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Prologue

Over the past four years, | have studied the reliability of neural signaling in the visual
system. The work consisted of experiments in which responses from individual nerve
cells were recorded in the brain, the development of methods to analyze these responses
and the development of computational models that give insight into the nature of
neural coding in the visual front-end. Most of the research took place in the
Kruytgebouw at Utrecht University, one experiment was carried out in the laboratory
of professor Joe Lappin at Vanderbilt University in Nashville.

In the nurturing atmosphere of the laboratory in Utrecht, support and supervision by
Martin Lankheet and Wim van de Grind helped me acquire and practice the skills
that are required in contemporary neuroscientific research. I am very grateful to both
of them. Also the warm and positive contact with Joe Lappin was stimulating and has
given me confidence in my own ideas.

Thanks to financial support from NWO, awarded scholarships and travel bursaries,
[ have traveled to the United States several times. This enabled me to visit researchers
that are working in the same scientific field. I also attended seminars and a course on
neural coding. Without exception, these visits were very inspiring. They contributed
substantially to the work that I present in this thesis and made the past four years very
enjoyable. The energy and enthusiasm that I felt during these visits made me decide
to continue working in visual neuroscience, on the other side of the Atlantic Ocean,
in the laboratory of professor Peter Sterling at the University of Pennsylvania.
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General introduction

Introduction

‘What does the eye tell the brain about the outside world? Clearly, in the case of a
human brain, enough to recognize a familiar face amongst a crowd, navigate a bicycle
through peak hour traffic and discriminate bananas that are ripe from those that are
not. How is all the information that is required to perform such diverse tasks represented
in the signals that the eyes send to the brain? This is a question about the nature of
neural coding. It is an important question in neuroscientific research, and forms the
broader context of this thesis.

The specific aspect that I investigated concerns the reliability of the information
that the eye provides. If the same stimulus is presented twice, are the two responses
identical? If not, how different are they? Does the magnitude of the differences
depend on the visual input? And what are the consequences for visual perception?
These are —in short — the questions that will be treated in subsequent chapters of this
thesis.

Pioneers of neural anatomy and neurophysiology have initiated a research process
that led to the extensive knowledge that is presently available about the visual brain’s
structure and its functional elements'™. In primates, the retina is connected to the rest
of the brain through a bundle of roughly 1 million fibers, that emerges at the back of
each eye to form the optic nerve (Fig. 1). It is on the basis of the information carried
by these fibers, that one can make decisions about the visual environment, about the
shape, size, color and relative position of objects, and perceive changes in these aspects
over time.

Principles of neural communication

Whether 1 million fibers is ample or few in the context of the various tasks performed
by the visual cortex, depends directly on the way in which the fibers are used for
transmitting information. Let us therefore start by briefly reviewing the main principles
of neural communication.

There are roughly two ways in which a sensory neuron can transmit information
to another sensory neuron: through a direct electrical coupling between two cells, or
by means of a chemical synapse. Although electrical coupling plays an important role
in various stages of neural processing, for example within the neural network of the
retina, it is not immediately relevant in the context of this study. Therefore, our
focus will be on the second mechanism, the chemical synapse, where a specific group
of molecules called neurotransmitters, are employed as messengers.

Neurotransmitters secreted by a first neuron attect the permeability of channels in
the cell membrane of the second neuron, which in turn evokes a change in the
second neuron’s membrane potential. Changes in the second neuron’s membrane
potential can lead to the release of neurotransmitter at its chemical synapse with a
third cell, thereby propagating the information signaled by the first neuron. This
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electrochemical signal transmission mechanism is of fundamental importance for the
functioning of nervous systems throughout the entire animal kingdom.

The fact that neurons are generally both ‘actors’ and ‘reactors’ is reflected in their
anatomical structure. In almost all neurons, two distinct functional regions can be
distinguished: one where information from other neurons is gathered, the dendritic
field of the neuron, and one where the chemical synapses are located that influence
other neurons (Fig. 2).

One tremendously important neural feature is the axon: an elongated part of the
neuron that connects the cell body to the chemical synapse in the axon terminals.
The membrane properties of axons are such, that electrical pulses generated at the
axon hillock (the connecting region between nerve cell body and axon, are rapidly
and reliably propagated to the chemical synapse. Upon reaching the chemical synapse,
these electrical pulses evoke secretion of neurotransmitter. The electrical pulses
produced at the axon hillock are referred to as action potentials or ‘spikes’. As will
soon become clear, spikes play a central role in every single chapter in this dissertation.

Neural coding

Back in 1917, K. Lucas studied the conduction of action potentials with tremendously
innovative equipment that he developed at Cambridge University. Unfortunately,
he died in a plane crash and the use of his instruments fell to his colleague, E. D.
Adrian. In 1926, Adrian published two papers on ‘the impulses produced by sensory
nerve endings’, which constitute the first publications on the neural coding of sensory
information.

Recording from stretch receptors in muscles of frog and cat, he made observations
that led him to three fundamental statements about neural coding that still hold
today’. Most importantly, he realized that spikes are ‘all or none’ events. He observed
that spikes recorded from a single neuron, in response to different stimuli, are identical
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in shape and amplitude. This led him to conclude that no information about the
stimulus can be represented by the shape or amplitude of the action potential itself.
Instead, he postulated that the stimulus must be represented by the relative number
of spikes generated per unit time. This idea was supported by experiments where
Adrian, together with his colleague Zotterman, found that the spike rate increases
with the weight applied to the stretch receptor. This is the essence of a rate code, in
which the spike firing frequency reflects the intensity of the stimulus.

The spike rate, however, does not necessarily provide a complete account of the
information that is available from a neural response. The specific time of occurrence
of spikes, or temporal spike patterns, may also play an important role. This is referred
to as temporal coding”. In order to obtain insight into the essence of these two
coding schemes and their functional implications, let us consider the responses of a
retinal ganglion cell to two difterent visual stimuli.

Save for onset and adaptation effects, retinal X cells (the most common ganglion
cell type in the retina) respond to brief presentations (e.g. § seconds) of spatially
uniform, constant luminance stimuli, with a constant firing rate. Similar to the
observations of Adrian, mentioned earlier, a change in the luminance is followed by
a corresponding change in the firing rate. Let us assume that the mean firing rate of a
particular cell to a given luminance level is constant at about 30 spikes per second.

Next, we can also generate a visual stimulus that is not constant over time, but
consists of very brief flashes of light, say for example, at a rate of 30 per second. If
intensity and duration of the flashes are chosen so, that the cell fires on the order of
one spike per flash, again, a mean firing rate of 30 spikes per second will be observed.
In this hypothetical example, the responses are identical in their average firing rate
over the stimulus time interval, even though the stimuli that evoked the responses
are very different. Moreover, these differences are normally perceived: under most
circumstances, 30 Hz flicker can readily be discriminated from constant illumination.
This shows that an important ambiguity arises from the fact that spiking neurons
must represent both the intensity and the temporal dynamics of a stimulus in a signal
that is in itself time-dependent. How can the brain get around this problem?
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Lord Edgar Douglas Adrian (1889 - 1977).
After taking a degree in physiology and
medicine, Adrian started to investigate the
sensory nervous system with electrical
methods. Adrian established three
fundamental facts about the neural code.
He described the ‘all or non’ character of
spikes in the sensory nervous system, the
dependence of the spike rate on the
intensity of the stimulus and adaptation of
sensory neurons to constant stimuli. In
1932 he was awarded the Nobel Prize in
Medicine together with Sir Charles S.
Sherrington ‘for their discoveries regarding
the functions of neurons’. Photograph
courtesy of Cambridge University, UK.

Obviously, the ambiguity disappears when the firing rate is estimated in time
windows that are small enough to resolve the temporal dynamics of the stimulus.
This would necessarily reduce the time basis of the system to tens of milliseconds,
during which only a handful of spikes can be generated per cell.

The difference between responses to the two types of stimuli is also more manifest
if the arrival times of spikes from multiple neurons, responding to the same stimulus,
are considered. In case of a constant luminance stimulus, spikes generated by the
different cells will arrive at a convergence point with a temporal correlation that is
proportional to the average firing rate of both neurons. When spikes are generated in
response to temporal modulation of the luminance, however, spikes in the two
responses will arrive in close temporal proximity, because they are synchronized by
the stimulus. Such temporal correlations are likely to be very important for the
perception of e.g. shape from motion, perceptual binding in dynamic visual scenes
and visual motion perception. The principle is called population coding” .

Spike timing precision

All information about the outside world that the eye sends to the visual cortex is
transmitted in the form of series of action potentials. These series of action potentials
will be referred to as ‘spike trains’. It 1s important to realize that the neurons that
produce these spike trains are biological entities: they are inherently imperfect and
subject to e.g. chemical, thermal and electrical noise. In the case of a sensory neuron,
these influences cause continuous fluctuations in the state of the cell, independent of
the stimulus that is presented.

This ‘inherent neural noise” has two effects on the neural response: it causes variations
in the total number of spikes in the spike train, and in the specific times at which
these spikes occur. As a result, no two responses to the same stimulus are the same.
From this it is evident that when individual spikes are important for the functioning
of the visual system, noise plays an important role. The first question is therefore:
how noisy, or variable, are neural responses?
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Claude Elwood Shannon
(1916 — 2001) spent 1§ years of
his exceptional career working
at the Bell Laboratories. During
this period Shannon worked in
many areas, most notably in
information theory, a
development which  was
published in 1948 as “A
Mathematical Theory of
Communication”. In this paper
it was shown that all information
sources — telegraph keys, people
speaking, television cameras and
so on — have a “source rate”
associated with them which can
be measured in bits per second.
Communication channels have a
“capacity” measured in the same
units. The information can be
transmitted over the channel if
and only if the source rate does
not exceed the channel capacity. 4 years later, Shannon’s information theory was applied to the sensory
nervous system by MacKay and McCulloch. The photograph shows Shannon with his maze-solving
mouse Theseus, built in 1950. Photograph used with permission of Lucent Technology Inc./Bell Labs.

When thinking in terms of rate coding and static stimuli, computing standard
deviations of the mean spike rate during the stimulus presentation suffices to quantify
response variability. However, if one realizes that a myriad of other coding schemes
might also play a role, it suddenly becomes less clear what the appropriate measure of
variability or reliability should be. It might then be more profitable to study the
information that is - or can be - transmitted and then find the optimal code to do so.
This was recognized by MacKay and McCulloch™, who were the first to apply
information theory, that was developed by Claude Shannon at Bell labs only four
years earlier, to the study of neural information transmission.

MacKay and McCulloch assumed that neural signals are observed by receiving
neurons at some fixed, limited time resolution. Spikes in discrete time bins were
treated as ‘1’, no spikes as ‘0’, which results in binary signals of which the information
content, expressed in bits per second, can be measured directly. Bit rates, by definition,
decrease when the responses become noisier. This approach has been applied in a
large number of studies since, and in 1997 a book was published that provides a
detailed description the method and its applications'. Although interesting results
have been obtained over the past decade, an important question remains: how many
bits per second does a particular visual task require? And how realistic is the assumption
of a fixed, limited temporal resolution in the visual system?

Because there are no easy answers to these questions, I have taken a different,
pragmatic rather than theoretical approach in the work that is described in this thesis.
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generally follows from a comparison of the output of detectors sensitive to two opponent, or even
multiple directions (distribution shift models).

Spike timing precision and its functional consequences are studied in the context of
aspecific neural task, 1.e. visual motion detection. This allows one to make assumptions
about the decoding of the neural signals, which provides direct hints as to which
aspects of the neural spike train may carry relevant information about the stimulus.
Furthermore, by making these assumptions, the functional consequences of neural
noise for visual motion detection can be investigated directly, with computational
models.

Motion detection

Since a publication by Hassenstein and Reichardt in 1952", several models for visual
motion detection have been proposed. One feature shared by most of these models is
the dependence on subunits that integrate inputs from two spatially separated locations
on the retina (Fig. 3). This principle of motion sensing was invented by Sigmund
Exner, in the late 19" century’.

It 1s evident that correlation detection by such a bilocal detector depends directly
and critically on the similarity of the input signals. Highly dynamic behaviors, such as
insect flight, requires that decisions are made within tens of milliseconds, during
which only a few spikes per input can be obtained. It is therefore reasonable to
assume that under these circumstances, fine temporal correlations between the input
signals play an important role. In this context, quantifying neural reliability requires
a method that is aimed at the timing precision of individual spikes. The measure for
response variability that I used is therefore based on the extent to which temporal
correlations in neural responses are maintained, despite inherent neural noise.

11
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Methods

The most direct way to gain knowledge about the signals that the eyes send to the
visual cortex is to record these signals and study them. For this purpose, anaesthetized
cats were used. By inserting a microelectrode in the nerves that form the primary
visual pathway, recordings can be obtained from individual cells in the retina, the
LGN or the cortex itself. One can record the series of action potentials that the cell
fires in response to visual stimuli that are projected on the retina. Over the course of
20 experiments, I have recorded responses to a range of dynamic visual stimuli from
more than 300 cells, adding up to almost 26 million spikes. These recording from the
data-set that was used for the quantitative analyses and model simulations presented
in this thesis, and will continue to be used for model studies in years to come.

Summary

The principal aim of this thesis was to quantify the temporal precision of neural spike
timing in front-end visual responses, its dependence on the visual stimulus and its
consequences for visual motion detection.

The majority of the results that I present are based on single cell recordings obtained
from the optic tract and LGN of anaesthetized cats. Recordings were also obtained
from cat area 17, these data are partly presented in Chapter 4.

Response reliability was assessed by comparing subsequent responses of the cells to
repeated stimulus presentations. I used a wide range of dynamic visual stimuli, including
drifting sine wave gratings, drifting random line patterns and movie clips of natural
scenes.

In Chapter 1, spike timing precision of retinal ganglion cells and cells in the LGN
is quantified and compared to that of responses simulated with a Poisson model that
only contain rate information. The comparison tells us whether there is information
in the timing of individual spikes that can not be derived from the time varying spike
rate.

In chapter 2, a common deterministic model with added noise is used to investigate
whether the spike timing precision observed in chapter 1 reflects some previously
unknown property of the visual system, or whether it is a straightforward result from
the way in which neural spikes are generated.

Chapters 3 and 4 describe results obtained with reverse correlation analysis, that is
based on temporal correlations between the stimulus and individual spikes in the
response. In Chapter 3, I introduce a novel method, Motion Reverse Correlation
(MR C), that was developed for measuring receptive field properties of motion selective
cells in the visual cortex. Application of the method is illustrated with results obtained
from area 18 and PMLS of anaesthetized cats and area MT in a fixating macaque
monkey.

In Chapter 4, a conventional luminance white noise reverse correlation method is
used. Spatio-temporal impulse responses of retinal ganglion cells, cells in the LGN
and in area 17 were used to predict the responses of these cells to movie clips of
natural scenes.
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In chapter s I return to the functional consequences of response variability for the
functioning of the visual system. The performance of a bilocal correlator is examined,
using recorded responses, obtained from the visual front-end as the input signals.
The study is aimed at deriving optimal time scales at which information is represented
in the spike trains, i.e. the time scale that makes the correlator most sensitive to the
signal, and least sensitive to noise in the responses. The pattern of results that we find
is subsequently compared to the temporal limits for motion discrimination in a human
psychophysics experiment.
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Chapter 1

Abstract

To assess whether the output of the cat retina and LGN is sufficiently precise to
support a temporal coding scheme, we determined whether spike timing in recorded
spike trains is more precise than would be expected on the basis of the firing rate
alone. We compared spike time deviations (temporal offsets between nearest spikes
in subsequent responses to repeated presentations of the same stimulus) in recorded
and Poisson simulated spike trains. We found that spike time deviations for recorded
responses were significantly smaller, suggesting that there 1s information in the timing
of spikes. The effect is robust and can not be explained by e.g. refractoriness of the
spike generator.

The increased spike timing precision in front end visual responses varied with the
momentaneous spike rate. Spike timing precision in recorded and simulated spike
trains was comparable at low firing rates (0 - 20 spikes s™'), but progressively diverged
with increasing spike rates. Above about 80 spikes s, spike timing in retinal ganglion
cell responses was a factor two more precise than would be expected on the basis of
the firing rates alone. We conclude that spike timing in the output of the cat retina
and LGN is sufficiently precise to enable temporal decoding of visual information at
subsequent stages of visual processing.

Introduction

Reetinal ganglion cells encode the spatio-temporal structure of the visual environment
into trains of action potentials. Since Adrian’, it is firmly established that the action
potential density (firing rate) of neural responses throughout the sensory nervous
system, changes with variations in the intensity of an appropriate stimulus. With the
help of averaging techniques, the relation between firing rates and specific aspects of
the stimulus has been studied in great detail. This has elucidated receptive field
properties of neurons at different levels of the sensory nervous system which, in turn,
has provided insight into the functional architecture of e.g. the front-end visual system.

Receptive field properties and average firing rates however, do not necessarily
reveal how information is passed on from one level to the next. A point of ongoing
debate concerns the fundamental question of which aspects of the spike train contain
relevant information™. Is all information encoded in the number of action potentials
over some time interval, irrespective of their time of occurrence (rate coding), or
does the timing of action potentials carry significant information about the stimulus
(temporal coding)?

Temporal coding in neural responses can manifest itself in two ways, either within
single spike trains, or between multiple spike trains. A temporal code within spike
trains, consists of specific spike patterns, e.g defined by preferred intervals between
groups of spikes”. In case of a temporal code between spike trains, information is
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Figure 1. Responses of a
retinal ganglion cell to
drifting sine wave gratings.
Recordings from single retinal
ganglion cells were obtained
from the optic tract of
anaesthetized, paralyzed cats.
Each dot in the raster plots marks
the occurrence of a single spike.
Each line represents the recorded
response to a single repeat of the
3 second stimulus. Total number
of repeats was 20.

Contrast (%)

16 Hz 32 Hz

Time —» 1s

represented by increased synchronicity or fine temporal correlations between
simultaneous responses”*. Both types of temporal coding rely heavily on the precision
with which neural responses are generated. In the present study we will focus on
potential information in a temporal code between multiple spike trains. This type of
temporal coding is particularly relevant for e.g. motion vision and stereopsis, because
these aspects of vision critically depend on the detection of temporal correlations
between spatially or ocularly separated inputs.

If we record a neuron’s response to repeated presentations of the same stimulus,
we find that these responses are not identical (Fig. 1). Instead, they differ in both the
number of spikes, and their specific times of occurrence. This is the essence of response
variability. Over the past decades, response variability has been studied by computing
the variance of the number of spikes in subsequent responses, and comparing it to the
variance of a known distribution of random events" (Poisson distribution). In the
cortex of anesthetized cats and monkeys, the measured ratio of standard deviation to
mean (coefficient of variation, Cv) is generally found to be larger than 1, i.e. the Poisson
expectation'®™', but some controversy remains as Cv values < 1 have also been
reported, e.¢. in responses from area V1 in the awake macaque monkey™. It is well
established that the variance of the spike count in retinal ganglion and LGN cell
responses is smaller than the mean™ * (Cv < 1). This is generally interpreted as
evidence for increased reliability in the output of the front-end visual system.

Reproducibility of the number of spikes however, does not tell us whether the
fine temporal structure of the response is reproduced as well. In the context of cortical
correlation mechanisms, it is the temporal precision, rather than the spike count, that
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timing precision. Responsesto S
repeated presentations of the e . | e
same stimulus (nrupm[\‘: 15 — 50)
are analyzed in a pair-wise
manner, exploiting all unique d.

Figure 2. Quantifying spike | | |

pair-wise combinations of the 1 2 34
recorded spike trains. For each 82 : ‘ '
spike in the first spike train, the . )
time difference with the nearest .
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spike in the second spike train is
measured. This time difterence, the spike time deviation, can take on both negative and positive values
and is the basis of our analysis of spike timing precision.

is particularly important, especially in the context of dynamic stimuli. In the present
study we will therefore specifically study spike timing precision in responses from
retinal ganglion cells and LGN cells. Our main question is to what extent spike
timing in the output of the cat retina and LGN may contain information that is not
represented in the modulation of spike rates.

To this end, we recorded retinal and LGN responses to repeated presentations of
a wide range of dynamic visual stimuli. In addition to drifting sine wave gratings with
different contrasts, temporal frequencies and spatial frequencies, we used two types
of stimuli that evoke more natural, non-harmonic response fluctuations. These were
drifting random line patterns of varying contrast, speed and line width and movie
clips of natural scenes. Because sine wave stimuli, by definition, contain minimal
temporal events, the latter two types are more likely to reveal temporal coding,
simply because there is more temporal information present in the stimulus.

Spike timing precision in neural responses was quantified by measuring ‘spike time
deviations’, 1.e. distances between nearest spikes in recorded responses to repeated
stimulus presentations. Figure 2 illustrates our method for quantifying spike time
deviations between responses (s, and s,) to repeated presentations of the same stimulus.
The analysis can be considered a simplified limiting case of the Metric Space analysis
described by Victor and Purpura™. In contrast to Victor and Purpura, we ignore
variability of the spike count, because we aim to specifically address spike timing
rather then spike counts. If responses to identical stimuli were identical in terms of
the number of spikes and their exact time of occurrence, we would find only coincident
spikes (zero ms temporal deviation). With decreasing spike timing precision, however,
spike time deviations will progressively increase. The distribution of spike time
deviations, and its primary statistics therefore provide direct insight into spike timing
precision of the recorded responses.

To assess whether there is information in spike timing, we compare the measured
spike time deviations to those obtained from simulated spike trains that have the
same average time-varying spike rate, but lack any timing information. Such simulated
spike trains were generated using a modulated Poisson process. In a Poisson process,
the occurrence of events is determined exclusively by the probability for observing
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an event at each point in time (i.e., the rate). These simulated responses therefore, by
definition, contain only rate information. If we compare the recorded and simulated
responses and find that spike timing in the actual recorded spike trains is more precise
than in the simulated responses, then we may conclude that there is potential
information in spike timing in the front end visual system.

The results that we present in this study show that this is indeed the case: spike
timing in responses to dynamic stimuli was significantly more precise than that of the
simulated responses. Differences in spike timing varied with the instantaneous firing
rate. At low firing rates, the Poisson model and the recorded responses yield similar
spike time deviations, but with increasing firing rates, spike timing deviations in the
recorded spike trains decrease more rapidly than in the Poisson spike trains. This was
consistent throughout the population of retinal ganglion cells that we recorded from,
and for widely different types of stimuli. LGN cells formed a less homogencous
population. Most cells showed results comparable to those of retinal ganglion cells,
but others resembled the simulated spike trains.

In summary, our results show that spike timing precision of retinal ganglion cells
and the majority of LGN cells meets the requirements for temporal encoding of
visual information. Distributions of spike time deviations of measured and simulated
spike trains elucidated a strict difference in the nature of spike timing between the
two, which suggests that neural spike timing can not be accounted for by a probabilistic
mechanism based on the firing rate alone.

Methods

Electrophysiological preparation and recordings

Extracellular single unit recordings from 46 retinal ganglion cells (RGCs) and 25
LGN cells were obtained with tungsten microelectrodes (TM33B20KT, World
Precision Instruments, USA, typical impedance 2.0 MQ at 1.0 kHz) from anesthetized
adult cats of either sex (3 - 5 kg). Surgical procedures were standard and in accordance
with the guidelines of the Law on Animal Research of the Netherlands and of the
Utrecht University’s Animal Care and Use Committee.

Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20
mg kg, 1.m.). Following preparatory surgery, anaesthesia was maintained by artificial
ventilation with a mixture of 70% N,O - 30% O, and halothane (Halothaan, 0.4 -
0.7%). To minimize eye movements, muscle paralysis was induced and maintained
throughout the experiment by continuous pancuronium bromide infusion (Pavulon,
0.1 mgkg" hr', i.v.). Oxygen-permeable contact lenses (+3.5 to +5 diopters, courtesy
of NKL, Emmen, Holland) were used to both focus the visual stimulus on the retina
and protect the corneae.

LGN and optic tract recordings were obtained approximately 10 and 20 mm below
the cortical surface respectively, at Horsley-Clarke codrdinates A8, L10™. Action
potentials from single cells were detected with a window discriminator (BAK

e
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Electronics Inc., USA) and their time of occurrence was sampled with 0.5 ms precision
for on-line analysis and storage (PCI 1200, National Instruments, Apple Macintosh
G4 computer, custom-made software).

Visual stimulation

Stimuli were computer-generated (ATI rage graphics card, Macintosh G4 computer,
custom-made software), presented on a linearized 19", TooHz CRT monitor (Sony
Trinitron multiscan 400PS) at 57 cm from the optic node and centered on the receptive
field of the cell under study. Mean luminance was 54 cd-m™. For those cells (7 RGCs
and 5§ LGN cells) that showed significant response modulation to the 100Hz refresh
rate of the monitor, the frame rate was increased to 120Hz.

Cells were classified as X or Y on the basis of a null-test™. Results presented here
are based on single X cell responses to repeated presentations (>15) of a range of
dynamic visual stimuli. Care was taken to ensure that stimuli fully covered the cell’s
receptive field. We presented three different types of visual stimuli. First, drifting sine
wave gratings, varying in spatial frequency, temporal frequency and contrast (0.1 -
4.0 cycles deg™', 0.5 - 32 Hz, 10 — 70%, respectively). Second, drifting random line
patterns (RLPs) with a binary luminance profile. Line width, speed and contrast of
the patterns was varied (0.03 — 0.5 degrees, 3 — 100 degrees s and 10 — 70%,
respectively). And third, movie clips of natural scenes. Duration of the clips was 10
seconds and all clips contained dynamic visual motion information.

Responses that were included in the analysis were selected on the basis of two
criteria: 1. responsivity of the cell, judged from raster plots, was constant throughout
the recording. 2. auto-correllograms of the responses did not reveal significant peaks
at time intervals corresponding to the monitor frame duration.

