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‘…zal ik stoppen, of zal ik dooorgaan…’ 
 

uit ‘steentje in mijn sok’ van Winter & van Staveren 
 
 
 
 
 

‘A lot of people are hostile to science because it 
demystifies nature. They prefer the mystery. They 

would rather live in ignorance of the way the world 
works and our place within it. For me, the beauty of 

science is precisely the demystification, because it 
reveals just how truly wonderful the physical universe 

really is. It is impossible to be a scientist working at the 
frontier without being awed by the elegance, ingenuity, 

and harmony of the lawlike order in nature. In my 
attempts to popularize science, I am driven by the desire 

to share my own sense of excitement and awe with the 
wider community; I want to tell people the good news.’ 

 
Paul Davies in his acceptance speech of the Templeton Prize 1995 



 

Table of contents 
 
 
Chapter 1 General introduction 7 

   

Chapter 2 Slow growing Saccharomyces cerevisiae show increased 

expression levels of genes involved in oxidative stress 

protection and of structural subunits of the proteasome  

35 

   

Chapter 3 The expression of several components of the thioredoxin 

system after exposure to hydrogen peroxide is dependent 

on the phase of the cell cycle. 

63 

   

Chapter 4 Response of TRX2-promoterconstruct to hydrogen 

peroxide in Saccharomyces cerevisiae is cell cycle 

dependent  

83 

   

Chapter 5 Aged yeast cells show a specific decrease in response to 

oxidative stress  

101 

   

Chapter 6 Screening for new antioxidants 125 

   

Chapter 7 General discussion 137 

   

   

Appendix I References & Literature 143 

   

Appendix II Nederlandse samenvatting 155 

   

Appendix III Thanks & Curriculum vitae 159 

 





 

1
G  eneral introduction

 



8 

1.General Introduction 
 
1.1. Aging in general 

Aging has always been an intriguing phenomenon and numerous attempts have 

been made to elongate lifespan or to find ways to obtain immortality. Finding the right 

composition of the so-called philosopher’s 

stone, which should do the trick, would result in 

wealth and health until eternity (figure 1.1). 

Although science has moved on since the 

Middle Ages, no one found a stone with healing 

properties, or at least made it public, but the 

interest in aging did not fade. The approach 

shifted from finding a cure for aging to 

understanding the causes of aging, and the 

alchemists turned into scientists. As we will see 

in a moment it can be quite confusing to talk 

about causes of aging because nature’s emphasis is not on aging but on survival and 

corresponding longevity. 

 

Aging is a difficult phenomenon, both to understand and to study, and there are 

several reasons why that is the case. First of all, different kinds of extrinsic causes of 

death blur the picture of aging whilst potentially at the same time contribute to aging. 

Car accidents contribute considerably to mortality rates but are of course not involved in 

aging. A disease like malaria has obvious extrinsic aspects but how about 

cardiovascular disease or other age-related diseases? Grey hair is an example where it is 

clear that although it correlates very nicely with age, it is no cause of aging. However, 

with a lot of diseases it is less obvious whether they derive from, or contribute to, the 

aging process. Secondly, the vast amount of processes involved, spanning metabolism, 

genetic stability, stress responses, caloric restriction, and many others, makes it hard to 

develop a clear picture. Moreover, studying human aging takes a lot of time, which 

scientists do not always have. However, there are ways of circumventing this problem 

by using model organisms, which will be discussed later. Other problems are more of 

semantic origin. Using terms as lifespan and life expectancy, senescence, aging, 

longevity and viability without a proper definition leads to confusion and 
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Fig 1.1: Fragment of ‘The alchemist’ by

Adrien van Ostade (1610-1685). 
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misinterpretations. The (maximum) lifespan is the (maximal) age someone reaches 

while life expectancy is the average age that someone probably will reach. The life 

expectancy has risen by 30-40 years for some countries over the last century by 

effectively reducing health risks. On the contrary, in areas like the sub-Saharan Africa, 

life expectancy sticks at 47 years on average with a dip to 26 years for Sierra Leone 

(WHO, 2002). This has obviously everything to do with extrinsic causes of death and is 

not related to the ‘normal’ aging process. The maximum lifespan has probably remained 

constant over the years (Hayflick, 2000) although that is more difficult to prove. 

Longevity is used, as an antonym for aging while viability is the ability to remain viable 

even under adverse conditions. 

 
1.1.1. Definition of aging 

Aging has been defined many times from ‘what happens to an organism over 

time’ to ‘an increased liability to die, or an increasing loss of vigour, with increasing 

chronological age, or with the passage of the life cycle’ (Arking, 1998). Although there 

are many more of these definitions they all more or less encompass four aspects. 

Changes during the aging process must be i) deleterious, ii) progressive, iii) intrinsic 

and iv) universal for the species (Arking, 1998). Senescence is usually only used to 

describe the last stages of life but more general also as a synonym for aging. 

 

There are different levels at which the concept of aging can be approached. 

First, the way in which evolutionary biologists analyze the phenomenon will be 

described. Then the molecular biologist approach will be discussed in more detail. 

Although several model organisms can be used to obtain information about the aging 

process, the yeast Saccharomyces cerevisiae was chosen as the focus of this thesis, and 

the reasons for this choice are also discussed in the following sections. 

 
1.1.2. Different evolutionary aging models 

One of the first ideas about the cause of aging was the existence of a genetic 

program that at a certain stage will mechanistically decide like a ‘grim reaper’ that the 

organisms’ time has come. Advantages of a system like this would be that population 

size would be limited to secure food stocks and that there would be an acceleration of 

turnover of generations to be able to adapt faster to changing environments. However, 

from an evolutionary point of view it is hard to see how this could have been developed. 
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If one member had a dysfunctional ‘grim reaper’-gene, for instance because of a 

mutation, it would have had the advantage and quickly out compete others. This 

reasoning neglects the ‘selection on group level’-concept, which states that certain 

altruistic behaviour beneficial on group level whilst detrimental on individual level can 

be selected for during evolution also known as inclusive fitness or Hamilton’s rule. 

However, these theories seem to have been applied mostly to mammalian species, 

although recently several reports claim to observe this altruistic behaviour in unicellular 

organisms, for instance the apoptosis-like features in Saccharomyces cerevisiae (Madeo 

et al., 1999; Frohlich and Madeo, 2000; Zimmer, 2001). The explanation of these 

observations could reinforce group selection theory in unicellular organisms. However, 

arguments in favour of this concept remain obscure. It must be strongly emphasized 

here that the most probable explanation remains that there are no genes regulating aging 

but there are only genes regulating survival/viability and thus indirect longevity 

(Kirkwood, 2002; Bitterman et al., 2003). 

  
1.1.3. Mutation accumulation 

Natural selection weakens with age because genes that are deleterious only at 

post-reproductive stages in life are passed on without any problem (Kirkwood and 

Austad, 2000). To give an example of early and late life defects: two disorders causing 

rapid aging phenotypes known as Hutchinson-Gilford syndrome (progeria) and 

Huntington’s disease display distinctive features. Progeria is a rare disorder in which 

childhood is characterized by a rapid aging phenotype. On the contrary, Huntington’s 

disease is much more widespread because it manifests itself only at a later age giving 

the, up until then, unknowing victims the chance to pass their genes on to the next 

generation. Mutations that do not cause any problems before or during reproductive 

phase but start to cause malfunctions at later stages in life are not selected against 

during evolution and thus accumulate, hence the name ‘mutation accumulation’. 

Because this process is random, the theory predicts that there has to be a lot of genetic 

variance between lineages. Another consequence of this theory is that using genetic 

manipulation to select for late life fitness will not have negative consequences on early 

life fitness (Hughes et al., 2002). 
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1.1.4. Antagonistic pleiotropy / Disposable soma theory 
The antagonistic pleiotropy theory is more or less comparable to the mutation 

accumulation theory, because it also assumes that late in life deleterious 

mutations/genes will accumulate and take care of degeneration of the body. And again 

this is caused by the weak natural selection during the later stages of life. However, this 

theory states that the accumulation of these mutations is an effect of the optimal 

allocation of limited metabolic resources between somatic maintenance (efficient DNA-

repair, protection against stress) and reproduction, hence also the name ‘disposable 

soma’ (Kirkwood and Holliday, 1979).  

A trade-off example in the aging field is the Caenorhabditis elegans daf2 

mutant. This mutant lives twice as long as the wild type, and has a delayed but extended 

reproductive lifespan (Dillin et al., 2002). So although the amount of progeny could be 

higher in the mutant, the wild type starts earlier with producing offspring which gives it 

an evolutionary advantage. Another disadvantage of lacking DAF2 could be that in the 

daf2 mutant the insulin-signalling pathway is disturbed, which often leads to entering of 

the worms into the dauer phase. This dauer phase is some sort of hermit-state of the 

worm in which nothing happens anymore, let alone reproduction. The dauer state is an 

excellent way of surviving a longer period of food scarcity. However, a daf2 mutant 

even enters the dauer phase when there is enough food. Under these circumstances the 

wild type C. elegans will divide and probably overgrow the daf2 mutant (Kenyon, 

2001).  

 
1.1.5. Implications of the different evolutionary models 

Differences between mutation accumulation and antagonistic pleiotropy are 

present but subtle and in my opinion superficial. One implication of the mutation 

accumulation theory is that because the mutations are random, more genetic variance 

will occur between species and individuals. Antagonistic pleiotropy theory predicts that 

mutations will be less random because there has to be a beneficial effect of these 

mutations in early life. It states therefore that there will be more analogies between 

species regarding these mutations. These differences are only distinguishable by 

accurately measuring mutation rates and using reliable statistical tools. Hughes et al. 

(Hughes et al., 2002) performed these kinds of experiments and concluded that there are 

more indications in favour of the mutation accumulation theory. However, these 

theories are not mutually exclusive. The main point from these theories is that they 
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illustrate that organisms are only built to last up until the reproductive phase. Whatever 

happens after this is not specifically regulated because of the weakened force of natural 

selection at the post-reproductive stages. 

 
1.1.6. Trade-offs 

An example of a trade-off was already given for C. elegans but do they also 

occur in other organisms? Some claims indicate that a trade-off between fertility and 

lifespan exists in humans, mice and fruit flies. Experiments have been conducted in 

which offspring of young and old Drosophila melanogaster were collected. Because the 

old individuals have a larger chance to die of aging before the offspring is collected, you 

select for longevity in this offspring. This process was repeated to breed eventually a 

long living and a short living lineage. It appeared however that the long living lineage 

was less fertile early in life than the short living (Kirkwood and Austad, 2000). This 

points again to a trade-off between longevity and fertility. There has to be an optimum 

however, because new flies are not immediately capable of producing offspring. Such 

experiments are of course not possible in humans, but demographic research spanning 

several ages has concluded that a long life is at the cost of reproductive success 

(Westendorp and Kirkwood, 1998). The problem with these kinds of studies is always 

that (breeding) conditions are very diverse so conclusions have to be handled carefully. 

 

So far evolutionary argumentation shows there is probably no genetic plan, 

trade-offs are likely to occur and exogenous causes play a part in aging. But then, why 

do certain flies and people live longer than others? What is the molecular background 

behind it? As mentioned before, several mutations were found in the long-lived D. 

melanogaster strains, either made by insertional mutagenesis or by selection as 

mentioned above. For instance, a Chico mutant contains a defective insulin receptor 

substrate protein, hereby changing the insulin/IGF signalling (Clancy et al., 2001). This 

is consistent with the earlier mentioned findings with regard to the insulin signalling 

system in C. elegans (Tatar et al., 2001). The fact that nutrient signalling is very 

important for determining longevity is substantiated by the observations of a peculiar 

phenomenon called ‘caloric restriction’. Caloric restriction (CR) is the regime in which 

the daily intake of calories is 25-50% lower compared to an ad libitum fed control. 

McCay observed (in 1935) that his lab rats lived considerably longer when fed less 

(McCay et al., 1935). This approach is the only method known to increase longevity in 
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mammals so far. After this first observation, CR has also been shown in C. elegans, S. 

cerevisiae, and other model organisms (Jiang et al., 2000). There is even some 

preliminary evidence gathered that these processes can also occur in humans, as 

observed for instance in Okinawa (Japan) (Mimura et al., 1992). The way in which CR 

is able to increase lifespan is not completely elucidated yet. First it was thought that CR 

is closely linked to the oxygen radical theory through its effect on metabolism, which 

will be discussed further on (Sohal and Weindruch, 1996). By cutting back on the 

amount of calories (or better joules), metabolism would be slowed down and fewer 

radicals would be generated (Heilbronn and Ravussin, 2003). Experiments done with S. 

cerevisiae show that during a regime in which cells were deprived of excess nutrients 

caloric restriction features were observed too (Lin et al., 2000). However, besides 

oxygen radicals also other metabolism-associated molecules like NAD+ seem to be 

involved (Anderson et al., 2002). Although there is no insulin receptor in yeast, there 

are other pathways present involved in nutrient signalling and they seem to be involved 

in aging as well. But why use a unicellular organism as yeast for aging research? And 

how is nutrient signalling involved in aging? 
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1.2. Yeast aging 
 
1.2.1. Saccharomyces cerevisiae as a modelsystem for aging 

Although yeast has proven to be a qualified model for different kinds of 

research, one could doubt whether it is also a good model to study the aging process. It 

took some time before it was found that yeast cells age. Before the crucial experiments 

by Mortimer and Johnston (Mortimer and Johnston, 1959) it was commonly believed 

that yeast could divide forever. However, S. cerevisiae is an asymmetrically budding 

yeast, providing an easily recognizable difference between the mother cell, or soma, and 

her offspring, or germ line. Besides the difference in size, the mother cell is clearly 

distinguishable by the bud-scar left behind after separation of mother and daughter. 

When there is no difference between the soma and the germ line, for instance with 

Escherichia coli, then the whole concept of aging is of course not applicable (Nystrom, 

2002). Mortimer and Johnston showed by using a micromanipulator with which they 

removed newly produced daughter cells, that individual mother cells could only produce 

a limited number of progeny. A limit to the amount of offspring is not the same as an 

aging process per se. Yet, there are also several phenotypic changes occurring during its 

lifespan, like the development of surface wrinkles, the increase in vacuolar size and 

finally death, which are usually contributed to the aging of the yeast cell (table 1.1) 

(Sinclair et al., 1998a; Jazwinski, 1999).  

 
Table 1.1: Phenotypic changes during the yeast’s life. 

Characteristics of old yeast 
 

Increasing cell size 

Altered cell shape 

Develops surface wrinkles 

Budscar number increases 

Cell wall chitin increases 

Vacuole size increases 

Cell cycle time increases 

Mating ability (in haploids) decreases 

Fragmentation of nucleolus 
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There are several advantages for choosing S. cerevisiae for doing aging research.  

• It ages rather fast. 

• It is relative easy to determine the replicative age of a cell (by counting the bud 

scars). 

• At least several homologies have been found between aging yeast and higher 

eukaryotes concerning aging, for example the insulin/glucose signalling and 

caloric restriction features (Bitterman et al., 2003). 

• The aging of yeast can be controlled by external factors and can be easily 

manipulated. 

• It is easy to cultivate cells under controlled circumstances. 

 
Furthermore from a practical point of view there are some characteristics that make S. 

cerevisiae a convenient modelorganism. 

• The genome of S. cerevisiae was the first eukaryotic genome that was 

elucidated, so there are already many identified genes and there is a wealth of 

information available about them. 

• The molecular techniques are well developed. It is rather easy to make (or buy) 

knock-out mutants and devise reporterconstructs. 

 
1.2.2. Chronological vs. replicative aging 

Aging in yeast can be measured in two 

different ways; there is replicative aging and 

chronological aging. With replicative aging, cells 

bud off a limited amount of daughter cells. In this 

case lifespan of S. cerevisiae is usually measured by 

number of divisions instead of using a 

chronological time-scale. If the survival curve of S. 

cerevisiae is plotted as a function of the amount of 

divisions, an increasing age-specific mortality is 

observed, which by definition is a hallmark of aging 

(figure 1.2) (Jazwinski et al., 1989; Sinclair et al., 

1998a).  
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Figure 1.2: Survival rates for yeast
show an increasing age-specific
mortality when plotted against
number of divisions. 
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Chronological aging has also been subject of studies in yeast, but then usually 

cells in stationary phase are analyzed, which are not very metabolically active 

depending on the environment. These non-dividing yeast cells could be a good model 

for differentiated non-dividing mammalian cells, however a potential drawback is the 

difference in metabolic activity (Gershon and Gershon, 2000; Jakubowski et al., 2000; 

Fabrizio et al., 2001). On the other hand, stationary cells kept in defined expired 

medium seem to continuously have higher metabolic rates and a shorter lifespan than 

cells kept on water or rich media (Longo et al., 1996; Jakubowski et al., 2000).  

The two ways in which yeast lifespan analysis can be done reveals 

discrepancies and similarities between the approaches, with the most striking example 

being Ras2. Deletion of this protein amongst other things involved in nutrient signalling 

through the PKA pathway leads to an extension in lifespan for stationary phase cells and 

to a decrease in lifespan for dividing cells (Longo, 1999). However, when the adenylate 

cyclase Cyr1 (or Cdc35), also involved in the PKA signalling pathway is mutated, both 

the replicated and the chronological lifespan are extended (Lin et al., 2000; Fabrizio et 

al., 2001). These observations plus the observation of Ashrafi (Ashrafi et al., 1999) that 

passage through stationary phase advances replicative aging shows that the two aging 

modes are related but that at the same time each has their own characteristics.  

 
1.2.3. Growth under adverse circumstances 

The whole purpose of a yeast cell, and actually of more or less every biological 

system, is to grow and produce daughter cells, and it will do anything to maintain these 

processes. However, growth conditions are usually far from optimal so the yeast cell has 

devised protective mechanisms to overcome insults and starvation periods. There are 

specific responses in case the cell experiences oxidative stress, osmotic stress, 

temperature stress and nutrient limitation but there is also a general response: a decrease 

in growth rate. During very harsh environmental conditions the cell is inclined to 

completely halt growth until conditions improve. At these moments energy is invested 

in reinforcing the soma at the cost of reproduction. This is confirmed by earlier 

mentioned observation that prolonged stay in stationary phase shortens subsequent 

replicative lifespan (Ashrafi et al., 1999). An example of reinforcing the soma is the 

synthesis of the stress protectant trehalose during forced slow growth conditions 

(Paalman et al., 2003). Moreover, mutants impaired in trehalose synthesis are not able 

to survive stationary phase very long (Silljé et al., 1999) highlighting its importance for 
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survival. Furthermore, trehalose accumulates during exposure to all kinds of different 

stressors and is able to stabilize proteins and membranes, according to Verwaal and 

references therein (Verwaal, 2003). Regulation of trehalose accumulation is dependent 

on the growth rate because in a nitrogen limited chemostat culture, trehalose is only 

present at low growth rates although there is plenty of glucose available (Paalman et al., 

2003). Trehalose is also able to protect the cell against oxidative stress, presumably by 

acting as a free radical scavenger (Benaroudj et al., 2001). Whether the synthesis of 

trehalose in this case is regulated by the oxidative stress directly or by the decrease in 

growth rate is not clear yet although Yap1, which is an oxidative stress specific 

transcriptional activator, is necessary for hydrogen peroxide induced trehalose synthase 

expression (Lee et al., 1999b). This suggests at least an additional way of regulating 

expression during oxidative stress conditions. 

As mentioned above, experiments done with S. cerevisiae show that during a 

regime in which cells were deprived of excess nutrients caloric restriction features were 

observed. First of all the effect of decreasing glucose concentrations from 2.0 % to 0.1% 

in the media gradually increases replicative lifespan, secondly it also slows down the 

aging phenotype (Jiang et al., 2000; Lin et al., 2000). Some question marks can be 

placed next to these experiments because the mentioned glucose concentrations are the 

initial concentrations and will decrease rapidly during the experiment, so results from 

these experiments should be treated carefully. Fed-batch or chemostat cultures would 

yield more accurate and reproducible results because in these cases external glucose 

concentrations are kept constant. 

 

1.2.4. Oxygen stress and aging 
One of the key-players in the aging field are the oxygen radicals. Oxygen 

radicals are defined as molecular derivatives of oxygen with one or more unpaired 

electrons. Because of these unpaired electrons they are ‘eager’ to react with other 

molecules. In biological systems, all kinds of constituents ranging from DNA, to 

phospholipids to proteins and metabolites can be altered in their structure. These 

changes can be amongst other things, DNA double strand breaks, lipid modifications 

and dysfunctional enzymes. The term Reactive Oxygen Species (ROS) is a broader 

definition also covering for instance hydrogen peroxide. Hydrogen peroxide is not an 

oxygen radical in the strict sense because it has no unpaired electrons. However it is an 

important intermediate, so to include it, the term ROS was coined.  
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Before oxygen radicals were identified as being an important factor in 

biological systems, several observations were made that coupled metabolic rates to 

longevity. It was found for instance that the heartbeat rates of different species 

correlated nicely to their lifespan (Livingstone and Kuehn, 1979). Although there were 

several exceptions, this led in the beginning of the 20th century to the formulation of the 

‘rate-of-living’ hypothesis. In 1956 Denham Harman was the first to postulate that this 

correlation could be a consequence of the production of oxygen radicals during 

metabolism (Harman, 1956). In 1972 Harman adjusted his theory and made it more 

precise after which it became known as the ‘Mitochondrial theory of aging’. 

‘Mitochondrial’, because the origin of most of these radicals would be the mitochondria. 

This does not mean that anaerobic growing species are immortal because there are also 

other ways of generating radicals. The generation of ROS by mitochondria makes 

perfect sense because these organelles provide the cell with the required energy by 

stepwise oxidation of nutrients. It turned out that several steps in this process, for 

instance in the electron transport chain (see figure 1.3), could cause leakage of electrons 

onto oxygen. The three subunits (NADH dehydrogenase, b-c1 complex and the 

cytochrome oxidase complex) are supposed to transfer the electrons from the NADH, 

generated for instance in the oxidative phosphorylation, to oxygen to turn it into water. 

NADH + H
+

NAD
+

Q

C

H O

2H   +    O
2

2
1

2

+

NADH

dehydrogenase

complex

b-c1 complex cytochrome

oxidase
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ubiquinone cytochrome c

2 e
- 2 e

-
2 e

-

4H
+

4H
+

2H
+

inner mitochon-

drial membrane

outer mitochon-

drial membrane

Figure 1.3: The three subunits of the electron transport chain. The electrons from the reducing equivalents

NADH are transferred to ubiquinone and cytochrome c subsequently to end up in watermolecules. During

these transitions electrons can ‘leak’ leading to oxygen radicals. 
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However, these systems are not completely flawless and some electrons react with 

oxygen turning it into harmful radicals like superoxide (see figure 1.4). The exceptions 

to the heartbeat vs. lifespan rule could now also be accounted for because it was found 

that rates of production of ROS by mitochondria differed per species (Ku et al., 1993).  

O O H O OH H O
2 2 2 22

e
-

e
-

e
- e

-

H O
2

2H
+

H
+

H
+

 
Figure 1.4: Stepwise reduction of oxygen to subsequently superoxide, hydrogen peroxide, hydroxyl radicals 

and finally water. 

 

1.2.5. Oxygen stress defences 
Being able to use oxidative phosphorylation to obtain energy comes together 

with the adverse side effects of the damaging oxygen radicals. Cells adapted to these 

threats and devised several protection mechanisms, usually classified into different 

groups (Moradas-Ferreira et al., 1996; Oku et al., 2003). 

 

• Antioxidant enzymes: glutathione reductases, glutathione peroxidases, 

thioredoxin reductases, thioredoxin peroxidases, superoxide dismutases, 

catalases. 

• Small antioxidant molecules: glutathione, γ-glutamylcysteine, vitamin E, 

vitamin C. 

• Trehalose. 

• Repair and turnover systems: ubiquitin system, DNA base excision repair. 

 

Superoxide radicals can be scavenged by superoxide dismutases, one present in 

the mitochondria (Sod2) and one in the cytosol (Sod1). The cytosolic dismutase 

contains a copper ion with which electrons are transferred to superoxide radicals to form 

hydrogen peroxide as depicted in figure 1.5A (Hart et al., 1999). The formed hydrogen 

peroxide can subsequently be degraded to water and oxygen by several mechanisms. 

Glutathione can be oxidized to GSSG catalyzed by the glutathione peroxidases and 

reduced again by the glutathione reductase at the expense of reduction of NADPH 

(figure 1.5B) (Inoue et al., 1999). The thioredoxin system behaves in a similar fashion 
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also shown in figure 1.5B. With help of the thioredoxin peroxidases, the thioredoxin is 

oxidized and subsequently reduced again by the thioredoxin reductases at the expense of 

NADPH (Inoue et al., 1999). The catalases, one present in the peroxisomes and one in 

the cytosol, have another way of dealing with hydrogen peroxide by converting it 

directly to water and oxygen (figure 1.5B). However, there are differences in reactivity, 

as for instance a deletion strain of the first step in the glutathione biosynthesis is very 

sensitive to hydrogen peroxide while a catalase deletion strain is not (Grant et al., 

1998).  
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H O2  
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O
2

O
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-
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-
• H O2  2
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Figure 1.5: Several important antioxidant systems in S. cerevisiae: A: Cu/Zn superoxidedismutase, B: 

glutathione, thioredoxin and catalase antioxidant systems. GSH: glutathione, GSSG: oxidized glutathione, 

Gpx1: glutathione peroxidase, Glr1: glutathione reductase, Trx2 (r): reduced thioredoxin, Trx2 (o): oxidized 

thioredoxin, Tsa1: thioredoxin peroxidase, Trr1: thioredoxin reductase, Ctt1: cytosolic catalase. (Hart et al., 

1999) (Moradas-Ferreira et al., 1996) 
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The induction of these antioxidant proteins in yeast is tightly regulated by 

transcription factors like Yap1 and Skn7, which are activated by oxygen radicals 

(Morgan et al., 1997; Lee et al., 1999b). Also Msn2 and Msn4 play a role in stress 

protection although they are more responsible for a general stress response (Martinez-

Pastor et al., 1996). Apparently the cell has organized its defences against ROS rather 

well. However, defences against ROS are not unlimited. At a certain amount of 

exogenously added hydrogen peroxide, the cell will die. Again, there is a balance 

between investing resources in maintenance, in this case defence against ROS, or in 

producing offspring.  

 

The superoxide dismutase converts the superoxide into hydrogen peroxide, 

which in turn is neutralized by the glutathione, thioredoxin or catalase systems. 

However, these systems are not flawless, as a result radicals are able to escape these 

defence mechanisms and cause damage to cellular constituents. Hypothetically, this can 

turn into a vicious circle if these radicals damage the mitochrondrial DNA. Because if 

so, subunits (coded in the mtDNA) of oxidative phosphorylation enzymes can become 

dysfunctional, which alternately could lead to more escaping electrons and thus more 

radicals (Mandavilli et al., 2002; Wei and Lee, 2002). 

Damage done by these radicals can vary from mutating nucleotides in mtDNA, 

for instance the formation of 8-hydroxydeoxyguanine (8-OHdG), to the formation of 

carbonyls in proteins. It appears that the formation of 8-OHdG in mtDNA of different 

mammals is inversely correlated with the lifespan of these species (Barja and Herrero, 

2000). In S. cerevisiae it was observed that superoxide dismutase activity is essential for 

stationary phase survival or chronological aging (Longo et al., 1996). Moreover, 

overexpression of Sod1p and Sod2p leads to extension of chronological lifespan 

(Fabrizio et al., 2003). Also during replicative aging the deletion of Sod1p entails a 

major decrease in lifespan (Wawryn et al., 2002) but the effect of a deletion strain of 

Sod2p during replicative aging is nil.  

