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INK/SAPK c-jun NH,-terminal kinase/ stress-activated protein kinase

kDa

LO
LY294002
MAPK
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lipoxygenase
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mitogen-activated protein kinase
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PI3K phosphatidylinositol 3-kinase
PIP, phosphatidylinositol-4,5-bisphosphate
PKC protein kinase C
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PLCy phosphoinositide-specific phospholipase Cy

PMSF phenylmethylsulfonyl fluoride
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Chapter 1

Introduction

Phospholipases A, are enzymes that hydrolyse fatty acids from the sn-2 position of
phospholipids, resulting in the release of free fatty acids and lysophospholipids (van den
Bosch, 1980; Dennis, 1997). The phospholipase A, (PLA,) superfamily consists of a broad
range of enzymes amongst which are the secretory PLA,s (sPLA,; groups I, I, III, V, IX
and X), the Ca*"-independent PLA, (iPLA,; group VI) and the cytosolic PLA, (cPLA,;
group IV) (reviewed in Six & Dennis, 2000). The sn-2 position of phospholipids in
mammalian cells is enriched with arachidonic acid, which is a substrate for
cyclooxygenases, lipoxygenases and cytochrome p450s, giving PLA,s an important role in
the control of the synthesis of prostaglandins, leukotrienes and other eicosanoids. In
addition, PLA,s determine most of the arachidonic acid released in the cell. Arachidonic
acid and its metabolites, the eicosanoids, have been implicated in a number of physiological
and pathophysiologial processes, including the control of voltage-dependent and Ca?*
channels (Keyser & Alger, 1990; Peppelenbosch ef al., 1992), modulation and release of
neurotransmitters (Lynch et al, 1989), blood vessel tone (Capdevila et al, 2000),
inflammation (Heller et al., 1998), mitogenic signalling (Korystov Yu et al., 1998) and
cancers (Shappell et al., 2001). Because arachidonic acid is preferentially released by
cPLA,, the understanding of its regulation is of great importance.

General aspects of cPLA,

Structure of cPLA,.

The cDNA for human cPLA, was first cloned by Clark et al. and Sharp ef al. in
1991. The sequence encodes a 85 kDa protein consisting of 749 amino acids which migrates
as a 100-110 kDa protein on SDS-PAGE. Within this sequence several domains and motifs
have been distinguished (fig. 1). At the N-terminus, a calcium-dependent lipid binding
(CaLLB) domain is present (Clark, et al., 1991; Nalefski et al., 1994) which serves to bring
cPLA, to the phospholipid substrate. This domain shares homology with the C2 domains
first identified in the conventional isoforms of protein kinase C (PKC) (Coussens et al.,
1986) and is found in a range of proteins including PLCy and synaptotagmin (Clark ef al.,
1995). The CaLLB domain, spanning from amino acid 18-141 preferentially binds, unlike
other characterised C2 domains, to vesicles comprised of phosphatidylcholine in response
to physiological (0.3-1 uM) concentrations of calcium (Nalefski et al., 1998). In contrast to
the full length cPLA,, which displays preferential hydrolysis of arachidonoyl-containing
phospholipid vesicles, the cPLA, C2 domain did not show a preference for phospholipid
vesicles composed of saturated, unsaturated sn-2 fatty acyl chains or the carbonyl oxygens
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Figure 1. Schematic representation of the primary structure of cPLA,0, B and y.

at the sn-1 or sn-2 linkage (Nalefski, ef al., 1998). Therefore, the cPLA, C2 domain was
suggested to primarily interact with the headgroup of phosphatidylcholine. The crystal
structure of this C2 domain (Perisic et al, 1998) revealed an anti-parallel f-sandwich
consisting of two four-stranded sheets and three connecting loops, CBR1, 2 and 3. cPLA,
binds two Ca?*-ions between the three loops (Essen et al., 1997) which is also coordinated
by four acidic amino acids (Nalefski & Falke, 1996). Both CBR1 and CBR3 have a
prominent cluster of hydrophobic residues and therefore display preferential binding to
phospholipids with hydrophobic features of the headgroup like phosphatidylcholine in
preference to phosphatidylserine, phosphatidylinositol or phosphatidic acid (Wijkander &
Sundler, 1991; Nalefski, et al, 1994; Nalefski and Falke, 1996). In a model for the
membrane interaction of the CalLB domain, the hydrophobic CBR3 inserts into the
membrane displacing at least two phospholipids, and CBR1 interacts with the hydrophobic
regions of the lipid headgroup. Electrostatic interactions between the lipid headgroup and
the B-sandwich are weakened by the basic residues of one strand. Binding of calcium
renders the surface positively charged whereupon it is directed towards the membrane. One
important difference in membrane binding of the cPLA, C2 domain as compared to other
C2 domains like in conventional PKC and synaptotagmin is that hydrophobic interactions
prevail over electrostatic interactions (Davletov et al., 1998).

Furthermore, cPLA, contains the sequence G-L-S??8-G-S that closely resembles
the lipase consensus motif G-X-S-X-G present in many serine esterases and neutral lipases.
Site directed mutagenesis of Ser??® to alanine, cysteine or threonine resulted in a complete
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loss of activity while cPLA, remained correctly folded, thus demonstrating the essence of
Ser??8 for catalytic activity of cPLA, (Sharp et al., 1994; Huang et al., 1996). Besides Ser??8,
also Arg?? and Asp>* were shown to be essential for cPLA, activity (Pickard et al., 1996).
cPLA, has 9 cysteine residues but is, unlike sSPLA, enzymes, stable in the presence of
reducing agents showing that these residues are not essential for catalytic activity (Li et al,,
1994; Sharp, et al., 1994). However, modification of Cys*3! with sulfhydryl-modifying
reagents resulted in a loss of catalytic activity, suggesting that Cys*3! is located at a sensitive
position near the active site (Li et al., 1996; Pickard, et al., 1996).

In addition to PLA, activity, cPLA, exhibits also lysophospholipase and weak
transacylase activity in the presence of lyso-PC micelles (Leslie, 1991; Reynolds et al.,
1993; Hanel & Gelb, 1995). No physiological relevance has been ascribed to the
transacylase activity, however, lysophospholipase activity has been implicated to play a
function in cells to control in this way the levels of potentially cytotoxic lysophospholipids
(de Carvalho et al., 1995).

It has been shown that phosphatidylinositol-4,5-bisphosphate (PIP,) mediates the
binding of cPLA, to lipid vesicles, thereby increasing its activity in vitro in a calcium-
independent manner (Leslie & Channon, 1990; Buckland & Wilton, 1997; Mosior et al.,
1998). At first, Mosior et al. proposed a putative pleckstrin homology (PH) domain in
cPLA, since some similarity was observed with a portion of the PH domain of PLCdI.
However, from the crystal structure of cPLA, protein no clear PH domain was identified
(Dessen et al., 1999). Although, addition of PIP, to resting cells, or inhibiting the synthesis
of PIP, correlated with an increase or decrease respectively, of cPLA, activity (Balsinde ez
al., 2000). This suggests that cPLA, can interact directly with PIP,, generating a binding site
for cPLA, in PIP, enriched microdomains to which cPLA, might translocate upon cell
stimulation.

Very recently, investigators demonstrated that ceramide can bind cPLA, directly
via its CaLB domain thereby targeting cPLA, to its substrate (Huwiler et al., 2001). This
binding occurred in a calcium-dependent fashion and increased cPLA, activity towards
ceramide-containing liposomes. Similar results were also observed in calcium ionophore-
and epinephrine-stimulated CHO-2B cells. Besides an activation of cPLA, by ceramide, an
inhibition in enzyme activity was measured in liposomal substrates containing
sphingomyelin, which could subsequently be restored by addition of cholesterol or ceramide
(Klapisz et al., 2000). This is potentially of interest in view of the regulation and subcellular
localisation of cPLA, since ceramide, sphingomyelin and cholesterol are present in rafts
and/or caveolea (Brown & London, 1998; Dobrowsky, 2000).

In addition, the human cPLA, sequence contains several consensus
phosphorylation sites for both serine/threonine and tyrosine protein kinases (Sharp, et al.,

1991). In Sf9 cells expressing recombinant human cPLA,, four serine residues (Ser*’,
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Ser®¥*, Ser’%, Ser’?’) are phosphorylated upon stimulation with the calcium ionophore
A23187 and okadaic acid (de Carvalho et al., 1996), although only Ser>*> and Ser’?’ are

505 §s situated in

conserved in cPLA, in other species and have physiological relevance. Ser
the sequence P-L-S-P which is a consensus mitogen-activated protein kinase (MAPK)
phosphorylation site (de Carvalho, et al., 1996), and Ser’?’ lies in a consensus sequence (R-

X-S) for basotrophic kinases, such as PKC or PKA.

cPLA, isoforms.

Recently, two new isoforms of the 85 kDa cPLA, have been cloned and
characterised which are denoted cPLA,fB and cPLA,y (fig. 1) (Underwood et al., 1998;
Pickard et al., 1999; Song et al., 1999), giving the name cPLA,a to the already known 85
kDa cPLA,. cPLA, and cPLA,y share an overall sequence identity with cPLA,a of about
30%. cPLA,p is a 114 kDa protein consisting of 1012 amino acids which is present in most
tissues at a low level but is strongly expressed in pancreas and cerebellum (Pickard, ef al.,
1999), brain and liver (Song, et al., 1999). Both cPLA,f and cPLA,a have a calcium-
dependent lipid binding (CaLB) domain that is lacking in cPLA,y. However, this protein
does contain two consensus motifs for lipid modification, a prenylation motif at the C-
terminus and a myristoylation site at the N-terminus by which it is bound to the membrane
(Underwood, et al., 1998). Because cPLA,y lacks the CaLB domain, the protein is much
shorter, 61 kDa consisting of 541 amino acids. Its mRNA is predominantly expressed in
skeletal muscle and heart, suggesting a specific role for cPLA,y in these tissues. It may well
code for the Ca®*-independent PLA, that was reported to be highly active under hypoxic
conditions, such as ischemia (Hazen et al., 1991; McHowat & Creer, 1997).

The residues at which cPLA,a can be phosphorylated (Lin et al., 1993; Nemenoff
et al., 1993; de Carvalho, et al., 1996) are situated in a region dividing the catalytic domain
into two subdomains, A and B. These domains are not conserved in either of the two new
isoforms, suggesting that these enzymes are regulated by other mechanisms. All three
enzymes share a homologous catalytic region which contains the lipase consensus sequence
GXSXG that is located at the N-terminus and the three essential amino acid residues needed
for catalytic activity (Sharp, et al, 1991; Pickard, et al., 1996). However, in a liposome
assay sn-2 cleavage was observed for cPLA,a but sn-1 cleavage was preferred by cPLA,f3,
whereas cPLA,y was able to cleave at both sites (Song, ef al., 1999). Thus the three cPLA,
family members have different regiospecificity towards 1-palmitoyl-2-arachidonyl-PC as a
substrate, and they may also have different headgroup specificities.
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Regulation of cPLA, activity

Transcriptional and translational regulation.

cPLA, is constitutively expressed in most cell types, however, extracellular stimuli,
such as interleukin-1, tumor necrosis factor-a. (TNF-at), monocyte colony-stimulating factor
and epidermal growth factor (EGF) have been shown to induce the prolonged protein
expression of cPLA, in various cell lines (Nakamura ef al., 1992; Schalkwijk et al., 1993;
Chepenik et al., 1994), although these increases in expression levels are not as large a those
for sPLA, group II. This is probably due to the gene structure of cPLA, which has features
typical of a housekeeping gene (Kramer & Sharp, 1997). The increase in cPLA, protein
expression is a result of enhancing translation of cPLA, mRNA or by prolonging the half-
life of cPLA, protein through mRNA stabilisation. Suppression of cPLA, expression is
mediated by glucocorticoids, like dexamethasone (Hoeck et al., 1993; Schalkwijk, et al.,
1993). Interestingly, the fact that cPLA, is constitutively expressed may render cPLA, to be
capable of responding rapidly to physiological stimuli, whereas the prolonged increase in
cPLA, protein and activity might be involved in developmental and differentiation
processes.

Post-translational regulation of cPLA, activity.

cPLA, requires calcium for its activity to translocate from the cytosol to the
membrane, where its substrate is located. This has been demonstrated in cells stimulated
with extracellular agents that mobilise calcium, including EGF and calcium ionophore
A23187, by both cell fractionation or microscopical approaches (Peters-Golden & McNish,
1993; Clark, et al., 1995; Glover et al., 1995; Schalkwijk et al., 1995). The translocation
from the cytosol to the membrane is mediated by the CaLB domain that binds two Ca?*-
ions. However, the calcium is not directly involved in catalysis (Nalefski, ef al., 1994). This
1s further supported by the observation that a cPLA, mutant lacking the CaLB domain fails
to bind membranes while it is still catalytically active towards monomeric phospholipid
substrates.

In addition, a wide variety of agents have been shown to increase cPLA,
phosphorylation and activity (Clark, et al., 1995). The increase in cPLA, activity is quite
modest, about 2-3-fold in agonist-stimulated cells, which can be reversed by phosphatase
treatment (Lin et al, 1992; Kramer et al., 1993; Qiu et al, 1993). Subsequently, the
phosphorylation of cPLA, was shown to be mediated by p42/44MAPK and to occur on Ser>%
(Nemenoff, et al., 1993; Lin, et al., 1993) which is situated in the MAPK consensus site.
The importance of this phosphorylation site was demonstrated in Chinese hamster ovary

505 5

cells overexpressing mutant cPLA,, in which Ser>™ is substituted by Ala. This mutant could

not be phosphorylated and evoke agonist-induced arachidonic acid release (Lin, et al.,
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1993). However, cPLA, phosphorylation induced by different stimuli in various cells
without a concomitant increase in intracellular calcium does not result in arachidonic acid
release, demonstrating that both calcium signalling and phosphorylation are necessary for a
full activation of cPLA, (Murakami et al., 1997). Moreover, phosphorylation of cPLA, has
to precede an increase in intracellular calcium to achieve maximal activity (Schalkwijk et
al., 1996) implying that cPLA, may not be available for phosphorylation when it is first

translocated. In line with this is the hypothesis that phosphorylation of Ser>?3

might cause
conformational changes in cPLA, since Ser’® is situated between the CaLB and catalytic
domains of cPLA, (Dessen, et al., 1999). It is now becoming clear that p42/44MAPK g not
the only MAPK family member involved in cPLA, phosphorylation and activation. For
example, in the human astrocytoma cell line 1321N1, stimulation with thrombin or TNF-a
resulted in a phosphorylation and concomitant activation of cPLA, which is most likely
mediated by the c-Jun NH,-terminal kinase (JNK) (Herndndez et al., 1997; Hernandez et al.,
1999; van Putten et al., 2001). Likewise, cPLA, activity was blocked in thrombin, collagen
or stress-activated platelets that had been treated with an inhibitor for p38MAPK (Waterman
et al., 1996; Kramer et al., 1996; Borsch-Haubold et al., 1997; Buschbeck et al., 1999). The
phosphorylation sites in agonist-stimulated platelets and HeLa cells were analysed and
phosphorylation was found to occur on both Ser’® and Ser’?’, although it was suggested
that Ser’?’ is not directly phosphorylated by p38MAPK (Borsch-Haubold ef al., 1998).
Ser”?’ lies in the consensus motif for basotrophic kinases such as PKC. The
involvement of PKC in cPLA, activation has been observed in a variety of cell types
including macrophages, mesangial cells and thyroid cells (Huwiler & Pfeilschifter, 1993;
Qiu & Leslie, 1994; Ekokoski et al., 2000). Furthermore, PKC was shown to phosphorylate
recombinant cPLA, in vitro directly, although it activated cPLA, only minimally (Lin, ef al.,
1993; Nemenoft, et al, 1993). It is now known, however, that PKC can trigger MAPK
activation and thus activate cPLA, indirectly (Ekokoski, et al., 2000). In contrast, okadaic

727 and arachidonic acid release without elevated

505 727

acid induces cPLA, phosphorylation of Ser

and Ser
727

calcium levels, and an inhibitor of p38MAPK resulted in a reduced Ser
phosphorylation in thrombin-activated cells. The kinase responsible for Ser
phosphorylation of ¢cPLA, is a downstream substrate of p38MAPK and has recently been
identified as the MAP Kinase Interaction Protein Kinase 1 (Mnk1) (Hefner et al., 2000).

Regulation of cPLA, via a cluster-monomer concept.

Arachidonic acid has been shown to be involved in various cellular responses, such
as proliferation (Piomelli, 1993), inflammation (Heller, et al., 1998) and cytotoxicity
(Cifone et al., 1993). Since arachidonic acid is preferentially released by cPLA,, its activity
has to be tightly controlled. In most inflammatory cells, a significant amount of cPLA,
translocates from the cytosol to the perinuclear region upon its activation (Peters-Golden &
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McNish, 1993; Glover, et al., 1995), whereupon arachidonic acid is released and converted
into eicosanoids. In other cells, not primarily involved in eicosanoid synthesis, cPLA,
appeared to be localised predominantly in clusters near organellar membranes. Upon
stimulation, these clusters did not massively translocate to a specific organel (Bunt et al.,
1997). We further investigated this phenomenon, using cPLA, monomers obtained by gel
filtration chromatography as described previously (Spaargaren et al., 1992) and
homogenates of Herl4 fibroblasts. A 200.000xg particulate fraction was subjected to
electron microscopical immunogold detection of cPLA, complexed to its antibody which
revealed the presence of both cPLA, clusters and monomers, however, only cPLA,
monomers could occasionally be detected at membranes. The calcium-dependent membrane

8000
7000 T
6000
5000
4000
3000
2000
1000

0 B

Control Ca%t EGTA

[14C]-arachidonic acid release (dpm)

Figure 2. Ca**-dependent membrane binding by cPLA, monomers as observed with the electron
microsope is related with hydrolytic activity. cPLA, monomers bind Ca**-dependently to SAPC
MLV's (A; 1 mM Ca?", B; 1 mM EGTA) and exhibit Ca>*-dependent arachidonic acid release under
the same conditions (C).
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binding of cPLA, monomers as well as its activity measured in vitro, using the conditions
of the electron microscopical studies, was investigated towards multi lamellar vesicles
(MLV’s) composed of 1-stearoyl-2-arachidonoyl phosphatidylcholine in the presence of
Ca?" or EGTA. Figure 2 shows only binding of cPLA, monomers to MLV’s in the presence
of Ca®" (fig. 2A) while no binding was observed in the presence of EGTA (fig. 2B). In
addition, arachidonic acid release was only detected in the presence of calcium (fig. 2C).
From these results we conclude that the clusters represent an inactive pool of cPLA, from
which monomers can be recruited that are only active when bound to membranes.
Furthermore, Schalkwijk et al. (1996) demonstrated in Herl4 fibroblasts that
phosphorylation of cPLA, has to precede an increase in intracellular calcium levels for
maximal cPLA, activation. Collectively, these data lead to the following hypothesis.
Phosphorylation of clustered cPLA, leads to a local release of cPLA, monomers that
subsequently can translocate to the nearby membranes by the increase of intracellular
calcium and then become fully active (Bunt er al.,, 2000). Thus cPLA, activation by this
model does not lead to a massive translocation and activation of cPLA, but is locally and
strictly regulated.

Signal transduction

The p42/44MAPK pathway.

Mammalian cells respond to many extracellular signals thereby activating protein
kinase cascades to amplify the signal. Thus allowing the cells to integrate these signals
resulting into a cellular response. Components of such a cascade are members of the
mitogen-activated protein kinase (MAPK) family, which are serine/threonine protein
kinases activated by various stimuli. The MAPK family can be divided into five families:
p42/44MAPK  n3@MAPK * INK, ERK3/4 and ERK5 (Widmann ef al., 1999). The p42/44MAPK
play an important role in several cellular processes, including cell proliferation, cell cycle
regulation, cell survival and differentiation. Furthermore, p42/44MAPK can be activated by
various stimuli such as growth factors, cytokines and oxidative stress. The activation of
p42/44MAPK by these stimuli is either exerted through protein-tyrosine kinase receptors or
G-protein coupled receptors.

Growth factors like EGF, platelet-derived growth factor (PDGF) and fibroblast
growth factor (FGF) bind to the receptors, whereupon the receptors dimerise, resulting in
autophosphorylation of tyrosine residues in the intracellular domains of the receptors
(Schlessinger & Ullrich, 1992; Fantl ef al., 1993). These phosphorylated tyrosine residues
may act as high-affinity docking sites for substrates such as pp60c-Src, phosphoinositide-
specific phospholipase Cy (PLCy), Shc, growth factor receptor-bound protein 2 (Grb2) and
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Figure 3. Growth factor-induced signal transduction pathways leading to ERK1/2 activation.

phosphatidylinositol-3-kinase (PI3K) (Anderson et al., 1990; Lowenstein et al., 1992; Hu et
al., 1992; Wolf et al., 1995) either to transduce the signal directly further or by recruiting
other proteins to the receptor (fig. 3). In case of PLCy, plasma membrane
phosphatidiylinositol-4,5-bisphosphate (PIP,) becomes hydrolysed into inositol-1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG). IP3 releases calcium from internal stores,
which together with DAG can activate certain protein kinase C (PKC) isoforms. PKCs have
been implicated in many biological processes including cell morphology, proliferation and
differentiation (Hug & Sarre, 1993; Nishizuka, 1995; Jaken, 1996; Livneh & Fishman, 1997).

Grb2 recruits the guanine-nucleotide exchange factor sos to the plasma membrane
to bring sos in close proximity with ras (Egan et al., 1993), a small GTP-binding protein
located at the cytoplasmic surface of the plasma membrane (Margolis & Skolnik, 1994).
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Sos, subsequently, promotes the release of GDP from the inactive ras-GDP complex,
allowing GTP to bind which renders ras active (Bonfini et al., 1992). However, Shc is also
able to bind both the receptor and Grb2 serving as another mechanism to recruit sos to the
plasma membrane, resulting in ras activation (van der Geer & Pawson, 1995). Once ras is
activated it binds to the serine/threonine kinase Raf-1, translocating Raf-1 to the plasma
membrane, whereafter it can be tyrosine phosphorylated by membrane-bound tyrosine
kinases including c-Src (Marais et al., 1995; Marais & Marshall, 1996). In addition to
tyrosine phosphorylation, Raf is phosphorylated on serine residues and on a threonine
residue (Marais & Marshall, 1996). There is evidence showing that Raf-1, in cells activated
by various growth factors, can be phosphorylated by several different PKC isoforms (Kolch
et al., 1993; Morrison et al., 1993; van Dijk et al., 1997; Hausser et al., 2001). Mutation of
specific serine phosphorylation sites on Raf does not prevent phorbol ester activation in
transfected cells, however (Schonwasser et al., 1998; Whitehurst ef al, 1995). When
activated, Raf activates MAPK kinase 1 (MEK1) and 2 (MEK 2) by serine phosphorylation
(Alessi et al., 1994; Zheng & Guan, 1994), who in turn phosphorylate and thereby activate
p42MAPK (or ERK2) and p44MAPK (or ERK1) on threonine and tyrosine residues (Payne et
al., 1991; Seger et al., 1992; Wu et al, 1993). Recently, it was demonstrated that both
MEK1/2 and ERK1/2 activation was mediated by PKC in growth factor-stimulated cells
(Grammer & Blenis, 1997; Adomeit et al., 1999; Hausser, et al., 2001). However, a direct
activation or p42/44MAPK ig unlikely since PKC is only able to phosphorylate serine and
threonine residues and both threonine and tyrosine residues have to be phosphorylated for
full activity of p42/44MAPK (Seger & Krebs, 1995). Furthermore, PI3K was found to be
involved in both MEK 1/2 and ERK1/2 activation (Grammer & Blenis, 1997; Conway et al.,
1999).