Simulated spike trains
We used the PSTH of recorded responses to generate sets of spike trains that contained
the same rate information, but none of the potential timing information of the recorded
spike trains. As the generation of spikes in this simulated set should be determined
solely by the recorded firing rate, the Poisson generator is a perfect candidate for this task.
The PSTH provides a description of the recorded response rate as a function of
time. PSTHs were computed with a bin-width of s ms. This yields a Nyquist frequency
of 100 Hz, which encompasses the dynamic range of the cells that we recorded from.
On the basis of the rate described by the PSTH, we computed the average number of
spikes ni in 0.5 ms bins. Obviously, this number will be << 1, because interspike
intervals are much longer than o.s ms. We then drew a random number from a
Poisson distribution with mean ni to obtain the integer number of events that occurred
in each 0.5 ms bin. If the Poisson generator returned a number > o, a spike was added
to the simulated spike train in the corresponding time bin. This way, we generated
5o spike trains per PSTH, i.e. as if the stimulus was repeated 5o times, and this set of
simulated responses was used for comparison with the actual recordings.
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Fig. 3. Testing the spike time deviation measure. The performance of the spike time deviation
measure 1s illustrated with a set of artificial spike trains. A. A single spike train was generated by drawing
interspike intervals from a Poisson distribution. Subsequent responses are identical copies of the first
spike train, but spikes were displaced (jittered’) by adding a temporal deviation, drawn from a Gaussian
distribution, to the times of occurrence. Sets of increasingly dissimilar spike trains were obtained by
increasing the jitter amplitude, i.c. the width of the Gaussian distribution. B. The average spike time
deviation was normalized to the mean interspike interval. This yields the Deviation Index (DI), that is
here plotted as a function of the jitter amplitude. For very small jitter amplitudes, we find near-zero DI
values. With increasing jitter amplitude, the DI approaches that of an un-modulated (homogenous)
Poisson process (dotted line).

At very high firing rates, multiple spikes in a single 0.5 ms bin were treated as a
single spike. This results in a small deviation from a true Poisson process. Predicting
multiple spikes in a single 0.5 ms bin removes some variability in the simulated
Poisson spike trains. This effect appears to be very small and moreover, is in line with
refractoriness in recorded spike trains. Furthermore, in the comparison between Poisson
and recorded spike trains this artefact can only result in an underestimation of the
increased spike timing precision in the recorded responses. The outcome of the
analysis is therefore a conservative estimate of the potential contribution of temporal
coding in responses of the front-end visual system.

Quantifying response variability

We introduce a measure of neural response variability that is based on the distance
between nearest spikes in responses to repeated presentation of the same stimulus”
(Fig. 2). From the distribution of spike time deviations, the mean absolute spike time
deviation is computed. This is the average, absolute distance dj between each spike in
the first spike train and the nearest spike in the second spike train:

_ 1 XN
D= Fl\dj\ (1)

* Frens et al. (1998) developed a similar method for investigating temporal correlations between left and

right eye saccades in the Chameleon. i



Chapter 1

If responses from a cell are infinitely reliable, i.e. spikes in subsequent responses to the
same stimulus occur at exactly the same times, then the mean absolute deviation is
zero. When the reliability decreases, the mean absolute spike time deviation increases
accordingly.

Testing the spike time deviation measure
Performance of the spike time deviation measure was tested with a set of artificial
spike trains (Fig. 3). First a single spike train was generated by drawing interspike
intervals from a Poisson distribution. Then, repeated responses to the same stimulus
were mimicked by copying the exact spike train to form subsequent responses. After
spike times were copied from the initial spike train, each spike was ‘jittered’ by
adding a temporal deviation drawn from a Gaussian distribution, to its time of
occurrence. Sets of increasingly dissimilar spike trains were obtained by increasing
the jitter amplitude, i.e. the width of the Gaussian distribution, from 1.0 to 500 ms.
The average spike time deviation was normalized to the mean interspike interval,
which results in the Deviation Index (DI). This enables a direct comparison with the
spike time deviations in an un-modulated (homogenous) Poisson spike train,
independent of the response rate. The figure shows that for very small jitter amplitudes,
the DI takes on near-zero values. With increasing jitter amplitude, the DI approaches
the expected value for a homogenous Poisson process (dotted line).

Statistical analysis

Whether distributions of spike time deviations obtained from simulated and recorded
spike trains were significantly different was assessed with the Kolmogorov-Smirnov
test”. This is a non-parametric test based on the maximal difference between
cumulative distribution functions of the two datasets.

Results

We examine spike time deviations (Fig. 2) in front-end visual responses to dynamic
visual stimuli: drifting sine wave gratings of different contrasts and temporal frequencies,
drifting random line patterns (RLPs) and movie clips of natural scenes. Recordings
were obtained from 45 retinal ganglion cells (RGCs) and 25 cells in the LGN. Note
that not for all cells responses to all stimuli could be recorded, e.g. due to limitations
in the available recording time, sometimes only responses to sine wave gratings were
obtained. Sample sizes will be indicated where appropriate, in text and legends.
Sine wave gratings are the least likely candidate for revealing a temporal coding
scheme because they lack apparent timing information. However, if we find that sine
wave stimuli do evoke responses with increased timing precision, then similar
phenomena are likely encountered in the more complex, natural stimuli also.
Subsequent steps of our investigation and intermediate results will therefore be
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017 _ Recorded 05Hz [ 2.0 Hz Figure 4. Spike time
rrrrrr Simulated deviation histograms for
0.08 | F recorded and simulated spike
trains. Plots are based on a
retinal ganglion cell’s response to
drifting sine wave gratings of
different temporal frequencies,
presented at 40% luminance
contrast. To optimize clarity of
the plots, we present the
distribution of the absolute values
of spike time deviations (see Fig.
1), on a logarithmic scale.
Simulated spike trains were
obtained by passing the time
varying response rate, given by
the PSTH of the recorded
responses, through a Poisson
generator. We find that these
simulated spike trains, signals that
by definition contain rate
1 10 information only, yield
significantly different spike time
deviation distributions. Most
importantly, distributions of the recorded spike trains contain relatively more short deviations. For this
cell, the difference is most prominent in the response to a drifting at 8.0 Hz (bottom left panel). Both
recorded and simulated responses to a temporal frequency of 32 Hz show multiple peaks in the deviation
histogram (bottom right panel). These peaks are separated by about 30 ms and show that at this combination
of stimulus contrast and temporal frequency, the cell produces on average less than one spike per period
of the stimulus. As a result, nearest spikes in the second spike train are increasingly often one, and
sometimes even two periods of the stimulus away.

Relative freuquency

Relative freuquency

Deviation (ms) Deviation (ms)

llustrated with RGC responses to the sine wave stimuli. Robustness of the effect
that we find is then examined in the responses to the RLPs and movie clips also, and
in the data obtained from the LGN.

Raster plots of a typical recording are shown in Fig. 1. PSTHs of the recorded
spike trains were used to generate a set of simulated spike trains. To this end we use
a Poisson generator (see Methods), so that simulated spike trains have the same time
varying response rate, yet lack additional precise spike timing.

The distribution of temporal deviations between nearest spikes in pairs of spike
trains was computed for recorded and simulated responses to sine wave gratings
drifting at different temporal frequencies (Fig. 4). Luminance contrast was 40%. Clearly,
the distribution of the simulated spike trains contains less small deviations (dt < about
1o ms) than the distribution of the recorded spike trains.

Poisson spike trains are generated on the basis of a PSTH of the recorded responses
as described in the Methods section. The PSTH is obtained by binning spikes over
subsequent recordings so that a reliable estimate of the actual firing rate can be
computed. It is important to exclude the possibility that the decreased proportion of
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Figure 5. Excluding potential o8- Recorded
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precision of the simulated spike ol 20ms
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trains in a direct manner. We
therefore simulated spike trains
with PSTHs of different bin sizes Deviation (ms)

(0.5 — 20 ms, gray lines). The

figure shows that the distributions for different simulations are highly similar and no systematic effect
from the PSTH bin size was observed. Second, spikes in the recorded responses are followed by a
refractory period during which no spikes are generated. This may introduce temporal structure in the
spike train and therefore a refractory mechanism was added to the Poisson generator also. The distribution
obtained from the refractory Poisson model falls within those of the non-refractory simulations. Differences
between the distributions of the simulations and the actual recording remained unchanged and highly
significant (Kolmogorov - Smirnov test, p < 0.000T).

1 10

small spike time deviations that we observe in Fig. 4 is a mere artefact that stems from
the temporal resolution (5.0 ms) at which the PSTH is computed. This is clearly not
the case: different bin sizes (0.5 — 20 ms) yield similar distributions of spike time
deviations (Fig. s). No systematic dependence of the relative frequency of small
temporal deviations on the PSTH bin size is observed and all distributions are
significantly different from that of the actual recording (Kolmogorov — Smirnov test,
p < 0.0001).

A marked difference between the recorded and simulated spike trains is refractoriness
of spike generation exhibited by the first: the occurrence of one spike strongly reduces
the probability that another spike will occur within some small time window (2 - 3
ms). In order to examine whether a refractory period can account for the observed
difference between the spike time deviation distributions of recorded and simulated
spike trains (Fig. 4), a refractory mechanism was also added to the Poisson generator.
Refractoriness was simulated by multiplying the probability for a spike at each point
in time with an exponential recovery function that is reset each time a spike 1s generated
(2). Absolute refractory period was 0.5 ms, recovery time constants were varied
from 0.5 to 8 ms.
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A Figure 6. Spike time
03| . ) . Recorded deviations over the course of
N . the response. Data was
ot obtained from a single retinal
ganglion cell, stimulated with
drifting sine wave gratings. Spike
time deviations were averaged in
small time bins (5.0 ms). In panel
A, spike timing precision, i.e. the
c reciprocal of the average spike
time deviation in each time bin,
is plotted as a function of time
(black and dark gray dots). A
PSTH of the recorded response
is plotted in gray (temporal
frequency = 2.0 Hz, contrast =
40 %). Panel B shows that the
) firing rate in corresponding time
1 10 100 bins of the recorded and
Real rate (spikes/s) Real deviation (ms) simulated spike trains is in close
agreement for all contrasts and
temporal frequencies (10 —70% and 0.5 — 32 Hz, respectively). Data points are distributed symmetrically
around the unity line. Panel C however, reveals that a systematic difference exists between the average
spike time deviations in the same, corresponding time bins. The difference is largest for the smallest
spike time deviations, decreases when average deviations become larger, and data points for the largest
spike time deviations (At > 200 ms) fall on the unity line.
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P(t) =V &~ ° and P(t) =0 for 0< At < T, (2)

where At is the time since the last spike and T, and T are the absolute and relative
refractory period, respectively.

After this modification, the statistical properties of the simulated spike trains resemble
those of a renewal process with a nonexponential interval distribution”. We found
that refractoriness did not change the shape of the spike time deviation distribution
substantially. Instead, it almost completely coincides with those of the non-refractory
Poisson simulations (Fig 5). In the remainder of this study, we therefore employ the
initial Poisson model, without the additional refractory mechanism.

These results show that spike timing in recorded responses is more precise than
that of the simulated responses. Now the important question is: where does this
increased spike timing precision occur? To answer this question we proceed by
investigating the dynamic changes in spike timing precision over the time course of
the response. We compute spike time deviations in small time bins (5.0 ms), which
are subsequently averaged for all responses to the same stimulus, so that we obtain an
average spike time deviation for each §.0 ms time bin in the response. Exceptions are
those 5.0 ms intervals during which no spikes occurred in any of the trials. These bins
were excluded in the following analysis.
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Figure 7. Increased spike timing precision is firing rate dependent. Average spike time deviations
are plotted against the mean firing rate in corresponding time bins (5.0 ms). Data in panel A was
obtained from a single retinal ganglion cell stimulated with drifting sine wave gratings of different
contrasts and temporal frequencies (10 - 70% and 0.5 — 32 Hz, respectively). We find that despite the
wide range of the stimulus dynamics, above about 70 spikes s, firing rate and average spike time
deviation across all stimuli form a fairly narrow distribution in the two data sets. More importantly, we
find that for this cell, the distributions of the recorded and simulated spike trains deviate considerably at
high firing rates. This effect was observed throughout our sample of retinal ganglion cells. Panel B
shows the ratio of the average spike time deviation for different firing rates, averaged over a pool of
retinal ganglion cells (n = 37). At low firing rates (0 to about 20 spikes s™), spike timing precision in
recorded spike trains is similar to that of the simulated spike trains. At higher firing rates however, spike
timing precision is substantially higher in the recorded spike trains when compared with the simulated
responses. At a firing rate of about 80 spikes s, spike timing is approximately 2 times more precise and
the ratio increases up to about 2.5 times at a firing rate of 250 spikes s

Results for an example cell are shown in Fig. 6. For clarity, the figure shows spike
timing precision, i.e. the reciprocal of the average spike time deviation in each bin.
Clearly, spike timing precision varies with the mean firing rate. For all combinations
of stimulus contrast and temporal frequency, firing rates in corresponding time bins,
are highly similar (Fig. 6, panel B). Yet, we find that spike time deviations in the
recorded spike trains are significantly smaller than in corresponding time bins of the
simulated responses (Fig. 6, panel C). The difference is largest for small spike time
deviations, and decreases with increasing deviation values. This suggests that at low
firing rates, spike timing is equally (im)precise in recorded and simulated spike trains,
but that the precision in recorded responses increases more rapidly with increasing
firing rate.

This was confirmed when spike time deviations were studied as a function of the
firing rate (Fig. 7). Data for an example cell are shown in panel A. At firing rates
above about 70 spikes s™, spike time deviations in recorded and simulated spike trains
form fairly narrow distributions. However, there is an offset between the two
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RGC LGN Figure 8. Increased spike
timing precision of retinal
GRAT | ganglion cells and cells in the

LGN. Histograms show the ratio

between spike timing precision
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recorded from (46 retinal
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drifting random line patterns and
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a reference, dotted lines are
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distributions: at similar firing rates, absolute spike time deviations in the recorded
spike trains are substantially smaller than those in the simulated responses.

The increasing difference between spike timing precision of recorded and simulated
responses with increasing firing rate is a robust effect that we observe throughout the
population of retinal ganglion cells that we recorded from. This is illustrated in Fig.
7, panel B, where the ratio between the average spike time deviation of the recorded
and simulated spike trains at similar firing rates is averaged over a pool of retinal
ganglion cells (n = 37). At low firing rates (0 — 20 spikes s) spike timing precision is
approximately equal in the real and simulated spike trains. With increasing firing rate
however, the precision ratio increases, becomes significantly higher than 1 and at a
firing rate of about 80 spikes s™', spike timing is approximately twice as precise in the
recorded responses than in the simulated responses. The precision ratio increases to
2.5 times at firing rates around 250 spikes s

When we examine precision ratios at a firing rate of 80 spikes s from the entire
population of retinal ganglion cells that we recorded from (Fig. 8, left panels),
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we find that they form narrow distributions for the three different stimulus types.
Peaks of the distributions for sine wave gratings and random line patterns fall in the
same bin (1.8 — 2.0), precision ratios for the movie responses are slightly smaller (peak
at 1.6 — 2.0, mean = 1.74, SD 0.22). Variance of the mean value obtained from cells
in the LGN (mean = 1.45, SD 0.52) is higher than that of the retinal ganglion cells.
This suggests that responses of the first form a less homogeneous population than
those of the latter.

Although the peak of the distribution for LGN responses to sine wave gratings falls
in the same bin as that of the retinal ganglion cells, there is an increased number of
smaller precision ratios. This is particularly noticeable for LGN movie responses,
where a high number of entries is found at a ratio of 1 — 1.2 (n = 5, 22.7%), which
indicates that the deviations of spike timing in these responses are about the same as
those of the simulated Poisson spike trains. LGN responses to random lines form a
broad distribution with 2 entries at a ratio of 0.8 — 1.2, 26 entries between 1.4 and
3.0, and 4 entries at ratios around 4.0 (n = 6.3, 81.2 and 12.5% respectively).

Discussion

Synchronized or correlated firing among a population of sensory neurons can support
a temporal coding scheme®™*. In the present study, we measured responses from
single cells in the front-end visual system to repeated stimulus presentations and
found that spike timing precision of these responses is significantly higher than expected
from the time varying response rate. The eftect was observed in the output of the
retina and LGN, and for all dynamic visual stimuli that we presented, i.e. drifting sine
wave gratings, drifting random line patterns and movie clips of natural scenes

If a proportion of the variability in the responses that we recorded turns out to be
correlated among e.g. neighboring cells, which is not unlikely'*7*  then this should
further increase the significance of fine temporal correlations between neural responses.
We conclude that despite inherent neural noise, spike generation under dynamic,
supra-threshold stimulation results in precise spike timing that meets the requirements
for temporal encoding of visual information.

How can we explain the increased spike timing precision of the recorded spike
trains? Care was taken to ensure that recorded and simulated spike trains were identical
in terms of their time varying response rate, and we have shown that the increased
spike timing precision can not be ascribed to binning artefacts. Differences remained,
even when the simulations were based on PSTHs with 0.5 ms resolution (identical to
the temporal resolution of the recorded signal).

A likely explanation is that spike generation 1s essentially deterministic and therefore
spike timing can not, or not completely be accounted for by a probabilistic model. In
the present paper, we have shown that, in addition to the often reported increased
reliability of spike generation in terms of the spike count, compared with expectations
from a Poisson process™ >, spikes in front-end visual responses are also more precisely timed.
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The measure that we use to quantify spike timing precision is based on the distance
to nearest spikes in responses to the same stimulus. Both the method and the results
that we present in this study suggest an interesting cortical decoding mechanism of
optimal correlation detection for sets of input spike trains. In this scheme, correlation
detection is not performed on the basis of the arrival times of spikes relative to a fixed
time point, but rather relative to the arrival times of the other spikes. This is interesting,
because it does not require a representation of absolute time, which is not easily
implemented in a neural system. Only spikes arriving within sufficiently close proximity
of one another can lead to a postsynaptic spike. Exactly how close this 1s, will depend
on the number of inputs to the neuron and the dendritic integration time constants.

In the present paper, we show that spike timing precision increases with the firing
rate. This may turn out to be an important feature of neural signaling, as it ensures
that responses to optimal stimuli (i.e. stimuli that evoke the highest response rates)
are transmitted at higher fidelity than responses to sub-optimal stimuli. Temporal
fidelity maintains synchrony among neurons and can be used to maintain reliable
information transmission with unreliable subunits*. Furthermore, synchronicity has
been suggested to increase signal transmission speed’” and facilitate neural processes
underlying stereopsis, visual motion detection and perceptual binding® * 3**.

Recent studies have shown that specific aspects of response variability in the rabbit,
salamander retina and cat retina and LGN can be described successtully by a
deterministic model*"**. Keat et al. employ a modified integrate and fire model with
added noise to predict variance in the timing and number of spikes in discrete firing
events. Whereas Reich et al. used a common version of the integrate and fire neuron
and focused on variance of the spike count and similarity in Fourier components of
recorded responses and responses generated with an integrate and fire model. An
interesting question is to what extent such deterministic models with added noise
can also account for the dynamic changes in spike timing precision over the time
course of the response that we demonstrated in this study.
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Abstract

In a previous study, we showed that a probabilistic model, based on the time varying
response rate, can not account for spike timing precision in recorded responses of the
visual front-end. Here, we examined whether a closer approximation could be obtained
with a deterministic model. Therefore a Leaky Integrate and Fire model, with a
single additive noise source, was used to simulate responses to sine wave gratings of
different contrasts and temporal frequencies. Parameters of the model were fitted in
such a way, that the closest approximation to the time varying response rate of the
recorded spike trains was obtained. Inputs to the model were the stimuli that were
used in the electrophysiological recordings, convolved with the spatio-temporal
impulse response of the cell under study.

Two different measures for response variability, one sensitive to variations in the
spike count, and one sensitive to variations in spike timing, were used to assess the
performance of the model. We show that by optimizing the amplitude and temporal
bandwith of the added noise, responses can be obtained that provide a realistic account
of the trial to trial variability that is observed in recorded spike trains. This suggests
that spike timing precision in recorded spike trains can be largely explained from the
interactions between a noisy signal and a fixed spike threshold.

Introduction

In a previous study, we investigated whether the temporal precision of spike generation
in the cat retina and LGN suffices to signal correlations at a fine temporal resolution.
Such fine temporal correlations would constitute a coding scheme that could play an
important role in cortical processing of visual motion and stercopsis. Both tasks are
directly dependent on the detection of correlations between input spike trains. With
increasing stimulus dynamics, temporal correlations on a fine resolution likely become
increasingly important. We found that correlations between individual spikes in
responses to repeated stimulus presentations are substantially higher than one would
expect on the basis of the time varying response rate and could not be accounted for
by a probabilistic model.

In the present study, we examined whether the observed increased spike timing
precision reflects a specific feature of neural signaling, or whether it is a mere byproduct
of the deterministic interaction between a noisy input signal and the spike threshold.
To this end we will investigate whether responses simulated with a common model
for spike generation, the leaky integrate and fire model (LI&F) show increased spike
timing precision similar to that of recorded responses.

The LI&F model™ is a highly reduced version of the Hodgkin-Huxley equations
for neuronal firing. It is based on an evolving, dimensionless state variable (1) that is
compared to a fixed spike threshold. When the value of IV exceeds the threshold,
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1 Fig. 1. Hypothetical effects of
noise and stimulus dynamics on
the variance of threshold crossing

i, times. If a neuron fires a spike

every time the membrane

potential at the site of the axon

—‘-» T — hillock crosses a particular

threshold level, then stimulus-

independent noise added to the
membrane potential, or
variability in the threshold,
inevitably causes deviations in the
specific times at which spikes

Amplitude Omembrane noise

1

0.5

Y v |7
Membrane potential

L Time occur. This is illustrated for
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membrane potential (fuzzy traces). Histograms in the right panel are schematic representations of the
distribution of the times at which the threshold is first crossed. The distribution is expected to become
wider with decreasing signal amplitude (middle trace) or with increasing noise amplitude (bottom
trace). Predicted deviations in spike timing become evident when we compare responses to repeated
presentations of the same stimulus.

a spike is fired and 17 is reset to a fixed sub-threshold value. In this form, the LI&F
model is a deterministic model for spike generation: entering the same stimulus twice
yields identical spike trains. In reality, however, repeated presentation of a stimulus
evokes spike trains that will never be completely identical, and may differ substantially
in both the total number of spikes that were fired and the specific times at which the
spikes occur. In the present study, the LI&F model is therefore extended with a
single, stimulus independent, additive noise source.

In the noisy (N) leaky integrate and fire model (NLI&F), two parameters determine
the variability of threshold crossings on repeated stimulus presentations: first, the
noise amplitude and second, the rate of change of the signal, which reflects the
stimulus dynamics (Fig. 1). Intuitively, manipulating the amplitude of the added noise
should enable a transition from perfectly reproducing responses at an amplitude of
zero, to highly variable responses at large noise amplitudes. Whether intermediate
values yield realistic response variability however, depends not only on the noise
amplitude, but also on the nature of the noise that is added to the signal. The underlying
probability distribution for the noise can be e.g. a uniform, gamma or Gaussian
distribution. If spike timing variability can be accounted for by the NLI&F model,
then an optimized noise source should yield responses that approximate real neural
responses in terms of their spike timing variability.

To investigate whether this is indeed the case, we recorded responses of retinal
ganglion cells to repeated presentations of drifting sine wave gratings. These responses
were used as a reference in the comparison with responses obtained from NLI&F
model simulations. Inputs of the model were the same spatio-temporal stimuli that
were used in the electrophysiological recordings (drifting sine wave gratings of different
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contrast and temporal frequency), convolved with the linear filter characteristics of
the cell under study. To ensure that the time varying response rate is reproduced
accurately by the model, the NLI&F model was fitted to the PSTH of the recorded
responses.

Response variability in the recorded and simulated spike trains is compared with
two different measures. First is the coefficient of variation (Cv), a common measure of
neural response variability that is sensitive to deviations in the number of spikes in
the response*”. The second measure is specifically aimed at measuring spike timing
variability. It measures distances, that we will refer to as spike time deviations, between
nearest spikes in repeated responses to the same stimulus. The more reproducing the
responses in terms of spike timing, the smaller the spike time deviations.

Our results show that with optimized parameters, the NLI&F model provides a
reasonably accurate description of response variability. It is shown that the noise
amplitude is a primary determinant of response variability. Furthermore, we find that
the noise source can be configured in such a way that the model yields spike trains
with realistic trial to trial variability, in terms of both spike count and spike timing
variability. Recorded and simulated spike trains showed similar Cv values, average
spike time deviations and spike time deviation distributions for the set of sine wave
stimuli that was used.

We then proceeded to test if recorded responses exhibit a specific effect that one
would expect from the interaction between the dynamics of the input signal and the
spike threshold of the NLI&F model. The model predicts that the variability in the
times of threshold crossing on repeated stimulus presentations decreases with increasing
rate of change of the signal (Fig. 1). If spike generation can be approximated by the
model, then we would expect that both increasing stimulus contrast, and increasing
the temporal frequency content of the stimulus, lead to more precise spike timing.
We find that this specific effect, that is predicted by the model, is observed in the
recorded responses.

Methods

Electrophysiological preparation and recordings

Extracellular single unit recordings from retinal ganglion cells were obtained with
tungsten microelectrodes (TM33B20KT, World Precision Instruments, USA, typical
impedance 2.0 MQ at 1.0 kHz) in anesthetized adult cats of cither sex (3 - s kg).
Surgical and experimental procedures were standard and in accordance with the
guidelines of the Law on Animal Research of the Netherlands and of the Utrecht
University’s Animal Care and Use Committee.

Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20
mg kg, i.m.). Following preparatory surgery, anesthesia was maintained by artificial
ventilation with a mixture of 70% N,O - 30% O, and halothane (0.4 - 0.7%). To
minimize eye movements, muscle paralysis was induced and maintained throughout
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the experiment by infusion of pancuronium bromide (Pavulon, o.1 mg kg™ hr™,
1.v.). Oxygen-permeable contact lenses (+3.5 to +5 diopters, courtesy of NKL,
Emmen, Holland) were used to focus the visual stimulus on the retina and to protect
the corneae.

Responses from retinal ganglion cells were recorded in the optic tract, at Horsley-
Clarke coordinates A8,L 1o, approximately 20 mm below the cortical surface’. Action
potentials from single cells were detected with a window discriminator (BAK
Electronics Inc., USA) and their time of occurrence was measured at 0.§ ms resolution
(PCI 1200, National Instruments) for on-line analysis and storage (Apple Macintosh
G4 computer, custom-made software).

Visual stimulation
Stimuli were computer-generated (ATI rage graphics card, Macintosh G4 computer,
custom-made software), presented on a 19", tooHz CRT monitor (SONY Trinitron
multiscan 400PS) at 57 cm from the optic node and centered on the receptive field of
the cell under study, mean luminance was s4 cd'm™. For those cells that showed
significant response modulation to the 100Hz refresh rate of the monitor, the frame
rate was increased to 120Hz.

