invasive manner. SPAtial Modulation of Magneti-

zation (SPAMM) creates two orthogonal sets of parallel planes (sheets) of magnetic

saturation, usually orthogonal to the imaging plane. Tissue deformation will be indi-

cated by the displacement of black (saturated) bands in the image that correspond to

the intersections of the imaging plane (tag grid). This grid only provides the in-plane

motion component (2-D motion). To reconstruct the 3-D motion of the material

points, a number of 2-D tagged image sections must be obtained in at least two ori-

entations. Further post-processing is then required to interpolate the displacement

�eld and to eventually perform strain analysis.

5.3 Classical descriptors of cardiac function

Development of models of the cardiac chambers has emerged from di�erent disciplines

and with various goals. Cardiac models have been used for deriving functional in-

formation, for visualization and animation, for simulation and planning of surgical

interventions, and for mesh generation for Finite Element (FE) analysis.

This survey will be con�ned to the application of modeling techniques for obtain-

ing classical functional analysis. Classical functional analysis can be divided into global

functional analysis (Section 5.3.1), and motion/deformation analysis (Section 5.3.2),

from which the most clinically relevant parameters can be obtained.

Model-based methods also allow one to derive new descriptors of cardiac shape

and motion. Such advanced descriptors have been mainly presented in the technical

literature and their clinical relevance has still to be assessed. Without pretending

to be exhaustive, Appendix 5.A summarizes a number of non-classical shape and

motion descriptors that demonstrate the extra possibilities provided by some advanced

methods.

5.3.1 Global functional analysis

Weber and Hawthorne [311] proposed a classi�cation of cardiac indices according

to their intrinsic dimensionality: linear, surface and volumetric descriptors. Linear

parameters have been used intensively in the past since they can easily be derived

from 2-D imaging techniques like 2DE and X-ray angiocardiography.5 However, they

5Such parameters are, for instance, left ventricular internal dimension (LVID), relative wall thick-

ness (RWT), and estimates of fractional shortening of the cardiac �bers (%�D) and their velocity

(Vcf ). For a detailed analysis of these parameters the reader is referred to Vuille and Weyman [306].
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assume an \idealized" geometry of the LV and strongly depend on external or internal

reference and coordinate systems. Besides total ventricular wall area, other surface

indices based on curvature and derived parameters have been investigated from 2-D

studies [21, 148, 189, 190]. More recently, many image processing approaches to left

ventricular modeling have suggested true 3-D global and local shape indices based on

surface properties.

In practice, assessment of cardiac function still relies on simple global volumetric

measures like left ventricular volume and mass, and ejection fraction. These and other

basic parameters will be presented in the following paragraphs.

Left ventricular volume (LVV). Left ventricular volume is a basic parameter

required to derive other LV indices like, e.g., ejection fraction. Angiocardiography

and echocardiography have been traditionally used to assess this quantity. In the

latter case, three approaches have been applied: represent the LV volume a) as the

volume of a single shape (e.g., truncated ellipse); b) as the sum of multiple smaller

volumes of similar con�guration (e.g., Simpson's method), and c) as a combination of

di�erent �gures [306, p. 585]. The achieved accuracy in the assessment of LVV with

echocardiography varies largely with the model used to represent the LV. The best

results have been obtained using Simpson's rule where in vitro studies have revealed a

relative error ranging from 5.9% to 26.6% depending on the particular implementation

and the number of short-axis slices used in the computation [306, p. 588]. It has been

shown that echocardiography consistently underestimates ventricular cavity, while

angiocardiography consistently overestimates true volumes [306]. In a recent study

by Lorenz et al. [185] with a canine model and autopsy validation, it has been shown

that cine MRI is a suitable and accurate method to estimate right and left ventricular

volume. In this study, MR-based and autopsy volumes agreed within 6 ml, yielding

no statistically signi�cant di�erences.

Left ventricular mass (LVM). Left ventricular hypertrophy, as de�ned by

echocardiography, is a predictor of cardiovascular risk and higher mortality [306, p. 599

and references therein]. Anatomically, LV hypertrophy is characterized by an increase

in muscle mass or weight.

Left ventricular mass is mainly determined by two factors: chamber volume, and

wall thickness. There are two main assumptions in the computation of LVM: a) the

inter-ventricular septum is assumed to be part of the LV, and b) the volume, Vm, of
the myocardium is equal to the total volume contained within the epicardial borders

of the ventricle, Vt(epi), minus the chamber volume, Vc(endo); LVM is obtained by

multiplying Vm by the density of the muscle tissue (1.05 g/cm3)

Vm = Vt(epi)� Vc(endo) (5.1)

LVM = 1:05� Vm (5.2)

LVM is usually normalized to total body surface area or weight in order to facilitate

inter-patient comparisons. Normal values of LVM normalized to body weight are

2.4�0.3 g/kg [185].
Stroke volume (SV). Stroke volume is de�ned as the volume ejected between

the end of diastole and the end of systole.

SV = end-diastolic volume (EDV)� end-systolic volume (ESV) (5.3)
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Alternatively, SV can be computed from velocity-encoded MR images of the aortic

arch by integrating the 
ow over a complete cardiac cycle [164]. Similarly to LVM

and LVV, SV can be normalized to total body surface. This corrected stroke volume

is known as stroke volume index (SVI). Healthy subjects have a normal SVI of 45� 8

ml/m2 [185].

Ejection fraction (EF). Ejection fraction is a global index of left ventricular

�ber shortening and is generally considered as one of the most meaningful measures

of the left ventricular pump function. It is de�ned as the ratio of the stroke volume

to the end-diastolic volume.

EF =
SV

EDV
� 100% =

EDV �ESV

EDV
� 100% (5.4)

Lorenz et al. measured normal values of EF with MR [185]. They found values of

67�5% (57{78%) for the LV, and 61�7% (47{76%) for the RV. Similar values were

obtained with ultrafast CT, echocardiography and X-ray angiocardiography [185,306].

Cardiac output (CO). The role of the heart is to deliver an adequate quantity

of oxygenated blood to the body. This blood 
ow is known as the cardiac output and

is expressed in liters per minute. Since the magnitude of CO is proportional to body

surface, one person may be compared to another by means of the cardiac index (CI),

that is, the CO adjusted for body surface area. Lorenz et al. [185] reported normal

CI values of 2.9�0.6 l/min/m2 and a range of 1.74{4.03 l/min/m2.

CO was originally assessed using Fick's method or the indicator dilution tech-

nique [139]. It is also possible to estimate this parameter as the product of the

volume of blood ejected within each heart beat (the SV) and the heart rate (HR).

CO = SV �HR (5.5)

In patients with mitral or aortic regurgitation, a portion of the blood ejected from

the LV regurgitates into the left atrium or ventricle and does not enter the systemic

circulation. In these patients, the CO computed with angiocardiography exceeds the

forward output. In patients with extensive wall motion abnormalities or misshapen

ventricles, the determination of SV from angiocardiographic views can be erroneous.

Three-dimensional imaging techniques provide a potential solution to this problem

since they allow accurate estimation of the irregular left ventricular shape.

5.3.2 Motion and deformation analysis

Motion analysis.6 A number of techniques have been used in order to describe

and quantify the motion of the heart. They can be divided into three main cate-

gories [195]: i) detecting endocardial motion by observing image intensity changes, ii)

determining the boundary wall of the ventricle, and subsequently tracking it, and iii)

attempting to track anatomical [46, 156, 240, 324], implanted [9, 41, 133, 146, 199, 247,

304] or induced [12, 76, 99, 153, 170, 210, 321, 325, 326] myocardial landmarks. There

6At this point it is worth mentioning an excellent on-line bibliographic database maintained

by the Special Interest Group on Cardiac Motion Analysis (SigCMA) that can be accessed at

http://www-creatis.insa-lyon.fr/sigcma. It also provides general bibliographic information on

model-based cardiac image analysis.



5.3 Classical descriptors of cardiac function 79

are a few problems involved with each of these techniques. Assumptions must be

made about the motion (motion model) in the �rst two groups in order to obtain

a unique point-wise correspondence between frames. To this end, optic 
ow meth-

ods [2,74,75,81,242,293]7 and phase contrast MR [121,205,277,278] have been applied

for (i), and curvature-based matching [5,27,107,147,206] has been used to �nd point

correspondences in (ii). Landmark-based methods [9, 12, 41, 46, 76, 99, 133, 146, 153,

156, 170, 199, 210, 240, 247, 304, 321, 324{326] provide information on material point

correspondence. However, this information is mostly sparse and, again, assumptions

on the type of motion have to be made in order to regularize the problem of �nding a

dense displacement �eld. The use of implanted markers adds the extra complication

of being invasive, which precludes routine use of this technique in humans. Although

implanted markers are usually regarded as the gold standard, there are some concerns

in the literature about their in
uence on both image quality and modi�cation of the

motion patterns.

Wall thickening (WT). Azhari et al. [17] have compared wall thickening and

wall motion in the detection of dysfunctional myocardium. From their study, it was

concluded that wall thickening is a more sensitive indicator of dysfunctional contrac-

tion [17]. This �nding has triggered several researchers to de�ne methods to quantify

wall thickness. Azhari et al. [17], and Taratorin and Sideman [288] carried out a

regional analysis of wall thickness by dividing the myocardium into small cuboid ele-

ments. The local wall thickness is then de�ned as the ratio between the volume of the

particular element and the average area of its endocardial and epicardial surfaces [30].

The most widely employed method for wall thickening computation, however, is

the centerline method [269] and several improvements thereof [35,36,42,299]. Starting

with the endo- and epicardial contours at each slice, the centerline method, in its

original formulation, measures wall thickening in chords drawn perpendicular to a

line that is equidistant to both contours (the centerline). Although more accurate

than methods relying on a �xed coordinate system, this method still assumes that

the contours are perpendicular to the long axis of the LV. If this is not the case,

the myocardial wall thickness is overestimated which invariably occurs, for instance,

in slices that are close to the apex. Buller and co-workers [42, 299] introduced an

improvement on this method by estimating at each location the angle between the

wall and the imaging plane. Recently, Bolson and Sheehan [35, 36] have introduced

the centersurface method (true 3-D extension of the centerline method) which makes

use of a reference medial surface to compute the chords and subsequent wall thickness.

Strain analysis. Strain analysis is a method to describe the internal deforma-

tion of a continuum body. It is an appealing tool to study and quantify myocardial

deformation. Here we shall brie
y introduce some of the concepts related to strain

analysis. A comprehensive exposition of this theory can be found in Fung [109].

To describe the deformation of a body the position of any point in the body

needs to be known with respect to an initial con�guration; this is called the reference

state. Moreover, to describe position a reference frame is needed. In the following

a Cartesian reference frame will be assumed. It is also common to use curvilinear

coordinates for which some of the expressions simplify.

7For a survey of optic 
ow methods in computer vision see Beauchemin and Barron [26].
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A myocardial point, Mr, has coordinates fyig and a neighboring point, M0

r, has

coordinates fyi + dyig. Let Mr be moved to the coordinates fxig, and its neighbor

to fxi + dxig. The deformation of the body is known completely if we know the

relationship

xi = xi(y1; y2; y3) i=1,2,3 (5.6)

or its inverse,

yi = yi(x1; x2; x3) i=1,2,3 (5.7)

For every point in the body we can write

xi = yi + ui i=1,2,3 (5.8)

where ui is called the displacement of the particle Mr. In order to characterize

the deformation of a neighborhood, the �rst partial derivatives of Equations (5.6)-

(5.8) are computed. These derivatives can be arranged in matrix form to de�ne the

deformation gradient tensor : F = [@xi=@yj], (i; j = 1; 2; 3). The deformation gradient
tensor enables to estimate the change in length between the neighboring points fyig
and fyi + dyig, when they are deformed into fxig and fxi + dxig. Let d`r and d` be
these lengths before and after deformation. Then

d`2 � d`2r = 2

3X
i=1

3X
j=1

Eijdyidyj (5.9)

where E = [Eij ] is the Green strain tensor [109]
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where Æij is the Kronecker tensor. From the strain tensor it is possible to de-

compose the strains into two groups: axial and shear strains. The former correspond

to the diagonal elements and represent changes in length aligned with the axes of

the reference frame while the latter correspond to o�-diagonal terms or deformations

where two axes are coupled.

5.4 Overview of modeling techniques

A large e�ort has been devoted to the analysis and segmentation of cardiac images

by methods guided by prior geometric knowledge. When focusing on the way models

are geometrically represented, three main categories can be distinguished: 1) surface

models, 2) volumetric models, and 3) deformation models. In all cases both discrete

and continuous models have been proposed as well as implicitly de�ned surface models

(Figure 5.2).
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Figure 5.2. Proposed classi�cation of cardiac modeling approaches.

Alternatively, one may classify model-based approaches by considering the infor-

mation that is used as input for model recovery. This categorization is highly de-

termined by the imaging modality for which the method has been developed. There

are a variety of inputs for model recovery: 1) multiple 2-D projection images, 2)

multiple oriented 2-D slices, 3) fully 3-D grey-level images, 4) 3-D point sets, 5)

phase-contrast velocity �elds, and 6) MR tagging information.

In this chapter we will compare the di�erent methods with respect to type of

model representation, and types of input data and features that the model is recovered

from. Table 5.1, in which the di�erent approaches are grouped according to the type

of model representation, summarizes this section.

Keys to Table 5.1:

| Modality: BA = Biplane Angiocardiography; US = Ultrasound, MR = Magnetic

Resonance; DSR = Dynamic Spatial Reconstructor; CT = Computed Tomography; X =

transmission X-ray; SPECT = Single Photon Emission Computed Tomography; Syn =

Synthetic images; NS = Non Speci�c.

| Recovered from: M2DP = multiple 2-D projections; MO2DS = multiple oriented 2-D

slices; 3DV = 3-D volumetric images/feature maps; PS = point sets; TAG = MR tag

intersections, lines or surfaces.

Figure 5.3. Keys to Table 5.1.

5.4.1 Surface models

Many approaches to cardiac modeling focus on the endocardial (and/or epicardial)

wall. Three sub-categories are proposed: a) continuous models with either global,
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Table 5.1. Overview of cardiac modeling methods. See Keys in Figure 5.3.

Surface Models

Reference Model Potential Reported Input Feature

Continuous Yettram [316,317] Stacked curves BA BA M2DP manual contours
Young [323,324] Bicubic Hermite patches BA BA PS coronary bifurc. points

Spinale [280]RV Stacked hemiellipses BA BA M2DP manual contours
Pentland [234] FE and modal analysis NS X M2DP optic flow

Cauvin [44] Truncated bullet NS SPECT 3DV thresh. + morph. skel.

Czegledy [63]RV Stack of crescentic outlines NS CT 3DV linear measurements
Gustavsson [127] Cubic B-spline curves' mesh US US MO2DS manual contours

Sacks [256]RV Biquadric surface patches NS MR 3DV manual contours
Chen [47] Superquad. + spher. harm. NS BA PS coronary bifurc. points

Denslow [77]RV Ellipsoidal shell NS MR 3DV linear measurements

Maehle [187] Bicubic spline surf. patch. NS US MO2DS
edge detection +

manual correction
Chen [49] Voxel repres. / superquadric NS DSR 3DV shape & intens. prop.

Coppini [59] Spherical elastic surface NS US MO2DS NN edge detector

Goshtasby [123] Rational Gaussian surface NS MR 3DV zero-cross Laplacian

Matheny [193] 3-D/4-D harmonic surfaces NS DSR/BA PS
iso-surface,

coronary bifurc. points
Staib [281] Bayesian Fourier surface NS MR/DSR 3DV Gaussian gradient

Park [233] Superquadrics + par. func. MRtag MRtag PS motion field [321]

Bardinet [19,20] Superquadrics + FFD NS DSR/SPECT PS iso-surfaces
Declerck [69] Planispheric transformation NS SPECT 3DV norm. radial grad.

Sato [259] B-spline surface BA BA M2DP apparent contours

Discrete Geiser [111, 112] 12-sided stacked polygons US US MO2DS manual contours
Faber [95] 4-D discrete template NS MR/SPECT 3DV norm. radial grad.

Gopal [120] Polyhedral mesh NS US MO2DS manual contours
Friboulet [108] Triangulated mesh NS MR PS manual contours

Huang [145] Adaptive-size mesh NS DSR PS
data-to-node dist. +

data curvature
Faber [94] 3D discrete template SPECT SPECT 3DV radioact. distrib. prof.

Germano [116,117] Ellipsoid + local refinement SPECT SPECT 3DV radioact. distrib. prof.

McInerney [196] FE deformable balloon NS DSR 3DV Gauss/Deriche grad.

Ranganath [246] 2D snakes + propagation MR MR 3DV intens. prof. matching

Tu [297] Spherical template NS DSR 3DV 3D+t gradient

Nastar [213] Mass-spring mesh NS DSR 3DV edge distance map

Rueckert [254] Geom. Def. Template NS MR 3DV zero-cross Laplacian

Shi [87,272] Delaunay triangulation NS MR/DSR PS bending energy

Legget [174] Piecewise subdivision surf. NS US MO2DS manual contours
Montagnat [209] Simplex meshes US US MO2DS edges in cylind. coord.

Biedenstein [31] Bullet-like elastic mesh SPECT SPECT 3DV radioact distrib. prof.

Implicit Yezzi [318, 319] Implicit snakes NS MR 3DV Gaussian gradient

Tseng [295] Cont. Dist. Tranf. NN NS US MO2DS manual contours
Niessen [215] Implicit snakes NS MR/DSR 3DV Gaussian gradient

Lelieveldt [176] Fuzzy implicit surfaces CT/MR MR MO2DS air-tissue transitions

Volume Models

Continuous Creswell [61, 237] Approximating NURBS MR MR PS manual contours

Park [232] Superellipsoids + par. func. MRtag MRtag TAG
tag line intersections +

boundary points

Haber [130, 131] Physics-based FE MRtag MRtag TAG
tag line intersections +

boundary points

Shi [271] Biomech. tetrahed. FEM MR MR PS+3DV
bending energy +

MR velocity image
Discrete Kuwahara [172] Voxel representation MR MR MO2DS manual contours

O'Donnell [218, 219] Hybrid volum. ventriculoid MRtag MRtag TAG
tag line intersections +

boundary points

Deformation Models

Continuous Amini [5] Local quadric patches NS DSR/MR PS minimal conf. motion

Young [321] Bicubic Hermite FE MRtag MRtag TAG tag line intersections

Bartels [23] Multi-dimensional splines NS Syn 3DV intensity conservation

O'Dell [217] Affine + prolate spheroidal MRtag MRtag TAG tag lines

Young [325] Bicubic Hermite FE MRtag MRtag TAG tag lines

Moulton [211] Higher-order polyn. interp. MRtag MRtag TAG tag surface intersec.

Radeva [245] Trivariate cubic B-spline MRtag MRtag TAG short axis tag lines

Kerwin [153] Thin-plate splines MRtag MRtag TAG tag line intersections

Young [320] \Model tags" MRtag MRtag TAG tag lines

Huang [144] Four-variated cubic B-spline MRtag MRtag TAG tag surfaces

Discrete Moore [210] Discrete mesh MRtag MRtag TAG tag line intersections

Denney [76] Discrete grid MRtag MRtag TAG tag line intersections

Benayoun [27] Adaptive-size meshes NS DSR 3DV gradient

Papademetris [229{231] Delaunay triangulation NS MR/US PS intern. deform. energy
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local or hybrid parameterizations, b) discrete models, and c) implicitly de�ned de-

formable models.

Continuous models

In the early studies of cardiac images by 2DE and angiocardiography, cardiologists

used simpli�ed models of the LV in order to compute functional parameters like

ventricular volume and mass from 2-D images. Most of the times, simple ellipsoidal

models were considered. See, e.g., Vuille and Weyman [306] and Dulce et al. [86] for

a comprehensive review of such models and a comparison of their accuracy. In the

last decades, however, approaches have appeared that make use of 3-D acquisitions

to reconstruct models varying from global parameterizations of the LV surface [44,59,

69,123,193,232,235,281] to hierarchically parameterized models [20,47,116,127,176].

Global approaches. In this category we will discuss surface representations that are

based on simple geometric models. In general they can provide, with a limited number

of global parameters, a rough shape approximation. We also include in this category

surface representations obtained as series of basis functions with global support.

Cauvin et al. [44] model the LV as a truncated bullet, a combination of an ellipsoid

and a cylinder, that is �tted to the morphological skeleton of the LV. Metaxas and Ter-

zopoulos [204] have proposed superquadrics [22] to model simple objects with a small

number of parameters. Since the introduction of superquadrics, several extensions

have appeared in the literature. Chen et al. [49] apply superquadrics with taper-

ing and bending deformations to model the LV in an integrated approach for image

segmentation and shape analysis. The method iterates between a region-based clus-

terization step [48], using statistics of image intensity and gradient, and a shape-based

step that checks the consistency between the current segmentation and a superquadric

model. Park, Metaxas and Axel [233] have extended the 
exibility of superquadrics

by introducing parameter functions : radial and longitudinal contraction, twisting and

long-axis deformation. These allow for a more detailed representation of the LV while

keeping the intrinsic geometrical meaning of the superquadric parameters. LV mid-

wall motion is recovered using pre-processed MR tagging data obtained by sampling

the LV mid-wall surface from the 3-D Finite Element (FE) model of Young and

Axel [321].

Staib and Duncan [281] use sinusoidal basis functions to decompose the endo-

cardial surface of the LV. The overall smoothness of the surface is controlled by

adjusting the number of harmonics in the Fourier expansion. Model recovery is cast

into a Bayesian framework in which prior statistics of the Fourier coeÆcients are used

to further limit the 
exibility of the model. Matheny and Goldgof [193] compare

di�erent 3-D and four-dimensional (4-D) surface harmonic descriptions for shape re-

covery. Time can be incorporated in two ways in the model: a) hyper spherical

harmonics, where an event in space-time is converted from Cartesian coordinates to

hyper spherical coordinates, and b) \time-normal" coordinates which are formed by

including a temporal dependency to each spatial coordinate. Experiments carried

out with a 3-D CT data set of a canine heart have indicated that hyper spherical

harmonics can represent the beating LV with higher accuracy than direct normal ex-

tensions of spherical, prolate spheroidal and oblate spheroidal harmonics. Coppini et
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al. [59] reconstruct a 3-D model of the LV based on apical views in US images. LV

boundaries are obtained by grouping edges with a feed-forward neural network (NN)

integrating information about several edge features (position, orientation, strength,

length and acquisition angle). This allows discarding many edge points that are not

plausible LV boundary points. The 3-D LV geometry is modeled as a spherical elastic

surface under the action of radial springs (attracting the model to the edge points);

a Hop�eld [142] NN is used to solve the minimization problem involved in the re-

construction of this surface. Declerck, Feldmar and Ayache [69] have introduced a

spatio-temporal model to segment the LV and to analyze motion from gated SPECT

sequences. The model relies on a planispheric transformation that maps endocardial

points in one time frame to the corresponding material points in any other frame.

First, endocardial edge points are detected in all frames using a Canny-Deriche edge

detector [208] in spherical coordinates [70]. Selected points in subsequent frames

are matched to the current frame using a modi�cation of the Iterative Closest Point

(ICP) algorithm [29,70,98]. Based on corresponding point pairs, the parameters of a

planispheric transformation are retrieved by least-squares approximation. This trans-

formation allows to describe motion with just a few parameters and to relate them

to a canonical decomposition (radial motion, twisting motion around the apico-basal

axis, and long-axis shortening).