Cell cycle regulation.

The cell cycle is the set of events responsible for the duplication of the cell and
consists of four phases. The S phase, in which the DNA is duplicated; the M phase, in which
the duplicated DNA 1is segregated between the two daughter cells; and two gap phases, G1
before S phase and G2 before M phase. Progression through these phases is regulated by
cyclin-dependent kinases (Cdks) and binding with their regulatory subunits, designated
cyclins, by multiple phosphorylation and dephosphorylation events (Nigg, 1995; Dirks &
Rutka, 1997; Reed, 1997). These cyclin/Cdk complexes regulate passage from one phase to
another, for the cell to proliferate, but are also involved in the processes of cell
differentiation, senescence and quiescence. Signal transduction pathways activated by
signals from the extracellular environment determines the process to be activated.
Progression through the cell cycle is dependent both on the presence of growth factors and
on cell attachment. For instance, adherent cells in the presence of growth factors continue
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Figure 4. Schematic representation of the regulatory events for cell cycle progression of
mammalian cells.

to proliferate. However, if cells are deprived of serum, they will stop progressing through
the cell cycle, whereupon exit into the quiescent (GO) state occurs (Pardee, 1974). Normal
growing cells, or quiescent cells re-entering the G1 phase of the cell cycle, require growth
factors until the restriction point (R), to complete the cell cycle (Pardee, 1974).
Mammalian cells contain at least nine Cdks which are required to regulate the cell
cycle (fig. 4) (Nigg, 1995; Bagella et al., 1998). The first cyclin/Cdk complex is activated
by growth factors in G1 and consists of a D-type cyclin (cyclin D1, D2 or D3) and Cdk4 or
6 (Sherr, 1995). Activation of the cyclin D/Cdk complex, as well as a c-myc-mediated
pathway (Bartek & Lukas, 2001), results in the expression of cyclin E and association with
Cdk2 to mediate retinoblastoma (Rb) hyperphosphorylation. Cyclin E/Cdk2 expression and
activation is both rate-limiting and essential for S phase entry (Bartek et al., 1996; Sherr &
Roberts, 1999). Retinoblastoma phosphorylation results in the release of the transcription
factor E2F and the subsequent induction of genes that mediate progression through S phase,
like cyclin A and thymidylate synthase (DeGregori et al., 1995). In addition, activation of
these complexes is also regulated by a group of proteins called Cdk inhibitors (CKI’s) which
consists of two families. Members of the INK4 family (inhibitors of Cdk4; comprising of
pl5, pl6, p18 and p19) bind to Cdk4, whereas members of the CIP/KIP family (comprising
of p21, p27 and p57) bind to Cdk2, 4 and 6 (reviewed in Arellano & Moreno, 1997;
Hulleman & Boonstra, 2001). Cyclin E/Cdk2 complexes are degraded in early S phase,
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whereafter Cdk2 associates with cyclin A. The activity of cyclin A/Cdk2 is necessary for
progression through S and is possibly involved in phosphorylation of transcription factors
and proteins required for DNA duplication (Cardoso ef al., 1993; Fotedar & Fotedar, 1995).
Later on, complexes are formed of Cdk1 or Cdc2, with cyclin A, that is required for mitosis
until mid prophase (Furuno et al, 1999). Cyclin B/Cdkl complexes until the G2/M
transition are held inactive by phosphorylation of Cdkl (Mueller et al., 1995), which then
is dephosphorylated by cdc25C resulting in Cdk1 activation and progression into mitosis
(Kumagai & Dunphy, 1991). Cyclin B degradation is necessary for the cells to exit from
mitosis.

The activation of the Cdk by cyclin D depends on cyclin D expression that is
synthesised as long as growth factors are present (Sherr, 1994). Furthermore, activated
p42/44MAPK was shown to induce the expression of cyclin D and down-regulation of p27%IP
to exit from GO, and enter the G1 phase (Ladha et al., 1998). Also other components of the
ras-MAPK pathway have been shown to be involved in the regulation of cyclin D and
p27%IP (Aktas et al., 1997; Peeper et al., 1997; Cheng et al., 1998). The activation of
p42/44MAPK gecurs through both growth factor- and extracellular matrix-induced signal
transduction pathways (Schwartz et al., 1995; Roovers et al., 1999; Hulleman & Boonstra,
2001), probably to obtain the sustained p42/44MAPK activation that is required to pass the
restriction point. Similarly, inhibition of the p42/44MAPK pathway by either antisense
constructs, overexpression of kinase-inactive mutants or inhibiting nuclear translocation of
p42/44MAPK by inhibitors, blocks DNA synthesis and proliferation (Pagés et al., 1993;
Brondello et al., 1995;(Hulleman et al., 1999). On the other hand, activation of this same
pathway may also lead to cell cycle arrest, depending on the level of the activated Raf-
MAPK pathway (Woods et al, 1997; Sewing et al, 1997; Pumiglia & Decker, 1997).
Moreover, overexpression of p42/44MAPK has been found in human breast cancer
(Sivaraman et al., 1997), and also Cdc25A, cyclin D and E, myc and Rb are upregulated in
several cancers (Gasparotto et al., 1997; Kornmann et al., 1998; Spruck et al., 1999;
Hanahan & Weinberg, 2000).

Physiology of the arachidonic acid cascade

Arachidonic acid is the main polyunsaturated fatty acid in the production of
eicosanoids, which are oxygenated C3, C,, and C,, carbon fatty acids. The pathways
leading to these eicosanoids is collectively known as the arachidonic acid cascade and
consists of three major pathways including cyclooxygenase, lipoxygenase and epoxygenase
pathways, named after the first enzymatic step involved. The conversion of arachidonic acid
by one of these pathways depends on the cell type (Shimizu & Wolfe, 1990). Eicosanoids
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are not stored but synthesised on demand in which the release of arachidonic acid by PLA,
is the rate-limiting step.

Physiological roles of cPLA, using gene knock-outs.

To gain more insight in the physiological roles of cPLA,, a homozygous null mouse
(cPLA,”") was created (Bonventre et al., 1997; Uozumi et al., 1997). The cPLA,”" mice
appeared to be normal, indicating that cPLA, is not necessary for normal embryonic
development. However, there could be other compensatory influences that maintain a
normal development in the absence of ¢cPLA,, although later on it was found that the cPLA,”
females were unable to reproduce. Likewise, the COX-deficient mice also showed
reproductive abnormalities and mice lacking the PGF,a receptor did not come into labour
(Sugimoto et al., 1997). Furthermore, cPLA,”- mice had a reduced brain infarct volume and
fewer functional neurogenic deficits after induction of cerebral ischemia and reperfusion.
Also the cPLA,”* mice were more resistant to MPTP-induced neurotoxicity, that produces a
Parkinsonian syndrome in human and non-human primates (Bloem et al., 1990). These
results suggest a role for selective cPLA, inhibitors for the treatment of stroke and
Parkinson’s disease. ¢PLA,”” mice recover faster from allergen-induced
bronchoconstriction and show no airway hyperresponsiveness. Moreover, the eicosanoid
generation from peritoneal macrophages and both the immediate and delayed phases of bone
marrow-derived mast cells are impaired (Uozumi, et al., 1997; Bonventre, et al., 1997,
Fujishima et al., 1999).

Cyclooxygenase pathway.

Arachidonic acid can be converted into prostaglandin H, (PGH,) by the action of
cyclooxygenase-1 (COX-1 or prostaglandin H synthase-1 (PGHS-1)) or cyclooxygenase-2
(COX-2 or PGHS-2) that can be further transformed into prostaglandins (PG) or
thromboxanes (TX) (fig. 5) (Smith, 1989). Although many different prostanoids exist, their
synthesis is cell type specific (Smith ez al., 1991). For example thromboxane A, (TXA,) is
mainly formed in platelets, while prostacyclin (PGI,) is the major prostanoid in endothelial
cells and prostaglandin E, (PGE,) is mainly present in renal collecting tubule cells. COX-1
is found to be constitutively expressed in most cells and tissues and is involved in cellular
housekeeping processes and thrombosis (Patrignani et al., 1994). By contrast, COX-2 is
mainly inducibly expressed in activated cells and is amongst others, involved in
inflammation, pain and fever (Riendeau et al., 1997; Zhang et al., 1997), various cancers
(Kargman et al., 1995; Levy, 1997) and Alzheimer’s disease (McGeer & McGeer, 1999).
Both enzymes have a similar structure, convert arachidonic acid into PGH, with almost
identical kinetics and exist often in the same cells and tissues. The reason for the presence
of two COX enzymes is now becoming clear from studies of knock-out mice for COX-1 and

22



General introduction

_ COOH
— oH
PGE, PGE; 16-OH-arachidonic acid
PGFyq PGly
PGD, PGJ; HO OH
T 5,8-HETE
Ol e NN\ "\
COOH o) COOH
OIS D3
PGH2 5,6-EET
cyclooxygenase 1/2 cytochrome p450
Arachidonic acid
5-lipoxygenase 15-lipoxygenase
OOH . COOH
= DS
= = 12-lipoxygenase %OH
S-HPETE 15-HpETE
| e )
LTA4 LTDg4 R
LTBy4 LTE4 Z=— = COOH DIHETEs
LTC4 LXA4 A LXA
DIHETEs LXB
5-HETE 12-HpETE 15-HETE
leukotrienes

'

12-HETEs
DIHETEs
lipoxins
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COX-2 (Langenbach et al., 1999) as well as from studies with isozyme selective inhibitors
(DeWitt, 1999). The current idea is that prostanoids formed via COX-2 can signal uniquely
through G-protein-coupled receptors and through a nuclear pathway, while products derived
via COX-1 most likely only signal through other cell surface receptors. In stimulated cells
a biphasic generation of prostanoids occurs in which the initial phase is COX-1 dependent
and the delayed phase of slow prostanoid production depends on COX-2 induction (Reddy
& Herschman, 1997; Kuwata et al., 1998). Thus, the function of the enzymes is more or less
related with the regulation of their expression.

Since COX-1 had been considered a housekeeping cyclooxygenase it was
surprising that the knock-out mice were generally healthy. However, these mice showed, for
instance, a decreased platelet aggregation in response to arachidonic acid because
thromboxanes could not be formed. Also prostaglandins in placenta and/or fetal tissue were
found to be critical for parturition (Langenbach et al., 1995).

The COX-2 knock-out (COX”") mice develop severe nephropathology within the
first 6 weeks of life (Morham et al., 1995) which fortunately becomes less severe in later
generations (Lim et al., 1999), possibly due to adaptation processes. In contrast to COX-1
knock-out mice, the COX-2"" mice display abnormalities in every phase of the reproductive
process (Lim et al., 1997). Furthermore, from patient studies a relation between the intake
of non-steroidal anti-inflammatory drugs (NSAIDs) and the development of colorectal
cancer was found. Indeed, in colorectal cancers the expression of COX-2 but not COX-1
was elevated (Williams ef al., 1999). Also breast and lung cancer cells have been found to
synthesise large amounts of prostaglandins of which PGE, is the major prostaglandin
produced by tumour cells (Ara & Teicher, 1996). In animal model studies, cyclooxygenase
inhibitors exhibited chemopreventive effects as the number and size of the tumours per
animal decreased. Also prostaglandins itself can have anti-tumour activity. For example, a
10 day infusion of PGE, in Lewis lung carcinoma mice resulted in a significant reduction in
tumour volume, weight, the number of metastasis and the doubling time of the tumour (Ellis
et al., 1990).

Lipoxygenase pathway.

Lipoxygenases catalyse the insertion of oxygens in various eicosaenoic acids and
in the case of arachidonic acid, this will lead to hydroperoxy-eicosatetracnoic acids
(HpETESs). In mammalian cells three major lipoxygenases have been identified according to
the oxygenation sites in arachidonic acid, i.e.; 5-lipoxygenase (5-LO), 12-lipoxygenase (12-
LO) and 15-lipoxygenase (15-LO) resulting in 5(S)-, 12(S)-, and 15(S)-HpETE (fig. 5).
These HpETEs can subsequently undergo several different enzymatic transformations
resulting in the production of dihydroxy-eicosatetraenoic acids (DiHETEs), epoxy fatty
acids (leukotrienes) and trihydroxy-eicosatetraenoic acids (lipoxins) (Smith ez al., 1991).
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5-LO is present in a variety of inflammatory cells, among them are leukocytes,
neutrophils, basophils and monocytes (Chen et al., 1995; Brock et al., 1995; Pouliot et al.,
1996), but is also found in human placenta (Matsumoto et al., 1988). In line with the
presence of 5-LO in these cells is that 5-LO has been shown to be involved in inflammation
and asthma by the production of the biologically potent leukotrienes (LT) (Ford-Hutchinson,
1990; Lewis et al.,, 1990). To investigate the function of 5-LO in more detail, knock-out
mice were developed. However, the 5-LO deficient mice grew normally, were fertile and no
obvious alteration in the phenotype was observed compared to control mice (Chen et al.,
1994). Later on it was found that in these mice 5-LO products are required for the
development of airway hyperresponsiveness and are partially involved in antigen
challenged eosinophil recruitment (Corry et al., 1996; Drazen et al., 1996; Foster et al.,
1996). Furthermore, these studies in 5-LO”" mice revealed the involvement of 5-LO in host
defense (Goldhill ef al., 1997) and in acute inflammation, although the nature of the stimuli
and the location were found to be important.

The functions of the 12- and 15-LO are not well understood since the action of each
enzyme can result in the same two products although they have been implicated in
intracellular organel degradation, erythrocyte maturation and atherosclerosis (Kithn &
Brash, 1990).

Three classes of 12-LOs have been identified which are the platelet type (P12-LO),
leukocyte type (L12-LO) and epidermal type (E12-LO). 12-LOs have been found in a
variety of tissues including platelets, keratinocytes, leukocytes, A431 epidermal carcinoma
cells and other tumour cells (Yoshimoto & Yamamoto, 1995; Funk, 1996). Also the L12-LO"
mice grew normally and were fertile, indicating that 12-LO is not essential for fetal
development. In addition, hardly any 12-HETE and 15-HETE products were detected in 12-
LO”~ macrophages but a 5-HETE product instead (Sun & Funk, 1996), indicating that
disturbing one pathway can lead to enhancement of another one. 12-HETE modulates
neurotransmission (Piomelli ef al., 1987) and cell adhesion (Tang et al., 1995) which are fast
events, but is also involved in long term events such as platelet aggregation, cell
differentiation or survival (Yu et al., 1995; Tang et al., 1996).

The 15-LO exist in reticulocytes, airway epithelium (Funk, 1996) and is
upregulated in a number of tumour cells (Kamitani et al., 1998; Shappell, et al., 2001) . 15-
LO is not only thought to be involved in inflammation (Samuelsson et al, 1987;
Vanderhoek, 1988), but also in reticulocyte differentiation (Schewe & Kiihn, 1991; Nadel et
al., 1991) and atheroma formation (Feinmark & Cornicelli, 1997). Furthermore, 15-LO can
peroxidise membrane lipids thereby changing the structure and function of lipid-protein
complexes as is the case in reticulocyte maturation and in the formation of atherosclerotic
plaques (Schewe and Kiihn, 1991; Nagy et al., 1998).
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Epoxygenase pathway.

The epoxygenase pathway is initiated by transforming arachidonic acid via
cytochrome p450 mixed-function oxidases finally resulting in cis-epoxy-eicosatrienoic
acids (EpEtrEs or EETs), hydroxy-eicosatetraenoic acids (HETEs) and hydroxy-
eicosatetraenoic acids (OH-AA) (Capdevila et al, 1992) (fig. 5). As opposed to the
cyclooxygenase and lipoxygenase enzymes, the biological and molecular characterisations
of the cytochrome p450 preceded the functional studies which have only recently started to
be investigated. In animal functions and organs the cytochrome p450 metabolites have been
implicated to mediate the release of peptide hormones, to be mediators of salt and water
regulation by the kidney and to be involved in vascular tone, although these results are
conflicting (Capdevila, ef al., 2000). On the cellular level, cytochrome p450 metabolites
have been found to be involved in ion channels and transporters and to act as mitogens
(Capdevila, et al., 2000). Furthermore, a role for cytochrome p450 has been proposed in
hypertension (Rahman et al., 1997).

Eicosanoids can contribute to normal physiologic processes such as inflammation,
development and immune function but also to non-physiological processes as in diseases
and carcinogenesis. Future experiments are needed to elucidate the specific roles and
mechanisms by which these eicosanoids act. However, the biosynthesis of these eicosanoids
depends on the availability of free arachidonic acid of which the release is controlled by the
action of PLA,s and especially cPLA,. Thus, it appears that the function of cPLA, in these
processes plays an even more important role.

Scope of this thesis

Arachidonic acid is involved in numerous physiological and pathophysiological
processes and is preferentially released by cPLA,, implicating that cPLA, activity has to be
tightly regulated. The aim of this study was to gain more insight in the regulation of cPLA,
in mitogen- and oxidative stress-induced cells, as well as in continuously cycling cells.
Furthermore, the possible role of cPLA, and the downstream arachidonic acid metabolising
enzymes, cyclooxygenases and lipoxygenases, in cell cycle progression was investigated.
Chapter 2 deals with the regulation of cPLA, in serum- and EGF-activated cells as well as
in quiescent and proliferating cells. cPLA, in both serum- and EGF-stimulated cells is
activated by p42/44MAPK that in turn is activated differentially involving the Raf-MEK
pathway and PKC, but not PI3K. In contrast, p42/44MAPK phosphorylation in quiescent and
proliferating cells is solely achieved via the Raf-MEK pathway, but only leads to cPLA,
activation in quiescent cells. These data suggest the activation of different populations of
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p42/44MAPK and ¢PLA,. The results in chapter 3 show that cPLA, is activated by different
kinds of oxidative stress. H,0,-induced cPLA, activation is partly mediated by
phosphorylation through the Raf-MEK-p42/44MAPK pathway and partially by a
phosphorylation-independent mechanism, likely involving lipid peroxidation. In chapter 4
the activation of cPLA, during the ongoing cell cycle was investigated. cPLA, activity was
high in mitosis, decreasing rapidly in early G1. A small increase was observed in mid/late
G1, followed by a strong increase at the G1/S transition. The changes in cPLA, activity were
not due to a difference in cPLA, expression, but due to phosphorylation of cPLA, by
p42/44MAPK The possible role of cPLA, activity in cell cycle progression was studied in
chapter S. Inhibiting cPLA, activity in early G1 using ATK, an inhibitor for cPLA,, resulted
in a marked reduction in DNA synthesis. However, no significant difference in total cell
number was counted in ATK treated cells for 24h compared to control cells. Furthermore,
inhibition of cyclooxygenases at different time points after mitosis did not have any effect
on cell cycle progression, whereas inhibition of lipoxygenases result in cell cycle arrest.
Moreover, lipoxygenases are required for S phase progression, since no DNA synthesis
occurred when lipoxygenase was inhibited. Finally, in chapter 6 the purpose of different
signal transduction pathways regulating cPLA, activity and the possible functions of cPLA,
and lipoxygenase actions for cell cycle progression will be discussed.
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Chapter 2

Abstract

Arachidonic acid has been implicated to play a role in physiological and
pathophysiological processes and is selectively released by the 85 kDa cytosolic
phospholipase A, (cPLA,). The activity of cPLA, is regulated by calcium, translocating
the enzyme to its substrate, and by phosphorylation by a mitogen-activated protein
kinase (MAPK) family member and a MAP Kkinase-activated protein kinase. In this
study, the signal transduction pathways in growth factor-induced phosphorylation of
p42/44MAPK and cPLA, activation was investigated in Her14 fibroblasts. p42/44MAPK jp
response to epidermal growth factor was not only phosphorylated via the Raf-MEK
pathway but mainly through protein kinase C (PKC), or a (un)related kinase, in which
the phosphorylated p42/44MAPK corresponded with cPLA, activity. Serum-induced
phosphorylation of p42/44MAPK a]s0 corresponded with cPLA, activity but is
predominantly mediated via Raf-MEK and partly through PKC, or a (un)related
kinase. In contrast, activation of PKC by phorbol ester did not result in increased
cPLA, activity while p42/44MAPK js phosphorylated, mainly via Raf-MEK and through
MEK. Moreover, p42/44MAPK phosphorylation is present in quiescent and proliferating
cells that is entirely phosphorylated via Raf-MEK but only corresponds to cPLA,
activity in the former cells. Collectively, these data show that p42/44MAPK jn
proliferating, quiescent and stimulated cells is phosphorylated by various signal
transduction pathways suggesting the activation of different populations of
p42/44MAPK and cPLA,,.

Introduction

Phospholipases A, (PLA,) release fatty acids from the sn-2 position of
phospholipids. This is of particular interest when arachidonic acid is released since it plays
a central role in various cellular processes such as cell migration, mitogenic signalling
(Piomelli, 1993; Korystov Yu et al, 1998), inflammation (Heller et al, 1998) and
cytotoxicity (Wissing et al., 1997; Grazia Cifone et al., 1997). This arachidonic acid is
preferentially released by the 85 kDa cytosolic phospholipase A, (cPLA,) (Clark et al.,
1995; Sharp et al., 1991) and therefore cPLA, activity has to be tightly controlled.

cPLA, activity is regulated by both calcium and phosphorylation. Submicromolar
concentrations of calcium are required for cPLA, to translocate from the cytosol towards
phospholipid membranes that is mediated by its calcium-dependent phospholipid binding
domain (Nalefski et al, 1994). cPLA, phosphorylation was found to occur on Ser-505
through a mitogen-activated protein kinase (MAPK) (Clark, et al., 1995 and references
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therein) and the importance of cPLA, phosphorylation was shown in several other studies
using a cPLA, gel shift (Qiu & Leslie, 1994; Sa et al, 1995; Clark, et al., 1995 and
references therein). The phosphorylation causes an increase in the intrinsic activity (Kramer
et al., 1993; Schalkwijk et al., 1995) and can be reversed by phosphatase treatment
(Schalkwijk, et al., 1995; Wijkander & Sundler, 1992). In platelets, p38MAPK has been
shown to phosphorylate cPLA, (Kramer ef al., 1996) on Ser-505 (Borsch-Haubold et al.,
1998) and for a full activation cPLA, must also be phosphorylated on Ser-727 by a Mnk1-
related protein kinase (Hefner et al., 2000). p42/44MAPK was the first MAPK family member
shown to phosphorylate cPLA, on Ser-505 (Lin et al., 1993) and phosphorylation of cPLA,
has been correlated with p42/44MAPK phosphorylation in many cell models (Clark, et al.,
1995; Hirabayashi & Shimizu, 2000).

Stimulation of cells by epidermal growth factor (EGF) results in the activation of
cPLA, (Spaargaren et al., 1992; Bonventre et al., 1990). Subsequently, it was reported that
in EGF-activated Herc13 and Herl4 fibroblasts cPLA, was phosphorylated and this
phosphorylation had to precede a rise in the intracellular calcium concentration for the
enzyme to become maximal active (Schalkwijk, et al., 1995; Schalkwijk et al., 1996).
Moreover p42/44MAPK in these cells was also phosphorylated after EGF stimulation in a
similar time course. Therefore, we investigated whether EGF-induced p42/44MAPK
phosphorylation in Her14 cells results in cPLA, activation. p42/44MAPK ‘upon growth factor
stimulation of cells is generally thought to become activated through p21ras, following the
sequential activation of Raf-1 and MAPK kinase (MEK) (Bokemeyer et al., 1996; Haystead
et al., 1992; Marshall, 1995). However, it has recently been demonstrated that p42/44MAPK
cannot only be phosphorylated through Raf-MEK but also by phosphatidylinositol-3-kinase
in platelet-derived growth factor (PDGF)-stimulated airway smooth muscle cells or Swiss
3T3 fibroblasts (Grammer & Blenis, 1997; Conway et al., 1999). Moreover, activation of
p42/44MAPK by protein kinase C has also been reported (Hirabayashi & Shimizu, 2000).
Hence, we have established the signal transduction pathways involved in the
phosphorylation of p42/44MAPK in EGF-stimulated Her14 fibroblasts.