Cells were classified as X or Y on the basis of a null-test'”. Responses to repeated
3 second presentations of drifting sine wave gratings were used for the model analysis.
The sinusoidal gratings fully covered the receptive field and spatial frequency was
optimized for the cell under study. Temporal frequency and luminance contrast were
varied (0.5 — 32 Hz and from 10 — 70 % respectively). A typical ‘stimulus block’
consisted of 7 temporal frequencies and 7 contrasts resulting in 49 unique grating
stimuli that were presented in a random order. Only single unit recordings that were
stable during at least 20 repeats of the entire stimulus block, and showed significant
response modulation to the high contrast stimuli, were accepted for analysis.

Linear receptive field measurements

Linear receptive field characteristics of the cells were measured with a spatial white
noise stimulus with binary luminance modulations'” *. The white noise stimulus 17/
consisted of a square array of 16x16 patches, fully covering the receptive field of the
cell under study. Individual patches varied in size between 0.17 and 0.53 degrees,
depending on the cell’s receptive field size. Luminance of each patch alternated in

11, 12

time between dark (value -1) and light (value 1) states, according to a unique pseudo-
random binary sequence. The duration of a single state was 20 ms, which was found
short enough to effectively capture the cell’s dynamic response range.

The cell’s response function R merely varies with time between the binary states ‘1’
(bin contains an action potential or ‘spike’) and ‘0’ (no spike). The reverse correllogram
is given by:

F(X,y,T):ZZZR(t)WV(X,y,t—T) ;0<T<150ms (1)
X y 1
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Fig 2. Model scheme. The model analysis is centered around a common version of the leaky integrate
and fire model. Spike trains were simulated on the basis of the dynamic visual stimuli S(x,y,¢) that were
used in the electrophysiological recordings. First, a linear estimate of the somatic current was computed
by convolving the visual stimulus with the spatio-temporal impulse response of the cell under study.
Before entering the leaky integrator, the signal is scaled with a single linear gain. This gain is fitted
independently for each stimulus condition (see Methods for a detailed description of the fitting procedure).
The integrator unit encompasses an integrator with two leak time constants, each with its own weight
factor. Then, an instantaneous noise value # (¢) is added to the output of the integrator, the membrane
potential, prior to comparison with a fixed threshold /. If the membrane potential exceeds /1, the output
of the model r(t) is 1. The output is zero at all other times. The occurrence of a spike resets the integrator
to a predefined reset value, which simulates the refractoriness that follows the generation of spikes in
real neurons. Model simulations were run at a temporal resolution of 0.5 ms, identical to the temporal
resolution at which spike were sampled in the electrophysiological recordings.

The reverse correllogram F(x,y,t) provides the best linear approximation to the cells
response properties'’. Reverse correlation functions with a duration of 150 ms
sufficed to capture all significant correlations between stimulus and response.

NLI&F Model

The same drifting sine wave stimuli that were used in the electrophysiological
experiment, were also used in the model simulations. The model scheme is illustrated
in Fig. 2. Spatio-temporal integration is approximated by convolving the stimulus
with the reverse correllogram of the cell under study. If nonlinearities are ignored,
the output signal of this convolution, S(t), is proportional to the input current into
the cell. S(t) is then passed through a single linear gain to compensate for
underestimation of the cell’s response to high temporal frequencies, a well known
shortcoming of the white noise receptive field mapping technique.

Note that when sine wave stimuli are used, linear scaling of the convolved stimulus
to obtain an optimal fit makes the convolution step apparently redundant: convolution
is a linear operation and therefore a sinusoidal input, by definition, results in a sinusoidal
output signal. The input and output sine waves may only differ in amplitude and
phase. Adding a linear gain after the convolution clearly renders the amplitude change
irrelevant. Still, convolution deals with a phase shift that is required due to neural
response latency. Equally important, the procedure constitutes a general approach
that can be used to model responses to any given stimulus, even those that can not be
captured in simple mathematical terms, such as movies of natural scenes.
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The state variable of the leaky integrate and fire model, which will be referred to
as the membrane potential V,,, evolved as a function of the input current S(t) according
to the following expression:

Mo = (0= gV, ~W) gV, V) 8

C
d

The model contains two separate leak terms, with different reversal potentials (I and
1) and different time constants, specified by the combination of the capacitance C
and the two resistances g; and g. Time constants are defined by a combination of a
resistance and a capacitance as follows:

- T
C R 3)

The spike threshold 17, was fixed at o and after a spike was fired, the membrane
potential was reset to —70. When I, exceeds 1, a spike is fired and the output r(t) = 1.
At all other times, r(t) = o. The set of responses r(t) are the spike trains that were
compared to the recorded spike trains.

The terms that are used for constants and variables in the model have been adopted
from neurophysiology. Although their roles in the model reflect those of their assumed
neural counterparts, no effort was made to constrain values to a physiological range.
We are interested in the statistical properties of signals that arise from the interaction
of an evolving state variable and a fixed threshold, in the presence of noise. Clearly,
this can be studied without a full quantitative account of the mechanisms underlying
spike generation.

Additive Noise

Prior to comparison with the spike threshold, an instantaneous value from the noise
function ng(t) is added to the membrane potential I/,. The noise function is generated
as a time series of random numbers, drawn from a Gaussian, or uniform distribution
of fixed width, i.e. the noise amplitude. To remove a proportion of the high frequency
noise, the noise function is low-pass filtered with time constant f,. What the adequate
value of the time constant should be is investigated in this study.

Fitting procedure

The model was fitted to recorded responses by a computer algorithm that minimized
the squared diftference between PSTHs of the recorded spike trains and PSTHs of
the simulated spike trains. The general parameters of the model, i.c. offset of the
stimulus signal, the input resistance gl and the input capacitance C, were fitted at
once for the entire set of sine wave stimuli (49 unique combinations of temporal
frequency and contrast). Noise level of the model was set at such a value, that no
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sharp peaks due to synchronization over repeated simulations were visible in the
PSTHs. Bin size of the PSTHs used in the fitting procedure was 20 ms. This was
sufficiently large to obtain a relatively smooth description of the time varying rate,
thereby minimizing interference from peaks in the PSTH due to sampling errors.
With the time constants and reversal potentials fixed at the values obtained from
the fit, a set of spike trains was generated by setting the noise amplitude to the
appropriate value, yet keeping one free fit parameter, the linear input gain. The gain
was optimized independently for each of the 49 stimulus configurations. Optimizing
the input gain and evaluating the quality of the fit on the basis of the PSTHs ensured
that the NLI&F model was optimized for reproducing the time varying response rate
of the recorded responses. This is a principle requirement for the simulations. To
what extent response variability is also reproduced, is the objective of this study.

Measures or response variability
Two components of trial to trial response variability in the recorded and simulated
responses to repeated stimulus presentations will be compared quantitatively. First,
the variability of the total number of spikes in the responses, and second the variability
in the timing of individual spikes.

Variability of the number of spikes is measured with the coefficient of variation (Cv).
The Cv is the ratio of the standard deviation to the mean spike count of the spike
trains:

N
—\2
A ; where o, =—Z(Xj —X) =(4)

and x;is the total number of spikes in the j" response from the set of N responses to
the same stimulus.

Spike timing variability is quantified with the spike time deviation measure. This
measure is based on the distance between nearest spikes in subsequent responses to
the same stimulus (Fig 3). For each spike in each spike train from the set, the distance
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to the nearest spike in all other spike trains is computed. Distances are expressed in
units of time and will be referred to as spike time deviations. For any given stimulus, we
can compute the average spike time deviation of recorded or simulated responses,
which expresses spike timing variability in a single value. But we can also investigate
the distribution of spike time deviations, or study the spike time deviation over the
time course of the response. In the present study, we exploit these possibilities by
applying the spike time deviation measure in the form that is appropriate to answer
the different questions that are raised.

Results

A leaky integrate and fire model with added noise (NLI&F model) was used to
simulate retinal ganglion cell responses to drifting sine wave gratings. Fitting the
NLI&F model to the recorded responses ensure that PSTHs of the model spike trains
closely matched those of the recorded responses. Fig. 4 shows recorded and simulated
responses to sine wave gratings of different contrasts, drifting at 4.0 Hz. Scatter plots
of the mean firing rate (Fig sA) and modulation amplitude and offset of the responses
(Fig 5sB) show that the optimized NLI&F model can accurately predict the recorded
responses to dynamic stimuli.

An exception to this are the modulation amplitudes of the simulated responses to
the highest temporal frequencies (16 and 32 Hz), where the model underestimates
the recorded modulation amplitude. At 16 Hz the underestimation is about 20%, at
32 Hz the deviation is larger. This is a shortcoming of the model simulations and no
conclusive statements will be made based on these responses, as an accurate prediction
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Fig. 5. Comparing mean rates and modulation amplitudes. A. Scatter function of the mean
firing rate of recorded and simulated responses to the entire set of drifting sine wave stimuli (7 temporal
frequencies, 0.5 — 32 Hz and 7 contrasts 10 — 70%). Mean firing rates of the two sets of responses are in
very close agreement. B. Scatter function of the modulation amplitudes for the same responses as plotted
in panel A. Sine functions were fitted to PSTHs of the different responses. Frequency of the fit was
fixed, modulation amplitude, offset and phase (not shown) of the sine wave functions were obtained
from the fit. The offset (diamonds) reflects the magnitude of half~wave rectification in the responses.
Values for the two data set fall very close to the unity line (dotted line). Modulation amplitudes for the
lower temporal frequencies (filled circles) are highly similar in the two data sets. For the higher temporal
frequencies however, values deviate, and the divergence increases with increasing contrast.

of the firing rate is a prerequisite of this study. The important question that will be
dealt with here is to what extent the NLI&F model can account for the trial to trial
variability of the recorded responses.

Our intuition about the interaction between an evolving state variable with added
noise and a fixed spike threshold is that the magnitude of the variations in the times
at which the state variable exceeds the threshold value (the timing jitter), is co-
determined by two factors: the amplitude of the noise, and the rate of change (slope)
of the state variable (Fig. 1). We first assess whether we can generate spike trains that
provide a realistic account of spike timing variability by manipulating the noise
amplitude of the NLI&F model. We then continue to investigate if spike timing
variability in the simulated and recorded spike trains is slope dependent.

Additive noise in the NLIGF model

Two alternative noise sources were considered. Noise values of the first were drawn
from a uniform distribution, whereas those of the second were drawn from a Gaussian
distribution. We found that due to inevitable low-pass filtering (see Methods), extreme
values from the Gaussian distribution can pull IV, away from the spike threshold for
considerable amounts of time during which no spikes were fired, thereby causing



The role of spike generation in neural response variability

BOF  Gional Fig. 6. Simulated membrane
- e e potential with a(.ided .noise.
T 10 Examples of two simulations of
2 the membrane potential with
£ w0 M v l | l two different amplitudes of
% My e “v !‘,I‘ ““ 'W‘“”\ l& l” added noise. The stimulus
‘% Y - A i I | \L | “‘ ll , f 1| UM r Il consisted of a sine wave grating
7 T Pl ‘ IR i drifting at 4.0 Hz, 50% contrast.
u l H : ‘
S 50 [ Noise was drawn from a uniform
o distribution with a width of 100

100 . . . . . . . . . and 300 (left and right panel,
500 600 700 800 900 500 600 700 800 900 1000 rCSpCCtiVCIY) and was low_pass

Time (ms) Time (ms) filtered with a time constant of
2.5 ms. The spike threshold (dotted line) is added as a reference. Note that this illustration gives an
impression of the relative amplitudes of signal and noise in the simulations. To this end, noise is added
to the input signal. During the simulation, spikes are fired at each threshold crossing, after which the
membrane potential is reset to -70. The actual time course of the membrane potential is therefore
substantially different.

large gaps in the spike train. This can be avoided by excluding noise values that
deviate from the mean by more than e.g. 30. Qualitative analysis showed that this
does not yield substantial improvements compared to the model with uniformly
distributed noise. This can be explained partly by the fact that the uniform noise is
low-pass filtered prior to addition to the signal. As a result, the distribution of the
actual noise values in the simulation is non-uniform (data not shown). We choose to
proceed with the NLI&F model with low-pass filtered additive noise that was drawn
from a uniform distribution.

We compared spike time deviation histograms of recorded and simulated spike
trains. Because spike time deviation histograms are based on the temporal deviations
between nearest spikes in responses to repeated presentations of the stimulus, they
represent a primary statistic of spike timing variability.

Varying the noise amplitude of the NLI&F model (examples shown in Fig. 6)
leads to systematic changes in the spike time deviation histograms (Fig. 7A). Small
noise amplitudes yield distributions with a higher proportion of small spike time
deviations than large noise amplitudes. We find that the responses of the retinal ganglion
cell that we use as an example in this study are best approximated by NLI&F spike
trains with a noise amplitude between 300 and 400 (these are arbitrary units, but see
Fig. 6). As a reference, the distribution for responses obtained with a rate-based
Poisson model is also included in the figure (Fig. 7A, dotted line). The comparison
shows that the NLI&F model provides a substantially better description of response
variability than the Poisson model. However, deviations between the shape of the
curve for the recorded and the simulated responses remain.

We examined whether the match could be improved by manipulating the power
spectrum of the additive noise. To this end, we varied the time constant of the low-
pass filter that was used to filter the noise signal. Although the bandwidth of the noise
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Fig. 7. Spike time deviations in recorded and simulated spike trains. Spike time deviations, i.e. distances
between nearest spikes in responses to the same stimulus, are presented in a histogram. A. Distribution
of the recorded responses (filled circles) to a drifting sine wave grating (4.0 Hz, 50% contrast) and
distributions obtained from the leaky integrate and fire model with added noise (open symbols). Time
constants of the model were optimized for the cell under study (see Methods for a description of the fit
procedure). Magnitude of the added noise was varied. Noise was filtered with a time constant of 2.5 ms.
As a reference, the result obtained with a Poisson model in an earlier study, is also included in the figure.
B. Modulating the time constant of the low-pass filter that was used. The random series of noise values
was low-pass filtered before values were added to the membrane potential. We find that different time
constants of the filter alter the shape of the distribution, but in a way that is rather similar to manipulations
of the noise amplitude. In subsequent model analysis, we used a time constant of 2.5 ms (open rectangles).

directly effects the shape of the spike time deviation distribution, it does not increase
the similarity between the model and the recorded histograms (Fig. 7B). Therefore a
time constant of 2.5 ms is used in the remainder of this study as a close approximation.

To compare recorded and simulated response variability with quantitative measures,
average spike time deviations were computed from the histograms of the recorded
and the simulated responses with a noise amplitude of 300. We find that average
spike time deviations correspond well for the entire set of stimuli that was presented
(Fig. 8A). A second measure of response variability, the variance of the total number
of spikes in subsequent responses also scales with the noise amplitude (Fig. 8B). The
ratio of the standard deviation to the mean spike count, the coefficient of variation (Cv),
also increased with noise amplitudes. At a noise amplitude of 400, there is fair agreement
between Cv values of the simulated and recorded responses. A noise amplitude of
300 results in an underestimation of the recorded Cv values. Both measures, the first
sensitive to variability of spike timing and the second sensitive to the spike count,
show that the noise amplitude is indeed a parameter that can be used to generate
model responses with realistic trial to trial variability.
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Fig. 8. Comparing response variability of recorded and simulated spike trains. Response
variability was assessed with two different measures. The first expresses variability in the spike count
(coefficient of variation, Cv), whereas the second measures variability in spike timing. Scatter plots
show the values for all recorded and simulated responses to the drifting sine wave grating stimuli (7
temporal frequencies 0.5 — 32 Hz, 7 contrasts 10 — 70%). A. Cv values for the simulated responses
generated with a noise amplitude of 300 are lower than those of the actual recording. With a noise
amplitude of 400, data points lie significantly closer to the unity line, although the lowest Cv values are
slightly larger than those of the corresponding recorded responses, whereas at high Cv values, the model
Cv values are slightly lower. B. Scatter plot of the average spike time deviation of recorded and simulated
responses. Noise amplitude was 300. Combinations of high contrasts and high temporal frequencies
yield the smallest average spike time deviations. Average spike time deviations are slightly higher in the
recorded responses, but data points are located close the unity line. The largest deviations are observed
for the lowest temporal frequency (0.5 Hz).

Variability as a function of time

Deviation histograms and average spike time deviations do not reveal the dynamic
changes of spike timing precision over the time course of the response. We therefore
computed the average spike time deviation of the recorded and simulated responses
in small time bins (10 ms). If spike trains generated with the NLI&F model show the
same dynamic changes in spike timing precision over time, then a scatter plot of the
average deviation values of simulated and recorded responses in corresponding time
bins, should show a narrow distribution of data points that lies symmetrically around
the unity line.

Scatter plots based on recorded and simulated responses to sine wave gratings,
drifting at 4.0 Hz at 50% contrast as an example, show that this is indeed the case (Fig.
9). Panel A shows that mean firing rates in corresponding time bins (bin width 10 ms)
are highly similar. Panel B shows scatter functions of the average deviations in
corresponding time bins (bin width 10 ms), for two different noise amplitudes, 300
and 400. The distribution for a noise amplitude of 300 lies somewhat lower than the
unity line. This shows that spike time deviations in the simulated spike trains are
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Fig 9. Comparing dynamic changes in spike timing precision in recorded and simulated
responses. Parameters of the model were optimized on the basis of the similarity between PSTHs of
the recorded and simulated responses. PSTHs of recorded and simulated responses to drifting sine wave
gratings (temporal frequency 4.0 Hz, 50% contrast) are shown in Figure 3. A. Scatter plot of the firing
rate of recorded and simulated response in corresponding time bins. The figure shows data from simulated
responses with noise magnitudes of 300 and 400 (filled and open circles, respectively). B. Average spike
time deviations in corresponding time bins.

consistently smaller than those of the recorded spike trains. The center of the
distribution for a noise amplitude of 400 lies closer to the unity line, but deviates
slightly towards higher values at the smallest spike time deviations.

Variability as a_function of stimulus dynamics

The NLI&F model predicts that the time at which the spike threshold 1s crossed, is
least affected by additive noise when the rate of change (the slope) of the input signal
is high (Fig. 1). Thus, spike timing variability is expected to decrease with increasing
temporal frequency of the sine wave stimulus. We examined whether this effect can
be observed in the recorded responses.

Difterent temporal frequencies yield responses with different firing rates, in
accordance with the temporal tuning characteristics of the cell under study. Because
the spike time deviation measure is based on distances between nearest spikes in
subsequent spike trains, the measure is directly affected by the average distance between
spikes, and the average distance varies with the firing rate. This can be avoided by
normalizing the spike time deviation to the mean firing rate. Because the model also
suggests that effects may be different at different levels of the input signal, we computed
spike time deviations in small time bins (5.0 ms) and plotted these as a function of the
mean firing rate in the same time bin. This enables detailed investigation of spike
time deviations over the time course of the response. From the mechanics of the
model, we would expect to find different scatter functions for the responses to different
temporal frequencies.
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Fig. 10. Spike timing precision as a function of the firing rate. Average spike time deviations,
computed in small time bins (10 ms), are plotted against the firing rate in the same time bin. Data was
obtained with sine wave gratings drifting at different temporal frequencies (0.5 — 32 Hz, 70% contrast).
NLI&F model predictions are shown in the left panel (noise amplitude = 300). Recorded responses to
the same sine wave stimuli yield highly similar results (right panel).

‘We find that this is indeed the case for the recordings obtained from a single retinal
ganglion cell that we use as an example in this study (Fig. 10). Model predictions and
results from the recorded spike trains are highly similar (left and right panel,
respectively). The figure shows that for all temporal frequencies, spike time deviations
decrease with increasing firing rate. The only exceptions to this rule are data points
for the highest temporal frequency, i.e. 32 Hz, this will be dealt with in the next
section. At firing rates above about 70 spikes s™', lines corresponding to the different
temporal frequencies overlap completely. At lower firing rates, however, the functions
deviate in a systematic manner. This shows that at the same firing rate, spike timing
in responses to high temporal frequencies is more precise than in responses to low
temporal frequencies. This reflects an interesting property of neural signaling, that is
captured very accurately by the model.

The deviation that is observed for the predicted and recorded responses to sine
wave stimuli drifting at 32 Hz, is likely due to ‘spike skipping’. At this high temporal
frequency, one cycle of the stimulus has a duration of about 33 ms. Due to the
temporal filter properties of the cell, its response rate will be small. So small in fact,
that the number of spikes that are fired per period, becomes less than 1. Note however,
that those spikes that are fired, will be sharply locked to the phase of the stimulus.
This creates gaps in the spike train, and at this point roughly two spike time deviations
will be observed: very small ones (on the order of one millisecond), related to stimulus-
locked spikes, and large ones, which are integer multiples of the stimulus period,
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because when a spike is absent in the second spike train, the nearest spike will be
roughly one, or sometimes multiple stimulus periods away. This gives rise to the
almost constant average spike time deviation of about 16 ms that is observed in the
figure, which suggests that approximately half the spikes have been skipped.

Discussion

‘We have shown that a deterministic model with a single noise source can provide a
fairly realistic prediction for trial to trial variability of neural responses. Variability
was assessed with a common measure, the coefficient of variation (Cv), which expresses
the variability in spike count irrespective of the temporal structure of the spike train,
and with the spike time deviation measure, which quantifies spike timing variability,
irrespective of spike count. They can be thought of as orthogonal measures, that,
when taken together, provide a complete account of response variability.

We find that the deterministic nature of the leaky integrate and fire model is a
useful basis for modeling response variability. Figure 7 shows that, despite its simplicity
and limited number of components, it provides a much more realistic account of
spike timing variability than a probabilistic model that was evaluated in an earlier
study.

One of the limitations of the additive noise source that we used (a low-pass filtered
series of random values drawn from a uniform distribution) was that at very large
noise amplitudes, the input gain of the model had to be reduced substantially to
obtain spike trains with the same firing rates as the recorded spike trains. This can be
explained by the fact that at extreme values, the noise was large enough to evoke
spikes virtually independent of the stimulus. This dependence of the model gain on
the noise level is undesirable. Although it played a role only at noise amplitudes that
exceeded those that led to spike trains that resembled the recorded responses, an
improved model should account for highly noisy spike trains without eftecting the
firing rate directly.

In our attempt to model spike timing variability, we obtained interesting results
with a single, additive noise source. Real neural noise may consist of multiple
components, with different amplitudes and different power spectra, e.g. high frequent
noise from ion channels and low frequent noise from fluctuations in the light adapted
state of the retina. It is therefore reasonable to assume that the performance of the
model will improve when the noise source in the model has similar characteristics.
Furthermore, in addition to stimulus independent noise, it may turn out that a
significant proportion of the noise underlying spike timing variability is in fact stimulus
dependent. Mechanisms that take this into account can be implemented in the model,
which opens a new and interesting field of study. Finally, improved models may be
used to investigate how optimal noise settings change with e.g. the light adapted state
of the cell. The model analysis that we present in this paper is an initial step in the
direction of such investigations.
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The NLI&F model, in combination with the spike time deviation measure that
we used, has provided interesting new insights into the relation between stimulus
dynamics and spike timing variability. Steinmetz, Manwani and Koch'® showed that
two different noisy encoder models (Integrate and Fire model with random threshold
and Hodgkin Huxley model) are more efficient for slowly varying stimuli, in the
sense that the coding fraction" of their responses is higher. They conclude that noisy
spike encoders in realistic environments have a preference for inputs which vary
slowly in time. A study of the fly H1 neuron by Warzecha and Egelhaaf™ supported
this experimentally. In the present study we systematically varied stimulus dynamics
and find converging evidence for the contrary.

Our results show that stimulus dynamics affect spike timing precision in a strong,
systematic manner: the more dynamic the stimulus, the higher the spike timing
precision — up to the limit where the stimulus exceeds the dynamic range of the cell
(Fig. 10). This is in agreement with studies of the mammalian retina®, cortex™ *, and
fly motion sensitive neuron H1'’. We conclude that the NLI&F model constitutes a
useful basis for the prediction and investigation of spike timing precision in the sensory
nervous system.
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Abstract

We introduce the motion reverse correlation method (MRC): a novel stimulus
paradigm based on a random sequence of motion impulses. The method is tailored to
investigate the spatio-temporal dynamics of motion selectivity in cells responding to
moving random dot patterns. Effectiveness of the MR C method is illustrated with
results obtained from recordings in both anesthetized cats and an awake, fixating
macaque monkey. Motion tuning functions are computed by reverse correlating the
response of single cells with a rapid sequence of displacements of a random pixel
array (RPA). Significant correlations between the cell’s responses and various aspects
of stimulus motion are obtained at high temporal resolution. These correlations provide
a detailed description of the temporal dynamics of e.g. direction tuning and velocity
tuning. In addition, with a spatial array of independently moving RPAs, the MRC
method can be used to measure spatial as well as temporal receptive field properties.
We demonstrate that MR C serves as a powerful and time-efficient tool for quantifying
receptive field properties of motion selective cells that yields temporal information
that can not be derived from existing methods.

Introduction

The introduction of white noise stimuli and triggered averaging in neuroscientific
research’ provided new and important insights in response properties of neurons
throughout the nervous system. Examples of systems in which this method was used
are cat primary auditory cortex™?, cat primary visual cortex*”, catfish retina’, human
motor units'’, monkey visual area MT"""* and fly Hr cells'* ™.

In visual system research, reverse correlation is an effective tool for studying linear
response characteristics of single neurons. Stimuli typically consist of spatial patterns,
of which luminance contrast of constituting elements is modulated according to a
pseudo random sequence. The spike triggered average stimulus is proportional to the
first order Wiener kernel and provides the best linear approximation of the cell’s
spatio-temporal impulse response.

In principal, a motion impulse response can be derived by investigating higher

11, IS, 16

order kernels . Motion energy in a spatio-temporally uncorrelated stimulus is
sparse however, which results in either low signal to noise ratios or time-consuming
recordings. We propose to surpass these constraints by measuring the motion impulse
response directly with a subspace reverse correlation technique’. Instead of random
luminance contrast modulation, this requires a stimulus in which random motion
impulses are presented. We developed a paradigm that satisfies this constraint. We
call it Motion Reverse Correlation: MR C.