Hierarchical approaches. Some authors have addressed the problem of building

hierarchical representations where a model described with few parameters is comple-

mented with extra deformations that capture �ner details.8 Gustavsson et al. [127], for

instance, employ a truncated ellipsoid to obtain a coarse positioning of the left ventric-

ular cavity from contours drawn in two short-axis and three apical echocardiographic

views. Further model re�nement is achieved using cubic B-spline curves approximat-

ing manually segmented contours in multiple views. Chen et al. [47] and Bardinet et

al. [20] use superquadrics [22] to coarsely describe the LV. Their approaches funda-

mentally di�er in the representation of the additional deformation �eld. Chen et al.

use spherical harmonics in order to approximate the residual error between the su-

perquadric estimate of the endocardial LV wall and the true wall location. Spherical

harmonics have the advantage that �ne-tuning can be improved ad in�nitum with in-

creasing number of harmonics. However, adding a new coeÆcient in
uences the shape

of the model everywhere (non-local basis functions). Bardinet et al. [20] extend the

basic superquadric deformations (tapering and bending) through the use of free-form

deformations (FFD), a technique introduced in computer graphics by Sederberg and

Parry [266]. The superquadric is attached to a 
exible, box-like frame, inducing a

non-rigid deformation on the superquadric. Bardinet et al. use trivariate B-splines to

parameterize this deformation �eld. In a later work, Bardinet et al. [19] apply their

method to estimate left ventricular wall motion. This is accomplished by deforming

the full model (superquadric + FFD) in the �rst frame, and modifying only the FFD

in the subsequent frames. By tracking points with the same parametric coordinates

along the cardiac cycle, a number of dynamic parameters like wall thickening and

twisting motion are computed. Germano et al. [116, 117] have developed a system

8Similar approaches have been proposed in computer vision for modeling man-made objects [203,

276,291,302,303] and for elastic matching [18,98].
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for automatic quanti�cation of left ventricular function from gated perfusion SPECT

images. An iterative algorithm �ts an ellipsoidal model to a semi-automatically ob-

tained segmentation. This iterative algorithm incrementally adapts the ellipsoid's

parameters and center of mass so that accurate registration of the model is obtained

even in the presence of large perfusion defects. The ellipsoid de�nes a coordinate

system that is used to re�ne the model. A Gaussian model of the count pro�les is

used to compute radial o�sets corresponding to the endocardial and epicardial walls.

Although simple in its formulation, this method has proven very useful in determining

most of the classical cardiac functional parameters [115] from SPECT images and has

been extensively validated in humans [113,116,117].

Local approaches. A number of methods have been reported to provide surface

reconstruction using piecewise polynomial surfaces, e.g., B-splines or bicubic Hermite

surface patches. These techniques have appeared mainly in the context of surface

reconstruction from multiple cross-sections [172,187] or projections [259,280,316,317,

323]. Given the ill-posed nature of this problem, most of these techniques require

extensive user interaction. Usually, a set of land-marks or �ducial points are deter-

mined from each cross-section/projection and, using high-level knowledge about the

viewpoint and the geometry of the LV, a local surface approximation using surface

patches is performed.

A rather di�erent approach is the one by Pentland and Horowitz [234] who applied

modal analysis and FE to reconstruct a 3-D model of the LV from X-ray transmission

data. Modal analysis o�ers a principled physically-based strategy for reducing the

number of degrees of freedom of the model and to obtain an over-constrained problem

for shape recovery. Optic 
ow is used to derive the deformation of the 3-D model

from the 2-D views, and a Kalman �lter for tracking the structures over time.

Instead of working with multiple cross-sections or projection images, Goshtasby

and Turner [123] segment left and right ventricular endocardial surfaces from 3-D


ow-enhanced MR images. In this case, the endocardial surface is modeled as a

deformable cylinder using rational Gaussian surfaces [122]. The model is deformed to

�t the zero-crossings of the image Laplacian. To avoid attraction by spurious edges,

prior to �tting, the feature map is masked by a rough LV region-of-interest obtained

by intensity thresholding.

Right ventricle models. Some e�orts have also been directed toward geometric

modeling of the RV. This chamber has a more complex shape than the LV. Spinale et

al. [280] �t semi-ellipses to model the crescentic shape of the RV from biplane ven-

triculograms. Czegledy and Katz [63] model the RV using a crescentic cross-sectional

model composed of two intersecting circles of di�erent radii. This 3-D model is pa-

rameterized by only a few linear dimensions that can be measured directly from CT,

MR or US images. From these dimensions, the RV volume is approximated using

analytical expressions. Denslow [77] model the RV as the di�erence of two ellipsoids

(an ellipsoidal shell model). The parameters from this shell are estimated from MR

images (a long axis and a four chamber view) and from those, volume estimates can

be derived. Sacks et al. [256] model the endo- and epicardial walls of the RV by bi-

quadric surface patches (contours were manually traced from MR images), and have

studied surface curvature and wall thickness changes along the cardiac cycle using

this representation.
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Discrete models

An alternative to continuous surface representations is the use of discrete surface

models. Several methods have been reported in the literature and they can be grouped

in the following way.

Physics-based models. Physics-based modeling has attracted the attention of

many computer vision researchers. In this framework, surface recovery is cast into the

deformation of a virtual body (the geometric model plus its material properties) under

virtual external forces derived from image/point features, or user-de�ned constraints.

In the �nal (deformed) state, this virtual body reaches an equilibrium between the

external forces and internal (regularization) constraints. A good overview of the the-

ory of physics-based deformable models and its applications can be found in the book

by Metaxas [202] and in the survey by McInerney and Terzopoulos [197].

McInerney and Terzopoulos [196] have applied this theory to the segmentation

and tracking of the LV in DSR image sequences. A FE balloon [54] deformable

model is discretized using triangular elements, and deformed according to a �rst order

approximation of the Lagrange equations of motion. User-de�ned point constraints

can be interactively inserted to guide the deformation of the model and to avoid local

minima of the potential energy in which the model is embedded. In the Lagrangian

formulation, 3-D image sequences can easily be handled by making the potential

energy a function of time. Montagnat, Delingette and Malandain [209] apply simplex

meshes [72] to reconstruct the LV from multiple views of a rotating US probe. Images

are acquired in cylindrical coordinates coaxial with the apico-basal axis. Accordingly,

images are �ltered in cylindrical coordinates. Boundary points are detected based

on a combination of image gradient and intensity pro�les normal to the surface.

Finally, detected edge points are cast into point attraction-forces deforming the model

according to Newton's law of motion. Ranganath [246] reconstructs 3-D models

of the LV from MRI images using multiple 2-D snakes [149] and devising eÆcient

mechanisms for inter-slice and inter-frame contour propagation. Biedenstein et al. [31]

have recently published an elastic surface model and applied it to SPECT studies. The

elastic surface is deformed according to a second-order partial di�erential equation.

The external (image) forces are derived from the radioactive distribution function and

push the elastic surface toward the center surface of the LV wall. Wall thickness can

be then computed as the distance between the elastic surface and the mass points of

the radioactivity distribution gradient. Huang and Goldgof [145] have presented an

adaptive-size mesh model within a physics-based framework for shape recovery and

motion tracking. The optimum mesh size is inferred from image data, growing new

nodes as the surface undergoes stretching or bending, or destroying old nodes as the

surface contracts or becomes less curved. The method is employed to analyze LV

motion from a DSR data set. To establish point correspondences, an adaptive-size

mesh is generated for the �rst frame to be analyzed; subsequent frames further deform

this mesh while keeping its con�guration �xed.

Physics-based modeling frequently makes an assumption that can be problematic:

internal constraints are usually represented in the form of controlled-continuity stabi-

lizers [290]. It is known that, in the absence of image forces, deformable models tend

to shrink. To avoid this, Rueckert and Burger [254] simultaneously model the two
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cardiac chambers (RV and LV) using a Geometrically Deformable Template (GDT).

The standard stabilizers on the deformed model are replaced by a stabilizer on the

deformation �eld between a rest model and a deformed model. A GDT consists of

three parts: a) a set of vertices that de�nes the rest state (the template), b) a set of

vertices that de�nes a deformed state (an instance of the template), and c) a penalty

function that measures the amount of deformation of the template with respect to its

equilibrium shape (the stabilizer). Another solution to the above mentioned problem,

was proposed by Nastar and Ayache [213] who model a surface as a quadrilateral or

triangular mesh of virtual masses. Each mass is attached to its neighbors by perfect

identical springs with prede�ned sti�ness and natural length. The system deforms

under the laws of dynamics. In addition to elastic and image forces, an \equilibrium

force" determines the con�guration of the mesh in the absence of external forces.

Spatio-temporal models. Several researchers have developed models that explic-

itly incorporate spatial and temporal variations of LV shape. Faber et al. [95] use a

discrete 4-D model to segment the LV fom SPECT and MR images through a relax-

ation labeling scheme [157]. Endo- and epicardial surfaces are modeled as a discrete

template de�ned in a mixed spherical/cylindrical coordinate system co-axial with the

LV long-axis. Each point in the template represents a radius connected to this axis.

The model is spatio-temporal since the compatibility functions computed in the re-

laxation labeling scheme involve neighboring points both in space and time. In this

way, surface smoothness and temporal coherence of motion are taken into account.

Tu et al. [297] have proposed a 4-D model-based LV boundary detector for 3-D CT

cardiac sequences. The method �rst applies a spatio-temporal gradient operator in

spherical coordinates with a manually selected origin close to the center of the LV.

This operator is only sensitive to moving edges, and less sensitive to noise compared

to a static edge detector. An iterative model-based algorithm re�nes the boundaries

by discarding edge points that are far away from the global model. The model is

parameterized by spherical harmonics including higher order terms as the re�nement

proceeds.

Polyhedral models. LV polyhedral representations have been applied by several

authors [87, 94, 108, 112, 120, 174, 209, 272] in the literature. The approaches di�er

either in the type of polygonal primitive (e.g., triangular or quadrilateral meshes) or

the details of the shape recovery algorithm (imaging modality, input data or recovery

features). Shi et al. [87, 272] use a Delaunay triangulation [309] to build a surface

description from a stack of 2-D contours obtained with a combined gradient- and

region-based algorithm [45]. This representation is subsequently used for motion

analysis based on point correspondences. Bending energy under a local thin-plate

model is used as a measure of match between models of consecutive frames. Friboulet,

Magnin and Revel [108] have developed a polyhedral model to analyze the motion of

the LV from 3-D MR image sequences. LV contours are manually outlined using a

track-ball. After applying morphological and linear �ltering to diminish quantization

noise, the contours are radially resampled with constant angular step. Finally, the

stack of resampled contours is fed into a triangulation procedure [89] which generates

a polyhedral surface with approximately equal-sized triangles. Faber et al. [94] use a

combination of cylindrical and spherical coordinate systems to build a discrete model

of the left ventricle in SPECT perfusion images. A radius function de�ned in a discrete
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(orientation) space of longitudinal and circumferential coordinates describes the LV.

For each orientation, the radius is determined by �nding the position of maximal

perfusion (which is argued to occur in the center of the myocardium). After low-

pass �ltering to remove outlier radii, the radius function is mapped back to Cartesian

space where the surface is represented using triangular or quadrilateral meshes. This

approach shares some features of the work described in Faber et al. [95] but is purely

static. Legget et al. [174, 270] use piecewise smooth subdivision surfaces [143] to

reconstruct the LV geometry from manually traced contours in 3-D US images. Some

elements of the mesh can be labeled so that they allow for sharp edges (e.g., at the

mitral annulus and apex) and to de�ne regional surface descriptors. Also from 3-D

US images, Gopal et al. [120] apply triangulated surfaces to reconstruct the geometry

of latex balloons phantoms mimicking the LV. Three-dimensional reconstruction is

directly obtained by triangulating the points of manually delineated contours from a

stack of quasi-parallel slices.

Implicitly de�ned deformable models

Either in continuous or discrete form, the models in the two previous paragraphs

were characterized by having an explicit surface parameterization. A surface model

can also be de�ned by means of an implicit function. For instance, in the level-set

approach [267], a model is obtained as the zero level set of a higher-dimensional em-

bedding function. This technique, sometimes referred as geodesic deformable models

have been introduced independently by Caselles et al. [43] and Malladi et al. [188]

based on the work by Osher and Sethian [222]. Geodesic deformable models have been

applied by Yezzi et al. [318,319] to the segmentation of MR cardiac images. Recently,

Niessen et al. [215] have extended the method to treat multiple-objects and have ap-

plied it to the segmentation of 3-D cardiac CT and MR images. Although geodesic

models have the ability of handle changes in topology, unwanted and uncontrollable

topological changes can occur in images of low-contrast edges or with boundary gaps

since this is a purely data driven approach.

There are other types of implicit models not related to level-sets. Tseng, Hwang

and Sheehan [296], for instance, use a NN to de�ne a Continuous Distance Transform

(CDT) to the LV boundary. A feed-forward NN is trained to learn the distance

function to the endocardial and epicardial contours using a few hand-segmented image

slices. The surface of the LV is then represented as the zeroes of the distance function.

The NN can generalize the boundaries of the LV in the slices not included in the

training set, thus serving as an aid to segment a 3-D image for which the user has to

provide the segmentation of a few slices only. Under an aÆne deformation model, the

distance transform is used to match di�erent temporal frames and to derive motion

parameters. Wall thickness is computed by the centerline method [269] using two

CDT NNs for describing the endo- and epicardial surfaces.

A third approach to implicit modeling is the use of surface primitives which are

de�ned in implicit form. Lelieveldt et al. [176] segment thoracic 3-D MR images

using hierarchical blending of hyperquadrics [132] and concepts of constructive solid

geometry (CSG) [251]. The method provides an automatic, coarse segmentation of a

multiple-object scene with little sensitivity to its initial placement. The most repre-
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sentative organs in the thorax (lungs, heart, liver, spleen, and cardiac ventricles) are

incorporated in the model which can be hierarchically registered to the scanner coor-

dinate system using only a few coronal, sagittal and transversal survey slices. Owing

to the contextual information present in the model, this sparse information has suc-

cessfully been used to estimate the orientation of the long-axis of the LV. This allows

an observer-independent planning of 3-D long-axis acquisitions in patients [175]. This

technique was not designed to estimate accurate cardiac functional parameters but

can be used to generate a �rst initialization for more accurate algorithms.

5.4.2 Volumetric models

As opposed to the plethora of surface representations, the use of volumetric models

in the analysis and segmentation of cardiac images has received little attention.

O'Donnell et al. [218,219] were the �rst to suggest a volumetric model to recover

myocardial motion from MR tagging. The model, coined hybrid volumetric ventricu-

loid, can be decomposed into three parts: a) a thick-walled superquadric, b) a local

o�set either in non-parametric [219] or parametric [218] form, and c) a local defor-

mation in the form of a polyhedrization. The thick-walled superquadric represents a

high-level abstraction model of the myocardium that is further re�ned by the local

o�sets. Altogether, these two parts constitute the rest model of the myocardium that

is rigidly scaled to the dimensions of a new dataset. The local deformation �eld is

responsible of capturing the detailed shape variability of di�erent data sets. Park et

al. [232] have extended their LV surface model [233] to a super-ellipsoid model with

parameter functions. The model is �tted to tagged MR images providing a compact

and comprehensive description of motion. Radial and longitudinal contraction, twist-

ing, long-axis deformation, and global translation and rotation are readily available

from the parameter functions. Alternatively, standard strain analysis can be carried

out. It is also possible to estimate other volumetric parameters like SV, CO, LVV and

LVM. In order to �t the model, a set of boundary points is manually delineated and a

set of tags are semi-automatically tracked along the cardiac cycle using the algorithm

of Young et al. [325]. Therefore, the accuracy of all volumetric measurements depends

on the manual outlining.

Haber, Metaxas and Axel [130] have developed a model of biventricular geometry

using FEs in a physics-based modeling context. The 3-D motion of the RV is analyzed

by de�ning external forces derived from SPAMM MR tagging data [131]. Creswell et

al. [61] and Pirolo et al. [237] describe a mathematical (biventricular) model of the

heart built from 3-D MR scans of a canine specimen. Manual contour delineation of

the epicardial, and LV and RV endocardial boundaries provides a set of points that

is approximated with cubic non-uniform rational B-splines (NURBS [236]). From

this representation, a hexahedral FE model is built in order to generate a realistic

geometric model for biomechanical analysis.

Recently, Shi et al. [271] have introduced an integrated framework for volumetric

motion analysis. This work extends the surface model of Shi et al. [272] by combin-

ing surface motion, extracted from MR magnitude images, and motion cues derived

from MR phase contrast (velocity) images. The latter provide motion information

inside the myocardial wall but are known to be less accurate at the boundaries [205].
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The two sources of motion evidence (boundary and mid-wall motion) are fused by

solving the discretized material constitutive law of the myocardium assuming a linear

isotropic elastic material. In this framework, the measured boundary and mid-wall

motion estimates at two consecutive frames are used as boundary and initial con-

ditions of a FE element formulation. An advantage of this method with respect

to physically-based techniques is that material properties can be set based on ex-

perimental knowledge about myocardial mechanical properties, and not on a virtual

mechanical analog which usually leads to ad hoc parameter settings.

5.4.3 Deformation models

Hitherto, we have focussed on representing either the endocardial (or epicardial) sur-

face, or the volume comprised within the myocardial muscle. Tissue deformation,

however, can be modeled without necessarily modeling the ventricular boundaries.

To this end, material point correspondences in di�erent temporal frames are required.

These correspondences can be obtained by matching certain geometric properties over

time (general techniques). If images are acquired using MR tagging technology, sev-

eral other approaches can be applied that exploit the explicit correspondences inferible

from tag displacements (MR tagged-based techniques).

General techniques

Several techniques have been proposed in the literature for deformation recovery based

on shape properties only. These methods are attractive because of their generality.

On the other hand, one must reckon with the validity of the underlying assumptions

and/or motion models before they are applied to analyze image sequences correspond-

ing to normal and pathological myocardial motion patterns.

a) Continuous models

Amini and Duncan [5] have developed a surface model based on the assumption

of conformal motion, where angles between curves are preserved but not distances

between points. The LV surface is divided into locally quadric patches from which

di�erential properties can be computed. Inter-frame patch correspondences are ob-

tained using a metric that is minimal for conformal motion. An assumption of this

model is that the subdivision into surface patches and the number of neighboring

patches visited during the matching process are suÆcient to accommodate for the

largest stretching that can occur between frames. Bartels et al. [23, 24] model ma-

terial deformations with multi-dimensional splines. The method shares properties of

optical 
ow techniques to estimate motion �elds. However, those approaches do not

return an explicit model of the deformations (only displacements at discrete positions

are provided). The main assumption of this technique is that, for a given material

point, luminance is a conserved quantity. As in optic 
ow techniques, with only this

assumption the solution remains under-constrained and, therefore, a regularization

term must be added. Illustrations of the method on 2-D cardiac X-ray sequences

are provided and the formulation readily extends to 3-D sequences. However, it is

questionable whether luminance conservation can provide a reliable cue for deforma-

tion recovery in regions with homogeneous intensity, or in the presence of imaging
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artifacts and noise. For MR tagging, in particular, the approach must be adapted

since luminance is not conserved due to the physics of the imaging process [242].

b) Discrete models

Benayoun and Ayache [27] propose an adaptive mesh model to estimate non-

rigid motion in 3-D image sequences. The size of the mesh is locally adapted to the

magnitude of the gradient, where the most relevant information is supposed to appear

(e.g., cardiac walls). Mesh adaptation is carried out at the �rst frame only; subsequent

frames only deform the mesh to recover motion. The underlying hypothesis is that the

deformation is small. Meshes at two time instants are registered through an energy-

minimizing approach matching di�erential image properties (curvature and gradient).

Recently, Papademetris et al. [229{231] have proposed a deformation model inspired

by continuum mechanics. The method recovers a dense deformation �eld using point

correspondences obtained with the point-tracking algorithm of Shi et al. [272]. Regu-

larization is accomplished by measuring the internal energy of the myocardial tissue

assuming a linear elastic body model. This is equivalent to a regularization term on

the strain tensor space and not on the displacement �eld.9 Anisotropy of the �brous

structure of the LV is accounted for in the internal energy by making the model sti�er

in the �ber direction [125].

MR tagging-based techniques

The introduction of MR tagging has stimulated researchers to develop models of

cardiac tissue deformation. Compared to motion recovery based on point correspon-

dences or optic 
ow, MR tagging has the advantage that, in principle, material point

correspondences can be estimated from tag information. In this section, di�erent ap-

proaches for modeling the deformation �elds are reviewed. Accurate tag localization

is a pre-requisite for subsequent deformation recovery and, therefore, it is a closely

related topic to deformation models. A brief overview of tag tracking techniques is

given in Appendix 5.B.

a) Continuous models

Several approaches have been proposed in which the parameterization of the de-

formation �eld is a continuous function. The availability of continuous deformation

maps allows the computation of local strains. Young et al., for instance, developed a

model-based approach for tracking tag intersections [321] and tag stripes [325]10 that

has been validated using silicone gel phantoms [166]. A deformation �eld that maps

the �rst (undeformed) frame to a subsequent (deformed) frame is modeled through a

piecewise polynomial function. Two �tting steps are involved in this method. First,

the material points (tag intersections or stripes) in each deformed frame, t > 0, are

9Related regularization schemes are the global and body smoothing terms described in Young and

Axel [321] which act on the deformation gradient tensor. However, they are not directly interpretable

as an internal deformation energy.
10Amini et al. [4] have compared land-mark based (tag intersections) against curved-based tag

(stripes) tracking based on the simulator of Waks et al. [307]. It was concluded that as the number

of stripes/land-marks increases, the two methods give similar performances. Under large deforma-

tions, the degradation of the curve-based techniques is more graceful compared to land-mark based

methods.



92 5 3-D Modeling in cardiac imaging { A review

reconstructed in the coordinate system of the undeformed state, t = 0 (reconstruction

�t). In the latter frame, tag surfaces are arranged in true planes since no motion

has occurred yet. In the second step, the material points for t > 0, expressed in the

reference frame (t = 0), are used to reconstruct a displacement �eld relative to t = 0

(deformation �t).11

A similar approach is followed by O'Dell et al. [217]. One-dimensional displace-

ments are obtained by three independent sets of tag lines: one in the cardiac long-axis,

and two orthogonal sets in the short-axis view. Reconstruction of the deformation

�eld is performed in two interpolation steps. The �rst step assumes a global aÆne

transformation between two time frames. This is done to eliminate global bulk mo-

tion, and linear stretches and shear. In a second step, the residual deformation is

interpolated using a prolate spheroidal decomposition to describe the curvilinear de-

formations expected in the heart.

Both Young et al. [321,325] and O'Dell et al. [217] assume that the reference frame,

to which the strain analysis is related, is the undeformed state. This is normally

the �rst frame in the sequence (planar tag surfaces). Although this simpli�es the

problem by allowing to decouple the motion component normal to the tagging plane,

these methods cannot be used to compute strains between two arbitrary frames. The

latter can be useful in order to retrospectively select the reference frame to coincide

precisely with the diastole or systole, or to compute strains over a subset of the cardiac

cycle. To circumvent this limitation, Moulton et al. [211] have proposed a Lagrangian

approach that explicitly computes the intersection of the tag surfaces in two arbitrary

frames. Tag surfaces are obtained by interpolating the tag curves that are stacked

in di�erent imaging planes. Surface intersections de�ne a set of material lines for

each time frame. These points were used to perform strain calculations employing a

p-version of FE basis functions.

