View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Utrecht University Repository

Diversity in the Immune System


https://core.ac.uk/display/39699614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cover:
Barbara Bovenschen (design), Beeldverwerking & Vormgeving, UU
and Jos'Borghans (linocut)

Printed and bound by:
Optima Grafische Communicatie, Rotterdam

ISBN: 90-393-2407-7



Diversity in the Immune System

Diversiteit in het Immuunsysteem
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de Rector Magnificus, Prof.dr. H.O. Voorma,
ingevolge het besluit van het College voor Promoties
in het openbaar te verdedigen op
maandag 5 juni 2000, des middags te 4.15 uur

door
Josephina Anna Maria Borghans

geboren op 1 januari 1972
te Geleen



Promotor.
Prof.dr. P. Hogeweg
Faculteit Biologie
Universiteit Utrecht

Co-promotor
Dr. R.J. de Boer
Faculteit Biologie
Universiteit Utrecht



Contents

1 General introduction 1
2 How specific should immunological memory be? 11

3 Adaptive immunity as a specific storage system ofimmunological decisions 25

4 What limits the individual MHC diversity? 39
5 MHC polymorphism: a result of host—pathogen coevolution 51
6 Extending the quasi-steady state approximation by changing variables 65

7 Competition for antigenic sites during T cell proliferation: a mathematical 85
interpretation of in vitro data

8 Summarizing discussion 103
Bibliography 109
Abbreviations 127
Samenvatting 129
Curriculum Vitae 131
Publications 133

Acknowledgements 135






1

General introduction



Chapter 1

Diversity in the immune system

Diversity is a hallmark of the vertebrate immune system. Lymphocyte repertoires with
millions of different specificities [10] function in concert with a large diversity of cy-
tokines, chemokines, and different types of antigen-presenting cells (APCs) to protect
vertebrates against infections. Different pathogens are handled by qualitatively differ-
ent immune responses, varying from cellular to humoral responses, and vargmgg in
immunoglobulinisotype and cytokine expression [106]. At the same time, unwanted im-
mune responses against self peptides and innocuous antigens are typically avoided. Due
to the polymorphism of major histocompatibility (MHC) molecules, involved in anti-

gen presentation to the vertebrate immune system, different individuals in a population
typically respond differently to identical antigens.

The invertebrate immune system is far more primitive than the vertebrate immune sys-
tem and lacks a diverse lymphocyte repertoire. Nevertheless invertebrates do respond
effectively to pathogens and make a self-nonself discrimination [69]. Many compo-
nents of these primitive immune systems have been preserved, and continue to play a
crucial role in the vertebrate immune system. Although the focus of this thesis is on
diversity in the vertebrate immune system, it is useful to start with a brief description of
invertebrate immune systems.

Invertebrate immunity

Immune responses have been observed in invertebrates even as primitive as sponges
[94]. Colonial invertebrates preventinvasion by members of their own species by distin-
guishing self from nonself and eliminating nonself components [69]. Allorecognition in
invertebrates is typically mediated by histocompatibility molecules [42]. These highly
polymorphic determinants expressed on the surfaces of cells allow organisms to main-
tain their genetic integrity [61].

The effector mechanisms involved in graft rejection in sponges are relatively simple
and mainly rely on barrier formation and cytotoxicity [69, 201]. Antiparasite responses
in higher invertebrates have been shown to be mediated by more sophisticated effector
mechanisms. For example lectins, agglutinins and lysozymes play an important role
in the elimination of pathogenic microbega opsonization and lysis [69, 123, 128,
200]. Another example is the Toll protein, inducing antifungal and antibacterial peptides
upon infection ofDrosophila[120]. Additionally, phagocyte-mediated and killer cell-
mediated defence responses have been observed in almost all invertebrates [18, 173].

A key characteristic of invertebrate effector mechanisms is their broad reactivity against
groups of pathogens by recognition of conserved pathogen structures [104, 123, 142].
In order to avoid self destruction, those structures need to be distinct from the molec-
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General introduction

ular structures occurring in self molecules. Examples of conserved pathogen-specific
structures recognized by the invertebrate immune system are lipopolysaccharides and
peptideoglycans, both commonly expressed by bacteria [123]. Despite the broad reac-
tivity of invertebrate immune responses, transplantation experiments have revealed that
a kind of immunological memory occurs. Sea urchins transplanted twice with the same
allograft showed a higher and faster second response as compared to the first transplan-
tation response. This memory appeared to be nonspecific, as third-party allografts were
shown to be cleared with a similarly increased efficiency [200]. Invertebrate memory
typically lasts of the order of weeks or months, which is rather short as compared to the,
sometimes life-long, immunological memory in vertebrates [94, 200].

There is increasing evidence that the vertebrate innate immune system is a homologue
of the invertebrate immune system [104, 105, 133, 141-144]. One of the most striking
examples of invertebrate immune components that have been preserved by the vertebrate
innate immune system is the human homologue of@hesophilaToll protein, which
induces activation of human naive T lymphocytes [144] upon recognition of certain
microbial products [220].