However, the role of ROS during caloric restriction in yeast is less clear. It is 

hard to align metabolism-associated-ROS with caloric restriction because there is 

actually an increase in respiration when sugar levels are decreased. If indeed oxygen 

radicals escaping from the mitochondria were the major damaging agents during 

replicative aging in yeast, then caloric restriction should decrease lifespan. Lin et al. 

(Lin et al., 2000) shows that the caloric restriction in yeast affects NAD+ levels, in turn 
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activating the histone deacetylase Sir2, which subsequently increases silencing and 

rDNA stability.  

There is other data concerning caloric restriction and Sir2 activity. 

Experiments by Kaeberlein et al. showed that 2.0 % glucose is actually a poor 

concentration with respect to lifespan elongation because both decreasing to 0.5 % and 

increasing to 10 % led to an increase in lifespan (Kaeberlein et al., 2002). The effect of 

lowering the concentration was explained by its effect on respiration while the effect of 

the increase in glucose was attributed to a shift from glycolysis to trehalose and glycerol 

synthesis, which is an osmotic stress response. Exposing yeast cells to 10 % glucose is 

thus actually a stressful condition. During the synthesis of glycerol NAD+ is formed 

subsequently leading again to more active Sir2. This takes us to a second molecular 

mechanism involved in aging in yeast, silencing dependent genetic stability. 

 
1.2.6. Genetic stability and aging 

As mentioned before, oxygen radicals are not the only metabolism associated 

molecules involved in aging. There are several clues that NAD+ is a protagonist of 

longevity. It is supposed to be involved in regulating genomic stability by activating 

Sir2. In the yeast DNA, there is a part that codes for ribosomal RNA (rRNA). This 9.1 

kb sequence is an active subunit of the ribosomes and is present in about 100-200 copies 

arranged next to each other on chromosome XII. These multiple copies are needed 

because the cell needs a lot of ribosomes to translate all the mRNA into proteins. 

Because of its repeating sequence it is susceptible to homologous recombination. This 

can lead to the excision of a circular piece of this rDNA from the chromosome (see 

figure 1.6). During division the DNA, including the Extra chromosomal Ribosomal 
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Figure 1.6: The formation of 

Extrachromosomal Ribosomal 

DNA Circles (ERCs). The first 

step is the excision of a circle 

by homologous recombination, 

these circles are then replicated 

and segregated asymmetrically 

between the mother and the 

daughter cell leading to 

accumulation of ERCs in the 

mother cell. 
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DNA Circle (ERC), duplicates and segregates into the daughter and the mother. 

However, the sorting is unequal and most ERCs stay with the mother cell. If this 

happens several times in a row then it does not take a mathematician to determine that, 

because of the accumulation of ERCs in the mother cell, the amount of DNA will 

increase exponentially. Sinclair et al. claims that this accumulation eventually leads to 

cell death because the yeast cell is just not able to replicate these huge amounts of DNA 

(Sinclair and Guarente, 1997).  

Sir2, an NAD+ dependent histone deacetylase, prevents the excision of these 

ERCs from the DNA. Histone deacetylases are involved in removing acetyl groups from 

the protein complexes, around which the DNA is wound: the histones. The absence of 

the acetyl groups leads to a more condensed state of the chromosomes, which makes it 

transcriptionally inactive, also known as ‘silenced’ DNA. (Chang and Min, 2002; Jiang 

et al., 2002) 

Overexpression of Sir2 leads to an increase in replicative lifespan (Kaeberlein 

et al., 1999) that, accordingly to Lin et al. (Lin et al., 2000), fits the caloric restriction 

observations. They hypothesize that when low concentrations of glucose are present, the 

cells are more eager to use their mitochondria to obtain energy, which leads to a higher 

turnover of NADH to NAD+. Because Sir2 is NAD+ dependent this would lead to 

increased activity of Sir2 and thus to an extension of lifespan. How exactly higher 

turnover of NADH would lead to a more active Sir2 remains unclear, also because 

steady state levels of NAD+ seem not to change (Anderson et al., 2002). However these 

measurements were done on whole cell extracts which leaves the possibility open that 

local NAD+ concentrations do vary. Next to this is the observation that nicotinamide, 

which is the reaction product of NAD+ with Sir2, is a strong inhibitor of Sir2 activity in 

vitro. This raises the possibility that not NAD+ but nicotinamide regulates Sir2 activity 

(Anderson et al., 2003).  

 

The importance of NAD+ is further strengthened by experiments influencing 

the NAD+ salvage pathway. This pathway is involved in recycling nicotinamide, which 

is a product of the Sir2 reaction, via nicotinic acid to NAD+. The protein catalyzing the 

conversion of nicotinamide to nicotinic acid is called Pnc1. Overexpression of this 

protein increases replicative lifespan with 70% compared to wildtype (Anderson et al., 

2003). Caloric restriction was not able to further increase lifespan. Furthermore it was 

shown in the same publication that nicotinamide inhibits Sir2 activity. A strange 



24 

observation with respect to aging and NAD+ is that the concentration of NAD+ seems to 

increase during aging although not much (Ashrafi et al., 2000). This does not fit with 

the increase in genetic instability due to loss of Sir2 activity. However, NAD+ 

concentrations could vary locally or the increase might be a countermeasure to insure 

active Sir2. 

 

So although it is clear that NAD+ is involved in regulating Sir2 activity it is not 

clear how Sir2 but also the other histoneacetylases and deacetylaces are induced or 

repressed during aging. It could be that ROS play an active role in this regulation. There 

is some evidence that hydrogen peroxide can induce histone acetylation although it is 

not clear whether this goes via Sir2 (Rahman et al., 2002). Whether these results can be 

extrapolated to higher eukaryotes remains to be seen. The existence of ERCs outside the 

yeast system still has to be established, thus it could therefore be a yeast specific aging 

consequence (Gershon and Gershon, 2000). However, it can be a symptom of a more 

universal mechanism involving silencing and changes in gene transcription. 

 
1.2.7. Other genetic components? 

As has been demonstrated above, there are several genes identified involved in 

determining yeast replicative and chronological lifespan, summarized in table 1.2 

(partly taken from (Bitterman et al., 2003)). In this table, only those genes were taken 

into account that increase lifespan when mutated or overexpressed. There are also 

several genes known that decrease lifespan when mutated or overexpressed but these are 

mostly not relevant because they affect viability instead of the normal aging process 

(Jazwinski, 2001; Hoopes et al., 2002). However, if a mutant strain displays an increase 

in lifespan, the protein in question is likely, but not necessarily, involved in aging 

(Sohal et al., 2002). Lifespan extension by overexpression or mutation of genes seems 

to point to a genetic program in the aging process. But as we discussed earlier, this is 

not the case. These genes just define the tools with which the yeast cell has to live its 

life. Better tools, longer life.  
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Table 1.2: Proteins involved in yeast longevity 
  

Name Description 
Lifespan 
∆-strain 

Lifespan 
overexpr. Ref. 

Replicative aging    
Cdc25 Guanine-nucleotide exchange protein for Ras1 and Ras2, has an 

SH3 domain 
47%  

(cdc25-10) 
nd 5 

Cyr1 Adenylate cyclase, generates cAMP in response to Ras 
activation 

70% nd 5 

Fob1 Protein required for blocking the replication fork, for 
recombinational hotspot activity at the HOT1 site in rDNA, and 
for expansion and contraction of rDNA repeats 

67% nd 10 

Gpa2 Guanine nucleotide-binding protein alpha subunit involved in 
regulation of the cAMP pathway 

40% nd 5 

Gpr1 G protein-coupled receptor coupled to Gpa2, involved in the 
pathway of pseudohyphal differentiation in response to nutrient 
starvation 

41% nd 5 

Hap4 Heme-activated transcription factor; induces respiration nd 35% 16 

Hxk2 Hexokinase2, converts hexoses to hexose phosphates in 
glycolysis and plays a regulatory role in glucose repression 

50% nd 5 

Lag1 Longevity Assurance Gene, involved in ceramide synthesis and 
ER to Golgi transport 

50% 60% -?% 1,2 

Lag2 Longevity Assurance Gene, involved in ceramide synthesis and 
ER to Golgi transport 

-50% 20% 2,3 

Npt1 Nicotinate phosphoribosyltransferase (NAPRTase), catalyzes the 
first step in the Preiss-Handler pathway leading to the synthesis 
of nicotinamide adenine dinucleotide (NAD) 

nc 40-60% 5,12 

Pnc1 Nicotinamidase involved in nicotinamide to nicotinic acid 
conversion 

nd 70% 13 

Ras1 GTP-binding protein involved in regulation of cAMP pathway 19,6 0% 4 

Ras2 GTP-binding protein involved in regulation of cAMP pathway -?% 30% 4 

Rpd3 Histone deacetylase required for full repression or full activation 
of many genes, member of the histone deacetylase family, which 
catalyze removal of acetyl groups from histones 

41% nd 6 

Rtg3 Transcription factor involved in the retrograde response 55% nd 14 

Sip2 Downregulates Snf1 kinase activity by sequestering Snf4 -20% +?% 15 

Sir2 NAD-dependent histone deacetylase of the Sir2 family, involved 
in maintenance of silencing of HMR, HML, and telomeres, 
found in two distinct cellular complexes 

-50% 30% 7 

Sir4 Coiled-coil protein involved in maintenance of silencing of 
HMR, HML, and telomeres; component of TEL complex 

30%  
(sir4-42) 

nd 8 

Snf4 Activator of Snf1 which is involved in derepression of glucose 
repressed genes 

20% nd 15 

Tpk1/2 Catalytic subunit of cAMP-dependent protein kinase 2, protein 
kinase A or PKA 

24%  
(tpk2-63) 

nd 5 

Uth1 Unknown, required for high temperature growth and recovery 
from alfa-factor arrest 

+?% nd 8 

Uth4 Protein required for high temperature growth, recovery from 
alpha-factor arrest, post-transcriptional regulation of HO 
expression, and normal life span of yeast cells 

-50% 25% 9 

Zds1 Protein that regulates SWE1 and CLN2 transcription, Sir3 37% nd 11 
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phosphorylation, rDNA recombination and silencing, and life 
span, involved in high calcium tolerance and regulation of beta-
1,3 glucan biosynthesis 

    

Chronological aging    

Cyr1 Adenylate cyclase, generates cAMP in response to Ras 
activation 

90% nd 18 

Ras2 GTP-binding protein involved in regulation of camp-pathway 100% nd 17 

Sch9 Protein kinase, Akt/PKB homolog 30% nd 18 

Sod1/2 Superoxide dismutase -? 10-33% 17 

 
 
*complete knockout, otherwise mentioned 
nd: not determined 
nc: no change 
 
1: (D'Mello et al., 1994), 2: (Sinclair et al., 1998a), 3: (Sinclair et al., 1998b), 4: (Sun et 
al., 1994), 5: (Lin et al., 2000), 6: (Kim et al., 1999), 7: (Kaeberlein et al., 1999), 8: 
(Kennedy et al., 1995), 9: (Kaeberlein and Guarente, 2002), 10: (Defossez et al., 1999), 
11: (Roy and Runge, 2000), 12: (Anderson et al., 2002), 13: (Anderson et al., 2003), 14: 
(Jiang et al., 2000), 15: (Lin and Guarente, 2003), 16: (Lin et al., 2002), 17: (Longo, 
1999), 18: (Fabrizio et al., 2001) 
 

Not all the data presented in table 1.2 is without controversy. Lag1 for instance 

shows in the deletion strain as well as in the moderate overexpression experiment an 

increase in budding lifespan of 50% and 60 % respectively, which is hard to reconcile 

with each other. However, there are two main themes emerging from this list: nutrient 

signalling and genetic stability. Genetic stability and its dependence on NAD+ were 

discussed earlier but how does nutrient signalling fit in? 

 

1.2.8. Regulation of metabolism 
That metabolism is involved in aging was already clear from the correlations 

between the ‘rate of living’ and lifespan and experiments with caloric restriction. From 

table 1.2 however it appears that there is more. In higher eukaryotes such as C. elegans, 

D. melanogaster and also mice, the insulin pathway was connected to longevity. In S. 

cerevisiae there is no insulin pathway but there are other routes regulating metabolism. 

It is remarkable that also in S.cerevisiae glucose metabolism is regulated with such an 

enormous precision, just as in higher eukaryotes. One of the main pathways is the 

Ras/PKA pathway. This pathway seems to be of crucial importance in sensing the 

environmental conditions. Both the availability of the different essential nutrients but 

Ye
as

t a
gi

ng
 



27 

also the lack of any 

stressful conditions can 

positively influence PKA 

activity (figure 1.7) 

(Rolland et al., 2002). 

However it is not 

completely clear how 

different stressful 

environments are sensed by 

PKA. It is known for 

instance that Yap1 is 

involved in transcription 

activation of SSA1 

(Stephen et al., 1995), which codes for a heatshock protein capable of binding to Cdc25 

(Geymonat et al., 1998). Cdc25 is a G-protein upstream of PKA and involved together 

with Ras1 in activating the adenylate cyclase Cyr1. Cyr1 in turn converts ATP into 

cAMP, which subsequently activates PKA (see figure 1.8). Also upstream of PKA is a 

G-protein coupled receptor Gpr1 together with Gpa2 taking care of activating Cyr1. 

Activation of PKA has several consequences i) trehalose and glycogen content 

decreases, ii) stress response is downregulated, iii) gluconeogenesis is downregulated, 

iv) glycolysis is upregulated and v) growth is induced (Thevelein and de Winde, 1999). 

It is remarkable that mutation or overexpression of several components of this system 

like Ras1, Ras2, Cdc25, Cyr1, Gpa2, Gpr1 and Tpk2 (subunit of PKA) all have effects 

on the lifespan (table 1.2). This strongly suggests that this pathway can modulate 

lifespan. In general, the PKA pathway is considered to be a sensor off the nutrient status 

of the environment. Not only the availability of for instance glucose is taken into 

account but also essential elements like nitrogen need to be present. PKA is probably 

able to sense both, because in a nitrogen limited culture, downstream targets of PKA 

like Hxt5 are only expressed during low growth rates although there is still plenty of 

glucose present (Verwaal, 2003). Increased temperature is also deactivating PKA, so it 

is not only an indicator of nutrient availability (Griffioen et al., 2003).  

growth rate

via PKA

nutrients:

 carbon

 nitrogen

 others

stress:

 osmotic 

 temperature

 oxidative

stress response

metabolic response

Yap1

Skn7

Msn2

Msn4

Sch9

Snf1

Hap4

longevity

Figure 1.7: Growth conditions signalling through PKA. 
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Figure 1.8: Longevity pathways in S.cerevisiae during high and low growth rates. Light grey arrows denote 

inactive pathways and hatched squares/circles denote proteins from table 1.2. The availability of nutrients 

leads to the formation of cAMP and subsequent activation of PKA. This leads to a whole range of events, 

from induction of glycolysis to the repression of stress response including reserve carbohydrate formation. 

The Ras/PKA pathway is not the only one involved, also the Snf1kinase responds to changes in glucose 

concentrations although the kinase is activated when glucose levels are low subsequently inducing respiration 

via Hap4. During respiration NAD+ flux will increase leading to more active Sir2, which subsequently leads to 

more silencing and genomic stability. This pathway is also stimulated by the NAD+ salvage pathway, which is 

induced by environmental stimuli as low glucose, oxidative stress, heat stress and other low dose stress.  
 

This observation puts the effect of active PKA on the expression of different 

groups of genes into a broader perspective. PKA is able to downregulate both Skn7, 

general stress response signal transducers Msn2/Msn4 and possibly also Yap1 

(Charizanis et al., 1999; Hasan et al., 2002). This indicates a possible self-regulation 

loop because as mentioned earlier, Yap1 could be able to regulate PKA activity via Ssa1 

and Cdc25.  

The earlier described effect of caloric restriction on activation of Sir2 via 

NAD+ turnover in the mitochondria can also be caused by the stress activated NAD+ 

salvage pathway via PKA activated Pnc1 (figure 1.8).  PNC1 is activated by stress 

conditions including heat, osmotic stress and caloric restriction (Bitterman et al., 2003) 

and its promoter region has 4 STRE consensus sequences (AGGGG or CCCCT) (van 

Helden et al., 2000) within the first 350 basepairs, which are the target for transcription 

activators Msn2 and Msn4 (Martinez-Pastor et al., 1996). The activity of Msn2 and 

Msn4 is antagonized by PKA (Smith et al., 1998).  

The effect on stress response and metabolism is established, although the link 

with oxygen radicals in this case is not substantiated so far. The opposite effects of the 

Ras2 deletion during chronological and replicative aging and the behaviour of the Sod1 

and Sod2 mutants during chronological aging suggests that being able to invoke a stress 

response is more important for stationary phase cells than for dividing cells. This fits 

with the ‘disposable soma’ concept in which limited resources have to be invested in 

either maintaining soma, in this case stress protection, or in producing offspring.  
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1.2.9. Cell cycle and genetic stability 
In S. cerevisiae, aging and the cell cycle are highly intertwined processes. As 

shown before, the length of the cell cycle is mainly determined by the length of the G1-

phase (Silljé et al., 1997), which is dependent on the availability of nutrients. 

Furthermore, the availability of nutrients also regulates longevity as seen with earlier 

mentioned caloric restriction experiments. When food is scarce, yeast can go into 

stationary phase thereby halting the cell cycle. The longer this state of seclusion takes, 

the shorter the subsequent reproductive lifespan will be when food conditions improve 

again (Ashrafi et al., 1999). One of the phenotypic changes in old cells is that the 

duration of the cell cycle increases. Not only the duration, also the cell volume 

increases. Mortimer and Johnston believed that the latter was the reason why yeast cells 

died. The increase in size would be the cause of logistic problems like getting cellular 

components from one side to the other. However, this turned out not to be the case, an 

increase in cell size did not alter lifespan per se (Kennedy et al., 1994). However, other 

experiments showed that by lowering glucose availability using a fed-batch setup the 

length of the G1-phase could be altered (Silljé et al., 1997). Although the lifespan was 

not determined with these cultures, it is reasonable to believe that the imposed slow 

growth is analogous to caloric restricted cells. Above all it remains clear that nutrient 

availability is important for both cell cycle duration and lifespan. 

In line with earlier mentioned damage caused by oxygen radicals it was 

suggested that oxidative damage to DNA could be the cause of aging. Daughters 

derived from old mothers do show a decreased lifespan, but this is restored within a few 

generations (Kennedy et al., 1994). This observation does not rule in favour of 

permanent DNA damage. Less permanent protein damage still could do the trick. It 

appears that ribosomes from old cells are less effective then from young cells. This 

could mean that translational activity decreases during aging (Motizuki and Tsurugi, 

1992). This could also account for the increase in cell cycle duration even if nutrients 

allow a short G1 phase. 

However, why yeast cells at a certain (st)age stop dividing is still unknown. The focus 

of much research is into the mechanisms of DNA damage checkpoints, or checkpoints 

sensing replication blocks or spindle defects. These checkpoints are involved in 

temporarily, or maybe permanently, halting progression through the cell cycle giving 

the cell some time for repairs.  
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Evidence for DNA damage under ‘physiological’ conditions in yeast has 

remained scarce so far. Much more data is gathered by adding stress agents, like 

hydrogen peroxide, from the outside. These treatments may have severe effects on the 

cell architecture and organization, also leading to cell death. It is for instance known 

that hydrogen peroxide causes cell cycle arrest at the G2 phase of the cell cycle while 

menadione, a compound that generates superoxide radicals, causes arrest at G1 phase 

(Flattery-O'Brien and Dawes, 1998). This already occurs at concentrations that are not 

lethal for the cell. Cell cycle arrest can also be induced by stress agents that cause 

genomic instability. Methyl Methanesulfonate (MMS) is a DNA damaging agent that 

induces Gross Chromosomal Rearrangements (GCRs). The GCR to arrest signalling is 

mediated by different cell cycle checkpoints (Kolodner et al., 2002). It is not surprising 

that some variability in genetic stability exists during the cell cycle but it is no 

coincidence that this phenomenon is also associated with aging. 

The response to agents like hydrogen peroxide, the superoxide generating drug 

menadione and other environmental changes has been mapped extensively by Gasch et 

al. using microarray techniques (Gasch et al., 2000). One of the conclusions was that 

large similarities exist between reactions to different stress conditions. This can also 

account for the cross-resistance to different stresses, where cells that are  ‘conditioned’ 

by a low dose of the first stress are better capable of handling a bigger dose of a second 

and different stress agent. 

A few years before, Spellman et al. comprehensively surveyed the cell cycle 

dependent expression of the transcriptome, using different kinds of synchronization 

methods, like alpha-factor arrest, elutriation and release of a temperature sensitive 

Cdc15 mutant (Spellman et al., 1998). Genome-wide experiments investigating stress 

response during the cell cycle have not been published so far. 
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1.3 Scope of this thesis 
 

A clear link exists between metabolism and aging in Saccharomyces cerevisiae 

as shown in the previous paragraphs. Both the effect of caloric restriction on longevity, 

and the fact that several mutants of genes involved in nutrient signalling display 

enhanced lifespan, suggest that environmental conditions like the availability of 

nutrients are of major importance for determining longevity. Not only the availability of 

nutrients but also other stressful environments are able to elongate lifespan. However, it 

is still unclear how these environmental cues affect the response of the cell and why this 

would lead to longevity. To unravel these issues, experiments involving slow growth, 

synchronous cells, aged cells and stress response were conducted and the results are 

described in this thesis.  

Caloric restriction results in elongation of the lifespan of S. cerevisiae and in a 

decrease in growth rate. The growth rate is mainly determined by the length of the G1-

phase. In chapter 2 the mRNA expression profiles of cells progressing slowly and fast 

through G1 was examined. This revealed that removal of Sir2-inhibitor nicotinamide is 

probably more efficient during slow growth. This leads to more active Sir2 and 

increased genetic stability. Besides this response, slow growth conditions also result in 

an elevated stress response. Several genes of for instance the thioredoxin system 

increased expression during slow growth. In addition, the synthesis of stress protectant 

trehalose was induced as well. Genes coding for proteins forming the proteasome 

exhibit higher expression levels in the slow growing cells as compared to the fast 

growing cells. This shows that a stress response is triggered during slow growth 

conditions, which could be involved in facilitating longevity.  

To elucidate whether the phase of the cell cycle is important for the regulation 

of this stress response, microarray experiments were conducted with synchronous cells 

either exposed to 0.1 mM hydrogen peroxide or not, as described in chapter 3. This 

revealed that transcriptional control of several genes involved in the thioredoxin system 

are both stress and cell cycle dependent and especially dedicated to the S-phase.  

To verify these results on protein level, a reporter construct was used with a 

TRX2 promoter, as described in chapter 4. This showed that although mRNA levels 

were constantly upregulated during the cell cycle after exposure to hydrogen peroxide, 

this was not the case for the reporter construct. The reporter construct was only induced 
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after cells had entered S-phase. This was explained by a reduced protein synthesizing 

capacity during the early G1.  

To determine how stress response is affected in aged yeast, experiments were 

conducted with aged yeast cells obtained via continuous elutriation. At least 50 % of 

this population had on average 7 budscars. These cells were exposed to 0.1 mM 

hydrogen peroxide and their mRNA expression profiles were compared to that of young 

cells. This led to the assumption that aged cells are less capable to respond to oxidative 

stress, which is described in chapter 5.  

In chapter 6 the earlier described reporterconstruct with TRX2 promoter was 

used to devise a medium scale screeningsystem for potential new antioxidants able to 

reinforce oxidative stress defences. 

In chapter 7 these results are discussed in a broader perspective coupling aging, 

slow growth conditions and stress response to each other. 
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Abstract 
 

Microarray experiments and analysis were carried out to investigate the gene 

expression profiles in slow and fast growing cells during G1-phase. Slow growth was 

imposed by using a fed-batch setup, which enables control of environmental conditions 

in contrast to normal batch growth. Several functional groups of genes were found to be 

differentially regulated under the slow and fast growth conditions. The slow growth was 

induced by limiting the access to the carbonsources, in this way not only reducing 

growth rate but also obtaining caloric restricted cells. 

PNC1, a gene involved in the NAD+ salvage pathway was found to be 

expressed at higher levels during slow growth conditions, in this way able to remove 

nicotinamide, which is a Sir2 inhibitor. Sir2 is deacetylating histones to prevent genetic 

instability. An increase in stress response was found to occur in the slow growing cells. 

Genes involved in an oxidative stress response (thioredoxins, glutaredoxins, glutathione, 

superoxidedismutases and catalase), proteasome (structural subunits) and the 

accumulation of reserve carbohydrates (trehalose synthases amongst others) also 

showed relative high expression levels during slow growth conditions. These responses 

could be mediated by the PKA pathway as sensor and transmitter of environmental 

conditions. These results reveal a cell determined to survive by anticipating on future 

challenges.  
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Introduction 
 

 Caloric restriction is a phenomenon only recently observed to occur in 

Saccharomyces cerevisiae (Jiang et al., 2000; Lin et al., 2000). Cells grown in the 

presence of 2 % glucose or 0,5 % glucose showed differences in replicative lifespan 

(Lin et al., 2000). Remarkable is that limiting nitrogen sources, while maintaining high 

glucose levels, also induced a lifespan extension (Jiang et al., 2000). This last 

observation indicates that induction of longevity is not induced by caloric restriction 

alone. It turns out that also elevated temperature and osmotic stress are able to induce 

longevity (Shama et al., 1998; Swiecilo et al., 2000). Besides this effect on lifespan 

these conditions all have in common that the growth rate is diminished (Verwaal et al., 

2002). Whether this decrease in growth rate is one of the by-products of caloric 

restriction or that it is a requirement for extending lifespan remains to be seen. Fact is, 

that in Saccharomyces cerevisiae it is rather easy to manipulate growth rate using a fed-

batch setup (Silljé et al., 1997). In this setup, carbonsources are gradually added to a 

growing cell culture by using a pump. It was shown that the duration of the cell cycle is 

mainly dependent on the time spent in G1 (Carter and Jagadish, 1978). The effect of 

caloric restriction induced slow growth on longevity suggests that changes in cellular 

behaviour probably already occur at the start of the yeasts’ life cycle. Comparing virgin 

daughter cells progressing fast through G1 with cells progressing more slowly will 

reveal processes involved in longevity. This experimental setup has major advantages 

over common culture conditions used. Research described by Kaeberlein et al. showed 

that varying extracellular glucose concentrations has major influences on lifespan 

(Kaeberlein et al., 2002). During normal batch growth, carbon source concentrations 

vary rapidly, obscuring lifespan analysis. Also in the micromanipulation experiments in 

which yeast cells are grown on agar plates, which are transferred to cold rooms to be 

able to keep track of the amount of daughter cells (Shama et al., 1998), errors can be 

introduced by the cold shock that have effect on lifespan. 

  

The PKA pathway seems to fulfil an important role in regulating growth rate as 

a sensor and subsequent transmitter of environmental conditions (figure 2.1) (Thevelein 

and de Winde, 1999; Verwaal, 2003). Furthermore, the PKA pathway plays a role in 

longevity as is revealed by mutation or overexpression of several genes from the PKA 

pathway leading to lifespan elongation, as listed in table 1.2 (Bitterman et al., 2003). In 
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addition to genes involved in 

nutrient signalling, also 

multiple genes from this list 

are involved in maintaining 

genetic stability in which 

NAD+ seems to play an 

important role (Lin et al., 

2000). NAD+ is a cofactor 

for histone deacetylase Sir2 

and in this way involved in 

activation of Sir2 and 

subsequently in the degree 

of acetylation of histones 

(Landry et al., 2000). This is important for stabilising the chromosomes particularly the 

ribosomal DNA locus, the telomeres and the mating locus (Roy and Runge, 2000). 