Radeva, Amini and Huang [245] use two coupled volumetric models: a tissue de-

formation �eld and a model describing the LV geometry. The �rst model is represented

by a cubic trivariate B-spline (coined B-solid by the authors); the second model is rep-

resented by two coupled surfaces (endo- and epicardium) �tted to boundary points. It

is assumed that the boundaries are either manually delineated or (semi)automatically

detected from the tagged images. The B-solid is deformed under thin-plate internal

constraints, and under two external forces. The �rst corresponds to tagging infor-

mation: the iso-parametric curves of the model are deformed to align with the tag

strips. Simultaneously, the B-solid is attracted towards the LV boundaries by inte-

grating a distance function to edge points on the epicardial and endocardial surfaces.

Therefore, in this method, boundary and tag information are incorporated in a uni�ed

approach. Since this method has been applied in combination with short-axis tagged

images only, it yields in-plane 2-D displacements. In a recent paper, Huang et al. [144]

11Both �tting steps handle sparse data and, therefore, regularization is needed. Regularization,

however, is known to introduce artifactual strains. The e�ect of three regularization terms has

been studied in [321]: i) a thin-plate spline stabilizer, ii) a global smoothing regularizer minimizing

the deformation gradient tensor, F , and iii) a local body regularizer minimizing the deformation

gradient tensor expressed in some natural local coordinate system (e.g., aligned in circumferential,

longitudinal and radial directions). Based on simulations of an axis-symmetric deformation of a thick

walled incompressible cylinder, it was shown that all three constraints yield similar results in the

strain analysis.
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have extended the method to analyze true 3-D deformations using a spatio-temporal

model. The method di�ers from the one of Radeva et al. in that no boundary informa-

tion is now incorporated. On the other hand, a spatio-temporal B-solid is constructed

through a 4-D tensor product spline (3-D+t). The �tting process to SPAMM data

is governed by a normal constraint which enforces the attraction produced by each

tag plane to be in its normal direction. Since multiple, orthogonal tag planes are

available, this allows a full 3-D reconstruction of the deformation �eld.

Kerwin and Prince [153] have developed an alternating projection technique to

accurately estimate the 3-D location of the intersection points of the tag grid. The

deformation �eld between two frames is recovered using thin-plate-spline interpola-

tion. Myocardial points are distinguished from those in static tissues by checking

whether they pass across the imaging plane over time. In points that do not ful�ll

the previous criterion, a test is performed to check their inclusion within the outlined

myocardial borders prior to rejection from the analysis. Such a rejection scheme is

important for proper visualization and analysis of myocardial motion.

Recently, Young [320] has introduced the concept of model tags that represent the

material surfaces within the heart tissue which are tagged with magnetic saturation.

Model tags are \attached" to the heart and deform with it. They are embedded

within a 3-D FE model describing the geometry of the LV; this model is linear in the

transmural direction and employs bicubic Hermite interpolation in the circumferential

and longitudinal directions. Instead of �nding the 3-D location of the tag plane

intersections, this approach �nds the intersections of the model tags with the imaging

planes (model tag intersections or MTI). The FE model is subsequently deformed so

that the MTI match the tag stripes in each image plane. Matching is carried out

by a local search algorithm guided by an orientation �lter. Additionally mechanisms

are incorporated to allow eÆcient user interaction and to correct for erroneous MTI

matches.

b) Discrete models

Moore et al. [210] use MR tagging to reconstruct the location of material points

through the cardiac cycle by interpolating the positions of the tags from short- and

long-axis image planes using an iterative point-tracking algorithm. Discrete tag lo-

cations are arranged in cuboid volume elements which are identi�ed in the deformed

and reference frames. For each element, a 3-D strain tensor is calculated using the

generalized inverse method [82]. Since the strain analysis is performed on a coarse

discrete grid, only average strains can be retrieved. The tag tracking procedure of

this method compensates for through plane motion. An important conclusion from

this work is that strain analysis can be largely in
uenced by through plane motion if

this is not corrected for.

Denney and Prince [76] employ a multidimensional stochastic approach to obtain

a dense discrete model of the displacement �eld from a sparse set of noisy measure-

ments (tag displacements). The displacement �eld is constrained to be smooth and

incompressible (isochoric deformation). This formulation leads to a partial stochastic

model of the deformation �eld that can be solved using Fisher's estimation frame-

work [265].
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Table 5.2. Overview of cardiac modeling methods: reported classical functional

parameters and their validation. See Keys and Notes in Figure 5.4
.

Evaluation Reference Modality
Parameters

F PP AU AH
Validation/Illustration

Global Motion Type No. Std. of Ref.

Qualitative or

No evaluation

Amini [5] DSR,MR � MF L M + + a 1 NA

Bartels [23,24] NS � MF L N + + m 1 GT

Benayoun [27] DSR � MF L A + � a 1 NA

Cauvin [44] SPECT LVV � C A + � P NA NA

Chen [47] BA LVV SA H M � � V 1 NA

Chen [49] DSR LVV � C N + � V 1 NA

Gustavsson [127] US LVV � H M = + V 1 NA

Huang [145] DSR LVV MF L M + + a 1 NA

Kerwin [153] MRtag � SA L Ay + � V 1 NA

Matheny [193] DSR LVV � G M + � a 1 NA

Maehle [187] US LVV WT L M � � V/P NA NA

McInerney [196] DSR LVV MF L I � � V 1 NA

Niessen [215] MR/DSR LVV WT L I + + a 1/1 NA

O'Donnell [218, 219] MRtag LVV WT,SA H M + + V 1 NA

Papademetris [231] US � SA L A + � a 3 NA

Pentland [234] X LVV MF G I + + V 1 NA

Radeva [245] MRtag LVV MF,SA L M � + V 1 NA

Rueckert [254] MR LVV MF L I + + V 1 NA

Staib [281] DSR/MR LVV � G I + + a 1/1 NA

Yezzi [318, 319] MR LVV WT L I + + V 1 NA

Young [323, 324] BA � SA L M + + a 1 NA

Young [320] MRtag � SA L I � + V 1 NA

Quantitative:

synthetic,

phantom and

animal models

Bardinet [19] DSR LVV MF H M + � a/m 1 OB/AS

Czegledy [63]RV CT RVV � C M = � p 10 AT

Denney [73, 76] MRtag � MF L Ay + � m/a 1/1 GT/NA

Denslow [77]RV MR RVV � C M = � p 13 AT

Germano [115{117] SPECT LVV,EF � H A + � p 1 GT

Gopal [120] US LVV � L M + � p 17 AT

Kerwin [153] MRtag � SA
z L Ay + � m � GT

Haber [130, 131]RV MRtag � MF,SA L M + + m 1 GT

Huang [144] MRtag � MF,SA L A + � m/a �/1 GT/NA

Legget [174, 177,212] US LVV,LVM � L M = � p/a 6/21+5 GT/AT

Moore [210] MRtag � SA L Ay + � m � AS

Moulton [211] MRtag � SA L My + � m/a �/7 NS/NS

O'Dell [217] MRtag � SA H My + � m � AS

Papademetris [229, 230] MR � SA L A + � a/a 8/3 AT

Sacks [256]RV MR � WT L M = + p/a 6/1 GT/NA

Sato [259] BA LVV � L M � + m/p 1/1 GT/AT

Spinale [280]RV BA RVV,SV WT L M = + p/a 22/24 AT/AT

Shi [272] MR/DSR � WT,MF L A + + a 12 AT

Shi [271] MR � MF,SA L A + - a 1 CL

Tu [297] DSR LVV � G M + + a 2 OB

Yettram [316,317] BA LVV � L M = � p 8 AT

Young [321] MRtag � SA L M + � m � AS

Quantitative:

clinical case

studies without

standard of

reference

Declerck [69] SPECT � MF G A + + V/P 3/1 NA

Kuwahara [172, 257] BA LVV,EF,SV � L M = � P 13 NA

Legget [174, 212] US LVV � L M � � V/P 6/2 NA

Moore [210] MRtag � SA L Ay + � V 1 NA

O'Dell [217] MRtag � SA
z H My + � V 10 NA

Park [232] MRtag LVV,EF MF C M + + V/P 1/1 NA

Park [233] MRtag LVV MF,SA C M + + V/P 1/1 NA

Young [323, 324] BA � SA L M + + V 1 NA

Young [321] MRtag � SA L M + � V 1 NA

Quantitative:

clinical case

studies with

standard of

reference

Bardinet [19] SPECT LVV WT,MF H M + � V 1 OB

Biedenstein [31] SPECT LVV � L I + � P 42 OB

Coppini [59] US LVV,EF � L N + � V 3 OB

Faber [95] SPECT/MR LVV WT L I + + V/P 22/16 OB

Faber [94] SPECT LVV � L I + + P 10 OB(m)

Germano [115{117] SPECT LVV,EF WT H A + � P 144/65 OB(m)/AT

Geiser [111, 112] US LVV,EF,SV,CO WT L M = � P 4 AT

Goshtasby [123] MR LVV � L I + + V 5 OB

Legget [174, 177] US LVV,SV � L M � � V 5 AT

Ranganath [246] MR LVV,EF � L I + + V 7 OB

Tseng [296] US LVV WT G I = � V 1 OB
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5.5 Discussion

Comparison of the performance of di�erent techniques is a diÆcult task due to the

diversity of approaches, the di�erent or complementary information obtained from

them, the di�erent imaging modalities and image acquisition protocols, and, last but

not least, the lack of a standard way of reporting on performance. In order to draw

some comparative conclusions we have classi�ed the existing methodologies according

to the degree of their validation (Section 5.5.1). At the same time, we introduce a

number of performance criteria (Section 5.5.2). In this comparison we have focussed

on techniques leading to traditional cardiac indices, viz. global (Sec 5.3.1) and motion

parameters (Sec 5.3.2). Table 5.2 summarizes this discussion.

5.5.1 Validation

Three main groups of papers can be distinguished: 1) with no evaluation or only

qualitative illustrations, 2) with quantitative evaluation on non-human data sets, and

3) with quantitative evaluation on human data sets. This classi�cation has been used

in constructing Table 5.2.

Although there are always exceptions con�rming the rule, Table 5.2 indicates

several trends. Most papers in the �rst category correspond to articles presenting

technical or methodological aspects of advanced modeling techniques. The result

sections in these papers are restricted to either technical aspects or proof-of-concept

illustration on realistic images hypothesizing the potential of the technique. Only a

few of them have seen follow-up articles con�rming those hypotheses in large stud-

ies. Further evaluation of these techniques is required in order to determine their

usefulness in clinical tasks.

Approaches in the second category are numerous. Methodologies in this category

have been evaluated on simulated images or in phantom experiments. These have

the advantage of providing ground truth to assess the accuracy and reproducibility

of the techniques. Owing to the use of idealized geometries and measurement con-

ditions, extrapolation of the results to in vivo human studies remains to be demon-

strated. Some papers in this second category have evaluated their techniques on ex

vivo or in vivo animal models. Several researchers have reported experiments with

dogs [19, 27, 77, 193, 196, 213, 215, 237, 256, 272, 280, 281], swines [77, 211, 280, 281] or

calfs [63,177,212].12 Only a few studies have compared measurements, obtained from

ex vivo [177, 212] or in vivo [229, 272, 280] animal studies, against other standard-

of-reference techniques. As representative examples we can mention the following

evaluation studies. Munt et al. [212] employed high-density laser scanning to com-

pute surface area from excised calf hearts. Leotta et al. [177] compared in vivo

stroke volumes in humans computed with their technique against those derived from

Doppler measurements. Spinale et al. [280] compared cardiac output and stroke vol-

ume measurements to those obtained by thermo-dilution. Shi et al. [272] validated

12Remarkably, a large amount of evaluations involving canine models have been acquired with

the dynamic spatial reconstructor. However, the reduced clinical availability of this technique and

its speci�c image properties makes it diÆcult to extrapolate the results of the evaluation to other

clinical imaging techniques.
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motion �eld computations against the trajectories of implanted copper beads �lled

with gadopentetate-dimeglumine (Gd-DTPA) and lead beads markers for myocardial

wall trajectories computed from MR and DSR images, respectively. Papademetris et

al. [229] evaluated their tissue deformation recovery algorithm against implanted so-

nomicrometers.

MR tagging techniques for reconstruction of myocardial motion or tissue deforma-

tion deserve separate attention. Most in vivo animal and human studies have reported

on Monte Carlo analysis of sensitivity to errors in tag localization and tracking, and

on the ability to recover the location of tags in di�erent frames [73,153,210,211,217].13

Several models have been used in the literature to benchmark the accuracy of motion

and deformation recovery. These evaluations were based, for instance, on spherical

and cylindrical models of cardiac motion [76,210,217,324], FE solutions with realistic

geometries [211], arti�cially generated motion trajectories [19] or synthetic images

using the cardiac motion simulator [144, 153, 155] developed by Waks, Prince and

Douglas [307] that builds upon the kinematic model of Arts et al. [10]. Recently, a

study was carried out by Declerck et al. [71] that thoroughly compared four tech-

niques [68, 76, 217, 226] for motion tracking from tagged MR. This paper provides

results on normal and pathological subjects. Although the general trends of motion

were captured correctly by all methods, this study shows that there are noticeably

di�erences in the displacement and strain computations provided by each technique.

Finally, the third category includes studies that reported application on human

volunteers and patients, including quantitative results in terms of cardiac functional

parameters. The size of the populations in most of these studies was small. With

only three exceptions, all studies were conducted on less than a dozen of volunteers

or patients.

5.5.2 Performance criteria

In the following subsections we elaborate on the criteria that we have used to compare

the di�erent methods.

Model complexity or 
exibility

The complexity or 
exibility of a technique has been categorized in four groups accord-

ing to the number of degrees of freedom14 (DOF) or parameters involved. 1) Compact

models with only a few parameters (on the order of a dozen). Prototypical examples

are superquadrics. 2) Flexible models with large number of DOFs and parameterized

with global -support basis functions. Representative examples are harmonic parame-

terizations of several types. 3) Flexible models with large number of DOFs and pa-

rameterized with local -support basis functions. Members of this family are B-spline

and polyhedral models. 4) Flexible hierarchical models encompassing a reduced set

13Validation MR tagging itself for describing tissue deformation has been addressed by Young et

al. [322] using a silicone gel phantom. Strains derived from MR tagging were compared to the

analytic equilibrium strains under a Mooney-Rivlin material law.
14Here we disregard the obvious rigid transformation parameters to instantiate the model in world

coordinates.
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Keys to Table 5.2:

| Parameters: bold = quantitative results reported; italic = computable from the

model (but quantitative results not reported). Motion parameters were classi�ed in

three categories: WT = wall thickening analysis, MF = wall/tissue motion �eld (not

including strain analysis), SA = strain analysis.

| Flexibility (F): C = compact model with small or medium number of degrees of

freedom (DOF), G = 
exible model with global support basis function and large

number of DOF, L = 
exible model with local support basis functions and large

number of DOF, H = hierarchical models.

| Pre-processing (PP) to initialize the model. N = none; M = manual

segmentation of contours and/or land-marks; A = (semi) automatic delineation of

contours and/or land-marks; I = approximated model initialization or land-mark

placement. Pre-computation of feature images (gradient, Laplacian, etc.) was not

considered as pre-processing.

| Automation (AM) after pre-processing and selection of ad hoc parameters:

(+) full, (�) interactive guidance may be required to correct/assist intermediate steps,

(=) relying on substantial human guidance.

| Ad hoc (AH) parameters: (�) none, or robustness demonstrated through

sensitivity analysis, (+) yes and no sensitivity analysis was performed.

| Validation/Illustration information. Type of evaluation/illustration set:

m = mathematical models, p = physical phantoms (mostly balloons or heart casts),

a = animal model, V = human volunteers and P = patients. Standard of reference:

AS = analytic solution, AT = alternative technique, CL = comparison to literature,

GT = ground truth, NS = numerical solution, OB(m) = human observer (involving

multiple modalities). Papers with several evaluation studies have multiple entries.

| NA = not available / reported

Notes:
zOnly the accuracy in determining tag intersections was computed. No quantitative

analysis reported on deformation �eld or strain analysis.
yMonte Carlo analysis of sensitivity for this factor is reported.

Figure 5.4. Keys and notes to Table 5.2.



98 5 3-D Modeling in cardiac imaging { A review

of DOFs coarsely describing shape, plus an extended set of DOFs giving extra 
ex-

ibility to the model. Representative of this family are superquadrics with free-form

deformations. Complexity is, to some extent, related to the computational demand

of an algorithm. Highly 
exible algorithms are usually related to higher computation

time for deforming them to a given image data set.15 On the other hand it is also a

measure of the ability of a modeling technique to accommodate for �ne shape details.

Although idealized models of ventricular geometry (mainly ellipsoids or ellipsoidal

shells) are appealing for their parsimony and for historical reasons, Table 5.2 shows

that no study has quantitatively demonstrated their accuracy in computing simple

measurements as LVV and EF. Compact models have developed in two di�erent

directions. On one hand, in particular for the RV, some researchers have evaluated

combinations of simple models that roughly derive RVV from a small number of

linear measurements [63, 77]. The models, however, remain highly constrained and

have been tested on ex vivo casts experiments only. A second direction has been to

trade-o� the compactness of the superquadric models and their 
exibility without the

need of hierarchical decompositions [232,233]. In this manner, 
exibility is added in

an elegant way by which each parameter function has an interpretation in terms of

local and global shape changes.

Most approaches that reached the stage of quantitative evaluation are based on


exible or hierarchical representations. Both present challenges and advantages. Flex-

ible representations (e.g., polyhedral meshes or harmonic decompositions) are highly

versatile and can accommodate detailed shape variations. Most of the quantitative

evaluation studies have been reported on local 
exible models, most of which are

able to cope even with complex topologies. On the other hand, restricting the space

of possible shapes is usually diÆcult or requires substantial manual intervention or

guidance [172,280,316,317]. Hierarchical or top-down approaches aim at a reduction

in computational time and at improving robustness by incrementally unconstrain-

ing the space of allowed shape variation [20, 47, 115, 127, 218, 219]. One weak point

in hierarchical approaches is the need for ad hoc scheduling mechanisms to deter-

mine when one level in the representation hierarchy should be �xed and a new level

added, and up to which level the model should be re�ned. Furthermore, optimization

procedures involved in the recovery of hierarchical models have to be designed with

particular care. It is unclear how it can be ensured that a succession of optimizations

at di�erent modeling levels actually leads to the optimum global deformation. Also

the question arises how to link di�erent levels of model detail with the resolution of

the underlying image data, and how to interact with the models if, after all, manual

editing is required. Still, hierarchical model representations are an active and chal-

lenging �eld in 3-D medical image segmentation research where several investigators

have presented encouraging results in cardiac [19,20,47,116,117,218,219] and thorax

modeling [176,186].

15Actually, it is the conjunction of model parameterization and the recovery strategy which de-

termines the computational load of an approach. It would have been very interesting to report

computation time with each technique. Unfortunately, variability in hardware architecture over

time and techniques renders any quantitative comparison unrealistic.
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Robustness and e�ective automation

Processing prior to model recovery, automation of the recovery algorithm itself, and

the presence of ad hoc parameters are factors that determine the robustness of a tech-

nique and its e�ective automation. By e�ective automation we refer to the automation

of the overall approach, from raw images until the presentation of the functional pa-

rameters.

Before a given model can be �tted or deformed to a data set, almost every tech-

nique requires some type of pre-processing to convert the raw grey-level images into a

representation suitable for shape recovery. Section 5.4 has suggested a classi�cation

of types of input data. For the sake of simplicity, Table 5.2 only indicates the de-

gree of manual involvement to obtain the corresponding input data. Four categories

were considered: (N) no pre-processing required, (I) manual initialization of land-

marks/models, (A) (semi) automated initialization of land-marks/models integrated

into the technique, and (M) fully manual segmentation of land-marks/contours. Al-

though variability inherent to the pre-processing can have a marked e�ect on the

overall performance of a technique, this factor is usually disregarded in the evaluation

of algorithms. A remarkable exception is the evaluation of MR tag tracking algorithms

using Monte Carlo analysis to assess the in
uence of erroneous tag localization in the

recovery of tissue deformation [73, 153, 210, 211, 217]. Model initialization is also re-

lated to the issue of pre-processing. Although a few techniques make explicit mention

of the procedure required to initialize the model [31, 176, 215, 232, 233, 325], model

initialization in a 3-D environment can be non-trivial or require expert guidance.

Another factor undermining robustness and reliability of a technique, is the pres-

ence of ad hoc parameters that have to be set by the user. This can be particularly

problematic when such parameters are highly dependent on a given data set. This is

a known problem, for instance, of many physics-based deformable models for which

several weights must be tuned to balance the smoothing constraints to the external

energy terms. However, in the literature, analysis of sensitivity of the result to the

weighting parameters is mostly missing. In Table 5.2, we have classi�ed the di�erent

techniques into two categories according to the presence of user-de�ned ad hoc param-

eters: (�) no parameters or parameters with corresponding analysis of sensitivity, and
(+) parameters for which no sensitivity analysis was performed. The fact that several

methods do not present ad hoc parameters (�) does not have to be confounded with

overall robustness. Even within the approaches with quantitative evaluation, many

papers in the (�) category either require substantial pre-processing [20,120,174,211,
217, 229, 230, 321] or human guidance [63, 77, 111, 112, 296, 316, 317]. Both factors

in
uence the robustness and reproducibility of the derived functional information.

Finally, Table 5.2 also indicates the degree of user guidance (automation) of the

�tting procedures for given input data (pre-processing) and set of ad hoc parame-

ters. Three degrees of automation were used to classify the approaches: (=) relying

on substantial human guidance, (�) manual interaction can be necessary for guid-

ing/correcting the deformation, and (+) fully automated. In general terms, the larger

the need for human intervention during the �tting procedure, the less robust a tech-

nique will become, and the more prone it will be to inter/intra-observer variability of

the �nal results.
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5.6 Conclusions and suggested future research

In this chapter we have reviewed techniques for 3-D geometric modeling and analysis

of cardiac images. In particular, we have focussed on those techniques leading to

traditional indices of cardiac function. We have proposed a systematic classi�cation

of the approaches based on the type of representation of the geometric model, and

the type of input data required for model recovery (Table 5.1). Furthermore, we have

given a critical assessment of these approaches according to the type of functional pa-

rameters that they provide, their degree of evaluation, and the performance achieved

in terms of modeling 
exibility, complexity, and e�ective automation (Table 5.2).

From the surveyed literature, four main lines of future e�orts can be distinguished:

1) Research on modeling and model deformation techniques. The last two decades

have witnessed an enormous amount of e�orts in 3-D models of LV and RV. This

holds true for all imaging modalities (cf. Table 5.1). In spite of the large number of

attempts, no approach has simultaneously achieved robustness, automation, model


exibility and computational speed. Manual outlining and analysis of cardiac images

is still the most popular technique in clinical environments.