We observed that the measured activity of cPLA, in quiescent cells varied between
several experiments which may also explain the difference in stimulation of cPLA, activity
in cells upon EGF treatment, as has been reported previously (Kramer, ef al., 1993; Lin et
al., 1992). In addition, the level of phosphorylated p42/44MAPK in quiescent cells was
variable between different experiments and corresponded with cPLA, activity. This
remaining phosphorylation of p42/44MAPK was not due to non-quiescent cells, because, the
p42/44MAPK " that was activated via the Raf-MEK pathway in proliferating cells did not
result in cPLA, activation. Furthermore, stimulation of quiescent cells with serum resulted
in p42/44MAPK phosphorylation and subsequent cPLA, activation, as was the case in EGF-
but not in phorbol ester-activated Her14 fibroblasts. The signal transduction pathways
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leading to p42/44MAPK phosphorylation involve to variable degrees Raf-MEK and protein
kinase C (PKC) but not phosphatidylinositol-3-kinase.

Materials and Methods

Materials.

Tissue culture nutrients, Dulbecco’s modified Eagle’s medium (DMEM) and foetal
bovine serum (FBS) were purchased from Gibco BRL (Scotland). Ro31-8220, phorbol-12,
13-dibutyrate (PdBu), G66983 and G66976 were from Calbiochem (La Jolla, USA).
PD098059 and U0126 were obtained from Biomol (Playmouth meeting, USA) and Promega
(Madison, USA), respectively. LY294002 was from Alexis (Ldufelfingen, Switzerland) and
Protifar was from Nutricia (Zoetermeer, The Netherlands). Staurosporine, wortmannin and
dipalmitoylglycerol were purchased from Sigma (Steinheim, Germany). 1-Stearoyl-2-[1-
14Clarachidonoyl-glycero-3-phosphocholine ~ was  obtained from  Amersham
(Buckinghamshire, England) and epidermal growth factor (EGF) was from Harlan
Bioproducts (Madison, USA). All other chemicals were either from Sigma or Merck
(Darmstadt, Germany).

Cell culture.

Herl4 cells, which are mouse NIH3T3(0) fibroblasts transfected with the human
EGF-receptor cDNA, were grown in DMEM supplemented with 7.5% FBS. Cells were
maintained at 37°C in a humidified atmosphere. Cells were grown to a confluency of 30,000
cells/cm?, whereafter they were serum-starved overnight. Next, the cells were stimulated
with FBS (5%), EGF (50 ng/ml) or PdBu (200 nM) for 15 min or for the indicated times.
Treating the cells with PD098059 (50 uM) or U0126 (50 uM) 1 h prior to stimulation
inhibited MEK activity. Phosphatidylinositol-3-kinase (PI3K) inhibition was performed by
treating the cells with wortmannin (10 nM) or LY294002 (10 uM) 30 min prior to
stimulation. Protein kinase C (PKC) was inhibited with either Ro31-8220 (10 uM),
staurosporine (1 uM), G66983 (10 uM) or G66976 (10 uM) for a 30 min pre-treatment.
Alternatively, it was down-regulated by prolonged treatment with PdBu (200 nM) for 24 h
prior to stimulation. After stimulation the cells were washed twice with ice-cold phosphate
buftered saline (PBS) whereafter the cells were scraped in homogenisation buffer (50 mM
Hepes/NaOH pH 7.4, 0.25 M sucrose, 50 mM NaF, 250 uM Na;VO,, 1 mM EGTA, 10 uM
leupeptin, 1 uM pepstatin and 1 mM PMSF). The cell lysate was homogenised by 15 strokes
through a 26G-needle and sonicated for 3 times 10 seconds. The amount of protein was
measured according to Bradford (1976) using a Bio Rad novapath™ microplate reader.
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Western blot analysis.

Cell homogenates (10 wg protein) were separated on 10% SDS-PAGE and
transferred to polyvinylidene difluoride membrane by semi-dry blotting using a BioRad
trans-blot SD. The membrane was blocked for 1h at RT with 2% milkpowder in PBST (PBS
containing 0.1% (v/v) Tween-20), followed by primary antibody incubations for 1h at RT in
0.2% milkpowder in PBST. Phosphorylated p42/44MAPK or phosphorylated MEK1/2 were
detected respectively with a phospho-p42/44 MAPK or a phospho-MEKI1/2 rabbit
polyclonal antibody at a dilution of 1:1000 (New England Biolabs Incorporated, Beverly,
MA). MEKI (0.25 ug/ml) or ERK2 (0.5 ug/ml) were detected with a monoclonal antibody
from Upstate Biotechnology (Lake Placid, NY) or from Transduction Laboratories
(Lexington, KY), respectively. Then, the membrane was washed and primary antibodies
were detected with goat anti-rabbit and rabbit anti-mouse IgG conjugated to horseradish
peroxidase and the bands were visualised with enhanced chemiluminescence (NEN™, Life
science products, Boston).

cPLA, activity assay.

cPLA, activity was measured by the release of radiolabeled arachidonic acid from
the sn-2 position of 1-stearoyl-2-[1-*Clarachidonoyl-glycero-3-phosphocholine as
described previously (Schalkwijk, et al., 1996). The radiolabeled phosphatidylcholine was
dried under N, together with dipalmitoylglycerol and then dispersed in water by sonification
for 4 times 15 s under nitrogen to give final concentrations of 4 and 2 uM, respectively. The
assay incubation mixture contained 0.2 M Tris pH 8.5, 1 mM CaCl,, 5 mM DTT and 10 ug
cell homogenate in a total volume of 200 ul. After incubation for 7-10 min at 37°C the
released radiolabeled arachidonic acid was extracted by a modified Dole extraction
procedure (van den Bosch et al, 1974) and the radioactivity was determined in a
scintillation counter (Tri-Carb 15000, Packard, Meriden, USA). In this way only the activity
of cPLA, was measured (Spaargaren, ef al., 1992; Atsumi et al., 1998).

Results

Endogenous cPLA, activity corresponds with p42/44MAPK

phosphorylation in quiescent
but not in proliferating cells.

We observed that the cPLA, activity measured in quiescent cells varied between
several experiments that might result in a difference in cPLA, stimulation (Qiu ef al., 1993).
In addition, the level of phosphorylated p42/44MAPK in quiescent cells was also subject to
alterations. Since it has been previously reported that cPLA, can be phosphorylated and

thereby activated by MAP kinase (MAPK) in a variety of cell models (Lin, et al., 1993;
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Figure 1. Effect of the MEK inhibitors, PD098059 and U0126, on phosphorylated p42/44MAPK
and cPLA, activity in quiescent and proliferating Her14 cells. Her14 cells were serum-starved
overnight (-s) or were continuously grown in medium containing serum (+s). Then these cells were
incubated for 1h with 50 uM PD098059 (pd) or U0126 (u), or were left untreated. p42/44MAPK
phosphorylation was detected on western blot, using an antibody against phosphorylated p42/44MAPK
(A, C) and cPLA, activity was measured by an in vitro assay as described in Materials and Methods
of quiescent (B) and proliferating cells (D). Results shown are representative of three independent
experiments and S. D. are shown for cPLA, activity.

Nemenoff et al., 1993), the relation between p42/44MAPK phosphorylation and cPLA,
activity in quiescent cells was investigated. To ensure that the activation range of cPLA, and
p42/44MAPK were identical between each condition within the experiment, the same batch of
cells was used for every experiment performed. A low phosphorylation of p42/44MAPK wag
detected on western blot in quiescent cells (fig. 1A, lane 1), which was almost completely
vanished in quiescent cells that were treated for 1h with the MAPK kinase (MEK) inhibitor
PD098059 (fig. 1A, lane 2). PD098059 binds directly to the non-phosphorylated isoforms
of MEK (MEK-1 and -2), thereby preventing their Raf-mediated activation (Dudley et al.,
1995; Favata et al., 1998). Next, another MEK inhibitor, U0126 was used. U0126 inhibits
the catalytic activity of MEK (Favata, et al., 1998), although it can still be phosphorylated.
Treating quiescent cells for 1h with U0126 resulted in a complete loss of p42/44MAPK
phosphorylation (fig. 1A, lane 3). Subsequently, the activity of cPLA, in these samples was
measured as described in Materials and Methods. Figure 1B shows that in quiescent cells
cPLA, activity is present (-s) which gradually decreases upon treatment of these quiescent
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cells with PD098059 (-s pd) and U0126 (-s u), respectively. These results show that
p42/44MAPK g still phosphorylated in quiescent cells, which was activated via the Raf-MEK
pathway and this phosphorylation appears to relate with cPLA, activation. It might well be
that the phosphorylation of p42/44MAPK and the presence of cPLA, activity in quiescent
cells is due to the fact that not all cells have reached the quiescent state. This suggests that
the level of phosphorylated p42/44MAPK in proliferating cells (cells that are continuously
grown in medium containing serum) would be higher. Indeed, p42/44MAPK phosphorylation
was significantly higher in proliferating cells (fig. 1C, lane 1) compared to quiescent cells
(fig. 1A, lane 1). Incubating proliferating cells with PD098059 almost completely inhibited
the phosphorylation of p42/44MAPK (fig 1C, lane 2) while it was completely vanished in
U0126 treated cells (lane 3). Thus, p42/44MAPK in proliferating cells is predominantly
activated via the Raf-MEK pathway as was also observed in quiescent cells. However,
cPLA, activity in proliferating cells (fig. 1D, +s) is not related with p42/44MAPK
phosphorylation as the activity in proliferating cells did not decrease in cells treated with
PD098059 (+s pd) or U0126 (+s u).

These results show the activation of p42/44MAPK via the Raf-MEK pathway in both
quiescent and proliferating cells. However, cPLA, activity is only related with p42/44MAPK
phosphorylation in quiescent cells suggesting that cPLA, in proliferating cells is activated
through other pathways. Therefore, we have studied the signal transduction pathways
leading to p42/44MAPK phosphorylation and subsequent cPLA, activation in EGF- and
serum-stimulated cells.

Time-dependent activation of p42/44M4PK and cPLA, in serum-stimulated cells.

In order to establish whether p42/44MAPK and cPLA, are activated by serum,
quiescent Her14 cells were incubated in the presence of serum for different periods of time.
Addition of serum (5%) to the cells resulted in a rapid phosphorylation of p42/44MAPK
within 5 min that decreased slowly afterwards (fig. 2A). The activity of cPLA, in these cells,
measured as described in Materials and Methods, demonstrated a transient activation that
was already maximal at 5 min after stimulation (fig. 2B). These results demonstrate that

4MAPK

serum induces a time-dependent phosphorylation of p42/4 and transient activation of

cPLA,.

The Raf-MEK pathway is not the only pathway involved in EGF- and serum-induced
Dp42/44MAPK phosphorylation.

The results in figure 1 demonstrated that p42/44MAPK in quiescent or proliferating
cells is predominantly phosphorylated via the Raf-MEK pathway. In addition, Raf-MEK in
growth factor-stimulated cells is activated through p2lras, subsequently resulting in
p42/44MAPK activation (Haystead, et al., 1992; Marshall, 1995; Avruch et al., 1994). To
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Figure 2. Time course of serum-stimulated Her14 cells. Quiescent Her14 cells were stimulated with
5% serum for the indicated time periods. Thereafter, cells were harvested and p42/44MAPK
phosphorylation was detected on western blot (A) and cPLA, activity was measured (B). A
representative experiment and S. D. are shown of three independent ones.

investigate whether this is also true for EGF- and serum-stimulated Her14 cells, experiments
were performed using PD098059. As shown on the western blot of figure 3 (lanes 1 and 5),
p42/44MAPK i phosphorylated to a low level in quiescent cells, which has almost completely
disappeared in quiescent cells treated with PD098059 (lanes 2 and 6). Addition of serum (15
min) or EGF (15 min) to quiescent cells resulted in a strong increase in p42/44MAPK
phosphorylation (lanes 3 and 7, respectively). Next, the Raf-MEK pathway was inhibited by
treatment of the cells with PD098059 prior to stimulation with serum or EGF. The
phosphorylation of p42/44MAPK was largely reduced in serum-activated cells (lane 4) but
was hardly decreased in EGF-stimulated cells (lane 8).

Taken together, these results indicate that EGF-induced p42/44MAPK
phosphorylation is mainly activated by other pathways than through Raf-MEK while in
serum-stimulated cells p42/44MAPK g partly phosphorylated via the Raf-MEK pathway and
partly through other signal transduction pathways.

Involvement of Raf-MEK, PI3 kinase and PKC in p42/44MAPK phosphorylation.

In previous studies it was demonstrated that p42/44MAPK can be phosphorylated, in
addition to the Raf-MEK pathway, through other well-known signal transduction pathways,
including phosphatidylinositol-3-kinase (PI3K) (Bondeva ef al., 1998) and protein kinase C
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Figure 3. Effect of PD098059 pre-treatment on EGF- and serum-induced p42/44MAPK
phosphorylation in Her14 cells. Quiescent cells were left untreated (-s), incubated with PD098059
(pd) for 1h, stimulated afterwards with serum (+s) or EGF (egf), or the cells were treated with
PD098059 for 1h prior to stimulation with serum or EGF. The upper panel shows the phosphorylated
p42/44MAPK of serum-stimulated cells, and the lower panel of EGF-stimulated cells. Results shown are
representative of at least five independent experiments.

(PKC) (Romanelli & van de Werve, 1997). In order to establish whether these signal
transduction pathways are involved in serum- and EGF-induced p42/44MAPK
phosphorylation in Her14 fibroblasts, the effect of various inhibitors of these pathways was
investigated. The possible involvement of PI3K in the phosphorylation of p42/44MAPK wag
examined using the inhibitors wortmannin and LY294002. Treatment of quiescent cells (fig.
4A, lanes 1 and 5) with wortmannin or LY294002 for 30 min prior to addition of serum
(lanes 3 and 4, respectively) or EGF (lanes 7 and 8, respectively) did not result in a
significant inhibition of phosphorylated p42/44MAPK ag compared to cells stimulated with
serum or EGF alone (lanes 2 and 6, respectively). To ensure that wortmannin and LY294002
work in Her14 cells, the phosphorylation of the downstream PI3K enzyme protein kinase B
(PKB) was analysed on western blot. No phosphorylation of PKB was observed in the
presence of wortmannin or LY294002 (data not shown), as has been demonstrated also in
other cell lines (Burgering & Coffer, 1995; Alessi et al., 1996; Berra et al., 1998). These
results indicate that PI3K does not play a significant role in serum- or EGF-stimulated
phosphorylation of p42/44MAPK in Her14 cells.
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PKC activation in stimulated cells was prevented by treatment with the inhibitors:
R031-8220, a specific common PKC inhibitor (Newby et al., 1995), G66983 which inhibits
PKCa, By, By, 0 and T isoforms (Gschwendt et al., 1996), and staurosporine known to inhibit
all PKCs and some other kinases (Couldwell ef al., 1994). Figure 4B shows that p42/44MAPK
was phosphorylated to a low extent in quiescent cells (lanes 1 and 8) which was strongly
increased upon stimulation of serum (lane 2) or EGF (lane 9). Incubation of the cells with
PD098059 prior to addition of serum, resulted in a considerable reduction in p42/44MAPK
phosphorylation (lane 3) but only to a minor reduction in EGF-activated cells (lane 10),
which is in agreement with the results presented in figure 3. Pre-treatment of quiescent
Herl4 cells with staurosporine or Ro031-8220 severely diminished p42/44MAPK
phosphorylation upon activation of the cells with either serum (lanes 4 and 5, respectively)
or EGF (lanes 11 and 12, respectively). However, G66983 treatment did not seem to have
any effect on the phosphorylation neither in serum- nor in EGF-stimulated cells (lanes 6 and
13, respectively).

In addition, PKC down-regulation using phorbol ester (PdBu) treatment for 24h
was used to investigate the involvement of the conventional (., B, By, ¥) and novel (9, €, 1,
u, 0) PKCs. NIH3T3 fibroblasts, which are the parental cells of Her14 cells, express PKCa,
0, €T and A (Mischak et al., 1993; Akimoto et al., 1994; Doornbos et al., 2000). The down-
regulation was confirmed by the absence of PKCa and & on western blot (data not shown),
as was also demonstrated in other cell types (Kramer & Simon, 1999; Huwiler ef al., 1993).
As shown in figure 4B (lanes 7 and 14), PKC down-modulation had only a slight effect on
p42/44MAPK phosphorylation induced by serum or EGF, indicating that the conventional and
novel PKCs seem to play a minor role in the signal transduction cascade leading to the
4MAPK  Fyrthermore, the differences in p42/44MAPK

phosphorylation were not due to variations in protein expression levels since p42MAPK was

phosphorylation of p42/4

present equally in all lanes (fig. 4B).

Collectively, these data demonstrate that in both serum- and EGF-activated cells
p42/44MAPK phosphorylation is mediated via the Raf-MEK pathway and through PKC or a
(un)related kinase, that depends on the specificity of Ro31-8220. Furthermore, these data
suggest that Ro31-8220- or staurosporine-, but not G66983-dependent PKC isoforms are
involved in the activation of p42/44MAPK in serum- or EGF-stimulated Her14 cells. Also no
conventional or novel PKC isoforms are involved in the phosphorylation of p42/44MAPK
since down-regulation of these isozymes did not result in a reduced phosphorylation.
Although staurosporine is not a specific PKC inhibitor, the results obtained were similar to
those observed with the specific PKC inhibitor Ro31-8220, suggesting that staurosporine in
Her14 cells can be used to inactivate PKC. Furthermore, in serum-stimulated cells the Raf-
MEK pathway is more important while, in contrast, PKC or a (un)related kinase is more

important in EGF-stimulated cells.
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Figure 4. Phosphorylation of p42/44MAPK jn the presence of inhibitors for PI3K (A) and PKC in
serum- (B, upper panel) and EGF-stimulated cells (B, lower panel). Quiescent cells (-s) were pre-
treated for 30 min with wortmannin (wt), LY294002 (ly), staurosporine (sta), Ro31-8220 (ro), or
G066983 (go), 1h with PD098059 (pd), or for 24h with PdBu (dr). Thereafter, the cells were stimulated
with serum (+s) or EGF (egf) for 15 min and p42/44MAPK phosphorylation and p42MAPK expression
(B) were detected on western blot. Results shown are representative of four independent experiments.
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cPLA, activity is increased by p42/44MAPK that is phosphorylated via Raf-MEK and
through PKC.
The next objective was to investigate whether PKC and Raf-MEK are the two

major pathways leading to p42/44MAPK

phosphorylation and subsequently to cPLA,
activation. Figure 5A shows a relatively low phosphorylation of p42/44MAPK in quiescent
cells (lanes 1 and 7) that was strongly increased in serum- (lane 2) and EGF- stimulated cells
(lane 8). As shown earlier a remarkable reduction in p42/44MAPK phosphorylation was
observed in quiescent cells treated with PD098059 prior to serum stimulation (lane 3) while
only a small reduction was observed in EGF-activated cells (lane 9). However, co-treatment
of quiescent cells with PD098059 plus Ro31-8220 either prior to serum (lane 4) or EGF
(lane 10) stimulation resulted in a complete inhibition of p42/44MAPK phosphorylation. The
involvement of the Raf-MEK pathway and PKC in the phosphorylation of p42/44MAPK g
further investigated by down-regulation of PKC, followed by incubation for one hour with
PD098059. This treatment did not result in an activation of p42/44MAPK (lanes 5 and 11)
indicating that with this treatment no other pathways are induced that activate p42/44MAPK,
Next, the phosphorylation of p42/44MAPK in these cells stimulated with serum or EGF was
analysed, still demonstrating the presence of some phosphorylated p42/44MAPK although to
a lesser extent in serum- (lane 6) as compared to EGF-stimulated cells (lane 12). This
remaining phosphorylation is most likely due to activated PKC, or a (un)related kinase,
since these can not be down-regulated. Treatment of both PD098059 and staurosporine prior
to stimulation did not result in a phosphorylation of p42/44MAPKdemonstrating only the
involvement of the Raf-MEK pathway and PKC, or a (un)related kinase, in serum- or EGF-
induced p42/44MAPK phosphorylation. However, PKC, or a (un)related kinase, seems to play
a more important role in EGF- compared to serum-stimulated cells. These results are in
accordance with the results shown in figure 4.

cPLA, activity was increased 1.8 in serum- (fig. 5B, column 2) and 2.1 fold in
EGF-activated cells (column 8) as compared to the activity in quiescent cells (columns 1 and
7). Inhibition of the Raf-MEK pathway by pre-treating the cells with PD098059 resulted in
a complete inhibition of cPLA, activity in serum- (column 3), but only to a partial inhibition
in EGF-activated cells (column 9). Even a further decrease in activity was measured in
PD098059 plus Ro31-8220 treated cells, which was more pronounced in EGF- (column 10)
than in serum-stimulated cells (column 4). These results demonstrate that cPLA, activity is
mediated via the Raf-MEK pathway and through PKC, or a (un)related kinase, in serum-
and EGF-activated cells. Down-regulation of PKC followed by an incubation with
PD098059, prior to serum (column 6) or EGF (column 12) stimulation, resulted in an
activity of cPLA, which was found to be at the level that is present in quiescent (columns 1
and 7) and down-regulated plus PD098059 treated cells (column 5 and 11). However, the
activity was higher as in PD098059 plus Ro31-8220 treated cells.
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Figure 5. Inhibition of both PKC and the Raf-MEK pathway prohibits p42/44MAPK
phosphorylation, and decreases ¢cPLA, activity at the same time in serum- and EGF-stimulated
Her14 cells. p42/44MAPK phosphorylation (A) and cPLA, activity (B) were determined of quiescent
cells treated with vehicle (-s), pre-treated for 1h with PD098059 (pd), 1h PD098059 and 30 min Ro31-
8220 (ro), or treated for 24h with PdBu (dr) followed by a 1h incubation with PD098059, and
thereafter stimulated with either serum (+s) or EGF (egf). Results and S. D. for cPLA, activity are
shown of two independent experiments.

Taken together cPLA, activity in serum-activated cells is regulated for the greater
part via the Raf-MEK pathway and for a minor part through PKC, or a (un)related kinase,
while in EGF-stimulated cells cPLA, 1s predominantly regulated via PKC, or a (un)related
kinase, and to a much lesser extent through Raf-MEK. Correspondingly, p42/44MAPK ig
activated via the same pathways as cPLA, is, thus demonstrating a relation between
p42/44MAPK phosphorylation in serum- and EGF-activated Her14 cells and cPLA, activity.
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PKC activates p42/44MAPK through MEK.