Especially the formation of extrachromosomal ribosomal circles (ERC’s) by 

homologous recombination is diminished by more active Sir2. These circles are 

detrimental to the cell because they exponentially accumulate eventually messing up 

replication logistics (Sinclair and Guarente, 1997). 

 Both genetic instability and nutrient signalling via the PKA pathway are 

involved in lifespan determination. How does caloric restriction fit into these two 

processes? Although previously the effect of caloric restriction on lifespan in mammals 

was usually attributed to a decrease in metabolism associated radical formation, it 

turned out that at least in yeast other mechanisms are contributing as well. 

Changes in metabolism, for instance by limiting the supply of sugars (caloric 

restriction) leads to changes in NAD+ levels or flux, subsequently leading to changes in 

genetic stability and changes in lifespan. However, measured NAD+ concentrations 

were not influenced, which partly undermines 

these assumptions (Anderson et al., 2002). NAD+ 

is synthesized via eight intermediates from 

tryptophan or can be synthesized from nicotinic 

acid taken up from the medium. However it can 

also be recycled via the NAD+ salvage pathway 

(figure 2.2). This recycling pathway is essential 

PKA

nutrients:

 carbon

 nitrogen

 others

stress:

 osmotic 

 temperature

 oxidative

stress response

metabolic response

growth rate

longevity

Figure 2.1: PKA as a central regulator in environmental responses 
and subsequent longevity. 

Figure 2.2: The NAD+ salvage pathway 

Sir2

NAD+ nicotinamide

nicotinic acidNaMN

Pnc1
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for regulating NAD+ and nicotinamide levels (Bitterman et al., 2003). Nicotinamide is a 

by-product of the Sir2 reaction and has an inhibiting effect on the activity of Sir2 

(Anderson et al., 2003). This explains why overexpression of the gene involved in 

metabolising nicotinamide to nicotinic acid, PNC1, leads to a major increase in lifespan 

(Anderson et al., 2003). This gene is of crucial importance for the activity of Sir2. 

However in a ∆sir2 deletion strain, it is still possible to induce caloric restriction, (Jiang 

et al., 2002) although Lin et al. did not find this (Lin et al., 2002). This means that Sir2 

is not the only NAD+ dependent histone deacetylase and that there is functional 

redundancy or that NAD+ dependent genetic stability is not the only aspect involved in 

caloric restriction. This redundancy is exemplified by the existence of at least two other 

known NAD+ dependent histone deacetylases (Hst1 and Hst2) and two putative ones 

(Hst3 and Hst4).  

Yeast cells exposed to extreme high levels of glucose (10 %) show an increase 

in lifespan (Kaeberlein et al., 2002). This was explained by pointing out that these high 

concentrations of glucose lead to an osmotic stress response, which involves glycerol 

synthesis as an osmoprotectant. This glycerol synthesis has as by-product NAD+ so 

again Sir2 activity is affected. However, exposing cells to high osmolarity also leads to 

a stress response, a decrease in growth rate and a decrease in PKA activity (Norbeck 

and Blomberg, 2000), which is influencing lifespan as discussed above.  

Apparently, caloric restriction is only one of several treatments leading to 

lifespan extension in yeast, all having in common that growth rate is decreased and 

PKA activity is lowered. PKA is involved in several other processes like stimulating 

growth and glycolysis. In addition it is a negative regulator for general stress response, 

gluconeogenesis and reserve carbohydrate accumulation (Thevelein and de Winde, 

1999). Two of the transcriptional activators that are negatively regulated by PKA, are 

Msn2 and Msn4 (Smith et al., 1998). These two proteins initiate the expression of 

several genes by binding to STRE consensus sequences in their promoter region 

(Martinez-Pastor et al., 1996).  

In the described experiments, a fed-batch setup with low amounts of 

carbonsources (20 fmol galactose /cell/hour) was used to obtain slow growing yeast in a 

constant environment. These samples were compared to cells growing in high galactose 

(1 %) as control. This revealed that there are several oxidative stress proteins like TRX1, 

TRX2, TSA1, AHP1, PRX1, GRX1, TTR1, HYR1, SOD1, SOD2, CTA1 upregulated 

during the slow growth samples. This means that more radicals, probably from 
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respiration, are roaming through the cell and they have to be dealt with. Besides these 

stress proteins, also the synthesis of stress-protectant trehalose and half of the 

proteasomal core subunits showed higher expression under slow growth conditions. 

Damage to proteins, either by oxygen radicals, ethanol or others, gives need to higher 

protein turnover. The upregulation of PNC1 showed that removal of nicotinamide 

during slow growth conditions is probably more efficient than during fast growth. These 

data show that stress response and NAD+ metabolism are important processes for 

maintaining vigour during slow growth conditions. 
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Materials and methods 

 

Strains and growth conditions: 
In all experiments the wildtype strain CEN-PK113-7D (MATa SUC2 MAL2-8c 

MEL) also known as VWk43 was used. Cultures were grown at 30°C in a rotary shaker 

at 180 rpm in Yeast Nitrogen Based medium w/o amino acids (YNB, Difco, Detroit, 

USA) with galactose as carbonsource.  

 

Centrifugal elutriation: 
Synchronous cells were obtained by centrifugal elutriation as described by 

Silljé et al. (Silljé et al., 1997). Cells were grown in 1 litre of YNB with 1 % galactose 

at 30°C until they reached an OD600 of 2.0. The cells were harvested in a centrifuge at 

room temperature and sonicated twice for 20 seconds to disturb cell clumps while kept 

on ice. They were loaded into an elutriator spinning at 2000 rpm (Beckman J-6 MI, 

Mijdrecht, Beckman Coulter Netherlands) with a 40 ml chamber kept at 30°C. Using a 

Masterflex pump from Cole-Parmer (Aplikon, Schiedam, Netherlands) YNB medium 

containing 1 % galactose was pumped into the chamber, washing away the newly 

formed daughter cells, which were subsequently collected on ice. After centrifuging, 

cells were kept overnight in YNB 1 % galactose on ice. After refreshing the medium, 

the cells were followed during the cell cycle by monitoring their budding percentages. 

At least 100 cells per timepoint were counted. 

 

Fed-batch setup: 
Synchronous cells were centrifuged and resuspended in YNB without amino 

acids and without carbonsources. By using a pump small amounts of galactose (20 

fmol/cell/hour) were dropwise administered to this culture while kept in a rotary shaker 

(Silljé et al., 1997).  

 

mRNA isolation: 
mRNA was isolated using a phenol/chloroform extraction as described in 

Maniatis (Sambrook et al., 1989) with modifications. Samples of 10 ml were quickly 

frozen by immersion in liquid nitrogen. After slowly thawing the cells and washing 

them with 1 ml extraction buffer (100 mM Tris-HCl (pH 7.5), 100 mM LiCl, 10 mM 

EDTA), cells were resuspended in 0.5 ml vortex buffer (100 mM LiCl, 10 mM EDTA, 
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0.5 % LithiumDodecylsulphate, pH 7.5 with LiOH). Vigorous shaking with 0.45 mm 

glass beads in a bead-beater (Biospec products, Bartlesville, OK, USA) disrupted cell 

walls and membranes after which a phenol chloroform extraction was performed. After 

addition of 50 µl 3M NaAc and 1.25 ml ice-cold ethanol, the mRNA was precipitated at 

-80°C, samples were centrifuged, washed with cold ethanol (70 %), air-dried and 

resuspended in water. 

 

Microarray experiments: 
Microarray experiments were conducted as described by Schoondermark-Stolk 

et al. (Schoondermark-Stolk et al., 2002). Isolated pools of transcripts were labeled with 

radioactive dCTP. Making cDNA from the isolated mRNA in the presence of 

radioactively labelled nucleotides performs this labelling. 4 µg of RNA (measured at 

260 nm) was mixed with 2 µl of OligodT (1 µg/µl), to a final volume of 10 µl. The 

following components were added: 6 µl of first strand buffer (Life Technologies, Breda, 

The Netherlands), 1 µl of 0.1 M dithiothreitol, 1.5 µl of a mixed solution containing 100 

mM of dATP, dGTP and dTTP, 300 units of Superscript II reverse transcriptase (Life 

Technologies) and 100 µCi  [33P]CTP (Amersham Biosciences, Roosendaal, The 

Netherlands). The mixture was kept at 37°C for 90 min. after which 70 µl of STE (0.1 

M NaCl, 10 mM TRIS.HCL (pH 8.0), 1 mM EDTA) was added. The newly synthesized 

cDNA was then purified by passage through a Sephadex G-50 column (Amersham 

Biosciences) and washed with 350 µl of STE after which it was eluted with 500 µl of 

STE. The cDNA was denatured by heating it to 100°C for 3 min.  

Yeast GeneFilter microarrays (ResGen, Invitrogen, Breda, The Netherlands) were 

washed for 5 min. with boiling 0.5 % SDS. The membranes were prehybridized for 4 h 

with 5 ml MicroHyb solution (ResGen) and 5 µl OligodA (ResGen) at 42°C in a roller 

oven (Thermo Hybaid, Landgraaf, The Netherlands). The labelled cDNA probes were 

added to these prehybridized filters and incubated over night at 42°C. The next day, the 

filters were rinsed with 2xSSC (diluted from 20xSSC which contains: 3 M NaCl, and 

0.3 M Na-citrate, pH 7.0) and 1 % SDS for 20 minutes at 50°C. This was repeated once, 

after which an additional rinsing step followed with 0.5xSSC with 1 % SDS for 15 

minutes at room temperature. The filters were then transferred to a humid 3-layer 

Whatman filter, wrapped in Saran foil and placed against a Phosphor screen (Molecular 

Dynamics, Sunnyvale, CA, USA). After 6 days of exposure the screen was read by a 

phosphorimager SI (Molecular Dynamics) coupled to a computer. The samples with 
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hydrogen peroxide were hybridized twice to different microarray filters and the samples 

without hydrogen peroxide once. 

 

Data analysis and spot validation: 
Images were scanned at 50-µm resolution in Image-Quant 5.1 (Molecular 

Dynamics) and then imported into the ImaGene 4.2 microarray analysis software 

(BioDiscovery, Marina del Rey, CA, USA). Standard grids were placed over the images 

of the arrays after which spotsize was fixed at 15 pixels and the ‘autoadjust spot’ 

function was applied, which corrects for slight deviations of the grid. Very intense spots 

tend to ‘blossom’ out their signal, leading to an increase of signal in surrounding spots. 

Usually these surrounding spots were ‘flagged’ by hand. Flagged data were not used. 

Although ImaGene has various features to quantify background and signal intensities 

per spot, it was preferred to use local blank spots as background values except when 

these spots were flagged. In this case the local blank spot of one row ahead was used. 

All the quantified data were imported into an Excel sheet (Microsoft) after which the 

identities of the different genes were added. Values used were the signal mean values, 

which are the total signal values divided by the area. Normalization was usually carried 

out by dividing through metacolumn average values. 
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Results 
 

Budding profile shows entry of cells into S-phase is later with carbon-
restricted cells in fed-batch setup 
 To be able to compare the transcription profiles of caloric restricted cells and 

cells growing in an environment with abundant nutrients a fed-batch system was chosen 

to carefully administer galactose to the cells. To monitor whether this indeed led to a 

slowing down of the cell cycle and an elongation of the G1-phase budding profiles were 

established. As shown in figure 2.3, cells growing in the presence of 1% galactose 

proceed much faster through the cell cycle as the cells that are fed galactose by the fed-

batch system at a rate of 20 fmol/cell/hour. The maximal budding of around 95% in the 

fast growing cells is reached after approximately 135 min., while the maximal budding 

of the slow growing cells is after approximately 270 min. (figure 2.3). The G1-phase in 

the fast growing cells therefore takes more or less 100 minutes, while during the slow 

growth this is elongated to 210 minutes. This clearly shows synchronous cells 

proceeding slowly and fast through the cell cycle. 
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Figure 2.3: Budding percentages show an increase the duration of the G1-phase for cells growing in the fed-

batch system with 20 fmol/cell/hour (▲) compared to cells growing on 1% galactose ( ). 
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Analysis of cell cycle dependent transcripts 
 To validate whether the obtained microarray data is in line with described 

literature results several known cell cycle dependent transcripts were examined. The 

synthesis of histones for instance is primarily taking place during S-phase (Moll and 

Wintersberger, 1976). As shown in figure 2.4 expression of 6 of the 8 different histone 
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Figure 2.4: 6 of the 8 histone subunits show a delay in their expression during slow growth ( ) compared to 

the fast growing cells (▲). The x-axis shows time in minutes and the y-axis corresponds to relative expression 

levels (au). 
subunits in the fast growing cells, have peak expression around 90 minutes while in the 

slow growing cells maximal expression is reached at 210 minutes or even later. Other 
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cell cycle specific transcripts like the expression of the cyclins CLN1, CLN2, CLB1 and 

CLB6 show peak expression earlier during fast growth than during slow growth (not 

shown). This illustrates that the microarray results fit with literature data and that 

growth rate can be manipulated by the fed-batch setup. 

 

Effect of slow growth on the expression of longevity genes  
Several genes are known for elongating lifespan by their deletion or 

overexpression (see table 1.2). To investigate whether these genes are induced in young 

cells upon slow growth conditions, microarray experiments were conducted. Of the 24 

genes only 7 show differences in expression between the slow and fast growing cells. 

For instance the HAP4 gene, which codes for a transcription factor involved in 

activation of respiration.  This gene is expressed at higher levels during fast growth 

apart from the first timepoint (figure 2.5) possibly because the gene is induced by 

ethanol (Forsburg and Guarente, 1989), produced during fermentation of galactose. The 

increase of HAP4 expression during the fast growth does not fit completely with the 

data concerning overexpression of HAP4, which increases the lifespan of exponentially 

growing cells. 

The PNC1 gene, involved in the NAD+ salvage pathway (figure 2.2), is higher 

in the slow growing cells during G1 (see figure 2.5), which fits also its lifespan-

extension effect when overexpressed. With nicotinamide as an inhibitor of Sir2 activity, 

it is not surprising that this enzyme is higher induced during slow growth. This is not 

observed for the other important gene involved in the NAD+ salvage pathway, NPT1 

(see figure 2.5). But then again, this gene is not directly involved in either NAD+ 

synthesis or in nicotinamide breakdown.  

With SNF4, UTH1, ZDS1 and SIR4 the observed patterns are less clear. Their 

levels are mostly higher in the fast growing cells, in accordance with the observation 

that deleting these genes leads to lifespan extension.  

The known ‘longevity’ genes from table 1.2 mostly don’t show a response 

after changing environmental conditions. However, activity is not always dependent on 

the transcription, also translation, localization or posttranslational modifications can be 

necessary to achieve full activation. Several genes from table 1.2 are involved in the 

PKA pathway, so it is worthwhile to investigate the expression of some downstream 

targets of PKA.  
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Reserve carbohydrates accumulate during slow growth while glycolysis is 
reduced 

An active PKA pathway is responsible for breakdown of reserve carbohydrates 

while an inactive PKA pathway induces accumulation of trehalose and glycogen (Smith 

et al., 1998). It is expected that deactivation of PKA during caloric restriction will lead 

to derepression of genes involved in stress response and reserve carbohydrate 

accumulation. Therefore genes involved in these processes were examined. 

Low expression of trehalose synthase genes TPS1, TSL1 and TPS2 during G1 

of the fast growing cells (30 and 90 minutes) suggesting that PKA is active (figure 2.6). 
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On the other hand, during slow growth, these transcripts are expressed at a higher level 

suggesting a less active PKA pathway. This is confirmed by one of the hexose 

transporters previously associated to trehalose synthesis, HXT5. This gene displays 

higher expression levels during slow growth (figure 2.6)  

The main glycogen synthases, GLC3, shows low expression during fast and 

higher expression during slow growth conditions. The synthesis of glycogen and 

trehalose leaves less sugar available for glycolysis illustrated by a decrease in 

expression of several genes involved in this process during slow growth like ENO1, 

ENO2, GPM1, TDH2, FBA1, PFK1, PGK1 and PGI1. The glycolysis being a target of 

PKA (Thevelein and de Winde, 1999) this hints again to a less active PKA during the 

slow growth. During slow growth a considerable amount of the consumed 

carbonsources goes into accumulation of reserve carbohydrates while during fast growth 

this is shifted towards the glycolysis.  

 

Oxidative stress response is partly increased during slow growth 
Trehalose is an important stress protectant and apparently needed during slow 

growth conditions. To establish whether an oxidative stress response is induced during 

slow growth, the genes involved in this response were examined as well. Although there 

are very specific oxidative stress response signal transduction routes via for instance 

Yap1, PKA is also involved in this response. Several transcripts of different stress 

resistance systems are expressed at higher levels during the G1 of the slow growth than 

during fast, like the genes involved in the thioredoxin system: TRX1, TRX2, TSA1, 

AHP1, PRX1, glutaredoxins: GRX1, TTR1, glutathione, HYR1 superoxide dismutases: 

SOD1, SOD2 and catalase: CTA1 (figure 2.7). Not all genes involved in oxidative stress 

resistance show this behaviour, TRR1, GSH1 and GSH2 for instance show higher 

expression levels during fast growth but it looks like they are a minority. These data 

indicate the existence of an increased stress response during slow growth conditions.  

 

Proteasome subunit transcripts are higher expressed during slow growth 
 Higher levels of oxidative stress during slow growth could result in more 

protein damage, which in turn would lead to higher protein turnover by the proteasome. 

It was investigated if the proteasomal subunits show increased levels of expression 

during slow growth.  
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Figure 2.7 (previous page): Expression patterns of several genes involved in oxidative stress

protection that show low expression during fast growth (▲) and higher expression during slow

growth ( ), the x-axis shows time in minutes and the y-axis corresponds to relative expression

levels (au). 
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Figure 2.8b (previous page): Several of the proteasome subunits of the RPN family whose corresponding 

transcripts show a rather low expression during the first stages of the fast growing cells (▲), and higher 

expression during slow growth ( ), the x-axis shows time in minutes and the y-axis corresponds to relative 

expression levels (au). 

 

The core of the yeast proteasome consists of 16 proteins (PRE1, PRE2, PRE3, PRE4, 

PRE5, PRE6, PRE7, PRE8, PRE9, PRE10, PRS3, PUP1, PUP2, PUP3, SCL1 and 

UMP1), of which 8 were expressed at rather low levels. The remaining genes all show 

an expression pattern that features lower expression during the first stage of the fast 

growth compared to the slow growing cells apart from the PRS3 transcript (see figure 

2.8a). Besides these genes, many more are involved in forming the proteasome, like the 

RPN1-13 and RPT1-6 genes. These families also often (15 out of 19) show low 

expression during the first stages of the fast growth and higher levels in the slow growth 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

RPT2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

RPT3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

RPT4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

RPT5

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250

RPT6 Figure 2.8c: Several of the proteasome subunits

of the RPT family whose corresponding

transcripts show a rather low expression during

the first stages of the fast growing cells (▲), and

higher expression during slow growth ( ), the

x-axis shows time in minutes and the y-axis

corresponds to relative expression levels (au). 



54 

samples (see figure 2.8b-c). These results indicate more proteasomes in slow growing 

cells. 

 

HSP70 chaperones show higher levels during fast growth while other 
chaperones show less clear responses 

Besides an effect on the proteasome, usually chaperones are upregulated to 

refold denatured proteins. The yeast cells contains various chaperones and chaperone 

systems. One group of genes is the HSP70 family involved refolding denatured proteins 

and preventing the formation of aggregates. The expression of these transcripts is higher 

in fast growing cells (KAR2, SSA1, SSA2, SSA4, SSB1, SSB2, SSC1, SSE1, SSZ1). Also 

some of the genes coding for CCT chaperones are expressed at higher levels in fast 

growing cells (CCT2, CCT4, CCT5, CCT6, CCT7, CCT8, TCP1), although this is not as 

clear as the HSP70 family. Other chaperones show different behaviour (HSP12, HSP26, 

HSP42, HSP78, HSP82, HSP104, HSP150), although these could be involved in ethanol 

resistance. These results indicate no more protein misfolding during slow growth than 

during fast growth, while at the same time, as shown in the previous paragraph, the 

proteasome is higher expressed.  

 

DNA damage genes are not affected by slow growth but sub-telomerically 
encoded helicases are 
 DNA damage and DNA stability are of major importance in determining 

longevity. To establish whether these processes are changed by caloric restriction, 

expression patterns of the corresponding genes were examined.  

Several proteins are able to bind damaged DNA. None of the corresponding 

genes are expressed at high levels in either dataset apart from MSH6, which shows a 

transient increase during fast growth. This gene is supposed to recognize single base-

pair mismatches (Marsischky et al., 1996). However, Spellman et al. showed that it 

displays a cell cycle dependent expression pattern (Spellman et al., 1998). The lack of 

expression of other DNA damage binding genes indicates that it is not very likely that 

there is any DNA damage formed under these circumstances. Other genes involved in 

organizing DNA stability are the histone deacetylases (15 genes), histone acetyl 

transferases (26 genes) and helicases (49 genes). Apart from histone deacetylase CPR1 

and histone acetyl transferase AHC1 these genes all show very low expression levels. Of 
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the 49 proteins with helicase activity there are 28 genes located near the telomeres. It is 

interesting to notice that of these sub-telomerically encoded helicases, 15 genes are 

higher expressed in the fast growing cells. Besides these helicases also other genes are 

encoded at the telomeres. SEO1, COS5, COS6 and COS7 display the same transcription 

profile as these helicases (see table 2.1). These data indicate that there is no DNA 

damage in either slow or fast growing cells and that silencing of telomeres is less during 

fast growth. 

 
Table 2.1: Sub-telomerically located genes at both far ends of the chromosomes. The bold genes are the ones 

that are expressed at higher levels in the fast growing cells. 

 
 Left-end    Right-end   
# first first -1 first -2  last -2 last -1 last 
        
        

I YAL069W YAL068C SEO1 … IMD1 YAR074C YAR075W 
II YBL113c YBL112C YBL111C … YBR300C DAN3 COS2 
III YCL076W YCL073C YCL069W … ADH7 RDS1 AAD3 
IV COS7 MPH2 SOR2 … YDR543C YDR544C YRF1-1 
V YEL077C YEL076C YEL075C … YER188W YER189W YRF1-2 
VI YFL068W YFL067W YFL066C … YFR055W YFR056C YFR057W 
VII COS12 YGL262W YGL261C … YGR294W COS6 YRF1-3 
VIII YHL050C YHL049C COS8 … YHR217C YHR218W YHR219W 
IX YIL177C YIL176C YIL175W … YIR042C YIR043C YIR044C 
X YJL225C PAU1 VTH2 … MPH3 COS5 YJR162C 
XI YKL225W YKL224C YKL223W … NFT1 YKR105C YKR106W 
XII YLL067C YLL066C YLL065W … YLR465C YRF1-4 YRF1-5 
XIII YML133C COS3 YML131W … YMR324C YMR325W YMR326C 
XIV YRF1-6 YNL338W YNL337W … COS10 PAU6 YNR077C 
XV YOL166C AAD15 YOL164W … YOR392W ERR1 YOR394W 
XVI YRF1-7 YPL282C ERR2 … ANT1 SCD6 YPR130C 
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Discussion 
 

By using elutriated synchronous virgin daughter cells and a fed-batch setup, 

expression profiles of slow and fast growing cells could be compared with each other. 

The slow growing cells are restricted in their access to carbonsources and can therefore 

be considered as caloric restricted cells. The advantages of the used approach are that 

both cultures are at the same phase of the cell cycle, in G1, and that all cells are at the 

start of their life cycle. Previous research showed that the duration of the cell cycle is 

mainly determined by the amount of time spent in G1 (Carter and Jagadish, 1978; Silljé 

et al., 1997) so the growth rate is almost synonymous with G1 duration, which is the 

rationale of the comparison of the transcription profiles only during G1. On top of this, 

culture conditions are much better defined using this setup. Although it remained to be 

seen whether imposing slow growth conditions on virgin daughter cells would reveal 

differences, it turned out that several groups of genes showed variations in expression 

which can contribute to the longevity effect found in slow growing caloric restricted 

cells. 

The experiments described in this chapter show a comparison between the 

transcriptional profiles of slowly and fast growing cells. This revealed that NAD+ 

metabolism is influenced in such a way that levels of nicotinamide are minimized in the 

slow growing cells. This will lead to more active Sir2 and thereby increased genetic 

stability. Besides this observation, an increase in stress response during slow growth 

was observed, both an increase in genes involved in the synthesis of stress protectant 

trehalose and several members of the oxidative stress response. Also several subunits of 

the proteasome showed higher expression during the slow growth conditions. 

  

 Our experiments show that PNC1, which codes for an enzyme involved in 

recycling nicotinamide to NAD+, is expressed at higher levels during the slow growth. 

This suggests that less nicotinamide, which is a Sir2 inhibitor, leads to more active Sir2, 

more histone deacetylation, more silencing and subsequent longevity. NPT1, which 

takes care of subsequent steps of the recycling, seems to be less important during caloric 

restriction. This underlines the important role of nicotinamide for Sir2 regulation and 

tempers the role of NAD+. This effect on silencing is confirmed by the expression of 

several genes located near the end of the telomeres in the fast growing cells. This 

indicates that there is less silencing in the fast growing cells.  
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 These results fit with earlier mentioned models regarding NAD+ and 

nicotinamide as the central metabolites regulating longevity and genetic stability. 

However, other observations, most notably the increase in stress response and the higher 

level of several subunits of the proteasome indicate that there is more. When the yeast 

encounters high sugar concentrations, most of its energy will be derived from the 

fermentation process transforming sugar into ethanol. If these sugar levels decrease, a 

shift to respiration will occur including the oxidation processes in the mitochondria. 

This will give rise to escaping electrons, which are able to form oxygen radicals. 

Apparently these radicals trigger a specific oxidative stress response during the slow 

growth conditions. The increase in respiration and accompanying increase in oxygen 

radicals explains the increase transcriptional levels of the proteasome subunits. If these 

radicals are able to induce protein oxidation, the proteasomes are needed to clear up the 

damaged proteins. It has been shown before in mice that caloric restriction leads to 

increased protein turnover (Lee et al., 1999a). However, there is no evidence that there 

is indeed protein or other cellular damage. For instance, the complete absence of any 

DNA damage regulated transcripts shows that it is not very likely that major damage 

has been done in these cells. Also the difference in expression of the HSP70 family 

between the slow and fast growing cells does not suggest that caloric restriction induces 

major denaturation to occur.  However the cell is probably anticipating bad times and 

therefore already fortifying its defences. This is in line with the accumulation of reserve 

carbohydrate and stress protectant trehalose during slow growth conditions (Verwaal, 

2003). This accumulation starts already at times when there is still plenty of 

extracellular glucose left, thus an example optima forma of ‘an anticipating cell’. This 

behaviour is observed in our experiments too, where the trehalose synthesizing genes 

show higher expression levels during caloric restriction. Considering trehalose as a 

general stress protectant, it is part of the caloric restriction induced response to outlive 

periods of scarcity.  

It has been shown that raising the extracellular concentration of glucose can 

also increase lifespan considerably (Kaeberlein et al., 2002). This was explained by 

pointing out that these high concentrations of glucose lead to an osmotic stress response, 

which involves glycerol synthesis as an osmoprotectant. This glycerol synthesis has as 

by-product NAD+ so again Sir2 activity would be affected. However, exposing cells to 

high osmolarity also leads to a stress response, a decrease in growth rate and a decrease 

in PKA activity (Norbeck and Blomberg, 2000). This decrease will influence the 
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expression of several genes like for instance PNC1. A search in the upstream region 

revealed that this gene has 4 STRE elements within its promoter important for 

activation by Msn2/4 (van Helden et al., 2000), which in turn is under negative control 

of PKA (Smith et al., 1998). NPT1 has no STRE elements within its promoter, which 

could explain the difference in expression pattern. Apparently, although PNC1 and 

NPT1 are both involved in the NAD+ salvage pathway, they are regulated in a different 

manner. 