Several issues will require more attention in order to integrate the advances of

modeling techniques into clinical practice. Accurate 3-D modeling techniques are, in

general, computationally intensive. Exploration of 
exible modeling techniques that

make an eÆcient use of their degrees of freedom will be worthy of further research.

So far the main 
ow of e�orts has been focussed on adopting generic geometrical

representations to build cardiac shape models (e.g., superquadrics, B-splines, polyhe-

dral meshes, Fourier descriptors, etc.). As a consequence, in generating a realistic LV

shape, the representations are either too restrictive or require a considerable amount

of parameters. The question arises of how to infer a compact representation giving

rise to realistic shapes, possibly learned from examples.16 Modeling approaches that

go from shape examples to a speci�c shape representation can reduce computational

demands and improve their robustness. A small number of eÆciently selected model

parameters reduces the dimensionality of the model recovery problem, and naturally

constrains its results owing to model speci�city.

Further investigation of suitable image features will be needed to improve shape

recovery. In particular, incorporation of domain knowledge about the type of image

modality (and acquisition protocols) can play an important role in increasing the

accuracy of shape recovery techniques.

Most of the modeling techniques presented in this review were either purely geo-

metric or inspired in a virtual physical analog (physics-based approaches). Recently,

a few papers have introduced known biomechanical properties of the heart in the for-

mulation of models that analyze cardiac images [229{231,271]. Further development

of such approaches, and their application to segmentation tasks, can be a natural way

of extending the ideas of physics-based methods and of relating some of the ad hoc

parameters with experimental evidence provided by biomechanics.

16An interesting approach is to extract statistical models from sample shapes [56] and to capture

the most representative degrees of freedom via principal component analysis. Although interesting

results have been obtained in 2-D applications, more research is needed to solve practical problems

in their 3-D extensions.
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2) Research on interactive model-based segmentation. Table 5.2 supports the idea

that model-based cardiac segmentation has not reached the status of being e�ectively

automated since current techniques either require substantial expert guidance, ad hoc

parameter �ne-tuning or non-trivial pre-processing. Although full automation is a

desirable end goal, its diÆculty has been acknowledged many times in the literature.

There is a growing consensus that user interaction is, to some extent, unavoidable,

and that it has to be considered as an integrated part of the segmentation procedure.

Therefore, development of eÆcient tools for 3-D interaction will play an important

role in the near future. \EÆcient" entails that with minimal and intuitive user inter-

action the operator keeps control over the segmentation process to correct or overrule

its results where it has failed, and to guide the algorithm in abnormal situations (e.g.,

in front of a pathological case). Of course, the issue of reproducibility in case of

human intervention needs attention. Where well-de�ned repetitive tasks are recog-

nized, or where a local user interaction can be extrapolated to a broader area, the

process should be automated, thus improving segmentation throughput and repeata-

bility. How to devise such eÆcient and intuitive mechanisms for 3-D manipulation of

models and volumetric data, and how to integrate them into the deformation of the

models remain topics of future research.

3) Research on functional cardiac descriptors. There are many shape and motion

parameters other than traditional indices (cf. Appendix 5.A). Unfortunately, although

these new indices seem to provide richer information and/or a more detailed analysis

of cardiac function, their clinical evaluation has been very limited. As a consequence,

it is diÆcult to determine their clinical relevance and the extra information provided

with respect to traditional indices like LVV, EF, etc. The lack of clinical evaluations

may be related to the fact that advanced 3-D modeling techniques, from which these

parameters can be derived, are computationally expensive and require considerable

user intervention. The need of considerable pre- and post-processing procedures, ad

hoc parameter settings and technical understanding of the modeling technique itself

may explain why most of the described approaches are not available as stand-alone

prototypes on which clinical studies can be carried out routinely.

There is certainly place for development of novel shape and motion descriptors.

However, there is even a larger need for evaluation of already existing indices on

reference data sets and/or large scale clinical studies. It is remarkable that this lack

of large evaluation studies is present even in many techniques aiming at the extraction

of traditional functional parameters (Table 5.2).

It is unrealistic to expect that every new technique proposed in the future will go

through the process of a thorough clinical evaluation study. Unfortunately, many re-

search institutes working on geometric modeling and shape analysis are not located in

a clinical environment. Access to state-of-the-art image material and derived param-

eters for testing and benchmarking purposes is, therefore, diÆcult. In this respect, a

public, common database of a representative set of images from di�erent modalities

would be highly bene�cial. This database should establish a few standard data sets

(both synthetic and clinical study cases) with as much independent measurements as

possible of mass, stroke volume, etc. With the current speed of development in the

imaging modalities, such a database should be updated regularly to be representative

of the state-of-the-art imaging technology.
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4) Multi-disciplinary approaches. When imaging and modeling techniques get

more complex, the interplay of clinicians, medical physicists and technologists in

a common environment becomes increasingly important. Several issues have to be

addressed in a cooperative fashion: the interrelationship between image acquisition

and cardiac modeling, the development of e�ective visualization techniques of 4-D

data sets, realization of intuitive interfaces to interact with geometric models at the

various stages of initialization, deformation and eventual correction of results, and

concise transferal of clinical information from images/models to the cardiologists.

It is to be expected that approval by clinicians of a model-based technique that

provides functional parameters will depend on close collaboration between technicians

involved in image acquisition, computer scientists devoted to the development of

eÆcient modeling and model recovery techniques, and cardiologists providing feedback

about the desired information and display methods, the validity of the assumptions

and the design of evaluation studies.

5.A Appendix: Non-traditional shape and motion

descriptors

Three-dimensional model-based analysis of left ventricular shape and motion has the

potential of providing rich morphological and functional information. Current clinical

assessment of cardiac function is based mainly on global parameters as LVV and EF.

However, several researchers have demonstrated in the past the importance of local

functional indices as wall thickening and segmental motion analysis [124,228,268,269],

and local curvature and shape [21, 148,189,190] as potential cardiac indexes. Unfor-

tunately, most of these studies were based on 2-D imaging techniques. Although they

can indicate major trends about cardiac shape, a 3-D analysis would be bene�cial

to better account for the true cardiac geometry. In this section, we brie
y summa-

rize several new indices proposed in the literature that describe shape and/or motion.

Some of these indices have been presented as a by-product of a speci�c modeling tech-

nique while others are easily computable from any model representation. Therefore,

this distinction seems a natural classi�cation.

A. Generic descriptors

Mean and Gaussian curvature. The principal curvatures (k1 and k2, respectively)
measure the maximum and minimum bending of a regular surface.17 Rather than

using principal curvatures it is more common to use two derived quantities known as

Gaussian (K = k1k2) and mean (H = (k1+k2)=2) curvatures. By analyzing the signs
of the pair (K;H) it is possible to locally distinguish between eight surface types [28].

Friboulet et al. [107] have studied the distribution of the Gaussian curvature in

the LV at di�erent phases of the cardiac cycle. From this study it was concluded

that this distribution remains structurally stable over time. Whereas the LV free wall

17A subset M � R
n is called a regular surface if for each point p 2 S, there exists a neighborhood

V of p in and a map x : U 7! R
n of an open set U � R

2 onto V \M such that: 1) x is di�erentiable,

2) x : U 7! R
n is a homeomorphism, and 3) each map is a regular patch, i.e., it has a full rank

Jacobian for any x 2 U .
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provides rich and dense curvature information, the curvature at the septal wall is less

suitable to establish point correspondences. Similar �ndings were made by Sacks et

al. [256] with respect to the RV free wall: the RV free wall has relatively uniform

distribution of principal curvatures, and the surface geometry of the RV free wall

does not change signi�cantly from end diastole to end systole.

Shape index and shape spectrum. Although mean and Gaussian curvatures are

related to the concept of curvedness, there still remains scale information in these

shape descriptors. To overcome this problem, Clarysse et al. [52] have used the shape

index (s) and the curvedness (c), two parameters that were introduced by Koenderink
and van Doorn [161] and are de�ned as follows:

s =
2

�
tan�1

�
k2 + k1
k2 � k1

�
(5.11)

c =

�
k21 + k22

2

� 1
2

(5.12)

While c is inversely proportional to the object size, s de�nes a continuous distri-
bution of surface types ranging from cup-like umbilic (s = �1) to peak-like umbilic

(s = 1) points. It can be shown that while the shape index is invariant by homothecy,

the curvedness is not. In this way, shape information and size can be easily decoupled.

The shape spectrum [80], 
(h; t), is a global shape index de�ned as the fractional

area of the LV with shape index value h, at time t


(h; t) =
1

A

ZZ
S

Æ(s(x)� h) dS (5.13)

where A =
RR

S
dS is the total area of the surface S, dS is a small region around

the point x, and Æ(�) is the one-dimensional Dirac delta function. Cardiac deformation
can be analyzed by tracking the shape index and curvedness of similar shape patches

(SSP) over time. SSP are connected surface patches whose points have similar shape

indices, i.e., the shape index falls within a given range s ��s. Clarysse et al. have
shown the potential applicability of these indices by analyzing phantoms of normal and

diseased LVs. A LV model of dilated cardiomyopathy, and a model of an ischemic LV

(both akinetic and hypokinetic in the left anterior coronary territory) were generated

using 4-D spherical harmonics. The curvedness spectrum was signi�cantly altered

by both pathologies, even when they were localized (ischemic models). Reduction of

the global function in the dilated myocardium had no signi�cant repercussion on the

shape index spectra. This could be an indicator that this pathology mostly a�ects the

magnitude of motion only. An alternative to global analysis is to track the curvature

parameters in predetermined regions. Clarysse et al. have tracked three reference

points over time: the apex, a point in the anterior wall, and a point in the cup of the

pillar anchor. Using the local temporal variation of the curvedness and shape index,

it was possible to distinguish between the normal and diseased model. A potential

problem of this techniques is the reliable tracking of SSPs. If local deformations are

too large the trace of points might be lost.

Local stretching. Mishra et al. [206] have presented a computational scheme to

derive local epicardial stretching under conformal motion. In conformal motion, it
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is assumed that motion can be described by a spatially-variant but locally isotropic

stretching factor. In particular, for any two corresponding patches before and after

motion, P and P , the local stretching factor, � , can be computed from the change in

Gaussian curvature and a polynomial stretching model by means of the relationship

K =
K

�2
+
f(E;F;G; �; �u; �v ; �uu; �vv)

�2
(5.14)

where f(�) is the polynomial stretching model (linear or quadratic in [206]), E, F ,
and G are here the coeÆcients of the �rst fundamental form [78], and (u; v) are coor-
dinates of a local parameterization of the surface patch. Mishra et al. [206] present a

method to solve for � in Equation (5.14) and show that the local epicardial stretching

factors computed over the cardiac cycle follow a similar evolution to the temporal

variation of the principal strains obtained by Young et al. [323] using strain analysis

techniques.

B. Model-speci�c shape descriptors

Geometrical cardiogram (GCG). Azhari et al. [15] describe a method for classi�ca-

tion of normal and abnormal LV geometries by de�ning a \geometrical cardiogram"

(GCG), a helical sampling of the LV geometry from apex to base [16]. The GCG

at end systole and at end diastole are subsequently analyzed via a Karhunen-Loeve

Transform (KLT) to compress their information. A truncated set of the KLT basis

vectors is used to project the GCG of individual patients into a lower-dimensional

space, and the mean square error between the projected and original GCG is used to

discriminate between normal and abnormal LV [14]. From this vectorial representa-

tion LVV and EF [16], and WT [17] can also be computed.

Deformable superquadric and related models. One of the �rst 3-D primitives

used to model the LV was the superquadric. It is a natural extension of the simpli�ed

geometric models originally used in 2DE [306] and angiocardiography [66,79,136,152].

Along with three main axes indicating principal dimensions, the superquadric models

can be endowed with additional parametric deformations as linear tapering and bend-

ing [20, 49], free-form deformations [19], displacement �elds [218, 219] or parametric

functions providing information about radial and longitudinal contraction, twisting

motion, and deformation of the LV long-axis [232, 233] and wall thickness [233]. In

particular, Park et al. [232,233] suggest to decompose deformation and motion into a

few parametric functions that can be presented to the clinician in the form of simple

plots. All these functions are either independent of the total LV volume (e.g., twist-

ing) or can be normalized with respect to the dimensions of the LV (e.g., radial and

longitudinal contraction). This allows inter-patient comparisons of contraction and

shape change.

Global motion analysis based on departure from an aÆne model. Friboulet et

al. [108] modeled the LV using a polyhedral mesh at each frame of the cardiac cycle.

The state of the LV was characterized by the center of gravity and the moments of

inertia of the polyhedral mesh. The deformation between two frames was hypothesized

to follow an aÆne model. By de�ning a metric to compare two di�erent polyhedral
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representations, the authors were able to quantify the di�erence between the actual

inter-frame deformation and the corresponding deformation derived from an aÆne

motion model. Several parameters of global motion are then derived: the temporal

variation of the longitudinal and transversal moments of inertia, and the proportion

of total motion explained by the aÆne model. By means of case studies it was

demonstrated that these global indices are able to discriminate between normal (EF =

0:71) and highly diseased (EF = 0:1) LVs. On the other hand, the global nature of

these indices precludes the quanti�cation of localized, inhomogeneous dysfunction of

the LV.

Motion decomposition through planispheric transformation. Declerck et al. [69]

have proposed a canonical decomposition of cardiac motion into three components:

radial motion, twisting motion around the apico-basal axis, and long-axis shortening.

This decomposition is achieved through a transformation of the Cartesian coordinates

of the LV wall to a planispheric space. In this space, a 4-D transformation is de�ned

that regularly and smoothly parameterizes the spatio-temporal variation of the LV

wall. Since the canonical decomposition of motion can be directly obtained in the

planispheric space, these descriptors also vary smoothly along the cardiac cycle. Fi-

nally, by tracking the position of material points over time in the planispheric space

and subsequent mapping to Cartesian coordinates, it is possible to reconstruct their

3-D trajectories.

Modal analysis: deformation spectrum. Nastar and Ayache have introduced the

concept of deformation spectrum [213] which can be applied within the framework of

modal analysis [235]. The deformation spectrum is the graph representing the value

of the modal amplitudes as a function of mode index. The deformation spectrum

corresponding to the deformation between two image frames describes which modes

are excited in order to deform one object into another. It also gives an indication of the

strain energy [213] of the deformation. As a consequence, a pure rigid deformation has

zero strain energy. Two deformations are said to be similar when the corresponding

deformation �elds are equivalent up to a rigid transformation. In order measure

the dissimilarity of two deformation �elds, the lower-order modes related to rigid

transformation are discarded. The di�erence of the deformation spectra so computed,

can be used to de�ne a metric between shapes (e.g., the LV in two phases of the cardiac

cycle) that can be applied to classify them into speci�c classes (e.g., normal/abnormal

motion patterns). Finally, the amplitude of the di�erent modes can be tracked over

time. Using Fourier spectral analysis, Nastar and Ayache have shown that these

modes concentrate in a few low-frequency coeÆcients.

5.B Appendix: MR tag localization techniques

Early attempts to model myocardial tissue deformation tracked tag grid intersections

manually over time [321]. Other researchers [73,76,131,153,210,217] have used semi-

automatic tools [11, 128, 129], based on snakes, to locate and track tag intersections

and to de�ne myocardial contours. Although they still require user interaction, these

tools can speed up the manual procedure while reducing inter-observer variability [25].

Young et al. [325] propose an interactive scheme for tag tracking. The 2-D tag
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grid is modeled as a whole (active carpet). Separate manual segmentation of the LV

boundaries is required to compute myocardial strains only. Tag tracking is performed

using a modi�ed snake [149] algorithm. Since tags show up in these images as dark

lines (intensity valleys), the image intensity is used as external energy. Additionally

interactive guidance is supported by introducing user-de�ned constrains. Only points

in the myocardium mask are tracked in each frame while carpet points outside the my-

ocardium (inactive points) provide a weak form of continuity. Kraitchman et al. [166]

have introduced an interactive method for tracking tag intersections. The method

shares some features of the active carpet model of Young et al. [325]. The carpet

of tag intersections is modeled as a mass-spring mesh of triangles. Tag intersections

are tracked by means of a correlation-based external energy and, eventually, adding

interactive constraints. Finally, this technique allows to compute average strains on

the triangular patches. Another method for automatic tracking of the SPAMM grid

has been presented by Kumar and Goldgof [170]. In the �rst frame template matching

is applied to provide an initial position of the tag grid. In this frame, the tag grid

has a high contrast and a regular arrangement. In the subsequent frames, each line

of the tag grid is independently tracked using a discrete thick snake with a width of

two pixels (the typical tag width). The product of the image intensity in the two

pixels is used as external energy to attract the snakes to the tag lines. Although these

methods for extracting tag intersections can be useful for 3-D deformation analysis,

in the original formulations, the methods proposed in [325], [166] and [170] have all

been applied to 2-D strain analysis.

There exist other approaches not based on snakes. Zhang et al. [327] decouple

horizontal and vertical tag tracking via Fourier decomposition and spectral masking.

In order to compensate for spectral cross-modulation from perpendicular lines, local

histogram equalization is needed prior to spectral analysis. Detection of tag lines is

simpli�ed in the pre-processed images and a simple local search can then be used

to track local intensity minima (tag lines) over time. Kerwin and Prince [155] have

developed a method to simultaneously detect and track tag surfaces without the

need for prior 2-D tag tracking. Tag surfaces are modeled using a kriging update

model [65,154]. This model parameterizes tag surfaces using a global quadratic surface

plus a local stochastic displacement. A recursive spatio-temporal scheme is developed

that updates the kriging model. Measurements to update the model are obtained

through a local search for tag lines. In this search a matched �lter is employed

modeling the intensity pro�le across a tag line. Recently, Osman et al. [110,224] have

introduced and evaluated a method for cardiac motion tracking based on the concept

of harmonic phase (HARP). The method uses isolated spectral peaks in the Fourier

domain of MR tagged images as a cue for tag tracking. The inverse Fourier transform

of a spectral peak is a complex image whose computed angle is called harmonic phase

image. In Osman et al. [224, 225] it is shown how this angle can be treated as a

material property that can be related to myocardial strain. This technique has the

advantage that is fast, fully automatic and provides dense material properties. So

far the method has been applied to 2-D images and thus only provides information

about \apparent motion". In Osman and Prince et al. [223], the authors present

several visualization techniques that can be used to display the information provided

by HARP images.



For we must not misunderstand ourselves; we are as much au-

tomatic as intellectual; and hence it comes that the instrument

by which conviction is attained is not demonstrated alone. How

few things are demonstrated! Proofs only convince the mind.

Custom is the source of our strongest and most believed proofs...

Who has demonstrated that there will be a tomorrow and that

we shall die? And what is more believed?

| B. Pascal, 1623-1662

Chapter 6

Automatic 3-D statistical shape

model construction via atlas-based

landmarking and volumetric elastic

registration

Abstract | A novel method is introduced that allows for the generation of land-

marks for three-dimensional shapes and the construction of the corresponding 3-D

Active Shape Models (ASM). Landmarking of a set of examples from a class of

shapes is achieved by (i) construction of an atlas of the class, (ii) automatic ex-

traction of the landmarks from the atlas, and (iii) subsequent propagation of these

landmarks to each example shape via a volumetric elastic registration procedure.

This chapter describes in detail the method to generate the atlas, and the landmark

extraction and propagation procedures. This technique presents some advantages

over previously published methods: it can treat multiple-part structures, and it re-

quires less restrictive assumptions on the structure's topology. The applicability of

the developed technique is demonstrated with two examples: CT bone data and

MR brain data.

Adapted from: A.F. Frangi, D. Rueckert, J.A. Schnabel, and W.J. Niessen (2001). Au-
tomatic 3-D ASM construction via atlas-based landmarking and volumetric elastic regis-
tration. Information Processing in Medical Imaging, IPMI01 (Davis, USA). In press.

6.1 Introduction

S
tatistical models of shape variability [57, 58] or Active Shape Models (ASM)

have been successfully applied to perform segmentation and recognition tasks

in two-dimensional images. In building statistical models, a set of segmentations

of a shape of interest is required as well as a set of landmarks that can be de�ned in

each sample shape.

Manual segmentation and determining point correspondences are time consuming

and tedious tasks. This is particularly true for three-dimensional applications where

the number of slices to analyze and the amount of landmarks required to describe the

shape increases dramatically with respect to two-dimensional applications. This work
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aims at automating the landmarking procedure while still relying on the existence of

a segmentation of the shapes.

Several authors have proposed techniques to �nd point (landmark) correspon-

dences but only a few of them have indicate or investigated their applicability in

the �eld of statistical shape models. Wang et al. [308] use a surface registration

technique to �nd 3D point correspondences based on a metric matching surface-to-

surface distance, and surface normals and curvature. The authors suggest that this

technique could be used to build 3D ASMs but they do not report any results on

statistical model building. Kelemen et al. [150] report on the construction of 3D

ASMs of neuroradiological anatomical structures. In this method the authors used

a correspondence-by-parameterization approach to establish surface landmarks. The

landmark correspondence is de�ned in the parameter domain of an underlying spher-

ical harmonic parameterization. Although this approach has been used to build 3D

ASMs, no explicit volumetric or surface registration between shapes takes place.

To our knowledge, little work has been done on the automatic construction of 3D

ASM using elastic registration [39, 40, 100, 101]. The frameworks proposed by Brett

and Taylor [39,40] are closely related to this chapter. In these approaches, each shape

is �rst converted into a polyhedral representation. In the �rst approach [40], shape

pairs are matched using a symmetric version of the Iterative Closest Point (ICP) al-

gorithm of Besl and McKay [29]. Using this method, the authors were able to build

3-D ASMs by automatically �nding corresponding landmarks between surfaces. Sur-

faces are represented by means of dense triangulations that are matched via sparse

triangulations (obtained by triangle decimation from the dense triangulations). The

nodes of this sparse triangulation become the �nal landmarks. One problem acknowl-

edged by the authors is the possibility of obtaining shape models with surface folding

due to some landmark groups (triples) matched in di�erent order between training

examples. This is a consequence of the use of the ICP technique which does not incor-

porate connectivity constraints (purely local registration). In Brett and Taylor [39]

this problem is overcome by transforming the surface to a planar domain by means of

harmonic maps where connectivity constraints can be explicitly enforced. This tech-

nique avoids invalid cross-correspondences but is only applicable to single-part shapes

that are topologically isomorphic to a disk. The work by Fleute and Lavall�ee [100,101]

is also related to our work. They use a multi-resolution elastic registration technique

based on octree-splines. This approach is a surface-based technique that registers

shapes by minimization of a distance measure.

In this work a technique is introduced that addresses the shortcomings of point-

based registration where no overall connectivity constraints are imposed. It uses a

free-form elastic registration technique based on maximization of normalized mutual

information (volume-based technique). Our method introduces global constraints by

modifying the pairwise shape corresponder from a point-based registration technique

into a volume-based elastic registration technique. By construction, the deformation

�eld is enforced to be smooth and the regularization term of the deformation will

further penalize folding. In addition, our method can be applied to multiple-part

shapes.

The chapter is organized as follows. Section 6.2 provides some background on

active shape models. In Section 6.3, our approach is described. In Section 6.4, results
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are presented that show the applicability of the method to modeling the radius in

volumetric Computed Tomography (CT) data and the caudate nucleus in Magnetic

Resonance Imaging (MRI); empirical evidence is given on convergence properties and

reconstruction errors. Finally, Section 6.5 closes the chapter with some conclusions

and directions for future research.