It has been reported that PKC is able to activate p42/44MAPK “directly” (Grammer
& Blenis, 1997), through MEK (Grammer & Blenis, 1997), or via Rat-MEK (Adomeit et
al., 1999; Sozeri et al., 1992). The latter pathway does not occur in our cells since
PD098059 did not inhibit serum- or EGF-induced p42/44MAPK phosphorylation completely.
In order to establish the pathway in which PKC, or a (un)related kinase, phosphorylates
p42/44MAPK " quiescent cells were treated either with PD098059 alone or treated with
PD098059 and thereafter stimulated with serum or EGF. The phosphorylation of
p42/44MAPK wag detected on western blot (fig. 6A), showing no phosphorylation in the
presence of PD098059 (lane 4). In cells incubated with PD098059 prior to addition of serum
,some phosphorylation was present (lane 3) which was, as shown earlier, remarkably higher
in EGF-stimulated cells (lane 5). Inhibiting MEK activity by incubating the cells with
U0126 for 1h prior to stimulation resulted in a complete loss of phosphorylated p42/44MAPK
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Figure 6. Effect of PD098059 and U0126 on the phosphorylation of p42/44MAPK apnd MEK1/2 in
serum- and EGF-activated cells. Quiescent cells were treated with PD098059 (pd), U0126 (u), or
both for 1h and thereafter stimulated with serum or EGF. Cell lysates were separated on gel and (A)
p42/44MAPK phosphorylation, (B) p42MAPK expression, (C) MEK1/2 phosphorylation and (D) MEK-1
expression were analysed on western blot as described in Materials and Methods. Results shown are
representative of three independent experiments.
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(fig. 6A, lanes 2 and 6). The same result was obtained in cells treated with both PD098059
plus U0126 before addition of serum or EGF (lanes 1 and 7, respectively). p42MAPK
expression on western blot showed no significant differences in the protein expression level
(fig. 6B, lanes 1-7). These results demonstrate that PKC does not phosphorylate p42/44MAPK
directly since a combined treatment of PD098059 and U0126 prior to serum or EGF
stimulation did not result in phosphorylation of p42/44MAPK In addition, MEK1/2
phosphorylation was detected on western blot using an antibody directed against
phosphorylated MEK-1 and -2 (fig. 6C). The levels of MEK1/2 phosphorylation were
comparable in serum- as well as in EGF-stimulated cells pre-treated with PD098059 (lanes
3 and 5, respectively), U0126 (lanes 2 and 6, respectively) and PD098059 plus U0126 (lanes
1 and 7, respectively). Furthermore, these levels were higher compared to quiescent cells
treated with PD098059 alone (lane 4). MEK-1 protein expression levels were comparable
in all samples (fig. 6D, lanes 1-7), showing that differences observed in MEK
phosphorylation were not due to a change in the protein expression levels. These data
demonstrate that PKC, or a (un)related kinase, phosphorylates p42/44MAPK through MEK,
since U0126 inhibits p42/44MAPK byt not MEK phosphorylation in serum- and EGF-
activated cells.

Phorbol ester-induced PKC activation subsequently activates p42/44MAPK but not cPLA,.

Since PKC plays a role in the activation of p42/44MAPK in serum- and EGF-
stimulated cells that subsequently results in cPLA, activity, we explored whether the same
results could be obtained when PKC was activated directly with phorbol ester. Therefore,
quiescent Her14 cells were incubated with PdBu for 15 min resulting in a strong increase in

the phosphorylation of p42/44MAPK

on western blot (fig. 7A lane 2) compared to non-treated
cells (lane 1). Pre-incubation of the cells with PD098059 caused a strong decrease in PdBu-
induced p42/44MAPK phosphorylation (lane 3), which was completely inhibited upon U0126
treatment (lane 4). Next, the PdBu activation of PKC was inhibited by a pre-treatment of the
cells for 30 min with the PKC inhibitors staurosporine, Ro31-8220, G66983 (PKCa., B, By,
d and T) or G66976 (PKCa, B}, and n) (Wenzel-Seifert et al., 1994). Figure 7A shows a
complete inhibition of p42/44MAPK phosphorylation in cells pre-treated with staurosporine,
Ro31-8220 and Go66983 (lanes 5, 6 and 7, respectively) but a partial decrease in
phosphorylation upon G66976 incubation (lane 8). These data indicate that activation of
PKC by PdBu results in the phosphorylation of p42/44MAPK which is partially mediated
through Raf-MEK and partially proceeds through MEK. Furthermore, this activation of
p42/44MAPK s mediated through G66983 and partially through G66976 dependent PKC

1soforms.
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In order to correlate PdBu-induced p42/44MAPK phosphorylation with ¢PLA,
activity, the activity was measured in homogenates of quiescent cells and cells that were
stimulated afterwards with PdBu. Hardly any increase in cPLA, activity was observed in
stimulated (fig. 7B column 2) compared to unstimulated cells (fig. 7B column 1). Addition
of PdBu to cells treated with PD098059 did not result in a decrease in cPLA, activity (fig.
7B column 3) and a slight decrease to basal level in U0126 treated cells (fig. 7B column 4).
Also no significant decreases in cPLA, activity were observed in cells incubated with the
different PKC inhibitors prior to stimulation with PdBu (fig. 7B columns 5-8), except for a
slight decrease in activity in the presence of Ro31-8220. In conclusion, PdBu-induced PKC
activation results in the phosphorylation of p42/44MAPK that partially proceeds through
MEK and via Raf-MEK but which does not lead to cPLA, activation.
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Figure 7. Phorbol ester-induced activation of p42/44MAPK and cPLA,. Quiescent cells (-s) were
pre-treated for 1h with PD098059 (pd) or U0126 (u), or for 30 min with staurosporine (sta), Ro31-
8220 (ro), G66983 (g06983), or G66976 (206976). Thereafter, the cells were stimulated with PdBu
(pdbu) for 15 min. p42/44MAPK phogphorylation was analysed on western blot (A) and cPLA, activity
was measured (B) as described in Materials and Methods. Results shown are representative of two
independent experiments with S. D. shown for cPLA, activity.
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Discussion

We show here that p42/44MAPK in both quiescent and proliferating cells is
predominantly phosphorylated via the Raf-MEK pathway since PD098059 treatment almost
completely inhibited this phosphorylation (fig. 1A, C). However, the p42/44MAPK
phosphorylation only corresponded with cPLA, activity in quiescent cells. PD098059 and
U0126 did not reduce cPLA, activity in proliferating cells, suggesting that other signal
transduction cascades regulate cPLA, activity in these cells. For instance, p38MAPK has been
shown to activate cPLA, in platelets, (Kramer, et al., 1996; Hefner, ef al., 2000) and c-Jun
NH,-terminal kinase has been implicated to activate cPLA, in astrocytes (Hernandez et al.,
1999).

cPLA, activity was found to be slightly higher in quiescent than in proliferating
cells. This is surprising since one would expect the activity in proliferating cells to be higher.
All the more because p42/44MAPK was phosphorylated to a higher extent in proliferating
cells. This might imply that only a very small fraction of the phosphorylated p42/44MAPK
accounts for the cPLA, activation as measured in quiescent cells. In addition, it has been
shown in vitro that cPLA, losses its catalytic activity prematurely when acting on vesicles
containing phospholipid substrate (Witmer et al., 1995; Bayburt & Gelb, 1997; Burke et al.,
1999). Although, the precise mechanism for this inactivation is not yet established it might
explain why cPLA, activity is lower in proliferating than in quiescent cells. Furthermore, in
quiescent cells treated with U0126, cPLA, was found to be still active although p42/44MAPK
phosphorylation was not detected anymore. This remainder is the, so called, basal activity
of cPLA, because treatment with alkaline phosphatase did not reduce this activity
(Schalkwijk, et al., 1995).

In contrast to the activation of p42/44MAPK in quiescent and proliferating cells,
p42/44MAPK ig not solely phosphorylated via the Raf-MEK pathway in EGF- and serum-
stimulated Her14 cells. This is because PD098059 pre-treatment did not completely inhibit
p42/44MAPK phosphorylation in serum-activated cells, and did not seem to have a big effect
at all in EGF-stimulated cells (fig. 3). However, PD098059 treatment does result in the
inhibition of the Raf-MEK pathway since p42/44MAPK phosphorylation in serum-activated
cells was decreased. In addition, it has been published that p42/44MAPK phosphorylation is
almost completely inhibited with PD098059 in hydrogen peroxide-stimulated Her14 cells
(van Rossum et al., 1999), indicating that no other signal transduction cascades are
influenced by this inhibitor. In addition, p38MAPK phosphorylation was not increased in
either EGF- or serum-stimulated cells as compared to unstimulated cells. cPLA, activity in
cells treated with the p38MAPK inhibitor, SB203580, before EGF or serum stimulation did
not result in a significant reduction in cPLA, activity compared to control cells (data not
shown). Although, this indicates that p38MAPK in Herl4 cells is not involved in ¢PLA,
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8MAPK jsoforms can not be excluded due to the

activation, an involvement of other p3
specificity of SB203580 (Cohen, 1997).

By the use of different inhibitors we have investigated whether known signal
transduction pathways including PI3K and PKC are involved in serum- or EGF-activated
p42/44MAPK and cPLA, activity in Her14 cells. PI3K did not seem to play a significant role
in the phosphorylation of p42/44MAPK in serum- or EGF-stimulated cells since wortmannin
and LY294002 did not reduce p42/44MAPK phosphorylation (fig. 4A lanes 3, 4 and 7, 8).
Also Conway et al. (1999) showed that PI3K plays a minor role in EGF-activated
p42/44MAPK phosphorylation in airway smooth muscle cells while in PDGF-stimulated
Swiss 3T3 fibroblasts PI3K plays a role in both the early and the late response (Grammer &
Blenis, 1997).

The data presented here show that PKC, or a (un)related kinase, depending on the
specificity of Ro31-8220, plays a more important role in EGF- as in serum-induced
p42/44MAPK phosphorylation. This is supported by the findings that treatment with the
common PKC inhibitors Ro31-8220 and staurosporine resulted in a severe inhibition of
p42/44MAPK phosphorylation. In addition, G66983 dependent and phorbol ester sensitive
PKCs were not involved, since G66983 treatment and PKC down-regulation did not reduce
p42/44MAPK phosphorylation (fig. 4). However, G66983 only inhibit a few PKC isoforms in
contrast to Ro31-8220 and staurosporine, while prolonged phorbol ester treatment results in
the down-regulation of the conventional and novel PKC isotypes, leaving the atypical PKC
isotypes unaffected (Huwiler ef al., 1992). In accordance with this is the presence of
phosphorylated p42/44MAPK in PKC down-regulated and PD098059 treated cells which is a
little elevated in EGF-activated compared to serum-stimulated cells. Furthermore, the
involvement of PKC, or a (un)related kinase, and the Raf-MEK pathway was also confirmed
by treatment of the cells with both PD098059 and Ro31-8220 prior to stimulation.

We show that PKC, or a (un)related kinase, phosphorylates p42/44MAPX through
MEK, since PD098059 did not completely reduce the phosphorylation in contrast to U0126
(fig. 6). However, we cannot exclude the possibility that some part of the PKC signal
proceeds via Raf-MEK which has been previously reported (Kolch ef al., 1993; van Dijk et
al., 1997). Moreover, activation of p42/44MAPK by PKC, or a (un)related kinase,
independent of either Raf or MEK was excluded because pre-incubation of the cells with
PD098059 and U0126 did not result in p42/44MAPK phosphorylation. Although, MEK was
phosphorylated and present to a similar level as in PD098059 and U0126 treated cells prior
to serum or EGF stimulation. Activation of p42/44MAPK through PKC-MEK has also been
observed in Swiss 3T3 fibroblasts stimulated with PDGF (Grammer & Blenis, 1997; Berra
et al., 1995), but this activation pathway leads to the prolonged activation of p42/44MAPK
while in the initial phase p42/44MAPK could be activated by PKC, independent of Raf or
MEK. This is not the case in Her14 fibroblasts, as inhibition of either PKC or a (un)related
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Figure 8. Models summarising the results in this paper for (A) quiescent (solid line) and
proliferating (dashed line), (B) EGF- (solid line) and serum- (dashed line) and (C) PdBu-
regulated p42/44MAPK and cPLA, activation in Her14 fibroblasts. (A) Activation of p42/44MAPK i
quiescent and proliferating cells proceeds through Raf-MEK leading to cPLA, activation in the
quiescent but not in the proliferating cells. (B) EGF-induced cPLA, activity is mediated through two
pathways: predominantly through PKC-MEK-MAPK and less via Raf-MEK-MAPK while in serum-
stimulated cells the signal is for the greater part transduced through Raf-MEK-MAPK and the smaller
part via PKC-MEK-MAPK both leading to cPLA, activity. (C) PdBu-induced PKC activation leads to
p42/44MAPK phosphorylation that is partially mediated via MEK and through Raf-MEK but this does
not result in cPLA, activation. italic: effective inhibitors
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kinase by Ro031-8220 or staurosporine or the Raf-MEK pathway by PD098059 prior to
stimulation for different periods of time did not result in a differential phosphorylation of
p42/44MAPK (data not shown). These data suggests that both pathways are activated at the
same time and converge to MEK to fully activate p42/44MAPK (see model in fig. 8). In
conclusion, the data clearly demonstrate that serum-induced p42/44MAPK phosphorylation is
mediated through PKC, or a (un)related kinase, but the majority of the signal proceeds
through the Raf-MEK pathway. Both PKC, or a (un)related kinase, and the Raf-MEK
pathway are involved in EGF-induced p42/44MAPK phosphorylation, although PKC plays a
more important role than the Raf-MEK pathway.

In contrast to serum- or EGF-induced p42/44MAPK phosphorylation, which
involves the activation of PKC or a (un)related kinase, direct activation of PKC by phorbol
ester (PdBu) incubation resulted in yet another pathway. Direct activation of PKC resulted
clearly in the phosphorylation of p42/44MAPK through Raf-MEK and via MEK as shown by
the partial inhibition in the presence of PD098059 and a complete inhibition in the presence
of U0126 (fig. 7). Moreover, other PKC isoforms are involved in PdBu-stimulated
compared to serum- and EGF-activated cells, as G66983 completely abolished p42/44MAPK
phosphorylation in PdBu-activated cells while it did not had any effect upon serum or EGF
addition.

As shown in the models (fig. 8), p42/44MAPK g differentially activated in serum-
and EGF- as well as in PdBu-stimulated cells, but also compared to quiescent and

AMAPK in serum- or

proliferating cells. The presence and the level of phosphorylated p42/4
EGF-activated cells corresponds with the activity of cPLA, (fig. 5) as decreases in the level
of phosphorylated p42/44MAPK by inhibiting the Raf-MEK, PKC-MEK or both pathways
results in a decrease in cPLA, activity. The data show that in cells stimulated with serum, in
which the Raf-MEK pathway plays a more important role than PKC, or a (un)related kinase,
in the phosphorylation of p42/44MAPK cPLA, activity was reduced in a similar manner. EGF
stimulation proceeds for the greater part through PKC, or a (un)related kinase, instead of
Raf-MEK, which is observed in the reduction of p42/44MAPK phosphorylation but also in the
subsequent cPLA, activity. While p42/44MAPK g activated via the same pathway only

AMAPK in quiescent

cPLA, activity corresponds with the presence of phosphorylated p42/4
but not in proliferating cells. Additionally the presence of p42/44MAPK phosphorylation and
cPLA, activity were also not related in cells stimulated with PdBu (fig. 7). However, in cat
iris sphincter smooth muscle cells PdBu is able to induce an increase in arachidonic acid,
which is mediated by cPLA, (Husain & Abdel-Latif, 1998).

Collectively, these results imply the existence of different pools of p42/44MAPK that
have to be phosphorylated at the right time and location to activate cPLA,, unless U0126 is
not that specific in preventing p42/44MAPK The existence of different pools has been

suggested for cPLA, cPLA, in Herl4 fibroblasts was reported to be localised in clusters
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near the vicinity of all organellar membranes except for the golgi apparatus and the nucleus
(Bunt et al., 1997). Subsequently, it was shown that these clusters represent the inactive
form of cPLA, from which active monomers can be recruited which might occur via
phosphorylation by p42/44MAPK (Bunt et al., 2000). Also p42/44MAPK phosphorylation has
been reported to occur at different locations induced by different agonists. In EGF-activated
cells the EGF receptor was still active when internalised to endosomes (Lai et al., 1989;
Wada et al., 1992), suggesting that the active receptor may continue transducing the signal.
This has been further stated by the compartimentalisation of phosphorylated EGF receptors
and a population of Shc proteins (Baass et al., 1995), and the presence of active Raf-1 and
MEK in the early endosomes of hepatocytes (Pol et al, 1998). However, no such
mechanism for signal transduction was observed in insulin-induced activation of its receptor
in liver parenchyma (Di Guglielmo et al., 1994). In conclusion, p42/44MAPK in quiescent or
proliferating cells are differentially activated as in cells stimulated either with serum, EGF
or PdBu probably because different pools of p42/44MAPK and cPLA, are activated.
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Chapter 3

Abstract

Reactive oxygen species are involved in various cellular processes and
diseases. It has been suggested that reactive oxygen species function as mediators of
signal transduction, since they can mimic growth factor-induced signalling. H,O, has
been reported to activate phospholipase A, and hence we investigated the pathway by
which reactive oxygen species regulates cytosolic phospholipase A, (cPLA,) activity in
Her14 fibroblasts. cPLA, was activated by various concentrations of H,0, in a rapid
and transient manner. Also cumene hydroperoxide induced cPLA, activity. H,O,
stimulation of Her14 cells resulted in a partial phosphorylation of cPLA,, which was
mediated through the Raf-MEK-p42/44MAPK pathway. Besides, cPLA, was partially
activated through a phosphorylation-independent mechanism. Translocation of cPLA,
to the membrane fraction occurred in H,O,-stimulated cells, with a concomitant
increase in cPLA, activity which could not be decreased by removing calcium. Since
cPLA, phosphorylation has to precede its calcium-dependent translocation to
membranes, and since H,0, can peroxidise phospholipids resulting in enhanced cPLA,
activity, we suggest that the phosphorylation-independent increase in cPLA, activity
might be due to peroxidation of phospholipids.

Introduction

Most mammalian cells generate reactive oxygen species (ROS) upon stimulation
with various ligands, including cytokines, growth factors and hormones (Lo & Cruz, 1995;
Sundaresan et al., 1995; Meier et al., 1989). ROS comprises a variety of oxygen free
radicals, including superoxide anions, hydroxyl radicals, hydrogen peroxide and nitric
oxide. ROS can lead to oxidative stress that has been implicated in cellular processes, such
as proliferation (Rao & Berk, 1992; Irani et al., 1997), apoptosis (Buttke & Sandstrom,
1994; Jacobson, 1996; Polyak et al, 1997), but also cellular injury (Chen et al., 1996;
Sapirstein et al., 1996) and diseases, such as atherosclerosis and neuronal degenerative
diseases (Crawford & Blankenhorn, 1991; Schubert ef al., 1995). It has been suggested that
ROS may function as mediators of signal transduction processes (Sundaresan, et al., 1995;
Chen et al., 1995). Additionally, exogenous administration of hydrogen peroxide (H,0,)
induced phosphorylation of the epidermal growth factor (EGF) and platelet-derived growth
factor (PDGF) receptor (Miller ef al., 1994; Gamou & Shimizu, 1995), suggesting that
oxygen free radicals mimic growth factor-induced signalling events. Indeed H,O,-induced
tyrosine phosphorylation of the EGF receptor resulted in complex formation with the
signalling molecules Shc, Grb2 and sos followed by ras activation in vascular smooth
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muscle cells (VSMC) (Rao, 1996). Although H,O, was shown to inhibit EGF receptor
internalisation and ubiquitination (de Wit et al., 2001), this does not necessarily contradict
a role of ROS in growth factor-mediated signalling. Furthermore, oxidative stress was
shown to induce Raf-1 activation (Kasid et al., 1996; Abe ef al., 1998) and activation of
p42/44MAPK a5 well as the c-Jun NH,-terminal kinase (JNK) (Stevenson et al., 1994,
Sundaresan, et al., 1995; Guyton et al., 1996), p38MAPK (Buschbeck et al., 1999) and PKC
family members (Konishi ez al., 1997). ROS were also able to increase the expression of
cyclin D and the immediate early genes c-fos and c-jun (Naveilhan et al., 1994; Martinez-
Muioz et al., 2001). It has been suggested that phospholipase A, (PLA,) could be involved
in these events, since a non-specific PLA, inhibitor, mepacrine, blocked H,O,-induced c-fos
and c-jun mRNA expression in VSMC (Rao ef al., 1993; Rao et al., 1993). Also, PLA, and
ROS have been implicated in cellular injury (Weinberg, 1991; Bonventre, 1993). Moreover,
in vitro studies showed that the presence of peroxidated phospholipids in substrate vesicles
enhanced PLA, activity and the subsequent release of arachidonic acid (Rashba-Step et al.,
1997; Chaitidis et al., 1998).

The 85-kDa cytosolic PLA, (cPLA,) preferentially generates the oxidant sensitive
arachidonic acid from membrane phospholipids and both calcium and phosphorylation
regulate its activity. Submicromolar concentrations of calcium are required for cPLA, to
translocate from the cytosol to the membrane, where its substrate is located, and this
translocation is mediated by its calcium-dependent phospholipid binding domain (Nalefski
et al., 1994). Phosphorylation of cPLA, has been shown to occur through p42/44MAPK (Lin
et al., 1993; Qiu & Leslie, 1994; van Rossum et al., 2001), p38MAPK (Kramer et al., 1996;
Borsch-Haubold ef al.,, 1998) and JNK (Hernandez et al., 1999; van Putten et al., 2001).
Moreover, cPLA, is maximally activated when it is first phosphorylated followed by a
calcium-dependent translocation to membranes (Abdullah et al., 1995; Schalkwijk et al.,
1996). The purpose of the present study was, to examine whether H,O, is able to activate
cPLA, in Her14 fibroblasts and, more importantly, to determine the pathway through which
cPLA, is activated. It is demonstrated that cPLA, is activated by various concentrations of
H,0, and cumene hydroperoxide. H,O, induced a transient activation of cPLA,. cPLA, was
partially activated by phosphorylation through the Raf-MEK-p42/44MAPK pathway, and
partially through a phosphorylation-independent mechanism. H,O, can peroxidise
phospholipids thereby enhancing cPLA, activity, that might be responsible for the
phosphorylation-independent increase in cPLA, activity, since cPLA, translocated to the
membrane fraction under calcium free conditions, which resulted in an increased cPLA,
activity.
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Materials and Methods

Materials.

Tissue culture nutrients, Dulbecco’s modified Eagle’s medium (DMEM) and foetal
bovine serum (FBS) were purchased from Gibco BRL (Scotland). PD098059 and U0126
were obtained from Biomol (Playmouth meeting, USA) and Promega (Madison, USA),
respectively. Protifar was from Nutricia (Zoetermeer, The Netherlands) and alkaline
phosphatase was from Roche diagnostics (Mannheim, Germany). Hydrogen peroxide,
cumene hydroperoxide and dipalmitoylglycerol were purchased from Sigma (Steinheim,
Germany). 1-Stearoyl-2-[1-!4CJarachidonoyl-glycero-3-phosphocholine was obtained from
Amersham (Buckinghamshire, England). All other chemicals were either from Sigma or
Merck (Darmstadt, Germany).

Cell culture and stimulation.