It is clear that exposure of cells to adverse growth conditions like low sugar 

levels (caloric restriction), high sugar levels (osmotic stress) and high temperatures 

(Shama et al., 1998; Swiecilo et al., 2000) results in slowing down the cell cycle and the 

growth rate. On the other hand it is known that caloric restricted induced growth rate 

reduction will lead to extension of replicative lifespan. It seems that adverse growth 

conditions could have a surprising side-effect called longevity. This observation has 

much in common with the hormesis theory of Masoro (Masoro, 1998), which postulates 

that low doses of potential harmful substances can be beneficial on the long run. 

Apparently caloric restriction is only one of several treatments able to increase lifespan 

in S.cerevisiae, which all have in common that besides inducing longevity the growth 

rate is decreased. It is probable that this decrease in growth rate is an effect of decreased 

PKA activity, which is also at the basis of the increased stress response. 
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Abstract: 
 

Previous experiments showed that an oxidative stress response is involved in 

the G1 phase of slow growing cells. Experiments were conducted to establish whether 

the transcription of mRNA coding for antioxidant proteins is affected by oxygen 

radicals during the cell cycle in Saccharomyces cerevisiae. To investigate this, 

microarray analysis was performed with mRNA samples of yeast cells progressing 

through the cell cycle in the presence or absence of 0.1 mM hydrogen peroxide. This 

revealed that several components of the thioredoxin system show both a cell cycle, with 

the emphasis on the S-phase, and stress dependent expression pattern. This is not 

observed with the glutathione system or with the catalases. These results suggest a more 

stringent and specific defence during the S-phase to protect the vulnerable unwound 

DNA during replication. 
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Introduction:  

 

As shown in the previous chapter, the oxidative stress response seems to be 

involved during lifespan increasing treatments like caloric restriction. The yeast cell is 

able to express a wide variety of proteins that can protect the cell against the detrimental 

effects of oxygen radicals. There are several classes to be distinguished among these 

defence systems. The two main systems, the glutathione and the thioredoxin system, use 

a substrate that is subsequently oxidized and reduced by different enzymes that finally 

obtain their electrons from NADPH (Stephen and Jamieson, 1996). The difference 

between these two systems is that the glutathione system uses a tripeptide, called 

glutathione as the recycling molecule and that the thioredoxin system uses a small 

protein of approximately 100 amino acids called thioredoxin for this purpose. Besides 

the thioredoxin and the glutathione system, are the catalases, the superoxidedismutases 

and small molecular antioxidants as vitamins C and E. 

The thioredoxin system is composed of several proteins. Some of the proteins 

use thioredoxin as the reducing equivalents while others are involved in reducing the 

oxidized thioredoxin. Carmel-Harel and Storz (Carmel-Harel and Storz, 2000) mention 

a list with 10 genes being part of the thioredoxin system and 11 genes being part of the 

glutathione system. 

Three different forms of thioredoxin are known; Trx1, Trx2 and Trx3 of which 

only the latter is supposed to be localized in the mitochondrion whereas the other two 

are mainly cytoplasmic (Pedrajas et al., 1999). The oxidation of these proteins is 

catalyzed by thiolperoxidases of which five are known to exist so far, called Ahp1, 

Dot5, Tsa1, Tsa2 and Prx1 (Park et al., 2000). Also these proteins have different 

localizations within the cell. Ahp1, Tsa1 and Tsa2 are located in the cytoplasm while 

Dot5 is in the nucleus and Prx1 is in the mitochondria. The reduction of the oxidized 

thioredoxin proteins is carried out by two thioredoxin reductases called Trr1 and Trr2, 

which are located respectively in the cytosol and the mitochondria (Pedrajas et al., 

1999; Kumar et al., 2002). 

Glutathione is synthesized in two subsequent steps by γ-glutamyl cysteine 

synthetase, Gsh1, and glutathione synthetase, Gsh2 (Ohtake and Yabuuchi, 1991). The 

reduction of hydrogen peroxide is accomplished by dimerization of two tripeptides in 

the presence of a glutathione peroxidase of which three are present in the cell i.e. Gpx1, 

Gpx2 and Hyr1. Deletion of all three peroxidases decreases glutathione peroxidase 
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activity to 7% (Inoue et al., 1999). The reduction of the oxidized glutathione is 

catalyzed by a glutathione reductase called Glr1 (Grant et al., 1996a). There are another 

five glutaredoxins Grx1, Ttr1, Grx3, Grx4, Grx5 of which at least Grx5 is involved in 

maintaining glutathione in reduced state (Shenton et al., 2002) while Grx1 and Ttr1 act 

as glutathione dependent oxidoreductases (Collinson et al., 2002). 

The mode of action of the catalases and the superoxide dismutases is different 

from above mentioned mechanisms because they are directly involved in transforming 

dangerous radical oxygen species into (less) harmless molecules. The superoxide 

dismutases, Sod1 and Sod2, transform superoxide radicals into hydrogen peroxide by 

catalyzing the addition of protons (Fridovich, 1975; Hart et al., 1999). The two 

catalases, Cta1 and Ctt1, are subsequently able to convert the hydrogen peroxide to 

water and oxygen (Grant et al., 1998). 

The two main regulators of antioxidant genes are Yap1 and Skn7. Deletion of 

either of them renders the cells extremely sensitive to oxidative stress. Although some 

genes are regulated by both factors it has been shown that each controls a different set 

of transcripts (Lee et al., 1999b). 

 

Old mother cells produce daughter cells with diminished offspring producing 

capabilities. However, this is restored within a few generations (Kennedy et al., 1994). 

This suggests that permanent DNA damage does not occur in this case, apparently the 

DNA is rather well protected. Vulnerability of DNA to oxygen radicals is probably 

different during the cell cycle due to the necessity to unwind the DNA during 

replication that occurs in the S-phase. To establish whether the expression of the 

antioxidant defences is induced during this phase, several experiments were conducted. 

S. cerevisiae cells were synchronized by centrifugal elutriation and subsequently 

transferred to fresh medium (Silljé et al., 1997). During progression through the cell 

cycle, samples were taken and exposed to hydrogen peroxide. mRNA of these samples 

was isolated and 3 timepoints were selected representing cells in G1, G1/S and S-phase. 

Radioactively labelled cDNA was made from the mRNA transcript pools and 

hybridized with microarray filters. In this way transcript levels of all yeast ORFs 

including those of the antioxidant systems were monitored at the same time.  

Most of the genes of the thioredoxin system were upregulated by stress at the 

three measured timepoints while the glutathione system and the catalases were not. 

Moreover, several thioredoxin peroxidases showed, besides the induction by oxidative 
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stress, that their induction also depends on the phase of the cell cycle. An additional 

increase was observed in expression in S-phase. After describing this behaviour in three 

simple mathematical equations, these equations were used with our database to find also 

other genes demonstrating this feature. 10 genes were found, most of which were stress 

genes and some involved in metal ion homeostasis. These results indicate an 

upregulation of DNA protecting enzymes at a specific stage of the cell cycle, the S-

phase. 
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Materials and Methods: 
 

Strains and growth conditions: 
In all experiments the wildtype strain CEN-PK113-7D (MATa SUC2 MAL2-8c 

MEL) also known as VWk43 was used. Cultures were grown at 30°C in a rotary shaker 

at 180 rpm in Yeast Nitrogen Based medium w/o amino acids (YNB, Difco, Detroit, 

USA) with 1-2 % glucose or galactose as indicated.  

 

Centrifugal elutriation: 
Synchronous cells were obtained by centrifugal elutriation as described by 

Silljé et al. (Silljé et al., 1997). Cells were grown in 1 litre of YNB with 1 % galactose 

at 30°C until they reached an OD600 of 2.0. The cells were harvested in a centrifuge at 

room temperature and sonicated twice for 20 seconds to disturb cell clumps while kept 

on ice. They were loaded into an elutriator spinning at 2000 rpm (Beckman J-6 MI, 

Mijdrecht, Beckman Coulter Netherlands) with a 40 ml chamber kept at 30°C. Using a 

Masterflex pump from Cole-Parmer (Aplikon, Schiedam, Netherlands) YNB medium 

containing 1 % galactose was pumped into the chamber, washing away the newly 

formed daughter cells, which were subsequently collected on ice. After centrifuging, 

cells were kept overnight in YNB 1 % galactose on ice. After refreshing the medium, 

the cells were followed during the cell cycle by monitoring their budding percentages. 

At least 100 cells per timepoint were counted. 

 

mRNA isolation: 
mRNA was isolated using a phenol/chloroform extraction as described in 

Maniatis (Sambrook et al., 1989) with modifications. Samples of 10 ml were quickly 

frozen by immersion in liquid nitrogen. After slowly thawing the cells and washing 

them with 1 ml extraction buffer (100 mM Tris-HCl (pH 7.5), 100 mM LiCl, 10 mM 

EDTA), cells were resuspended in 0.5 ml vortex buffer (100 mM LiCl, 10 mM EDTA, 

0,5 % LithiumDodecylsulphate, pH 7.5 with LiOH). Vigorous shaking with 0.45 mm 

glass beads in a bead-beater (Biospec products, Bartlesville, OK, USA) disrupted cell 

walls and membranes after which a phenol chloroform extraction was performed. After 

addition of 50 µl 3M NaAc and 1.25 ml ice-cold ethanol, the mRNA was precipitated at 
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-80°C, samples were centrifuged, washed with cold ethanol (70 %), air-dried and 

resuspended in water. 

 

Microarray experiments: 
Microarray experiments were conducted as described by Schoondermark-Stolk 

et al. (Schoondermark-Stolk et al., 2002). Isolated pools of transcripts were labelled 

with radioactive dCTP. This labelling is performed by making cDNA from the isolated 

mRNA in the presence of radioactively labelled nucleotides. 4 µg of RNA (measured at 

260 nm) was mixed with 2 µl of OligodT (1 µg/µl), to a final volume of 10 µl. The 

following components were added: 6 µl of first strand buffer (Life Technologies, Breda, 

The Netherlands), 1 µl of 0.1 M dithiothreitol, 1.5 µl of a mixed solution containing 100 

mM of dATP, dGTP and dTTP, 300 units of Superscript II reverse transcriptase (Life 

Technologies) and 100 µCi  [33P]CTP (Amersham Biosciences, Roosendaal, The 

Netherlands). The mixture was kept at 37°C for 90 min. after which 70 µl of STE (0.1 

M NaCl, 10 mM TRIS.HCL (pH 8.0), 1 mM EDTA (pH 8.0)) was added. The newly 

synthesized cDNA was then purified by passage through a Sephadex G-50 column 

(Amersham Biosciences) and washed with 350 µl of STE after which it was eluted with 

500 µl of STE. The cDNA was denatured by heating it to 100°C for 3 min.  

Yeast GeneFilter microarrays (ResGen, Invitrogen, Breda, The Netherlands) were 

washed for 5 min. with boiling 0.5 % SDS. The membranes were prehybridized for 4 h 

with 5 ml MicroHyb solution (ResGen) and 5 µl OligodA (ResGen) at 42°C in a roller 

oven (Thermo Hybaid, Landgraaf, The Netherlands). The labelled cDNA probes were 

added to these prehybridized filters and incubated over night at 42°C. The next day, the 

filters were rinsed with 2xSSC (diluted from 20xSSC which contains: 3 M NaCl, and 

0.3 M Na-citrate, pH 7.0) and 1 % SDS for 20 minutes at 50°C. This was repeated once, 

after which an additional rinsing step followed with 0.5xSSC with 1 % SDS for 15 

minutes at room temperature. The filters were then transferred to a humid 3-layer 

Whatman filter, wrapped in Saran foil and placed against a Phosphor screen (Molecular 

Dynamics, Sunnyvale, CA, USA). After 6 days of exposure the screen was read by a 

phosphorimager SI (Molecular Dynamics) coupled to a computer. The samples with 

hydrogen peroxide were hybridized twice to different microarray filters and the samples 

without hydrogen peroxide once. 
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Data analysis and spot validation: 
Images were scanned at 50-µm resolution in Image-Quant 5.1 (Molecular 

Dynamics) and then imported into the ImaGene 4.2 microarray analysis software 

(BioDiscovery, Marina del Rey, CA, USA). Standard grids were placed over the images 

of the arrays after which spotsize was fixed at 15 pixels and the ‘autoadjust spot’ 

function was applied, which corrects for slight deviations of the grid. Very intense spots 

tend to ‘blossom’ out their signal, leading to an increase of signal in surrounding spots. 

Usually these surrounding spots were ‘flagged’ by hand. Flagged data were not used. 

Although ImaGene has various features to quantify background and signal intensities 

per spot, it was preferred to use local blank spots as background values except when 

these spots were flagged. In this case the local blank spot of one row ahead was used. 

All the quantified data were imported into an Excel sheet (Microsoft) after which the 

identities of the different genes were added. Values used were the signal mean values, 

which are the total signal values divided by the area.  

Normalization was usually carried out by dividing the values through the average of all 

spot intensities, although in some cases it was performed by dividing through 

metacolumn average values. 
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Results: 
 

The effect of hydrogen peroxide on cell cycle progression  
Synchronous daughter cells were isolated from an asynchronous growing 

culture by centrifugal elutriation. The cells were transferred to fresh medium after 

which their budding profile was followed in time. Every 15 minutes two samples were 

taken from this culture, one of which was subsequently exposed to 0.1 mM hydrogen 

peroxide for 30 minutes. Both samples were kept at 30°C and their budding profiles 

were followed in time. As shown in figure 3.1, budding started to increase at 60 minutes  
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Figure 3.1: Cells progressing though the cell cycle with and without hydrogen peroxide and the 

corresponding CLN1 expression. In the lower graph is the budding profile of cells progressing through the 

cycle depicted. Reference cells ( ), cells incubated at 30°C with 0.1 mM hydrogen peroxide for 30 minutes 

( ), cells incubated at 30°C without hydrogen peroxide for 30 minutes ( ). The three timepoints that were 

used for the microarray experiments are indicated with the black and white arrows. Black arrows indicate time 

points at which samples were taken and stressed with or without hydrogen peroxide. The white arrows 

indicate the time points at which the mRNA was isolated. In the upper graph are the expression levels of 

CLN1 visualised at the specific selected timepoints. 
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and reached a maximum of almost 100% after 135 minutes. This indicates that S-phase 

starts around 100 minutes. Both the hydrogen peroxide exposed and the control cells 

show the same budding pattern, indicating that the 30-minute exposure to hydrogen 

peroxide does not influence cell cycle progression. Based on figure 3.1, three timepoints 

were selected for microarray analysis, representing different phases of the cell cycle. 

Timepoint t = 30, t = 90 and t = 135 minutes, were chosen to represent G1-phase, G1/S 

transition and S-phase respectively. This was eventually confirmed by, amongst other 

things, the expression levels of CLN1, which showed low expression at t = 30 and t = 

135 and higher expression at t = 90 minutes both in the cells with and without hydrogen 

peroxide (see figure 3.1). This is in line with earlier research performed in our lab and 

others placing expression of CLN1 just ahead of the G1/S-phase transition (Benton et 

al., 1993; Silljé et al., 1997). 

 

The influence of the cell cycle phase on stress response 
Isolating mRNA samples, as described in Materials and Methods, and using 

them for microarray experiments revealed quantitative information about 

transcriptlevels during the cell cycle with and without exposure to oxidative stress. As 

shown in figure 3.2 no apparent breakdown of the mRNA was detected, the ribosomal 

RNA bands are clearly visible in both the samples exposed to hydrogen peroxide and in 

the control samples. Total amounts of RNA loaded were equal as measured by 

spectrophotometry, however, ribosomal RNA is less present in the cells exposed to 

hydrogen peroxide. As mentioned before, only timepoints 30, 90 and 105 minutes were 

used for microarray experiments. Isolated mRNA of these timepoints was translated to 

radioactively labelled cDNA and hybridized with a microarray filter   containing spots 
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Figure 3.2: Ribosomal RNA bands of mRNA samples. mRNA from cells progressing through the cell cycle 

with and without hydrogen peroxide show no degradation. The numbers above the gel indicate the minutes 

passed. 
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consisting of single stranded DNA coding for 6144 known yeast ORFs. After exposing 

these filters to a phosphorimager screen the amount of radioactive signal was quantified 

yielding absolute expression levels of each transcript.  

 

Expression of components of the thioredoxin system during the cell cycle 
with and without exposure to hydrogen peroxide 

TRX2 mRNA during the cell cycle after addition of hydrogen peroxide showed 

continuously high levels of expression as is shown in figure 3.3. In this figure the 

microarray filters of the samples that were not exposed to hydrogen peroxide show low 

expression of the TRX2 transcript while the filters used with the samples exposed to 

hydrogen peroxide show a continuously high level of expression. In addition to Trx2, 9 

other components are part of the thioredoxin system i.e. 3 thioredoxins, 5 peroxidases 

and 3 reductases respectively. TRX3, TRR2, TSA2 and DOT5 are not expressed, neither 

in the cells with hydrogen peroxide, nor in the cells without. The other components, 

TRX1, TRX2, TRR1, TSA1, AHP1 and PRX1 are expressed at low expression levels 

when no hydrogen peroxide is present at every timepoint except for TRX1 and TSA1 

which expression increases during the cycle. However, in the presence of hydrogen 

peroxide a different picture arises. TRX1, TRX2, TRR1, TSA1, AHP1 and PRX1 are all 

upregulated at every timepoint by the addition of hydrogen peroxide compared to the 

samples where no hydrogen peroxide is present. Besides the response to hydrogen  
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Figure 3.3: The expression of TRX2 on filter and the quantified data from ImaGene 4.2. On the left the 

phosphorimages of the mRNA hybridization of the cells with and without stress, with the TRX2 spots 

encircled. On the right are the quantified intensities of these spots. Relatively constant high expression of 

TRX2 mRNA in the samples that were stimulated with hydrogen peroxide ( ) compared to the cells that were 

not stimulated ( ).  
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Table 3.1: The components of the major antioxidant systems; thioredoxin and glutathione, and their response 

to stress in the earlier described experimental setup. 

 
Name Description Class Responsive? 
    

TRX1 Thioredoxin I Thioredoxin Yes 
TRX2 Thioredoxin II Thioredoxin Yes 
TRX3 Mitochondrial thioredoxin Thioredoxin No 
TRR1 Thioredoxin reductase Reductase Yes 
TRR2 Mitochondrial thioredoxin reductase Reductase No 
TSA1 Cytosolic thioredoxin peroxidase Peroxidase Yes 
TSA2 Cytosolic thioredoxin peroxidase Peroxidase No 
AHP1 Alkyl hydroperoxide reductase Peroxidase Yes 
DOT5 Nuclear thioredoxin peroxidase Peroxidase No 
PRX1 Mitochondrial thioredoxin peroxidase Peroxidase Yes 
    
    

GSH1 γ-Glutamylcysteine synthetase Synthetase Yes 
GSH2 Glutathione synthetase Synthetase No 
GLR1 Glutathione reductase Reductase Slightly 
GRX1 Glutaredoxin containing 2 cysteines Glutaredoxin No 
TTR1 Glutaredoxin containing 2 cysteines Glutaredoxin No 
GRX3 Glutaredoxin containing 1 cysteine Glutaredoxin No 
GRX4 Glutaredoxin containing 1 cysteine Glutaredoxin No 
GRX5 Glutaredoxin containing 1 cysteine Glutaredoxin No 
GPX1 Glutathione peroxidase Peroxidase No 
GPX2 Glutathione peroxidase Peroxidase Yes 
HYR1 Glutathione peroxidase Peroxidase No 
    

 

peroxide, also the phase of the cell cycle is influencing the expression of the genes 

mentioned above. Especially the thiolperoxidases show an additional increase at t = 135 

min (see table 3.1 and figure 3.4). Apparently the stress response is in this case cell 

cycle dependent. 

 

Expression of components of the glutathione system during the cell cycle 
with and without exposure to hydrogen peroxide 

As described in the introduction, the glutathione system consists of 11 

components, including the synthetases, peroxidases, reductases and redoxins. Our 

microarray data reveals that apart from two genes i.e. GSH1 and GPX2, none of the 

components are induced either in the cells exposed to hydrogen peroxide or the control 

cells at any timepoint. GSH1 shows equal induction by hydrogen peroxide during the 

cell cycle at every timepoint while GPX2 demonstrates a decreasing signal (see table 3.1 

and figure 3.4).   
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From table 3.1 is concluded that the thioredoxin system is more responsive 

than the glutathione system. The proteins responsible for inducing both systems, YAP1 

and SKN7, show no response on transcriptional level to the applied stress.  

 

Several other genes show changing expression during the cell cycle 
Besides the influence of exposure to oxidative stress, also the phase in which 

the cells reside influences expression levels of antioxidant proteins. Especially the three 

thiolperoxidases AHP1, PRX1, and TSA1 display an additional increase in expression at 

135 minutes (see figure 3.4). This behaviour can be described with three equations 

depicted in figure 3.5. They state that ratios between timepoint 90 min. and 135 min. 

have to be smaller than 0.5 denoting the additional increase, the ratios between 30 min. 

and 90 min. have to be between 2 and 0.5 and that the signal of the cells exposed to 

hydrogen peroxide has to be larger than the signal of the control cells. Applying these 

three equations on our database revealed 23 genes showing an expression pattern similar 

to AHP1 of which only 10 genes were expressed above background levels. These genes 

are listed in table 3.2 and their expression patterns are depicted in figure 3.5. In this 

table and corresponding figure, there are two thiolperoxidases. However, also two DDR 

(DNA Damage Responsive) genes display behaviour similar to expression of AHP1. 

Also SOD1, which is a superoxide radical scavenger, shows this additional upregulation 

in the S-phase. It is less clear why the other genes in table 3.2 are upregulated after 

induction with hydrogen peroxide during S-phase of the cell cycle. Apc9 is a subunit of 

 
Table 3.2: Genes showing expression patterns like AHP1. 

Name Description 
  
  

AHP1 Alkyl hydroperoxide reductase, thiolperoxidase 
PRX1 Thiolperoxidase 
DDR2 Response to stress 
DDR48 Response to stress, DNA repair 
SOD1 Cu/Zn superoxide dismutases 
  
  

APC9 Subunit of anaphase promoting complex (APC), 
which prevents initiation of DNA synthesis 

ARN1 Iron-sidechrome transporter 
FRE1 Oxidoreductase, iron ion homeostasis 
  
  

LSB1 Biological process unknown 
YMR173W-A Biological process unknown 
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Figure 3.5: Expression patterns of genes behaving similar to AHP1. Of the cells stimulated with hydrogen 

peroxide two hybridizations were performed ( , ), whilst of the control without stress only one 

hybridization ( ) was performed. 

 

the anaphase-promoting complex, which is required for destruction of Clb2, Clb3, Clb5 

via ubiquitination. This complex is also involved in blocking premature DNA 

replication in G1 (Irniger and Nasmyth, 1997). Furthermore, an apc9 mutant is 

extremely sensitive to methylating agent methyl methanesulfonate (MMS) that can 

damage DNA (Begley et al., 2002). Arn1 is involved in uptake of small iron binding 

proteins called ‘ferrichromes’. It is induced by cadmium treatment (Momose and 

Iwahashi, 2001) and is upregulated when treated with 0.32 mM hydrogen peroxide 

(Gasch et al., 2000). Fre1 is involved in iron uptake and ferric ion reduction but could 
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also be involved in maintaining intracellular redoxpotential (Anderson et al., 1992). 

Another interesting observation is that a fre1 mutant is extremely sensitive to MMS 

(Begley et al., 2002). The Fre1 promoter has at least one putative Yap1-binding site 

within 1 kb upstream of the start codon (Carmel-Harel et al., 2001). The one thing Lsb1 

has in common with Fre1 and Apc9 is that the knockout mutants of these genes are all 

very sensitive to MMS (Begley et al., 2002). YMR173w-a is a hypothetical ORF with 

considerable overlap with DDR48 (see figure 3.6), which explains its similar expression 

pattern. 

 

DDR48

YMR173W-A

610080

608688 609980

608896

 
Figure 3.6: YMR173 is a hypothetical ORF largely overlapping with the DDR48 gene. 

 

Expression of other antioxidant genes during the cell cycle with and 
without exposure to hydrogen peroxide 
Both catalases are not induced during the cell cycle with or without exposure to 

hydrogen peroxide. Also the transcription factors YAP1 and SKN7 show no clear 

response, although some values of SKN7 are flagged so not reliable. SOD1, as 

mentioned before, shows increasing expression levels after exposure to hydrogen 

peroxide but even more induction during S-phase. However, SOD2 does not show a 

clear response. 
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Discussion: 
 

DNA damage is a very serious injury that the cell needs to prevent. Each cell 

cycle, the DNA is duplicated at which stage it has to be unwound, potentially increasing 

its sensitivity to insults. It was therefore hypothesized that the cellular defences against 

oxygen radicals are dependent on the phase of the cell cycle. To obtain quantitative data 

about these expression levels, experiments were conducted with microarrays. This 

revealed the expression levels of 6144 ORFs during G1-phase, G1/S transition and S-

phase of the cell cycle with and without exposure to oxidative stress. It was observed 

that exposing cells to 0.1 mM hydrogen peroxide for 30 minutes does not influence cell 

cycle progression significantly (figure 3.1) as shown by the similarities in the budding 

profiles. The observation that the samples exposed to stress show smaller rRNA bands 

(figure 3.2) is in line with earlier published results, which claim that hydrogen peroxide 

downregulates ribosomal genes (Gasch et al., 2000). 

It appeared that of the two major antioxidant systems, the thioredoxin system is 

better represented with 6 of the 10 components upregulated more than a factor 2 at each 

timepoint while of the glutathione system only 2 of the 11 genes show this upregulation 

(table 3.1, figure 3.4). The central protein in the thioredoxin system is Trx2. It seems 

that it is not influenced by the cell cycle, only the amount of hydrogen peroxide present 

is involved in its upregulation (figure 3.3). Of the ten components of the thioredoxin 

system there are five thiolperoxidases, i.e. TSA1, TSA2, AHP1, DOT5, and PRX1. Of 

these five thiolperoxidases both the nuclear DOT5 and the cytosolic TSA2 do not 

respond to the applied stress. Also the thioredoxin III (TRX3) and thioredoxin reductase 

II (TRR2) are not induced.  The fact that both these proteins reside in mitochondria may 

imply that the hydrogen peroxide does not reach these organelles. However, this 

explains the lack of response only if TRX3 and TRR2 are regulated by factors directly or 

indirectly dependent on the oxidation state of the mitochondria. On the other hand, 

PRX1, the thiolperoxidase located in the mitochondria, is strongly induced by oxidative 

stress.  

Of the glutathione system only 2 components were more then 2-fold 

upregulated. According to Gasch et al. (Gasch et al., 2000) more components were 

upregulated after exposing an asynchronous culture to 0.32 mM hydrogen peroxide. 

This discrepancy may be caused by the fact that a higher concentration of hydrogen 
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peroxide was used as well as different growth media. This suggests that the thioredoxin 

system is activated at lower concentrations than the glutathione system. 

Expression of transcription factors Yap1 and Skn7 is not induced by oxidative 

stress. However, the activity of Yap1 is regulated by import and export to and from the 

nucleus, so in this case transcript levels are not a good indication for the activity of this 

transcription factor and this can also be true for Skn7. 

 

The more than 2-fold upregulation of several antioxidant genes like AHP1 is 

dependent on the phase of the cell cycle as is shown in figure 3.4. Three of the five 

thiolperoxidases show an additional S-phase specific upregulation. By performing a 

search in the obtained database, ten genes were found displaying similar behaviour 

(table 3.2, figure 3.5). Two thioredoxin genes were found, DDR2, DDR48 were induced 

next to its overlapping ORF YMR173W-A and also of SOD1 was upregulated during S-

phase. Why SOD1 is upregulated is not clear, because it is not likely that superoxide 

radicals are present. Hydrogen peroxide is easily converted to hydroxyl radicals in the 

presence of a transition metal like copper or iron known as the Fenton reaction, but not 

to superoxide radicals. Sod1 is the protein that deals with these specific radicals. 