6.2 Active Shape Models

Over the years many approaches have appeared in the �eld of deformable models [197,

274]. One of the most promising techniques are Active Shape Models (ASMs) [57,58].

ASMs belong to the group of generative models since they allow to synthesize instances

of the modeled class of shapes. The model is learned from a set of examples by

performing a statistical analysis. Hence ASMs are also referred to as statistical shape

models. They have a number of important advantages over other approaches:

� They are widely applicable since the same concept can be applied to di�erent

problems by presenting di�erent sets of examples.

� It is possible to incorporate expert knowledge in the annotation of the examples

of the training set.

� The method provides a compact representation of the allowed shape variation

that is speci�c to model the variation observed in the training set.

� There are few assumptions about the nature of the object being modeled other

than what is included in the training set.

The technique of ASMs involves two aspects: i) how to build a model from a

set of examples, and ii) how to use the models to interpret new images. The �rst

aspect is the focus of this chapter, in particular how to extend the basic theory to

three-dimensional models. The remainder of this section will introduce the necessary

background theory to put the contributions of this chapter in the perspective of the

technique of ASMs. The second aspect involves the application of the models to

segmentation or recognition tasks and will not be considered in this chapter. Further

details concerning this topic can be found in the report by Cootes and Taylor [57].

6.2.1 Modeling shape variation

Suppose that we have n shapes described as vectors, fxi; i = 1 � � �ng. Each shape con-
sists of l 3-D landmarks, fpj = (p1j ; p2j ; p3j); j = 1 � � � lg1 that represent, for instance,
the nodes of a surface triangulation. Each vector is of dimension 3l and is made up of
the concatenation of the landmark coordinates, i.e., xi = (p11; p21; p31; p12; p22; p32; : : : ;
p1l; p2l; p3l). Moreover, it is assumed that the positions of the landmarks of all shapes

are aligned in the same coordinate system. These vectors form a distribution in a

1How to obtain those three-dimensional landmarks is not a trivial issue and is the aim of this

chapter.
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3l-dimensional space. If this distribution can be modeled, it would be possible to

generate new instances of the same shape class.

In particular, linear ASMs use a parameterized model of the form2

x = x̂+Mb (6.1)

where x̂ is the average landmark vector, b is the model parameter vector, and

M is a matrix that transforms the parameter vector into displacements with respect

to the mean shape. ASMs use Principal Component Analysis (PCA) to obtain the

matrix M, i.e., to describe the main directions of shape variation in the training

set. PCA computes the main axes of the cloud of 3l-dimensional points or landmark
vectors. The method can be summarized as follows:

1. Compute the mean landmark vector

x̂ =
1

n

nX
i=1

xi (6.2)

2. Compute the covariance of the landmark vectors

S =
1

n� 1

nX
i=1

(xi � x̂)(xi � x̂)T (6.3)

3. Compute the eigenvectors, �i, and corresponding eigenvalues, �i, of S (sorted

so that �i � �i+1). If � contains the t eigenvectors corresponding to the largest
eigenvalues, then we can approximate any shape of the training set, x, using

x � x̂+�b (6.4)

where � = (�1j�2j � � � j�t) and b is a t-dimensional vector given by

b = �T (x� x̂) (6.5)

This vector b provides the parameters of the active shape model that best approx-

imate Equation (6.4) in a least-squares sense. By varying these parameters we can

generate di�erent instances of the shape class under analysis using Equation (6.4)

(generative model). Under the assumption that the cloud of landmark vectors is

drawn from a multi-dimensional Gaussian distribution, the variance of the i-th pa-

rameter, bi, across the training set is given by �i. By applying limits to the variation
of bi, for instance jbij � �3p�i, it can be ensured that the shape generated is similar

to the ones in the training shape.

2Linear ASMs assume a multi-dimensional Gaussian distribution as underlying statistical dis-

tribution. However, the same landmarking procedure described in this chapter can be applied in

conjunction with the non-linear extensions of ASM [57,279].
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6.2.2 Choice of the number of modes

The number of eigenvectors to retain, t, can be chosen in a number of ways. For

example, it can be selected in a way that the model explains some proportion (e.g.

98%) of the total variance of the data. That is, if the total variance is VT =
P

�i,
then we can choose the t largest eigenvalues such that

tX
i=1

�i � fvVT (6.6)

where fv de�nes the proportion of the total variation one wishes to explain.

If the noise on the measurements of the landmark positions has a variance �2
n
, then

it is possible to select the largest t such that �t � �2n, assuming that the eigenvalues
are sorted in descending order.

An alternative approach is to choose a suÆcient number of modes so that the

model can approximate any training example within a given accuracy. This accuracy,

however, is not necessarily the same as the reconstruction accuracy calculated for an

example not used for building the ASM. Therefore, to gain a better con�dence in

the required number of modes, t, one can perform a leave-one-out experiment. The

smallest t is chosen for the full model such that the models built with t modes from
all but one example can approximate the missing example suÆciently well.

6.3 Method

It is apparent from the previous section that in order to apply the concept of ASMs

it is fundamental to extract a set of landmarks from each shape of the training set.

This is the main aim of the method developed in this chapter.

6.3.1 Overview

Ideally, a landmark is an anatomically characteristic point that can be uniquely iden-

ti�ed on a set of shapes. However, anatomical landmarks are usually too sparse to

accurately describe a 3-D shape. Therefore, we will consider pseudo-landmarks, i.e.

landmarks on the shape's surface which determine its geometry.

In our framework, automatic landmarking is carried out by non-rigidly mapping

the landmarks of an atlas that is representative of a set of training shapes. Let us

assume that n segmented shapes (3-D binary images) are available, Sn = fBig where
i = 1 � � �n. To generate the landmarks for the n shapes, the task is to build an atlas

A, landmark it, and propagate its landmarks to the n shapes (Figure 6.1). In the

following we will describe these steps in detail.

6.3.2 Atlas building

In the context of this chapter, an atlas is an average representation of the shape of

a structure inferred from a set of training shapes Sn. In order to build the atlas,

three issues have to be addressed: the selection of a pairwise corresponder to match
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Figure 6.1. Overview of the automatic landmarking framework. All individual

data sets are matched to an atlas via a quasi-aÆne transformation (Ta) and an

elastic transformation (Te). The landmarks in the atlas can then be copied to

the individual patients. The elastic deformation is subsequently reversed. Thus,

Principal Component Analysis (PCA) is carried out in a space where all shapes are

aligned with the atlas (atlas-aligned coordinates). The principal modes of variation

will therefore account for elastic deformations and not for pose or size changes.

two di�erent shapes, a strategy to blend shapes in a common coordinate frame, and

a method to obtain an average or mean shape with only marginal bias towards a

particular individual.

Pairwise shape corresponder. Given a shape Bi, it is matched to the atlas, A, using
a quasi-aÆne registration algorithm with nine degrees of freedom (rigid transforma-

tion plus anisotropic scaling) using an algorithm adapted from [284]. This algorithm

matches shapes using a criterion based on normalized mutual information [285] (Ap-

pendix 6.A). Since the shapes are binary images, we have experimented with several

other registration measures (sum of squared di�erences and cross-correlation) but

normalized mutual information was found to be more robust and accurate than any

of the other measures tested.

After registration, the shape Bi is expressed in the coordinate system of A. The
coordinate system of A will be referred to as the atlas-aligned coordinate system.

Shape blending. Once we have found the quasi-aÆne transformations that map each

of the Bi shapes into atlas-aligned coordinates, these shapes have to be combined to

form an average shape (binary image).

Let B0
i
and DT (B0

i
) denote the shape in atlas-aligned coordinates and its Eu-

clidean distance transform [64] respectively, with the convention that inner points

have a negative distance while outer points have a positive distance. Then, an

average shape can be obtained in the distance transformed domain by computing
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DT (Bav) =
1
n

Pn

i=1DT (B0i). A binary representation of the shape Bav can be ob-

tained by thresholding the distance transform map to its zero-level set.

Mean shape. To generate the mean shape it is necessary to register all Sn shapes

into a common reference frame (atlas-aligned coordinates). However, the atlas is not

initially known. To solve this problem an iterative algorithm was developed. One

training shape is randomly selected as the initial atlas, A0, and all remaining shapes

are registered to it using the pairwise shape corresponder. After this step, all shapes

Sn are expressed in the canonical system of A0 and can be blended to generate a

new atlas A1. This procedure is iterated I times to reduce the bias introduced by

the initial shape. Any metric of similarity between the atlases of two consecutive

iterations can be used to monitor the convergence of the procedure. The �nal atlas

is AI . This iterative algorithm is summarized in the 
ow diagram of Figure 6.2. To

check for the in
uence of the randomly selected training shape, atlases with di�erent

start shapes have been quantitatively compared.

Figure 6.2. Flow diagram of the iterative atlas construction algorithm.

6.3.3 Atlas landmarking

By means of the iterative procedure of the previous subsection a binary atlas, A,
has been obtained. The marching cubes [183] algorithm is used to generate a dense

triangulation of the boundary surface. This triangulation can be decimated to obtain

a sparse set of nodes that preserves the geometry of the original triangulation to a
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desired degree of accuracy. The nodes in this decimated triangulation correspond

to the pseudo-landmarks used to construct the ASM. The use of di�erent triangle

densities (decimation ratios) has been investigated to observe their in
uence in the

statistical models generated with our technique (see Section 6.4). The decimation

strategy applied in this chapter is the one proposed by Schroeder et al. [264]. Note

that, as an alternative to marching cubes, an expert could manually localize anatom-

ical landmarks in the atlas. Anatomical landmarks, however, may be too sparse to

accurately represent the shape of the structure. By using marching cubes, a dense

and approximately even distribution of landmarks is obtained.

6.3.4 Landmark propagation

Once the atlas is constructed and landmarked, its landmarks can be propagated to the

individual shapes. This is carried out by warping each sample binary volume into the

atlas with a transformation, T = Ta+Te, that is composed of a quasi-aÆne (Ta) and

an elastic (Te) transformation. The transformation Ta accounts for overall pose and

size di�erences between the atlas and each sample volume while the transformation

Te accounts for local shape di�erences.

The quasi-aÆne transformation is obtained using a registration algorithm adapted

from [284] (Appendix 6.A). Registration of binary volumes was carried out using

normalized mutual information [285]. The elastic transformation is expressed as a

volumetric free-form deformation �eld using the method of Rueckert et al. [255] that

also uses normalized mutual information as a registration measure (Appendix 6.A).

Once the global transformation T has been found, the landmarks of the atlas can

be propagated to the atlas-aligned coordinate system by applying the inverse of the

elastic transformation (T�1e ). This process is repeated for each sample shape. As a

result, a set of landmarks is obtained that describes shape variations with respect to

the atlas. Since these landmarks are now in atlas-aligned coordinates, pose and size

variations are explicitly eliminated from the model. These transformed landmarks are

subsequently used as the input for Principal Component Analysis (PCA) as indicated

in Figure 6.1.

6.4 Results

6.4.1 Data sets

In order to demonstrate the proposed methodology, two case studies were performed.

The �rst case study consists of a set of 14 manual segmentations of the head of the

radius, a bone of the wrist, extracted from CT scans (voxel dimensions 1�1�2 mm3).

The second study comprises a set of 20 manual segmentations of the caudate nucleus,

a deep structure of the brain, from MR scans (voxel dimensions 1� 1� 1:2 mm3).

In building the model of the caudate nucleus each hemisphere of the structure

was treated independently. This two-part structure has an almost specular symmetry

with respect to the sagittal plane separating the left and right brain hemispheres.

Such symmetry is diÆcult to capture with a single quasi-aÆne transformation. After
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the landmarks of each side (sub-atlas) are extracted and propagated, Principal Com-

ponent Analysis (PCA) is applied to the set of the landmarks of both sides. In this

way, inter-hemispheric relationships are included in the statistical analysis.

6.4.2 Atlas construction

Convergence properties

As a metric to measure convergence of the atlas building procedure, the � statis-

tic [1] was used. This statistic measures the similarity between two binary images,

�(Am; Am�1), in a way that is independent of the structure's volume. Figure 6.3

shows the evolution of the � statistic, �(m), as a function of the iteration number, m.

This statistic ranges between 0.0 and 1.0, and a value above 0.9 is usually regarded as

an excellent agreement [1]. The �(m) statistic compares the similarity between the at-

lases Am and Am�1. Figure 6.3(a) corresponds to the atlas of the radius. Two curves

are shown for two di�erent initial shapes used in the initialization procedure. Similar

curves are drawn in Figure 6.3(b) for the left and right caudate nucleus atlases. The

atlas of each subpart (left/right caudate nucleus) was obtained independently. The

trend of these plots is similar to that observed in the atlas of the radius. Figure 6.3

it indicates that after �ve iterations the shape of the atlas stabilizes (� > 0:97).
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Figure 6.3. Convergence of the atlas construction algorithm. The � statistic

between two consecutive atlases as a function of the iteration number. Iteration

zero corresponds to the reference (initial) shape used in the iterative algorithm.

The �(m) statistic compares the agreement between the atlases Am and Am�1.

Left and right plots correspond to the atlases of the radius and (left/right) caudate

nucleus, respectively. Curves for di�erent initial shapes (A and B) are shown.
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Bias introduced by the initial shape

We have investigated whether the atlases generated with the two di�erent initializa-

tions are comparable in shape, i.e. are similar up to a quasi-aÆne transformation.

Figure 6.4, shows that for each individual shape two quasi-aÆne transformations

can be found that map it to the two di�erent atlases, A and B. Let us call these

transformations TAi and TBi , respectively. Let TAB be the quasi-aÆne transforma-

tion that maps the atlas A into the atlas B. In this situation, the transformation

Ti = T�1
Bi
TABTAi should yield the identity transformation, TI . It is possible now

to measure the average and the standard deviation of the di�erence Ti � TI . The

statistical analysis is carried out in a parametric domain (translation, rotation and

scaling parameters) to quantify the di�erences between Ti and TI .
3 In this way, the

bias and dispersion introduced by using two di�erent initial shapes to build the atlas

can be studied. The results of this analysis are shown in Table 6.1 for each atlas

and each transformation parameter. This table indicates that the deviation from an

identity transformation depends on the type of shape. For the very elongated and

thin structure of the caudate nucleus the error standard deviations (SDs) are larger

compared to the radius. As a consequence, the in
uence of the initial shape on the

�nal atlas will depend on the shape itself. Translation and rotation error SDs are

below 3.3 mm and 0.1Æ, respectively. Scaling error SDs are below 14.5%. From a

practical point of view Table 6.1 indicates that the atlas does indeed depend on the

initial shape and that the e�ect is has to do with the class of shapes being modeled. In

the applications presented in this chapter, this e�ect is not critical. After performing

a quasi-aÆne registration of the atlases generated with two di�erent initializations,

the average boundary-to-boundary distance between the two atlases was 1.3 mm and

0.6 mm for the radius and the two caudate nucleus atlases, respectively. These errors

are on the order of, and slightly smaller than the voxel dimensions, respectively.

6.4.3 Automatically built statistical shape models

Figures 6.5 and 6.6 show the mean shape models and the �rst three modes of variation

obtained from PCA for the radius and caudate nucleus test cases, respectively. The

number of mesh nodes is 2500 for the radius, and 1000 for the caudate nucleus. In

both cases there are no visible surface foldings in the mean shape or in the models

for �3p�i.

6.4.4 Reconstruction error

Figure 6.7 illustrates the relative shape variance explained with an increasing number

of modes for di�erent decimation ratios (number of model triangles). These curves

are only marginally dependent on this factor. From ten modes onwards, the model

captures more than 90% of the shape variance. Note the steeper slope of the curves

corresponding to the caudate nucleus. Over the training set there is less apparent

3For more details on the computation of the transformation parameters from the matrix Ti refer

to Appendix 6.B.
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Parameter Units Radius Caudate (L) Caudate (R)

tx [mm] -0.72 (1.68) +1.25 (3.28) +0.62 (1.42)

ty [mm] -1.20 (1.32) -0.20 (0.71) -0.14 (0.57)

tz [mm] +0.64 (1.99) -0.25 (0.54) +0.06 (0.17)

rx [Æ] +0.01 (0.02) -0.01 (0.03) +0.02 (0.03)

ry [Æ] -0.01 (0.02) -0.04 (0.09) +0.10 (0.05)

rz [Æ] -0.01 (0.02) +0.01 (0.08) -0.02 (0.06)

sx [%] -0.57 (1.99) +3.45 (14.51) -5.60 (8.20)

sy [%] -1.48 (1.78) -2.12 (6.28) -1.47 (3.92)

sz [%] +1.57 (6.08) -3.22 (7.23) -1.98 (4.12)

� [�] 0.992 (0.004) 0.992 (0.005) 0.992 (0.005)

d [mm] +1.59 (1.21) +1.53 (0.98) +0.87 (0.61)

Table 6.1. Error in each transformation parameter (translation, rotation and scal-

ing) of the transformation Ti with respect to the identity transformation. Point-

to-point transformation error, d, provides information about the average distance

between corresponding points before and after transformation. Finally, the param-

eter � provides a �gure of merit of the validity of the anisotropic scaling model for

the full transformation Ti. See Appendix 6.B for further details.

variability in the shape of the caudate nucleus than in the shape of the radius. As a

consequence, with fewer modes a larger amount of shape variation can be explained.

In order to assess the ability of these models to recover shapes not used in the

training set we carried out the following experiment: reconstruction errors were com-

puted by reconstructing the landmarks of one shape of the training set with the ASM

built from the remaining shapes (leave-one-out experiment). The errors reported in

Figure 6.8 are the average of the reconstruction errors over all shapes taking out

one in turn. The same experiment was repeated for di�erent decimation ratios and

increasing numbers of modes of shape variation. The reconstruction errors were com-

puted in millimeters. For the caudate nucleus, the reconstruction error is smaller than

the voxel dimensions (10 modes). In the case of the radius, the reconstruction error

is slightly larger than the slice thickness. One possible explanation to this slightly

higher error could be the fact that no image resampling was used during registration.

However, in comparison to the shape of the caudate nucleus, the radius represents a

more complex structure with larger shape variability in the training set. This could

explain the poorer reconstruction performance in the leave-one-out experiments of the

radius. The plots of Figure 6.8 also indicate that the reconstruction error is slightly

dependent on the decimation ratio and, as expected, decreases as a function of the

number of modes of variation.
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Figure 6.4. Bias introduced by the initial shape in the construction of the atlas.

TAB is the transformation between the two atlases, A and B. For each of the n

shapes, TAi and TBi are the transformations to each atlas A and B, respectively.

The similarity of the two atlases can be assessed by computing the deviation of

transformation Ti = T
�1
Bi TABTAi from the identity transformation.

6.5 Discussion and conclusion

This chapter has presented a method for the automatic construction of 3-D statistical

shape models. The technique is based on the automatic extraction of a dense mesh

of landmarks from an atlas constructed from a set of training shapes. The landmarks

are subsequently propagated through an elastic deformation �eld to each shape of the

training set. The method is able to treat single and multiple-part shapes.

The �rst part of the proposed technique involves the building of an atlas from a

set of example shapes. In Section 6.4 we showed experimental results suggesting that

this procedure is convergent. Moreover, di�erent initial shapes seem to contribute

only marginally to the shape of the �nal atlas. That is, the �nal atlases are similar

up to a quasi-aÆne transformation. However, we note that the in
uence of the initial

shape depends on the class of shapes being modeled and has to be assessed on a

case-by-case basis. In the work by Fleute and Lavall�ee [100,101] a similar algorithm

was used to build the average model (atlas). However, no experimental evidence was

reported with respect to the convergence of the atlas construction algorithm.

An alternative to our iterative method of atlas construction is the tree-based ap-

proach presented by Brett and Taylor [40]. This hierarchical strategy is attractive

since it gives a unique (non-iterative) way to build an atlas from a given set of ex-

amples. However, one problem of Brett's method is that the training shapes have

to be ranked according to a pairwise match quality. This requires that all possible

pairs have to be matched and scored before the tree is built. Brett presented results
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1st mode

2nd mode

3rd mode

�3p�i mean +3
p
�i

Figure 6.5. Surface renderings of shape instances generated using the 3-D model

from 14 data sets of the radius. The instances are generated by varying a single

shape parameter, �xing all others constant at zero standard deviations from the

mean shape. Each instance of the triangulated model consists of 2500 nodes.
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1st mode

2nd mode

3rd mode

�3p�i mean +3
p
�i

Figure 6.6. Surface renderings of shape instances generated using the 3-D model

from 20 data sets of the caudate nucleus. The instances are generated by varying a

single shape parameter, �xing all others constant at zero standard deviations from

the mean shape. Each instance of the triangulated model consists of 1000 nodes.
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Figure 6.7. Percentage of total shape variance versus the number of modes used

in the 3-D ASM. The curves are only marginally dependent on the number of nodes

present in the model (decimation ratio). The number of landmarks before decima-

tion was 15519 for the radius, and 2320 for the caudate nucleus. The decimation

ratio represents the ratio between the nodes eliminated from the triangulation of

the atlas and its initial number.
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Figure 6.8. Reconstruction error in the leave-one-out experiments. The number

of landmarks before decimation was 15519 for the radius, and 2320 for the caudate

nucleus. The decimation ratio represents the ratio between the nodes eliminated

from the triangulation of the atlas and the original number of modes.
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with only eight shapes [40] but ordering the examples according to the matching

quality would be cumbersome for a more realistic amount of training shapes. For a

total number of n shapes it is necessary to compute N = (n � 1)2 � O(n2) pair-
wise matches to build the average shape. Our approach obtains the average shape

in N = nI � O(n) matches where I is the total number of iterations required for

convergence. Section 6.4 shows experimental evidence that after about �ve iterations

the atlas shape stabilizes.

Our method for building the mean shape model is based on averaging shapes in the

domain of their distance transforms. A similar strategy was proposed by Leventon et

al. [178] to incorporate statistical constraints into the level-set approach to image

segmentation. However, in that work, PCA is applied on the distance transform

domain and not on a surface representation. As a consequence, the number of degrees

of freedom is considerably larger than in our method. There is an intrinsic limitation in

both our method and that of Leventon et al.Averaging distance transforms of several

shapes does not necessarily yield a valid mean shape representation. It is easy to

show, for instance, that in case of a large misalignment between the averaged shapes,

this procedure can introduce topological changes. Although we did not observe this

problem in our experiments this can be a potential source of failure of the technique

when building models of complex structures.

The proposed technique could be used with any elastic registration algorithm. In

this sense, the method is a generic framework open to future research. Currently,

the volumetric elastic registration of Rueckert et al. [255] is used to match binary

images. The use of elastic registration as a method to establish shape correspondences

imposes a constraint on the type of shapes that can be handled. It is assumed that

the class of shapes has a well-de�ned topology. If there are sub-structures in one

image not represented in the other image to be matched, the transformation would

have to destroy those parts. This situation could arise when building a model of

normal and abnormal medical structures where some parts in the latter are missing

because of a diseased state or surgery. However, establishing correspondences in these

mixed models also remains an ill-de�ned problem with any of the previously published

approaches [39, 100,101].