In an MR C experiment, the visual system is stimulated with motion impulses by

presenting a rapid sequence of displacements of a Random Pixel Array'” (RPA).
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Parameters for each displacement are drawn randomly from a predefined set. Cross-
correlating the response of a motion sensitive neuron with the motion impulse
sequence yields a receptive field reconstruction in the motion domain. This is a
description of the temporal dynamics of motion selectivity, from which we can derive
the cell’s motion tuning curves over time.

Receptive field properties of motion selective cells are traditionally quantified by
measuring the response to sustained motion stimuli, presented in consecutive trials of
multiple second durations (further referred to as the ‘classic’ method). This constitutes
the cell’s step response to the motion stimulus and provides tuning functions for various
motion parameters. The step response however, reflects both the underlying impulse
response and motion integration over time. The MRC method accurately and
efficiently measures the motion impulse response. The highly interleaved MR C stimulus
makes measurements relatively robust to fluctuations in responsivity and does not
induce adaptation to strong or prolonged stimuli”. The statistical independence of
subsequent directions of motion is an essential difference between the MR C paradigm
and the ‘continuous mapping’ method*”*" that also employs continuously changing
directions of motion but is highly correlated over time, which excludes the possibility
of computing reverse correllograms with a high temporal resolution.

In the present study, we illustrate the potential of the MR C-paradigm by applying
it to the analysis of complex cells in cortical areas 18 and PMLS of anesthetized cats,
and single units in area MT of an awake, fixating monkey. We compare tuning
functions measured with the MR C method to results obtained from the same cells
with the classic method and find that the results are highly similar. We show how
MR C additionally yields a detailed description of the temporal dynamics of direction
and velocity tuning.

A straightforward extension of the method is used to measure spatial receptive
field structure of directionally selective cells, elucidating the temporal dynamics of
center-surround interactions in macaque area MT. The use of spatial motion white
noise for mapping receptive field structure has been previously described by Srinivasan
et al."". The method they describe yields a vector weighted motion receptive field
map that is formally identical to that obtained with MRC. The MRC method
however, due to its computational basis i.e. reverse correlation, adds a temporal
dimension to the receptive field measurement. This is an essential difference and as a
result, the MR C method enables the study of both spatial and temporal interactions,
at high temporal resolution.

In summary, MRC quantifies aspects of the motion receptive field such as the
temporal dynamics of motion selectivity and the time course of specific stimulus
interactions, that cannot be derived from experiments in which continuous motion
1s presented. Furthermore, due to its efficiency, there are few limitations to the subspace
of motion parameters included in an experiment. This opens the door to new
experiments that will provide novel insights into cortical processing of visual motion.

53



54

Chapter 3

Fig. 1. Computation of the Motion impulse stimulus
motion reverse correllogram
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different directions. Values now range from o to 1 and zero-correlation level is 1/n, where n is the total
number of directions. Correlation functions obtained in this manner express the probability of observing
a specific motion impulse at a specific point in time preceding a spike, relative to the probability of
observing motion impulses from any of the other directions.

@ Reverse correlation function

The MRC method

The visual stimulus consists of a rapid sequence of displacements of a Random Pixel
Array (RPA). The RPA is displaced according to parameters chosen at random from
a predefined set. Elements in this set will be referred to as ‘states’. Each state occurs
with equal probability and defines the step size, delay and direction of the displacement,
as well as additional parameters such as luminance-contrast and pixel size. States in a
single experiment may differ in one aspect, such as direction of motion in a direction-
tuning experiment, or in multiple aspects. The RPA makes a single step during each
state, before the next randomly chosen state starts.

We compute the temporal dynamics of motion tuning by reverse correlating a
cell’s responses with the motion impulse sequence. Reverse correllograms for the
different states are computed separately. For each spike, the relative time of occurrence
of motion impulses from the different states is added to a corresponding array. Fig. 1
illustrates the procedure for computing the reverse correlation function of motion in
the upward direction. Reverse correllograms are normalized by dividing the number
of motion impulses in each 0.5 ms time bin of the ditferent cross correlation functions,
by the sum of motion impulses in the bins. Values now range from o to 1 and zero-
correlation level 1s 1/n, where n is the total number of states. Correlation functions
obtained in this manner express the probability of observing a specific motion impulse
at a specific point in time preceding a spike, relative to the probability of observing
motion impulses from any of the other states.
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The time of occurrence of spikes and motion impulses is measured at a temporal
resolution of 0.5 ms. This results in a sparse distribution of motion impulses, and
therefore in a somewhat noisy cross correlation function, depending on the actual
total number of spikes. The cross correlation function can be improved easily however,
without significant loss of information. Fig. 2 shows the effect of smoothing a motion
reverse correllogram by sliding window averaging with a Gaussian profile of difterent
widths (standard deviations). For the results presented in the remainder of this article,
we use a standard deviation of § ms as this removes most of the noise without affecting
the shape of the function and its main parameters. The temporal position of its optimum
and the first and last point of significant deviation from chance level correlation
remain unaltered (Fig. 2).

Significance levels for the reverse correllograms are derived from the mean and
variance of the non-correlated part of the correlation function™. For this we use a
time interval in the smoothed reverse correllogram affer the spike, as correlations
between spikes and stimuli that have not yet been presented must be interpreted as
chance level correlations.

Pseudo-random sequences are generated by randomly shuffling an array containing
equal numbers of elements referring to each of the states. This ensures that at the end
of the measurement, each state has occurred equally often, yet in a pseudo-random
order. The length of the sequence and the delay between subsequent steps determine
the total duration of an experiment. The length required for obtaining acceptable
signal to noise ratios depends on the responsivity of the cell and increases with the
number of different states in the MR C-stimulus.
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of the image on the screen before and after a motion step. Care must be taken to prevent the ‘random
walk” of the RPA from crossing the borders of the map. This is particularly important at large step sizes
and with long random sequences. We avoided this problem by adding a copy of the left flank of the
image to the right flank, top flank to the bottom and by making the corner patterns identical. During
the experiment, the RPA is shifted to the opposite side of the map upon reaching a border. This
effectively turns the bitmap into a torus, allowing for unlimited sequence lengths, even at high velocities.

Stimuli were computer-generated (ATT Rage graphics card, Apple Macintosh G4
computer, custom-made software) and displayed on a linearized 19”, tooHz CRT
monitor (400PS, Sony Trinitron) (cat data), or a linearized 217, 75-120 Hz CRT
monitor (500PS, Sony Trinitron) (monkey data). Mean luminance was 60.4 cd m™.
We used a square or rectangular aperture (100 to 400 deg’) centered on the receptive
field of the cell under study and positioned at §7 cm from the optic node.

The RPA (200x200 to 600x600 pixels) is copied at frame rate (75-120Hz) from a
source bitmap image (7000 x 7000 pixels). Dot pattern of the source image remains
unaltered throughout the measurement. Specific measures were taken to prevent the
‘random walk’ of the RPA from exceeding the boundaries of the bitmap. Copies of
the top and left flanks were added to the right and bottom respectively and corner
patterns were identical (Fig. 3). Upon reaching the edge, the RPA was shifted to the
opposite side of the source bitmap, prior to its next displacement.

We present results obtained from different MR C experiments, in areas 18 and
PMLS of anesthetized cats and area MT of an awake, fixating macaque monkey. In
the first experiment we measure the temporal dynamics of direction tuning (8 states,
0 - 315 degrees). Pixelsize of the RPA was optimized for the cell under study. The
time-interval and magnitude of the displacements were set to match the preferred
delay and step size of the cell measured with classic methods. In the second experiment,
we measured the temporal dynamics of velocity tuning in macaque area MT. The
stimulus consists of 12 states: six different step sizes (0.025 - 0.8 degrees/step) in both
preferred and anti-preferred direction. Anti-preferred motion states are added to
determine directional selectivity at each velocity. In addition, it prevents adaptation
of the cell to continuous motion in the preferred direction.

We compare the reverse correlation results to tuning curves measured with a
classic stimulus paradigm, consisting of drifting RPAs identical to the reverse correlation
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stimulus in contrast and pixel size, but moving continuously in consecutive 2 and 1
second trials (respectively cat and monkey). Tuning curves are compared on the basis
of the mean and O of a Gaussian fitted to the tuning curves (least squares fit in
Matlab). These two parameters reflect the cells’ preferred direction and tuning width,
respectively.

We extend our investigation by measuring spatio-temporal interactions with a
modified version of the MR C stimulus. Spatial receptive field structure of area MT
neurons was measured with a spatial array of RPAs, e.¢. 5x5 and even 1ox10 RPAs
(further referred to as ‘patches’) in a square, seamless grid. All patches are displaced
simultaneously in their own section of the grid, each one according to its own unique
pseudo-random sequence. A spike-triggered average is computed for each patch in
the grid by reverse correlating the neural response with the motion impulse sequence.
Examples of the stimuli used in this study can be viewed at our web-site”

Electrophysiological methods

Data were obtained from single cells in areas 18 and PMLS of anesthetized adult cats
(both males and females, 3 - § kg) and area MT of an awake fixating macaque monkey.
Preparatory procedures were standard and in accordance with the guidelines of the
Law on Animal Research of the Netherlands and of the Utrecht University’s Animal
Care and Use Committee.

Cat

Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20 mg
kg, i.m.) and maintained by artificial ventilation with a mixture of 70% N,O-30%
O, and halothane (Halothaan, 0.4-0.7%). To minimize eye movements, muscle paralysis
was induced and maintained throughout the experiment by infusion of pancuronium
bromide (Pavulon, 0.1 mg kg™* hr™', i.v.).

Extracellular single unit recordings were obtained with tungsten microelectrodes
(TM33B20KT, World Precision Instruments, USA, typical impedance 2.0 MQ at 1.0
kHz) at Horsely-Clark coordinates 0-7 mm posterior, 0-7 mm lateral”. Action
potentials from single cells were detected with a window discriminator (BAK
Electronics Inc., USA) and their time of occurrence sampled at 2.0kHz (NI-DAQ
PCI 1200, National Instruments, USA) for on-line analysis and storage (Apple
Macintosh G4 computer, custom-made software). Oxygen-permeable contact lenses
(+3.5 to +5 diopters, courtesy of NKL, Emmen, Holland) were used to both focus
the visual stimulus on the retina and protect the corneae.

Monkey

One adult male rhesus macaque (Macaca mulatta) was used in this study. The monkey
was implanted with a head holding device, a search coil for measuring eye movements™,
and a stainless steel recording cylinder placed over a craniotomy above the occipital
lobe. The animal was trained to maintain fixation on a small spot (0.5 deg.) on a
computer screen at §7 cm. The monkey’s eye position was measured using a scleral
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search coil system. Eye movement recordings were sampled at soo Hz.

The monkey was rewarded for correct fixation during the recording with a drop
of water or juice, delivered at 3.5s intervals. Correct fixation was defined as having
the monkey fixate within a circular 1ffl radius around the fixation dot. At this window
size, eye blinks normally lead to fixation breaks. Upon breaking fixation, the stimulus
and fixation dot disappeared for o.5 s, which served as negative feedback for the
animal. The fixation dot subsequently reappeared and after 0.2s of correct fixation,
the stimulus continued. It has been shown that fixational eye movements over a
textured surface may influence the response of neurons in area MT*. The MRC
stimulus presents RPA motion in rapidly changing directions (20 ms intervals). This
is unlikely to evoke correlated fixational eye movements at the time scale of the
reverse correlation measurements. The MR C stimulus therefore minimizes eftects
from residual eye movements.

During experimental sessions, a stainless steel guide tube was used to penetrate the
dura. A plastic grid inside the cylinder with holes at 1 mm intervals provided a
coordinate system of guide tube positions at different penetrations. A parylene insulated
Tungsten microelectrode (1-2 MQ at 1.0 kHz; Microprobe Inc.) was inserted manually
through the guide tube and then manipulated by an MC—4B micropositioning
controller (National Aperture Inc.). Area MT was identified by its anatomical location
including the recording depth, the transition between gray matter, white matter and
sulci along the electrode track and by its electrophysiological properties, a.o. the
prevalence of direction selective units, the similar direction tuning of nearby single
or multi-unit recordings, the receptive field size according to eccentricity and the
changing direction tuning along the electrode track. We have no histological
confirmation of the recording sites because the monkey is currently used in other
experiments.

Application of the MRC method

Direction and velocity tuning

The MR C stimulus is effective in evoking directionally selective responses from cells
in the visual cortex. The ratio of spike count and the total number of motion impulses
during direction tuning measurements was on average 1.00 (* 0.91), 0.24 (* 0.20)
and 0.38 (* 0.36) for complex cells in cat area 18 (n = 81), area PMLS (n = 28) and
macaque area MT (n = 92), respectively. Although the responsivity of cells varies
widely, highly significant reverse correllograms were obtained from cells throughout
the entire range.

In anesthetized cats, MR C experiments with a single RPA have a typical duration of
5000 to 20000 X 20 ms = * 1.5 to 7 minutes. In area MT of an awake macaque monkey
approximately 3 minutes are required to present an entire sequence of $000 states, due
to the monkey breaking fixation every 10-15 seconds. Artefactual effects from breaking
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Fig. 4. Direction tuning reverse correllograms. The motion reverse correlation stimulus consisted
of 8 states, moving the RPA in different directions (o - 315 degrees). A. Reverse correllogram obtained
from a single neuron in cat area 18 based on the response to 10000 motion impulses. Motion impulses
were delivered with 40 ms intervals. 5222 spikes were fired throughout the stimulus presentation. A
strong correlation is observed between spikes and motion in the leftward direction (180 degrees, closed
triangles) around t = -s0 ms. B. Reverse correllogram obtained from a single unit in area MT of an
awake, fixating monkey. Motion impulse sequence-length was 15000. In this measurement, motion
impulses were delivered with 20 ms intervals. Total spike count during the recording was 7263. This
cell shows a preference for motion in the upper-rightward direction (45 degrees, open circles). In both
examples we find strong negative correlation with motion in the opposite or anti-preferred direction. C
and D. Direction tuning indices computed from the reverse correllograms shown in A and B respectively.
The direction index is defined as the difference between the relative probabilities for observing the
preferred and the anti-preferred direction. Baseline and standard deviations are obtained from the non-
correlated part of the reverse correlation function (see Methods).
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Fig. 5. Comparing direction tuning curves obtained with continuous motion (1 second trials) and
MRC method. The continuous motion paradigm will be referred to as ‘classic’. Direction tuning
curves were obtained from single units in area 18 and PMLS of anesthetized cats (n = 27) and area MT
of an awake macaque monkey (1 = 13). Examples of results obtained with the two methods are shown
in panels A and B. For cach cell, we compared the mean and 0 of a Gaussian fitted to the classic (open
squares) and MRC (solid squares) direction tuning curves. Mean and O of the fit reflect the cell’s
preferred direction and the broadness of its direction tuning respectively. Scatter plots comparing mean
and O obtained from classic and MR C measurements are shown in panels C and D. For three cells in
the cat and three cells in MT (open symbols), tuning curves measured with the classic method could not
be fitted satisfactorily with a Gaussian function (fit error > 15%).

fixation are avoided by repeating the stimulus sequence preceding the break by one
period of the reverse correllogram (typically 200-300 ms) after correct fixation is
regained. Spikes fired during this period are excluded from the analysis.

Fig. 4 shows results from a directional MRC experiment. Data were obtained
from motion selective cells in an anesthetized cat and an awake, fixating macaque
monkey. Top panels (Fig. 4A and 4B) show the reverse correllograms after sliding
window averaging with a Gaussian profile (0 = s ms). The 8 lines represent the
reverse correlation functions for the different directions of RPA-motion (0-315
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degrees). Each line represents the chance that, at a particular point in time preceding
the spike, a motion impulse in that specific direction occurred. Both examples show
highly significant correlations between particular directions of motion and the
occurrence of spikes. Correlations over time are expressed as the relative probability
that a motion impulse in a particular direction occurred, given a spike at t = o. In Fig.
4C and D the time course of direction selectivity is plotted (for definition see the
legends).

To verify the MR C results, we also measured responses of single neurons stimulated
with a large-field RPA drifting in one of 8 directions in consecutive, 2 and I second
trials (cat and monkey respectively, marked ‘Classic’ in Fig. 5). Examples of tuning
curves obtained with the two different methods are presented in Fig. sA and sB.
Clearly, the cells” preferred directions and tuning width measured with the two different
methods correspond well.

We quantified the similarity of direction tuning characteristics measured with the
two methods over a pool of cells (cat n = 27, monkey n = 13). To this end, Gaussian
functions were fitted to both tuning curves. Mean and O of the Gaussian fits reflect
the measured preferred direction and direction tuning width respectively. Only those
cells for which the classic tuning curve could be fitted satisfactorily (fit-error < 15%)
with a Gauss function were included in the analysis. Fit-errors were computed as the
mean absolute difference, normalized to the maximum of the measured tuning curve:

_100 & % —d|

E
mé& d

(1)

max

where m 1s the number of directions, x is the value obtained from the Gaussian fit,
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Fig. 7. Velocity tuning curves measured in area MT. Panels show examples from two single units
in area MT of an awake, fixating monkey. Tuning curves marked ‘Classic’ (open squares) were obtained
with random pixel arrays drifting at different velocities in the preferred direction. Stimuli were presented
in random interleaved 1 second trials. Each trial was repeated 10 times, error bars indicate SEM  values.
MRC velocity tuning curves (solid squares) were obtained with a motion impulse sequence consisting
of 6 velocities in both the preferred and non-preferred direction. Units of the MRC data (relative
correlation) can not be compared directly to those of the classic method (spikes s). The two methods
however, yield similar preferred velocities and comparable velocity tuning curves.

d is the corresponding measured value and dmax is the peak value of the measured
tuning curve. On the basis of the 15% criterion, three classic measurements of cells in
cat area 18 and three cells in macaque area MT (open symbols in Fig. 5, panel C and
D) were excluded from further analysis. The MR C data obtained from these cells
however, are used in Fig. 6.

Similarity of mean and O values was assessed with a paired t-test. Both cat and
monkey data show no significant difference between the preferred directions measured
with the classic and MR C method (cat: p = 0.34, n = 24, monkey: p = 0.70, n = 10).
For area 18 and PMLS cells, we find a small difference in measured 0 (7.4 degrees,
p = 0.048, n = 24). Data from macaque area MT shows no significant difference in
the measured tuning widths (p = 0.50, n = 10).

A histogram of tuning widths measured with the MR C method in cat and monkey,
is shown in Fig. 6. Average tuning width over the population of single units in
macaque area MT was 39.9 * 15.7 degrees (n=92). Measurements obtained from cat
area 18 and PMLS yield an average tuning width of §5.9 £ 12.4 degrees (n = 27).
These values are in agreement with average tuning widths in area MT reported
elsewhere™.

In addition to providing the same information as the continuous motion paradigm,
MRC has the important advantage that a high resolution temporal dimension is
added to the measurement. Therefore, the temporal development of directional
selectivity can be examined as a function of time. A polar plot movie, showing the temporal
dynamics of direction tuning for a cat area 18 cell can be viewed at our web-site™
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Fig. 8. Direction tuning measured with varying numbers of directions. Panels show examples
of direction tuning curves obtained with the MR C method in area MT of an awake macaque monkey.
Direction tuning curves were measured with a MR C stimulus consisting of motion impulses in 4, 8 or
16 directions, evenly distributed over 360 degrees. Because absolute probabilities are inversely proportional
to the number of directions in the stimulus, tuning curves for the different numbers of directions were
normalized by multiplying the relative probabilities with the number of directions that were presented.
To assess the effect of increasing numbers of directions on the estimated tuning characteristics of the
cells (preferred direction and tuning width), Gauss functions were fitted to the three data sets obtained
from each cell. Preferred directions estimated from the 4, 8 and 16 direction measurements were 63.0,
58.5 and 63.0 degrees (left panel) and o, 13.5 and 11.3 degrees, respectively (right panel). Corresponding
O values of the fits were 28.4, 26.7 and 31.7 degrees, and 47.9, 31.1 and 23.7 degrees, respectively.

To measure velocity tuning, we defined a stimulus consisting of states differing in
both direction of motion, and step size, i.e. the magnitude of the displacement of the
RPA. We show two examples obtained from macaque area MT (Fig 7). In both
experiments, 12 states were used, i.e. 6 different velocities, in both the preferred and
anti-preferred direction. Data analysis is the same as described for the direction tuning
experiment and provides a description of the temporal dynamics of velocity tuning
(data not shown). We find that the tuning curves measured with the MR C method
are similar to those obtained with the classic, sustained motion paradigm. The methods
yield similar tuning curves and corresponding values for the cells” preferred velocity.

Number of states and sequence length

The effect of increasing the number of states in an MR C direction tuning experiment
was investigated with MR C stimuli consisting of radially symmetrical sets of 4, 8 and
16 directions (Fig. 8). MR C tuning curves express the relative probability for observing
a particular motion direction present in the stimulus. Thus, the probability for each
individual direction scales with the total numbers of states. Tuning curves were
therefore normalized by multiplying the relative probability for each direction with
the total number of directions in the stimulus. For comparison, direction tuning
parameters of the measurements preferred direction and tuning width) were obtained
from a Gaussian fit.
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Fig. 9. Improvement of direction tuning curves with increasing sequence length. The time
required to obtain a cell’s direction tuning curve was estimated by computing reverse correllograms
from the response to increasing numbers of motion impulses (10 to 5000, data partly shown in panel A).
A Gaussian function (thick line) was fitted to the tuning function derived from the response to the
entire motion impulse sequence. Deviation between this fit and tuning curves based on different fragment
lengths was computed with eq. 1. During the first seconds of presentation, the quality of the MRC
tuning curves improves very rapidly. After about 15 seconds of stimulus presentation, average deviations
are < 10 %, and after presentation of the entire motion sequence, error values have decreased to 3.83 %.
Classic measurements obtained from the same cells are added for comparison (open squares). Throughout
the recording, classic measurements yield larger error values. We find only moderate improvement
from presenting multiple repeats of the stimuli and after about two minutes (13 repeats), deviations from
the Gaussian fit remain approximately twice as large as those of the MR C tuning curves (7.65 % and
3.83 % respectively). Average MR C results from 88 MT cells (gray line) + 1 standard deviation (dotted
lines) show that the 10 cells used in the comparison are representative for the population of MT cells
that we recorded from.

For two cells, direction tuning curves were obtained with 4, 8 and 16 directions
present in the stimulus. Preferred directions computed from the three measurements
(4, 8 and 16 directions) were 63.0, §8.5 and 63.0 degrees (Fig. 8, left panel) and o,
13.5 and 11.3 degrees, respectively (Fig. 8, right panel). Corresponding O values of
the fits were 28.4, 26.7 and 31.7 degrees, and 47.9, 31.1 and 23.7 degrees. Part of the
difference observed for the 4-direction condition may be a result of fitting 4 data
points with a Gauss function, and therefore reflect sampling errors.

Duration of measurements

We proceeded by investigating the number of motion impulses required to obtain a
reasonable estimate of a cell’s direction tuning curve. To this end, tuning curves
obtained from fractions of the motion impulse sequence were compared with a
Gaussian function that was fitted to the tuning curve obtained from the entire sequence
(8 directions, 5000 motion impulses, example shown in Fig. 9A). Deviations between
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Fig. 10. Temporal offset between peak correlations in a direction tuning experiment. A.
Reverse correllogram obtained from a single unit in macaque area MT. Four directions show a strong
positive correlation with the response (180-315 degrees), at different latencies. This is reflected in the
polar plot on the right. B. Polar plots are constructed from the reverse correllograms by taking the
probabilities for observing a particular direction of motion at different points in time. Clearly, the cell’s
preferred direction changes over time.

the two curves were assessed with Equation 1. As the sequence can be divided into
many short fragments (e.g. s00 fragments of 10 impulses each), multiple error values
can be obtained for each fragment length. We exploited this possibility by computing
errors from a maximum of 30 non-overlapping fragments, which were subsequently
averaged. Solid circles show the results obtained from the 10 MT neurons from
which we have measured both with the classic and the MR C method.

Results obtained from area MT are shown in Fig. 9B. The effect of the number of
motion impulses on the quality of the estimated tuning function resembles an
exponential decaying function (solid circles). Speed and accuracy of the MR C method
expressed in this manner allow a direct comparison to the average results obtained
with the classic method (open squares). Classic measurements consisted of 9 stimuli,
i.e. 8 motion directions and one ‘blank’ stimulus. Stimuli had a duration of 1 second
and the inter-stimulus interval was 0.13 seconds. The minimal time required for a
single presentation of the stimuli was therefore 10.2 seconds. We find that with the
stimulus parameters used here (delay 20 ms, state duration 20 ms), the fit error is less
than 10% within about 15 seconds. This is substantially faster than the classic method.
The fit error decreases with increasing time. After 2 minutes (13 repeats of the classic
method), the deviation from the fitted Gauss function is approximately twice as large
as that of the MR C measurements (7.65 % and 3.83 %, respectively). Note that this
comparison is based on measurements from the same cells (n = 10). MRC results
averaged over 88 MT cells (gray lines) show that the MRC results from this
subpopulation are typical for the cells that we recorded from.
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Fig. 11. Biphasic-like behavior. A proportion of the motion selective cells (about s0 %) in both cat
and monkey show two peaks in the reverse correllogram, corresponding to the anti-preferred and
preferred direction respectively. A. An example from a single unit in area PMLS. B. An example from
macaque arca MT. Similar response profiles have been found in the luminance contrast domain and are
referred to as  ‘biphasic’. The examples shown in figures 4 and 8 resemble a monophasic response.
Panels C and D show the direction index over time computed from the data shown in panel A and B
respectively (see legend Fig 4 for details).