Herl14 cells, which are mouse NIH3T3(0) fibroblasts transfected with the human
EGF-receptor cDNA, were grown in DMEM supplemented with 7.5% FBS. Cells were
maintained at 37°C in a humidified atmosphere. Cells were grown to a confluency of 30,000
cells/cm?, whereafter they were serum-starved overnight. After washing the cells twice with
phosphate buffered saline (PBS), the cells were incubated for the indicated periods in PBS
supplemented with 5 mM glucose in the absence or presence of the indicated concentrations
hydrogen peroxide (H,0,) at 37°C. The same procedure was performed for cells stimulated
with cumene hydroperoxide. When appropriate, the cells were treated with PD098059 (50
MM) or U0126 (50 uM) 1 h prior to stimulation to inhibit MEK activity.

Cell lysis and cell fractionation.

After stimulation, the cells were washed twice with ice-cold PBS whereafter the
cells were scraped in homogenisation buffer (50 mM Hepes/NaOH pH 7.4, 0.25 M sucrose,
50 mM NaF, 250 uM Na;VO,, 1 mM EGTA, 10 uM leupeptin, 1 UM pepstatin and 1 mM
PMSF). The cells were homogenised by 15 strokes through a 26G-needle and sonicated for
3 times 10 seconds. The amount of protein was measured according to Bradford (1976)
using a Bio Rad novapath™ microplate reader. Alternatively, the homogenate was
centrifuged at 200,000xg for 30 min at 4°C to obtain the membrane fraction and the
cytosolic fraction.

Western blot analysis.

Cell homogenates (10 pg protein) were separated on 10% SDS-PAGE and
transferred to polyvinylidene difluoride membrane by semi-dry blotting using a BioRad
trans-blot SD. The membrane was blocked for 1h at RT with 2% milkpowder in PBST (PBS
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containing 0.1% (v/v) Tween-20), followed by primary antibody incubations for 1h at RT in
0.2% milkpowder in PBST. Phosphorylated p42/44MAPK was detected with a phospho-
p42/44MAPK rabbit polyclonal antibody at a dilution of 1:1000 (New England Biolabs
Incorporated, Beverly, MA). ERK2 (0.5 pg/ml) and cPLA, (0.2 pg/ml) were detected with
a monoclonal antibody from Transduction Laboratories (Lexington, KY) or from Santa Cruz
Biotechnology (Heidelberg, Germany). Then, the membrane was washed and primary
antibodies were detected with goat anti-rabbit or rabbit anti-mouse IgG conjugated to
horseradish peroxidase and the bands were visualised with enhanced chemiluminescence
(NEN™ Life science products, Boston).

cPLA, activity assay.

cPLA, activity was measured by the release of radiolabeled arachidonic acid from
the sn-2 position of 1-stearoyl-2-[1-!#CJarachidonoyl-glycero-3-phosphocholine as
described previously (Schalkwijk, et al., 1996). The radiolabeled phosphatidylcholine was
dried under N, together with dipalmitoylglycerol and then dispersed in water by sonification
for 4 times 15 s under nitrogen to give final concentrations of 4 and 2 UM, respectively. The
assay incubation mixture contained 0.2 M Tris pH 8.5, 1 mM CaCl,, 5 mM DTT and 10 pg
cell homogenate in a total volume of 200 pl. After incubation for 7-10 min at 37°C the
released radiolabeled arachidonic acid was extracted by a modified Dole extraction
procedure (van den Bosch et al, 1974) and the radioactivity was determined in a
scintillation counter (Tri-Carb 15000, Packard, Meriden, USA). In this way only the activity
of cPLA, was measured (Spaargaren et al., 1992; Atsumi et al., 1998) and always less than
5% of the substrate was hydrolysed. Measuring the activity of non-phosphorylated cPLA,
was performed as described previously (Schalkwijk et al., 1995) by addition of 10 units
alkaline phosphatase to an assay mixture containing 10 pg homogenate, 1| mM MgCl,, 0.25
M Tris pH 8.5, 1.25 mM CaCl, and 6.25 mM DTT in a final volume of 160 pl. After a 20
min incubation at 37°C, 40 pl substrate was added and the cPLA, activity assay was
performed as described above.

Results

H,0, induces activation of cPLA,.

In order to investigate whether cPLA, is activated by oxidative stress, quiescent
Herl14 cells were stimulated with different concentrations H,O, for 10 min. The cells were
subsequently harvested and cPLA, activity was measured as described in Materials and
Methods. Figure 1A shows that H,O, is able to increase cPLA, activity dose dependently,
1.6-2 fold, being maximal around 2 mM H,O,. The effect of H,0, on cell integrity was
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Figure 1. Concentration-dependent activation of cPLA, by (A) H,0, and (B) cumene
hydroperoxide. Quiescent Her14 cells were stimulated for 10 min with different concentrations of (A)
H,0, or (B) cumene hydroperoxide. Thereafter, the cells were harvested and cPLA, activity was
measured as described in Materials and Methods. A representative experiment + S. D. are shown of,
respectively, 3 and 2 independent experiments.

determined by the release of lactate dehydrogenase (LDH). Exposure of Herl4 cells with
increasing concentrations of H,O, up to 10 mM did not result in a significant release of LDH
as compared to control cells which was shown previously (de Wit et al., 2000). Next, we
established whether cPLA, can be activated by another oxidant, which has different
molecular and physicochemical properties than H,O,. Therefore, quiescent Her14 cells were
treated with different concentrations of cumene hydroperoxide for 10 min. This resulted in
a similar activation pattern of cPLA, to that observed with H,O,, being dose dependent and
maximally activated around 1 mM (fig. 1B).
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Subsequently, the time course of cPLA, activation induced by 1 mM H,O, was
examined. H,0, induced a rapid activation of cPLA, within 5 min after stimulation, which
appears to be transient, reaching near basal levels again after 60 min of H,O, stimulation
(fig. 2). These data show that cPLA, in Herl4 fibroblasts was transiently activated by
different concentrations of oxidative stress and in a time-dependent manner.
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Figure 2. Time course of H,0,-stimulated Her14 cells. Quiescent Her14 cells were stimulated for
the indicated times with 1 mM H,O, whereafter, the cells were harvested and cPLA, activity was
measured as described in Materials and Methods. Data are shown as means + S. D. (n=2).

Regulation of cPLA, activity in H,0 ,-stimulated Her14 fibroblasts.

We recently showed in Her14 cells stimulated with EGF or serum that p42/44MAPK
was activated via Raf-MEK and through PKC-MEK, subsequently leading to cPLA,
activation (van Rossum et al., 2001). H,O, has also been demonstrated to induce activation
of p42/44MAPK (Rao, 1996; Abe, et al., 1998; de Wit et al., 1998) and hence we investigated
the possible involvement of p42/44MAPK in H,0,-induced cPLA, activation. Figure 3A (left
columns) shows in quiescent cells treated for 5 and 30 min with H,O, an increase in cPLA,
activity of about 2 and 1.5 fold respectively, as compared to control cells, which is in
agreement with the results shown in figure 2. H,O, stimulation for 5 and 30 min of cells pre-
treated for 1h with the MAPK kinase (MEK) inhibitor PD098059 resulted in an inhibition
of cPLA, activity (fig. 3A, middle columns) to the level present in quiescent cells.
PD098059 binds directly to the non-phosphorylated isoforms of MEK (MEK-1 and -2),
thereby preventing their Raf-mediated activation (Dudley et al., 1995; Favata et al., 1998).
However, cPLA, activity was even further decreased in quiescent cells incubated with

79



Chapter 3

A 3000
M control
T 2500 0 PD098059
ﬁ 2000 mU 0126
>
$  1000-
<
= 500 A H
o
0' T T
cPBS 5 30 cPBS 5 30 cPBS 5 30
+pd +u
stimulation time (min)
1 2 3 4 5 6 7 8 9
B
pp42/44MAPK -
p42MAPK -— - —-— — e —
cPBS PBS PBS cPBS PBS PBS cPBS PBS PBS
H2O2 H202 pd pd pd u u u
H202 H202 H202 H202
stimulation time (min) 5 30 5 30 5 30

Figure 3. Effect of the MEK inhibitors, PD098059 and U0126, on (A) cPLA, activity and (B)
p42/44MAPK phosphorylation in H,0,-stimulated Her14 cells. Quiescent Herl4 cells were left

untreated, incubated for 1h with

(A) Cell lysates were prepared in which cPLA, activity was measured and (B) p42/4

PD098059 or U0126 and then stimulated for 5 and 30 min with H,0,.
4MAPK

phosphorylation and p42MAPK expression were analysed on western blot as described in Materials and

Methods. Results shown are representative of 2 independent experiments

PD098059 compared to untreated cells. Similar results were obtained with another MEK
inhibitor (fig. 3A, right columns), U0126, that inhibits the catalytic activity of MEK (Favata,
et al., 1998). These data indicate that H,0, activates cPLA, via the Raf-MEK-p42/44MAPK
pathway in Her14 fibroblasts.
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However, we have recently demonstrated that inhibiting the phosphorylation of
p42/44MAPK did not always lead to a reduced cPLA, activity (van Rossum, et al., 2001).
Therefore, the phosphorylation of p42/44MAPK in the same samples was analysed on western

blot, showing phosphorylated p42/44MAPK

in quiescent cells (fig. 3B, lane 1) which is
increased upon H,O, stimulation, and is significantly higher after 5 min (lane 2) than after
30 min (lane 3). This is in line with the cPLA, activity measured (fig. 3A, left columns) in
these cells. No, p42/44MAPK phosphorylation was present in quiescent cells treated with
PD098059 (lane 4), as in cells stimulated afterwards for 5 min with H,O, (lane 5). However,
at 30 min, p42/44MAPK phosphorylation was present again (lane 6), which has to be due to
a pathway independent of Raf-MEK. p42/44MAPK phosphorylation was not detectable in
quiescent cells treated with U0126 (lane 7) as well as in cells stimulated afterwards with
H,0, for 5 or 30 min (lanes 8, 9, respectively). p42MAPK Jevels were analysed on western
blot showing that p42MAPK was present in equal amounts in all samples. Taken together,
these results show activation of p42/44MAPK via the Raf-MEK pathway in quiescent cells
that correlated with cPLA, activity and which both can be decreased by PD098059
treatment. However, H,O,-induced cPLA, activation is only partially mediated by
p42/44MAPK  because both PD098059 and U0126 were unable to completely inhibit the

increased cPLA, activity. p42/44MAPK

phosphorylation in H,O,-stimulated cells is activated
via the Raf-MEK pathway, and in addition, a secondary response in p42/44MAPK activation

occurs through a Raf-MEK-independent pathway.

cPLA, activation induced by H,0, is partially independent of its phosphorylation.

From figure 3A it is concluded that H,O,-induced cPLA, activity is not completely
mediated by p42/44MAPK  This could be mediated by one of the other MAPK family
members, since JNK in astrocytes and p38MAPK in platelets have been shown to
phosphorylate and activate cPLA, (Kramer, ef al., 1996; Hernandez, et al., 1999; van Putten,
et al., 2001; Borsch-Haubold, ef al., 1998). Therefore, Her14 cells were stimulated either
with EGF or with H,0, and cPLA, activity was measured showing an increase in cPLA,
activity as compared to unstimulated cells (fig. 4). To evaluate whether the increase in
cPLA, activity was entirely due to phosphorylation of the enzyme, the homogenates were
incubated with alkaline phosphatase, whereafter cPLA, activity was measured. This
treatment revealed a complete reduction to basal level of cPLA, activity in EGF-stimulated
cells (fig. 4), as has been demonstrated previously (Schalkwijk, ef al., 1995). However, no
complete reduction was measured in H,O,-stimulated cells, suggesting that, in addition to
phosphorylation, cPLA, was activated by another mechanism.

It has been shown in vivo that ROS can peroxidise phospholipids (Davies, 1995;
Drummen et al., 1999). cPLA, activity was shown to be increased when vesicles containing
peroxidised phospholipids were used as a substrate. In these experiments, also the calcium
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Figure 4. Effect of phosphatase treatment on cPLA, activity in EGF- and H,0,-stimulated
Her14 cells. Quiescent Her14 cells were either left untreated or stimulated with EGF (5 min) or H,0,
(20 min). The obtained cell lysates were either left untreated or incubated with alkaline phosphatase
whereafter cPLA, activity was measured as described in Materials and Methods.

requirement for cPLA, was decreased (Rashba-Step, ef al., 1997). To determine whether
H,0, treatment of the cells resulted in an increased, calcium-independent, translocation of
cPLA, to cellular membranes, Her14 cells were stimulated for 20 min with H,O,. Next, the
cells were homogenised in homogenisation buffer containing EGTA to create calcium free
conditions. The homogenate of control and H,O,-stimulated cells were subjected to
ultracentrifugation to obtain a cytosolic and a membrane fraction. cPLA, protein was
analysed on western blot and despite the calcium free conditions, a significant amount of
cPLA, was translocated to the membrane fraction upon H,O, stimulation as compared to
control cells (fig. 5A). This is interestingly since no translocation of cPLA, occurred in
calcium ionophore-stimulated Her14 cells under calcium free conditions (Bunt et al., 1997).
No significant difference was detected in the amount of cPLA, present in the cytosolic
fractions between control and stimulated cells (fig. SA). This indicates a tight binding of
cPLA, to the membranes under calcium free conditions.

Next, cPLA, activity was measured in the homogenates of control and H,O,-
stimulated cells to ensure that cPLA, was activated (fig. 5B, left columns). No difference in
cPLA, activity was measured in the cytosolic fractions (fig. 5B, middle columns), while a
significant increase in cPLA, activity in the membrane fraction of H,O, treated versus
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Figure 5. H,0,-induced cPLA, translocation (A) and activity (B) in Her14 cells. Quiescent cells
were stimulated with H,O, for 20 min, whereafter the cells were harvested under calcium free
conditions. Subsequently, part of the homogenate was centrifuged at 200,000xg to obtain the
particulate and cytosolic fraction. Ten [g of protein was used for electrophoresis and cPLA, protein
was analysed on western blot (A). cPLA, activity was measured in homogenate, cytosolic and
particulate fractions of stimulated and control cells (B).

control cells was measured (fig. 5B, right columns). Thus, these data suggest that H,0O,
might peroxidise membrane phospholipids in vivo thereby enhancing cPLA, activity.

Discussion

In this study, we examined whether cPLA, is activated by H,0, and determined the
pathways by which cPLA, is activated. First we showed that cPLA, is similarly activated
by the oxidants H,0, and cumene hydroperoxide in a dose dependent manner in Herl4
fibroblasts, being maximal at around 2 and 1 mM, respectively. cPLA, was rapidly and
transiently activated in response to H,O, and returned to basal level after 60 min.

An important step in cPLA, activity regulation is phosphorylation of cPLA,,
thereby increasing its intrinsic activity by 2-3 fold (Nemenoff et al.,, 1993; Kramer et al.,
1993). In many cells, activation of p42/44MAPK hag been shown to mediate cPLA,
phosphorylation and activation (for reviews Leslie, 1997; Murakami et al., 1997). In
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addition, p38MAPK has been demonstrated (Kramer, et al., 1996; Boérsch-Haubold, et al.,
1998) and JNK has been implicated in cPLA, activation (van Putten, et al., 2001). H,O,-
induced cPLA, activity in Her14 cells is partially mediated by p42/44MAPK because both
PD098059 and U0126 were unable to inhibit cPLA, activity completely. p42/44MAPK wag
activated via the Raf-MEK pathway while, in addition, a secondary response in p42/44MAPK
phosphorylation occurred after 30 min, which was Raf-MEK independent. Furthermore,
treatment of quiescent cells with PD098059 completely inhibited p42/44MAPK
phosphorylation, that corresponded with a decrease in cPLA, activity, showing that
p42/44MAPK and ¢PLA, were activated via Raf-MEK, as has been shown previously (van
Rossum, et al., 2001). The remaining cPLA, activity that was not inhibited by either
PD098059 or U0126 could be mediated by one of the other MAPK family members.
However, alkaline phosphatase treatment of H,O,-stimulated cells did not reduce cPLA,
activity to basal levels, in contrast to EGF-stimulated cells, which has been reported
previously (Schalkwijk, ef al., 1995). Thus the remaining cPLA, activity is not mediated by
phosphorylation through p38MAPK JNK or any other kinase.

It has been demonstrated that ROS are able to peroxidise lipids from
biomembranes in vivo (Drummen, et al., 1999). This can lead to changes in ion permeability,
surface charge (Kiihn et al., 1983), cell signalling (Keller & Mattson, 1998; Uchida et al.,
1999) and altered membrane fluidity (Imai et al., 2000) of the cell. Changes in membrane
fluidity due to oxidised lipids have been shown to increase PLA, activity (Salgo et al., 1993;
van den Berg et al., 1993), that was suggested to be due to a change in molecular surface
area and structural composition of peroxidised versus unperoxidised membranes.
Alternatively, H,O, peroxidised lipids may create a polar nature, which facilitates the
displacement of the released arachidonic acid from the membrane, thereby prolonging the
catalytic activity of cPLA,, which usually is subject to product inhibition (Reynolds ef al.,
1993; Bayburt & Gelb, 1997; Burke et al., 1999). H,0, is able to raise the intracellular
calcium concentration (Golconda et al., 1993), which might result in cPLA, translocation
and binding to membranes, whereupon cPLA, is maximal activated (Abdullah, ez al., 1995;
Schalkwijk, et al., 1996). Additionally, lipid peroxidation is known to increase the negative
surface charge of membranes allowing increased calcium binding (Vladimirov et al., 1980).
Furthermore, peroxidised lipids also decrease the calcium requirement for cPLA, activity
(Rashba-Step, et al., 1997), suggesting that cPLA, translocation and binding to membranes
1s facilitated. Indeed, the H,O,-induced cPLA, activity reside in the membrane fraction,
even under calcium free conditions, which did not occur in calcium-ionophore-stimulated
Herl4 cells (Bunt, et al, 1997). Rahsba-Step et al. (1997) suggested that the effects of
membrane peroxidation and phosphorylation on cPLA, activity are additive. We suggest
that the increased activity of cPLA, due to membrane peroxidation might merely be due to
an increase in substrate availability for cPLA,.
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Chapter 4

Abstract

Cytosolic phospholipase A, (¢cPLA,) is of special interest because it selectively
releases arachidonic acid from membrane phospholipids. Arachidonic acid has been
implicated to play an important role in various cellular responses. Recently
arachidonic acid release and prostaglandin synthesis have been shown to be cell cycle
dependent and therefore the activity of cPLA, during the ongoing cell cycle was
investigated, using the mitotic shake off method for cell synchronisation. cPLA,
activity was high in mitotic cells and decreased rapidly in the early G1 phase. A strong
increase in activity was measured following the G1/S transition in both neuroblastoma
and Chinese hamster ovary cells. The changes in activity were not due to a difference
in cPLA, expression but due to phosphorylation of cPLA,. Phosphorylation of cPLA,
occurs through MAPK since the use of a specific MAPK kinase inhibitor and serum
depletion of synchronised cells inhibited cPLA, activity.

Introduction

The 85 kDa cytosolic phospholipase A, (cPLA,) preferentially catalyses the hydrolysis of
phospholipids at the sn-2 position generating arachidonic acid. The released arachidonic
acid can be oxygenated either by cyclooxygenase to form prostaglandins and thromboxanes
or by lipoxygenase to form leukotrienes. Arachidonic acid and/or its metabolites have been
implicated to play an important role in various cellular responses such as cell migration,
mitogenic signalling (Piomelli, 1993; Korystov Yu et al., 1998), inflammation (Heller ef al.,
1998) and cytotoxicity (Cifone ef al., 1993; Grazia Cifone et al.,, 1997). cPLA, activity is
regulated by phosphorylation in addition to calcium-dependent binding to the membrane
substrate (Clark et al., 1995). Phosphorylation of cPLA, increases its intrinsic enzyme
activity by 2 to 3-fold (Nemenoff ef al., 1993; Kramer et al., 1993) and was shown to be
mediated by p42/44MAPK (ERK 1/2 or MAPK) on Ser>?® upon cell activation (Schalkwijk et
al., 1995; de Carvalho et al., 1996). Furthermore, for full activation of cPLA,, the enzyme
needs first to be phosphorylated followed by translocation to membranes by calcium
(Schalkwijk et al., 1996; Abdullah et al., 1995).

The cell cycle can be divided into four phases: the first gap phase (G1), DNA
synthesis (S), the second gap phase (G2) and mitosis (M). At a point in G1, the restriction
point (R), the cell is committed to progress into S phase independently of growth factors
(Pardee, 1974). ERK1/2 activation plays an important role in cell cycle progression in both
GO stimulated cells but also during the ongoing cell cycle (Pages et al., 1993; Le Gall et al.,
1998). Both growth factor signalling and signal transduction routes resulting from cell
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attachment can activate MAPK (Seger & Krebs; 1995; Giancotti, 1997; Hulleman et al.,
1999a).

Recently MAPK expression and phosphorylation was reported during G1 phase of
the cell cycle in Chinese hamster ovary (CHO) cells (Hulleman et al., 1999b). In addition,
phosphorylated ERK1/2 translocated to the nucleus during mid/late G1 of the cell cycle. As
pointed out earlier, MAPK is able to phosphorylate cPLA,, which upon translocation to
membranes releases arachidonic acid. It has been reported that arachidonic acid was
released from interphase cells in response to hormones, and that this release becomes
strongly inhibited in mitotic cells (Berlin & Preston, 1995). The use of phospholipase A,
inhibitors in tumour cells resulted in a suppressed proliferation of the cells by inducing
apoptosis (Korystov Yu et al., 1998). Therefore we investigated whether cPLA, activity is
cell cycle dependent since ERK1/2 activity alters and arachidonic acid release differs during
the cell cycle.

We report that cPLA, activity is high in mitosis, decreases afterwards and is
increased again in G1 and following the G1/S transition. At these periods, cPLA, activity is
due to increased phosphorylation rather than by increased cPLA, protein expression, since
phosphatase treatment of cPLA, reduced its activity. Moreover, preventing phosphorylation
of MAPK either by inhibiting the upstream activator MEK, or by serum depletion of
synchronised cells resulted in a decrease in cPLA, activity. The knowledge of cPLA,
activity during the ongoing cell cycle is of great importance since cPLA, generates
arachidonic acid, which has in some tumour cells proliferative (Adachi ef al., 1996; Tang et
al., 1997) and in other tumour cells apoptotic effects (Korystov Yu ef al., 1998; Chan et al,,
1998). Also the cyclooxygenase and lipoxygenase enzymes which can convert arachidonic
acid into bioactive lipids have been implicated to play a role in tumorigenesis (Ikawa et al.,
1999; Sawaoka et al., 1999).

Materials and Methods

Cell culture.

Neuroblastoma (N2A) or Chinese hamster ovary (CHO) cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM, Gibco BRL, Scotland) supplemented with
25 mM HEPES and 7.5% foetal bovine serum (FBS, Gibco BRL, Scotland). Cells were
maintained at 37°C in a humidified atmosphere.

Mitotic shake off.
One day prior to shake off, cells were cultured at 5x10° cells per 175 cm? flask.
Each hour flasks were shaken for 1 min at 37°C to obtain mitotic cells, which were replated
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on tissue culture dishes as described previously (Boonstra ef al., 1981). The cells were
harvested at different hours after mitosis, by removing the medium and washing the cells
twice with ice-cold phosphate buffered saline (PBS). Thereafter, the cells were scraped in
homogenisation buffer (50 mM Hepes/NaOH pH 7.4, 0.25 M sucrose, 50 mM NaF, 250 uM
Na;VO,, | mM EGTA, 10 uM leupeptin, 1 uM pepstatin and 1 mM PMSF). Cells were
homogenised by 15 strokes through a 26G needle and sonicated for 3 times 10 seconds.
Mitotic cells were centrifuged at 600xg for 7 min whereafter the cells were washed twice
and either harvested, or replated on tissue culture dishes in serum-free medium. Then the
cells were harvested at the indicated times. In other experiments mitotic cells were replated
on tissue culture dishes and at different hours after mitosis incubated for 10 min with 50 uM
of the MEK inhibitor U0126 (Promega, Madison, USA), whereafter the cells were harvested
as described above.