Results of the model construction for two di�erent anatomical structures, the

radius and the caudate nucleus, have been presented. Experiments were carried out to

establish the ability of the models to generalize to shapes not present in the training

set. The average reconstruction error was below 2.65 mm (radius) and 0.95 mm

(caudate nucleus) when the number of nodes used was suÆcient to explain 90% of

the shape variability. These errors are on the order of, and slightly smaller than the

voxel dimensions, respectively. In our experiments we have not observed problems

of wrong correspondences leading to 
ipping of triangles or surface folding. This is

an important improvement compared to the initial method of Brett and Taylor [40].

Also, our method is less restrictive in terms of the shapes that can be modeled. This

is an important feature with respect to the improved method of Brett and Taylor [39]

that is based on harmonic maps and therefore limited to shapes that are isomorphic

to a disc.
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6.A Appendix: Elastic registration with FFDs

This appendix summarizes the volumetric elastic registration algorithm that is used

for landmark propagation. For a more detailed explanation of this technique the

reader is refered to Rueckert et al. [255]. In this appendix we will refer interchangeably

to images and shapes since we are concerned with shapes represented in the form of

binary images.

Let T : (x; y; z) 7! (x0; y0; z0) be a transformation that maps any point (x; y; z)
in the reference image into the corresponding target image coordinates (x0; y0; z0).
The reference image is also referred to as an atlas and de�nes the coordinate system

in which all other images will be expressed. In order to accommodate for non-rigid

deformations, T will consist of a global transformation and an elastic transformation

T(x; y; z) = Tglobal(x; y; z) +Telastic(x; y; z) (6.7)

6.A.1 Global transformation

The global transformation describes the pose and size of the target shape with respect

to the atlas. This can be accomplished with a global transformation in the form of

an aÆne transformation

Tglobal(x; y; z) =

0@�11 �12 �13
�21 �22 �23
�31 �32 �33

1A0@ x
y
z

1A+

0@ �14
�24
�34

1A (6.8)

where the coeÆcients � parameterize the twelve degrees of freedom of a generic

aÆne transformation. For a quasi-aÆne transformation, only nine of these parameters

are independent (translation, rotation and anisotropic scaling).

6.A.2 Local transformation

The global transformation captures only the pose and size of the shapes. If this trans-

formation is not extended with an elastic deformation �eld, the PCA would include

only nine modes of variation. Moreover, the landmarks would not be correctly prop-

agated from the boundary of the atlas shape to the boundaries of the target shapes.

Therefore, an additional local transformation is required. The local deformation �eld

is represented by a free-form deformation (FFD) model based on B-splines. FFDs

deform an object by embedding it into a volumetric mesh of control points. The

control points are smoothly approximated by a set of B-spline basis functions that

de�ne a continuous deformation �eld.

To de�ne a spline-based FFD, denote the domain of the image volume as 
 =

f(x; y; z)j 0 � x < X; 0 � y < Y; 0 � z < Zg. Let � denote an nx � ny � nz mesh

of control points �i;j;k with uniform spacing Æ. Then, the FFD can be written as the

3-D tensor product of the familiar 1-D cubic B-splines [173]

Telastic(x; y; z) =

3X
l=0

3X
m=0

3X
n=0

Bl(u)Bm(v)Bn(w)�i+l;j+m;k+n (6.9)
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where i = b x

nx
c � 1, j = b y

ny
c � 1, k = b z

nz
c � 1, u = x

nx
� b x

nx
c, v = y

ny
� b y

ny
c,

w = z

nz
� b z

nz
c, and where Bl represents the l-th basis function of the B-spline

B0(u) = (1� u)3=6 (6.10)

B1(u) = (3u3 � 6u2 + 4)=6 (6.11)

B2(u) = (�3u3 + 3u2 + 3u+ 1)=6 (6.12)

B3(u) = u3=6 (6.13)

The control points � act as parameters of the B-spline FFD, and the degree of local

deformation which can be modeled depends on the resolution of the mesh of control

points �. The smaller the spacing Æ the more locally 
exible the deformation is allowed
to be. The computational complexity of the algorithm is inversely proportional to the

spacing parameter. The trade-o� between deformation 
exibility and computational

complexity is mainly an empirical choice which is determined by the accuracy required

to deform the atlas into the individual shapes as well as by practical computational

issues.

6.A.3 Speed-up of the elastic registration

An implementational detail that can considerably reduce the computational burden

is the use of padding of control points. Landmark propagation is mainly occurring at

the boundaries of the shapes. There is no need to add control points in the middle of

or far away from a shape. This observation can be used to freeze all control points

of the undeformed mesh that are further than a distance � from the atlas boundary

(Figure 6.9).

Here it is important to realize that Æ << � in order to have enough control points

in the region of interest. Moreover, the width of the non-padded area, �, should be

large enough to accommodate for the maximum displacement needed to elastically

register two shapes.

6.A.4 Registration measure

Several voxel-based measures can be used to align two images. In our case, the images

are binary. We have experimented with three di�erent measures: sum of squares,

correlation and normalized mutual information. After some initial experiments it

was observed that the latter yields the best results. Mutual information (MI) is a

concept from information theory and expresses the amount of information that one

image A contains about a second image B. This similarity measure was independently

introduced into medical image registration by Collignon [55] and Viola [305] and is

de�ned as

CMI(A;B) = H(A) +H(B)�H(A;B) (6.14)

where H(A) and H(B) are the marginal entropies of A and B, and H(A;B)
denotes their joint entropy, which are calculated from the joint histogram of A and



6.A Appendix: Elastic registration with FFDs 125

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
���������� δ

∆
Figure 6.9. Registration speed-up via padding. The bold line represents the bound-

aries of the atlas for a given cross-section. The shaded regions correspond to the

bounds of the non-padded region, a band of width �. All �lled circles represent

active control points located outside the padded area. Empty circles stand for the

inactive control points that fall inside the padded area.

B. If both images are fully aligned the mutual information is maximized. It has

been shown by Studholme [285] that mutual information itself is not independent of

the overlap between two images. To avoid any dependency on the amount of image

overlap, Studholme suggested the use of normalized mutual information (NMI) as a

measure of image alignment

CNMI(A;B) =
H(A) +H(B)

H(A;B)
(6.15)

This is the similarity measure that we have used in the experiments of this chapter.

6.A.5 Optimization

In order to �nd the optimal transformation we minimize a cost function associated

with the global transformation parameters, �, as well as the local transformation

parameters, �. The cost function consists of two competing goals. The �rst term

represents the cost associated with the image similarity measure of Equation (6.15)

while the second term is associated with the smoothness of the transformation

Csmooth =
1

V

ZZZ �
@2T

@x2

�2

+

�
@2T

@y2

�2

+

�
@2T

@z2

�2

+

2

�
@2T

@x@z

�2

+ 2

�
@2T

@y@z

�2

+ 2

�
@2T

@x@y

�2

dx dy dz (6.16)
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where V denotes the volume of the image domain.

With these de�nitions, the total cost function that has to be optimized is given

by

C(�;�) = �Csimilarity(I;T(I)) + � Csmooth (6.17)

where � is the weighting parameter which de�nes the trade-o� between alignment

of the two image volumes and the smoothness of the transformation. In the experi-

ments reported in this chapter we have set � = 0. This implies that we rely on the

intrinsic smoothness of the B-spline deformation �elds which has proven suÆcient for

our application.

6.B Appendix: On the statistical analysis of spatial

transformation parameters

In Section 6.4.2 we carried out a statistical analysis of the composition of the three

quasi-aÆne transformations, Ti = T�1
Bi
TABTAi, that ideally should yield the iden-

tity transformation. The statistical analysis was carried out in a parametric domain

(translation, rotation and scaling parameters) to gain some insight about the sensi-

tivity of the atlas construction algorithm with respect to di�erent initialializations.

Since the atlas construction procedure involves the computation of the parameters

of a quasi-aÆne transformation (translation, rotation and scaling), it is natural to

report the statistical analysis on the basis of the same parameters.

However, a careful look at this problem reveals a fundamental diÆculty. Compo-

sition is not a closed operation in the set of quasi-aÆne transformations. Consider

two transformations H0 = hR0S0;T0i and H1 = hR1S1;T1i, where S0 and S1 are

diagonal scaling matrices, R0 and R1 are pure rotation matrices, and T0 and T1

are translation vectors. The composition H3 =H1H0 = hR1S1R0S0;R1S1T0 +T1i
yields, in general, a fully aÆne transformation.4

If the representation of the transformation is carried using homogeneous (4 � 4)

matrices, the extraction of the translation parameters, ti, of Ti is straightforward

(upper right 3� 1 vector).

In order to extract the orientation and scaling from Ti, the upper left 3�3 matrix,
Mi, has to be factorized using polar decomposition [119]. This produces a factoriza-

tionMi = RiAi where Ri is orthogonal and Ai is positive de�nite. Ri represents the

rotation and Ai represents the scaling, but in the coordinate system de�ned by the

eigenvectors of Ai. The eigenvalues are the scaling factors. In addition, Ai can be

further factorized as Ai = OiDiO
T

i
where Oi is a rotation matrix whose columns are

the eigenvectors of Ai and where Di is a diagonal matrix whose diagonal entries are

the eigenvalues of Ai. The matrices RiOi, Di and O
T

i
are readily computable from

Mi using singular value decomposition [241]. Assuming that a point x is transformed

4Unfortunately, it is in general not possible to invert the rotation and scaling operators

R0
0
S0
1

= S1R0. If that were possible, H3 could be written as a quasi-aÆne transformation

H3 = hR3S3;T3i = h(R1R
0
0
)(S0

1
S0);R1S1T0+T1i. The latter is only valid when isotropic scalings

S = sI are involved.
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to x0 =Mix+ ti, the e�ective rotation matrix is Ri. Any suitable rotation parame-

terization can be used to perform the statistical analysis. We have opted for the Euler

angles with respect to the axes of the coordinate system of x (XYZ permutation of

axes).

Finally, a scaling parameterization is required. Strictly speaking one should con-

sider nine parameters (anisotropic scaling and shearing coeÆcients) since in general

Ai is not diagonal. Unfortunately, the statistical analysis cannot be performed on the

parameters extracted from the diagonal matrix Di since the scaling axes are di�erent

for each i (eigenvectors of Ai). In order to approximately quantify the scaling vari-

ability along the axes of the coordinate system in which x is expressed, let us assume

that the matrix Ai is quasi-diagonal (o�-diagonal entries approximately zero). Under

this assumption, the shearing is minimal and the scaling factors can be extracted

directly from the diagonal of Ai.

To quantify the quasi-diagonality assumption, we have de�ned the following quan-

tity whose mean and standard deviation are reported in Table 6.1

�i =

P3
j=1 jaijj jP3

j=1

P3
k=1 jaijk j

(6.18)

where ai
jk

are the entries of the matrix Ai. When no shears are involved, this

measure will approach unity.

Finally, as an extra measure of overall consistency, we have computed the mean

distance di between xr and Mixr + ti for all the voxels with world coordinates xr in

the i-th training shape. Table 6.1 reports the average distance over the training set,

d and its standard deviation.





Be not afraid of going slowly, be afraid only of

standing still.

| Chinese proverb

Chapter 7

Automatic construction of

multiple-object 3-D statistical

shape models:

Application to cardiac modeling

Abstract| In this chapter we address the problem of building a three-dimensional

statistical shape model of the left and right ventricle of the heart from 3-D Magnetic

Resonance (MR) images. To this end, a method to construct a statistical shape

model using an automatic landmarking procedure has been extended to cope with

multiple-part structures with large shape variation. This was accomplished by using

a multi-level B-spline free-form registration algorithm and a novel similarity measure

to warp label images. Results on a model constructed from 14 cardiac data sets

demonstrate the robustness of the method in the presence of large shape variability

and multiple objects.

Adapted from: A.F. Frangi, D. Rueckert, J.A. Schnabel, and W.J. Niessen (2001). Au-
tomatic construction of multiple-object three-dimensional statistical shape models: Appli-
cation to Cardiac Modeling. Submitted.

7.1 Introduction

M
odel-based analysis of cardiac images is an active area of research. In

Chapter 5, we surveyed the literature on three-dimensional model-based

techniques for functional analysis of cardiac images [105]. Model-based

approaches have been used for several applications ranging from computation of

global cardiac functional parameters, mainly ejection fraction and left ventricular

mass [19, 49, 193, 196, 215, 219, 281], to local estimation of cardiac motion [27, 69,

145, 232, 272] and stress [210, 211, 217, 229, 324]. Some authors have applied cardiac

models to cardiac scan planning [176] or to derive new descriptors of cardiac func-

tion [15, 52, 107, 108, 206, 213, 232, 233]. A common denominator of these methods

is that shape description is performed using standard modeling primitives like, for

instance, superquadrics [19, 47, 232,233], series expansions [47, 123,193], constructive

solid geometry [176] or polyhedral representations [108,120,145,209,281]. Shape con-
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straints are either explicitly enforced by the selected primitive (e.g. superquadrics) or

via ad hoc regularization terms in the shape recovery process.

In this chapter we elaborate on the construction of a three-dimensional statistical

shape model of the cardiac chambers. Although shape representation is based on

standard triangulated meshes, the model contains information of the average location

of each node in the mesh, its variability, and the correlation between node locations

inferred from a set of training shapes. This information can be used to regularize

the problem of model recovery or image segmentation without the need of any ad hoc

smoothing constraints. This chapter focuses on the automatic construction of statisti-

cal shape models and does not address the problem of shape recovery or segmentation,

which is a separate research issue.

In order to build a statistical cardiac model, the framework of active shape models

(ASM) [57,58] can be utilized. However, prior to applying the methodology of ASMs

in 3-D, the problem of extracting landmarks has to be tackled. In Chapter 6 we

introduced a method to approach this problem which was suitable for shapes with

moderate shape variation. Owing to the large inter-subject variability of cardiac

shapes, this method is unsuited for cardiac modeling. This chapter describes two

improvements on the framework of the previous chapter that allow the construction

of statistical models to describe the shape of multiple-part structures with larger

shape variability. The �rst extension is the use of a hierarchical elastic registration

technique [255,262] based on multi-level B-spline free-form deformations (FFDs). The

second extension is a novel similarity measure useful for label images, i.e.images where

each voxel is labeled according to the tissue type. With these extensions, a statistical

model of the left and right ventricle of the heart was constructed from 14 manually

segmented cardiac MR data sets.

This chapter is organized as follows. In Section 7.2, our proposed method for

automatic landmarking is described. In Section 7.3, the method is applied to con-

struct statistical models of the left and right ventricle of the heart from 3-D MRI;

empirical evidence is given on convergence properties and reconstruction errors. Fi-

nally, Section 7.4 closes the chapter with some conclusions and directions for future

research.

7.2 Methods

7.2.1 Overview

Ideally, a landmark is a point of correspondence that can be uniquely identi�ed in a

set of shapes. Anatomical landmarks fall into this category but, unfortunately, they

are usually too sparse to describe a 3-D shape accurately. Therefore, we will consider

pseudo-landmarks, i.e. a set of densely distributed landmarks lying on the shape's

surface which describe its geometry adequately.

In our framework, automatic landmarking is carried out by mapping the land-

marks of an atlas that is representative for a set of training shapes. Assume that n
segmented shapes are available which constitute the training set, Sn = fLig where

i = 1 � � �n. Each shape in the training set is represented by a label image; in this
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image, each voxel value belongs to a label set L. To generate the landmarks for the

n shapes, a shape atlas A can be constructed, landmarked, and these landmarks can

be propagated back to the n shapes (Figures 7.1 and 7.2). The following sections

describe these steps in detail.

Landmarks
Copy Te

Te

Ta

Ta

Coordinates
Patient 

Coordinates
Atlas 

Coordinates
Atlas−aligned

Coordinates
Atlas 

Coordinates
Atlas−aligned

T

T

Atlas
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−1

Landmarks

  1

n

e

e
PCA

Copy

Figure 7.1. Overview of the automatic landmarking framework. All individual

data sets are matched to an atlas via an aÆne transformation (Ta) and an elastic

transformation (Te). The landmarks in the atlas can then be copied to the indi-

vidual patients. The elastic deformation is subsequently reversed. Thus, Principal

Component Analysis (PCA) is carried out in a space where all shapes are aligned

with the atlas (atlas-aligned coordinates). The principal modes of variation will

therefore account for elastic deformations and not for pose or size changes.

7.2.2 Preprocessing

The automatic landmarking algorithm can be applied to a set of segmented structures.

In our application, three main structures of the heart have been segmented from a

number of volunteer scans. Each segmentation consists of manual identi�cation of the

background (BG), the left ventricular blood pool (LVbp) and myocardium (LVmyo),

and of the right ventricular blood pool (RVbp) (see Figure 7.3). In the segmentation

of the left ventricle, the papillary muscles are considered part of the blood pool as is

customary in functional cardiac analysis. Each segmentation is represented as a label

image, where each voxel is labeled according to the tissue type to which it belongs

(L = fBG;LVbp; LVmyo; RVbpg).
Owing to the large voxel anisotropy, in MR short-axis acquisitions of functional

cardiac data sets, segmentations have signi�cant staircase artifacts in the direction of

the long axis of the heart. In order to facilitate image registration and to smooth out

those artifacts, shape-based interpolation [135, 249] has been applied to obtain label

images of isotropic voxel size without slice gaps.
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� Pre-processing:

{ Manual segmentation.

{ Shape-based interpolation to cubic voxels.

� Autolandmarking:

{ Input:
{ Sn = fLig, training set of label images.

{ Algorithm:

1. Build atlas, A, from training set Sn.

2. Extract landmarks from atlas, A.

3. Compute the elastic deformations, Dn = fTi
eg, from each shape

in Sn to the atlas A.

4. Propagate the landmarks from A to each shape in Sn using the

inverse of the deformation fields Dn to produce the set of

landmarks `n = flig.

{ Output:
{ A, labeled atlas.

{ `n = flig, landmarks for each shape in Sn.

� Post-processing:

{ Principal Component Analysis (PCA) on the set of landmarks `n = flig.

Figure 7.2. Algorithmic overview of statistical shape model construction using

automatic landmarking.

7.2.3 Atlas construction

Given a set of label images which are instances of an anatomical structure, a shape

atlas can be viewed as an average label image representation of the shape under

consideration. In the next subsection a method to obtain an atlas for binary images is

introduced, which will be subsequently extended to label images containing multiple,

and possibly nested, structures.

Atlas construction in single object shapes

Let us assume that a set of n training shapes, Sn, is available and that each shape

is represented by a binary image, Bi. That is, the label set contains only two labels

corresponding to the object and background segmentations. For the sake of simplicity,

we assume that S 0
n
is the set of shapes Sn after they have been aligned to a reference

coordinate system.

Let B0
i
and DT (B0

i
) denote the shape in atlas-aligned coordinates and its signed

Euclidean distance transform [64] respectively. The signed distance transform of an

average shape, Bav, can be obtained by computing DT (Bav) = 1
n

P
n

i=1DT (B0i).
A binary representation of the average shape can be retrieved by thresholding the

distance transform map to its zero-level set. We coin this averaging procedure shape-

based blending.

As was mentioned earlier, prior to shape-based blending all shapes have to be



7.2 Methods 133

(a) (b)

Figure 7.3. Example MR image and manual segmentation from the training set

(three orthogonal views). The label images (Figure 7.3(b)) were manually extracted

from three dimensional cardiac MR scans (Figure 7.3(a)) and subsequently interpo-

lated using shape-based methods. In each slice the left ventricular blood pool (dark

grey), the left ventricular myocardium (light grey), and the right ventricular blood

pool (white) were manually outlined. The papillary muscles were included in the

segmentation of the blood pool as is customary in clinical practice. The label image

shown in Figure 7.3(b) has been resampled using shape-based interpolation. See the

text for further details.

aligned into an atlas-aligned coordinate system. As the atlas is yet to be constructed,

the initial coordinate system can be chosen arbitrarily to coincide with that of any

of the shapes in the training set Sn. In order to reduce the bias introduced by the

selection of the initial reference shape, an iterative algorithm has been developed.

In the �rst iteration, one shape of the training set is randomly selected to be the

atlas. Subsequently, all other shapes in the set are registered to the current atlas

using a quasi-aÆne transformation (rigid transformation plus anisotropic scaling,

but no shearing). This registration is accomplished with a modi�ed version of the

method by Studholme et al. [284]. After registration, all shapes are blended and a

new atlas is generated. This new atlas then becomes the current atlas and the process

is iterated until the di�erence between the current and the new atlas falls below a

certain threshold. This can be monitored, for instance, by de�ning a suitable measure

of label agreement between two images. In the results section we shall investigate the

convergence properties of this algorithm and the in
uence of the randomly selected

initial reference.



134 7 Automatic construction of cardiac statistical shape models

Atlas construction in multiple-part shapes

Let us assume that a set of n training shapes, Sn, is available and that each shape

is represented by a label image, Li, in which l objects are represented by distinctive

labels.

The atlas construction algorithm of the previous subsection applies to binary

images for which the distance transform is de�ned. However, it is possible to generalize

the method to multiple-part shapes, which is needed for cardiac modeling. In fact, to

extend the method of the previous subsection we only need to specify a method for

shape-based blending of multi-valued images. The atlas alignment procedure used in

this work readily extends from single-object to multiple-object label images. In the

following, we discuss our method for shape-based blending in cardiac label images.

Figure 7.4 schematically represents a typical arrangement of LVbp, LVmyo and

RVbp as extracted manually from cardiac MR images. This �gure also indicates

how the cardiac shape can be decomposed into three sub-shapes: the LVbp, the
LVbp

S
LVmyo and the RVbp. By construction the LVbp

S
LVmyo always embeds the

LVbp, and both of them are non-overlapping structures with respect to the RVbp.
Each one of these sub-shapes can now be represented as a binary image. This casts

the problem of shape-based blending of a label image into l problems of shape-based
blending of binary images. After the l average sub-shapes have been generated, all of

them are combined into a new label image by taking the initial arrangement and la-

beling into account. An example of shape-based blending with two shapes consisting

of three objects is shown in Figure 7.5.
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Figure 7.4. Two-chamber model decomposition. In order to apply the shape-

based blending, the heart is decomposed into three binary shapes representing, from

left to right, the right ventricular blood pool (RVbp), the left ventricular interior

(LVbp
S
LVmyo) and the left ventricular blood-pool (LVbp), respectively.
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(a) (b) (c)

Figure 7.5. Shape-based blending of label images. Figure 7.5(c) illustrates the

blending result of the two shapes of Figure 7.5(a) and 7.5(b). All �gures contain

three equivalent orthogonal views.

7.2.4 Landmark extraction

After an atlas has been constructed, it needs to be landmarked. For cardiac modeling,

landmarks for the endocardial and epicardial wall of the left ventricle, and for the en-

docardial wall of the right ventricle can be extracted. In order to landmark the atlas

automatically, the marching cubes [183] algorithm was applied. This algorithm gener-

ates a dense triangulation of the boundary iso-surfaces that can be further decimated

to reduce the amount of triangle nodes. The decimation process can be implemented

in such a way that it preserves the accuracy of the surface representation to a desired

tolerance [264]. The nodes in the decimated triangulation form the landmarks of the

shape. By using marching cubes, a dense and approximately even distribution of land-

marks is obtained. Alternatively, any other automatic algorithm for mesh extraction

from a binary (label) image can be applied like, for instance, surface nets [118] or the

wrapper algorithm [126]. Note that, as an alternative to these algorithms, an expert

could manually localize anatomical landmarks in the atlas. Anatomical landmarks,

however, may be too sparse to accurately represent the shape of three-dimensional

structures.