Temporal Dynamics

We find two phenomena in reverse correllograms obtained from both cat and monkey
that illustrate the relevance of investigating the temporal dimension of motion
selectivity. First, a proportion of the cells (about 10%) show considerable differences
in the peak latencies (i.e. time to highest correlation in the reverse correllogram) for
different velocities and directions (Fig. 10). This implies that these cell may be
stimulated most effectively with a change in velocity or direction of motion, or that
different velocities/directions have different response latencies, or both. This resembles
difference between offset and onset latencies reported previously for opposite directions
of motion".
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Fig. 12. Spatial receptive field
structure. Spatial motion
reverse correllograms were
obtained with a spatial array of
RPAs (dimensions: 10 horizontal
by 10 vertical). Motion impulse
sequences from all 100 RPAs
were reverse correlated with the
neuron’s response. The surface
plot shows slices through the
spatial array of correlation
functions at specific points in
time relative to the spike. Plots
were made in MATLAB and
smoothed by cubic spline
interpolation.  Significant
I correlations can be observed
6l from At= -30 to At= -105 ms.
First, there is a strong correlation
between the response and
motion in the preferred direction
in the center. This function peaks
around -60 ms. Negative
correlations with the preferred
direction of motion are found at
spatial locations directly around the center. Peak latency of this negative correlation is considerably
larger than that of the center (-72 and -60 ms, respectively). After reaching its maximum, the correlation
function of the center shows a rapid decline into negative correlation values, before returning to chance
level correlations around about At= -120 ms.
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Second, the pool of directionally selective cells forms a bimodal distribution on
the basis of their directional reverse correllogram. A proportion of the cells show
monophasic behavior, whereas others are biphasic (Fig. 1TA and B, respectively).
These terms are adopted from luminance-contrast reverse correllograms of LGN
cells’ and are possibly related to sensitization or fast adaptive processes. This is the first
evidence that such a dichotomy exists for directionally selective cells. We are currently
further investigating these two phenomena.

Spatio-temporal receptive field structure

In the direction and velocity tuning measurements described in the previous section,
temporal dynamics were investigated with a single, large-field RPA. These
measurements therefore reflect the cells’ tuning properties spatially integrated across
the entire receptive field, ignoring the evidence for center-surround organization
and lateral inhibition in primate area MT?**** and spatial interaction within area M'T
receptive fields*’. To measure spatio-temporal tuning, we therefore extended the
MRC paradigm and presented independently moving RPAs in multiple patches
simultaneously.
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Spatial arrays of up to rox10 RPAs in a square, seamless grid were used to determine
the receptive field structure of single arca MT neurons. All RPAs were displaced
simultaneously in their own section of the grid, each one according to its own unique
pseudo-random sequence. Analogous to the checkerboard stimulus in the luminance-
contrast domain’, reverse correlation results in a description of the spatio-temporal
receptive field properties of the cell. Spatial MR C experiments require slightly more
time (about 10 minutes), due to the increased number of possible stimulus
configurations.

An example of results obtained with a spatial MR C stimulus is shown in Fig. 12.
The surface plot shows the results of a measurement with a Toxto RPA array (15x15
degrees). Sequence length was 15000 (i.¢. about 7 minutes of presentation) and during
the entire presentation, 24955 spikes were fired. The cell in Fig. 12 shows a positive
correlation with the preferred direction of motion in the center, yet at the same time
there is significant correlation with motion in the anti-preferred direction in an area
directly surrounding the center. A movie clip of the spatial correllogram at our web-
site”” shows that there is a considerable temporal delay between the peak latency of
the receptive field center and its inhibitory surround.

Discussion

In this paper we show that the motion reverse correlation paradigm provides a powerful
tool for investigating response properties of directionally selective cells. The MRC
stimulus elicits strong motion selective responses, and direction- and velocity-tuning
curves match tuning curves measured with conventional methods. In addition, it
provides novel and detailed insights into stimulus interactions and the temporal
dynamics of motion tuning. In the ‘multiple-patch’ configuration, it yields detailed
descriptions of spatial receptive field structure and it does so without making a priori
assumptions about the receptive field, or the role of spatial interactions. Furthermore,
the simultaneous presentation of localized stimuli makes the method very time efficient.
We have shown that the method yields interesting and unexpected results for recordings
in visual cortex of both the anesthetized cat and awake, fixating macaque monkey.

In the present study, we correlate spike trains with individual motion impulses.
The same procedure can be used to find correlations between spikes and the occurrence
of combinations of subsequent motion impulses. For example, in an 8 direction
MRC experiment, there are 64 possible state-pair combinations, and forward or
reverse correlation functions can be computed for the spike train and the occurrence
of specific sequences of two, or even multiple states. Although the required sequence
length scales with the number of possible combinations and the required recording
time does increase, potentially interesting interactions may be found and can even be
targeted selectively.

The observation that a cell’s preferred direction measured with the MR C stimulus
can change over time (Fig. 10 and 171) leads to the interesting suggestion that at least



The Motion Reverse Correlation (MRC)— method

some directionally selective cells in area MT may be tuned to changes in the direction
of motion. This is analogous to results obtained in macaque primary visual cortex,
which show that preferred orientation in output layer neurons varies over time*.
These findings are in general agreement with the observation that visual cortical cells
may be better understood as dynamical systems rather than static receptive fields* **.
The reverse correlation technique that we present here, allows one to study such
specific temporal aspects of motion receptive fields in great detail.

The motion reverse correlation function expresses the relative probability of
observing a particular state of the motion stimulus at any point in time preceding a
spike. Therefore a high probability for one state or a group of states, by definition,
decreases the probability for observing any of the other directions. Probabilities below
chance level therefore do not necessarily indicate inhibition. Excitation and inhibition
are only defined relative to the other states included in the experiment. Inhibition
may show up as a significant negative deviation relative to the other states. In
experiments where an absolute distinction between excitation and inhibition is critical,
one can include null-states (stationary and or dynamic refreshment) in the state-list.

Our results show that the MR C paradigm can be used to investigate the temporal
dynamics of directional selectivity and velocity tuning of cortical neurons. The same
paradigm can be used to investigate preferred step and delay combinations, preferred
pixel size or stimulus contrast. We show that extending the MR C stimulus to multiple
R PA-fields in a spatial checkerboard analogue, enables the mapping of spatial receptive
field properties of directionally selective neurons. MR C is therefore particularly suitable
for the investigation of center-surround receptive field organization of opposing
directions of motion and even tuning for complex - e.¢. rotational or expansive -
motion patterns. The fact that little time is required to measure entire multi-
dimensional parameter spaces at high temporal resolution, makes the method
particularly useful in experiments where awake animals are used and recording time
1s precious.
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A polarplot-movie of direction tuning in area MT is presented in the upper right corner, it can be
viewed by rapidly skipping through the pages of this book. Page numbers represent the time in ms prior
to the occurence of a spike.
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Abstract

Linear receptive field properties of retinal ganglion cells, cells in the LGN and area 17
of anaesthetized cats are measured with white noise 'checkerboard' stimuli in a reverse
correlation paradigm. The spatio-temporal reverse correllograms are then used to
predict the cells' responses to natural movie clips. Results show that for retinal and
LGN X cells, convolution of the spatio-temporal reverse correlation function with
the movie stimulus yields a reasonably accurate prediction of the actual recorded
response. Predictions improve significantly however, when a static nonlinearity is
added to the model. The static nonlinear function can be derived from the cell's
response to white noise or from the movie responses. We find that static nonlinear
functions computed from white noise analysis deviate considerably from those obtained
from the movie responses. Thus, the nonlinearity is stimulus dependent and likely
reflects a combination of both static and dynamic nonlinear response properties of
the cell. Results show that responses to natural movies can only be predicted accurately
when dynamic nonlinear mechanisms are taken into account.

Introduction

The application of systems identification techniques in visual neuroscience has resulted
in a wide range of linear models describing the response properties of front-end
visual neurons'™. Although some cell types like cat Y and W cells are manifestly
nonlinear, the most common types of ganglion cell, i.e. X cells in the cat retina and
P-cells in the primate retina, have response properties that are well described by a
linear model when stimulated with e.g. sine wave gratings. Several nonlinear response
mechanisms, however, have also been identified. In addition to obvious nonlinearities
such as rectification, saturation, refractoriness and light adaptation, many different
additional nonlinearities have been found to play a role, even for the plain ‘linear’ X
cell in the cat retina or P-cell in the primate retina.

More elaborate models therefore include one or more nonlinear stages. Such
‘sandwich’ systems, or ‘cascade’ models capture part of the nonlinear response properties
and therefore provide reasonable predictions for a much wider range of stimuli*”.
The most common approach is to include a static nonlinear transformation after an
initial linear stage’. In a recent study, Chichilnisky® showed that retinal ganglion cell
responses to Gaussian white noise can be predicted accurately from the cells’ linear
filter characteristics, followed by a single static nonlinearity. Moreover, Liu et al.’
and Keat et al."” demonstrated that a modified version of the linear-nonlinear model
can accurately predict higher order response properties such as the variance and timing
of individual spikes, as well as the time varying firing rate, again for white noise
stimuli. It has remained unclear however, to what extent nonlinearities play a role in
the front-end visual system under natural stimulus conditions. In contrast to Gaussian
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white noise, natural stimuli typically show dynamic variations in for example mean
luminance and contrast, which is likely to result in significant deviations from linearity.

In the present study, we therefore examined the contribution of nonlinear
mechanisms to natural movie responses, at the level of the time varying firing rate.
Similar to the approach by'' and Chichilnisky (2001), we measured a cell’s linear
transfer properties using a white noise stimulus in combination with a conventional
reverse correlation technique' ™. Next, we used the reverse correllogram to generate
linear predictions for the cell’s response to natural movie-clips. Comparison of these
linear predictions to the recorded movie responses then allowed us to identify and
quantify the nonlinear mechanisms that contribute to the cell’s movie response. Because
luminance white noise analysis is most effective for cells with primarily linear response
properties, we limited our analysis to X-type cells in retina and LGN, and simple
cells in area 17. These cells are generally treated as approximately linear parts of the
primary visual system.

We aim to answer three specific questions. First: how well does a strictly linear
model predict responses to natural movie clips at the level of ganglion cells, LGN
cells and cortical simple cells? Second: to what extent can deviations from linearity be
accounted for by a static nonlinearity following the initial linear stage? And third:
does a static nonlinearity derived from a white noise stimulus suffice for predicting
natural movie responses?

‘With the linear model as a reference, we assessed the improvement of the predictions
when a static nonlinearity is added to the model. A first, independent estimate of the
static nonlinearity can be obtained directly from the white noise responses, by plotting
recorded firing rates as a function of the linear prediction in corresponding time bins.
A sigmoidal function (cumulative normal density function) fitted to this distribution
captures the essential static nonlinearities. This ‘white noise static-nonlinear model’
has been proven sufficient to predict primate retinal ganglion cell responses to spatio-
temporal white noise in great detail’. To the extent that the nonlinearities are a fixed
property of the cell, the model should also account for responses to different, arbitrary
stimuli such as natural movies.

We tested this supposition by analyzing two different models. First is the ‘general
static nonlinear model’, where the estimate for the static nonlinearity is obtained
from a comparison between the linear prediction and the actual responses to the §
movie clips. Second is the ‘specific static nonlinear model’, that allows us to test the
validity of a different static nonlinearity for each movie clip. To this end, we evaluated
the improvement of the model when nonlinearities are obtained from the separate
movie responses, rather than from the § movies together. The analysis scheme is
illustrated in Fig. 1.

The specific static nonlinear model is clearly expected to generate the most accurate
description of the cell’s response. Note however, that if the static nonlinearity is a
fixed property of the cell, the general static nonlinear model should perform equally
well. Significant improvement of the specific model compared with the general model
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Fig. 1. Analysis scheme. A set )
of movie clips (S) is used to Recording S M R
obtain spike train responses (R)
from single retinal ganglion cells
a.nd cells in tl.ie LGN. A s?t Qf Model 1 S F(I ) P_Im
linear predictions of R, (P/) is Xyt i
computed by convolving S, with
the cell’s spatlo—.temporal 1mpu!se N -
response, obtained from white Model 2 S F(| ) ( P
N . . Xyt I
noise analysis (Model 1, Linear
model). This model was extended
by adding a static nonlinear o MOV Psnl
transfer function that accounts for Model 3 S F(|x,y,t) i
nonlinear response properties
such as signal rectification and
. . . MoV
S snl
saturation. This yleldsA thr;e Model 4 S F(I ) =)
nonlinear models that differ in Xyt !
the way the static nonlinearity is
obtained. Model 2 employs a static nonlinear function derived from the white noise response (White
noise static nonlinear model). Model 3 employs a single static nonlinear function derived from the ensemble
of movie responses (General static nonlinear model). Model 4 employs a different static nonlinearity for
each prediction, based on the recorded response to the corresponding movie (Specific static nonlinear model).

implies that the static nonlinearity is in fact a stimulus dependent feature that reflects
both static and dynamic nonlinear response mechanisms. This has potentially important
implications when white noise based linear-nonlinear model are used to generate
predictions for responses to stimuli other than white noise.

Our results show that the global temporal structure of retinal, and most LGN, X
cell responses to natural stimuli can be predicted fairly accurately from a cell’s linear
receptive field properties, provided that obvious nonlinear response properties such
as rectification are taken into account. In many instances, even fine temporal structure
is predicted with remarkable accuracy. Still, important and systematic deviations
between predicted and recorded responses remain. These deviations were specially
obvious for LGN cells and area 17 simple cells, reflecting a substantial contribution of
nonlinearities to these cells’ movie responses.

The results furthermore show, that in both retinal ganglion and LGN cells, accuracy
of the response predictions improved substantially when the static nonlinearity of the
model was obtained from the individual movie responses. The specific static nonlinear
model was significantly better than both the general and the white noise static nonlinear
model. This shows that response nonlinearities are in fact stimulus dependent. In
other words, nonlinearities identified in movie responses are not static, but change
dynamically. They vary from movie-clip to movie clip, and presumably also within
single movie clips. Nonlinearities obtained from white noise responses therefore
provide a sub-optimal prediction for responses to other stimuli.

We conclude that (1) in the case of retinal ganglion cells and cells in the LGN, a
linear description of the response properties suffices to obtain a first-order, qualitative
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prediction for the cells’ responses to movie clips. (2) Adding an appropriate static
nonlinearity to the model greatly improves the quality of predictions for retinal and
LGN cell responses. Predictions for simple cells remained poor. (3) A white noise
based linear-static nonlinear model does not suffice to predict responses to natural
movies. (4) Models predicting responses to natural movies should take dynamic
variations in spatio-temporal response properties into account. A comparison of actual
response properties to these extended models could quantify the contribution of
dynamic nonlinearities, such as luminance adaptation and contrast normalization.

Methods

Preparation and recordings
Extracellular single unit recordings from 15 retinal ganglion cells, 12 cells in the LGN
and 6 area 17 simple cells were obtained with tungsten microelectrodes (TM33B20KT,
World Precision Instruments, USA, typical impedance 2.0 MQ at 1.0 kHz) in
anesthetized adult cats of either sex (3 - 5 kg). Surgical and experimental procedures
were standard and in accordance with the guidelines of the Law on Animal R esearch
of the Netherlands and of the Utrecht University’s Animal Care and Use Committee.
Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20
mg kg™, i.m.). Following preparatory surgery, anesthesia was maintained by artificial
ventilation with a mixture of 70% N,0O-30% O, and halothane (0.4 - 0.7%). To minimize
eye movements, muscle paralysis was induced and maintained throughout the
experiment by infusion of pancuronium bromide (Pavulon, 0.1 mg kg™ hr™, i.v.).
Retinal ganglion cells were recorded in the optic tract, at Horsley-Clarke coordinates
A8, L1o, approximately 20 mm below the cortical surface. LGN recordings were
obtained at the same coordinates, approximately Tomm below the surface. Area 17
simple cells were measured at P1, L1 (area 17)". Action potentials from single cells
were detected with a window discriminator (BAK Electronics Inc., USA) and their
time of occurrence was measured at 0.5 ms resolution (NI-DAQ PCI 1200, National
Instruments, USA) for on-line analysis and storage (Apple Macintosh G4 computer,
custom-made software). Oxygen-permeable contact lenses (+3.5 to +5 diopters,
courtesy of NKL, Emmen, Holland) were used to focus the visual stimulus on the
retina and to protect the corneae.

Visual stimulation
Stimuli were computer-generated (ATI rage graphics card, Macintosh G4 computer,
custom-made software), presented on a 19", tooHz CRT monitor (SONY Trinitron
multiscan 400PS) at 57 cm from the optic node and centered on the receptive field of
the cell under study, mean luminance was §4 cd-m™.

For each cell, spatial and temporal tuning curves were measured with drifting
sinusoidal gratings (spatial frequency 0.1 - 4.0 cycles deg™', temporal frequency 0.5 —
soHz). Cells were classified as X or Y on the basis of a null-test".
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Fig. 2. Natural stimuli. Five
different movie clips of natural
scenes were used to obtain the
data presented in this study. All
movies feature dynamic visual
motion but differ strongly in
scale, texture and luminance
dynamics. Movies were recorded
with a free moving digital video
camera and individual frames
may contain motion blur
depending on the velocity of the
camera. Human observers
perceive the clips as sharp, high
quality video images, with
smooth and realistic motion. All movies, except movie number 4 were filmed with translational, forward
motion of the camera, randomly changing the camera’s viewing angle relative to the direction of motion.
This approximates the visual input to the retina when looking around while walking. Movie number 4
is different in this respect and features a patch of grass with sand and twigs, filmed in close-up. In this
case the camera was directed vertically down and moved around in random patterns, scanning the grass
at considerable velocity.

We recorded responses to random interleaved, repeated presentations (20 minimum)
of 5 different movie clips. Movies were recorded with a 3CCD digital camera (TVR
900, SONY), had a duration of 10 seconds and featured urban scenery (stills shown
in Fig. 2). The spatial resolution was 28 x 28 pixels deg™ and the clips were presented
in 16 bits color at 25 movie frames s on a 100Hz monitor. For those cells (10 in
retina, 4 in LGIN) that showed significant response modulation to the 100Hz refresh
rate of the monitor, the frame rate was increased to 120Hz. Because movie frames
were refreshed after every fourth monitor frame, the duration of the movie clips
presented at 120Hz decreased to 8.3 seconds (30 movie frames s™). This did not affect
our results, nor the conclusions that we present in this paper. In addition to color
movies, we also presented grayscale versions of the same movies to a number of cells.
We did not find significant differences in the cell’s responses, nor in the accuracy of
the model predictions (data not shown). The specific spectral properties of the cat
visual system were therefore ignored and the analysis was based on the average
luminance settings of the three color channels (red, green and blue).

Reverse correlation

Linear filter characteristics of the cells were measured with a spatial white noise
stimulus with binary luminance modulations'”*°. The white noise stimulus I consisted
ofa square array of 16x16 patches, fully covering the receptive field of the cell under
study. Size of the individual patches depended on the cell’s receptive field size and
varied between 0.17 and 0.53 degrees. Luminance of each patch alternated in time
between dark (value -1) and light states (value 1) according to a unique pseudo-
random binary sequence. Duration of a single state was 20 ms. This was found to be
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long enough to obtain high correlations between stimulus and response, yet short
enough to effectively capture the cell’s dynamic response range.

The cell’s response function R merely varies with time between the binary states 1
(bin contains an action potential or ‘spike’) and o (no spike). The reverse correllogram
is given by:

xy, ZEZR IN(X,y,t-T) ;0< T <150ms (1)

The reverse correllogram F(X,y,T) is proportional to the impulse response and

5, 8, 12, 16, 17
provides the best linear approximation to the cells’ response properties .
Reverse correlation functions with a duration of 150 ms sufficed to capture all
significant correlations between stimulus and response.

Response predictions

To predict the linear response to an arbitrary stimulus, a spatio-temporal convolution
is performed of the luminance variations in the stimulus and the reverse correllogram.
Hereto, the cross-products of the reverse correllogram and the stimulus are summed
over the preceding 150 ms. The principal response prediction is the sum of the
convolutions of all 256 patches with corresponding segments of the stimulus, as a
function of time (2).

D=5 > > Sxyt-1) B(xy1) (2)

Spatial resolution of the movie clips exceeded that of the reverse correllograms by a
factor 5 to 15, depending on checkerboard dimensions (2.7 x 2.7 — 8.5 x 8.5 degrees).
The convolution was therefore based on the averaged luminance of the stimulus
within the spatial boundaries of each patch.

The predicted response D(t) reflects the time varying impulse rate, but is expressed
in arbitrary units, due to normalization of the reverse correllogram. In order to compare
measured and predicted movie responses quantitatively, the gain and offset for the
predictions needed to be calibrated. It was our aim to predict rather than fit the cell’s
responses to movie clips. We therefore used an independent experiment to derive
the gain of the model. To this end, we recorded the cells’ responses to a set of drifting
sine wave gratings, varying in contrast and temporal frequency (10 - 70% and o.5 —
32 Hz, respectively). The model gain was then obtained from a single linear fit of the
predicted response modulation amplitudes to the recorded modulation amplitudes.

This straightforward scheme was found to be complicated slightly by the fact that
the contrast response function of X-type cells is far from linear at high contrasts (data
partially shown in Fig. 3). The observed flattening of the contrast response curve is
explained by response saturation and rectification, nonlinear response characteristics
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Fig. 3. Contrast response curves of a retinal X-Off cell and the linear prediction. In the present
study, responses to an independent stimulus are used to calibrate the linear model, so that the output of
the convolution is a prediction expressed in spikes s. Gain of the linear model is therefore obtained
from a single, least squares fit of the predicted to the recorded response modulation to drifting sine wave
gratings. The predicted modulation amplitude however, increases linearly with contrast, whereas the
cell’s recorded response clearly does not. Flattening of the recorded contrast response curve is explained
by saturation and rectification, nonlinear mechanisms that start to play a role at higher contrasts. These
nonlinear response properties are not captured in the spatio-temporal impulse response. As it is our aim
to generate the best possible linear prediction, it is important to stay well away from the contrast range
where these nonlinear deviations are predominant. Gain of the model is therefore obtained from a least
squares fit through the response modulations for all 7 temporal frequencies (0.5 - 32 Hz), but at 10 - 30%
contrast only. In addition, this reduces potential effects from light adaptation evoked by high contrast
stimuli at low temporal frequencies.

that would result in an underestimation of the model gain. The model gain was
therefore obtained from a single least squares fit to the data for the low contrast
stimuli only (10 - 30%).

The second parameter that required calibration was the offset for the model
prediction. Recorded responses to sine wave gratings showed that the actual response
offset varied with both contrast and temporal frequency (data not shown). This was
mainly due to rectification, a nonlinearity introduced by the spike generator that is
not captured in the reverse correllogram. Responses to sine wave gratings were
therefore not suitable for determining an appropriate setting for the offset of the
model predictions. For the linear prediction (Model 1), the offset of the predicted
response was therefore derived from the spontaneous activity recorded in the movie
experiment, using a blank movie clip with a constant luminance of 27 cd m™.

In addition to the strictly linear model described in the previous paragraphs, three
different linear-nonlinear models were investigated (Fig. 1). All three models employ
the principal output of the linear convolution. In contrast to the linear model, these
models employ a static nonlinear function to transform the convolution output into
firing rates (Equation 3, Fig. 4). This nonlinearity also accounts for any errors in gain
or offset calibration. For all nonlinear models, the response prediction (P(t)) is given by:
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250 Fig. 4. Deriving the static
¢ nonlinear function. The white
noise response is plotted as a
function of the predicted
response in corresponding time
bins (At = 15 ms). A
Parameterized cumulative
normal density function is fitted
to the data (least squares fit in
Matlab). Parameters of the fit
were the amplitude, bias and
slope of the sigmoid. The result
is a continuous function that
transforms the output of the

Recorded response (spikes/s)

p 00 0 0 60 F011volut1on }n'to an
instantaneous flrlng rate
Predicted response (arbitrary units) prediction. By incorporating this

nonlinear transfer function, the
model now takes specific nonlinear response properties into account such as signal rectification, acceleration
atlow stimulus intensities and compression at high firing rates, where refractoriness of the spike generator
starts to play a role.

P(t) = N(D(1)) (3)
where D(t) is the output of the convolution,
N(x) = aCND(Bx —y) 4)

and CND is the cumulative normal distribution (i.e. the indefinite integral of the
Gauss function, a sigmoid). 0, 3 and Yy (maximum, slope and bias, respectively) are
the free parameter of the fit. The three models diftered with respect to the predicted
(P(t)) and recorded response (R(t)) that were used to obtain the parameters of the
static nonlinearity N.

White noise static nonlinear model

The static nonlinear function of this model is based on predicted and recorded responses
to the white noise stimulus. Fig. 4 shows that the sigmoid captures the shape of the
scatter plot of predicted and recorded firing rate in corresponding time bins. This
model will be referred to as the ‘white noise static nonlinear model” (WN stnl model).

General static nonlinear model

The static nonlinear function of this model is a single sigmoidal function fitted to the
ensemble of predicted and recorded responses to the 5 movies. This model will be
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Movie number

Time (s)

Fig. 5. Response of a retinal X-On cell to repeated presentation of 5 different movie clips.
Movies (stills shown in Fig. 1) were presented repeatedly (40 times in this example) in a random interleaved
order. Lines in the raster plots represent trials and individual dots mark the time of occurrence of an
action potential or spike. Vertical bands and lines indicate that all movies evoke strong, stimulus dependent
response modulation.

referred to as the ‘general static nonlinear model” (Gen stnl model). Main difference
between this model and the white noise static nonlinear model is that it uses the full
dynamic range observed in responses to natural movies to assess the shape off the
static nonlinearity.

Stimulus specific static nonlinear model

To test the validity of one general static nonlinearity, we also fitted static nonlinear
functions to each individual prediction - response distribution. This provides s static
nonlinearities that are then used to generate response predictions for the corresponding
movies. This procedure finds the most appropriate nonlinear function for each
individual movie and is therefore expected to yield the closest correspondence between
model and measured responses. It will be referred to as the ‘specific static nonlinear
model” (Spec stnl model). If this model performs significantly better than the previous
ones, one must conclude that the characterized nonlinearities are not fixed, but differ
between different (natural) stimuli. Furthermore, discrepancies that we find between
the optimal fits may provide important insights into the type and magnitude of the
nonlinear aspects of the response.
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Error measure

Accuracy of the model predictions was evaluated on the basis of the root mean
square error (RMSE) between the predictions and the recorded responses averaged
over all trials (n > 19) in corresponding time bins (). The first 200 ms (the integration
time of the model plus so ms) were ignored in the computation.

1S _ )
E= T—ZOOtZZOO(R(t) S(t)) (s)

Negative firing rates of the linear predictions were replaced by zeros prior to calculation
of the RMSE. Spike times were sampled at 0.5 ms temporal resolution and numerical
convolutions were also performed with 0.5 ms temporal resolution. RMSE values
were computed in 15 ms bins to make the error estimations less vulnerable to binning
artifacts. Statistical significance of differences in RMSE values obtained with the
different models were tested with a paired t-test (StatView 5.0, SAS Institute inc.).