Western blot analysis.

Proteins of 1x10° cells per time point were separated on 10% SDS-PAGE and
transferred to polyvinylidene difluoride membrane by semi-dry blotting using a BioRad
trans-blot SD. The membrane was blocked for 1 h at RT with 2% milk powder in PBST
(PBS containing 0.1% (v/v) Tween-20) following primary antibody incubations for 1 h in
0.2% milk powder in PBST. Cyclin A (Calbiochem, Cambridge, UK) and p42MAPK (Upstate
Biotechnology, Lake Placid, NY) were detected with a monoclonal antibody at a dilution of
2.5 ug/ml and 0.5ug/ml, respectively. Phosphorylated ERK1/2 was detected with a
phospho-p42/44 MAPK rabbit polyclonal antibody (dilution of 1:8000) from New England
Biolabs Incorporated (Beverly, MA). cPLA, was detected with a rabbit polyclonal antibody
(0.2 ug/ml) obtained from Santa Cruz Biotechnology (Heidelberg, Germany). Subsequently,
the membrane was washed and primary antibodies were detected with rabbit anti-mouse and
donkey anti-rabbit IgG conjugated to horseradish peroxidase and the bands were visualised
with enhanced chemiluminescence (NEN™ Life science products, Boston).

cPLA, activity assay.

cPLA, activity was measured by the release of radiolabeled arachidonic acid from
the sn-2 position of 1-stearoyl-2-[1-'#C]arachidonoyl-glycero-3-phosphocholine (Amersham,
Buckinghamshire, England) as described previously (Schalkwijk et al, 1996). Briefly,
aliquots of the radiolabeled phosphatidylcholine was dried under N, together with
dipalmitoylglycerol (Sigma, Steinheim, Germany) and then dispersed in water by
sonification for 4 times 15 sec under nitrogen to give final concentrations of 4 uM and 2
uM, respectively, in the assay. The assay incubation mixture contained 0.2 M Tris pH 8.5, 1
mM CaCl,, 5 mM DTT and the homogenate of 2x10° cells in a total volume of 200 ul. After
incubation for 7-10 min at 37°C the released radiolabeled arachidonic acid was extracted by
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a modified Dole extraction procedure (van den Bosch et al., 1974) and the radioactivity was
determined in a scintillation counter (Tri-Carb 15000, Packard, Meriden, USA). Measuring
the activity of non-phosphorylated cPLA, was performed as described previously
(Schalkwijk et al., 1995) by addition of 10 units alkaline phosphatase (Roche diagnostics,
Mannheim, Germany) to an assay mixture containing the homogenate of 2x10° cells, 1 mM
MgCl,, 0.25 M Tris pH 8.5, 1.25 mM CaCl, and 6.25 mM DTT in a final volume of 160 ul.
After a 20 min incubation at 37°C, 40 ul substrate was added and the cPLA, activity assay
was performed as described above. Under these assay conditions always less than 5% of the
substrate was hydrolysed.

Results

cPLA, activity during the cell cycle.

It has been previously reported that in HeLa cells arachidonic acid release was cell
cycle independent (Lahoua et al, 1989) but in fibroblasts arachidonic acid was released
from interphase cells which could be the result of activated phospholipases A, (Berlin &
Preston, 1995). Since cPLA, is known to selectively liberating arachidonic acid, we
examined whether cPLA, activity changes during the G1 and/or S phase of the ongoing cell
cycle in neuroblastoma cells (N2A), by using the mitotic shake off method for cell
synchronisation (Boonstra ef al., 1981). Detection of the S phase cyclin A on western blot
or H-thymidine incorporation into the DNA of the cells as described by Hulleman et al.,
(1999a) was used to assess the G1/S-phase transition of N2A cells. Synchronised N2A cells
were harvested at different hours after mitosis and cPLA, activity of an identical amount of
cells was determined using an in vitro assay as described in Materials and Methods in which
only the activity of cPLA, was measured (Spaargaren et al., 1992; Schalkwijk et al., 1992;
Atsumi et al., 1998). Figure 1A shows in N2A cells a decrease in cPLA, activity during the
first hours after mitosis, followed by a small peak in G1 and a strong increase starting at the
G1/S phase transition. In Chinese hamster ovary (CHO) cells the activity of cPLA,
remained constant during the early G1 (fig. 1B). Thereafter, the activity slightly decreased
to increase transiently, which at the G1/S phase transition significantly increased again.
Except for the decrease in activity after mitosis a similar cPLA, activity pattern was
determined in CHO cells as observed in synchronised N2A cells, implying that this pattern
is not cell type specific. However, there are slight differences at the timing of the peaks
between experiments, which is mostly due to variations in the length of the G1 phase
(Zetterberg & Larsson, 1991).
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Figure 1. Activity of cPLA, in (A) N2A and (B) CHO cells. Cells were synchronised by mitotic
shake off and were harvested at different hours after mitosis. cPLA, activity was measured of 2x10°
cells using an in vitro assay as described in Materials and Methods. G1/S phase transition was detected
on western blot by cyclin A expression. Similar data were obtained in respectively 8 (A) and 2 (B)
separate experiments, each performed in duplicate.

To investigate whether these changes in cPLA, activity are the result of differences
in expression level, the total amount of cPLA, protein was analysed on western blot (fig.
2A), showing small differences in cPLA, protein expression during the cell cycle. In order
to establish the significance of the cell cycle related changes in cPLA, expression the bands
of four different experiments were quantified and the average percentage of expression,
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relative to mitotic cells, was calculated. As shown in figure 2D the cPLA, expression
gradually increases about two-fold during the cell cycle, with a slightly stronger increase
between 4 and 6 hours after mitosis. cPLA, protein expression is nearly constant until 3
hours after mitosis while cPLA, activity is decreased by approximately 50%. A rise in
protein expression was observed between 4-6 hours but does not result in grossly different
cPLA, activities. By contrast, the cPLA, expression does not change in the time period from
6 to 9 hours, while the cPLA, activity increases over 2-fold between 6 to 8 hours and
decreases again from 8-9 hours (fig. 1). These data suggest that cPLA, activity during the
cell cycle, in particular the increase in early S-phase, is regulated by other factors, such as
phosphorylation.
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Figure 2. Expression of (A) cPLA,; (B) p42MAPK; (C) phosphorylated p42/44MAPK and (D)
quantification of cPLA, protein expression during the cell cycle. Synchronised N2A cells were
harvested at the indicated hours after mitosis whereafter, 1x103 cells were used for electrophoresis and
the following proteins were analysed on western blot. A: Expression of cPLA,. B: Expression of
p42MAPK " C: Phosphorylation of p42/44MAPK D: ¢PLA, protein expressions of four separate
experiments were quantified and the average percentage of cPLA, protein and S.E.M relative to
mitotic cells was calculated.
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In stimulated cells, the phosphorylation of cPLA, by ERK1/2 has been shown to
play an important role in the release of arachidonic acid (Clark et al., 1995; Murakami et al.,
1997) and is required for maximal activation of cPLA, (Lin et al., 1993; Kramer et al., 1996;
Qiu et al,, 1998). So far, nothing is known about the involvement of MAPK in the activation
of cPLA, during the ongoing cell cycle. Recently it has been demonstrated in CHO cells that
MAPK is continuously expressed during the cell cycle and that only a minor part is
phosphorylated in the G1 and S phase (Hulleman et al., 1999b). The expression of MAPK
(fig. 2B) was examined to serve as an internal control. In addition, MAPK phosphorylation
was analysed on western blot (fig. 2C), using an antibody directed against phosphorylated
p42/44MAPK MAPK protein expression remained fairly constant during the cell cycle while
ERK1/2 is phosphorylated during the G1 and even more so in S phase but not in mitosis.
From these results no direct relationship between ERK1/2 phosphorylation and cPLA,
activity could be drawn. The gradual changes in MAPK phosphorylation do not account for
the more sudden variations in cPLA, activity.

Regulation of cytosolic phospholipase A, by phosphorylation during the ongoing cell cycle.

cPLA, activity is regulated by calcium since cPLA, binds to membranes in a
calcium dependent manner. Another important factor that enhances and regulates cPLA,
activity is phosphorylation of the enzyme. Phosphorylation of cPLA, can occur through
different MAPKs, like p38MAPK in thrombin-stimulated platelets (Kramer et al., 1996) and
ERK1/2 (Nemenoff et al., 1993; Qiu et al., 1998), of which the latter one has been found to
phosphorylate and activate cPLA, in many cell models, and which has also been shown to
be essential for progression through the cell cycle (Pages et al., 1993; Le Gall et al., 1998).
In order to establish the role of ERK1/2 in cPLA, activation, ERK1/2 activation was
prevented using the MAPK kinase (MEK) inhibitor U0126. U0126 inhibits MEK directly
by inhibiting the catalytic activity of the enzyme and thus the activation of ERK1/2 (Favata
et al., 1998). Synchronised N2A cells were either left untreated or were, at different hours
after mitosis, treated for 10 min with U0126 whereafter the cells were harvested (fig. 3). In
this way it is unlikely that the MEK inhibitor affects cell cycle progression. The activity of
cPLA, in control cells showed again a decrease after mitosis, followed by a peak in G1 and
a peak after the G1/S transition (fig. 3A). In cells treated with the MEK inhibitor, cPLA,
activity is lower as compared to control cells, however the pattern is similar. Furthermore,
in mitosis, at the end of G1 and following the G1/S transition a reduction of approximately
50% in cPLA, activity was observed between control and U0126 treated cells. In agonist-
stimulated cells an increase of 2-3 fold in cPLA, activity by MAPK was measured (Lin ef
al., 1993) which might well be the activity that is reduced upon U0126 treatment. The
effects of calcium that might influence cPLA, activity during the cell cycle was eliminated
by determining the activity in vitro under constant calcium concentrations and thus the
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Figure 3. cPLA, activity (A) and MAPK phosphorylation (B) in the absence (@) or presence(A)
of the MEK inhibitor U0126. N2A cells synchronised by mitotic shake off were replated on tissue
culture dishes. Cells were harvested at the indicated time points or were then treated for 10 min with
the specific MEK inhibitor, U0126, whereafter these cells were harvested. cPLA, activity was
measured as described in Materials and Methods (A) and phosphorylated MAPK was analysed on
western blot (B).

activities measured are not affected by calcium fluctuations. This suggests that at these
periods cPLA, is activated by MAPK. In addition, western blot analysis displays
phosphorylated MAPK in control cells while this appears to be virtually completely
inhibited in U0126 treated cells (fig. 3B) showing that with a 10 min treatment of this
inhibitor MAPK was not phosphorylated anymore. Despite this nearly complete inhibition
of MAPK phosphorylation the cPLA, activity is not completely inhibited. This can be due
to the residual activity of either the non-phosphorylated form of cPLA, (Lin et al., 1993) or
of some residual active and phosphorylated enzyme that was present at the moment of
addition of U0126 and has not yet been completely de-phosphorylated during the 10 min
treatment with the inhibitor.
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The results from figure 3 suggest that during the cell cycle cPLA, is at least in part
phosphorylated by MAPK, thereby increasing its activity at distinct periods. To evaluate
whether the increase in cPLA, activity at these periods is indeed due to phosphorylation of
the enzyme, the effect of phosphatase treatment on cPLA, activity was investigated. cPLA,
activity of synchronous cells at different hours after mitosis was measured resulting in the
characteristic activity pattern during the ongoing cell cycle. Next, mitotic cells, cells from
early and late G1 and of S phase were treated with alkaline phosphatase whereafter cPLA,
activity was measured. Figure 4 shows in mitotic cells as well as in late G1 and S phase cells
a remarkable reduction in cPLA, activity of approximately 64, 49 and 45% respectively as
compared to control, while only a marginal decrease of 21% in activity was measured in
early G1 cells. This is also the period in which cPLA, has a reduced activity during the cell
cycle. These results are in agreement with the reduced activities measured in synchronous
cells treated with the MEK inhibitor U0126 (fig. 3), indicating that indeed cPLA, activity
during the cell cycle is enhanced through phosphorylation by MAPK.

In order to further establish the involvement of MAPK in cPLA, activation a more
in vivo approach was used. MAPK in stimulated cells can be activated either by growth
factors or via cell attachment (Seger & Krebs, 1995; Lin et al., 1997; Giancotti, 1997), but
has recently been shown to be growth factor dependent during the ongoing cell cycle
(Hulleman et al., 1999a). Therefore, mitotic cells were replated either on tissue culture
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Figure 4. Effect of phosphatase treatment on cPLA, activity. cPLA, activity of synchronised N2A
cells at different hours after mitosis was measured and mitotic cells, cells from early and late G1, and
of S phase were treated with alkaline phosphatase whereafter the activity was measured as described
in Materials and Methods.
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Figure 5. Effect of serum depriviation on (A) MAPK phosphorylation and (B) cPLA, activity.
Mitotic N2A cells obtained with the mitotic shake off method were either directly replated on a tissue
culture dish in the presence of serum (monolayer + serum; solid line) or in the absence of serum
(monolayer — serum; dashed line). After harvesting at the indicated time points, MAPK
phosphorylation was analysed on western blot and cPLA, activity was measured in vitro as described
in Materials and Methods.

dishes in the presence or absence of serum for the indicated hours (fig. 5). In this way
MAPK that is activated through growth factors is eliminated (Hulleman et al., 1999a).
Western blot analysis confirmed that cells replated in serum free medium did not exhibit
phosphorylated ERK1/2 in contrast to control cells (fig. 5A). In addition, cPLA, activity of
serum-deprived cells rapidly decreased after mitosis and remained at a low level for at least
3 hours as compared to control cells (fig. 5B). Measurements of longer time points were not
performed since serum-deprived cells will stop cell cycle progression. All together, these
results also demonstrate that cPLA, activity is increased through phosphorylation by MAPK.
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Discussion

Arachidonic acid is known to be able to fulfil different cellular responses and is
selectively released by cPLA,. In order to establish the possible role of cPLA, in the cell
cycle, cPLA, activity was measured during the cell cycle of N2A and CHO cells
synchronised by mitotic shake off. cPLA, activity during the phases of the cell cycle was
measured by an in vitro assay showing that cPLA, is highly active in mitosis which is
decreased rapidly afterwards. However, Berlin and Preston (1995) found no arachidonic
acid release in metaphase-arrested HeLa cells stimulated with calcium releasing agents. This
was surprisingly, since the activity measured in vitro and protein expression of mitotic and
interphase cells were comparable and even though mitotic cPLA, was constitutively
phosphorylated in unstimulated cells (Berlin & Preston, 1995). However, these authors used
an anti-mitotic drug to synchronise the cells, that may have effects on cell cycle progression
(Schmid-Alliana et al., 1998). Moreover, arachidonic acid release was not measured during
the ongoing cell cycle.

We measured an elevated transient activity of cPLA, during the G1 phase that is
followed by a strong increase in the S phase. This activation pattern of cPLA, has not only
been observed in neuroblastoma cells but also in CHO cells, demonstrating that this pattern
is not cell type specific and can also be found in other cell types. No correlation between
cPLA, activity during the ongoing cell cycle with variations in cPLA, expression levels was
found suggesting that the activity is regulated by other factors. In addition, in cryosections
of Her 14 fibroblasts it was shown that cPLA, exists as monomers but is, next to this,
predominantly present in clusters (Bunt ef al, 1997). These clusters then represent the
inactive form of cPLA, of which small amounts of active monomers are recruited which are
localised to the membrane (Bunt et al., 2000). Furthermore, although the expression levels
vary, nothing is known about the percentage of active monomers that account for the cPLA,
activity pattern during the cell cycle.

cPLA, activity is predominantly regulated by calcium and phosphorylation, of
which the latter one has to precede the calcium-dependent translocation for its full activation
(Schalkwijk et al., 1996). In this study we investigated the regulation of cPLA, activity by
phosphorylation during the ongoing cell cycle. Western blot analysis showed no direct
relationship between phosphorylated MAPK and cPLA, activity. Therefore, MAPK
activation was prevented by inhibiting MEK activity with a specific inhibitor showing that
there is indeed a relation between ERK1/2 phosphorylation and cPLA, activity during the
ongoing cell cycle. A clear inhibition of cPLA, activity using U0126 was only observed in
mitosis, late G1 and S phase where cPLA, is found to be highly active in control cells. In
addition, treatment of cPLA, at these periods with alkaline phosphatase resulted also in a
reduction of approximately 50% in cPLA, activity as was also observed when MAPK
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phosphorylation was inhibited. Almost no reduction in activity was measured in periods
where cPLA, activity during the cell cycle was low suggesting that this represents the basal
activity. It seems as if the changes in cPLA, activity during the ongoing cell cycle in both
N2A and CHO cells are modest. It has been published that cPLA, could only be activated
about 2-3 times above basal level upon phosphorylation (Qiu et al., 1993; Kramer et al.,
1993; Schalkwijk et al., 1995) which resembles the decrease in activity upon phosphatase
treatment or MAPK inhibition in our cells.

The relation between phosphorylated MAPK and cPLA, activity was further
established by preventing the existence of phosphorylated MAPK in cells by growing
mitotic cells in the absence of serum (Hulleman et al., 1999a). In these cells cPLA, activity
was markedly decreased as compared to control cells in which MAPK was phosphorylated.
All together, these results indicate that MAPK phosphorylates cPLA, thereby activating the
enzyme in a growth factor dependent way in the G1 and S phase of the ongoing cell cycle.

Our findings are of particular interest in view of cell cycle progression since both
MAPK and especially cPLA, are involved in tumorigenesis (Adachi et al., 1996; Korystov
Yu et al., 1998). Firstly, Lahoua et al. (1989) showed that biosynthesis of PGE, and PGF,,,,
metabolites of arachidonic acid, was increased in S phase, i.e. in the same phase in which
we measured a high cPLA, activity. Secondly, in hepatocytes quinacrine, a commonly used
phospholipase A, inhibitor, prevented hepatocyte growth factor induced arachidonic acid
release and 3H-thymidine incorporation (Adachi et al., 1996). An effect that was also found
in tumour cells treated with phospholipase A, and lipoxygenase inhibitors (Korystov Yu et
al., 1998).
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Chapter 5

Abstract

Arachidonic acid has been implicated in regulating cellular proliferation, and
is preferentially released by the 85 kDa cytosolic phospholipase A, (cPLA,). Recently,
we demonstrated that cPLA, is activated in distinct periods during the ongoing cell
cycle of neuroblastoma cells. The purpose of the present study was to establish the role
of these cPLA, activity peaks in cell cycle progression. Inhibition of ¢cPLA, activity
with arachidonyl trifluoromethylketone (ATK) in early G1 phase resulted in a marked
reduction in DNA synthesis, whereas inhibitors for sPLA, and iPLA, had no
remarkable effect. A 24h incubation of neuroblastoma cells with ATK, in which cPLA,
activity was still inhibited, revealed no significant difference in cell number as
compared to untreated cells. This suggests redundancy of the different PLA, enzymes.
Lipoxygenase inhibition in early G1 resulted in G1 phase arrest, whereas inhibitors for
cyclooxygenase had no effect. Furthermore, cells stopped progressing through S phase
when lipoxygenase was inhibited in early S phase, demonstrating the requirement of
lipoxygenase products for S phase progression.

Introduction

The factors that determine whether cells continue to proliferate, arrest growth or
differentiate, are activated by signals from the extracellular environment and operate
predominantly during the G1 phase of the cell cycle. Progression through the cell cycle is
regulated by cyclin-dependent kinases (Cdks) that are activated upon binding with their
cyclins, and by multiple phosphorylation and dephosphorylation steps (Nigg, 1995; Dirks &
Rutka, 1997; Reed, 1997). The activity of Cdks is negatively regulated by Cdk inhibitory
proteins that constists of two families of which the INK4 family specifically inhibits cyclin
D/Cdk4,6 complexes, while the Kip/Cip family inhibits most cyclin/Cdk2,4 and 6
complexes (Sherr & Roberts, 1995; Hulleman & Boonstra, 2001). The first cyclin/Cdk
complex in the G1 phase is activated by growth factors and consists of cyclin D and Cdk4
or 6 (Sherr, 1995), resulting in retinoblastoma phosphorylation and the subsequent
activation of cyclin E/Cdk2. Furthermore, activated p42/44MAPK was shown to induce cyclin
D expression and down-regulation of p27%P (Aktas et al., 1997; Cheng et al., 1998). In
addition, a sustained activation of p42/44MAPK ig required to pass the restriction point,
whereas inhibition of p42/44MAPK blocks DNA synthesis and proliferation (Pagés et al.,
1993; Hulleman et al., 1999; Roovers et al., 1999). Also, p42/44MAPK gyerexpression was
observed in human breast cancer cells (Sivaraman et al., 1997), showing the importance of
p42/44MAPK activity in cell proliferation.
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Recently, it was demonstrated that cytosolic phospholipase A, (cPLA,) activity was
cell cycle dependent and furthermore, cPLA, phosphorylation in these periods was mediated
by p42/44MAPK (van Rossum et al., 2001). cPLA, releases preferentially arachidonic acid
from membrane phospholipids. The released arachidonic acid can be metabolised by
cyctochrome p450s, cyclooxygenases, or by lipoxygenases to produce eicosanoids.
Arachidonic acid and/or its metabolites appear to have an important role in growth-
dependent signalling pathways and are involved in mitogenic signalling, cell migration and
cytotoxicity (Piomelli, 1993; Sa & Fox, 1994; Grazia Cifone et al., 1997). Furthermore,
most tumour cells produce elevated levels of eicosanoids that result in an induced growth
and invasiveness of the tumours (Reich & Martin, 1996). Accordingly, in oncogenic ras
transformed lung cancer cells, cPLA, expression was found to be constitutively high
(Heasley et al., 1997).

To gain more insight in the mode of action of cPLA, in cell proliferation we studied
the role of cPLA, activity in cell cycle progression. We present for the first time that cPLA,
activity in G1 phase was required for progression into S phase. Neither iPLA, nor sPLA,
are involved in progression to S phase. cPLA, inhibition for 24h resulted in a comparable
cell number of ATK treated versus untreated cells, suggesting redundancy of the different
PLA, enzymes. By using inhibitors we assessed the involvement of lipoxygenase, but not
cyclooxygenase in cell cycle progression into S phase. Moreover, lipoxygenase inhibition in
early G1 resulted in G1 phase arrest. DNA synthesis and S phase progression is blocked
when lipoxygenase is inhibited in early S phase, demonstrating that lipoxygenase
metabolites are required for S phase progression.

Materials and Methods

Materials.

Tissue culture nutrients, Dulbecco’s modified Eagle’s medium supplemented with
25 mM HEPES (DMEM-HEPES) and foetal bovine serum (FBS) were purchased from
Gibco BRL (Scotland). Methyl-[*H]-thymidine (2 mCi/mmol) was obtained from
Amersham (Arlington Heights, IL). Arachidonyl trifluoromethylketone (ATK), bromoenol
lactone (BEL), 5(S)-HpETE and 12(S)-HpETE were acquired from Cayman chemical (Ann
Arbor, USA). Manoalide was from Biomol (Playmouth meeting, USA) and, NS-398 and
caffeic acid were obtained from Calbiochem (La Jolla, USA). 4-Bromophenacyl bromide
(4-BPB), indomethacin, nordihydroguaiaretic acid (NDGA) and arachidonic acid were
purchased from Sigma-Aldrich chemie (Steinheim, Germany). All other chemicals were
either from Sigma or Merck (Darmstadt, Germany).