7.2.5 Landmark propagation

Subject-to-atlas elastic registration

Once the atlas is constructed and landmarked, its landmarks can be propagated to the

individual shapes. This is carried out by warping each sample labeled volume into the

atlas with a transformation, T = Ta+Te, that is composed of a quasi-aÆne (Ta) and

an elastic (Te) transformation. The transformation Ta accounts for overall pose and

size di�erences between the atlas and each sample volume while the transformation

Te accounts for local shape di�erences. In the previous chapter, this transformation
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was recovered with a free-form elastic registration algorithm. The deformation �eld

was represented with a single-resolution mesh of control points that are interpolated

to a continuous �eld using B-spline basis functions. Pilot experiments revealed that

this class of transformations is either too coarse (for coarse mesh resolution) or prone

to folding (too �ne mesh resolution) to recover the large shape variability present in

cardiac shapes.

In order to cope with large shape variations, a multi-level extension [262] of

the free-form registration algorithm proposed by Rueckert et al. [255] (cf. also Ap-

pendix 6.A)) was applied. In this approach, the elastic transformation is decomposed

into a hierarchy of FFDs with increasing mesh resolution, Te =
P

h
Th
e . Gross shape

warping takes place at the coarsest resolution levels while �ner levels take care of more

local deformations. Appendix 7.A describes this algorithm in more detail. In the pre-

vious chapter binary images were registered with normalized mutual information. In

this chapter, the need of registering label images led us to de�ne a novel registration

measure that has proven to be more suited. The next subsection elaborates on this

issue.

Similarity measure for label image registration

Several measures can be used to recover the transformation T. In the experiments

of the previous chapter we noticed that normalized mutual information [285] had

a superior performance over cross-correlation and sum of square di�erences for the

registration of binary images. However, in dealing with label images, we observed

that maximization of normalized mutual information can map more than one label

in the reference image into a single label in the target image. This was particularly

problematic when recovering the elastic transformation.

When applied as a registration function, mutual information tends to maximize

the overlap of structures across two images. A particular characteristic of registra-

tion algorithms based on mutual information is the fact that structures which are

delineated by intensity i in the �rst image may be mapped to structures which are

delineated by intensity j in the second image. It is this characteristic which allows the
successful application of mutual information for the registration of images acquired

from di�erent imaging modalities. However, for the registration of label images this

can lead to misregistrations as structures denoted by label i in the �rst image may

be matched to structures denoted by a di�erent label j in the second image without

any consequences for the mutual information of the two images.

Since the correspondences of structures across both images are encoded explicitly

in the labeling, we are only interested in maximizing the overlap of structures denoted

by the same label in both images. Therefore we have used a registration measure that

favors the mapping of identical labels. We have coined this measure label consistency.

If PAB(i; j) is the joint probability of labels i and j in the reference (A) and target

(B) shapes, respectively, the label consistency measure is de�ned as

CLC(A;B) =
P

l

i=1 PAB(i; i)Pl

i=1

Pl

j=1 PAB(i; j)
(7.1)
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Label consistency is a measure of how many labels of all the labels in the reference

shape are correctly mapped into the target shape. When the label consistency measure

is zero, none of the reference labels has been correctly mapped into the target shape.

If all reference labels are correctly mapped, the label consistency measure yields one.

Landmarking sample shapes

Once the global transformation T has been found, the landmarks of the atlas can

be propagated to the atlas-aligned coordinate system by applying the inverse of the

elastic transformation (T�1e ). This process is repeated for each sample shape. As a

result, a set of landmarks is obtained that describes shape variations with respect to

the atlas. Since these landmarks are now in atlas-aligned coordinates, pose and size

variations are explicitly eliminated from further analysis. These transformed land-

marks are subsequently used as the input for Principal Component Analysis (PCA)

as indicated in Figure 7.1.

7.3 Results

7.3.1 Data sets and pre-processing

Fourteen adult subjects, free of clinical cardiovascular disease, were scanned on a 1.5

Tesla MR scanner (Philips ACS-NT, PowerTrak 6000 Gradient System, Philips Med-

ical Systems, Best, The Netherlands) using an ECG-triggered Echo Planar Imaging

(FFE-EPI) sequence. Cine acquisitions consisting of eight to ten short-axis slices of

the heart in eighteen to twenty phases of the cardiac cycle were performed. The most

important scan parameters were: repetition time, TR = 632{857 ms; echo time, TE

= 8.9{9.1 ms; 
ip angle, � = 20Æ; slice thickness, 10 mm; slice gap, 0 mm; a 256�256
image matrix, and a 300�300-mm2 �eld-of-view.

From the acquired temporal sequence of each volunteer, the end diastolic frame

was manually segmented as indicated in Section 7.2.2. Subsequently, all segmentations

were resampled to isotropic voxels with size equal to the in-plane resolution (1.17 mm)

using shape-based interpolation [135,249].

7.3.2 Comparison of label images

In order to monitor the convergence of the atlas building procedure, a measure to

compare two label images is required. For a given voxel, each image can be considered

as an observer that provides a class label. Therefore, comparing label images is

equivalent to comparing the agreement between two observers. The � statistic [1] is

a statistical measure designed to perform such a comparison

� =
pa � pc
1� pc

(7.2)
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where

pa =

lX
i=1

PAB(i; i) (7.3)

pc =

lX
i=1

PA(i)PB(i) (7.4)

and PAB(i; j), PA(i), and PB(j) are the joint probability density and marginal

probability densities for the labels in the images A and B. The � statistic is a measure
of agreement between two classi�cations, pa, that is corrected for chance agreement

pc [1]. In order to interpret the values of the � statistic one can refer to standard

tables provided in literature [1]. A value below 0.2 indicates poor agreement while

values between 0.2 and 1.0 range from fair to perfect agreement.

7.3.3 Atlas construction

Figure 7.6 shows the result of the atlas building process described in Section 7.2.3.

The atlas is smooth and the wall thickness is approximately constant everywhere.

This result suggests that the shape-based blending procedure captures the global

shape of the ventricles without biasing the wall thickness in any particular sector.

(a) (b)

Figure 7.6. Atlas construction and landmarking. Figures 7.6(a) and 7.6(b) show

the result of the iterative atlas construction algorithm as three orthogonal views and

as a wire-frame rendering with nodes representing the landmarks. The landmarks

have been extracted using marching cubes with subsequent mesh decimation (95%

decimation factor).

The convergence of the iterative atlas construction and the e�ects of di�erent
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initial shapes in the generation of the atlas have also been studied. Figure 7.7 plots

the � statistic between two successive iterations of the algorithm of Section 7.2.3. The

same curves are plotted for two di�erent initial shapes (A and B). After �ve iterations
the agreement is excellent (� > 0:94) and the di�erences between the atlases of two

consecutive iterations are marginal. From these plots one can conclude that most of

the changes in the shape of the atlas occur in the �rst few iterations.

In order to compare the atlas generated with two di�erent initial shapes, we have

considered the atlases of the �fth iteration. Since the initial shapes have a di�erent

orientation and size, we would like to verify that the atlases generated with di�erent

initializations di�er by a quasi-aÆne transformation without intrinsically di�ering in

shape. Accordingly, we have quasi-aÆnely registered the two atlases and compared

their di�erence after registration. Marching cubes was used to extract iso-surfaces of

both atlases prior to registration and the surfaces extracted from the reference image

were transformed according to the computed quasi-aÆne transformation. After trans-

forming the reference surfaces to target coordinates, the average surface-to-surface

distance between the two atlases was 0.67 mm, and they were visually indistinguish-

able. This distance has to be compared to the voxel size which is 1.2�1.2�10 mm3.
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Figure 7.7. Convergence of the atlas construction algorithm. The � statistic

between two consecutive atlases is a function of the iteration number. Iteration zero

corresponds to the initial shape used in the iterative algorithm. The �(m) statistic

compares the agreement between the atlases Am and Am�1. Curves for di�erent

initial shapes (A and B) are shown.

Another way of assessing the in
uence of the initial shape is to perform a consis-

tency check. Figure 7.8 shows that for each shape in the training set two quasi-aÆne

transformations can be found that map it to each of the atlases constructed starting

with A and B. Let us call these transformations TAi and TBi , respectively. Let

TAB be the quasi-aÆne transformation that maps the atlas A into the atlas B. In

this situation, the transformation Ti = T�1
Bi
TABTAi, should be equal to the identity

transformation, TI . By measuring the average and the standard deviation of the
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di�erences Ti�TI it is possible to assess the bias and dispersion introduced by using

two di�erent initial shapes to build the atlas. These two initial shapes were chosen

randomly from the training set. The statistical analysis is carried out in a paramet-

ric domain (translation, rotation and scaling parameters) to quantify the di�erences

between Ti and TI .
1 The results of this analysis for each transformation parameter

are shown in Table 7.1. The translation, rotation and scaling error SDs are below

1.4 mm, 0.04Æ, and 5.1%, respectively.

Atlas A Atlas B

1

n

A i Bi
T T

i

AB

T

T

Figure 7.8. Bias introduced by the initial shape in the construction of the atlas.

TAB is the transformation between the two atlases, A and B. For each of the n

shapes, TAi and TBi give the transformations to each atlas A and B, respectively.

The similarity of the two atlases can be assessed by computing the deviation of

transformation Ti = T�1
BiTABTAi from the identity transformation.

7.3.4 Statistical shape models

To construct a statistical model from the cardiac atlas, landmarks were extracted

automatically from the atlas using marching cubes and subsequent mesh decimation

(95% decimation ratio). This procedure yielded 215 and 528 landmarks for the left

ventricular endo- and epicardial surfaces, respectively, and 372 landmarks for the right

ventricular endocardial surface.

After automatic atlas landmarking, Principal Component Analysis (PCA) was

performed on the set of propagated landmarks to the 14 shapes. Figure 7.9 and

Figure 7.10 show the �rst �ve modes of variation of a left ventricle model and a com-

bined left and right ventricle model, respectively. In the former, only the left ventricle

1For more details on the computation of the transformation parameters from the matrix Ti refer

to Appendix 6.B.
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Parameter Units Mean SD

tx [mm] - 1.04 1.05

ty [mm] + 0.09 0.59

tz [mm] + 0.27 1.38

rx [Æ] + 0.00 0.02

ry [Æ] - 0.04 0.04

rz [Æ] - 0.01 0.02

sx [%] - 1.41 4.18

sy [%] - 0.12 1.74

sz [%] - 1.47 5.05

� [�] 0.984 0.009

d [mm] + 1.82 1.49

Table 7.1. Error in each transformation parameter (translation, tx; ty; tz, rotation,

rx; ry; rz, and scaling, sx; sy; sz) of the transformation Ti with respect to the identity

transformation. Point-to-point transformation error, d, provides information about

the average distance between corresponding points before and after transformation.

The parameter � provides a measure of the validity of the anisotropic scaling model

for the full transformation Ti. See Appendix 6.B for further details.

segments (LVbp and LVmyo) were taken into account in the elastic registration and

landmark propagation procedures. In the latter, both the left ventricle (LVbp and

LVmyo) and the right ventricle (RVbp) were elastically registered to the atlas, and the
landmarks were subsequently propagated.

Figure 7.11 indicates the percentage of the total explained variance as a function

of the number of modes. Once corresponding landmarks are available, one is free to

include or exclude the landmarks corresponding to a certain substructure. The more

substructures are incorporated, the larger the required number of modes to explain a

given variance since the overall shape variability has been increased.

In order to quantitatively assess the performance of the built models we have

analyzed the reconstruction error by performing several leave-one-out experiments.

The landmarks of all but one data set were used to build a statistical model. This

model was subsequently used to reconstruct the set of landmarks not included in

the PCA. The same experiment was repeated by taking out from the PCA, one in

turn, each of the sets of landmarks. Finally, the average reconstruction error over the

leave-one-out experiments was computed. This error was calculated as the root mean

square error between the reconstructed and the true landmark position. Figure 7.12

shows the root mean square reconstruction error as a function of the number of modes

used in shape reconstruction. For ten modes of variation (95% shape variability), the

mean reconstruction error is 3.6 mm. This error is three times the in-plane voxel

dimension and approximately one-third of the slice thickness. Since our training set

is relatively small and the shape variability is quite large, these experiments do not

reveal much information on the generalization ability of the models. However, they

provide a �rst estimate that could be re�ned by enlarging the database of shapes.
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1st mode

2nd mode

3rd mode

4th mode

5th mode

�3p�i mean +3
p
�i

Figure 7.9. Shape instances generated using the 3-D one-chamber (LV) model

from 14 cardiac data sets. The instances are generated by varying a single shape

parameter, �xing all others at zero standard deviations from the mean shape. The

one-chamber model consists of 215 endocardial nodes and 528 epicardial nodes.
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1st mode

2nd mode

3rd mode

4th mode

5th mode

�3p�i mean +3
p
�i

Figure 7.10. Shape instances generated using the 3-D two-chamber model from

14 cardiac data sets of the heart. The instances are generated by varying a single

shape parameter, �xing all others at zero standard deviations from the mean shape.

The two-chamber model consists of 215 LV endocardial nodes, 528 LV epicardial

nodes, and 318 RV endocardial nodes.
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Figure 7.11. Percentage of total shape variance versus the number of modes used

in the 3-D statistical shape model. The total number of landmarks was 1061 for

the two-chamber heart model (Epi+Endo+RV), 743 for the left ventricular model

(Epi+Endo), and 215 and 528 for the left ventricular endocardial (Endo) and epi-

cardial (Epi) models, respectively.
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Figure 7.12. Root mean square of landmark position (reconstruction error) in

the leave-one-out experiments. The di�erent curves correspond to statistical shape

models constructed on the basis of all the landmarks or anatomical subsets. Endo

= LV endocardial surface landmarks, Epi = LV epicardial surface landmarks, and

RV = RV endocardial surface landmarks.



7.4 Discussion and conclusions 145

7.4 Discussion and conclusions

This chapter has presented a method for the automatic construction of 3-D statistical

shape models. The technique is based on the automatic extraction of a dense mesh

of landmarks in an atlas constructed from the training shapes. These landmarks are

subsequently propagated through an elastic deformation �eld to each shape of the

training set. The method is able to treat single- and multiple-part shapes. Results

of the construction of a one- and two-chamber cardiac model have been presented.

Experiments were carried out to establish the ability of the models to generalize to

shapes not present in the training set. The root mean square reconstruction error in

landmark position of the two-chamber model was below 3.8 mm when the number of

nodes was suÆcient to explain 95% of the shape variability.

This work has shown that the combination of our atlas generation method and

the multi-level FFD elastic registration algorithm are able to cope with the large

deformations involved in inter-patient matching of cardiac shapes. To the best of

our knowledge, this work is the �rst one in suggesting the use of three-dimensional

statistical shape models to describe the left and right ventricle of the heart. All the

shapes in our training set were acquired at end diastole. However, the fact that the

elastic registration algorithm can cope with large inter-patient deformations suggests

that the same experiments could be repeated for di�erent phases of the cardiac cycle

to build a statistical spatio-temporal model of the heart.

Our model can be classi�ed as a statistical surface model. One of the main

di�erences between our approach and the work by Brett and Taylor [39,40] and Fleute

and Lavall�ee [100,101] is that we use a volume-based elastic registration algorithm as

opposed to their surface-based approaches. As a consequence, after elastic registration

we are able to recover a dense volumetric displacement �eld. This could be used to

propagate landmarks located inside of the myocardium or blood pools producing a

statistical solid model.

The method presented in this chapter can be applied to model-based cardiac

image segmentation and analysis. A signi�cant improvement may be accomplished

by enlarging the database of training shapes so as to capture the main modes of

shape variation of cardiac chambers for a large population, and not only for those

of our reduced training set. Although this chapter provides a proof-of-concept for

our automatic landmarking algorithm, it is necessary to improve the statistics of the

model to achieve an accurate segmentation.

A second step toward segmentation is to devise a deformation strategy that al-

lows for the adaptation of the model mesh to segment a cardiac MR image. This

could be achieved, for instance, by applying a method similar to the two-dimensional

deformation procedure of active shape models [58]. For each landmark in the model,

a statistical model of the intensity pro�le (or some other suitable image feature) along

the surface normal can be computed. The model mesh could be deformed by moving

the nodes along the direction of the normals to the position best matching the inten-

sity with the statistical pro�le model. This method would provide an image-derived

displacement for each node. The displacements applied to update the mesh can be

obtained by projecting the suggested displacements onto the sub-space spanned by

the main modes of variation. This projection step would naturally incorporate shape
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constraints in the mesh deformation.

In conclusion, a method was presented to construct a shape atlas and to derive a

statistical model of three-dimensional shape variability. We have demonstrated that

this method is applicable to the construction of a statistical shape model of the cardiac

chambers. This paves the way toward the application of this model to cardiac image

segmentation and analysis.

7.A Appendix: Elastic registration with multi-level

FFDs

In order to establish shape correspondences between label images, and to propagate

landmarks from the atlas to the individual shapes, a multi-level free-form elastic

registration algorithm has been applied which was formulated by Rueckert et al. [255]

and further developed by Schnabel et al. [262]. This algorithm manipulates a shape by

embedding it in a hierarchy of volumetric grids which de�ne continuous deformation

�elds through a set of B-spline basis functions. For each location in the reference

shape, a corresponding location in the individual shapes is found to obtain an optimal

match. The corresponding optimal deformation �eld is obtained by maximizing a

voxel similarity measure on the basis of the corresponding labels. The registration

method and a novel similarity measure for label images are brie
y summarized in the

following subsection.

7.A.1 Transformation model

Let T : (x; y; z) 7! (x0; y0; z0) be a transformation that maps any point (x; y; z) in the

reference image into the corresponding target image coordinates (x0; y0; z0). In our

application the reference image is the atlas which de�nes the coordinate system in

which all other images will be expressed.2

In order to accommodate for non-rigid deformations, T will consist of a global

transformationTglobal and a coarse-to-�ne hierarchy of elastic transformationsT
h

elastic

at increasing grid resolutions

T(x; y; z) = Tglobal(x; y; z) +

HX
h=1

Th

elastic(x; y; z) (7.5)

7.A.2 Global transformation

The global transformation describes the pose and size of the transformed shape with

respect to the atlas. This can be accomplished with a global transformation in the

form of an aÆne model

2Figure 7.1 suggests that each sample shape is warped to the atlas. In this case, the inverse

of the deformation �eld has to be computed to propagate the landmarks. However, this mapping

does not necessarily exist. This was illustrated for the sake of conceptual simplicity only. From a

computational point of view it is more convenient to warp the atlas to each sample shape and use

the direct deformation �eld for landmark propagation.
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Tglobal(x; y; z) =

0@�11 �12 �13
�21 �22 �23
�31 �32 �33

1A0@ x
y
z

1A+

0@ �14
�24
�34

1A (7.6)

where the coeÆcients � parameterize the twelve degrees of freedom of a generic

aÆne transformation. For a quasi-aÆne transformation, only nine parameters are

independent (rigid transformation, ftx; ty; tz; rx; ry ; rzg, plus anisotropic scaling, fsx;
sy; szg).3 The computation of these parameters is accomplished with a modi�ed

version of the method by Studholme et al. [284]

7.A.3 Local transformation

The global transformation captures only the pose and size of the shapes. In order

to accommodate for local shape di�erences, the global deformation �eld has to be

supplemented with a local deformation model. The local deformation �eld is repre-

sented by a hierarchy of free-form deformation (FFDs) based on B-splines. The basic

concept of multi-level FFDs is to deform an object by embedding it into a hierarchy

of volumetric meshes of control points and subsequently manipulating the meshes.

These meshes form a multi-resolution hierarchy with levels of increasing mesh reso-

lution (or decreasing mesh spacing). The control points of each mesh are smoothly

approximated by a set of B-spline basis functions that de�ne a continuous deformation

�eld.

To de�ne multi-level FFDs based on B-splines we denote the domain of the image

volume as 
 = f(x; y; z)j 0 � x < X; 0 � y < Y; 0 � z < Zg. Let �h denote a

nh
x
� nh

y
� nh

z
mesh of control points, �h

i;j;k
, at level h and with uniform spacing Æh.

Then, the FFD can be written as the 3-D tensor product of the familiar 1-D cubic

B-splines

Th

elastic(x; y; z) =

3X
l=0

3X
m=0

3X
n=0

Bl(u)Bm(v)Bn(w)�
h

i+l;j+m;k+n (7.7)

3The relationships between the � parameters and those of a quasi-aÆne transformation are

�11 = sx cos ry cos rz

�12 = sy cos ry sin rz

�13 = �sz sin ry

�21 = sx(sin rx sin ry cos rz � cos rx sin rz)

�22 = sy(sin rx sin ry sin rz + cos rx cos rz)

�23 = sz sin rx cos ry

�31 = sx(cos rx sin ry cos rz + sin rx sin rz)

�32 = sy(cos rx sin ry sin rz � sin rx cos rz)

�33 = sz cos rx cos ry

�14 = tx

�24 = ty

�34 = tz
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.13. Multi-level free-form deformations. The deformation �elds for land-

mark propagation are computed by elastically matching each training shape (Fig-

ure 7.13(e)) to the atlas (Figure 7.13(a)). The deformation �eld is represented as a

hierarchy of free-form deformations. Figures 7.13(b)-7.13(d) represent the absolute

(cumulative) deformations at 15 mm, 10 mm and 5 mm grid spacing. The relative

deformation �elds at each level are shown in Figures 7.13(f)-7.13(h).

where i = b x

nh
x

c � 1, j = b y

nh
y

c � 1, k = b z

nh
z

c � 1, u = x

nh
x

� b x

nh
x

c, v = y

nh
y

� b y

nh
y

c,
w = z

nh
z

�b z

nh
z

c, and where Bl represents the l-th basis function of the B-spline [173].

The control points �h act as parameters of the B-spline at level h and the de-

gree of non-rigid deformation which can be modeled depends on the resolution level h.
The smaller the associated spacing Æh the more local the deformation is allowed to be.
On the other hand, the computational complexity of the algorithm is approximately

inversely proportional to the spacing parameter. The trade-o� between deformation


exibility and computational complexity is mainly an empirical choice which is de-

termined by the accuracy required to deform the atlas into the individual shapes. In

our experiment with cardiac data sets, we have used a deformation �eld with three

mesh levels (H = 3) corresponding to grid spacings of 15 mm, 10 mm, and 5 mm

(Figure 7.13).
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7.A.4 Hierarchical FFD optimization

In order to �nd the optimal transformation we minimize a cost function with respect

to the global transformation parameters, �, as well as the local transformation pa-

rameters, �h
i;j;k

. In order to perform this registration, a hierarchical optimization

algorithm is employed. Initially only the global parameters are optimized. Once the

shapes have been aligned with the atlas, the global parameters are frozen and the

FFD levels are subsequently optimized one by one in a coarse-to-�ne manner us-

ing a gradient-descent method, taking the preceding global and local displacements

into account. These preceding displacements can be eÆciently precomputed to avoid

reevaluation during the optimization of a current FFD level.