It 1s evident that the comparison of white noise based predictions and movie
responses critically depends on a perfectly stable alignment of stimuli with the receptive
field. Therefore, only recordings that showed no sign of spatial shift in their responses
were included in the final analysis.
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Fig 7. Average linear response predictions for retinal ganglion cells. Linear model predictions
for the response to movie nr. 2 are averaged over 8 On-cells and 7 Off-cells (black and gray line,
respectively). Moderate standard deviations (dotted lines) on the average spike rate show that On and
Off-center X cells form fairly homogeneous groups. For both cell types, the predicted firing rate takes
on negative values over the time course of the response. Due to signal rectification by the spike generator,
the cell’s response in these instances is expected to be zero. For clarity, subsequent figures will only
show the rectified linear model prediction and prediction errors are computed on the basis of rectified
signals only. Reverse correlation elucidates sub-threshold modulations of activity, whereas the visual
system depends on the responses of On and Off cells as complementary counterparts. On and Off
signals are almost perfectly mirror symmetrical around zero. This shows that after signal rectification,
the complete dynamic range of the stimulus is still available to higher visual areas, but only from the On
and Oft-cell populations as a whole.

Results

We recorded responses of retinal X cells, X cells in the LGN and area 17 simple cells
to movie clips of natural scenes. All cells exhibited strong, stimulus dependent response-
modulation when presented with the different movie clips. Consistency of the
responses over subsequent trials is reflected in vertical bands and stripes in raster plots
of the recorded spike trains (example shown in Fig. s).

In addition to movie responses, linear filter characteristics of the cells were measured
with a spatio-temporal white noise reverse correlation technique (see Methods for
details). Fig. 6 shows examples of reverse correllograms obtained from a retinal X-
On and a retinal X-Off cell. Figure 6 A and C show the correlation between spike
activity and luminance for the patch with the highest correlation (receptive field
center). Maximal correlation values are about 0.2, similar to values found for e.g.
primate ganglion cells”. Both the On and Off cell reflect a typical, biphasic impulse
response. Maximum correlation occurs at a time interval of about 30 ms. Figures 6B
and D show the spatial profiles for the spike-triggered average at the optimal delay
for the cell (emphasizing the center response).
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Fig. 8. Evaluation of response predictions for a retinal X-On and X-Off cell. Recorded and
predicted responses to movie number 2 (see Figs. 1 and 2) are shown. Linear response predictions
capture the global temporal structure of the recorded responses with considerable accuracy. At several
instances, even fine temporal structure is predicted accurately (examples are marked with *). But we
also find specific deviations between the actual recorded response and the predictions from the linear
model. In a number of instances we find that, although the initial slope of the rising flank is similar, the
prediction strongly overestimates the actual recorded response (arrows marked 1). The static nonlinear
models do not show such errors and generate predictions that are substantially more accurate. A quantitative
comparison between the accuracies of the different models is presented in Table 1.

We want to examine to what extent linear response characteristics can account for
these cells’ responses to natural movies. To this end, the spatio-temporal spike-triggered
average, as shown in Figure 6, is numerically convolved with the movie stimulus.
The output of this convolution is then used to generate a quantitative prediction of
the time varying response.

Response predictions from the linear model take on positive, as well as negative
values, thereby describing both super- and sub-threshold activity fluctuations in great
detail (Fig. 7). Neural responses however, are rectified by the spike generator: a cell
cannot produce less than zero spikes per unit time. In order to discount this obvious
discrepancy between model predictions and recorded responses, all model predictions
were rectified also. In subsequent figures and in the computation of model prediction
errors, we always used rectified predictions.

Examples of the results obtained with the different linear and nonlinear models are
shown in Figs. 8 through 10. For retinal and LGN X cells, we find good agreement
between the global temporal structure of the linear prediction (Model 1) and the
actual recorded responses (Figs. 8 and 9, respectively). Although some high frequency
components seem slightly underestimated, we find that in several instances, even fine
temporal structure of the response is predicted with high accuracy (examples marked with *).
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Fig. 9. Evaluation of response predictions for an LGN X-On and X-Off cell. Recorded and
predicted responses to movie number 2 (see Figs. 1 and 2) are shown. Similar to the results obtained
from retinal ganglion cells, the model predictions capture the global temporal structure of the recorded
responses with considerable precision. Similarly also, there are instances where also fine temporal structure
are predicted accurately (examples are marked with *). In addition specific deviations from the linear
prediction can be observed here. There are instances where the recorded firing rate strongly exceeds the
prediction, but only during a very short time (< 15 ms, bottom panel, arrows marked 3).

The retinal X-On cell shown in Fig. 8 illustrates that linear predictions can greatly
overestimate the recorded response at high firing rates (arrows marked 1). Due to a
saturating nonlinearity the cell’s firing rate does not exceed approximately 250 spikes
per second. The linear model - by definition - does not account for any form of
saturation and therefore overestimates the firing rate at those instances where the
stimulus drives the cell beyond its dynamic range. Qualitatively similar results are
obtained from LGN X cells (Fig. 9). LGN X cells however, often show additional
discrepancies between model predictions and recorded responses (arrows marked 3).
Rather than over-estimating the actual response, the predictions, especially from the
linear model, severely underestimate the firing rate at several instances. Other segments
of the response are predicted accurately, also in terms of the absolute firing rate, both
in the linear and nonlinear fit model. This suggests that these deviations do not stem
from an underestimated model gain, but rather reflect specific response properties of
the cell. A similar under-estimation of response peaks is often observed for simple
cells in area 17 (Fig. 10). The response to movie 1 (top panel) shows a striking
example of sharp peaks in the recorded firing rate that are absent in the response
predictions (arrows marked 3). The occurrence of these sharp peaks in area 17 responses
is found to be highly stimulus dependent.

Peak amplitudes of the recorded responses to movie nr 4 and § correspond fairly
well to the predicted response amplitudes, but durations can be grossly overestimated
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Fig. 10. Evaluation of response predictions for an area 17 simple cell. We find that recorded
responses from cells in area 17 contain sharp peaks where the firing rate strongly exceeds the model
predictions, but for several milliseconds only (arrows marked 3). Deviations between the predicted and
recorded response of area 17 simple cells are considerably larger than those observed for retinal ganglion
and LGN X cells. On a few occasions, the temporal structure is captured with reasonable accuracy
(examples are marked with *) however, considerable deviations are observed. There are a number of
instances where the model overestimates the recorded response (arrows marked 4). In these cases the
model predicts sustained firing based on the luminance intensity of the stimulus, whereas the cells firing
rate is near zero. This suggests that adaptive processes play a substantial role in the cell’s response to
movie clips. Adaptation is a dynamic nonlinear mechanism that can not be accounted for by a linear-
static nonlinear model.

(arrows marked 4), as actual firing rates rise and fall much faster than the different
models predict. This type of deviation occurs at firing rates well below the cell’s
maximum firing rate and it is unlikely that the overestimation is a result of response
saturation, such as shown earlier for a retinal X-On cell (Fig. 8). Furthermore, the
observation that the mismatch hardly improves for the different nonlinear models,
suggests that these deviations are due to dynamic nonlinear processes.

Results from our limited set of area 17 simple cells (n = 6) generally show poor
matches between predictions and recorded responses. From qualitative comparisons
we conclude that white noise based, linear predictions provide a poor description of
the cells’ responses to natural movies. Moreover, the predictions hardly improve
when static nonlinearities are taken into account. Mismatches therefore do not result
from difterences in gain or saturation but rather reflect dynamic changes of receptive
field characteristics. Area 17 data were therefore excluded from further quantitative analysis.

N
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Retinal ganglion cells LGN cells

mean error relative error p mean error relative error p
Linear model 36.70 reference - 18.80 reference -
White noise model 31.84 86.8% 0.0207 16.80 89.4% 0.3821
General model 28.38 77.3% <0.0001 16.83 89.5% <0.0001
Specific model 25.93 70.7% <0.0001 16.03 85.3% <0.0001
Single vs PSTH 33.44 91.1% - 26.32 140% -
PSTH vs PSTH 6.52 17.8% - 5.42 28.8% -

Table 1. Evaluating accuracy of the different models. Table shows root mean square errors
(RMSEs:) for the different models. Data are averaged over the five different movies and 15 retinal X
cells (center column) and 12 LGN X cells (right column). Mean RMS errors are higher for retinal
ganglion cells than for the LGN cells. This may reflect differences in mean firing rates, and therefore
RMSE values of the two populations can not be compared directly, but through the relative errors
instead. Relative errors express the RMSE as a percentage of the error obtained with the linear model
and reflect the improvement of the prediction when different static nonlinearities are added to the linear
model. As an absolute reference, RMS errors obtained from the recorded response have been included
also (two bottom rows). ‘Single vs PSTH’ is the RMSE between a single simulated trial generated from
the PSTH and the standard deviation of the PSTH (see Methods). ‘PSTH vs PSTH’ refers to the RMSE
between the PSTH based on half the trials and a PSTH computed from an equal number of simulated
responses. For retinal ganglion cells, RMS errors between the response to a single trial and the PSTH
are not significantly different from those of the linear model (p = 0.1762). In the LGN, RMSE values of
the linear model are significantly smaller (p < 0.0001). PSTH vs PSTH errors however, are much lower
in both populations.

Remaining errors of the different models give an indication of the importance of
nonlinear mechanisms in responses to natural movies. Table 1 shows the root mean
square error between the difterent model predictions and recorded responses, averaged
for 15 retinal ganglion cells and 12 cells in the LGN. Gain and offset for the linear
predictions are determined independently from the movie responses. The linear fit
therefore has no degrees of freedom, it is a straightforward prediction based on the
assumption of linearity. The prediction is reasonably accurate for ganglion cells and
for LGN cells, but obviously omits all nonlinearities except for rectification.

A first improvement takes static nonlinearities in the white noise response itself
into account. A plot of the linear prediction versus the actual firing rate (Fig. 4)
shows an acceleration at the low end, and sometimes saturation at the high end of the
curve. Using this nonlinear transformation in series with the linear prediction optimizes
the gain for different levels of excitation. These nonlinearities supposedly play a
similar role in responses to natural movies. Table 1, however, shows that white noise
static nonlinearities give only minor improvements of the error. For retinal ganglion
cells it reduces the error by 13% (p=0.0207), for LGN cells there is no significant
improvement (p=0.3821), despite the difference in the means. Notice that the
improvement is first calculated for each cell, and then averaged. This explains the
apparent discrepancies between mean RMS errors and significance of the observed
improvement.
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Fig. 11. RMSE versus mean
firing rate. RMSE values of the
predicted and recorded responses
of retinal ganglion, LGN and
area 17 simple cells are plotted as
a function of the cells’ mean
firing rate. RMSE values are
clearly dependent on the mean
firing rate. This dependence is
different, however, for the
different cell populations. For all

four models, mean RIMSE values
of the RGC response predictions
increase less rapidly with
increasing firing rate than those
of the LGN and area 17. In turn,
area 17 RMSE values are
consistently higher that those of’
the LGN. This suggests that
contributions of nonlinear
response mechanisms become
increasingly prominent when
information proceeds up the
primary visual pathway. Even the specific nonlinear model, with a static nonlinearity that is optimized
for the individual stimuli, shows a clear difference in the dependence of RMSE on the mean firing rate.
This suggests that dynamic, rather than static nonlinear mechanisms underlie the observed area-specific
differences.
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Mean firing rate (spikes/s) Mean firing rate (spikes/s)

The next model that we tested quantitatively, employs an estimate of the static
nonlinear transformation based upon the movie responses themselves. This
transtormation should effectively account for any static nonlinearities inherent in
movie responses in general. In this case, the static nonlinearity in the model is based
on a curve fitted to a scatter function of the linear model predictions and the actual
movie responses. Notice that this model is no longer an independent prediction of
natural movie responses, but used the responses to find the best fitting general static
nonlinearity. This significantly reduces the remaining error for the retinal ganglion
cells but not for the LGN cells. The largest improvement compared to the linear
prediction is obtained when the nonlinearities are optimized for each movie response
separately (29.3 % and 14.7 %, in retina and LGN respectively, both p<o.oo001).
Clearly, it is no longer appropriate to call this a static nonlinearity. The fact that each
movie reveals different nonlinearities shows that the underlying nonlinearities are
dynamic, rather than static. The specific static nonlinear model can be significantly
more accurate than the white noise based model, because it employs a nonlinear
transfer function that most effectively takes both static and dynamic nonlinear behavior
of the cell into account.

RMS errors of the model predictions for retinal ganglion cell responses are
substantially larger than those of the LGN (Table 1, left columns). Mean firing rates
of retinal ganglion cells however, were also higher than those of the LGN cells
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responses to white noise and
movie stimuli. Scatter plots
show examples of the recorded
versus the predicted response in
corresponding time bins (15 ms),
obtained from four retinal X cells
(panels A to D). The predicted
response is the output from the
convolution of a cell’s spatio-
temporal impulse response with
the white noise stimulus (black
triangles) or with the movie clips
(gray circles). In all examples, the
distribution of data points for the
movie clips is wider than that of
the white noise stimulus. For
some cells, we find agreement
between the static nonlinear
functions fitted to the two
distributions (example shown in 20 40 60 80 100 120 80 9 100 110 120 130 140 150
panel A). In most cases however,
the distributions and the
corresponding fitted sigmoidal functions deviate considerably. Panels B through D illustrate three types
of deviations that are typically observed. Distributions may differ in slope (B), may be shifted toward
higher recorded or predicted values (C and D, respectively).

Recorded response (spikes/s)

Predicted response (arbitrary units)

(35.7 and 14.7 spikes s, respectively). Because the RMSE is particularly sensitive to
large absolute error values, we should expect to find higher RMS error for retinal
ganglion cells and absolute RMSE values are therefore not directly comparable between
the two populations, or even between cells within each population. Thus, from
Table 1 we cannot determine whether nonlinearities are more predominant in LGN
responses relative to retinal ganglion cell responses or vice versa. But when we plot
RMSE values of the individual cells as a function of the mean firing frequency (Fig.
11), it becomes apparent that retinal ganglion cells and LGN X cells clearly differ in
the dependence of RMS errors on the mean spike rate.

For all model predictions, RMSE values are higher for LGN cells than for retinal
ganglion cells at comparable spike rates. Moreover, the increase in RMSE rises steeper
with mean spike rate in LGN than in the retina. This shows that LGN cell responses
to natural movies contain additional, or stronger nonlinearities compared to the
responses from retinal ganglion cells. This increased nonlinearity is poorly accounted
for by a static nonlinear function, even one that is optimized for the specific stimulus
(specific model). Results obtained from area 17 simple cells reveal an even stronger
increase of RMSE with mean firing rate, suggesting that nonlinearities become more
predominant at subsequent stages of the primary visual pathway.
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In previous sections, we have shown that nonlinearities in the recorded movie
responses are far from static. If response nonlinearities change between consecutive
1os movie clips, we must assume that they may also vary in time within a single clip.
The remaining error provides an indication of the importance of such dynamic
nonlinearities. One way to normalize the errors is to compare them to the trial-to-
trial response variability of the cell. This approach was adopted by Chichilnisky (2001)
and Dan et al (1996). Chichilnisky (2001) showed that RMS errors remaining after a
well chosen static nonlinearity based on the cell’s white noise response, converge
with the RMS error of a subsequent trial with the PSTH based on about 6 preceding
trials. Table 1 shows that our results are similar: for retinal ganglion cells, RMS errors
between the response to a single trial and the PSTH (1 = 20) are not significantly
different from those of the linear model (p = 0.1762). In the LGN, RMSE values of
the linear model are even significantly smaller (p < 0.0001), which can be explained
from the increased variability of responses in the LGN.

Trial to trial variability however, does not provide a critical, fundamental reference
for the goodness of the model predictions. Both the linear kernel and the actual
movie responses are based on extensive averaging. Quality of the model prediction is
therefore not limited by trial to trial response variability, but by the variance of the
averaged responses instead.

To quantitatively relate the model errors to response variability according to this
principle, we used the standard deviation of the measured spike rates as a function of
time to simulate a set of 20 responses that has the same mean and standard deviation.
RMS errors between the PSTH computed from these simulated spike trains and the
PSTH based on the actual recorded responses (PSTH vs PSTH 1n Table 1) constitutes
the benchmark against which the different models should be tested. A model capturing
all systematic deviations from linearity should give RMS errors similar to this
benchmark. Clearly, all linear-static nonlinear models perform significantly worse.
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Discussion

We have shown that linear receptive field properties in combination with an
appropriate static nonlinearity may provide a reasonable prediction of responses to
movie clips of dynamic natural scenes. Predictions are best for retinal X cells, slightly
worse for LGN X cells and relatively poor for area 17 simple cells. In all cases, static
nonlinear functions derived from the actual movie responses provide a substantially
better description than the prediction based on the white noise nonlinearities. This
implies that deviations from linearity are, to a considerable extent, due to variations
in nonlinear response properties. The fact that a large error persists, even if the static
nonlinear functions are optimized for each movie clip separately, shows that the
observed variations result from relatively fast, dynamic changes in response
characteristics. Our conclusion therefore is that dynamic changes in response
nonlinearities should be taken into account to obtain accurate predictions.

Chichilnisky (2001) showed that a nonlinear function based on white noise responses
sufficed to accurately predict white noise responses. Clearly this does not hold for
movie responses. Scatter plots of the predicted versus the recorded response to white
noise and movie stimuli (Fig. 12) support this notion. For all cells in our sample (n =
29), the spread of the data points around the fitted function is significantly larger for
the movie responses than for the white noise response. This shows that response
properties of the cells are more variable over the course of movie clips than during
stimulation with white noise.

To assess the quality of the prediction, Chichilnisky (2001), as well as Dan et al.
(1996) used the variability from trial to trial in the actual responses as a reference
benchmark. It should be noted though that the trial-to-trial variability does not impose
a fundamental restriction on the quality of the response prediction. Since both the
linear analysis and the actual movie responses are based on extensive averaging, an
accurate model could be substantially more accurate. The only limitation is the variance
for the measured, mean responses. The bottom line in table T gives an estimate of the
error resulting from this variability. The errors obtained for optimal static nonlinearities
are clearly substantially larger, emphasizing the significance of additional dynamic
nonlinear response mechanisms.

A static nonlinear function accounts for threshold effects such as rectification and
acceleration at the lower end of the response scale, and for saturation effects at the
high end. Moreover, nonlinear functions optimized for separate responses also account
for differences in gain and offset for responses to different stimuli. Remaining errors
necessarily reflect dynamic changes during the course of individual movie clips.

Obvious candidates for contributing nonlinear mechanisms have been identified
previously, and have been studied in more or less detail. Fast changes in the state of
light adaptation presumably play an important role. In cat horizontal cells, gain changes
due to variations in light level have a time constant of a few hundred milliseconds™".
Similar fast dynamics for gain changes have also been reported for cat retinal
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ganglion cells®. Although mean luminance of the white noise stimulus changes
dramatically in consecutive frames, integrated over a small number of frames, it is
approximately constant. In movie clips, however, the mean light level variations are
highly correlated over space and time. Light adaptation effectively changes the cell’s
gain, which results in a change in the slope of the contrast response curve. Figure 13
compares slopes for white noise responses and movie responses. Although the centers
of the fit functions for the white noise and movie stimulus overlap for most cells (Fig.
12, upper left panel), we found considerable deviations in the slopes. Thus, the gain
over the course of the response is not only less variable during stimulation with the
white noise stimulus, indicated by the narrower distributions in Fig. 12, but the
average gain is highly variable as well (Fig. 13).

Such dynamic variations due to fast light adaptation take place in the retina, and
probably affect responses at higher levels in similar ways. It is therefore unlikely that
they can account for the increased errors observed at higher levels in the hierarchy.
LGN X cells showed larger remaining errors than retinal ganglion cells, and for
simple cells in area 17, still larger errors were found. This indicates the introduction
of additional dynamic nonlinearities at each level of visual processing.

An obvious candidate for additional nonlinearities in LGN cells (and cortical cells)
1s burst firing. Bursts — rapid volleys of spikes - are characteristic for LGN and cortical
responses™* ", Interspike intervals in a burst are as short as the absolute refractory
period of the cell (2 - 3 ms;”, giving rise to extremely high instantaneous firing rates
(up to s00 Hz). We have observed that those cells that are capable of generating
bursts may do so every time a specific supra threshold stimulus is presented to the
cell. Such consequent triggering of bursts in subsequent trials would explain the
unexpectedly high firing rates that are observed (Fig. 9 and 10, arrows marked 3).
Additionally, in area 17, contrast normalization may also play a significant role**.

Besides the nonlinear mechanisms mentioned in the previous sections, two
additional phenomena may contribute to the poor results obtained from cells in area
17. First, responses obtained from area 17 simple cells are generally less consistent
over trials then those from cells in the retina and LGN. Supra-Poisson variance
(coetficient of variation > 1) of both spike count and interspike interval distribution
is a well know property of cortical cells. Moreover, cortical response variability may
be substantially increased in anesthetized preparations”. Second, there may be spatial
summation effects from outside the classical receptive field** *. It may turn out that
such mechanisms contribute significantly to the response and should not be ignored
in cortical models. We have only measured the classical receptive field and it is therefore
not possible to estimate the magnitude of such extra-classical receptive field interactions
from our data.

In conclusion, we find that the nonlinear function required to optimize movie
response predictions is stimulus dependent. This dependence is consistent throughout
the population of retinal ganglion cells and increases for responses obtained from the
LGN and area 17. Thus, a linear filter description and static nonlinearity computed
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from the white noise response are insufficient to generate accurate predictions of a

cell’s response to any given stimulus. We have quantified the contribution of complex,

dynamic nonlinear mechanisms to front-end visual responses to natural stimuli. The
model analysis provides a basis for investigating the specific dynamic nonlinearities in
front-end visual responses.
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Abstract

We evaluate the functional consequences of spike timing variability for the reliable
detection of visual motion. Optimal performance in the face of spike timing variability
requires integration over time. Using retinal ganglion and LGN cell responses as the
inputs for a physiologically plausible motion detector model, we computed integration
times for which motion information in the temporal structure of input spike trains is
maximally exploited. Results show that optimal integration times can be short as
5 ms, that they are largely independent of stimulus contrast, but increase with decreasing
temporal frequency.

[f response variability at this level of the visual system limits perceptual performance,
one would expect very short threshold presentation durations for motion
discrimination. To test this hypothesis, we specifically designed a psychophysical
experiment to measure minimal presentation durations required for human motion
discrimination. The results show that temporal limits approach those based on response
variability as described above, and exhibit a similar dependence on temporal frequency
and contrast. Perceptual duration thresholds therefore allow the hypothesis that low
level response variability plays a role in the temporal limits of direction discrimination.

Introduction

Over the past decades there has been lively debate about the way in which sensory
neurons encode information in neural spike trains'™*. A central question is whether
the timing of individual spikes carries information that cannot be derived from a
neuron’s mean firing rate. A fundamental approach, employing information theoretical
methods” * has provided valuable insights in the upper bounds to the information
capacity of neural spike trains under various stimulus conditions. Nevertheless, from
a functional point of view important questions remain. How much information per
unit time 1s required for reliable sensory perception? And if the timing of individual
spikes is important, how is such a code read by the nervous system™ °? Clearly these
questions can be answered only in the context of a specific neural task and after the
mechanisms employing the information have been defined in sufficient detail. In this
study we effectively assess the relative contributions of temporal and rate coding to
the performance of the visual motion system, by investigating the functional
consequences of spike timing variability for motion detection in the mammalian
visual system.

Motion selectivity in striate cortex of cats and primates”® is derived from non-
directionally selective cells at earlier stages in the geniculo-striate pathway — retinal
ganglion cells and LGN cells”"". Constraints in the neural responses of these cells will
therefore inevitably affect the visual motion system.

Directional selectivity in cortical cells is based on a comparison, or correlation, of
time varying signals from at least two locations in the visual field. The relevant question
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the retinal image, a necessary requirement for any elaborate motion detection model. Directional selectivity

generally follows from a comparison of the output of detectors sensitive to two opponent, or even
multiple directions (distribution shift models).

in the context of information encoding now becomes at what time scale variations in
these signals provide information about a motion stimulus, and where inherent neural
noise starts to interfere with reliable detection of visual motion.

To answer these questions, we have analyzed responses of retinal ganglion and
LGN cells in the light of a general, physiologically plausible motion detection model.
Model simulations with recorded neural spike trains as input signals, will show to
what extent variability in responses of neurons in the front-end visual system, i.e. the
retina and LGN, constrains motion sensitivity at the cortical level.

Hassenstein and Reichardt’s autocorrelation model™ was the prototype for many
subsequent motion detector models"™”. The Reichardt correlator is a convenient
model to pose and analyze the limitations that would arise from spike timing variability.
The issue that we deal with in this study, however, is that of correlation detection,
which is central to most common models for motion vision.

Correlation detection critically depends on the similarity between input spike trains
(Figure 1). It is unclear at what time scale the similarity is best analyzed, as even in the
case of an ideal, noise-free stimulus, spike trains from two neurons will differ in terms
of their spike arrival times. Inherent noise in retinal and LGN processing, preceding
and including spike generation, will cause temporal deviations in the times of
occurrence of individual spikes. Due to this ‘spike time variability’, the correlator
unit must integrate over time in order to detect similarity between incoming spike
trains. The optimal time scale for this temporal integration critically depends on
magnitude of spike timing variability.

The first contribution of this paper is a direct method for computing the optimal
integration time from the responses of cat retinal ganglion and LGN cell to dynamic
visual stimuli. For drifting sine wave gratings, spike timing variability of retinal ganglion
and LGN cells strongly depends on both temporal frequency and luminance contrast
(Figure 2). Our analysis shows that optimal integration times for these responses are
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Fig. 2. Retinal ganglion cell A
responses to drifting

sinusoidal grating stimuli. 70
The raster display shows a 1
second section of the response of 60| .
a single retinal ganglion cell to :
drifting sinusoidal grating stimuli,
varying in contrast (10 - 70%) and
temporal frequency (A: 2.0 and
B: 8.0Hz). Each dot in the display
represents the occurrence of a
spike. Each line of dots in the
display represents the response to
a single presentation of the
stimulus. Stimuli were randomly
interleaved and presented a
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highly dependent on temporal frequency. However, despite the huge effect of contrast
on spike timing variability, we find that contrast has very little effect on the optimal
integration times. Thus, to optimally process motion information carried by difterent
temporal frequency components, the motion system requires basic detectors with
different integration times on their inputs, which can be as short as § ms, but optimal
performance does not require different contrast channels.