However, it has been described earlier that it is induced by hydrogen peroxide (Gasch et 

al., 2000). Sod1 usually resides in the cytoplasm while Sod2 is located in the 

mitochondria, and does not show a clear response to hydrogen peroxide. Just as with 

earlier mentioned TRR2 and TRX3 this could be caused by the differences in 

localization although location specific signal transduction routes would be necessary for 

this. The proteins capable of converting hydrogen peroxide to water are the catalases, 

Cta1 and Ctt1, but their genes are not upregulated at all. These genes are upregulated in 

the dataset of Gasch et al., but then again this may be caused by their use of a higher 

concentration of hydrogen peroxide. 

 

Other genes display similar cell cycle dependent expression patterns as AHP1 

(table 3.2, figure 3.5). Both ARN1 and FRE1 have in common that they are induced by 

low levels of copper, but they also show this S-phase specific induction by hydrogen 

peroxide. The fact that both the apc1, lsb1 and fre1 mutants are extremely sensitive to 

MMS, which is a DNA damaging agent, suggests that the additional upregulation in S-

phase could be a marker for DNA damage. Both the upregulation of DNA Damage 

Responsive genes DDR2 and DDR48 also indicate this potential DNA damage. 
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However, the important DNA damage genes like the RAD genes are not upregulated. It 

could be that the genes listed in table 3.2 are more involved in protecting the DNA 

before damage can be done while the RAD genes play a role in recognizing and 

repairing inflicted DNA damage. 

According to Lee et al. (Lee et al., 1999b) Yap1 and Skn7 are in control of two 

distinctive groups of genes. It is remarkable that most of the genes described to have a 

cell cycle dependent response to stress are in their list in the group of genes under 

control of both transcription regulators. The genes whose expression is governed by 

Yap1 alone do not seem to respond. This points to an important role of Skn7 in the cell 

cycle dependent response. It is not the first report of Skn7 being involved in cell cycle 

dependent processes. For instance, Bouquin et al. (Bouquin et al., 1999) shows that 

Skn7 together with Mbp1 is necessary for bud emergence in G1-phase. It is therefore 

feasible that Skn7 is involved in the S-phase specific upregulation of certain transcripts. 

 

DNA damage is supposed to be detrimental to the cell because mutations will 

be passed on to future generations. Therefore, the cell has developed defence systems to 

protect the DNA. However, during the cell cycle the DNA is replicated in S-phase in 

which it is unwound and more prone to all kinds of insults like the ones caused by 

radical oxygen species. Because of the supposed differences in vulnerability of the 

DNA during the cell cycle, it is reasonable that the expression of the defence 

mechanisms against ROS is also cell cycle dependent. Additional protection against 

oxidative stress during the S-phase is required and would explain the observed 

upregulation of the genes in table 3.2 and figure 3.5. 

From our results can be concluded that several antioxidant proteins display an 

additional upregulation during S-phase indicating a more stringent defence against 

radical oxygen species during this phase probably to secure the DNA. 
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Abstract: 
 

Previous experiments showed that several oxidative stress defence genes were 

activated in a cell cycle dependent manner after exposing them to hydrogen peroxide. 

The thioredoxin system is more responsive than the glutathione system. Thioredoxin2 is 

the main character in the thioredoxin system. Although it was measured that transcript 

levels were not influenced by the cell cycle, no data is published about protein levels of 

Trx2. 

Saccharomyces cerevisiae cells were equipped with an oxygen stress 

reporterconstruct and synchronized by centrifugal elutriation. This construct consisted 

of a TRX2 promoter sequence in front of a LACZ gene. The expression of the construct 

was followed in time with or without addition of 0.1 mM hydrogen peroxide. The cells 

that were not exposed to hydrogen peroxide showed a constant low expression level of 

the TRX2 construct. The cells that were exposed to hydrogen peroxide, showed an 

increase in induction of the reporterconstruct around the start of S-phase. However, the 

expression of the TRX2 mRNA showed continuous induction during all cell cycle 

phases upon exposure to hydrogen peroxide. The apparent contradicting result between 

the hydrogen peroxide induced mRNA expression and protein expression during G1 

phase, was due to a low protein synthesis rate during early G1 as demonstrated by 35S-

labeled amino acid incorporation.  

Therefore, the responses to oxidative stress are differentiated during the cell 

cycle and this is probably caused by a decreased protein synthesizing capacity in early 

G1 phase. 
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Introduction: 
 

Oxygen radicals are able to cause damage to different cellular constituents. 

Therefore, the cell has devised several systems to neutralize these harmful compounds. 

One of the major defence mechanisms against oxygen radicals is the thioredoxin system 

of which the key figure is thioredoxin2 (Trx2). Trx2 plays a role in reducing disulfide 

bonds (Muller, 1991) and is required for resistance against hydrogen peroxide (Kuge 

and Jones, 1994). Five thiolperoxidases, Tsa1, Tsa2, Ahp1, Dot5 and Prx1 use Trx2 as 

their reducing equivalent after which thioredoxin reductases Trr1 and Trr2 can reduce 

the Trx2 again, using NADPH in the process. 

Trx2 is induced by cooperation of two transcription factors, Yap1 and Skn7, 

upon exposing cells to oxidative stress (Morgan et al., 1997; Lee et al., 1999b). Each 

controls its own ‘regulon’ of important antioxidant genes of which several genes come 

under regulation of both Yap1 and Skn7. Besides by the regulation via transcription 

regulators can the activity of antioxidant proteins be influenced by translational 

regulation and posttranslational modifications like the N-terminal acetylation of alkyl 

hydroperoxide Ahp1 (Polevoda et al., 1999).  

 

Malfunctioning of antioxidant proteins gives oxygen radicals the chance to 

alter all kinds of cellular constituents like lipids, proteins and nucleotides. One of the 

biggest threats to cells is DNA damage, because if it is not repaired it will be passed on 

to the next generation. Therefore defences against this type of damage are very 

stringent. Even a single double-strand break can lead to cell cycle arrest (Huang et al., 

1996). Oxidative stress can cause these kinds of damage but with different 

consequences in different phases of the cell cycle. During S-phase the DNA gets 

duplicated for which it has to be unwound from the histones making the structure more 

‘open’ and vulnerable to oxygen radicals. It is therefore hypothesized that during S-

phase, cells could require increased levels of antioxidant proteins. Examples of 

differences in sensitivity during the cell cycle are known, for instance the sensitivity of 

mitotic CHO cells to hydrogen peroxide, which is larger than that of G1-phase cells 

(Martinez Munoz et al., 2002). However, in this case it does not involve DNA damage 

but an inhibition of the breakdown of one of the cyclins. This example underlines that 

there are complicated ways of regulating cell cycle progression and stress response. It is 
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a waste of resources to keep up the defences when radical levels are low or absent. 

Moreover, as mentioned above, also during the cell cycle there are periods when the 

cells are less sensitive to oxygen radicals. Thus, there has to be a balance between 

investing energy in antioxidant defences and using these resources for other purposes 

like growth. 

 

To be able to measure antioxidant responses to oxidative stress, a 

reporterconstruct was devised. This was made by amplifying the TRX2 promoter 

sequence and ligating it into a LACZ containing plasmid. By homologous recombination 

it was transformed into the wild-type yeast strain. To investigate the responses to 

oxidative stress during the cell cycle, cells were synchronized by centrifugal elutriation 

(Silljé et al., 1997). One of the advantages of this method is that cells are not forced into 

a certain phase like with the α-factor arrest method or the Cdc25 temperature sensitive 

mutants, but cells in the same phase are selected from a heterogeneous population. 

  

In this study we investigated the response of the constructed reporterstrain to 

exposure to oxidative stress during the cell cycle to find out whether expression of 

proteins are cell cycle dependent. The reporterconstruct does not show any variations in 

expression during the cell cycle when no oxidants are present. However, there is a cell 

cycle dependent variation in the response of the reporterconstruct when the cells were 

challenged with a rather low concentration of 0.1 mM hydrogen peroxide. The 

upregulation of the reporterconstruct is only apparent when the cells are in S-phase. 

However, isolated mRNA showed that TRX2 mRNA levels were not affected by the 

phase of the cell cycle; they showed continuous induction. Measured rates of protein 

synthesis show low levels during early G1. These low levels are probably the reason for 

the low expression of LacZ after exposure to stress during G1. 
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Materials and Methods: 
 

Strains and growth conditions: 
In all experiments the wildtype strain CEN-PK113-7D (MATa SUC2 MAL2-8c 

MEL) also known as VWk43 was used. To construct the reporterplasmid, the TRX2 

promoter region was amplified from CEN-PK102-3A (MATa SUC2 MAL2-8c MEL 

ura3 leu2) or VWk18 chromosomal DNA with primers TRXL-MV (5’-

GCGGGATCCTGACACCAAAGCTGTAC-3’) and TRXR-MV (5’-

GCGCCCGGGCATTATTGATGTGTTATTTAAAG-3’). This PCR fragment was 

cloned into pFA6a-lacZMX3 after a BamHI/XmaI digestion resulting in pUR5881. 

After BstEII partial linearization this plasmid was integrated into yeast chromosomal 

DNA of VWk43 resulting in VWk43-pTRX2-β-gal (pUR5881) hereafter referred to as 

VWk43pTRX. The endogenous TRX2 sequence was not disturbed as the construct 

integrates in front of the gene (see figure 4.1). Cultures were grown at 30°C in a rotary 

shaker at 180 rpm in Yeast Nitrogen Based medium (YNB, Difco) with 1-2 % glucose 

or galactose as indicated.  

kanamycin

ampicilin

pTRX2

LacZ

+/- 9093 bp

pTRX2    TRX2

pTRX2    TRX2pTRX2    LacZ

+

 
Figure 4.1: The TRX2-promoter construct. The construct was cut open at the promoter site and then integrated 

into the genomic DNA. Note that the endogenous TRX2 gene including its promoter is not disturbed by this 

integration. 
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β-galactosidase assay: 

Yeast cells were grown at 30°C after which they were or were not exposed to 

hydrogen peroxide. β-Galactosidase assays were essentially performed as described in 

Maniatis (Sambrook et al., 1989) with modifications. Triple samples of each 150 µl 

were taken and added to a 96-multiwellplate with V-shaped wells. This plate was kept 

at -20°C. After sampling the plate was slowly thawed at 0°C after which the cells were 

spun down and the supernatant was discarded. To each well 20 µl of 0.05 % Triton X-

100 in 0.1 M Tris pH 7.5 was added and the samples were frozen to -80°C to ensure 

lysis of the cells. After defrosting 80 µl of Z-buffer (60 mM Na2HPO4, 40 mM NaH2PO-

4, 10 mM KCl, 1 mM MgSO4, 0.25 mM DTT) and 20 µl of 1 mg/ml o-nitro-phenyl-β-

galactopyranoside (Sigma-Aldrich Chemie B.V., Zwijndrecht, Netherlands) in 0.1 M 

KH2PO4/K2HPO4 (pH 7) was added. The reaction was stopped by addition of 50 µl of 1 

M Na2CO3. The plate was then spun down, the supernatant was transferred to a flat 

bottom multiwellplate and the cell debris was resuspended in 150 µl PBS and also 

transferred to a flat bottom multiwellplate. The supernatant was measured in a 

multiwellreader at 415 nm and the resuspended debris was measured at 655 nm. 

 

Centrifugal elutriation: 
Centrifugal elutriation was performed as described by Silljé et al.(Silljé et al., 

1997) with modifications. Cells were grown in 1 litre of YNB with 1 % galactose at 

30°C until they reached an OD600 of 2.0. The cells were harvested in a centrifuge at 

room temperature and sonicated twice for 20 seconds while kept on ice to remove cell 

clumps. They were loaded into an elutriator spinning at 2000 rpm (Beckman J-6 MI, 

Mijdrecht, Beckman Coulter Netherlands) with a 40 ml chamber kept at 30°C. Using a 

Masterflex pump from Cole-Parmer (Aplikon, Schiedam, Netherlands) YNB medium 

containing 1 % galactose was pumped into the chamber, washing away the newly 

formed daughter cells, which were subsequently collected on ice. After centrifuging, 

these were kept overnight in YNB 1 % galactose on ice. After refreshing the medium 

and transferring cells to a 30°C rotational shaker, their progression through the cell 

cycle was followed in time by monitoring their budding percentages. This was done by 

counting buds of at least 100 cells per timepoint. 
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mRNA isolation and Northern blotting: 
mRNA was isolated using a phenol/chloroform extraction as described in 

Maniatis (Sambrook et al., 1989) with modifications. Samples of 10 ml were quickly 

frozen by immersion in liquid nitrogen. After slowly thawing the cells and washing 

them with 1 ml extraction buffer (100 mM Tris-HCl, 100 mM LiCl, 10 mM EDTA), 

cells were resuspended in 0.5 ml vortex buffer (100 mM LiCl, 10 mM EDTA, 0.5 % 

LithiumDodecylsulphate, pH 4 with LiOH). Vigorous shaking with 0.45 mm glass 

beads in a bead-beater (Biospec products) disrupted cell walls and membranes after 

which a phenol chloroform extraction was performed. After addition of 50 µl 3 M NaAc 

and 1.25 ml ice-cold ethanol, the mRNA was precipitated at -80°C, samples were 

centrifuged, washed with cold ethanol (70 %), air-dried and resuspended in water. 

 

mRNA was separated as described by Maniatis (Sambrook et al., 1989) with 

some modifications. 10 µg of total RNA sample was loaded on a 1 % denaturing 

formamide/formaldehyde gel and RNA was separated by electrophoresis. RNA was 

transferred to Hybond-N membrane (Amersham Biosciences, Roosendaal, Netherlands) 

and cross-linked using UV light in a UV stratalinker (Stratagene Europe, Amsterdam, 

Netherlands). 15 pmol of oligonucleotides that recognize TRX2 (5’-

TGTCGTATTCAGAAGCGGATTTTA-3’) and ACT1 (5’-

TGTCTTGGTCTACCGACGATAGATGGGAAG-3’) ordered at Gibco BRL 

(Invitrogen, Breda, Netherlands) were labelled with T4 ploynucleotide kinase (USB, 

Amersham Biosciences) and 50 µCi γ-32P-ATP (Amersham Biosciences) and purified 

using the QIAquick nucleotide removal kit (Qiagen, Westburg, Leusden, Netherlands). 

The blots were washed once in 2xSSC (0.3 M NaCl, and 30 mM Na-citrate, pH 7.0) at 

room temperature, incubated for prehybridization in hybridization mixture (1 mM 

EDTA, 7 % SDS, 0.5 M NaPO4 pH 7.5) for at least one hour at 45ºC in a micro-4 

hybridization incubator (Biozym, Hessisch Oldendorf, Germany). Labelled and purified 

oligonucleotides were added and hybridized overnight at 45ºC. After hybridization the 

blots were washed with 2xSSC and 0.1 % SDS until background radiation was 

minimized. Filters were wrapped in Saran wrap (Dow Benelux B.V., Terneuzen, 

Netherlands) and subsequently placed against a phosphor imager screen (Molecular 

Dynamics, Sunnyvale, CA, USA) that was scanned after at least 12 hours of exposure.  
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Fed-batch experiments: 
Fed-batch experiments were conducted as described by Silljé et al. (Silljé et 

al., 1997). Synchronous cells were spun down and resuspended in YNB without 

carbonsources. A Masterflex pump (Cole Parmer) was used to administer galactose at a 

preset rate. In this way controlled amounts of galactose were added to the cells, 

typically in the order of 10-20 fmol per cell per hour. 

 

Incorporation of 35S-methionine/cysteine experiments: 
Cells were grown to an OD600 of 1 in YNB minimal medium with 20 µg/ml 

methionine and 10 µl/ml cysteine. 1.7 ml of this yeast suspension was transferred to a 

small glass vessel of 2 ml. Cells were kept in suspension by using a small magnetic 

stirrer inside the vessel. 17 µl of Redivue PRO-MIX (Amersham Biosciences) was 

added containing 35S labelled methionine and cysteine (ratio 70:30) with a specific 

activity of 1000 Ci/mmol and a concentration of 10 mCi/ml with respect to the 

methionine. At t=0, cells were transferred to 30ºC and the label was added. Every 15 

minutes a 100 µl sample was transferred to another culture vessel and 2 µl of 0.1 mM 

hydrogen peroxide was added. These cells were incubated for 30 minutes after which 5 

µl of the sample was spotted on a small piece of Whatmanfilter that was subsequently 

dropped in 5 % TCA (trichloro acetic acid) solution with 20 µg/ml methionine and 10 

µl/ml cysteine. Also 5 µl samples of the cells that were not incubated with hydrogen 

peroxide were spotted on Whatmanfilter and dropped in the TCA. At the end of the time 

series, the TCA solution was boiled for 2 minutes and replaced by fresh 5 % TCA with 

the 20 µg/ml methionine and 10 µl/ml cysteine. This solution was boiled again for 2 

minutes after which it was washed twice with cold 5 % TCA and twice with ethanol. 

The filters were then dried, collected in scintillation tubes with scintillation fluid and 

counted with a scintillation counter. Parallel to this experiment 1.7 ml of yeast 

suspension received the same treatment without adding the radioactive mix. At each 

timepoint 50 µl of these cells were transferred to eppendorf tubes containing already 

12.5 µl of 1.25 % formaldehyde. These cells were used to determine budding 

percentages and cell size parameters.  

 

Cell viability: 
Experiments were conducted to establish the effect of different hydrogen 

peroxide concentrations on survival rates. Cell cultures were grown to an OD600 of 1 
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after which they were subjected to different concentrations of hydrogen peroxide for 

half an hour. Cells were diluted 10.000 times (2 times 100 fold) after which 100 µl was 

plated on YPD plates containing 1 % glucose. The plates were incubated at 30ºC for 3 

to 4 days after which colonies were counted. 
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Results: 
 

Effect of hydrogen peroxide on cell viability 
Transformed cells were exposed to different concentrations of hydrogen 

peroxide after which expression of the reporterconstruct and the amount of Colony 

Forming Units (CFU’s) were determined. As shown in figure 4.2, expression started at 

0.1 mM hydrogen peroxide increasing at 0.2 mM after which it dropped again. The 

CFU counts (see figure 4.2) show that at hydrogen peroxide concentrations of 0.25 mM 

and higher, viability is impaired and keeps decreasing until only 50 % is viable when 

exposed to 5 mM of hydrogen peroxide. This decrease in viability probably explains the 

drop in expression of the reporterconstruct at higher hydrogen peroxide concentrations. 

It was concluded that incubation of 30 min with 0.1 mM hydrogen peroxide was 

sufficient to induce significant expression without impairing cell viability.  
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Expression of TRX2-promoter construct during the cell cycle with and 
without exposing to hydrogen peroxide 

Synchronous cells were isolated from an exponentially growing population by 

elutriation. Expression of the reporterconstruct was followed in time while the cells 

progressed through the cell cycle. The progression of the cell cycle was monitored by 
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Figure 4.2: Determining optimal

exposure conditions of hydrogen

peroxide to our transformed cells.

Exposing the vwk43 pTRX cells to

different concentrations of hydrogen

peroxide showed increased expression

of β-galactosidase (upper graph) but

also a decrease in viable cells (lower

graph). 
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determining budding percentages. Budding started at 75 minutes and reached a 

maximum of 95% at 195 minutes. The end of G1, and therefore also the start of S-phase 

was defined as 50% of the maximum budding percentage, in this case around 120 

minutes (figure 4.3). Each 15 minutes, samples were taken that were exposed to 0.1 mM 

hydrogen peroxide for 30 minutes. Expression of the reporterconstruct was followed by 

measuring optical density at 415 nm while the growth was monitored by measuring OD 

655. As shown in figure 4.3, the cells which did not receive hydrogen peroxide 

treatment expressed constant low levels of β-galactosidase and hence of Trx2. However, 

the cells exposed to hydrogen peroxide show a strong increase in expression of β- 
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Figure 4.3: Induction of the reporterconstruct during the cell cycle. Every 15 minutes a sample was taken 

which was stimulated with 0.1 mM hydrogen peroxide ( ) or without hydrogen peroxide ( ) for 30 minutes 

after which expression of lacZ was determined (A415). Cell cycle progression was monitored by determining 

budding percentages ( ) and measuring the optical density at 655 nm. Expression of lacZ remains rather 

constant until cells enter S-phase after which it increases fast. 

 

galactosidase after 75 minutes, so after the budding percentages started to rise. It is also 

observed by measuring the levels of the OD 655 that growth is not impaired by 30-
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minute exposure to hydrogen peroxide. The expression of TRX2 is higher during S-

phase than during G1 after exposing to stress.  

 

Expression of TRX2 mRNA during the cell cycle with and without 
exposing to stress 

To elucidate whether the regulation of TRX2 expression was at transcriptional 

or at translational level, mRNA was isolated from cells progressing through the cell 

cycle with and without a 30-minute exposure to hydrogen peroxide as described above. 

Probes against the TRX2 gene were hybridized with northern blots containing these 

mRNA samples. The upper bands in figure 4.4 are the actin loading controls and the 

lower bands are the TRX2 bands. The TRX2 bands are virtually absent in the cells that 

are not exposed to hydrogen peroxide and they are strongly induced in the samples that 

did receive hydrogen peroxide treatment. The ratio between the thioredoxin transcript 

levels and the actin levels shows, apart from the first timepoint, a constant value (lower 

part of figure 4.4). This indicates that the TRX2 gene gets induced equally at every 

timepoint during the cell cycle when 

exposed to hydrogen peroxide. The 

earlier observed S-phase specific 

upregulation of the reporterconstruct 

therefore is regulated at a later stage, 

at translational or posttranslational 

level. 
 

Figure 4.4: Expression levels of TRX2 mRNA. 

On the upper blot are the samples without 

hydrogen peroxide exposure while on the 

second blot the samples are shown that were 

exposed to hydrogen peroxide.  In the lower 

graph are the ratios depicted of the TRX2 

mRNA divided by the actin signal. After 

stimulation with 0.1 mM hydrogen peroxide the 

levels of TRX2 mRNA do not seem to be 

influenced by the progression through the cell 

cycle. (* not quantifiable) 
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Protein synthesis rates during the cell cycle 
The expression of the reporterconstruct and the induction of TRX2 mRNA do 

not show the same behaviour. These contrasting data can only be explained if the LacZ 

protein is translational or posttranslational regulated. In order to establish whether there 

is a general translational effect on protein levels during the cell cycle, experiments were 

conducted to determine protein synthesis rates in synchronous cells progressing through 

the cell cycle with and without exposure to hydrogen peroxide. Protein synthesis rates 

were determined by measuring incorporation of 35S labelled methionine and cysteine. 

Synchronous cells were obtained by centrifugal elutriation. After addition of labelled 

methionine and cysteine, every 15 minutes samples were taken and exposed to 0.1 mM 

hydrogen peroxide for 30 minutes.  

The cells progress normally through the cell cycle as is visualized by the budding 

profile in the upper graph (figure 4.5 upper graph). Budding starts at 75 minutes and 

  
Figure 4.5: In the upper graph the incorporation of 35S labelled Met/Cys is increasing in time (□). The 

samples of the cultures treated with 0.1 mM hydrogen peroxide exhibit a slightly lower signal (■). In the same 

graph also the budding profile is depicted with its corresponding axis on the right (○). In the lower graph the 

amount of cells (□) and the mean (■) diameter of these cells against the time are visualized. 

 

increases up to 90% around 170 minutes, which determines that S-phase starts at 105 

minutes. Cell diameter gradually increases up to a maximum of 50 µm at 170 minutes 
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while the amount of cells stays constant, showing that growth is normal (figure 4.5 

lower graph). The incorporation of 35S-labeled methionine and cysteine in   

the samples without hydrogen peroxide stays at background levels until 45 minutes and 

then it gradually increases. After the budding starts to increase also the incorporation of 

label increases faster and when the budding decreases again at 180 minutes also the 

incorporation slows down. These results indicate that during early G1 general protein 

synthesis is low, both in the cells that are exposed to hydrogen peroxide and in the 

control cells. Only when cells enter S-phase at 105 minutes incorporation of radioactive 

label is measured. 

The samples exposed to hydrogen peroxide show only a slight decrease in 

incorporation compared to the control cells but the same trend is visible. This implies 

that adding 0.1 mM hydrogen peroxide does not severely impair protein synthesis. 

 

Effects of hydrogen peroxide during the cell cycle on growth and cell 
cycle progression 

As stated above, the S-phase specific upregulation of the reporterconstruct is 

regulated at translational level because a general low level of protein synthesis is 

observed in G1-phase. There is a small decrease in general protein synthesis when the 

cells are exposed to hydrogen peroxide. This effect should therefore also influence 

general cell growth and progression through the cell cycle. To investigate this, 

synchronous cells were isolated by centrifugal elutriation and continuously exposed to 

0.1 mM hydrogen peroxide from different timepoints within the cell cycle after which 

their budding profile was followed. This revealed that, stimulation during the first 90 

minutes led to a delay in cell cycle progression of at least 30 to 45 minutes. However, 

cells exposed at 105 and 120 minutes were not or only minor influenced during the 

following 45 minutes (see figure 4.6). Apparently, hydrogen peroxide causes more 

delay in cell cycle progression during G1 than during S-phase. This is even more clearly 

shown when the cells were exposed to 1 mM hydrogen peroxide instead of 0.1 mM. 

Synchronous cells were grown and exposed to 1 mM hydrogen peroxide from timepoint 

0, 30, 60 and 90 minutes. Budding profiles revealed that cells exposed from timepoint 0 

minutes were only slowly progressing through the cycle, its budding percentage 

gradually increasing up to of 60 % after 210 minutes. Exposing as from 30 minutes 

leads to a maximum at 85% after 180 minutes, from 60 and 90 minutes, maximums are 
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Figure 4.6: The influence of 0.1 mM hydrogen peroxide on progression through the cell cycle. Continuous 

stimulation with hydrogen peroxide of synchronous cells, starting at different timepoints, in the upper graph: 

: 15 min, : 30 min, : 45 min, : 60 min,  : reference without hydrogen peroxide and in the lower 

graph: : 75 min,  : 90 min, : 105 min,: : 120 min,  : reference without hydrogen peroxide. Samples 

105 and 120 min. show less deviation of the reference budding profile than other timepoints. 
 

more than 90 % at 135 and 150 minutes respectively (figure 4.7). The phase of the cell 

cycle is influencing the stress response. 

 

In figure 4.7 there is shown that there is absolutely no difference in expression 

of the reporterconstruct between cells exposed with or without hydrogen peroxide from 

timepoint 0, they both do not express the reporter. The cells exposed after 30 minutes 

show induction of the reporter but only as from 75 minutes while the samples exposed 

after 60 minutes show a direct increase in signal, which becomes almost twice as much 
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compared to the 30-minute sample. Expression of the reporter in the 90-minute samples 

reaches almost three times as much expression as in the 30-minute sample. Apparently, 

cells in G1 respond less to stress. On the contrary, cells that have reached S-phase do 

respond to external oxidative challenges.  In fact, the further the cells progress from G1, 

the better the stress response. Also the effect on the buddingprofiles of the different 

samples is clear. Cells exposed from the start of G1 are more sensitive to hydrogen 

peroxide and rather reluctant to go through the cell cycle, whilst cells already 

progressing seem to be less influenced. This is in line with earlier conclusion that cells 

in G1 are not able to respond to external challenges because protein synthesis rates are 

low. 
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Figure 4.7: Protein synthesis as a function of cell cycle progression. Continuous exposure to 1 mM of 

hydrogen peroxide, starting at different timepoints during the cell cycle leads to different responses. Upper 

graph represents the budding profile of the different samples while the lower graph shows the expression of 

the β-galactosidase reporterconstruct. Reference cells without hydrogen peroxide ( ), cells stimulated from 

the start ( ), cells stimulated from 30 min. ( ), from 60 ( ) and from 90 min. ( ). 
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Discussion: 
 

Because DNA damage is a major threat to the cell, measures have to be taken 

to minimize the occurrence of this damage. During the cell cycle the DNA is unwound 

and duplicated during S-phase at which time point it is potentially very vulnerable to 

external challenges like oxygen radicals. It is therefore expected that the regulation of 

the defences against these radicals is not only stress dependent but also cell cycle 

dependent.  