113



Chapter 5

Cell culture and cell synchronisation.

Neuroblastoma (N2A) cells were grown in DMEM-HEPES supplemented with
7.5% foetal bovine serum. Cells were maintained at 37°C in a humidified atmosphere. One
day prior to shake off, cells were cultured at 5x10° cells per 175 cm? flask. Each hour flasks,
containing asynchronous cells, were shaken for 1 min at 37°C to obtain mitotic cells as
described previously (Boonstra et al., 1981).

[PH]-thymidine incorporation.

Mitotic cells were plated in 24-wells plates at a density of 3x10* cells per well in
DMEM-HEPES containing 7.5 % FBS and 1 uCi [*H]-thymidine/well. At the indicated
times, the cells were washed twice with phosphate-buffered saline (PBS) whereafter, the
cells were dissolved in 0.1 M NaOH and the incorporated [*H]-thymidine was counted in a
scintillation counter (LS 6000 SE, Beckman Instruments, Fullerton, CA). In other
experiments, as indicated, [*H]-thymidine incorporation was started 3 hours ahead of the
actual experiment as a control. Then at the indicated times after mitosis half of the cells were
incubated with ATK (10 uM) to inhibit cPLA, or with NDGA (10 uM) to inhibit
lipoxygenase. After 30 min, [*H]-thymidine was added to both control and ATK or NDGA
treated cells. Fifteen min later the cells were washed twice with PBS, then washed with 10%
trichloroacetic acid, washed again twice with PBS, whereafter the cells were dissolved in
0.1 M NaOH and [*H]-thymidine incorporation was measured.

Western blot analysis.

Mitotic cells were replated and at the indicated times after mitosis the medium was
removed and the cells were washed twice with ice-cold PBS. Subsequently, the cells were
scraped in homogenisation buffer (50 mM Hepes/NaOH pH 7.4, 0.25 M sucrose, 50 mM
NaF, 250 uM Na;VO,, 1 mM EGTA, 10 uM leupeptin, 1 uM pepstatin and 1 mM PMSF).
Cells were homogenised by 15 strokes through a 26G needle and sonicated for 3 times 10
seconds. Proteins of 1x10° cells per time point were separated on 10% SDS-PAGE and
transferred to polyvinylidene difluoride membrane by semi-dry blotting using a BioRad
trans-blot SD. The membrane was blocked for 1 h at RT with 2% milk powder in PBST
(PBS containing 0.1% (v/v) Tween-20) following primary antibody incubations overnight at
4°C in 0.2% milk powder in PBST. Cyclin A (Calbiochem, Cambridge, UK) was detected
with a monoclonal antibody at a concentration of 2.5 ug/ml. Subsequently, the membrane
was washed and primary antibodies were detected with rabbit anti-mouse IgG conjugated to
horseradish peroxidase and the bands were visualised with enhanced chemiluminescence
(NEN™ Life science products, Boston).
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Results

cPLA, activity in G1 phase is required for cell cycle progression.

We have previously demonstrated that cPLA, activity is cell cycle dependent in
neuroblastoma (N2A) and Chinese hamster ovary (CHO) cells (van Rossum, et al., 2001),
being high in mitosis, thereafter decreasing in early G1. A small increase in activity was
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Figure 1. [*H]-Thymidine incorporation (A) and effect of ATK and 4-BPB on DNA synthesis (B)
in N2A cells, synchronised by mitotic shake off. (A) N2A cells were synchronised using the mitotic
shake off method. [*H]-Thymidine (1 uCi/well) was added to the mitotic cells and at the indicated
times after mitosis the incorporated radiolabel was quantified using a liquid scintillation counter. (B)
ATK (10 uM) and 4-BPB (10 uM) were added to synchronous cells at 1, 4 and 6h after mitosis and
left to incubate until 8h after mitosis, whereafter the incorporated [*H]-thymidine into the DNA was
measured. Data are means + SD (n=3).
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measured during mid/late G1, and a strong increase was measured following the G1/S
transition. In order to investigate whether cPLA, activity is required for cell cycle
progression to S phase, the activity of cPLA, was inhibited at different time points in G1
phase in N2A cells, which were synchronised by using the mitotic shake off method
(Boonstra, et al., 1981). Therefore, a non-specific PLA, (4-bromophenacyl bromide; 4-
BPB) (Chang et al., 1987) and a potent reversible cPLA, (arachidonyl trifluoromethyl
ketone; ATK) inhibitor (Street et al., 1993; Trimble et al., 1993) were used. Synchronous
cells were either left untreated, or were incubated with ATK (10 uM) or 4-BPB (10 uM)
from 1, 4 and 6h after mitosis. At 8h, at which most cells have entered the S phase (fig. 1A),
DNA synthesis was determined by measuring [*H]-thymidine incorporation of the cells as
described in Materials and Methods. As shown in figure 1B, [3H]-thymidine incorporation
was reduced approximately 60% as compared to control cells, if ATK is added 1h after
mitosis, while no reduction is measured when ATK is added at later time points. Apart from
the effect on DNA synthesis, inhibition of cPLA, activity did not influence the total number
of cells, indicating that the inhibition of DNA synthesis was not due to cytotoxic effects of
ATK (data not shown). In addition, a similar pattern of [3H]-thymidine incorporation was
obtained in synchronous N2A cells treated with 4-BPB. These results indicate the
requirement of cPLA, activity in G1 for cell cycle progression.

However, ATK has also been reported to be able to inhibit the Ca*"-independent
PLA, (iPLA,) in macrophages, although at higher concentrations (Ackermann et al., 1995).
Therefore, it was investigated whether the reduction in [*H]-thymidine incorporation was
solely due to cPLA, or due to other PLA, isoforms as well. To discriminate between cPLA,
and 1PLA,, bromoenol lactone (BEL) was used, which is a potent irreversible inhibitor of
iPLA,, but not of cPLA, (Zupan et al., 1993; Ackermann, et al., 1995). The involvement of
sPLA, was investigated by the use of manoalide (Jacobson et al., 1990). BEL (2.5 uM) or
manoalide (0.1 uM) were added to synchronously growing cells at 2, 4 and 6h after mitosis,
or the cells were left untreated. The [*H]-thymidine incorporation measured at 8h was only
slightly reduced when BEL was added at 2 and 4h after mitosis as compared to control cells
(fig. 2). No effect was observed in cells incubated with BEL from 6h after mitosis.
Manoalide only marginally affected the [*H]-thymidine incorporation of the cells when
added at 2, but not at 4 or 6h as compared to control cells. This indicates that sPLA, is not
and iPLA, is at best only marginally involved in cell cycle progression to S phase.

It is, however, not clear whether cPLA, inhibition results in cell cycle arrest or
whether it is just delayed. Therefore, cell count experiments were performed in which cells
were left untreated, or to which ATK was added at 0, 1 or 2h after mitosis. At 24h after
mitosis the total number of cells in ATK treated cells was similar to untreated cells (fig. 3)
and moreover was increased as compared to the total number of cells present at 8h, showing
that cells have completed their cell cycle. In addition, ATK was still functional, since cPLA,
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Figure 2. Effects of PLA, inhibitors on cell cycle progression into S phase in N2A cells.
Synchronous N2A cells were left untreated, or incubated with ATK (10 uM), BEL (2.5 uM) and
manoalide (0.1 uM) from 2, 4 and 6h after mitosis. [*H]-Thymidine incorporation was measured at 8h
after mitosis. Data are the means = SD (n=3).
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Figure 3. Long term cPLA, inhibition does not result in cell cycle arrest. To synchronous N2A
cells, ATK (10 uM) was added at 0, 1 and 2h after mitosis and cells were left to incubate until 24h
after mitosis. Then, the total numbers of cells were counted. Data are means + SD (n=2).
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activity in synchronous cells treated for 8 or 24h with ATK was inhibited as compared to
untreated cells (data not shown).

Collectively, these results show the requirement of cPLA,, but not iPLA, or sPLA,,
in cell cycle progression, since 4-BPB did not reduce DNA synthesis any further than ATK,
whereas inhibitors for iPLA, and sPLA, displayed no significant effect. In addition, cPLA,
inhibition in early G1 results in a temporal inhibition of cell cycle progression.

Lipoxygenase, but not cyclooxygenase are involved in cell cycle progression.

The arachidonic acid released by cPLA,, can be further metabolised by
cyclooxygenases or lipoxygenases into a large family of eicosanoids that have been
implicated amongst others, in mitogenic signalling, cytotoxicity and cancers (Dethlefsen et
al., 1994; Hsi & Eling, 1998; Shappell et al., 2001). To examine the role of cyclooxygenase
(COX) and lipoxygenase (LO) on cell cycle progression, we evaluated the effects of COX
and LO inhibitors on DNA synthesis. Indomethacin (Indo, 10 uM), a non-selective COX
inhibitor (Laneuville et al., 1994), and NS 398 (10 uM), a selective COX-2 inhibitor
(Copeland et al., 1994), were added at 2, 4 and 6h after mitosis and [*H]-thymidine

140
120 -
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80 1 O NDGA
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W CA 100 uM
40 & control
20 1 ’_'L
0 - = . .
6 c

[3H]-thymidine incorporation
(% of control 8h)

2 4 B 2 4
addition inhibitor after mitosis (h)

Figure 4. Effects of cyclooxygenase and lipoxygenase inhibitors on cell cycle progression.
Synchronous N2A cells were left untreated, or incubated with the cyclooxygenase inhibitors Indo (10
uM) and NS 398 (10 uM), and the lipoxygenase inhibitors NDGA (10 uM) and CA (25 and 100 uM)
from 2, 4 and 6h after mitosis. The amount of [*H]-thymidine incorporated into the DNA was
measured at 8h after mitosis. Data are means + SD (n=3).
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incorporation was measured at 8h after mitosis. These inhibitors did not cause a significant
reduction in the [*H]-thymidine incorporation relative to control cells (fig. 4), demonstrating
that neither COX-1 nor COX-2 plays a role in G1/S phase progression. On the other hand,
a complete inhibition in [*H]-thymidine incorporation was measured at 8h when
lipoxygenase was inhibited from 2 or 4h after mitosis with 10 uM nordihydroguaiaretic acid
(NDGA), a potent inhibitor of lipoxygenases (Hope et al., 1983; Salari et al., 1984). Still an
inhibition of approximately 60% was observed upon addition of NDGA at 6h after mitosis.
These inhibitory effects of NDGA were not due to cytotoxic effects of NDGA, since the
total number of cells was similar to untreated cells (data not shown). In contrast, 25 uM
caffeic acid (CA), which predominantly inhibits 5- and 12-LO but at higher ICs, values than
the common lipoxygenase inhibitor NDGA (Koshihara ef al., 1984; Rao et al., 1993), was
not effective in inhibiting [*H]-thymidine incorporation. A significant inhibition of about 40
and 30%, respectively, was measured when 100 uM cafteic acid was added only at 2 and
4h. These results show that lipoxygenase, is involved in cell cycle progression to S phase
and that inhibition of lipoxygenase in early G1 may result in cell cycle arrest. We further
investigated whether lipoxygenase inhibition in Gl results in Gl phase arrest by
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Figure 5. Expression of cyclin A during the ongoing cell cycle. Cells were synchronised via mitotic
shake off, replated and harvested at the indicated times after mitosis as described in Materials and
Methods. Cell lysates of 1x10° cells were separated on SDS-PAGE whereafter, cyclin A was analysed
on western blot (A) and cyclin A expression was quantified (B).
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determination of cyclin A expression, since cyclin A is expressed in late G1 prior to DNA
synthesis (Schulze et al., 1995). The western blot in figure SA shows that during the ongoing
cell cycle cyclin A is a little expressed at 4h after mitosis, which represents mid/late G1 (fig.
1A), while at 6h, in early S phase, and at 8h, in S phase, a significant increase in cyclin A is
observed. These results were evaluated by quantification of the bands and presented as a
percentage of cyclin A expressed at 8h after mitosis (fig. 5B).

Incubating synchronous N2A cells from 0 or 2h after mitosis with NDGA and left
to incubate until 8h, expressed cyclin A only to a low extent, as compared to cyclin A
expression in control cells at 8h (fig. 6A). The densitrometrical evaluations of the blots show
that cyclin A expression of NDGA treated cells at 0 or 2h did not reach the expression
present at 8h after mitosis (fig. 6B), but remained at the level present at 4h after mitosis of
normal cycling cells (fig. 5B). Thus demonstrating that the cells are arrested in GI.
Similarly, treating cells from 4 or 6h after mitosis with NDGA and analysing cyclin A at 8h
did not result in a full expression as compared to control cells at 8h (fig. 6). Cyclin A
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Figure 6. Lipoxygenase inhibition results in cell cycle arrest. Synchronised N2A cells were left
untreated or were incubated with NDGA (10 uM) from 0, 2, 4 and 6h after mitosis and harvested at
8h after mitosis. Thereafter, 1x10° cells were used for electrophoresis and cyclin A was analysed on
western blot (A). Quantification of cyclin A expression of cells incubated with NDGA, as percentage
of untreated cells at 8h after mitosis.
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expression remained at the level present at 6h of untreated cycling cells, as can also be
drawn from the densitometrical evaluations (fig. 6B versus 5B). To more specifically
examine cPLA, mediated regulation of G1/S phase progression, synchronous cells were
treated with ATK at different hours after mitosis whereafter arachidonic acid (25 uM) was
added back. At 8h after mitosis [*H]-thymidine incorporation was measured but no increase
in DNA synthesis was measured as compared to ATK treated cells (data not shown). Also
no increase was measured when using higher or lower concentrations of arachidonic acid.
However, arachidonic acid can be broken down in the (-oxidation to generate energy or
reacylated into phospholipids by iPLA,. Therefore, similar experiments were performed in
which lipoxygenase was inhibited with NDGA at different hours after mitosis. One or ten
uM of 5(S)-, 12(S)-, 15(S)-HpETE or 15(S)-HETE was added back, but no increase in [*H]-
thymidine incorporation was measured as compared to NDGA treated cells. These data
demonstrate that lipoxygenase inhibition in early G1 results in G1 phase arrest which, in our
experimental set- up, cannot be overcome by the first synthesised products of lipoxygenase,
and that lipoxygenase may also be involved in S phase progression.

Effect of cPLA, and lipoxygenase inhibition on S phase progression.

Since cPLA, activity during the cell cycle is high in S phase, we examined the
possible role of ¢cPLA, during the S phase. Therefore, each hour after mitosis, the [*H]-
thymidine incorporation was measured as a control, and ATK was added at 6h after mitosis,
which is in S phase, to inhibit cPLA, activity. No inhibition in [*H]-thymidine incorporation
was observed (fig. 7 triangles), as compared to control cells (fig. 7, diamonds), showing that
cPLA, activity in S phase in not necessary for DNA synthesis.

Next, we investigated whether lipoxygenase products play a role in S phase
progression. Therefore, NDGA was added at 3 and 5.30h after mitosis, and [°*H]-thymidine
incorporation measurements were started for different time periods. As shown in figure §,
3h after mitosis is still in the G1 phase (triangles) of the cell cycle, while at 5.30 the cells
are starting to progress through S phase (squares). When inhibiting lipoxygenase at 3h, a full
inhibition in the [*H]-thymidine incorporation was observed, showing that the cells are not
able to progress into S phase any longer. These data are in agreement with the previous
results of figure 6 in that inhibition of lipoxygenase in early G1 resulted in G1 phase arrest.
Furthermore, the addition of NDGA at 5.30h resulted in a complete inhibition in DNA
synthesis that was also confirmed by cyclin A expression (fig. 6), thus demonstrating the
importance of lipoxygenase products in the progression through S phase.
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Figure 7. cPLA, activity is necessary for S phase progression. ATK (10 uM) was added to half of
the cells at 6h (triangles) after mitosis. After 30 min [*H]-thymidine (1 uCi/well) was added to both
untreated and ATK treated cells and 15 min later [°’H]-thymidine incorporation was measured at the
indicated times after mitosis as described in Materials and Methods. Data are represented as means +
SD (n=3).

—~ 140000
[
o —=— control
% 120000 - NDGA t=3h
o —&8— NDGA t=5.30h
® 100000 1
(o]
o
5 80000 -
(8]
£
2 60000 1
=]
€ 40000 -
>
<
= 20000 -
o,

0

0 2 4 6 8 10 12

time after mitosis (h)

Figure 8. Lipoxygenase is required for S phase progression. At 3 (triangles) and 5.30h (squares)
after mitosis NDGA (10 uM) was added to the cells. After 30 min [*H]-thymidine (1 uwCi/well) was
added to both untreated and NDGA treated cells and 15 min later [*H]-thymidine incorporation was
measured at the indicated times after mitosis as described in Materials and Methods. Data are
represented as means = SD (n=3).
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Discussion

Although previous studies demonstrated that PLA, inhibition reduced cell
proliferation (Adachi et al., 1996; Martinez et al., 1997; Korystov Yu et al., 1998), the
present study is the first to show that cPLA, activity at distinct periods in the cell cycle is
required for cell cycle progression. By using [*H]-thymidine incorporation as a marker for
DNA synthesis and progression from G1 to S phase, inhibition of cPLA, in early G1, using
ATK resulted in a reduced DNA synthesis. This reduction was measured only when cPLA,
was inhibited until 2-3h after mitosis. Interestingly, after 2-3h the small increase in cPLA,
activity during the G1 phase occurs (van Rossum, et al., 2001). Inhibition of cPLA, at 4h,
or at 6h, which is in G1 or S phase, respectively, did not result in a reduced DNA synthesis.
In addition, similar results were obtained with the non-specific PLA, inhibitor, 4-BPB.
Manoalide only slightly reduced DNA synthesis at 2h and BEL at 2 and 4h, the latter
reduction might be the result of phosphatidate phosphohydrolase inhibition (Balsinde &
Dennis, 1996). These data show that in N2A cells, neither iPLA, nor sPLA, play an
important role in cell cycle progression. In N2A cells the activity of cPLA, in mid/late G1
phase is important for cell cycle progression into S phase, while cPLA, activity in S phase
is not required for DNA synthesis.

Since cPLA, activity was required for G1/S phase progression we evaluated
whether this inhibition resulted in cell cycle arrest. The total cell number of synchronised
N2A cells after a 24h treatment with ATK was comparable to untreated cells and moreover,
was increased to the total number of cells present at 8h. This shows that the cells have
completed their cell cycle, and may result in an increased doubling time of the ATK treated
cells. It has been previously demonstrated that proliferation of asynchronous human
coronary artery vascular smooth muscle cells growing to confluency was inhibited by ATK,
but no phase-specific arrest of the cell cycle was observed (Anderson et al., 1997). We also
find that, although cPLA, activity is required for G1/S phase progression, the cells do
complete their cell cycle, while cPLA, activity was still inhibited after a 24h treatment of
ATK. It is, however, also possible that cPLA, function is taken over by other enzymes, like
the sPLA,s, which then become active to finally generate the arachidonic acid that is
necessary for progression through the cell cycle. Redundancy of PLA, enzymes has been
observed in P388D; macrophages in which a transient accumulation of arachidonic acid
produced by cPLA, resulted in phospholipid hydrolysis which was probably mediated by
activated sPLA, (Balsinde & Dennis, 1996).

The mechanism by which cPLA, influences cell cycle progression remains to be
determined. Cyclooxygenase inhibitors had no effect on cell cycle progression into S phase,
indicating that the cPLA,-dependent progression is not mediated by arachidonic acid
metabolites converted by cyclooxygenase. However, our findings demonstrate that
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lipoxygenase is involved in cell cycle progression. Since the lipoxygenase inhibitors, caffeic
acid and NDGA, respectively partially and completely inhibited DNA synthesis when added
in early G1, which was not due to cytotoxic effects of the inhibitors (data not shown).
Additionally, cells in which lipoxygenase was inhibited from 3h after mitosis did not result
in DNA synthesis (fig. 8). This was also confirmed by the low expression of cyclin A in cells
incubated with NDGA from 0 or 2h after mitosis as compared to control cells. These data
show an arrest in G1 phase of lipoxygenase inhibited cells. In line with this are the results
of Korystov et al. (1998) who demonstrated a suppression of cell proliferation of
lympholeukemic cells with NDGA, also by blocking the G1/S transition. However, the
mechanism by which NDGA blocks the G1/S transition is still unknown. Re-addition of
arachidonic acid or the lipoxygenase metabolites 5(S)-, 12(S)- or 15(S)-HpETE, or 15(S)-
HETE at various times and concentrations after mitosis could not overcome the inhibitory
effect of ATK or NDGA. It might be that NDGA inhibits a protein through the inhibition of
lipoxygenase, which is required for S phase entry. It has been reported that lipoxygenase
was involved in mediating arachidonic acid-induced p42/44MAPK activation (Rao et al.,
1994; Chang & Wang, 2001). However, lipoxygenase inhibition by NDGA did not affect
p42/44MAPK phosphorylation in N2A cells (data not shown), indicating that lipoxygenase
exerts its effects downstream of p42/44MAPK Since eicosanoids are synthesised on demand
at the time and location needed, it is possible that the concentrations used are still to high or
to low. The products may even not reach the location at which they act, like for arachidonic
acid that, next to its action, can be broken down to generate energy or can be re-incorporated
into phospholipids.

Lipoxygenase inhibition in early S phase also resulted in a block in DNA synthesis.
Furthermore, cells in which lipoxygenase was inhibited from 4 or 6h after mitosis were
arrested in early S phase as judged by cyclin A expression. Taken together, cPLA, activity
in G1 phase is necessary for cell cycle progression into S phase, while cPLA, activity in S
phase is not involved in DNA synthesis. Furthermore, lipoxygenase is required for both
G1/S and S phase progression.
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Chapter 6

Signal transduction pathways activating cPLA,.

The studies described in chapters 2, 3 and 4 show that cPLA, is activated through
different signal transduction pathways depending on the stimulus in the extracellular
environment. In response to EGF, cPLA, is predominantly activated through PKC-MEK-
p42/44MAPK - \while serum-induced cPLA, activity is mainly mediated via the Raf-MEK-
p42/44MAPK pathway. In contrast, direct activation of PKC by phorbol ester (PdBu) did not
result in increased cPLA, activity, while p42/44MAPK wag activated via Raf-MEK and
through MEK. Activation of cPLA, by the oxidant H,O, is partly mediated via Rat-MEK-
p42/44MAPK and partly through a phosphorylation-independent mechanism involving
peroxidised phospholipids.

These results suggest that activation of cPLA, is not only governed by post-
translational modifications but, more importantly, by localisation of the signal transduction
components at a certain time that determines whether cPLA,, at which place and what time
cPLA, will be activated. Cells appear to respond to diverse stimuli resulting in the activation
of different signal transduction pathways which might lead to different cellular processes,
such as differentiation, proliferation and apoptosis. This shows that cells are very flexible in
adapting to changes in the extracellular environment. This is illustrated by an increasing
number of evidence indicating that p42/44MAPK can be targeted to specific sites within the
cell. For example, p42/44MAPK ig able to associate with the cytoskeleton, is present at
different locations in and phases of mitotic cells, can phosphorylate several proteins in the
cytoplasm, or translocate to the nucleus to activate transcription factors (reviewed in
Schaeffer & Weber, 1999; Hulleman & Boonstra, 2001). Nerve growth factor stimulation of
PC12 cells resultes in a sustained activation of p42/44MAPK ‘leading to exit of the cell cycle
and differentiation of the cells. In contrast, EGF induces a transient p42/44MAPK activation
leading to proliferation of the cells (reviewed in Marshall, 1995).