The optimal values that we find in the model analysis show that, in principle,
motion discrimination can be performed on a very short time scale. If response
variability at this level of the visual system limits perceptual performance, one would
also expect very short threshold presentation durations for motion discrimination.

Psychophysical integration times (temporal summation) have been estimated
previously by measuring contrast sensitivity for a range of stimulus durations'™™.
This approach however, estimates the total temporal integration of the system and
will therefore reflect contributions of multiple neural integration stages™'. Furthermore,
the use of contrast as a dependent variable may preclude the effective measurement
of minimal required integration times, because these may occur at supra-threshold
contrast levels. We developed a paradigm for exploring the lower temporal bound of
the visual motion system without such limitations, measuring duration thresholds at
a fixed contrast level and temporal frequency. By presenting moving gratings in spatial
as well as temporal Gaussian envelopes we can accurately determine duration thresholds
as low as 4 ms.

We measured duration thresholds as a function of temporal frequency, at several
different contrast levels. Human duration thresholds for motion discrimination are
found to be very low, similar to the values obtained from the electrophysiological
data. Duration thresholds are dependent on temporal frequency — as predicted by
the model — and are similarly independent of stimulus contrast. This suggests that
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the variability of neural spike timing in the front-end visual system may play a role in
the perceptual limits of motion discrimination.

Methods

Electrophysiological preparation and recordings

Extracellular single unit recordings from retinal ganglion cells and LGN cells were
obtained with tungsten microelectrodes (TM33B20KT, World Precision Instruments,
USA, typical impedance 2.0 MQ at 1.0 kHz) from 19 anesthetized adult cats of either
sex (3 - s kg). Surgical procedures were standard and in accordance with the guidelines
of the Law on Animal Research of the Netherlands and of the Utrecht University’s
Animal Care and Use Committee.

Anesthesia was induced by ketamine hydrochloride injection (Aescoket-plus, 20
mg kg™, i.m.). Following preparatory surgery, anaesthesia was maintained by artificial
ventilation with a mixture of 70% N,O - 30% O, and halothane (Halothaan, 0.4 -
0.7%). To minimize eye movements, muscle paralysis was induced and maintained
throughout the experiment by infusion of pancuronium bromide (Pavulon, 0.1 mg
kg™ hr', i.v.). Oxygen-permeable contact lenses (+3.5 to +5 diopters, courtesy of
NKL, Emmen, Holland) were used to both focus the visual stimulus on the retina
and protect the corneae.

LGN and optic tract recordings were obtained at approximately 10 and 20 mm
below the cortical surface at Horsley-Clarke coordinates A8, L10™*. Action potentials
from single cells were detected with a window discriminator (BAK Electronics Inc.)
and digitized at 2.0kHz (PCI 1200, National Instruments) for on-line analysis and
storage (Apple Macintosh G4 computer, custom-made software).

Visual stimulation

Stimuli were computer-generated (ATI rage graphics card, Macintosh G4 computer,
custom-made software), presented on a linearized 19", 100 Hz CRT monitor (Sony
Trinitron multiscan 400PS) at §7 cm from the optic node and centered on the receptive
field of the cell under study. Mean luminance was 54 cd-m™. For those cells (<15%)
that showed significant response modulation to the 100Hz refresh rate of the monitor,
the frame rate was increased to 120Hz.

For each cell spatial and temporal tuning curves were measured using drifting
sinusoidal gratings (spatial frequency 0.1 - 4.0 cycles deg™, temporal frequency
0.5 — 50 Hz). Cells were classified as X or Y on the basis of a null-test™. Responses to
repeated 3 second presentations of drifting sine wave gratings were used for the
model analysis. The sinusoidal gratings fully covered the receptive field and spatial
frequency was optimized for the cell under study. Temporal frequency and luminance
contrast were varied (0.5 - 16Hz and from 10 - 70% respectively). A typical ‘stimulus
block’ consisted of 7 temporal frequencies and 7 contrasts resulting in 49 unique
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grating stimuli presented in a random order. Data that we present in this study is
obtained from cells with receptive fields located within the central 15 degrees of the
visual field. Only single unit recordings that were stable during at least 20 repeats of
the stimulus block and showed significant response modulation to the high contrast
stimuli were accepted for analysis.

Psychophysics

Stimulus patterns were vertically oriented Gabor patches (0 = 10 arcmin, spatial
frequency = 3 cycles deg’, starting phase randomized) the contrast of which was
modulated by a temporal Gaussian window. The contrast and temporal frequency
were varied in a 6 x 6 design (0.5 - 20Hz and 4.6 - 92%, respectively). Duration
thresholds for a left-right direction discrimination task were estimated by varying the
0 of the temporal Gaussian window in two interleaved QUEST staircases™. The
entire set of 36 conditions was repeated three times in pseudo random order, yielding
an average of six staircases per condition. Trials were self-paced and feedback was
provided. We were able to display very brief stimuli on a 120 Hz monitor by discretely
sampling the temporal Gaussian waveform every 8.3 ms and ensuring that the peak of
the Gaussian envelope was always included in the sample. For example, a Gabor
patch presented in a temporal Gaussian window with 0 = s ms would be shown in 5
video frames displaying 0.4, 24, 100, 24, and 0.4% of the peak contrast.

Stimulus patterns were created in MatLab with the Psychophysics Toolbox™ and
Video Toolbox™ on a Macintosh G4 computer. Patterns were displayed on a linearized
monitor (19" Sony GDM-F400, 800 x 600 resolution, 120 Hz). Gray-scale resolution
was expanded from 256 to 768 levels using a bit-stealing technique™. Viewing was
binocular at a distance of 78 cm, yielding 2 x 2 arcmin visual angle for each pixel.
Experiments were conducted in a dimly lit room under photopic conditions
(background luminance of 60.5 cd m™). The observers (VH, AB, GG, and BB) were
experienced with psychophysical displays, well practiced, and had normal or corrected-
to-normal vision. All observers except BB (first author) were naive to the purpose of
the experiment. All experiments were performed in compliance with institutionally
reviewed procedures for human subjects.

Model analysis

Input to the model was a set of recorded spike trains si(f), n = 20 (1). Spike trains are
passed through a first order filter with time constant T and normalized for T, adding
an exponential tail with an integral of 1 to each spike (2). From this set, pairs of spike
trains were multiplied, integrated and normalized to the integral of the first spike
train (3). This operation is performed for a series of T ranging from 1 - §00 ms
resulting in y(t). The spike trains si(t) were then shuffled by redistributing the interspike
intervals in each spike train. This yields spike trains si’(f) that have identical mean
firing rates, yet lack all stimulus related temporal structure. Repeating the former
procedure now results in y’(¢), which will function as a baseline for a measure of
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B

coincidence between the spike trains. The difference function Cr(t) describes the
contribution of the temporal structure of the input spike trains to the coincidence
detected by the correlator unit (4).

For each cell and stimulus condition, all possible response pairs (180 minimum)
were used in the simulations. T,, was calculated by averaging the results from each
spike train pair. Note that the actual procedure followed was the closest possible
numerical approximation (time base 0.5 ms) to the equations presented here.

a(t):zd(t—tj) i=1,n (1)

—t/T

x(67)=5(0) 0— (2)

zai Z [} ot (1.1) 3, (t7)

y(1) = s 5 (3)
n-1 dt [k, (t,7
(0-93 J, s 1)
for shuffled spiketrains si’(t) the same procedure results in y’(t).
C(1)=y()-y () @

Results

Responses to multiple repeats (20 minimum) of drifting sinewave gratings were
recorded from 37 retinal ganglion cells (33 X type and 4 Y type) and 20 cells in the
LGN (all X type) of anesthetized cats. Temporal frequency and stimulus contrast
were systematically varied (0.5 — 16 Hz and 10 - 70%, respectively) and spatial frequency
was optimized for the cell under study.

Recorded spike trains were used to assess the performance of a motion detector
model receiving this input. Essential to most motion detector models is the nonlinear
combination of signals arising from spatially separate receptive fields by a correlator
unit, after the signal in one of the input channels is delayed (Figure 1). Hence, the
correlator receives responses from two functional units, evoked by the same stimulus.
In the present study, this mechanism is mimicked by using two responses from the
same cell, evoked by repeated presentation of the visual stimulus. Clearly, this
approximates the limiting case of a motion detector model where the two cells have
identical response properties. Differences in spatio-temporal processing between the
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Fig. 3. Effect of T on the A B
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two inputs would further decrease their correlation, resulting in poorer performance.
Results of our model analysis must therefore be interpreted as the upper limits to the
performance of motion detectors.

The motion detector was modeled as a correlator in which input spike trains are
low-pass filtered and subsequently integrated. We used a simple, leaky-integrator
type filter (see Model for details), characterized by its time constant T (Figure 3). The
result is an analog signal in which individual spikes are no longer point events, but
pulses with an exponential decay. This choice of filter was motivated by both its
simplicity and its possible physiological relevance, as for a range of T-values, the
exponential tail can be interpreted as a first-order description of the postsynaptic
potential of a correlator receiving the spike train input™. The correlation step, essential
in motion detection, is modeled by summing bin-by-bin (0.5 ms) cross-products of
the two filtered spike trains over time. This algorithm yields the detected similarity
between two input spike trains, which we will refer to as ‘correlation’. By measuring
correlation as a function of the filter time constant, we quantify at which time-scale
spike timing variability affects the required integration time and thereby the
performance of the motion detector. Figure 3 illustrates the sensitivity of the correlator
to timing of individual spikes for two values of T. Due to variability in spike timing,
very small values of T yield near-zero correlation levels. For large values of T, correlation
approaches unity. In this case the correlator unit effectively counts spikes and is
therefore insensitive to spike timing variability; it merely reflects the mean difference
in firing rate of the two input spike trains™. These two extremes can be considered
reading a temporal code and a rate code, respectively.

The procedure as outlined provides a correlation measure that grows monotonically
with the value of the time constant. To find the integration time constant that yields
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N 08 Fig. 4. Deriving the optimal
—e—shuffled integration time. From the
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temporal structure of input spike
trains. For shorter integration
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integration times are computed in Matlab by cubic spline interpolation of the 15 data points.
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maximal sensitivity to temporal structure in the responses, the procedure was repeated
after randomly shuffling the two spike trains. This eliminates temporal structure, yet
preserves response statistics such as the mean firing rate and interspike interval
histogram. Also in this case, the correlation as a function of T is a sigmoidal function.
However, the curve is shifted towards higher time constants, indicating that longer
integration times are required to obtain the same level of correlation. This is a direct
consequence of the absence of stimulus related temporal structure in the two spike
trains. Now the difference between the original curve and that for the shuffled
responses, reflects the benefit from taking the temporal structure of the input spike
trains into account. The difference function clearly peaks at an intermediate value of
T (Figure 4). This value of the time constant will be called the optimal integration
time (T,,,), as it enables the correlator unit to make maximal use of information that is
available from the temporal structure of the input spike trains.

Our results show that T,, strongly depends on the temporal frequency of the sine
wave grating (Figure 5). High temporal frequencies yield short optimal time constants,
low temporal frequencies yield larger optimal time constants. Surprisingly, changing
stimulus contrast hardly affects the optimal tau value, despite the apparently large
effect on spike timing variability (Figure 2). Only exception was the lowest contrast
level that was tested, where an increase in T,, is observed. The figure shows that
although the correlation between the spike trains increases with contrast, T, is largely
contrast independent. These striking results are highlighted in the population data in
Figure 6a-c. Optimal integration times systematically decrease with increasing temporal
frequency, yet remain unaltered for contrast values above about 10%. The same
qualitative pattern of results is found for all three cell populations (retinal and LGN
X-cells, retinal Y-cells).
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Fig. 5. Relative correlation
curves for a single retinal
ganglion cell. The curves are
based on the data partially
displayed in Fig. 2. For cach
temporal frequency, decreasing
contrast causes a decrease in the
relative correlation. The values
of L however, remain the
same. This shows that although
the amount of information
present in the temporal structure
of the spike trains decreases with 4
decreasing contrast, the time 1 10 100
scale at which the information is
present remains the same. The
relative correlation curves shift toward shorter integration times with increasing temporal frequency.

Relative correlation

Integration time constant (ms)

The optimal time constant for temporal integration is directly related to the time
scale at which motion information is represented in spike trains generated in the
front-end visual system. It reflects on the one hand the temporal resolution at which
spike timing variability starts to have significant consequences, and on the other hand
the time scale of stimulus related signal fluctuations. The model analysis shows that
despite neural noise, integration times for optimal correlation detection, even on the
basis of a small number of input signals, can be very short. If the information carried
by the signals that arise in the front-end visual system is exploited by the cortical
mechanisms for motion detection, then one would expect that very short presentation
durations suffice for the perception of visual motion. To test this hypothesis, we
designed a psychophysical experiment that specifically measures minimal presentation
durations required for human motion discrimination.

Duration thresholds were measured for a direction discrimination task in which
observers discriminated leftward from rightward motion of a foveal Gabor stimulus
(see Methods for details). Spatial frequency of the Gabor was chosen to be in the
optimal range™. Contrast and temporal frequency, both parameters that are particularly
193933 were systematically varied (4.6 - 92% and 0.5
- 20Hz, respectively). Since contrast, size, spatial and temporal frequency were all at
non-limiting supra-threshold values, duration thresholds will be principally limited
by temporal limitations of the motion system and will express the shortest time scale
at which moving stimuli are processed accurately.

The finding that contrast affects both spike timing variability (Figure 2) and relative
correlation, but not the optimal integration time constant (Figure s) makes the

important for motion perception

comparison with psychophysical performance particularly interesting. Contrast and
temporal duration both aftect stimulus energy, and their visual effects might therefore
be expected to trade oftf with one another in influencing motion discrimination.
Longer stimulus durations might be expected to compensate for lower values of
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Fig. 6. Model results and psychophysics: Optimal integration time and duration threshold as
a function of stimulus contrast. (a-c). Optimal integration times are plotted for 33 X and 4 Y retinal
ganglion cells and 20 cells in the LGN. As illustrated in Fig. 6 the optimal integration time is independent
of stimulus contrast above about 10%. Optimal integration times decrease with increasing temporal
frequency. (d) The minimal presentation duration required to discriminate between direction of motion
is plotted as a function of contrast and temporal frequency of the drifting sine wave grating. Each data
point is the average of four subjects. For all temporal frequencies duration thresholds are largely
independent of stimulus contrast. The duration threshold is strongly dependent on the temporal frequency
of the sine wave grating.

relative correlation that occur with lower contrast. Previous studies have found that
motion discrimination is largely independent of contrast’*””*, but these previous studies
did not measure temporal thresholds. The question is whether minimal stimulus
durations for motion discrimination approach the short integration period that,
according to the model analysis, suffices for extracting motion information from
spike trains produced in the visual front-end, or whether they are governed by contrast
and the overall signal/noise ratio.

Psychophysical duration thresholds averaged for four observers are shown in Figure
6d. Clearly, measured psychophysical thresholds resemble the optimal integration
times modeled from the physiology data. Both physiological T, estimates and human
duration thresholds show a robust dependence on temporal frequency, that is
independent of stimulus contrast. Duration thresholds are of the same order of

magnitude as the model estimates for T,,. They are found to be as short as § ms for

opt*
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Fig. 7. Model results and [ —e— OT X-cells
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cycle, and more importantly, they do not scale with temporal frequency in a straightforward manner.
Slopes of both the physiology and psychophysics curves deviate in a similar way from a linear temporal
frequency dependence.

the highest temporal frequency used (20 Hz) and increase to about §0 ms at 0.5 Hz.
Psychophysical functions for different temporal frequencies are roughly parallel.
Thresholds for low contrast and the highest temporal frequencies are notable
exceptions, where a substantial increase in duration thresholds is observed. Interestingly,
a suggestion of this trend is also observed in the physiology data.

The correspondence between psychophysical and physiological results is illustrated
more clearly in Figure 7. Duration thresholds and T, estimates depend strongly on
temporal frequency, but not in a trivial manner. All curves in Figure 7 have a slope
that deviates considerably from the dashed lines depicting a constant fraction of the
stimulus period (a 1/fslope). The comparison with a 1/f slope is interesting, because
this is the slope that we would expect if optimal integration times were a mere result
from the linear interaction between the sine wave stimulus and low pass filtering of
input spike trains in the model. At low temporal frequencies, differences in the slope
of the model data are small. With increasing temporal frequency however, the
difference becomes highly significant. This is observed for each of the three difterent
cell types.

Expressed as fractions of the stimulus cycle, human duration thresholds range from
1/10 of a cycle at 20 Hz to an impressive 1/50 of a cycle at 0.5 Hz. The data therefore
do not support the hypothesis that a fixed change (e.g. fixed spatial displacement) is
required to reach threshold. This deviation from a 1/f relation predominates at high
temporal frequencies.
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Except for small differences in y-axis position, the psychophysical and physiological
temporal limits are remarkably similar. Small differences may be expected based on
the details of quantifying duration thresholds, such as the chosen percent correct
criterion. Since physiological data directly reflect the changing effects of spike time
variability with temporal frequency, this strongly suggests that a similar limitation
plays a role in the psychophysical task. Figure 7 also shows that this correspondence
is only marginally affected by the relay across the LGN. A small but significant shift in
T, for the different cell types can be observed. Optimal integration times for LGN X
cell responses are approximately 27% longer (27.0 £ 9.7%) than those for retinal X
cells. The optimal integration times for Y type retinal ganglion cells are approximately
20% (18.0 £ 5.4) shorter than those computed from retinal X cell responses.
Presumably, Y type LGN cell responses would also yield slightly higher values than
Y type retinal ganglion cells. The psychophysical duration thresholds are of the same
order of magnitude and follow these physiological temporal limits.

Discussion

The results that we present in this study provide new insight into the functional
consequences of spike timing variability for reliable detection of visual motion. Our
intuition was that spike timing variability in the front-end visual system should limit
the temporal resolution of the motion system, where correlation between input signals
at short time scales may be important. Using electrophysiological recordings from
retinal ganglion and LGN cells in the cat, we computed integration times that optimize
the extraction of motion information from these spike trains. We find that these
optimal integration times can be on the order of milliseconds, but depend strongly
on temporal frequency. Yet, they are virtually independent of stimulus contrast. In a
psychophysical experiment aimed at probing the temporal limits of the visual motion
system, we find similar results. Minimal presentation durations required to discriminate
between opposing directions of motion are very short, much shorter than suggested
by previously reported motion integration times'” *. Interestingly, the dependencies
of duration threshold on temporal frequency and contrast resemble those observed
from the electrophysiological data.

The psychophysical experiment that we carried out showed that duration thresholds
are largely independent of stimulus contrast. This is in line with results of previous
experiments on human motion detection. This finding is at the same time surprising,
however, in the light of the strong eftect of stimulus contrast on spike timing precision
(Figure 2). The increased similarity of spike trains evoked with higher contrasts is
reflected in increased relative correlations in the output of the model motion detector
(Figure 5). The fact that this contrast effect is not observed in the psychophysical
duration thresholds is clear evidence that increased signal strength (relative correlation)
for higher contrasts is not exploited by the nervous system to reduce integration times.
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Our stimuli were designed to allow for a comparison between cat physiology and
human psychophysics. Even though both species are visually oriented and have
excellent motion vision, their visual systems differ in several ways and stimulus
parameters were adjusted accordingly. Cats are sensitive to higher temporal frequencies
than primates. With 16 Hz as the highest temporal frequency used in the
clectrophysiological experiments, we stayed well away from the temporal region
where these differences become pronounced. In physiological recordings, spatial
frequency was optimized for the cell under study (usually less than 1 cycle deg™) and
the stimulus covered the full receptive field. For psychophysical measurements, stimulus
parameters were chosen based on optimal parameters for human motion
discrimination®. Additionally, the spatial extent of the moving stimuli matched the
size of foveal receptive fields in macaque area V1%, where motion selective cells in
the primary visual system are first encountered’. Thus, approximately optimal motion
stimuli were used for both the physiological and psychophysical experiments. More
importantly, the principal neural factors relevant for the results presented here are
likely to be signal transduction, inherent retinal noise and the mechanisms underlying
spike generation. These are fundamental properties of mammalian sensory neurons
and there are no reasons to believe that there are significant differences in the resulting
spike timing variability of early neural responses.

Correlation detection in our model simulations was based on the integration of
single pairs of recorded spike trains. In the cortex, however, the number of inputs is
more likely to be on the order of tens, or hundreds per direction selective cell. This
masks effects of spike timing variability, as summing increasing numbers of input
spike trains results in increasingly smooth input signals. It is important to realize
however, that bulk summation may occlude fine temporal structure in the input
signals that reflects relevant information about the stimulus. Therefore, there may be
a benefit in computing correlations based on limited numbers of input spike trains. In
such a scheme, integration of spatially separated inputs is performed locally on the
dendrites, which is not unreasonable to assume. Additional model simulations have
shown that also with sets of as many as ten spike trains per input channel, integration
time constants still show clear optima, similar to the pair-wise simulations, that are
contrast independent but vary with temporal frequency.

Figure 7 shows that the optimal integration time, computed from the
electrophysiological data, decreases with increasing temporal frequency of the sine
wave stimulus. The function describes this relation, however, clearly flattens towards
higher temporal frequencies. A likely explanation for this effect is that due to inherent
neural noise, the optimal integration time can never reach zero. Temporal deviations
in spike timing and unreliable spike generation at the highest temporal frequencies,
which leads to ‘spike skipping’, remain and supposedly become predominant in the
temporal structure of the response. This must therefore be interpreted as the time
scale at which response variability starts to interfere with correlation detection. The
same reduced decrease at high temporal frequencies is observed for human duration
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thresholds also (Fig. 7). This suggests that at these temporal frequencies, response
variability sets the fundamental limits of motion vision.

There 1s ongoing debate about whether neurons in various areas in the sensory
nervous system employ a temporal code or a rate code. This debate is unlikely to be
resolved in favor of either one. We show that at least the front-end visual system is
not likely to employ either one or the other. The real issue concerns defining the
relevant time scale at which information is represented by spikes in a neural spike
train and how the nervous system is adapted to this time scale. Our results suggest
that, especially at high temporal frequencies, spike timing variability is likely to play a role.
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This thesis describes a series of investigations into the reliability of neural responses in
the primary visual pathway. The results presented in subsequent chapters are based
on extracellular recordings from single neurons in anaesthetized cats and area MT of
an awake monkey, computational model analysis and a psychophysical experiment
with human subjects.

In Chapter 1, I compared spike timing precision in recorded and simulated
responses to a range of dynamic visual stimuli. Simulated responses had the same time
varying spike rate as the recorded signals and were generated with a probabilistic
model (Poisson model). Because spikes occur on the basis of a probability level that is
proportional to the firing rate, all information about the stimulus in these model
spike trains, is represented by the time varying spike rate. The comparison therefore
tells us whether there is additional information available from the exact times of
occurrence of individual spikes in the recorded responses. This temporal information
could then be exploited by the neural mechanisms underlying e.g. stereopsis, motion
vision and object-background discrimination, that depend directly on temporal
correlations between neural signals.

Spike timing precision was quantified with a measure that is based on distances
between nearest spikes (spike time deviations) in responses to repeated stimulus
presentations. In the case of a perfectly reproducing response, the spike time deviation
would be zero. When responses become increasingly dissimilar, spike time deviations
will increase accordingly.

Reesults show that spike time deviations in the recorded responses are significantly
smaller than in the simulated responses. The effect is robust, and can not be explained
by ec.g. refractoriness of the spike generator. The difference is dependent on the
strength of the response: at very low firing rates (0 — 20 spikes s), spike time deviations
in simulated and recorded responses do not differ significantly. At a firing rate of
about 8o spikes s, however, spike time deviations in the recorded signals are a factor
2 smaller than in the simulations. For retinal ganglion cells, this holds for the entire
set of stimuli that was used, including drifting random line patterns and movie clips
of natural scenes. In the LGN, the same increased precision was observed, however,
here I also found some cells that showed little or no difference with the simulated
responses.

Although some timing precision may be lost at the relay in the LGN, responses
from most cells remain substantially more precise than one would expect on the basis
of the time varying response rate. From this I conclude that despite inherent neural
noise, spike generation in the visual front-end under dynamic, supra-threshold
stimulation results in precise spike timing that meets the requirements for the temporal
encoding of visual information. The study shows that a probabilistic model for spike
generation that is based on the firing rate can not account for this.
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In Chapter 2, I set out to investigate whether a deterministic model with added
noise can provide a more realistic account of the trial-to-trial variability of neural
responses in the visual front-end. To this end, I extended a conventional Leaky
Integrate and Fire model' with a single additive noise source (Noisy Leaky Integrate
and Fire model; NLI&F). Performance of the model is evaluated with two different
measures of response variability: one sensitive to variations in the total number of
spikes in the response, irrespective of their time of occurrence** (coefficient of variation;
Cv ) and one sensitive to variability in spike timing, irrespective of spike count (the
spike time deviation measure that was also used in Chapter 1). These can be thought
of as orthogonal measures that, when taken together, provide a complete description
of the magnitude of the differences between spike trains.

When amplitude and bandwidth of the noise source are optimized, trial-to-trial
variability of spike trains generated with the NLI&F model closely match that of the
recorded responses, both in terms of spike count and spike timing precision.
Furthermore, I show that the model accounts for dynamic changes in spike timing
precision over the time course of the response. The fact that the NLI&F model
provides a close approximation of the recorded spike timing precision shows that
despite neural noise, spike generation is essentially deterministic. The observed spike
timing variability can then be viewed as a mere result of the interaction between a
noisy signal and a fixed spike threshold.

From this interaction, one would predict that more dynamic visual stimuli yield
more reproducing responses. This hypothesis is supported by results obtained from
the mammalian retina® and cortex' "', and fly motion sensitive neuron Hr1'. The
effect of stimulus dynamics on spike timing precision was tested by presenting drifting
sine wave stimuli of different temporal frequencies and contrasts. Results show that
the predictions of the NLI&F model are extremely accurate.

I conclude that the Leaky Integrate and Fire model with additive noise is an
appropriate model for generating spike trains with realistic trial-to-trial variability.
Such spike trains can be used in theoretical investigations of the effects of response
variability on the cortical mechanisms underlying visual perception.

The next two chapters describe experiments that are based on reverse correlation
analysis'. Reverse correlation depends critically on precise temporal correlations
between specific stimulus features and individual spikes. These investigations can
therefore be thought of as exploiting the reliability of spike timing to gain new
knowledge about the visual system itself.