To monitor the expression of antioxidant proteins a reporterconstruct was made 

consisting of a TRX2-promoter in front of a LACZ gene. Using synchronous cells it was 

measured that expression of this reporterconstruct showed no fluctuations during the 

cell cycle. However, when the expression of this reporterconstruct was monitored in 

growing synchronous cells while at the same time exposed to hydrogen peroxide it was 

shown that after the budding increased, so during S-phase, the expression of the 

reporterconstruct increased. However, when the levels of TRX2 mRNA were measured, 

it showed constitutive expression of TRX2 after stimulation with hydrogen peroxide 

regardless the phase of the cell cycle. Therefore the S-phase specific upregulation is not 

regulated at the transcriptional level but at translational or posttranslational level.  

To investigate this, 35S-labeled cysteine and methionine were added to the cells 

to measure the rate of protein synthesis as function of the cell cycle and stress exposure. 

This revealed that protein synthesis rates during G1 are low, both in the samples with 

and without hydrogen peroxide. This explains why there is no LacZ protein after 

exposure to hydrogen peroxide in G1. Thus, the regulation of the expression of LacZ is 

at translational level.  

The exposure to hydrogen peroxide results in a small decrease in protein 

synthesis rates. However this decrease should not only influence LacZ but should also 

delay synthesis of other proteins. This delay should lead then to a slowing down of 

progression. This was investigated by closely monitoring progression through the cell 

cycle after continuous exposure to 0.1 mM hydrogen peroxide starting at different 

timepoints. It does show that during the first 90 minutes, cells experience a delay in 

progression through the cycle, but when exposed from 105 and 120 minutes cells appear 

only slightly influenced by it. If a higher concentration of hydrogen peroxide was used 
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(1 mM) it was observed that both cell cycle progression and reporterconstruct 

expression are impaired when the exposure starts when the cells are in G1.  

 

Why is the protein synthesis rate so low in the first stages of the cell cycle? A 

synchronous population of cells consists of small and newly synthesized daughter cells, 

which have to grow and reach a critical cell size in order to be able to finish a complete 

cell cycle (Hartwell et al., 1974). Quiescent cells have < 25 % of ribosomes compared 

to an exponentially growing cell. However, what this ratio is in daughter cells compared 

to mother cells is not known yet. The protein synthesizing machinery, the ribosomes, 

have recently been linked to both cell growth and cell division by the observation that 

specific mutations in ribosome biogenesis pathways led to the uncoupling of growth 

from division (Jorgensen et al., 2002; Verrips, 2003). The microarray analysis 

performed by Spellman et al. showed that in synchronous cultures, no significant 

changes were observed regarding the expression of ribosomal proteins (Spellman et al., 

1998). How exactly ribosome biogenesis is regulated during the cell cycle is not known 

yet.  

Our experiments indicate that possibly small G1-phase cells have low amounts 

of ribosomes. First, new ribosomes have to be synthesized and after this has taken place, 

protein synthesis can increase. This explains the apparent contradicting results between 

protein levels and mRNA levels. However, this means that the increase in expression of 

the promoterconstruct is not a specific response to stress. It is merely the absence of 

sufficient protein synthesizing capacity that is the reason for this S-phase specific 

upregulation. However, cell cycle progression is delayed when cells are exposed to 

hydrogen peroxide from timepoint zero. This could be a mechanism that prevents S-

phase to start if conditions are not favourable. It is known that hydrogen peroxide can 

cause cell cycle arrest at G2 (Flattery-O'Brien and Dawes, 1998) but the data presented 

here indicate a possible other checkpoint in G1. 
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Abstract: 
 

There appears to be a clear link between aging and oxidative stress. However 

whether the oxidative stress defences are weakened during aging is not established yet. 

To elucidate whether there are differences in expression of antioxidant genes in old 

versus young cells and whether defences against oxidative stress in old yeast cells are 

more responsive to hydrogen peroxide, mRNA was isolated from young and old cells 

with and without exposure to 0.1 mM hydrogen peroxide. After translation of the 

mRNA into radioactively labelled cDNA, microarray experiments were conducted. This 

revealed that several of the components of the thioredoxin system namely TRX1, TRR1, 

TSA1, AHP1 and PRX1 are less expressed in old cells then in young cells. Furthermore, 

TRX1, TRX2, TRR1, TSA1 and AHP1 are induced in young cells by hydrogen peroxide 

but show a smaller induction by hydrogen peroxide in the old cells. This behaviour does 

not involve changes in viability. Exposure to 0.1 mM hydrogen peroxide does not 

influence the amount of colony forming units. These observations lead to the 

assumption that aged cells are less capable of responding to oxidative stress.  
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Introduction: 
 

As seen in previous chapters, there is a link between stress response and aging. 

The accumulation of damage caused by the continuous exposure to oxygen radicals is 

thought to be a major cause of malfunction and eventually death of the cells. These 

radicals originate from exogenous sources and from several reactions within the cell 

itself. The stepwise reduction of molecular oxygen to water in the mitochondria 

produces a permanent flow of oxygen radicals. This is not the only site where oxygen 

radicals are produced, also the β-oxidation of fatty acids in the peroxisomes leads to 

formation of reactive oxygen species (ROS). Damage caused to DNA is very 

detrimental to the cell, however it is not clear whether that is really one of the aspects of 

aging. In Saccharomyces cerevisiae DNA damage should be passed on to daughter 

cells, however daughter cells frequently display full replicative lifespan (Kennedy et al., 

1994). Then again, there are a lot of other cellular constituents that can be damaged like 

proteins and lipids. 

To counterattack these ROS, the cell has obtained several defence mechanisms. 

The glutathione system, the thioredoxin system, the catalases, the superoxide 

dismutases and small antioxidant molecules like vitamin C and E that can scavenge all 

kinds of radical species. The glutathione system consists of two synthetases Gsh1 and 

Gsh2 responsible for the synthesis of the tripeptide glutathione (GSH) (Ohtake and 

Yabuuchi, 1991), three glutathione peroxidases Gpx1, Gpx2 and Hyr1 involved in 

oxidation of GSH (Inoue et al., 1999), a glutathione reductase Glr1 involved in 

reduction of oxidized GSH (Grant et al., 1996b) and five glutaredoxins, Grx1, Ttr1, 

Grx3, Grx4 and Grx5 either involved in reducing oxidized GSH or functioning as GSH 

dependent reductases (Collinson et al., 2002; Shenton et al., 2002). The thioredoxin 

system has similar components, three thioredoxins, Trx1, Trx2 and Trx3 functioning as 

the reducing equivalents for the thiolperoxidases Tsa1, Tsa2, Prx1, Ahp1 and Dot5 

(Pedrajas et al., 1999; Park et al., 2000). In addition there exist thioredoxin reductases 

Trr1 and Trr2 taking care of reducing oxidized thioredoxins at the expense of NADPH 

(Pedrajas et al., 1999; Kumar et al., 2002). The catalases Ctt1 and Cta1 both convert 

hydrogenperoxide directly to water and oxygen (Grant et al., 1998) while the 

superoxidedismutases convert superoxide radicals to hydrogen peroxide (Fridovich, 

1975; Hart et al., 1999). 
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It has been published that glutathione content and superoxide dismutase 

activity decrease in aging yeast cells (Grzelak et al., 2001) although it is not clear 

whether this has a detrimental effect on the cell’s viability. It is clear however that in 

some cases increasing antioxidant systems in other modelorganisms like Drosophila 

melanogaster and Caenorhabditis elegans can extend lifespan (Orr and Sohal, 1994; 

Melov et al., 2000). 

 

Saccharomyces cerevisiae is a budding yeast of which the daughter cell is 

smaller than the mother cell. If a survival curve is plotted as function of the amount of 

divisions a curve is revealed that shows an increasing age-specific mortality, which by 

definition is a hallmark of aging. Besides the increase in mortality also other phenotypic 

differences are observed like surface wrinkles and fragmentation of the nucleolus. The 

difference in size makes it possible to separate the daughter cell from the mother cell. In 

the early days this happened on a small scale by micromanipulation but nowadays it is 

possible to use sucrose gradient centrifugation and elutriation for large-scale isolations.  

The earlier mentioned observed decrease in glutathione content was measured in old 

cells, which were treated rather rough, including Percoll gradient centrifugation, 

sonication and shaking with glass beads (Grzelak et al., 2001). This will have large 

influences on stress responses, which will interfere with the ‘normal’ stress response of 

old cells. To be able to investigate stress response of old cells compared to young cells a 

suitable and gentle method has to be used. This was found in centrifugal elutriation. 

 

In the literature there have been several methods described to isolate old yeast 

cells on a large scale. Sucrose gradient (10-30% sucrose) centrifugation at 4˚C (Egilmez 

et al., 1990), a ‘baby machine’ in which a culture of yeast cells was immobilized on a 

poly-D-lysine coated membrane continuously budding of daughter cells (Helmstetter, 

1991), using biotinylated cells and streptavidin coated magnetic beads to sort old cells 

from a population of growing cells (Smeal et al., 1996), stepwise elutriation at 4˚C to 

obtain only the fraction with the largest cells and thus oldest cells (Laun et al., 2001) 

and continuous centrifugal elutriation (Woldringh et al., 1995). Of these methods above 

the method using centrifugal elutriation by Woldringh et al. is the most elaborate but at 

the same time probably the method that influences the cells the least (Woldringh et al., 

1995). A chamber loaded with a culture of yeast cells was centrifuged while fresh 

medium was constantly pumped into the chamber washing away all the small newly 
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formed daughter cells. By keeping the whole system at 30˚C, cells could be kept 

dividing for extensive periods of time. 

 

To obtain old yeast cells both the methods with the magnetic beads and the 

‘baby machine’ were tested but these methods were not successful. The method 

described by Woldringh et al. did result in a population enriched in old cells. Exposure 

to 0.1 mM of hydrogen peroxide did not lead to differences in viability between the old 

and the young cells. However, there were several differences concerning transcriptional 

stress response. It appeared that several genes of the thioredoxin system are expressed at 

lower levels in old cells than in young. Besides, these antioxidant genes are also less 

responsive in the old cells exposed to hydrogen peroxide. This confirms the hypothesis 

that old cells are less capable of dealing with oxidative stress. 
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Materials and Methods: 
 

Strains and growth conditions: 
In all experiments the wildtype strain CEN-PK113-7D (MATa SUC2 MAL2-8c 

MEL) also known as VWk43 was used. Cultures were grown at 30°C in a rotary shaker 

at 180 rpm in Yeast Nitrogen Based medium w/o amino acids (YNB, Difco, Detroit, 

USA) with 1-2 % glucose or galactose as indicated.  

 

Obtaining old yeast cells: 
Old yeast cells were obtained essentially as described by Woldringh et al. 

(Woldringh et al., 1995) with some modifications. Cells were inoculated in 200 ml of 

YNB (Difco, Detroit, USA) containing 1 % glucose and grown until they reached 

stationary phase. Cells were centrifuged at room temperature, collected and sonicated 

twice for 20 seconds to loose cell clumps. Cells were loaded into an elutriator spinning 

at 2000 rpm (Beckman J-6 MI, Mijdrecht, Beckman Coulter Netherlands) with a 40 ml 

chamber kept at 30°C. Using a Masterflex pump from Cole-Parmer (Aplikon, 

Schiedam, Netherlands) YNB medium containing 1 % glucose was pumped into the 

chamber, washing away the newly formed daughter cells. The pump speed was set at 

2.7 litre medium per hour. The cells were kept growing for 30 hours after which a 

control population of daughter cells were collected from the flow-through. The 

elutriator was stopped and the fraction remaining in the chamber was collected 

containing the ‘old’ mother cells. 

 

Determining age by counting budscars 
1 mg/ml Calcafluor white M2R, also known as Fluorescent Brightener 28 

(Sigma-Aldrich Chemie B.V., Zwijndrecht, Netherlands) was dissolved in YNB 

(Difco). Calcafluor white does not completely dissolve in YNB, therefore it was 

centrifuged in a table centrifuge and only the supernatant was used to incubate with the 

cells for 30 minutes. After washing the cells with PBS, they were observed with a 

fluorescence microscope.  
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Determining viability after exposing to hydrogen peroxide:  
Old and young cell populations were diluted until they reached an OD600 of 1. 

Different concentrations of hydrogen peroxide were added for 30 minutes after which 

the samples were diluted 104 times. 100 µl of cell suspension was plated on YPD plates. 

 

mRNA isolation: 
After exposing both the old and the young cells to hydrogen peroxide, mRNA 

was isolated using a phenol/chloroform extraction as described in Maniatis (Sambrook 

et al., 1989) with modifications. Samples of 10 ml were quickly frozen by immersion in 

liquid nitrogen. After slowly thawing the cells and washing them with 1 ml extraction 

buffer (100 mM Tris-HCl (pH 7.5), 100 mM LiCl, 10 mM EDTA), cells were 

resuspended in 0.5 ml vortex buffer (100 mM LiCl, 10 mM EDTA, 0,5 % 

LithiumDodecylsulphate, pH 7.5 with LiOH). Vigorous shaking with 0.45 mm glass 

beads in a bead-beater (Biospec products, Bartlesville, OK, USA) disrupted cell walls 

and membranes after which a phenol chloroform extraction was performed. After 

addition of 50 µl 3 M NaAc and 1.25 ml ice-cold ethanol, the mRNA was precipitated at 

-80°C, samples were centrifuged, washed with cold ethanol (70 %), air-dried and 

resuspended in water. 

 

Microarray experiments: 
Microarray experiments were conducted as described by Schoondermark-Stolk 

et al. (Schoondermark-Stolk et al., 2002). Isolated pools of transcripts were labelled 

with radioactive dCTP. This labelling is performed by making cDNA from the isolated 

mRNA in the presence of radioactively labelled nucleotides. 4 µg of RNA (measured at 

260 nm) was mixed with 2 µl of OligodT (1 µg/µl), to a final volume of 10 µl. The 

following components were added: 6 µl of first strand buffer (Life Technologies, Breda, 

The Netherlands), 1 µl of 0.1 M dithiothreitol, 1.5 µl of a mixed solution containing 100 

mM of dATP, dGTP and dTTP, 300 units of Superscript II reverse transcriptase (Life 

Technologies) and 100 µCi  [33P]CTP (Amersham Biosciences, Roosendaal, The 

Netherlands). The mixture was kept at 37°C for 90 min. after which 70 µl of STE (0.1 

M NaCl, 10 mM TRIS.HCL (pH 8.0), 1 mM EDTA (pH 8.0)) was added. The newly 

synthesized cDNA was subsequently purified by passage through a Sephadex G-50 
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column (Amersham Biosciences) and washed with 350 µl of STE after which it was 

eluted with 500 µl of STE. The cDNA was denatured by heating it to 100°C for 3 min.  

Yeast GeneFilter microarrays (ResGen, Invitrogen, Breda, The Netherlands) were 

washed for 5 min. with boiling 0.5 % SDS. The membranes were prehybridized for 4 h 

with 5 ml MicroHyb solution (ResGen) and 5 µl OligodA (ResGen) at 42°C in a roller 

oven (Thermo Hybaid, Landgraaf, The Netherlands). The labelled cDNA probes were 

added to these prehybridized filters and incubated over night at 42°C. The next day, the 

filters were rinsed with 2xSSC (diluted from 20xSSC which contains: 3 M NaCl, and 

0.3 M Na-citrate, pH 7.0) and 1 % SDS for 20 minutes at 50°C. This was repeated once, 

after which an additional rinsing step followed with 0.5xSSC with 1 % SDS for 15 

minutes at room temperature. The filters were subsequently transferred to a humid 3-

layer Whatman filter, wrapped in Saran foil and placed against a Phosphor screen 

(Molecular Dynamics, Sunnyvale, CA, USA). After 6 days of exposure the screen was 

read by a phosphorimager SI (Molecular Dynamics) coupled to a computer.  

 

Data analysis and spot validation: 
Images were scanned at 50-µm resolution in Image-Quant 5.1 (Molecular 

Dynamics) and imported into the ImaGene 4.2 microarray analysis software 

(BioDiscovery, Marina del Rey, CA, USA). Standard grids were placed over the images 

of the arrays after which spotsize was fixed at 15 pixels and the autoadjusted spot 

function was applied. Very intense spots tend to ‘blossom’ out their signal, leading to an 

increase of signal in surrounding spots. Usually these surrounding spots were ‘flagged’ 

by hand. Flagged data were not used. 

Although ImaGene has various features to quantify background and signal 

intensities per spot, it was preferred to use local blank spots as background values 

except when these spots were flagged. In this case the local blank spot of one row ahead 

was used. All the quantified data were imported into an Excel sheet (Microsoft) after 

which the identities of the different genes were added. Values used were the signal 

mean values, which are the total signal values divided by the area.  

Normalization was usually carried out by dividing the values through the average of all 

spot intensities. 
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Results: 
 
Sensitivity of old cells to oxidative stress  

Several methods were tested to isolate old yeast cells. Both the method 

described by Helmstetter et al. (Helmstetter, 1991) called the ‘baby machine’ and the 

one published by Smeal et al. (Smeal et al., 1996), who used magnetic beads, were not 

successful. Eventually, old yeast cells were obtained by using centrifugal elutriation 

described by Woldringh et al. (Woldringh et al., 1995). This led to populations, which 

were enriched in cells with multiple budscars like depicted in figure 5.1. However, the 

population is heterogeneous with respect to different ages, see figure 5.2. From 20 

images, ratios of budded cells vs. non-budded cells were compared, revealing that 50% 

of the population had on average 7 budscars. A normal growing population contains 

only 0.8 % cells with 7 budscars. Therefore, the obtained population is older than a 

normal growing population of yeast cells. 

Old and young cells were subjected to 0.1 mM, 1 mM and 10 mM of hydrogen 

peroxide for 10 minutes after which dilutions were plated on YPD agar. It appeared that 

incubation with 0.1 mM hydrogen peroxide had no influence on the amount of colony 

 

 
 
Figure 5.1: An old yeast cell of at least the 13th generation. Pictures were taken in different focusplanes. The 

arrows indicate budscars. 
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Figure 5.2: Old populations (upper) show many cells with multiple budscars, vs. young 

cells (lower) that do not show bud scars. 

 

forming units (CFU’s) neither of the old or the young cells (see figure 5.3). Incubation 

with 1 mM hydrogen peroxide showed a decrease to 50 % (sd 10 %) in the old cells and 

35 % (sd 0 %) in the young cells. Exposure to 10 mM hydrogen peroxide led to CFU-

counts below 5 %. It seems that the young cells are slightly more sensitive to oxidative 

stress than the old cells. 
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Figure 5.3: Viability of old and young

yeast cells after exposure to hydrogen

peroxide. Young cells ( ) and old cells

( ) show the same sensitivity to 30-

minute exposures with different

concentrations of hydrogen peroxide. 
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Transcriptional response of old cells to hydrogen peroxide compared to 
young cells 

mRNA was isolated from old and young cells that were exposed for 30 

minutes to 0.1 mM hydrogen peroxide. The isolated transcripts were used to perform 

microarray experiments as described in the Materials and Methods section. The 

expression of one of the most important antioxidant genes TRX2 is less in the old cells 

after exposure to hydrogen peroxide than in the young cells (see figure 5.4). This pattern 

is also observed in several other components of the thioredoxin system (figure 5.5). The 

thiolperoxidases TSA1 and AHP1 show, just as TRX2, less induction in the old cells. 

This pattern repeats itself with the thioredoxin reductases TRR1 and TRR2. TRX1 

demonstrates a decrease in expression after exposure to hydrogen peroxide in old cells. 

Only the thiolperoxidase PRX1 shows an increase in old cells after exposure to 

hydrogen peroxide. TRX3, TSA2 and DOT5 are not induced at all, which fits earlier 

results described in chapter 3.  

The basal levels without exposure to hydrogen peroxide also show differences 

between young and old cells. All the genes comprising the thioredoxin system show 

either lower expression in old cells than in young or are both in the young and old cells 

too low to be taken into account.  

The glutathione system responds as depicted in figure 5.6. GPX2 shows a 

similar response as TRX2; the transcription is less induced in the old cells. Both the 

synthetases GSH1 and GSH2 are also less induced in the old cells. However, the other 

genes from the glutathione system do not show this behaviour. GRX4, GPX1 and TTR1 

demonstrate very low expression and GLR1, GRX1, GRX3, GRX5 and HYR1 display 

either no large differences between old and young cells, or only low expression in the 

old cells without hydrogen peroxide. 
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Figure 5.4: TRX2 expression in young and old cells. Raw array data (left) and its quantification (right) 

showing expression of TRX2 after exposing both old and young cells to 0.1 mM hydrogen peroxide.  



 

112 

F
ig

u
re

 5
.5

: 
E

x
p
re

ss
io

n
 l

ev
el

s 
o
f 

th
e 

th
io

re
d
o
x
in

 s
y
st

em
 i

n
 y

o
u
n
g
 c

el
ls

 v
s.

 o
ld

 c
el

ls
 a

ft
er

 e
x
p
o
su

re
 t

o
 0

.1
 m

M
 h

y
d
ro

g
en

 p
er

o
x
id

e

D
O

T
5

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
R

X
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
R

X
2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
R

X
3

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
R

R
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
R

R
2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
S

A
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
S

A
2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

A
H

P
1

0

2
0
0

4
0
0

6
0
0

8
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

P
R

X
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
h

io
re

d
o

x
in

s
R

e
d

u
c
ta

s
e

s
P

e
ro

x
id

a
s
e

s

 



 

113 

G
S

H
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
S

H
2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
L
R

1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
R

X
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

T
T
R

1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
R

X
3

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
R

X
4

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
R

X
5

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
P
X

1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

G
P
X

2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

H
Y

R
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

F
ig

u
re

 5
.6

: 
E

x
p
re

ss
io

n
 l

ev
el

s 
o
f 

th
e 

g
lu

ta
th

io
n
e 

sy
st

em
 i

n
 y

o
u
n
g
 c

el
ls

 v
s.

 o
ld

 c
el

ls
 a

ft
er

 e
x
p
o
su

re
 t

o
 0

.1
 m

M
 h

y
d
ro

g
en

 p
er

o
x
id

e

S
y
n
th

e
ta

s
e
s
 /
 R

e
d
u
c
ta

s
e

G
lu

ta
re

d
o
x
in

s
 (

2
 C

y
s
)

G
lu

ta
re

d
o
x
in

s
 (

1
 C

y
s
)

P
e
ro

x
id

a
s
e
s

 



 

114 

C
T
T
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

C
T
A

1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

S
O

D
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

S
O

D
2

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

D
D

R
4
8

0

2
0
0

4
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

A
R

N
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

F
R

E
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

Y
M

R
1

7
3

w
-a

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

L
S

B
1

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

A
P
C

9

0

4
0

8
0

1
2
0

1
6
0

2
0
0

y
o
u
n
g
 -

y
o
u
n
g
 +

o
ld

 -
o
ld

 +

C
a

ta
la

s
e

s
S

u
p

e
ro

x
id

e
 d

is
m

u
ta

s
e

s
O

th
e

rs

F
ig

u
re

 5
.7

: 
E

x
p
re

ss
io

n
 l

ev
el

s 
o
f 

o
th

er
 s

tr
es

s 
re

sp
o
n
si

v
e 

g
en

es
 i

n
 y

o
u
n
g
 c

el
ls

 v
s.

 o
ld

 c
el

ls
 a

ft
er

 e
x
p
o
su

re
 t

o
 0

.1
 m

M
 h

y
d
ro

g
en

 p
er

o
x
id

e



 

115 

 The basal expression levels of the genes comprising the glutathione system 

without exposure to hydrogen peroxide are not always influenced by the age of the 

cells. GSH1, GRX1 and GRX3 are expressed at the same levels in young and old while 

GSH2, GLR1, GRX5 and HYR1 are less expressed in the old cells. The other 

components do not have expression levels significant enough to draw conclusions from 

with respect to differences between old and young. 

 

These observations are summarized in table 5.1. It is clear that the aging 

process influences the response of the thioredoxin system to hydrogen peroxide and that 

the influence of aging on transcription of the glutathione system is only minor. More 

genes are, next to the glutathione and the thioredoxin system, involved in counteracting 

oxidative stress. As shown in figure 5.7 the catalases and the superoxide dismutases 

both show a low expression, with or without exposure to hydrogen peroxide. 

 
Table 5.1: The components of the major antioxidant systems; thioredoxin and glutathione, and their response 

to stress in young and old yeast cells. 

Name Description Class Young Old 
     

TRX1 Thioredoxin I Thioredoxin Incr. Decrease 
TRX2 Thioredoxin II Thioredoxin Incr. Less increase 
TRX3 Mitochondrial thioredoxin Thioredoxin - - 
TRR1 Thioredoxin reductase Reductase Incr. Less increase 
TRR2 Mitochondrial thioredoxin 

reductase 
Reductase Incr. Less increase 

TSA1 Cytosolic thioredoxin peroxidase Peroxidase Incr. Less increase 
TSA2 Cytosolic thioredoxin peroxidase Peroxidase - - 
AHP1 Alkyl hydroperoxide reductase Peroxidase Incr. Less increase 
DOT5 Nuclear thioredoxin peroxidase Peroxidase - - 
PRX1 Mitochondrial thioredoxin 

peroxidase 
Peroxidase Decr. Increase 

     
     

GSH1 γ-Glutamylcysteine synthetase Synthetase Incr. Decrease 
GSH2 Glutathione synthetase Synthetase Incr. Decrease 
GLR1 Glutathione reductase Reductase Incr. Increase 
GRX1 Glutaredoxin containing 2 cysteines Glutaredoxin Equal Equal 
TTR1 Glutaredoxin containing 2 cysteines Glutaredoxin Incr. Less increase 
GRX3 Glutaredoxin containing 1 cysteine Glutaredoxin Equal Increase 
GRX4 Glutaredoxin containing 1 cysteine Glutaredoxin - - 
GRX5 Glutaredoxin containing 1 cysteine Glutaredoxin Incr. Increase 
GPX1 Glutathione peroxidase Peroxidase - - 
GPX2 Glutathione peroxidase Peroxidase Incr. Less increase 
HYR1 Glutathione peroxidase Peroxidase Decr. Increase 
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In chapter 3, several genes revealed a remarkable response to hydrogen 

peroxide during the cell cycle. It was suggested that DDR48, ARN1 and FRE1 could be 

involved in protection of DNA. The response of these genes to hydrogen peroxide in 

young and old cells is depicted in figure 5.7.  It appears that they are induced in the 

young cells after exposure to hydrogen peroxide. However, in the old cells the response 

is low. 