We propose in serum- and EGF-activated Her14 cells, activation of p42/44MAPK
throughout the entire cell, since the EGF receptor is still active when internalised in
endosomes (Lai et al., 1989; Wada et al., 1992). Additionally, compartimentalisation of
phosphorylated EGF receptors with She proteins, but also active Raf and MEK in early
endosomes have been shown (Baass et al., 1995; Pol et al., 1998). The activated p42/44MAPK
then phosphorylates and activates cPLA,. In contrast, activation of PKC by PdBu probably
occurs at the plasmamembrane, because of the hydrophobic nature of PdBu. Thereupon
translocation of PKC to the membrane occurs, resulting in p42/44MAPK activation near the
plasmamembrane. However, no activation of cPLA, was observed, likely because
p42/44MAPK and ¢PLA, are not present at exactly the same place. This implies the activation
of another population of p42/44MAPK \which might indeed be the case, since PdBu activates
another set of PKC isoforms, in contrast to EGF and serum stimulation of Herl4 cells
(chapter 2). Exposing cells to H,0, can activate cPLA, within the entire cell at membranes.
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It has been shown that H,O, inhibits internalisation of receptors, like for the EGF and
growth hormone receptor (Strous et al., 1996; de Wit et al., 2001). Also the ubiquitination
of the receptors is inhibited, therefore, the receptor will not be degraded by the proteasome
pathway and thus will remain active. Because of this, signalling molecules are activated at
the plasmamembrane or any other membrane within the cell. This results in cPLA,
activation in the vicinity of the membranes, whereupon cPLA, translocates to the membrane
due to H,0,-induced peroxidation of membrane lipids. Arachidonic acid release from the
membrane is facilitated due to these peroxidised lipids thereby prolonging cPLA, activity,
which it is usually subject to product inhibition (Reynolds ef al., 1993; Bayburt & Gelb,
1997; Burke et al., 1999). Over time, cPLA, has to be dephosphorylated to inactivate the
enzyme, probably by phosphatases. Phosphatases can be inactivated through the action of
H,0, (Sullivan et al., 1994; Caselli et al., 1998), leaving cPLA, active for a longer period
of time.

cPLA, in Herl4 cells is predominantly localised as clusters near all organellar
membranes, except for the golgi apparatus (Bunt ez al., 1997). No translocation of cPLA, to
(particular) membranes was observed in EGF- as well as in A23187-stimulated cells. We
have proposed a cluster-monomer model in which these clusters represent the inactive form
of cPLA, from which active monomers can be recruited upon stimulation (Bunt et al.,
2000), that might occur via phosphorylation of cPLA, by p42/44MAPK This means that, in
principle, cPLA, can be activated at every membrane within the cell, but the presence of
p42/44MAPK 6 phosphorylate cPLA, is a prerequisite. As described above, p42/44MAPK and
other components of the signal transduction pathways differ in localisation, depending on
the stimuli and therefore, is cPLA, only activated at certain locations within the cell,
otherwise the cell will be destroyed. Thus, to acquire a good insight in the cellular functions
of cPLA,, one should actually focus on the localisation of active cPLA, monomers.

Cell cycle regulation.

The cellular localisation of signal transduction components determines whether
cPLA, will be activated. However, understanding the function of cPLA, in cells requires
also knowledge of the activation of cPLA, in a temporal manner. Therefore, the activity of
cPLA, was investigated during the ongoing cell cycle as described in chapters 4 and 5.
cPLA, activity was high in mitosis, decreasing afterwards, peaking at mid/late G1 and a
subsequent increase in activity was measured following the G1/S transition. These changes
in cPLA, activity were not due to differences in cPLA, protein expression, but due to
p42/44MAPK mediated phosphorylation of the enzyme. Inhibition of cPLA, in early G1
phase resulted in a reduced progression into S phase.
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The high activity of cPLA, in mitotic cells suggests a function for cPLA, during
M phase. At prometaphase the spindle microtubules have to interact with the chromosomes.
To accomplish this, the nuclear envelope has to be broken down that might be mediated by
cPLA,. Immunofluorescence studies showed that a small pool of total p42/44MAPK ig also
active during M phase where it is associated with tubulin and MAP-2 (Morishima-
Kawashima & Kosik, 1996). Interestingly, it was reported that cPLA, in mitotic cells
obtained by colcemid treatment was suppressed compared to interphase cells (Berlin &
Preston, 1995). This seems to be conflicting; however, colcemid disrupts microtubuli
leaving p42/44MAPK and cPLA, inactive. p42/44MAPK ig also inactive when cyclin B is
degraded, to exit from mitosis, which might result in the decrease in cPLA, activity after
mitosis.

The next period of increased cPLA, activity is during mid/late G1. In this period
p42MAPK \was shown to translocate to the nucleus (Hulleman et al., 1999), and cPLA,
activation was mediated by p42/44MAPK This suggests that cPLA, is activated at the nuclear
envelope, or is also translocated to the nucleus, since the arachidonic acid released by cPLA,
is involved in G1/S progression. Lipoxygenase inhibition in early G1 arrested N2A cells in
G1. This indicates that the arachidonic acid released in mid/late G1 is converted by
lipoxygenase into lipoxygenase products, which are actually involved in G1/S phase
progression. However, the precise mechanism remains to be dissolved.

Lipoxygenase inhibition in S phase was demonstrated to block DNA synthesis.
This process is probably not mediated through the conversion of arachidonic acid released
by cPLA,, since cPLA, inhibition in S phase did not result in a reduced DNA synthesis. In
addition, also inhibition of cPLA, at 4 or 6h after mitosis did not reduce DNA synthesis,
although this is not completely clear. cPLA, and especially lipoxygenase play an important
role in the progression of the cell cycle. This is supported by the observation that
lipoxygenase and cPLA, are overexpressed in cancer cells (Funk, 1996; Heasley et al.,
1997; lkawa et al., 1999; Shappell et al., 2001). Thus it is important to understand the
function and mechanism by which lipoxygenase and cPLA, regulate cell cycle progression
for the development and therapeutic use of anti-cancer drugs.

Phospholipase A, and reactive oxygen species in cellular injury

At present, it 1s commonly known that ROS, such as O,"™ and H,0,, are produced
in a variety of cells in response to growth factors, agonists of G-protein-coupled receptors
(GPCRs) and cytokines, and are required for the mitogenic response. For example, EGF
(Bae et al., 1997), PDGF (Sundaresan et al., 1995), thrombin (Patterson et al., 1999),
lysophosphatidic acid (Sekharam et al., 2000), Interleukin-1, Interferon-y (Krieger-Brauer
& Kather, 1995) and TNF-a (Lo & Cruz, 1995). Upon the release of H,0,, the receptor
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becomes tyrosine phosphorylated, resulting in complex formation with signalling
molecules, such as She, Grb2 and sos (Rao, 1996). Macrophages and neutrophils also
produce ROS to destroy microorganisms in the extracellular environment. An inappropriate
release of these agents into the surrounding tissues and cells can result in cellular injury.
This depends on the concentration and duration of the stress, on the cell type and on the cell
cycle phase of the cells. For instance brain function and kidney epithelial cells are highly
sensitive to ROS (Sussman & Bulkley, 1990; Schubert ef al., 1995; Sapirstein et al., 1996).
On the other hand, astroglial cells as well as Herl4 cells appear to be more resistant to
oxidants (Caf€ et al., 1995), whereas CHO cells arrest in G1 and in G2/M phase (Clopton
& Saltman, 1995).

PLA, and ROS have been implicated in various forms of cellular injury. The
increase in cPLA, activity is suggested to occur through a mechanism as discussed earlier,
in which cPLA, activity is increased due to phosphorylation of the enzyme and due to
peroxidation of membrane lipids. Because of this increase in (c)PLA, activity and the
concomitant release of arachidonic acid, it was first thought that (c)PLA, would have a
repair function by releasing peroxidised arachidonic acid. However, in many of these
studies, no discrimination was made between oxidised and unoxidised arachidonic acid. It
was shown later that cPLA, still preferentially liberates unoxidised over oxidised
arachidonic acid (Nigam & Schewe, 2000), thus indicating that cPLA, is not involved in a
repair function. Recent studies show the involvement of cPLA, in cell death (Wissing et al.,
1997; de Valck et al., 1998; Hornfelt et al., 1999). The injured cells have to be broken down,
and although the precise mechanism of action is unknown, it might involve a massive
activation of cPLA,.
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Samenvatting

Het menselijk lichaam is opgebouwd uit zeer veel cellen. Deze cellen bestaan uit
verschillende kamertjes (organellen), die in het celvocht (cytoplasma) liggen dat omgeven
wordt door een muur (de celmembraan). De organellen hebben allemaal hun eigen functie.
Zo is er de kern waarin het erfelijk materiaal (het DNA) ligt opgeslagen en de mitochondrién
zorgen voor de energieproduktie in de cel. In de lysosomen worden niet meer
functionerende organellen en grote molekulen afgebroken, terwijl de peroxisomen zorgen
voor de afbraak van verschillende vetten. Nieuwe eiwitten worden gemaakt in het
endoplasmatisch reticulum die daarna naar het golgi-apparaat gaan waar de eiwitten
gesorteerd en gelabeld worden zodat ze op de goede plek in de cel terechtkomen. Al deze
organellen zijn omgeven door een membraan dat voornamelijk opgebouwd is uit vetachtige
molekulen, fosfolipiden genaamd. Fosfolipiden bestaan uit een “ruggegraat” waaraan op de
1- (sn-1) en 2- (sn-2) plaats een vetzuurstaart vastzit en op de 3¢ plaats bevindt zich de
kopgroep.

In de cel zijn bepaalde enzymen (eiwitten die een reaktie sneller kunnen laten
verlopen) die het vetzuur van de 2-plaats van membraan fosfolipiden vrijmaken
(hydrolyseren), dat zijn de fosfolipases A,. Dit hydrolyseren is heel belangrijk wanneer het
vrije vetzuur arachidonzuur is, omdat arachidonzuur bij veel fysiologische processen en
ziektes betrokken is, zoals bij ontstekingen, neurodegeneratieve ziektes als Alzheimer en
Parkinson, het doodgaan van cellen, het doorgeven van boodschappen in een cel (signaal
transductie) en kanker. Arachidonzuur wordt preferentieel vrijgemaakt door het cytosolische
fosfolipase A, (cPLA,) dat 85 kDa groot is. De activiteit van het cPLA, moet goed
gereguleerd worden in de cel, anders ontstaan er pathologische verschijnselen. cPLA, kan
alleen arachidonzuur vrijmaken als het aan membranen gebonden is, omdat hier zich het
arachidonzuur bevindt. Hydrolysering van arachidonzuur kan alleen als het cPLA, actief is,
want in een inactieve toestand bevindt het cPLA, zich in het cytoplasma. cPLA, activiteit
wordt verhoogd wanneer een fosfaatgroep wordt geplaatst op het aminozuur serine nummer
727 en/of 505 door een signaal transductie eiwit behorende tot de MAPK familie, meestal
p42/44MAPK Daarna kan onder invloed van een verhoogde calcium concentratie in de cel
het cPLA, aan membranen binden en vervolgens arachidonzuur vrijmaken.

In hoofdstuk 1 worden de karakteristiecken van het cPLA, beschreven, wat er al
bekend is over de regulatie van cPLA, en hoe het proces van celdeling is gereguleerd.
Verder wordt er beschreven wat het belang is van cPLA,, en enzymen die het arachidonzuur
kunnen omzetten, voor ontwikkeling en groei, en in ziektes.

In hoofdstuk 2 is beschreven hoe het cPLA, wordt geactiveerd als cellen van
buitenaf worden gestimuleerd met verschillende signalen (prikkels), bijvoorbeeld
groeifactoren. Deze signalen gaan op een voor hen specifieke antenne (receptor) zitten die
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zich in de membraan bevindt. Daarna wordt dit signaal in de cel doorgegeven via allerlei
signaal transductie eiwitten totdat het uiteindelijke doeleiwit geactiveerd is. Cellen die we
eerst in een rusttoestand gebracht hadden, werden vervolgens met verschillende
groeifactoren gestimuleerd. Ook is gekeken naar de regulatie van cPLA, in rustende of
constant groeiende cellen. Met behulp van remmers voor verschillende signaal transductie
eiwitten werd gevonden dat het cPLA, via verschillende routes kan worden geactiveerd,
zoals zo vele wegen naar Rome leiden. Zo blijkt cPLA, in rustende cellen geactiveerd via
de Raf-MEK-p42/44MAPK gignaal transductie route, terwijl deze route in groeiende cellen
ook actief i1s maar dit niet leidt tot cPLA, activering. In rustende cellen die gestimuleerd
werden met serum werd voornamelijk de Raf-MEK-p42/44MAPK route actief en voor een
klein gedeelte de PKC-MEK-p42/44MAPK route. Beide routes resulteerde in verhoogde
cPLA, activiteit. Als de cellen met epidermale groeifactor gestimuleerd worden, wordt
cPLA, hoofdzakelijk via de PKC-MEK-p42/44MAPK route geactiveerd en voor een heel
klein gedeelte via de Raf-MEK-p42/44MAPK route. Echter directe activatie van PKC door
cellen phorbol ester te geven, leidt wel tot p42/44MAPK activatie zowel via de PKC-MEK als
de PKC-Raf-MEK route, alleen leidt dit niet tot cPLA, activering.

In hoofdstuk 3 is gekeken of cPLA,, en hoe cPLA, geactiveerd wordt wanneer
rustende cellen blootgesteld worden aan oxidatieve stress door waterstofperoxide (H,0,)
aan de cellen te geven. We spreken van oxidatieve stress als cellen worden blootgesteld aan
een verhoogde concentratie zuurstofradicalen. Zuurstofradicalen zijn tussenprodukten die
worden gevormd bij de omzetting van zuurstof naar water welke erg reaktief zijn. Deze
zuurstofradicalen kunnen reageren met (en daarmee schade aanrichten aan) DNA, lipiden en
eiwitten. Cellen hebben hiertegen afweermechanismen. Als deze mechanismen niet goed
werken, of er is een overproductie van zuurstofradicalen ontstaan dan leidt dit tot oxidatieve
stress. Oxidatieve stress speelt een rol bij zowel cellulaire processen als celdeling, celdood
en celschade alswel bij arteriosclerose en neurodegeneratieve ziektes. Onder normale
omstandigheden zijn kleine hoeveelheid zuursofradicalen nodig voor een goed verloop van
signaal transductie routes. Wij vonden dat cPLA, snel geactiveerd kan worden door H,O,
op een concentratie en tijdsathanklijke manier. H,O, stimulatie van rustende cellen
resulteerde in een gedeeltelijke activering van het cPLA, door fosforylatie via de Raf-MEK-
p42/44MAPK gionaal transductie route. Verder werd cPLA, ook gedeeltelijk geactiveerd via
een fosforylatie-onafhankelijke mechanisme. Dus, in H,0, geactiveerde cellen gebeurt
cPLA, activering op een andere manier dan in groeifactor gestimuleerde cellen. Zoals eerder
gezegd is voor cPLA, activiteit ook calcium nodig om cPLA, aan de membraan te laten
binden, maar in dit geval was cPLA, nog steeds actief in de membraan fractie te vinden, ook
als het calcium weggevangen was. Uit de literatuur is bekend dat, in cellen,
zuurstofradicalen lipiden kunnen beschadigen door deze te peroxideren (reactief zuurstof in
de lipiden in te bouwen). Hierdoor treden er veranderingen op in de membranen van de cel,
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waardoor het cPLA, beter bij zijn substraat arachidonzuur kan en dus meer arachidonzuur
kan vrijmaken uit het membraan. Door deze membraanveranderingen is er minder calcium
nodig om cPLA, naar de membraan te brengen en is deze binding misschien ook steviger.
Dit alles leidt ertoe dat het cPLA, naast de activering door fosforylatie extra actief wordt
door H,0,-geinduceerde veranderingen in de membranen. Uit de resultaten van de
hoofdstukken 2 en 3 volgt dat de route die na een bepaalde stimulatie actief is athangt van
de plaats van verschillende signaal transductie eiwitten op een bepaald tijdstip in de cel, wat
al dan niet leidt tot cPLA, activering. Cellen kunnen zich op deze manier sneller aanpassen
aan veranderingen in hun omgeving.

Tot nu toe is de activering van het cPLA, op é¢én tijdstip bekeken. Om de functie
van het cPLA, beter te begrijpen moet ook naar de activering van het cPLA, in de loop van
de tijd bekend zijn. Dit is gedaan door de activiteit te meten gedurende de celcyclus.
Celcyclus is het proces dat leidt tot celdeling welke bestaat uit 4 fasen: de mitose waarin het
verdubbelde DNA verdeeld wordt over de twee nieuw ontstane cellen, de G1 fase, de S fase
waarin het DNA verdubbeld (gerepliceerd) wordt en de G2 fase. De voortgang (progressie)
van de celcyclus wordt goed gereguleerd. In elke fase checkt de cel of alle factoren optimaal
zijn alvorens de overgang naar de volgende fase te maken. Hierbij zijn bepaalde eiwitten van
belang, de cyclines. Elke fase heeft zo zijn eigen specifieke cyclines die weer met een ander
eiwit, de cycline-afhankelijke kinase (Cdk) een actief complex kunnen vormen. Een
cycline/Cdk complex komt via actieve signaal tranductie routes tot stand, maar kan zelf het
signaal ook weer doorgeven. Als ergens in de route iets ontregeld is, stopt de cel, en
optimaliseert eerst alle factoren alvorens verder te gaan. Wanneer die factoren binnen een
bepaalde tijd niet geoptimaliseerd kunnen worden kan de cel besluiten “zelfmoord”
(apoptose) te plegen. De cel kan ook dusdanig ontregeld zijn dat het ongeremd kan delen
wat kan leiden tot tumorvorming.

In hoofdstuk 4 is beschreven dat cPLA, activiteit verandert gedurende de celcyclus.
De activiteit van het cPLA, 1s hoog in mitotische cellen en neemt daarna snel af in de vroege
G1 om weer toe te nemen in het midden-late G1. Na de G1/S overgang neemt de activiteit
van het cPLA, weer sterk toe. De verandering in de activiteit van het cPLA, werd niet
veroorzaakt door het aantal molekulen cPLA, (cPLA, eiwit expressie), maar doordat het
cPLA, in deze actieve perioden gefosforyleerd was door p42/44MAPK,

Vervolgens hebben we in hoofdstuk 5 onderzocht wat de functie van deze
verhoogde cPLA, activiteits pieken betekenen voor de progressie van de celcylcus.
Celcyclus progressie werd bepaald door de hoeveelheid radioactief gelabeld thymidine te
meten dat ingebouwd wordt in het DNA ([*H]-thymidine incorporatie of DNA synthese). Dit
gebeurt alleen als cellen zich in de S fase bevinden en zo kun je meten of cellen van de G1
naar de S fase gaan. Als de activiteit van cPLA, vroeg in de G1 fase geremd wordt door ATK
(een gemodificeerd arachidonzuur molekuul) blijkt de DNA synthese met ongeveer 50%
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verminderd te zijn. Dit effect is niet toe te schrijven aan andere leden van de fosfolipase A,
familie. Het vrijgekomen arachidonzuur kan ook omgezet worden door cyclooxygenases tot
onder andere prostaglandines en thromboxanen, of door lipoxygenases tot onder andere
leukotriénen en HETEs. Remming van cyclooxygenases op verschillende tijdstippen in de
G1 resulteerde niet in een remming in DNA synthese. Daarentegen leidde remming van
lipoxygenases wel tot verminderde thymidine incorporatie. Wanneer lipoxygenase vroeg in
de G1 werd geremd stopte de cellen later in de G1 fase. Dus, zowel cPLA, als lipoxygenase
zijn betrokken bij celcyclus progressie van de G1 naar de S fase. cPLA, activiteit is ook
verhoogd in de S fase en dus werd onderzocht of cPLA, ook een rol speelt bij S fase
progressie. Dit bleek niet het geval te zijn, omdat er geen verminderde DNA synthese werd
gemeten wanneer cPLA, was geremd in cellen die zich in de S fase bevonden. Vervolgens
werden lipoxygenases geremd in cellen die zich vroeg in de S fase bevonden, maar er vond
geen DNA synthese meer plaats. Dit wil zeggen dat de activiteit van cPLA, in de S fase niet
belangrijk is voor S fase progressie. Het kan wel een andere functie hebben in de S fase of
zelfs later in de celcyclus, maar dat moet nog verder onderzocht worden. Verder blijkt dat
lipoxygenases heel belangrijk zijn voor S fase progressie.

Tenslotte wordt in hoofdstuk 6 de resultaten van de verschillende hoofdstukken
bediscussieerd. Wat is nu de fysiologische relevantie van al deze resultaten. Het is belangrijk
te weten wat de functie van cPLA, is. We weten dat cPLA, overal in de cel aanwezig is en
dus overal geactiveerd kan worden. Om de functie te weten te komen moet er onderzocht
worden hoe cPLA, gereguleerd wordt en vooral waar het zich in actieve vorm in de cel
bevindt. Verder moet er ook bekend zijn hoe cPLA, in de tijd wordt geactiveerd. Pas dan
kan er op deze signaal transductie routes ingegrepen worden en kunnen nieuwe specifieke
remmers gemaakt worden met een therapeutisch doel.

143






Nawoord

Ja, en dan nu het nawoord. Nou mensen, het wordt eindelijk weer rustig op de 5¢
verdieping, en omstreken, en daaruit blijkt dat ik een fijne tijd heb gehad bij de MCB.
Daarvoor wil ik alle (ex)collega’s en (ex)studenten bedanken voor de prettige werksfeer,
maar een aantal mensen wil ik toch extra bedanken.

Als eerst onze nieuwe Prof. Johannes van wie ik nu de eerste promovendus ben.
Leuk he? Johannes, als co-promoter, dank ik je voor je altijd positieve input bij onder andere
de interpretatie van resultaten en bij het schrijven van mijn proefschrift. Ook stond je deur
altijd open voor een zinnig of onzinnig praatje wat ik zeer waardeerde.
Arie, bedankt voor jouw oplettend oog voor het grotere geheel. (Als ik zie wat ik zie) De
discussies met jou over lipiden waren voor mij (als biochemicus) zeer waardevol. Weet je
inmiddels al welke betekenissen muts allemaal kan hebben?
Verder Henk, bedankt dat je aan me dacht toen deze OIO plek vrijkwam en voor de heldere
samenvattingen van de soms intensieve PLA, besprekingen. Hopelijk hoef ik niet op rijm je
vragen te beantwoorden, want aan jouw rijmkwaliteiten kan ik niet tippen.
Gertrude, bedankt voor het meedenken en de discussies.
Zonder mijn studenten, Angela, Rinse, Michael en Pieter had ik nooit al dit werk kunnen
doen. Bedankt voor jullie interesse en inzet.
Mijn lab- en kamergenoten Esther, José en Susanna die wellicht wel even hebben moeten
wennen aan al mijn uitspattingen. Fijn dat ik altijd bij jullie terecht kon om te praten over
werk, wanneer ik mijn “ei” kwijt moest of zomaar voor de gezelligheid. In dit kader denk
ik ook aan de gezellige gesprekken met Yvonne, Hans en Fons.
Bruno en Margo wil ik bedanken voor het immunofluorescentie werk, alleen jammer dat er
niet meer inzat dan alleen testen.
Ton, Fred en Jan, bedankt voor de gezelligheid op oost 6 waardoor ik weer op de hoogte was
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