Chapter 3 introduces the motion reverse correlation method (MRC): a novel
stimulus paradigm based on a random sequence of motion impulses. The method is
tailored to investigate response properties of directionally selective neurons in the
visual cortex.
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Conventional white noise analysis has been very useful for investigating spatio-
temporal response properties of - predominantly linear — neurons in the visual front-
end*®. Luminance white noise stimuli, however, do not evoke strong responses
from cells with more complex, nonlinear response characteristics such as directionally
selective neurons in the visual cortex. I show that by changing the random luminance
stimulus to a random motion stimulus, and averaging the stimulus preceding each
spike in terms of motion energy, rather than luminance contrast, a description is
obtained of the cell’s linear response properties in the motion domain.

Effectiveness of the method is illustrated with results obtained from area 18 and
PMLS of anaesthetized cats, and area MT of an awake, fixating monkey. Measured
direction and velocity tuning curves were confirmed with conventional methods.
The MRC method offers a flexible paradigm for measuring tuning properties of
directionally selective cells. The highly interleaved stimulus makes measurements less
sensitive to changes in the sensitivity of the cell during recording and allows for
several motion parameters to be varied simultaneously. The method is considerably
faster than conventional methods, which makes it particularly useful for studies in
awake animals, where recording time is highly limited. Most importantly, the MR C
method provides information that can not be derived from conventional methods.
The motion reverse correllogram is a high-resolution description of motion tuning
properties over time, that enables a detailed examination of the temporal aspects of
motion selectivity. I show that by extending the method in a straightforward manner,
spatial as well as temporal receptive field properties can be measured. Applying the
method to the study of MT neurons in the awake macaque has elucidated interesting
new phenomena that are currently under investigation.

In Chapter 4, conventional luminance white noise analysis'> ™ is used to obtain
linear response characteristics of retinal ganglion cells, cells in the LGN and in area 17
of anaesthetized cats. These were then used to predict the responses of the cells to
movie clips of natural scenes. By comparing predicted and recorded responses, I
examined to what extent nonlinear mechanisms play a role in neural responses to
natural stimuli.

The results show that purely linear predictions, obtained through a convolution of
the cells” response characteristics with the movie clips, deviate significantly from the
recorded responses. Other studies have shown that responses to white noise stimuli
can be predicted accurately when a static nonlinear function is added to the model*
', This static nonlinear function can be derived from the reverse correlation
measurement. I show that this does not suffice for predicting responses to movie clips
of natural scenes. Even with the most optimal static nonlinear function, significant
deviations remain. The deviations are moderate for the retinal ganglion cell responses
and slightly larger in the LGN. The results for area 17 were generally very poor.

From this I conclude that when proceeding up the primary visual pathway, dynamic
nonlinear mechanisms, e.g. light and contrast adaptation, become increasingly
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important for the generation of responses to natural stimuli. Whereas others have
shown that a linear-static nonlinear model suffices for the prediction of retinal and
LGN responses to white noise stimuli'=', I showed that in order to obtain accurate
predictions for responses to movie clips of natural scenes, dynamic nonlinear
mechanisms can not be ignored, and must be accounted for in the model.

In the last chapter, I return to the functional consequences of spike timing
variability. Responses to drifting sine wave gratings were recorded from retinal ganglion
cells and cells in the LGN. These responses were used as input for a bilocal detector
model*, which 1s an essential subunit of almost all motion detection models>-2.

The bilocal detector signals correlation between input signals from spatially separated
locations on the retina. Evidently, noise in the input signals disturbs these correlations.
In order to allow for spike timing variability, input signals must be integrated over
time. Optimal performance of the bilocal detector therefore requires temporal
integration with a time constant that makes the correlator maximally sensitive to the
stimulus-related temporal structure of the response, and minimally sensitive to noise
in the signal. A method was developed to compute this ‘optimal integration time’
directly from the recorded responses.

Reesults show that optimal integration times are strongly dependent on the temporal
frequency, but not on the contrast of drifting sine wave stimuli. Especially contrast
independence is surprising, because contrast has a large apparent effect on spike timing
precision (Fig. 2, pag 100). Furthermore, optimal integration times are short, much
shorter than suggested from earlier studies®* **. They range from about 100 ms at a
temporal frequency of 0.5 Hz, down to an impressive § ms at 32 Hz.

Next, a psychophysical experiment was designed to test whether this is reflected in
duration thresholds for a motion discrimination task. In this experiment, the duration
threshold is the minimal presentation-duration required for reliable discrimination
between leftward and rightward motion. Results show that duration thresholds are
indeed very short, and values are of the same order of magnitude as the optimal
integration times predicted by the model. Moreover, the same pattern of dependencies
on temporal frequency and stimulus contrast is observed. Details of the similarities,
such as the flattening of both the optimal integration time and the duration threshold
function at high temporal frequencies, make these results particularly intriguing.

Despite the striking similarity that exists between the model predictions and the
psychophysical data, care should be taken when interpreting these results. The fact
that there is are optimal integration times, does not necessarily mean that the visual
system actually employs exactly these integration times. It is unclear how well the
system may perform at shorter, sub-optimal, integration times. Also, psychophysical
duration thresholds vary with the criteria set by the experimenter and a direct
quantitative comparison with the optimal integration times is therefore invalid.
Important questions, e¢.g. how integration of multiple inputs prior to correlation
affects these results, arise and are worth investigating.
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From these results, I conclude that neural signals in the visual front-end are
sufficiently precise to allow for correlation detection on very short time scales. To
determine to what extent fundamental limits of the visual motion system are really
set by spike timing variability, remains an interesting challenge that asks for clever,
new experiments. One example of such an experiment may be the measurement of
detection thresholds for temporally distorted motion. This may be a next step in
elucidating the true temporal resolution of the visual system.
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Epilogue

Comparison of spike timing precision in recorded and Poisson-simulated spike trains
has shown that spike timing in the front-end visual system is considerably more
precise than one would expect on the basis of the time varying spike rate. Based on
the nature of the measure that was used to quantify spike timing precision, this implies
that spike trains in the visual front-end allow for an interesting decoding scheme.
This encompasses optimal correlation detection, where temporal correlations are
detected independent of straightforward synchronicity.

The MR C method described in chapter 3 is currently being used in our laboratory
and interesting results have been obtained so far. The method will continue to be
used for investigating second order motion receptive field properties of neurons that
are involved in the cortical processing of visual motion information.

When the findings of chapters 2 and 4 are combined, an interesting next step can be
made in the prediction of responses of the front-end visual system. If nonlinear
mechanisms are taken into account to obtain an accurate estimate of the membrane
potential, then the Leaky Integrate and Fire model with added noise likely provides
a realistic response prediction, both in terms of the dynamic changes in the firing rate
over time, and in terms of spike timing precision. Such a model can be used to
investigate the performance of motion detection models under natural stimulus
conditions and may well lead to important new knowledge about the nature of
information processing in the brain.
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Samenvatting in het Nederlands

Samenvatting

De lens in het oog projecteert de visuele wereld op het netvlies. Het netvlies is een
uiterst complex zenuwnetwerk bestaande uit tenminste 5 hoofdceltypen (receptoren,
horizontale cellen, bipolaire cellen, amacrine cellen en ganglioncellen) en heel
ingewikkelde lokale schakelingen. Het zet de lichtinformatie om in electrische signalen
die vervolgens naar cen recks verwerkingsstations in de hersenen worden verzonden
(figuur 1). De signalen bestaan uit stereotype pulsjes (actiepotentialen of ‘spikes’) en
komen via de optische vezels in de oogzenuw aan in het CGL (corpus geniculatum
laterale). Dit is een volledig visueel systeemdeel van de thalamus, de poort van vrijwel
alle zintuigelijke informatie naar de hersenschors. Omdat het CGL in het engels
LGN (lateral geniculate nucleus) heet en de hoofdstukken van dit proefschift in het
engels zijn geschreven, zal ik het CGL vanat nu de ‘LGN’ noemen. Via de LGN
bereiken de signalen de primaire visuele cortex V1, (het eerste deel van de hersenschors,
dat zich bezighoudt met het zien). Dit betekent dat alle informatie die nodig is voor
het waarnemen van bijvoorbeeld kleur, vorm, diepte en beweging, aanwezig is in de
recksen actiepotentialen in de optische vezels. Verstoringen van deze signalen zullen
daarom onherroeplijke gevolgen hebben voor de kwaliteit van het zien: informatie
die onderweg van het oog naar de hersenschors verloren gaat, is voorgoed verdwenen.

De zenuwecellen die verantwoordelijk zijn voor het genereren en doorgeven van
neurale signalen zijn voortdurend onderheving aan ruis: willekeurige veranderingen
in de electrische en chemische toestand van de cel. Hierdoor treden er continu kleine
verstoringen op. Twee responsen (reacties) op precies dezelfde stimulus (prikkel) zijn
daarom nooit exact gelijk. Een belangrijke en grotendeels onbeantwoorde vraag is
hoe groot deze onnauwkeurigheden precies zijn en welke invloed zij hebben op,
bijvoorbeeld, het zien van beweging, waarbij zeer nauwkeurige informatie van groot
belang kan zijn. Dit proefschrift gaat over de vraag hoe betrouwbaar neuronen zijn
bij het overdragen van visuele informatie in recksen actiepotentialen (‘spikes’), terwijl
ze ze blootgesteld zijn aan ruis. Ik richt me hierbij vooral op de reproduceerbaarheid
van de temporele (‘tijds’-) structuur van de signalen.

Het eerste hoofdstuk van dit proefschrift beschrijft een experiment waarin we
de nauwkeurigheid bepalen van de neurale signalen afkomstig van het oog en de
LGN. Onder invloed van ruis ontstaan variaties in spike timing: de preciese tijdstippen
waarop individuele spikes optreden. De gemeten ‘spike timing’ precisie wordt
vergeleken met die van gesimuleerde responsen, gegenereerd met een statistisch model
(Poisson model). Hierdoor kan worden onderscheiden of spike timing precisie in de
gemeten responsen het directe gevolg is van de spike frequentie (het aantal spikes in
de tijd), of dat het aanvullende informatie geeft over de stimulus. Uit de resultaten
blijkt dat spike timing in de gemeten responsen aanzienlijk nauwkeuriger is dan men
zou verwachten op basis van de spike frequentie. Dit verschil was vrijwel onathankelijk
van de stimulus die werd gebruikt, en gold zowel voor de signalen afkomstig uit het
oog, als voor de signalen gemeten in de LGN. Dit effect werd sterker bij hogere
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MT (area PMLS) Figuur 1. Anatomie van de
centrale route voor de
verwerking van visuele
informatie in de hersenen
van primaten. Aanduidingen

V2 (area18) van de overcenkomstige
gebieden in de kat zijn cursief
gedrukt. Op basis van Brodal

V1 (area 17) (1981) Neurological anatomy in
relation to clinical medicine.

Oog zenuw

spike frequenties. Ik concludeer hieruit dat neurale signalen in de eerste stadia van
het visuele systeem potentiele informatie bevatten die niet uit de spike frequentie
kan worden afgeleid. Neurale mechanismen in de visuele cortex zouden deze extra
informatie kunnen benutten met een decoderingsmechanisme, dat gevoelig is voor
fijne correlaties tussen spikes in verschillende ingangssignalen. Een dergelijk
mechanisme zou een belangrijke rol kunnen spelen bij bijvoorbeeld het zien van
diepte en beweging, en het scheiden van object en achtergrond. De resultaten laten
zien dat een statistisch model, dat uitgaat van de spikefrequentie, ontoereikend is
voor het natuurgetrouw simuleren van neurale signalen.

In hoofdstuk 2 wordt daarom onderzocht of een deterministisch model voor
spike generatie, een beter resultaat oplevert. Het model moet dan worden uitgebreid
met een ruisbron, want de gemeten signalen zijn nu eenmaal verstoord door ruis. Ik
gebruik het populaire Leaky Integrate and Fire (LI&F) model, waarin de
membraanpotentiaal, die athankelijk is van de stimulus, wordt vergeleken met een
vaste drempelwaarde. Als de membraanpotentiaal de drempelwaarde overschreidt,
genereert de cel een spike en komt de membraanpotentiaal in de uitgangstoestand
terug. Zonder toegevoegde ruis, levert herhaalde presentatie van de stimulus identieke
gesimuleerde responsen op (dit kenmerkt een deterministisch model). Door echter
ruis toe te voegen aan de membraanpotentiaal, onstaan er verschillen in de gesimuleerde
responsen op herhaalde stimulus presentatie. De vraag is nu in hoeverre de grootte
en aard van de verschillen in de gesimuleerde signalen, overeen komen met de variaties
in de gemeten signalen. We laten zien dat het LI&F model met toegevoegde ruis een
behoorlijk nauwkeurige benadering van de variaties in de gemeten signalen kan
opleveren. Als de amplitude en bandbreedte van de ruis worden geoptimaliseerd,
komen de gemeten en gesimuleerde signalen sterk overcen. Dit geldt voor
veranderingen in de spike frequentie en in de spike timing precisie, en voor variaties
in het totaal aantal spikes in de respons. We laten zien dat dit een grote verbetering is
ten opzichte van het statistische model uit hoofdstuk 1.
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In hoofdstuk 3 wordt een nieuwe meet- en analysemethode geintroduceerd: de
Motion Reverse Correlation methode (MRC). Ik heb de methode ontworpen om
eigenschappen te meten van cellen in de visuele cortex die gevoelig zijn voor beweging.
De methode is een uitbreiding op de lineaire systeem theorie, waarmee eigenschappen
van een systeem kunnen worden bepaald door in- en uitgangs signalen met elkaar te
vergelijken. In het geval van de retina en de LGN, kan cen klassicke ‘Reverse
Correlation’ analyse bijvoorbeeld worden gedaan door ruisbeelden in het
luminantiedomein aan te bieden: willekeurige patronen van licht en donker (deze
kunnen eruit zien als het ruisbeeld van een televisie). Door de repons van een zenuwcel
te meten, en de beelden die voorafgingen aan het moment waarop de cel een spike
vuurde te middelen, verkrijgt men een beschrijving van de gemiddelde stimulus die
vooraf ging aan (en dus oorzaak was van) een spike. Omdat in het geval van ruisbeelden
de gemiddelde stimulus een beschrijving is van de lineaire overdrachtsfunctie van de
cel, i1s dit is een buitengewoon krachtige en snelle methode om de respons
eigenschappen van de cel te achterhalen.

In dit voorbeeld worden de lichtintensiteitswaarden van de beelden gemiddeld,
dus levert dit een beschrijving van de eigenschappen van de cel in het luminantie
domein. In hoofdstuk 3 laat ik zien dat deze benadering ook kan worden toegepast
op cellen die gevoelig zijn voor beweging. Het enige dat dit vereist is een vervanging
van het luminantiedomein door het bewegingsdomein. Door willekeurige
bewegingspatronen aan te bieden, en de gemiddelde beweging te berekenen die
voorafging aan een spike, verkrijgen we opnicuw cen beschrijving van de lineaire
overdrachtsfunctie van de cel. Alleen gaat het in dit geval om een beschrijving in
termen van bewegingsenergie. Met name de fijne tijdsresolutie van deze beschrijving
maakt de methode zeer interessant, omdat die met bestaande methoden voor studie
van de bewegingsresposies van cellen eenvoudigweg niet gehaald kan worden. De
effectiviteit van de nieuwe methode wordt geillustreerd aan de hand van metingen
in area 18 en arca PMLS (gebieden in de visuele cortex van de kat die een belangrijke
rol spelen bij het zien van beweging) en in area MT (een vergelijkbaar hersengebied
in de hersenen van de aap). We verifiéren deze metingen met behulp van bestaande
methoden. De richtings- en snelheidsvoorkeuren komen nauwkeurig overeen en de
methode is niet gevoelig voor veranderingen in de samenstelling van de MRC-
stimulus. Verder tonen we aan dat de MRC methode aanzienlijk sneller is dan
conventionele methoden. Dit is van groot belang voor experimenten met wakkere
dieren, omdat de meettijd hier over het algemeen zeer beperkt is.

Dat de MR C methode zich bij uitstek leent voor het meten van fijn-temporele en
ruimtelijke eigenschappen van bewegingsgevoelige cellen wordt onder meer
geillustreerd aan de hand van een voorbeeld van centrum/omgeving organisatie in
area MT. Verder vermoeden we, op basis van MR C metingen die tot nu gedaan zijn,
dat zowel de cellen in area MT van de aap als in area PMLS van de kat twee klassen
vormen. Deze onderscheiden zich in de temporele ontwikkeling van het verloop
van de respons op beweging. Dit zijn interessante bevindingen die op dit moment
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verder worden onderzocht. Een filmpje van de resultaten van een meting van de
voorkeurs ricthing in area MT is te zien in de rechterboven hocek van dit proefschrift.
Pagina nummers geven de tijd aan, in milliseconden véor het optreden van een

spike.

In hoofdstuk 4 maken we gebruik van klassicke reverse correlatie analyse in het
luminantiedomein om overdrachtsfuncties te meten van cellen in de retina, LGN en
area 17 (de primaire visuele cortex). Vervolgens gebruiken we deze lineaire
beschrijvingen om de respons van de cellen op videofragmenten van natuurlijke
scenes, te voorspellen. Deze natuurlijke scenes bestonden uit digitale video opnamen
die werden gemaakt in de stad en in een park. Elk van de clips was rijk aan vorm- en
bewegingsinformatie. Met name de complexiteit van deze beelden maakt de evaluatie
van respons voorspellingen interessant. Het is namelijk goed mogelijk dat bepaalde
eigenschappen van cellen in het visuele systeem over het hoofd worden gezien wanneer
uitsluitend met ‘eenvoudige’ stimuli wordt gewerkt. Cellen in elk van de drie bemeten
stations worden sterk geprikkeld door de videofragmenten. Een voorspelling van de
responsies kan worden gemaakt door de overdrachtsfunctie van de cel — dit is een
input-output beschrijving in ruimte en in tijd — te vermenigvuldigen met de stimulus.
De uitkomst van deze vermenigvuldiging is een lineaire schatting van de response.
Uit de vergelijking van deze schatting met de werkelijk gemeten respons blijkt dat de
voorspellingen een recks identificeerbare tekortkomingen vertonen. Deze
tekortkomingen worden veroorzaakt door niet-lineaire eigenschappen, die blijkbaar
een belangrijke een rol spelen bij het tot stand komen van de gemeten responsen.
Deze niet-lineaire eigenschappen zijn, per definitie, niet vertegenwoordigd in de
lineaire overdrachtsfunctie. Niet-lineaire eigenschappen kunnen ‘statisch’ of
‘dynamisch’ zijn. Een statische niet-lineariteit kan worden afgeleid van de verschillen
tussen de voorspelde en gemeten respons, en op eenvoudige wijze worden toegevoegd
aan het model. Zo’n toevoeging levert een behoorlijjke verbetering van de
voorspellingen op, maar er blijven belangrijke afwijkingen tussen de voorspelling en
de meting. Zelfs wanneer de statische niet-lineariteit zo optimaal mogelijk gekozen
wordt, waarbij uviteindelijk de gemeten respons zelf werd gebruike, blijkt dat er
belangrijke verschillen blijven bestaan. De verschillen worden groter naarmate we de
visuele verwerkingsroute volgen: in de retina zijn de verschillen klein, in de LGN
iets groter en voorspellingen voor de responsen van cellen in area 17 (V1) komen
maar zeer matig overeen met de gemeten responsen. Hieruit concluderen we dat
dynamische niet-lineariteiten een belangrijke rol moeten spelen bij de responsen op
videofragmenten van natuurlijke scenes. Voorbeelden van dynamische niet-
lineariteiten zijn de mechanismen voor licht- en contrastadaptatie. De analyse in dit
hoofdstuk heeft aangetoond dat de toevoeging van dergelijke mechanismen aan het
model een voorwaarde is voor het nauwkeurig voorspellen van de responsen op
natuurlijke beelden.
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In hoofdstuk 5 keren we terug naar de consequenties van spike timing precisie
voor het functioneren van het visuele systeem. Hierbij werd in het bijzonder gekeken
naar het bewegingszien. Modellen voor bewegingszien zijn globaal gebaseerd op de
detectie van correlaties (overeenkomsten) tussen neurale signalen aftkomstig van twee
(of meer) ruimtelijk gescheiden locaties op het netvlies. Correlatiedetectie is daarom
direct athankelijk van de overeenkomsten tussen deze ingangs-signalen. We weten
echter dat ruis in het visuele systeem deze overeenkomsten verstoort. Dit zal met
name gevolgen hebben voor correlatiedetectie op een tijdsschaal die zo kort is dat er
slechts een klein aantal spikes per ingangs-signaal beschikbaar zijn. Voorbeelden hiervan
zijn het navigeren in een zeer dynamische omgeving, en de vlucht van insecten, waar
beslissingen binnen enkele tientallen milliseconden moeten worden gemaakt. In de
limiet zijn geen twee neurale responsen gelijk: spikes treden nooit op exact dezeltde
tijdstippen op in de ingangssignalen. De correlatie detector zal de signalen dus met
een zekere tolerantie in de tijd moeten analyseren om toch de overeenkomsten op te
pikken. Een dergelijke tolerantie kan worden bereikt door de signalen een bepaalde
tijd te ‘onthouden’, zodat een binnenkomende spike samen met een spike die enige
milliseconden geleden arriveerde, toch tot een bovendrempelig correlatiesignaal kan
leiden. Dit geheugen komt overeen met de integratie van de ingangssignalen in de
tijd. Hoe lang de signalen onthouden worden, hangt vervolgens af van de tijdsconstante
van de integrator: hoe groter de tijdsconstante, hoe langer de periode waarover de
signalen vastgechouden worden. In het geval van een tijdsconstante van nul is er geen
sprake van een geheugen en zal ruis in de spike trains elke relevante correlatiedetectie
verstoren. Bij een zeer lang geheugen echter, functioneert het systeem ook niet goed,
omdat variaties in de spike dichtheid (de wezenlijke structuur van de respons)
genegeerd worden. Dit maakt het systeem ongevoelig voor correlaties op korte
tijdsschalen. Uit deze twee extremen kunnen we opmaken dat er cen optimale
tijdconstante moet zijn waarbij de correlatie detector maximaal gevoelig is voor de
stimulus-gerelateerde structuur in de responsen en minimaal gevoelig voor de ruis.
In hoofdstuk § bepalen we optimale tijdsconstantes met een standaard correlatiedetector
model. Als ingangssignalen gebruiken we responsen op bewegende sinusrasters,
gemeten in de retina en LGN van geanaesthetiseerde katten. De sinusrasters die
werden aangeboden varieerden in contrast en temporele frequentie. De resultaten
laten zien dat optimale tijdsconstantes variéren met de temporele frequentie, maar
niet met het contrast van de rasters. Met name dit laatste is onverwacht, omdat op
basis van de gemeten responsen, die ogenschijnlijk ruisiger worden bij afnemend
contrast (zie pag. 100, figuur 2), kan worden verwacht dat contrast juist een grote
invloed zou hebben. Verder laten de simulaties zien dat de optimale tijdsconstantes
zeer kort zijn, in de orde van § ms bij een temporele frequentie van 32 Hz. Dit
suggereert dat de minimale aanbiedingsduur voor bewegingsdiscriminatie (de minimale
tijd benodigd voor het betrouwbaar onderscheiden van, in dit geval, de richting van
de beweging) ook zeer kort zou kunnen zijn en hetzelfde patroon van athankelijkheden
van temporele frequentie en contrast zou kunnen vertonen.
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In het tweede deel van hoofstuk 5 is deze suggestie uit de electrofysiologie
onderzocht met een psychofysisch experiment, waarbij proefpersonen de
bewegingsrichting van kleine, zeer kort aangeboden sinusrasters moesten aangeven.
De resultaten laten zien dat minimale aanbiedingsduren inderdaad zeer kort zijn. Ze zijn
bovendien athankelijk van de temporele frequentie, en grotendeels onathankelijk
van het contrast van de sinusrasters.

De overeenkomst van deze resultaten met de modelvoorspellingen is treftend.
Enige zorgvuldigheid moet echter worden betracht bij de interpretatie van deze
gegevens. Hoewel we een optimale tijdsconstante kunnen bepalen, wil dit niet zeggen
dat het bewegings-detectie systeem niet zou kunnen functioneren als kortere, sub-
optimale, tijdsconstanten worden gebruikt. Ook is de minimale aanbiedingsduur,
gemeten in het psychofysische experiment, athankelijk van betrouwbaarheidscriteria,
die worden ingesteld door de onderzocker. Dit tezamen maakt cen directe,
quantitatieve vergelijking van de resultaten niet onmiddelijk gerechtvaardigd.

De resultaten tonen echter wel onomstotelijk aan dat de temporele precisie van
neurale signalen correlatie detectie op zeer korte tijdschalen mogelijk maakt. Om
vast te stellen in hoeverre de temporele limieten van het visuele systeem daadwerkelijk
worden bepaald door spike timing precisie, is een interessante uitdaging, waarvoor
nicuwe experimenten kunnen worden bedacht. Een voorbeeld van een dergelijk
experiment zou de bepaling kunnen zijn van de waarnemingsdrempels voor
onregelmatigheden in het tijdsverloop van de aangeboden beweging. Hiermee kan
mogelijk de daadwerkelijke tijdsresolutie — het oplossend vermogen — van het visuele
systeem bepaald worden.

Tot slot...

Dit onderzoek heeft meer inzicht gegeven in de manier waarop visuele informatie
gerepresenteerd is in de signalen die van het oog naar de hersenschors gaan. Gedegen
kennis van deze signalen is van belang voor de ontwikkeling van bijvoorbeeld visuele
protheses (‘kunstogen’), waarbij het zenuwnetwerk in het oog wordt vervangen door
een beeldchip. Hoewel deze technologie op dit moment nog in de kinderschoenen
staat, zijn dergelijke protheses inmiddels bij mensen geimplanteerd. Het gaat hier om
klinische experimenten en algemene toepassing zal zeker nog enkele jaren op zich
laten wachten. Om de hersenschors op de juiste manier aan te spreken, zullen de
chips dezelfde taal moeten spreken als de zenuwcellen in het oog. Dit vereist gedegen
kennis van deze taal. De uitkomsten van dit onderzoek vormen een uitbreiding van
deze kennis.
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