This particular behaviour is the same as observed earlier with several genes 

from the thioredoxin system. To get a better idea about what exactly is happening in 

these old cells a search was conducted to find other genes that show this kind of 

expression pattern. The response of DDR48 was captured in 4 equations (figure 5.8) that 

state that the ratio of the expression of the young cells with hydrogen peroxide divided 

by the expression of the young cells without hydrogen peroxide has to be larger than a 

certain factor. Young (+stress) divided by old (+stress) and young (+) divided by old (-) 

have to be larger than this factor too. The final equation states that the intensity of 

young (+) has to be above a threshold value; the offset. By varying offset and factor of 

induction, different sets of ‘similar’ responding genes were obtained. Applying these 

equations with our database revealed genes, which show just as DDR48 an increase in 

expression in the young cells and no induction in the old cells.  
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Figure 5.8: Lowering both offset and factor results in increasing amounts of genes with similar expression 

patterns to DDR48. The bold lines indicate the chosen parameters (factor: 2.1, offset: 35). On the left are the 

equations given that search the database for genes with similar expression patterns.  
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 The lower the offset and the factor of induction, the more genes were selected 

(figure 5.8). The values chosen for the factor and the offset were 2.1 and 35 because 

using these parameters FRE1, ARN1 and DDR48, which are the genes that initiated this 

query, were all included in the dataset. This procedure revealed a list with 51 genes of 

which 11 genes were of unknown function and 1 gene was flagged. The remaining 

genes are listed in Table 5.2. All these genes display a reduced induction in old cells 

after exposure to hydrogen peroxide. There are 10 stress genes listed, 2 genes involved 

in protein degradation, 2 LAP genes involved in posttranslational modification, several 

genes involved transport of proteins or other compounds like metal ions, 4 genes 

involved in carbon metabolism, 3 genes which are essential steps in amino acid 

synthesis, 3 genes which play a part in telomere maintenance and silencing and another 

8 genes of diverse categories. 

 

Stress genes 
Ahp1 is one of the thiolperoxidases involved using thioredoxin as a reducing 

equivalent (Jeong et al., 1999). Arn1 is a transporter of iron binding molecules or 

siderophores (Yun et al., 2000b). Fre1 takes care of iron and copper transport and is 

able to reduce Fe(III) and Cu(II) ions (Hassett and Kosman, 1995). Metal ions like iron 

and copper are able to generate together with hydrogen peroxide the very reactive 

hydroxyl radicals via the Fenton reaction (Rice-Evans and Burdon, 1994). 

Ddr48 is a protein of which the function is largely unknown although it is observed that 

the gene is specifically upregulated during stress conditions and in mutants that have 

defects in DNA metabolism (Treger and McEntee, 1990).  

Dcs1 is a putative trehalase inhibitor (Souza et al., 2002) preventing the 

important stress-protectant trehalose from degradation. Gre2 is a protein with 

oxidoreductase activity usually not associated with resistance to hydrogen peroxide but 

to diamide (Godon et al., 1998). Pir1 is homologous with Hsp150, which displays more 

or less the same expression pattern although with lower levels. Hsp150 is involved in 

protection against oxidative stress (Ezaki et al., 1998). Ste24 is a membrane spanning 

zinc dependent protease (Tam et al., 2001). YKL161C is a serine/threonine kinase with 

similarities to Map kinase (Zhu et al., 2000). YMR173w-a is an overlapping ORF with 

DDR48 (Cherry et al., 1997). 
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Table 5.2: Genes upregulated in a similar way as DDR48 

 
STRESS-genes  
   

AHP1 Alkyl hydroperoxide reductase
ARN1 Transport of ferrichromes
DCS1 Potential trehalase inhibitor
DDR48 Induced by heat shock, DNA damage, or osmotic stress
FRE1 Oxidoreductase activity, metal ion homeostasis
GRE2 Oxidoreductase activity
PIR1 Heat shock protein
STE24 Prenyl dependent protease
YKL161C Serine/threonine protein kinase
YMR173W-a Overlapping DDR48
  
PROTEIN PROCESSING 
  
LAP3 Aminopeptidase
LAP4 Aminopeptidase of the vacuole
  
PROTEIN DEGRADATION 
  
RPN3 Component of 26S proteasome complex
UBP6 Putative ubiquitin-specific protease
  
TRANSPORT  
  
ERD1 Required for retention of lumenal ER proteins
FET3 Cell surface ferroxidase
GTR2 Putative small GTPase, has similarity to Gtr1p
NPR1 Serine/threonine protein kinase regulating protein 
OAC1 Oxaloacetate and sulfate transporter
YGR138C Multi drug resistance transporter
ZRT3 Zn homeostasis 
  
METABOLISM  
  
FBA1 Fructose-bisphosphate aldolase II
PGK1 Phosphoglycerate kinase
PFK27 6-Phosphofructose-2-kinase
TDH2 Glyceraldehyde-3-phosphate dehydrogenase 2
ARG7 Ornithine acetyltransferase, Arg biosynthesis
HIS5 Histidinol-phosphate aminotransferase, Hys biosynthesis
LEU2 3-Isopropylmalate dehydrogenase, Leu biosynthesis
SDT1 Nucleotidase 
EPT1 1,2-Diacylglycerol ethanolaminephosphotransferase
  
TELOMERES  
  
COS7 Member of COS family, subtelomerically-encoded
HST1 Histone deacetylase
YML133C Putative DNA helicase
  
OTHERS  
  
BBC1 Myosin binding and actin regulation
CAF17 Component of the CCR4 transcription complex
CTS1 Endochitinase 
DSE1 Chitin metabolism
MRPL3 Mitochondrial ribosomal protein of the large subunit
VMA5 Vacuolar H(+)-ATPase hydrophilic subunit 
  
UKNOWN  
  
YPL014W, YMR010W, YLR339C, YLR257W, YKL202W, YJL058C, YJL046W, YHR029C, YDL211C, 
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Protein processing 
Lap4 interacts with Ssa1 and Ssa2, which are both members of the 70-kDa 

stress protein family and chaperones (Silles et al., 2000). Moreover, both SSA1 and 

SSA2 display a decreased induction in old cells as well, although they did not turn up in 

the initial query because the factor of induction in the young cells is too low. LAP4 as 

well as SSA1 and SSA2 are under transcriptional control of Yap1. 

 

Protein degradation 
Rpn3 is a component of the 26S proteasome that displayed a DDR48 like 

pattern. However, none of the other components of the 26S-proteasome behaves in the 

same fashion. On the other hand, there seems to be an association between Ubp6, which 

also shows a DDR48 like expression pattern, and the proteasomal base especially its 

subunit Rpn1 (Leggett et al., 2002). Ubp6 is a member of a family of deubiquitination 

proteins consisting of 17 members of which only UBP11 shows a more or less similar 

pattern as UBP6. These data indicate that it is not likely that protein degradation is 

significantly altered in old and young cells exposed to hydrogen peroxide. 

 

Transport 
In the category ‘transport’ (table 5.2) two genes are listed that are involved in 

metal ion uptake/transport. Although the uptake of iron by Fet3 is independent of Fre1 

(Yun et al., 2000b), which also behaves like DDR48, it is not independent of Arn3 (Yun 

et al., 2000a), which is a close homologue of Arn1 but shows different response. The 

Zrt3 protein involved in maintaining Zinc homeostasis interacts amongst others with 

Bzz1 (Ito et al., 2001), which also shows a DDR48 like expression pattern although at 

low expression levels.  

Erd1 is required for retention of lumenal ER proteins (Hardwick et al., 1990), 

Gtr2 is a putative GTPase possibly involved in protein nucleus import (Nakashima et 

al., 1999). Npr1 is a kinase part of the RAS/PKA pathway between cAMP and PKA 

(Johnston et al., 2001). Oac1 is a mitochondrial transporter involved in transport of 

amongst others thiosulfates (Palmieri et al., 1999). Other transporters of the same 

family do not respond in the same way. Ygr138c is a polyamine transporter of which 

there are four in the yeast genome (Tomitori et al., 2001). Of these four transporters, 

YGR138c has the highest expression levels but the DDR48 like pattern is also observed 

with two other polyamine transporters.  
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Metabolism 
Fba1 has Zinc binding activity, induced by cAMP and is involved in 

glycolysis, actually several of the genes in the metabolism cluster play a role in 

glycolysis. Apparently the glycolysis is less induced by stress in old cells than in young 

cells.  

Tdh1 is the minor dehydrogenase, only responsible for 10% of dehydrogenase 

activity while Tdh2 and Tdh3 take care of 87 % of dehydrogenase activity (McAlister 

and Holland, 1985). PGI1 and CDC19 show no induction by stress, PFK2 displays no 

expression just as GPM2, ERR1, ERR2 and YMR323w. ENO2 is the only aberrant gene 

showing a slight increase in old cells and a slight decrease in young. 

Sdt1 is a nucleotidase with specificity for pyrimidines (Nakanishi and Sekimizu, 2002) 

and Ept1 is involved in the biosynthesis of phosphatidylethanolamine (PE) (Menon and 

Stevens, 1992). 

 

Telomeres 
The presence of COS7 in table 5.2 triggered the examination of the other 10 

COS genes which revealed that all COS genes show a decreased induction by stress in 

the old cells compared to the young ones. COS7 is not the only gene encoded near the 

telomeres. Also the putative helicase from table 5.2, YML133c is encoded near the 

telomeres. Moreover, there are at least 24 very homologous open reading frames in the 

yeast genome and they are all located near the end of the chromosomes (Cherry et al., 

1997). Of these genes 14 display a reduced induction by stress in the old cells compared 

to the young.  

Hst1 (Homolog of Sir Two; Sir2) is a NAD dependent histone deacetylase 

involved in transcriptional silencing. Hst1 forms together with Sum1 and Yor279c a 

repression complex involved in deacetylation of histones leading to repression of 

sporulation genes. Both Sum1 and Yor279c show less induction by hydrogen peroxide 

in old cells although less clear than Hst1. HST1 is not the only gene involved in 

silencing displaying a DDR48-like expression pattern. From the stress-genes category, 

also the oxidoreductase Gre2 plays a role in silencing. 
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Others 
The last group of genes code for proteins performing diverse tasks. Bbc1 is 

involved in actin regulation, Caf17 is part of a Ccr4 transcription complex, Cts1 is a 

endochitinase, Dse1 is involved in chitin metabolism, Mrpl3 is a mitochondrial 

ribosomal protein and Vma5 is part of a vacuolar ATPase. 
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Discussion: 
 

Isolating old yeast cells by centrifugal elutriation and subsequently exposing 

them to different concentration of hydrogen peroxide showed that there were no 

differences in viability when the cells were exposed to 0.1 mM of hydrogen peroxide. 

Young cells were more susceptible to stress when 1 mM of hydrogen peroxide was 

used. Because previous research claimed that several antioxidant proteins were lower in 

old cells, it was not expected that the young cells would be more vulnerable. 

Nevertheless, it can be that other proteins are more upregulated and by this way taking 

care of the necessary protection. Another possibility is that there are differences in cell 

wall composition between young and old cells leading to differences in exposure of 

cellular constituents to hydrogen peroxide. 

To verify if antioxidant genes and antioxidant gene responses were lower in 

old yeast cells, mRNA of these cells was isolated with and without exposure to 

hydrogen peroxide. This mRNA was translated to radioactively labelled cDNA that was 

used for microarray experiments. This microarray data revealed that several genes of the 

thioredoxin system had higher levels of expression in the young cells, which was in line 

with earlier results. After exposing the cells to hydrogen peroxide, expression of most of 

the thioredoxin genes was induced. However, it was also observed that induction of 

these genes was less in the young cells than in the old cells. This could point to a 

reduced efficacy in dealing with oxidative stress, perhaps by dysregulation of stress 

response.  

This conclusion does not agree with the observation that the young cells are 

more vulnerable than the old ones. However, the microarray data was generated using 

0.1 mM of hydrogen peroxide while the difference in viability was only observed when 

1 mM of hydrogen peroxide was used. 

The components of the other major antioxidant system, the glutathione system, 

show a less clear age related response pattern. Although there are some genes expressed 

at lower levels in old cells, only one of the peroxidases and the first step in glutathione 

synthesis are less induced by hydrogen peroxide in old cells. Also the two catalases and 

superoxide dismutases show neither a high response, nor a specific age related response 

pattern (not shown). The tripeptide glutathione can scavenge hydrogen peroxide, and 
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regain electrons from NADPH. Thus, it could be that there is no need for most of the 

genes of the glutathione system to become higher expressed.  

Previous experiments described in chapter 3 revealed a number of genes 

showing a specific stress response during the cell cycle. Several of these genes again 

show behaviour like described above for the thioredoxin system genes. DDR48, ARN1, 

FRE1 and YMR173W-A show a clear induction by hydrogen peroxide in the young cells 

and no or little induction by hydrogen peroxide in the old cells. This could mean that 

cell cycle regulation is disturbed in old cells, but it can also mean that antioxidant 

defences are less responsive. 

The dataset was specifically searched for other genes that responded to 

hydrogen peroxide in the young cells but did not respond to hydrogen peroxide in the 

old cells. This revealed a list with 39 known genes (table 5.2) of which several are 

involved in stress response, metabolism and genetic stability. These are categories also 

mentioned highlighted in chapter 1 to be of importance in the aging process. The fact 

that they are not or less responding to oxidative stress points to a decrease in gene 

regulation. Apparently, old cells respond less to exogenous challenges like hydrogen 

peroxide. 

Glycolysis is induced by stress in young cells and not in old cells. This is 

partially in line with earlier published results revealing a shift from glycolysis to 

gluconeogenesis in old cells (Lin et al., 2001). In this paper it was shown that cells of 

generation 7-8, express some genes involved in gluconeogenesis at a higher level than 

the young control cells. Interesting in our experiments is the induction by hydrogen 

peroxide of the glycolysis. Although very small amounts of oxygen radicals (10 nM – 1 

µM) are able to induce proliferation in mammalian cells (Rice-Evans and Burdon, 1994) 

this has not been reported in yeast so far. The idea that oxygen radicals can function as 

second messengers is a widely documented concept (Nathan, 2003) and it could explain 

why the glycolysis is induced by stress in our system. Although 0.1 mM is a 100-fold 

higher concentration than 1 µM there is also a large difference in vulnerability between 

yeast and mammalian cells.  

There could be another reason why glycolysis is upregulated by stress. One of 

the compounds generated during glycolysis is NADH. Although both the thioredoxin 

and glutathione system generally use NADPH as a reducing equivalent it is possible for 

NADH to recycle NADP+ in mammalian cells. However this reaction is not possible in 

S. cerevisiae because it lacks a transhydrogenase capable of performing this task. The 
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glutathione reductase, Glr1, shows some affinity for NADH although more for NADPH 

so in this way NADH could still play a role in stress protection in this system (Tsai and 

Godin, 1987).  

Another consideration concerning the involvement of glycolysis in stress is the 

fact that pyruvate can protect against the damaging effects of hydrogen peroxide. The 

consumption of pyruvate could drive the glycolysis pathway into producing more of this 

compound.  

A remarkable observation is that the hydrogen peroxide seems to induce 

several genes at the end of the telomeres. These genes usually are silenced, however, 

stress induced silencing seems to be increased in old cells. Although another possibility 

is that not the silencing is increased but the gene regulation, in this case the stress 

response, is decreased. An increase in silencing is in contrast with earlier published 

results claiming that silencing is reduced in old cells leading for instance to 

simultaneous expression of both mating types consecutively leading to sterile cells 

(Smeal et al., 1996).  

NAD+ is an important cofactor for Sir2 involved in silencing and aging 

(Landry et al., 2000). Upregulation of glycolysis leads to a decrease in NAD+ because it 

is turned into NADH. The decrease in NAD+ could be responsible for a decrease in 

activity of NAD+-dependent deacetylases as Sir2, leading to a decrease in silencing, 

which in turn is the cause of increased COS and helicase expression. 

What is clear from these results is that the expression of an important 

antioxidant system as thioredoxin is decreased in old cells and additionally is less 

responsive to external challenges like hydrogen peroxide. What does this tell us about 

the ‘physiological’ aging process of yeast? It could mean that the ROS produced during 

normal metabolism have more serious consequences for old cells because their 

antioxidant systems are lower and less responsive. Accumulating damage to lipids and 

proteins could cause increasing difficulties in maintaining redox potential. This in turn 

would explain a less responsive antioxidant system. 
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Abstract: 
 

To be able to screen potential antioxidants for their ability to scavenge radical 

oxygen species (ROS) in living yeast cells, a multiwell assay was developed. This assay 

was based on the effect of antioxidants on the expression of a TRX2 promoter controlled 

LACZ reporter gene. Vitamin E, which is an effective antioxidant, was capable of 

reducing the oxidative environment within the cell measured by the reduction in 

expression of LacZ. This was done both with and without exogenous added hydrogen 

peroxide. The observed effects were larger in a ∆trx2 deletion strain. 

Epicatechinegallate and chlorogenic acid were not able to reduce the expression of the 

reporter construct, only glutathione, α- and γ-tocopherol showed the ability to decrease 

expression of the reporterconstruct, indicating the suitability of the screening system. 
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Introduction: 
 

Protection against reactive oxygen species (ROS) is a major issue in biological 

systems. Several scavenging and detoxification systems have evolved to deal with these 

harmful substances. However, these antioxidant systems are not always completely 

successful in eliminating ROS and several ROS are able to escape and damage cellular 

constituents. It has been shown before in trials that people using food supplements 

containing additional antioxidants like vitamin E can reinforce their defences against 

oxidative stress. For instance the beneficial effect of a stereo-isomer of vitamin E on the 

decrease in prevalence of myocardial infarctions in high-risk patients (Stephens et al., 

1996). However, these findings are controversial because it has also been found that 

vitamin E has no beneficial effects under the same circumstances of another trial 

(GISSI, 1999). This is not the only example of confusing data regarding potentially 

beneficial antioxidants. β-carotene is an infamous example of a compound that can 

display both antioxidant and prooxidant behaviour depending on the circumstances 

(Zhang and Omaye, 2001). In a trial published in 1996 it was observed that high doses 

of β-carotene led to a higher incidence of lung cancer in smokers (Omenn et al., 1996).  

Both these examples underline the need for reliable data concerning the 

behaviour of different antioxidants and their combinations in in vivo screening systems. 

In our case, Saccharomyces cerevisiae was chosen as a model system to develop a 

screeningsystem for antioxidants. Reasons for choosing this system are i) deletion 

strains with impaired antioxidant systems are readily available, ii) molecular techniques 

are well developed and iii) yeast is easy to cultivate. The advantage of using a mutant 

impaired in its antioxidant defence system is that the radicals are generated 

endogenously in contrast to exogenously added hydrogen peroxide. This is a better 

model for the ‘natural’ situation. 

The finding described in chapter 4 that several antioxidant genes are less 

induced in old yeast cells after exposure to oxidative stress, suggests that old cells are 

partly impaired in their ROS-scavenging systems. This raises the question whether 

supplementing antioxidants can reinforce these defences. Potent antioxidant compounds 

are needed to perform these kinds of experiments, thus to find these, the following setup 

was designed. 
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In an exponentially growing culture of Saccharomyces cerevisiae cells respond 

rapidly to exposure to hydrogen peroxide by expressing antioxidant genes like TRX2 

and GSH1 (Gasch et al., 2000). Trx2 is a small protein involved in reducing disulfide 

bonds (Muller, 1991) and is required for resistance against hydrogen peroxide (Kuge 

and Jones, 1994). Gsh1 is the protein responsible for the first step in the biosynthesis of 

the tripeptide glutathione, which plays a role in scavenging oxygen radicals (Moradas-

Ferreira et al., 1996). The induction by hydrogen peroxide of TRX2 and GSH1 was used 

to construct an oxidant sensitive reporter system. The promoter regions of TRX2 and 

GSH1 were fused to a LACZ reporter gene after which wild type cells were transformed 

with these constructs. It was observed that expression of the reporter construct with the 

GSH1 promoter was not induced very well by the exposure to oxidative stress, so 

further experiments were done with the TRX2 strain. To obtain a strain with increased 

response to oxidative stress a ∆trx2 deletion mutant was transformed with the TRX2 

reporter construct. The cells were preincubated with potential antioxidants and 

incubated either with or without hydrogen peroxide. By measuring the decrease in 

activation of the reporter construct a measure of antioxidant efficacy was obtained. Five 

different antioxidants from different subgroups were tested; α- and γ-tocopherol, which 

are two phenolic stereoisomers, epicatechinegallate, which is a catechine found for 

instance in green tea, chlorogenic acid, which is a flavonoid ubiquitous in plants, and 

glutathione, which is a cysteine-containing tripeptide endogenous to yeast. Only the 

tocopherols and the glutathione showed the ability to decrease expression of the 

reporterconstruct. 
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Material & Methods: 
 

Strains and growth conditions: 
In all experiments the wildtype strain CEN-PK113-7D (MATa SUC2 MAL2-8c 

MEL) also known as VWk43 was used. To construct the reporterplasmid, the TRX2 

promoter region was amplified from CEN-PK102-3A (MATa SUC2 MAL2-8c MEL 

ura3 leu2) or VWk18 chromosomal DNA with primers TRXL-MV (5’-

GCGGGATCCTGACACCAAAGCTGTAC-3’) and TRXR-MV (5’-

GCGCCCGGGCATTATTGATGTGTTATTTAAAG-3’). This PCR fragment was 

cloned into pFA6a-lacZMX3 after a BamHI/XmaI digestion resulting in pUR5881. 

After BstEII partial linearization this plasmid was integrated into yeast chromosomal 

DNA of VWk43 resulting in VWk43-pTRX2-β-gal (pUR5881) hereafter referred to as 

VWk43pTRX. The endogenous TRX2 sequence was not disturbed as the construct 

integrates in front of the gene.  

To construct the second reporterplasmid, the GSH1 promoter region was 

amplified from CEN-PK102-3A (MATa SUC2 MAL2-8c MEL ura3 leu2) or VWk18 

chromosomal DNA with primers GSHL-MV (5’-

GCGGGATCCCATGCCTGTTGCTGCTGCTCTTG-3’) and GSHR-MV (5’-

GCGCCCGGGCATTTTATTCTTCTATATGTATA-3’). This PCR fragment was 

cloned into pFA6a-lacZMX3 after BamHI/XmaI digestion, resulting in pUR5880. After 

BalI linearization, this plasmid was integrated into yeast chromosomal DNA of VWk43 

resulting in VWk43-pGSH1-β-gal (pUR5880) hereafter referred to as VWk43pGSH. 

The endogenous TRX2 sequence was not disturbed as the construct integrates in front of 

the gene. CEN-PK269-2A (∆trx2, leu2), which is a strain devoid of thioredoxin2, was 

also transformed with pUR5881. 

The construction of the wild-type strains with reporter plasmid was done by 

Anne Marie Verbiest at the Unilever Research Laboratory in Vlaardingen.  

Cultures were grown at 30°C in a rotary shaker at 180 rpm in Yeast Nitrogen 

Based medium (YNB, Difco) with 1-2 % glucose or galactose as indicated.  

 

β-galactosidase assay: 

Yeast cells were grown at 30°C after which either they were or were not 

exposed to hydrogen peroxide. β-Galactosidase assays were essentially performed as 
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described in Maniatis (Sambrook et al., 1989) with modifications. Triple samples of 

each 150 µl were taken and added to a 96-multiwellplate with V-shaped wells. While 

taking the samples, this plate was kept at -20°C. After sampling the plate was slowly 

thawed at 0°C after which the cells were spun down and the supernatant was discarded. 

To each well 20 µl of 0.05 % Triton X-100 in 0.1 M Tris pH 7.5 and the samples were 

frozen to -80°C to ensure lysis of the cells. After defrosting 80 µl of Z-buffer (60 mM 

Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 0.25 mM DTT) and 20 µl of 1 

mg/ml o-nitro-phenyl-β-galactopyranoside (Sigma-Aldrich Chemie B.V., Zwijndrecht, 

Netherlands) in 0.1 M KH2PO4/K2HPO4 (pH 7) was added. The reaction was stopped by 

addition of 50 µl of 1 M Na2CO3. The plate was then spun down, the supernatant was 

transferred to a flat bottom multiwellplate and the cell debris was resuspended in 150 µl 

PBS and also transferred to a flat bottom multiwellplate. The supernatant was measured 

in a multiwellreader at 415 nm and the resuspended debris was measured at 655 nm. 

Usually the amount of LacZ was corrected for the amount of cells by dividing the 

absorption at 415 nm by the optical density at 655 nm or the data were given separately. 

 

Incubation with antioxidants: 
Cells were incubated in medium supplemented with different antioxidants for 5 

hours, or otherwise mentioned. Ascorbic acid (vitamin C, Brunschwig Chemie BV, 

Amsterdam, Netherlands) was dissolved in water to a concentration of 5 mM and 

subsequent diluted to appropriate concentrations. Both the α-tocopherol (vitamin E, 

Merck Sharp & Dohme BV, Haarlem, Netherlands) and the γ-tocopherol (vitamin E, 

Sigma-Aldrich Chemie B.V., Zwijndrecht, Netherlands) were dissolved in ethanol to a 

concentration of 100 mM respectively 111 mM and then diluted in fetal calf serum 

(Gibco, Paisley, UK) to 0.25 mM and subsequently added to the cells in appropriate 

concentrations. Chlorogenic acid (Sigma-Aldrich Chemie B.V., Zwijndrecht, 

Netherlands), Epicatechinegallate (ECG, provided kindly by Unilever, Vlaardingen, 

Netherlands) and GSH (Sigma-Aldrich Chemie B.V., Zwijndrecht, Netherlands) were 

dissolved in water and subsequently diluted in medium. The cells were shaken with a 

rotational plate shaker (Heidolph Titramax 100, LaboTech BV, Ochten, Netherlands) 

and covered with a lid to prevent evaporation of the medium. The whole setup was kept 

at 30°C. 
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Results: 

 

Trx2 reporter construct shows more induction by hydrogen peroxide than 
Gsh1 reporter construct 
 

Trx2 and Gsh1 are the two main players of the thioredoxin and glutathione 

system, which are both induced by hydrogen peroxide (Gasch et al., 2000). The 

promoter region of these two genes was ligated to a LACZ reportergene. The response to 

hydrogen peroxide of both reporterconstructs is depicted in figure 6.1. The reporter with 

the TRX2 promoter shows a steep increase after the start of the incubation with 

hydrogen peroxide. After 30 minutes the expression of LacZ reaches a maximum at 

which it stays for another 30 minutes followed by a slowly decreasing signal. The 

expression of reporter system with the GSH1 promoter also increases after exposure to 

hydrogen peroxide but only approximately 1.5-fold while the reporter with TRX2 

promoter displays approximately a 6-fold increase.  
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Figure 6.1: The response of TRX2 and GSH1 different reporterconstructs. Both VWk43pTRX (left) and 

VWk43pGSH (right) were exposed to 0.5 mM hydrogen peroxide. : VWk43pTRX + hydrogen peroxide, 

: control, : VWk43pGSH + hydrogenperoxide, : control. 

 

Vitamin E is able to decrease expression of the reporter construct 
 

As mentioned before, antioxidants could have a protective effect by their 

radical scavenging activities. However, preincubation of yeast cells with different 

concentrations of α-tocopherol (vitamin E) does not reduce the hydrogen peroxide 

induced expression of the reporterconstruct as shown in figure 6.2 (left panel, ). The 
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expression levels of lacZ are in this case not influenced by the α-tocopherol. In this case 

α-tocopherol is not able to decrease the oxygen stress. However, incubation of 

∆trx2pTRX strain (figure 6.2, left panel, ) with different concentrations of α-

tocopherol (5-25 µM) results in a decrease in hydrogen peroxide induced expression of 

approximately 1.5-fold when incubated with 25 µM α-tocopherol. Apparently the 

‘sensed’ oxidative stress inside the cell decreases by preincubating with vitamin E. Both 

strains show, also without the exposure to hydrogen peroxide, a decrease in expression 

when they are incubated with α-tocopherol (figure 6.2, right panel). This shows that α-

tocopherol is able to reduce the endogenous oxidative stress levels.  
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Figure 6.2: The effect of α-tocopherol on expression of the reporterconstruct in wildtype cells, VWk43pTRX 

( ) and a strain deleted for trx2, ∆trx2pTRX  ( ). The left panel shows that cells of the deletion strain have 

decreasing expression of the reporterconstruct with increasing α-tocopherol concentrations when the cells are 

subsequently exposed to 0.5 mM hydrogen peroxide. The right panel shows that both in the wild-type cells 

and in the deletion strain preincubation with hydrogen peroxide leads to a decrease in expression without the 

addition of hydrogen peroxide. 