As an illustration, Figure 7.13 shows a two-dimensional projection of the three-

dimensional deformation �eld for a �xed slice. Figures 7.13(a) and 7.13(e) indicate

the reference and target shapes respectively. Figures 7.13(b), 7.13(c) and 7.13(d)

indicate the cumulative deformation �eld of three increasing levels of re�nement,

while Figures 7.13(f), 7.13(g) and 7.13(h) indicate the relative deformation �eld of

the given level. In our experience, the multi-level approach is less prone to yield grid

foldings given that the local 
exibility of the deformation is increased only gradually.4

This naturally regularizes the FFDs without the need of extra smoothness terms [255].

4The apparent \foldings", especially in Figure 7.13(d), are an artifact of the projection of the

three-dimensional deformation �eld on a two-dimensional planar surface. In this particular plane,

the maximal out-of-plane displacement is about 8 mm which occurs close to the region of apparent

folding. In this area there is a large gradient in the deformation �eld. When interactively visualized

in 3-D the deformation �eld is still smooth.





Books serve to show a man that those original

thoughts of his aren't very new after all.

| A. Lincoln, 1809-1865
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Samenvatting

V
olumetrische beeldvormende technieken zoals Computed Tomography (CT), Magnetic Reso-

nance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Com-

puted Tomography (SPECT) en Ultrasound (US) verscha�en de clinici een grote hoeveel-

heid anatomische en functionele informatie. Dit heeft er toe geleid dat de vraag naar technieken

om zo optimaal mogelijk gebruik te maken van de overvloed aan beschikbare informatie drastisch is

toegenomen en medische beeldanalyse met behulp van computers een levendig vakgebied is geworden.

Door de jaren heen is het werkterrein van de medische beeldanalyse uitgebreid. Klassieke pro-

blemen die in deze discipline veel aandacht hebben gekregen zijn o.a. beeldregistratie, kwanti�catie

en visualisatie van volumetrische datasets, rigide en niet-rigide bewegingsanalyse, beeldsegmentatie

en patroonherkenning. Recentelijk heeft de introductie van computerondersteunde technieken in de

chirurgie tot nieuwe onderzoeksgebieden geleid, zoals de ontwikkeling van technieken voor chirurgi-

sche planning, simulatie en intra-operatieve navigatie.

In eerste instantie werd medische beeldanalyse verricht door gebruik te maken van eenvoudige,

zogenaamde low level operatoren, die vervolgens gecombineerd werden. In de beeldsegmentatie be-

horen bijvoorbeeld drempeling, region growing, statistische pixel-clustering en relaxation labeling tot

de meest populaire technieken. Deze bottom-up benaderingen hadden als doel volledig automatisch te

zijn. Hoewel een volledige automatisering vanuit het standpunt van de gebruiker ideaal zou zijn, kan

dit over het algemeen slechts bereikt worden indien de te onderzoeken structuren een goed constrast

hebben ten opzichte van de achtergrond. Doordat een bottom-up aanpak slechts lokale informatie

gebruikt, is ze kwetsbaar voor onvolkomenheden in klinische data, waarvan de beeldkwaliteit beperkt

wordt vanwege veiligheidsapecten, beperkte opnametijd en pati�entbewegingen.

In de laatste twee decennia zijn in de literatuur over medische beeldanalyse veel top-down

benaderingen ge��ntroduceerd. In deze benaderingen staat de introductie van a priori kennis in de

modelvorm ter ondersteuning van de medische analysetaak centraal. Een model, in de betekenis

van een vereenvoudiging van de fysische werkelijkheid, wordt in de wetenschap vaak gebruikt om

een probleem te reduceren tot hanteerbare proporties. Echter, in de medische beeldanalyse zijn de

modelgebaseerde strategie�en dikwijls geavanceerder dan modelvrije benaderingen. Het gebruik van

generieke of a priori contextuele kennis is met name aantrekkelijk in medische toepassingen waar de

te analyseren structuur (weefsel of orgaan), de beeldvormende modaliteit en het acquisitieprotocol

op voorhand bekend zijn.

Er zijn verschillende argumenten ten faveure van modelgestuurde medische beeldanalyse. In

sommige gevallen is het gebruik van a priori modellen noodzakelijk. Dit is typisch het geval

wanneer ten gevolge van beperkte beeldkwaliteit de oplossingsruimte verkleind dient te worden om

tot een plausibele oplossing te komen. Een bijkomend voordeel is dat de beeldanalysetaak op een

hoger abstractieniveau kan worden uitgevoerd. Ter toelichting volgen enkele voorbeelden. Een

model dat de vorm van een orgaan beschrijft, kan worden uitgedrukt in een klein aantal parameters

die direct diagnostische informatie geven. Daarnaast kan een geometrisch model worden gebruikt

ter ondersteuning van een gebruikersvriendelijke interactie, i.e. het manipuleren van krommen of

oppervlakken in plaats van interactie met de data op voxelniveau. Een spatio-temporeel model kan

een compacte beschrijving geven van een beweging in een beeldreeks, die robuust is voor extreme

afwijkingen en rekening houdt met vooraf opgelegde randvoorwaarden zoals de periodiciteit van de

beweging. Een andere reden om voor een modelgebaseerde benadering te kiezen is de complexiteit

van algoritmen. Een model reduceert het aantal vrijheidsgraden ten opzichte van een modelvrije

analyse. Dit is typisch het geval in modellen van objectvormen waar een geschikte geometrische
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representatie het aantal benodigde parameters voor de beschrijving van de vorm kan beperken.

Model-gebaseerde benaderingen maken dikwijls gebruik van a priori kennis van de vorm van

de structuren, het gaat in dit geval om geometrische modellen. Echter, er zijn andere bronnen van

a priori kennis denkbaar. In de medische beeldanalyse zijn tenminste drie modelleringstypen te

onderscheiden:

1. Modellering van de beeldacquisitie. Er zijn veel factoren die bijdragen tot het beeldvormings-

proces. Het onderliggende fysische principe voor beeldcontrast, de bemonsteringsstrategie, de

aanwezigheid van mogelijke beeldartefacten, het beeldvormend systeem en de omgevingsruis

be��nvloeden alle de uiteindelijke dataset. Het modelleren van deze informatie kan helpen bij

de beslissing hoe de beelddata dienen te worden ge��nterpreteerd of hoe de nauwkeurigheid van

algoritmen kan worden verbeterd.

2. Modellering van het af te beelden object. A priori kennis van de anatomie, functie, fysiologie

en/of pathologie van de structuren die van belang zijn, kan worden meegenomen in de analyse.

Anatomische kennis is waarschijnlijk �e�en van de meest gebruikte vormen van a priori kennis.

Het inbrengen van deze kennis stelt iemand in staat voorwaarden te stellen die helpen bij

het regulariseren van de beeldanalysetaak. Zo kan bijvoorbeeld kennis over de vorm van

organen worden ge��ntroduceerd bij de selectie van de geschikte modelparameterisatie of bij

het uitvoeren van een statistische analyse, die leidt tot een beschrijving van een gemiddelde

vorm en de variatie over een populatie.

Het modelleren van het af te beelden object behoeft niet noodzakelijkerwijs beperkt te blij-

ven tot het modelleren van de vorm. Soms bestaat de taak uit het relateren van de in de

beelddata aanwezige informatie aan een model dat de onderliggende (patho-)fysiologie van

het onderzochte object beschrijft.

3. Modellering van de gebruiker. Dit type kennis modelleert het e�ect van de gebruikersinteractie

in het klinische beslissingsproces. In de klinische praktijk worden manuele beeldanalysepro-

cedures soms uitgevoerd volgens vastomlijnde protocollen om de reproduceerbaarheid van de

resultaten te maximaliseren. Een nauwkeurige studie van het protocol kan aanwijzingen geven

welke stappen geautomatiseerd kunnen worden.

Een ander gerelateerd onderwerp is eÆci�ente gebruikersinteractie. In de meeste beeldanaly-

sebenaderingen wordt tegenwoordig de gebruiker buiten de loop van het algoritme gehouden.

De interactie blijft vaak beperkt tot het bewerken van de resultaten van een min of meer

automatisch algoritme. Een eÆci�ent interactiemechanisme zou de gebruiker in staat moeten

stellen het proces intu��tief te sturen; idealiter zouden kleine gebruikersacties een groot e�ect

moeten hebben op de uiteindelijke resultaten en een volledig handmatige bewerking moeten

voorkomen. Tegelijkertijd dienen de resultaten intu��tief en reproduceerbaar te zijn.

In dit proefschrift word de potentie van het gebruik van de bovengenoemde types a priori

kennis in driedimensionale modelgestuurde beeldanalyse geexploreerd, met de nadruk op vasculaire

en cardiale MR data.

In de hoofdstukken 2 tot en met 4 worden verschillende aspecten van een modelgebaseerde

techniek voor de semi-automatische kwanti�catie van lineaire vaatsegmenten in 3-D Magnetische

Resonantie Angiogra�e (MRA) beelden beschreven.

Hoofdstuk 2 handelt over een multi-schaal �lter voor de verbeterde visualisatie van bloedvaten

in 2-D en 3-D angiogrammen. Hier is de a priori kennis aanwezig in de vorm van een lokaal dis-

criminerende functie, die buisvormige structuren versterkt. Deze discriminant is gebaseerd op een

geschikte combinatie van de eigenwaarden van de Hessiaan-matrix van een beeld. In de aanwezigheid

van een buisvormige structuur voldoen de eigenwaarden van de Hessiaan-matrix aan bepaalde on-

derlinge eigenschappen. Deze eigenschappen worden in hoofdstuk 2 gebruikt om onderscheid te

maken tussen driedimensionale buisvormige structuren en plaat- of blobvormige structuren. Er

wordt aangetoond dat het ontwikkelde �lter nuttig is als een voorbewerkingsstap om vaatstructuren

te benadrukken ten opzichte van nabijliggende structuren. Deze voorbewerkingsstap heeft evenwel

de neiging om vernauwingen van de vaatstructuren te introduceren. Daarom wordt in het daaropvol-

gende hoofdstuk een nauwkeuriger methode voor kwanti�catie van de vaatmorfologie ontwikkeld.

In hoofdstuk 3 wordt het in hoofdstuk 2 ontwikkelde �lter toegepast om de centrale as in

een bloedvat in 3-D MRA beelden te berekenen. Deze berekening wordt ge��nitialiseerd door een

eÆci�ente gebruikersinteractie die op natuurlijke wijze de kennis van de gebruiker over het bloedvat



Samenvatting 171

in kwestie incorporeert. Eveneens wordt in dit hoofdstuk een vaatmodel toegepast om de positie

van de wand van het bloedvat te bepalen, teneinde een kwantitatieve analyse van de vasculaire

morfologie te kunnen verrichten. A priori kennis wordt hoofdzakelijk in twee vormen gebruikt: een

cilindrisch model introduceert kennis over de vorm, terwijl a priori informatie van de beeldacquisitie

(type MRA techniek) wordt gebruikt om een criterium voor de bepaling van de positie van de

wand van het bloedvat op te stellen. De eerste in vivo en in vitro resultaten illustreren dat zowel

geometrisch als acquisitie gerelateerde kennis succesvol kunnen worden gecombineerd in het raamwerk

van deformeerbare modellen.

Voor acceptatie in de klinische praktijk, is een evaluatie van medische beeldverwerkings algorit-

men een voorwaarde. Om die reden is in hoofdstuk 4 een uitgebreide in vitro en in vivo evaluatie

van het in hoofdstuk 3 ge��ntroduceerde algoritme beschreven. In vitro experimenten hebben het

voordeel dat de werkelijke dimensies (bijvoorbeeld vaatdiameters) bekend zijn en zo objectief kun-

nen worden vergeleken met andere methoden. Aan de andere kant verscha�en in vivo experimenten

een realistische situatie. Ter evaluatie zijn de resultaten verkregen met de modelgebaseerde techniek

vergeleken met manuele metingen van experts. De nauwkeurigheid van de modelgebaseerde tech-

niek in het kwanti�ceren van vaatstructuren is vergelijkbaar met die van de manuele metingen in de

drie belangrijkste MRA technieken (time-of-
ight (TOF), phase contrast (PC) en contrast-enhanced

(CE) MRA). Echter, in PC MRA kan in gebieden met grote variatie in de bloedstroom (bijvoor-

beeld als gevolg van stenoses) het criterium ter bepaling van de wandpositie onnauwkeurig zijn. De

eerste experimenten in hoofdstuk 3 gaven aan dat in sterk gestenoseerde vaten de aanwezigheid van

bloedstroomartefacten in PC MRA de toepasbaarheid van de modelgestuurde methode beperkte.

In hoofdstuk 4 zijn resultaten opgenomen met state-of-the-art CE MRA, waar de modelgestuurde

techniek de mate van stenoses kan bepalen met een nauwkeurigheid gelijk aan die in de door de

experts uitgevoerde manuele metingen. Bovendien zijn bij gebruik van de modelgestuurde methode

een aantal andere driedimensionale morfologische parameters direct beschikbaar.

In de hoofdstukken 5 tot en met 7 wordt de nadruk gelegd op de cardiale beeldanalyse, een

vakgebied waarbinnen het gebruik van modelkennis intensief onderzocht is.

Spatio-temporele beelden van het hart worden op dit moment verkregen met een vari�eteit van

modaliteiten zoals CT, MRI en US. De beelden worden gewoonlijk gemaakt in een kort tijdsbestek,

wat de beeldkwaliteit beperkt. Een functionele hartstudie bestaat daarnaast uit een grote hoeveel-

heid 4-D data, hetgeen een arbeidsintensieve handmatige nabewerking vereist alvorens de relevante

informatie hieruit gedestilleerd kan worden. In de laatste twee decennia is een rijke bibliogra�e

verschenen betre�ende hartmodellering, maar tot op heden was er geen kritisch overzichtsartikel

beschikbaar.

In hoofdstuk 5 wordt een uitgebreid overzicht, een categorisatie en een kritische bespreking over

3-D hartmodelliering gegeven. De belangrijkste gevolgtrekking van dit hoofdstuk is dat ondanks

het grote aantal algoritmen dat in de literatuur gepresenteerd is voor het modelleren en extraheren

van de morfologie en beweging van het hart, er nog geen succesvol in is gebleken deze doelen te

bereiken op een geautomatiseerde wijze. Uit het overzicht kan ook geconcludeerd worden dat de

meeste methoden voor hart modellering gebruik maken van standaard geometrische primitieven, zoals

superquadrics, B-splines, of polygon meshes, om de vorm van de ventrikels van het hart te bepalen.

Het extraheren van de structuren wordt normaliter bereikt door het oplossen van een optimalisatie-

probleem. Hierbij worden twee termen, te weten een beeldinformatie-term (bijvoorbeeld intensiteit-

of gradi�ent-informatie) en een regularisatie-term, die de 
exibiliteit van de gekozen geometrische

representatie beperkt, afgewogen. De beperkingen op de geometrische vorm zijn gewoonlijk vrij

generiek. Het gebruik van statistische vormmodellen is daarom een veelbelovende aanpak om de

toegestane vormen te beperken tot die vormen die plausibel een hart voor kunnen stellen. Het gebruik

van statistische vormmodellen is tot op heden echter niet beschreven in de literatuur. Dit komt

waarschijnlijk door de inherente problemen bij het construeren van een driedimensionaal statistisch

model, die het extraheren van een verzameling van corresponderende driedimensionale landmarks in

een verzameling voorbeeldvormen noodzakelijk maken. Dit probleem is het belangrijkste onderwerp

van de laatste twee hoofdstukken.

In hoofdstuk 6 word een nieuw algoritme ge��ntroduceerd om driedimensionale vormmodellen te

construeren uit een verzameling voorbeeldvormen. Bestaande benaderingen selecteren eerst in alle

datasets de landmarks, om vervolgens hun onderlinge correspondentie te bepalen. In onze benader-

ing worden de landmarks aan alle voorbeeldvormen toegekend door middel van een volumetrische

elastische registratie met een atlas. Deze benadering kent een aantal voordelen ten opzichte van
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eerder gepubliceerde methoden. De methode kan worden toegepast op structuren bestaande uit

meervoudige vormen, en er zijn minder beperkende aannamen noodzakelijk aangaande de topologie

van de structuur. De methode wordt ge��llustreerd aan de hand van de constructie van statistische

vormmodellen van twee anatomische structuren: een segment van de radius in het polsgewricht, en

de nucleus caudatus, een structuur in het brein.

In hoofdstuk 7 wordt de methode, zoals ge��ntroduceerd in hoofdstuk 6, uitgebreid om statistische

vormmodellen uit cardiale MRI beelden te construeren. Deze modellen bevatten zowel de epi- als de

endocardiale wand van het linker ventrikel en de endocardiale wand van het rechter ventrikel. Omdat

anatomische variatie van het hart vrij groot is, diende de volumetrische elastische registratie worden

aangepast; een hierarchische benadering is toegepast om de deformatie op een coarse-to-�ne manier

te bepalen. Daarnaast wordt een nieuwe similariteitsmaat, label consistency, gebruikt, terwijl in

hoofdstuk 6 de maximalisatie van de genormaliseerde mutuele informatie werd toegepast. De nieuwe

maat is beter voor structuren waarin meer objecten voorkomen. De combinatie van de hi�erarchische

represenatie van het deformatieveld en de nieuwe similariteitsmaat konden succesvol omgaan met de

grote variabiliteit die bestond in de vorm van de hartkamers. De resultaten van hoofdstuk 7 e�enen

de weg voor segmentatie van 3-D cardiale MR data met gebruik van statistische vormmodellen.



Publications

Publications in International Journals:

� A.F. Frangi, W.J. Niessen, R.M. Hoogeveen, Th. van Walsum, and M.A. Viergever.

Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans-

actions on Medical Imaging, Special Issue on Model-based Medical Image Analysis,

18(10):946{56, October 1999.

� A.F. Frangi, W.J. Niessen, P.J. Nederkoorn, J. Bakker, W.P.Th.M. Mali, and M.A. Vier-

gever. Quantitative analysis of vessel morphology from 3D MR angiograms: in vitro

and in vivo results. Magnetic Resonance in Medicine, 45(2):311{22, February 2001.

� A.F. Frangi, M. Egmont-Petersen, W.J. Niessen, J.H.C. Reiber, and M.A. Viergever.

Bone tumor segmentation in MR perfusion images with neural networks using multi-

scale pharmacokinetic features. Image and Vision Computing, Special Issue on Ap-

plication of Arti�cial Neural Networks for Image Analysis and Computer Vision. In

press.

� A.F. Frangi, W.J. Niessen, and M.A. Viergever. Three-dimensional modeling for func-

tional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging.

In press.

� A.F. Frangi, D. Rueckert, J.A. Schnabel, and W.J. Niessen. Automatic construction

of multiple-object three-dimensional statistical shape models: Application to Cardiac

Modeling. Submitted.

Publications in International Conference Proceedings:

� A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever. Multiscale vessel en-

hancement �ltering. Modelical Image Computing & Computer Assisted Interventions,

MICCAI98, vol 1496 of Lecture Notes in Computer Science, pages 130{7, Boston,

USA, September 1998. Springer Verlag.

� A.F. Frangi, W.J. Niessen, R.M. Hoogeveen, O. Wink, J.M. Sche�ers, J. Bakker,

and M.A. Viergever. Automated model-based stenosis grading with 3D MRA: in

vitro evaluation. In ISMRM Workshop on Flow and Motion in Cardiovascular MRI,

London, UK, June 1999. In CD-ROM.

� A.F. Frangi, W.J. Niessen, R.M. Hoogeveen, Th. van Walsum, and M.A. Viergever.

Quantitation of vessel morphology from 3DMRA.Modelical Image Computing & Com-

puter Assisted Interventions, MICCAI99, vol 1679 of Lecture Notes in Computer Sci-

ence, pages 358{67, Cambridge, UK, October 1999. Springer Verlag.



174 Publications

� A.F. Frangi, W.J. Niessen, P.J. Nederkoorn, O.E.H. Elgersma, and M.A. Viergever.

Three-dimensional model-based stenosis quanti�cation of the carotid arteries from

contrast-enhanced MR angiography. Mathematical Methods in Biomedical Image Anal-

ysis, pages 110{18, South Carolina, USA, June 2000. IEEE Computer Society Press.

� A.F. Frangi, D. Rueckert, J.A. Schnabel, and W.J. Niessen. Automatic 3-D ASM con-

struction via atlas-based landmarking and volumetric elastic registration. Information

Processing in Medical Imaging, IPMI01, Davis, USA, June 2001. In press.

� S.A.M. Baert, W.J. Niessen, E.H.W. Meijering, A.F. Frangi, and M.A. Viergever.

Guide wire tracking during endovascular interventions. Modelical Image Computing &

Computer Assisted Interventions, MICCAI00, vol 1935 of Lecture Notes in Computer

Science, page 727{34, Pittsburgh, USA, October 2000. Springer Verlag.

� S.A.M. Baert, W.J. Niessen, E.H.W. Meijering, A.F. Frangi, and M.A. Viergever.

Guide wire tracking in interventional radiology. In H.U. Lemke, M.W. Vannier, K. In-

amura, A.G. Farman, and K. Doi, editors, Computer Assisted Radiology and Surgery|

CARS 2000, no 1214 in International Congress Series, pages 537{542, California, USA,

June 2000. Elsevier Science.

� M. Egmont-Petersen, A.F. Frangi, W.J. Niessen, P.C.W. Hogendoorn, J.L. Bloem,

M.A. Viergever, and J.H.C. Reiber. Segmentation of bone tumor in MR perfusion im-

ages using neural networks and multiscale pharmacokinetic features. In A. Sanfeliu,

J.J. Villanueva, M. Vanrell, R. Alquezar, J. Crowley, and Y. Shirai, editors, Inter-

national Conference on Pattern Recognition, vol 4, pages 80{83, Barcelona, Spain,

September 2000. IEEE Computer Society.



Curriculum Vitae

T
he author was born in La Plata, Buenos Aires, Argentine, on 15th November

1972. In the period 1985{1990 he received a technical secondary education at

the Escuela Nacional de Educaci�on T�ecnica No 1 \Albert Thomas" in the branch of

Electronics.

In January 1991, he entered university at the Universidad Nacional de La Plata,

La Plata, Argentine, where he studied a semester of the undergraduate studies of

Electronic Engineering. In September 1991, he moved to Barcelona, Spain, where he

completed his M.Sc. studies in Telecommunication Engineering at the Universidad

Polit�ecnica de Catalu~na (UPC). He graduated in September 1996 with a �nal project

on Electrical Impedance Tomography (EIT). After graduation he worked as research

assistant of the Divisi�on de Bioingenier��a of the Departamento de Electr�onica (UPC).

Over the space of a year he carried out research in the �eld of EIT under a grant of

the Spanish Government.

In September 1997 he started as a Ph.D. student (\AiO") at the Image Sciences

Institute, University Medical Center Utrecht, The Netherlands, in a project entitled

\Model-based Analysis of Volumetric Medical Images". For this period, he received

a grant from the Netherlands Ministry of Economic A�airs within the framework of

the Innovation Oriented Research Programme (IOP Beeldverwerking, project number

IBV97009). The project was carried out in cooperation with EasyVision Advanced

Development, Philips Medical Systems B.V. (Best, The Netherlands). The results

are described in this thesis. The last two chapters were carried out partly in the De-

partment of Computing at Imperial College, and in Guy's Hospital at King's College,

over a three-month research stay in London, UK.