 

Glutathione is able to lower expression of reporter construct in ∆trx2 but 
not in wild type 
 

Wild type cells were incubated with different concentrations (10-1000 µM) of 

the tripeptide glutathione. No significant decrease in expression of the reporter construct 

is observed (figure 6.3). Apparently, administering additional glutathione has no 

protective effect. However, preincubation with different concentrations glutathione led 

to a decrease in expression of the reporter construct in the ∆trx2pTRX strain. 
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Apparently is glutathione able to decrease the internal oxidative stress in the deletion 

strain, but not in the wild-type.  

Because the deletion strain of TRX2 seems 

to be more responsive to oxidative stress 

and to the preincubation with antioxidant 

genes, this strain was used to test other 

potential antioxidant compounds. 

Preincubation with epicatechinegallate 

(ECG), chlorogenic acid, α-tocopherol and 

γ-tocopherol and their effect on the 

expression of the reporter construct is 

shown in figure 6.4 both with and without 

subsequent exposure to hydrogen peroxide. 

The effect of α-tocopherol on the decrease 

in expression of the reporter construct is 

again observed although there is an 

increase at 25 µM both in cells with and 

without exposure to hydrogen peroxide. γ-

tocopherol is also able to reduce the 

expression of the reporter but shows an 

increase in expression at 25 µM like α-

tocopherol. The preincubation with 

chlorogenic acid shows some fluctuations 

but no clear increase or decrease in 

expression of the reporter. The same holds 

for ECG, although preincubation with 20 

and 25 µM leads to an increase in 

expression of the reporter if subsequently 

exposed to hydrogen peroxide. Both ECG 

and chlorogenic acid do not seem to be 

very potent antioxidants in this system. 

Figure 6.3: The effect of glutathione on the

expression of the reporterconstruct in wild-type cells

( ) and in the trx2 deletion strain ( ). 
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Figure 6.4: The effect of different antioxidants on

the expression of the reportersystem with and

without exposure to hydrogen peroxide. : α-

tocopherol, : ECG, : γ-tocopherol, :

chlorogenic acid. 
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Discussion: 
 

A method was developed to screen potential new antioxidants by measuring 

the effects of incubating yeast cells with these compounds on the expression of a 

reporter construct. Either the promoter region of TRX2 or the promoter region of GSH1 

was fused to a LACZ reporter gene and subsequently integrated into the genome. It was 

observed that expression of LacZ protein increased after exposure to hydrogen peroxide 

in both strains. However, the TRX2 construct had a much larger response. This is in line 

with earlier observations (chapters 3, 4 and 5) and thus the TRX2 construct was selected 

for further experiments. To obtain a more sensitive reporter strain to use for the 

screening of the antoxidants, also a ∆trx2 deletion strain was transformed with this 

construct.  

 

Incubation of cells with vitamin E prior to exposure to hydrogen peroxide led 

to a decrease in expression of LacZ compared to control cells that were not incubated 

with this antioxidant. This suggests that vitamin E, at least partly, is capable to 

neutralise the hydrogen peroxide. However, this was only observed in ∆trx2 deletion 

mutants and not in the wild type. The expression also decreased in the cells 

preincubated with vitamin E that were not exposed to hydrogen peroxide, both in the 

wild type and the deletion strain. Apparently the vitamin E is able to cope with 

endogenous radicals as well.  

 

Glutathione was able to decrease expression in the ∆trx2 deletion strain in the 

absence of exogenously added hydrogen peroxide but not in the wildtype. Vitamin E 

preincubation led to a decrease in expression both in the wild type and the deletion 

strain. This suggests that the way in which glutathione and vitamin E reduce the 

oxidative stress is different, for instance because of different localizations. Vitamin E is 

hydrophobic and therefore preferably located in hydrophobic environments like 

membranes (Drummen et al., 2002). Glutathione is much more hydrophilic and 

therefore located in different environments than vitamin E. This could explain why 

differences in decreasing stress response were present.  
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The absence of an effect on the decrease of the stress response when EGC and 

chlorogenic acid were used is not in line with earlier results (Drummen, 2000). 

However, both lipid vesicles and RAT fibroblasts were used in this study, which may 

cause these differences. There is no question that the bioavailability in both systems for 

different compounds can be considerably different. 
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General Discussion 
 

Saccharomyces cerevisiae has been used as a model system to study aging 

processes since it was discovered that the yeast ages (Mortimer and Johnston, 1959). 

Usually the amount of produced daughter cells is used as the parameter denoting the age 

of a cell. The budscar left at the surface of a cell after producing a daughter makes it 

possible to determine the cells’ age. Apart from the amount of budscars there are also 

several other phenotypic changes occurring during aging of yeast. Most of all, the age 

dependent increase in mortality, which is a hallmark of aging, indicates that this 

modelsystem can be used to study aging. The fact that recently a process as caloric 

restriction was found to occur in S.cerevisiae, made it even more attractive (Jiang et al., 

2000; Lin et al., 2000). One of the big advantages of using yeast as a modelorganism is 

that environmental conditions can be kept constant and reproducible. As seen in the 

previous chapters, growth rate is important in determining longevity. Using methods as 

continuous culturing and fed batch, these growth rates can be controlled very precisely. 

This gives S.cerevisiae a unique selling point compared to other modelorganisms for 

elucidating molecular mechanisms involved in aging.  

Restricted access to carbonsources is not the only way in which growth rate 

can be reduced and subsequent longevity can be enhanced. Also limiting nitrogen 

sources, applying heat-shock or osmo-shock can decrease growth rate and at the same 

time increase replicative lifespan (Shama et al., 1998; Jiang et al., 2000; Swiecilo et al., 

2000; Kaeberlein et al., 2002). In chapter 2 was described that besides the upregulation 

of PNC1, which ensures removal of Sir2 inhibitor nicotinamide, also a stress response 

was observed during carbon limitation induced slow growth conditions. This stress 

response consisted of an increase in stress-protectant trehalose synthesis, upregulation 

of oxidative stress response genes and upregulation of the proteasome. This suggests 

that an increased stress response during slow growth could be facilitating associated 

longevity.  

Stress response, growth rate and longevity are connected to each other in 

several ways. The growth rate of S.cerevisiae is mainly determined by the length of the 

G1-phase (Silljé et al., 1997). To observe whether the stress response is also influenced 

by the phase of the cell cycle, synchronous cells were exposed to oxidative stress at 

different timepoints during the cell cycle. This revealed that several transcripts of the 
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thioredoxin system show besides a stress dependent, a cell cycle dependent transcription 

pattern with the focus on the S-phase, probably to protect DNA from being damaged 

(see chapter 3). Subsequent experiments carried out with a promoter construct revealed 

that this S-phase dependency was also observed on protein level. However, it turned out 

that this was a general effect on protein synthesis (see chapter 4).  

As mentioned in the introduction there are several genes known that, when 

mutated or overexpressed, increase lifespan (chapter 1). Although they need not to be 

involved in the ‘normal’ aging process per se, it is reasonable to believe that the 

common themes they symbolize are at the origin of aging. Two themes arise from the 

list: metabolism, notably the PKA pathway, and genetic stability. PKA is also involved 

in organizing an appropriate stress response via Msn2/Msn4, Skn7 and possibly Yap1 

(Hasan et al., 2002) (Charizanis et al., 1999). Some previous data seems to indicate that 

oxidative stress response is diminished in aging yeast cells (Grzelak et al., 2001; Laun 

et al., 2001). To test this, several methods described in chapter 5 were tried to isolate 

old yeast cells to be able to expose them to oxidative stress. Eventually the method 

developed by Woldringh et al. (Woldringh et al., 1995) yielded the best results; a large 

population enriched in older cells (+/- 7 generations). The exposure of these cells to 

hydrogen peroxide and the subsequent analysis of its transcriptional response by 

microarray experiments revealed that the levels and the response of several antioxidant 

genes were decreased in the old cells. Especially the genes of the thioredoxin 

antioxidant system were influenced. The responsiveness to oxidative challenges of the 

thioredoxin system exceeding that of the glutathione system seems to be a reoccurring 

phenomenon. Both chapter 3 and 5, where transcription is measured by microarray 

analysis, as well as chapter 6, where a GSH1 and a TRX2 reporterconstruct were used, 

showed minor induction of genes involved in the glutathione system. 

In chapter 3 and 4 was shown that yeast has a cell cycle dependent response to 

oxidative stress both on a transcriptional and translational level. Apparently, the 

translation of proteins is generally reduced during the early G1, perhaps because of lack 

of ribosomes. This would probably not be the case in full grown mother cells that 

already went through several cell cycles, but in these cells also G1 duration is shorter. 

The next step would be to look at the transcriptional response of synchronous cells 

proceeding through the cell cycle of both young and old cells. It was shown in chapter 3 

that several genes are specifically upregulated around S-phase after exposure to 

hydrogen peroxide, possibly for additional protection of the DNA. It would be 
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interesting to see whether the observed cell cycle dependent regulation of these 

antioxidant genes is also visible in old yeast cells. It is to be expected that because of 

diminished regulation of antioxidant genes in old cells as shown in chapter 5, less 

additional protection leading to damage potentially speeding up the aging process will 

probably occur. 

Apparently an oxidative stress response is involved during lifespan elongating 

slow growth conditions and in aged cells. This raises the question whether the screening 

method described in chapter 6 really reveals anti-aging compounds because they 

actually downregulate the endogenous stress response gene TRX2. The compounds  that 

were screened using this method reveal antioxidant properties, but how this will affect 

the cell is still unclear. As shown in chapter 6, the addition of for instance vitamin E can 

downregulate the expression of a reporter construct with a thioredoxin promoter. As a 

consequence, the concentration of the thioredoxin protein is probably also lowered. 

Although the added vitamins can reinforce the diminished antioxidant capacity it is still 

questionable whether total antioxidant capacity is higher, equal or lower compared to 

the level before supplementing the cells with antioxidants. It is therefore necessary to 

find a suitable aging marker in yeast besides expression of antioxidant genes to 

elucidate whether supplementation of antioxidants is successful in combating aging. 

 

Culture conditions used in the lab are different from the circumstances in 

which yeast grows in its natural habitat. Continuous supply with high-grade nutrients is 

not very common in nature. Long periods of less optimal growth conditions have to be 

survived to be able to take chances on the occasion that conditions improve. Less 

optimal growth conditions can have diverse causes, like lack of nutrients. However, 

situations where high temperature, osmotic stress and oxygen stress occur can 

significantly influence growth. All these adverse growth conditions have in common 

that they decrease the growth rate. Interestingly these treatments, if moderately applied, 

also are able to increase replicative lifespan. The way these environmental conditions 

are able to do so, is in my opinion a combined effort of both increasing the genetic 

stability and an elevated stress response or agility to anticipate on worsening conditions, 

see chapter 2. It seems as if the cell braces itself for impact, with two consequences; it 

can withstand stressful conditions and at the same time as by-product its longevity is 

extended. Is there no downside to this behaviour? Growing slowly will imply an 

evolutionary disadvantage compared to other species that grow faster, however because 
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this implies that these species will not survive the next period of food scarcity, it makes 

sense how this trait could have evolved. To take the synthesis of trehalose as an 

example, without trehalose the cell is not able to survive periods of starvation (Silljé et 

al., 1999). Synthesis of trehalose takes energy away from the glycolysis, which gives a 

cell that doesn’t synthesize trehalose an advantage because it will be able to spend more 

resources on growth and progeny. However it will not, nor will its progeny, be able to 

survive a period of scarcity.  

 The experiments done by Ashrafi et al.(Ashrafi et al., 1999), indicate that there 

is an optimum in the effect of slow growth on longevity. Cells kept in stationary phase 

for extended periods of time show a decreased replicative lifespan afterwards. Although 

stationary phase and elongated G1 are probably not completely the same (Herman, 

2002), it is remarkable that slightly elongating G1 can increase replicative lifespan 

while considerably lengthening G1 (stationary phase) leads to a decrease in subsequent 

replicative lifespan.  

Remains the question whether 

growth rate is determining PKA activity 

and subsequent transcriptional response 

(figure 7.1A) or that the different 

environmental conditions determine PKA 

activity, which subsequently controls 

growth rate (figure 7.1B). This is of course 

a simplification of the situation because the 

PKA pathway is not the only one involved 

in nutrient and stress signalling. Also PKC 

and the TOR pathway are contributing to 

this signalling (Crespo and Hall, 2002; 

Longo, 2003). Scenario A implies a more 

general effect by different stressors on 

growth rate, while scenario B suggests that 

the several stressors each have their own 

separate route leading to deactivation of 

PKA which has as consequence that 

growth rate is affected.  
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Figure 7.1: Different ways in which growth rate

could be involved in nutrient and stress signalling 
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The general conclusion, using yeasts unique feature concerning controllable 

culture conditions, is that exposing cells to adverse growth conditions will lead to a 

stress response that potentially facilitates longevity. In a nutshell: what doesn’t kill you 

makes you stronger. 
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Veroudering is een fenomeen dat wetenschappers al eeuwen heeft bezig 

gehouden. Er is in de loop der tijd ook al het één en ander ontdekt, maar een definitief 

antwoord op de vraag waarom biologische systemen zoals de mens verouderen, is er 

nog niet. Er zijn een aantal ‘uitdagingen’ met betrekking tot het onderzoeken van 

veroudering. Het probleem met onderzoek in de mens zelf is dat de 

levensomstandigheden zelden goed gedefinieerd en constant zijn,  en dat het proces van 

veroudering lang duurt. Om een idee te krijgen over de fundamentele cellulaire 

principes van veroudering kan echter ook met modelorganismen gewerkt worden (zie 

ook hoofdstuk 1). Eén van die modelorganismen is de gist Saccharomyces cerevisiae. 

Dit is een eencellige schimmel die al veelvuldig gebruikt is om essentiele biologische 

processen zoals bijvoorbeeld celdeling, te onderzoeken. Een proces als veroudering is 

alleen van toepassing op organismen waarbij er een duidelijk verschil is tussen de 

‘ouder’ en de ‘nakomeling’. S.cerevisiae voldoet aan dit criterium want de dochtercel 

die wordt geproduceerd door de moedercel is kleiner en na deling blijft er op de 

celwand van de moedercel een lidteken achter. Bijkomend voordeel is dat dit lidteken 

specifiek is te kleuren en onder een microscoop zichtbaar is. Het gebruik van 

S.cerevisiae bij verouderingsonderzoek heeft een aantal belangrijke voordelen zoals de 

controleerbaarheid van de groeiomstandigheden en het feit dat de gisten veel sneller 

verouderen. Beide eigenschappen zijn, bij het onderzoek beschreven in dit proefschrift, 

gebruikt om een aantal aspecten van veroudering nader te bekijken.  

Het is bekend dat gelimiteerde verstrekking van voedsel aan ratten leidt tot een 

verlenging van de levensduur. Dit proces, beter bekend als calorie restrictie, treedt ook 

op in modelorganismen als S.cerevisiae. Een goede controle van de groeicondities 

waarin de gisten zich bevinden is daarom nodig om correcte conclusies te kunnen 

trekken. Hoe exact calorie restrictie in staat is de levensduur te verlengen is onduidelijk. 

In het tweede hoofdstuk wordt beschreven hoe cellen reageren op deze 

omgevingscondities, ze maken bijvoorbeeld meer stress eiwitten. Dit zijn eiwitten die 

cellen helpen om moeilijke periodes door te komen. Het verhogen van de productie van 

deze stress eiwitten kan geïnitieerd zijn door de langzamere groei die de voedsel 

limitatie met zich meebrengt, maar kan ook een indirect effect zijn doordat de gistcel 

zijn energiehuishouding verandert. S.cerevisiae kan namelijk op twee verschillende 

manieren energie genereren, via fermentatie (zonder zuurstof) en via respiratie (met 
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zuurstof). Bij langzame groei omstandigheden verkrijgt de cel zijn energie door 

respiratie. Bij respiratie kunnen er meer reactieve zuurstofmoleculen ontstaan, 

zogenaamde zuurstofradicalen, die een stress respons kunnen uitlokken. Die verhoogde 

stress repons geeft de cel de kans de periode waarin voedsel schaars is te overleven. 

Blijkbaar levert dit echter op de lange termijn ook een verlenging van de levensduur op. 

Een verhoogde stress respons is echter niet het enige dat geobserveerd wordt. Ook een 

verandering in de hoeveelheid nicotinamide zou wel eens belangrijk kunnen zijn voor 

het bepalen van de levensduur van een gistcel. Dit molecuul is in staat de activiteit van 

een eiwit genaamd Sir2 te beinvloeden. Sir2 is belangrijk bij het stabiliseren van het 

genetische materiaal, het DNA. Langzame groei lijkt de afbraak van nicotinamide te 

versterken waardoor Sir2 actiever is, waardoor het DNA stabieler blijft. Dit heeft tevens 

een effect op de levensduur. Niet alleen het limiteren van voedsel, ook  het blootstellen 

aan hogere temperaturen en verhoogde zoutconcentraties kunnen leiden tot een 

groeivertraging en een langere levensduur. Het lijkt er dus op dat matige stress 

levensduurverlengend kan werken. Hoe echter de die verschillende soorten stress 

kunnen leiden tot een verlaging van de groeisnelheid is nog niet helemaal duidelijk. Het 

lijkt er op dat een bepaald eiwitcomplex dat PKA heet erbij betrokken is. Of dit 

complex uitgezet wordt door de langzame groei of dat juist de inactivatie van PKA leidt 

tot een verlaging van de groeisnelheid moet ook nog ontdekt worden. 

Eén van de effecten van het limiteren van voedsel is een vertraging van de 

celcyclus. Dit komt met name tot uiting in de verlenging van één specifieke fase van die 

celcyclus namelijk de G1-fase. In deze fase bouwt de cel reserves op om de rest van de 

cyclus door te komen. In het geval dat er weinig bouwstoffen aanwezig zijn dan is het 

niet zo vreemd dat deze specifieke fase langer duurt dan normaal. Om er achter te 

komen of de reactie op stressvolle omstandigheden van S.cerevisiae in deze fase anders 

is dan in andere fasen werden verschillende experimenten gedaan beschreven in 

hoofdstuk drie en vier. Daaruit blijkt dat de eerste reactie (de transcriptionele respons) 

verschillend is in de verschillende fasen. Tevens blijkt dat de daaropvolgende reactie 

(de translationele respons) ook afhankelijk is van de fase waarin de cellen zich 

bevinden. Dit lijkt echter gekoppeld te zijn aan de snelheid waarmee cellen nieuw eiwit 

kunnen produceren. In beide gevallen laten vooral eiwitten die betrokken zijn bij het 

thioredoxine systeem een duidelijke stress respons zien. 

In het vijfde hoofdstuk werd gekeken naar verschillen tussen jonge en oude 

cellen en hun reactie op oxidatieve stress. Daarin werd geconcludeerd dat in oude cellen 
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de stress respons minder is. Dit zou een effect kunnen zijn van een verminderde 

regulatie van de stress respons. Er is echter geen verschil te zien in levensvatbaarheid 

van de gistcellen na blootstelling van deze cellen aan zuurstof stress. Door deze oude 

cellen te supplementeren met krachtige antioxidanten zou hun afweer kunnen 

versterken. In hoofdstuk zes wordt een screening methode beschreven waarmee met 

behulp van een reporterconstruct nieuwe potentiële antioxidanten te ontdekken zijn. 
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Bezinksel 
  

Er bestaat geen protocol voor het doorlopen van een promotie maar er zijn wel 

degelijk een stel randvoorwaarden. Een leuke club mensen om je heen is essentieel en in 

mijn geval was dat gelukkig ook zo. Terugkijkend op de tijd dat ik bij de vakgroep heb 

rondgelopen, nog steeds liefkozend EMSA genoemd, kijk ik echter wel naar een 

heuvelachtig landschap met dus hoogte- en dieptepunten. Dat is echter helemaal niet 

erg, want zoals Nietzsche reeds schreef ‘Was mich nicht umbringt macht mich stärker’. 

Denk nu niet dat ik Nietzsche paraat heb om te citeren, maar ik heb wel vrienden die dat 

kunnen, dus... In ieder geval is het citaat niet alleen van toepassing op het onderwerp 

van mijn onderzoek (zie bijvoorbeeld de general discussion) maar tevens op het hele 

promotietraject zelf.  

Bij de start van een promotie heb je natuurlijk geen benul waar je je precies 

mee bezig gaat houden de daaropvolgende vier à vijf jaar. Ook het veld waar je je in 

gaat begeven en het onderwerp zijn in het begin nog onduidelijk. Mijn achtergrond als 

chemicus in de faculteit biologie had daarbij zo zijn voor- en nadelen. Een zekere 

affiniteit voor cijfers, chemicalien en grootheden is naar mijn gevoel meer gecultiveerd 

dan bij sommige biologen, terwijl ik enkele basisfeiten uit de biologie, zoals tot welke 

fylum octopussen behoren, niet standaard paraat heb. 

Een grensgebied tussen de biologie en de chemie, zoals de celbiologie, trekt 

natuurlijk mensen aan uit de verschillende disciplines en dat is alleen maar beter voor de 

kruisbestuiving. Dit is bijvoorbeeld terug te zien bij mijn promotoren. Theo is een 

biotechnoloog, Johannes is een rasechte bioloog en Arie is meer een chemische bioloog. 

Dit levert verschillende perspectieven op die elkaar kunnen versterken maar ook soms 

tot babylonische (spraak)verwarring kunnen leiden. Deze troijka heeft mij om beurten, 

en soms tegelijk, van goede adviezen en richting voorzien waarvoor veel dank.  

Dankwoorden zijn er in vele verschijningsvormen, soms origineel, soms 

standaard, soms lang en soms kort. Een kleine categorisatie van de dankwoorden in de 

proefschriften die ik bezit leidt echter wel tot de ontdekking van een aantal patronen. Zo 

wordt er significant vaak begonnen met de opmerking dat er één naam op de kaft staat 

maar dat de tot standkoming van het proefschrift niet had kunnen gebeuren zonder de 

vele anderen die daarna aan bod komen. Een waarheid als een koe, maar die ene naam 
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heeft het wel mooi allemaal opgeschreven. Maar goed, een greep uit de verschillende 

categorieën: 

 

Het beknopte dankwoord – ‘iedereen bedankt’ 

Het zakelijke dankwoord – ‘bedankt professoren’ 

Het bijzonder volledige dankwoord – ‘bedankt kantinepersoneel en portiers’ 

Het egocentrische dankwoord – ‘vooral mezelf bedanken’ 

Het afwezige dankwoord – ‘...’ 

Het eerlijke dankwoord – ‘bedankt voor het laten vallen van mijn samples’ 

Het insiders dankwoord – ‘bedankt voor het haar’ 

Het ondankwoord – ‘ondanks de hulp van...’ 

Het Michael Moore dankwoord – ‘bedankt Bush’ 

Het omklede dankwoord – zoals het dankwoord dat u nu leest 

 

Na wikken en wegen heb ik uiteindelijk voor het laatste gekozen, al kon ik het 

natuurlijk niet laten kleine ‘crispy’ bites te nemen uit de andere categorieën. 

Practisch gezien zijn mijn studenten Raoul en Lisa niet alleen bijzonder 

(hulpv)aardig geweest maar zijn hun stages tegelijkertijd zowel voor henzelf als voor 

mij een leerzame ervaring gebleken. Ik ben erg in mijn nopjes dat Raoul samen met 

Fiona een gedeelte van de zenuwen en de organisatie van mijn promotie op zich wil 

nemen, door als paranimfen (ook wel engelen) te fungeren. Ook Anne-Lies die talloze 

proeven heeft uitgevoerd om een bruikbare screeningmethode te ontwikkelen voor het 

project, ben ik zeer erkentelijk.  

De minder goed kwantificeerbare grootheid ‘gezelligheid’ vond ik vooral bij 

mijn kamergenoten Hans, Yvonne, Rene, Sung, Denise en Marc maar zeker ook bij 

koffietafel sessies met Ilse, Edje, Rinse, Bart, Frits, Ramon, Jan, Irina, Elsa, Wendy en 

Jord.  Ook de rest van mijn (ex-)collega’s hadden ieder hun aandeel in het creëeren van 

een fijne werksfeer, bedankt daarvoor. Verder afdalend langs de hiërarchische ladder 

(hiërarchie ≠ importantie) komen we bij de studenten van wie ik toch vooral Megumi en 

Wietske wil noemen als fijne mensen zowel tijdens als buiten werktijd.  

De EMSA ligt ingebed in een aantal andere organisaties en 

samenwerkingsverbanden en ik ben altijd van mening geweest dat je daar ook je neus 

moet laten zien. Concreet hebben we het dan over AiO-avonden, AiO-retraites, IB-

seminars, buitendagen, facultaire colloquia etc. Met veel plezier ben ik daar altijd bij 
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geweest en wil ik langs deze weg alle mensen van de faculteit Biologie en het Instituut 

Biomembranen succes toewensen met het afronden van hun promotieonderzoek of het 

continueren van hun loopbaan (omcirkelen wat van toepassing is). Mijn AiO-mentor 

Adri wil ik nog speciaal bedanken voor zijn luisterend oor, goede adviezen en dropjes. 

Tot de morele steunpilaren die mij de afgelopen jaren geholpen hebben, 

behoren natuurlijk alle mensen van Scouting Maarn-Maarsbergen (inclusief de 

vakantiestam), Bartender’s Advice (+groupies), de Breul-kliek, mijn scheiko-vriendjes, 

mijn andere vrienden en vriendinnen met een speciale vermelding voor Myrthe en 

Anouska en last but not least mijn familie, mijn ouders en zus voor algehele 

ondersteuning en het eruit halen van de laatste grammatica- en tikfouten. Bedankt! 
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Curriculum vitae 
 

De schrijver van dit proefschrift werd geboren op een koude winterdag in 1975 

te Zeist. Na een zorgeloze jeugd in het pittoreske Maarn waar de basisschool met goed 

gevolg doorlopen werd, vervolgde hij zijn opleiding op scholengemeenschap ‘ de Breul’ 

te Zeist. In 1993 werd daar het VWO diploma met succes behaald. Het opleidingstraject 

werd direct voortgezet bij de faculteit Scheikunde aan de Universiteit Utrecht. 

Gaandeweg bleek zijn interesse voornamelijk te liggen in de biologische hoek van de 

scheikunde. Dit kwam onder andere tot uiting in het doen van stages bij de vakgroep 

biochemie van lipiden en bij het RIVM te Bilthoven. Tevens werd een cursus 

chemiedidactiek gevolgd. Na de afronding hiervan in 1999 werd gestart met een 

promotieonderzoek aan de faculteit Biologie bij de vakgroep Moleculaire celbiologie 

onder leiding van hoogleraren Theo Verrips, Johannes Boonstra en Arie Verkleij. Dit 

onderzoek resulteerde in het proefschrift dat nu voor u ligt. 

Naast het gevolgde onderwijs en uitgevoerde onderzoek werd altijd een keur 

aan nevenactiviteiten ondernomen. Verschillende organisatorische functies binnen 

Scouting Maarn-Maarsbergen, scheikundige faculteitsvereniging ‘Proton’, het Instituut 

Biomembranen, de redactie van het facultaire maandblad ‘bio-SCOPE’ en tevens spelen 

en optreden met de band ‘Bartender’s Advice’ kan hij opnemen in zijn curriculum vitae. 
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