The transition from invertebrates to vertebrates

The phylogenetic transition from the invertebrate to the vertebrate immune system is
marked by the appearance of adaptive immunity [69, 129]. Large repertoires of T and
B lymphocytes with unique receptors on their surfaces form a second line of defence
against infections, on top of the more conserved innate line of defence. The diversity of
the adaptive immune system exceeds the total number of genes in any individual by or-
ders of magnitude. Lymphocyte diversity is brought about by a series of somatic diversi-
fication mechanisms. Genes coding for the V, D, and J segments of lymphocyte receptors
are somatically rearranged [4, 95, 229], and imprecise joining of the gene segments, ad-
dition of nucleotides, and somatic hypermutation subsequently increase the diversity of
lymphocytes [106]. V(D)J recombination is mediated by the recombination-activating
genes RAG1 and RAG2, which are thought to have once been part of a transposable ele-
ment that became inserted into a receptor gene soon after the divergence of jawless and
jawed vertebrates [4, 95]. From then on all vertebrates obtained the capacity to produce
diverse antibody repertoires [127]. In contrast, there is no evidence whatsoever for the
presence of rearranging immunoglobulins in invertebrate species [128].

Compared to the invertebrate immune system, the adaptive immune system functions in
a fundamentally different way. Since lymphocyte repertoires are at least partially ran-
domly generated, the adaptive immune system isanptiori specialized to recognize
pathogen-associated molecular patterns. Instead it can respond to a virtually infinite va-
riety of antigens as they are presented to the immune system. The random generation
of lymphocyte receptors implies the need for self tolerance processes, because the dis-
tinction between self and nonself can no longer be germline selected [57]. Lymphocytes
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could turn aggressive against self molecules of the host, a hazard tétonedt Auto-
toxicusby Ehrlich at the beginning of the twentieth century [71]. In the 1950’s Burnet
came up with a solution to this problem of autoreactivity — a milestone in immunolog-
ical thinking. He proposed in hisheory of Clonal Selectiof#1] that all lymphocytes

are somatically tested for responsiveness to self molecules. Clones with self-reactive
receptors are clonally deleted. All other lymphocytes remain quiescent until they are
triggered by a specific antigen, allowing them to proliferate and to attain a higher pre-
cursor frequency. In fact, clonal selection is a “Darwinian corollary” [42, 58] because
lymphocytes are subject to the same laws of mutation and selection as the individuals of
a species.

Interactions between innate and adaptive immunity

The current consensus is that the innate and the adaptive part of the vertebrate immune
system function in close co-operation [106]. When a naive vertebrate is infected by
a pathogen, the immediate response is a nonclonal, innate response. Meanwhile an
adaptive response may be induced. Importantly, the innate immune system has a pivotal
role in the activation of the adaptive immune system. Merely the recognition of an
antigen by a lymphocyte is not sufficient to initiate an immune response, and has been
shown to cause T cells to switch to a suppressed state known as T cell anergy [107]. To
overcome this activation problem, it is common practice in immunological experiments
to induce adaptive responses by coinjection of complete Freund’s adjuvant. This is
a mixture of killed mycobacteria in oil, which was aptly described by Janeway [104]
as “the immunologist’s dirty little secret.” Adjuvants are thought to trigger the innate
immune system, which subsequently provides costimulatory signals required to activate
the adaptive immune system [74, 122]. The need for such “secondary signals” for the
activation of lymphocytes was originally proposed by Bretscher & Cohn [38].

There is increasing evidence that the innate immune system imposes its evolution-
ary knowledge on the lymphocyte system, instructing it to mount an appropriate type
of response [74, 75, 85, 104, 140-142, 144]. Depending on the context of an anti-
gen,e.q. its localization [234], the presence of conserved pathogen-specific structures
[104, 140, 141, 149], and any tissue damage [135], the immune system decides whether
to respond or not, and if so which type of response to mount. Janeway [105] suggested
that the innate signals allow the vertebrate immune system to distinguish between in-
fectious nonself and noninfectious self molecules. An illustrative example of the im-
portance of the context of antigens in the induction of adaptive responses was given by
Ohashiet al.[159] and Oldstonet al.[160]. When viral proteins were converted into

self antigens by inserting their genes into the germline of mice, they failed to provoke
autoimmunity. The adaptive immune system was not tolerized by the viral antigens, but
refrained from responding because the antigens were presented in a non-inflammatory
context. Only when the mice were subsequently infected with the live virus [159, 160],
did the lymphocytes attack the viral proteins and induce autoimmunity.
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Finally, the effector phase of adaptive responses bears similarities with invertebrate im-
mune responses. Specific binding between antibody and antigen, for example, triggers
the complement cascade and attracts phagocytic cells and killer cells. Similarly, specific
antigen recognition of T cells can lead to the release of nonspecific cytotoxic molecules.
Specificity in adaptive immunity thus results from an antigen-specific release of nonspe-
cific effector mechanisms [106].

Why adaptive immunity?

Thanks to the close co-operation between innate and adaptive immunity, the vertebrate
immune system combines the evolutionary wisdom of the innate immune system with
the large diversity of the adaptive system. The need for innate signals in the induction
of adaptive responses, however, would allow pathogens to evade the adaptive immune
response by evading the innate response. The seeming flexibility rendered by the random
generation of lymphocytes is thus hampered by their requirement for innate signals [105,
142].

One burning question therefore remains: if the adaptive immune system hinges upon the
innate immune system, and if invertebrates can perfectly do without it, then why did the
adaptive immune system evolve at all? A common argument is that adaptive immunity
enables vertebrates to remember immunological responses and thereby to respond more
promptly upon reinfection thanks to increased precursor frequencies of antigen-specific
lymphocytes (reviewed in [179]). As mentioned above, however, memory responses
also occur in invertebrates. Indeed, there is no intrinsic reason why increased reactivity
upon reinfection requires highly diverse lymphocyte repertoires.

Cohn [55] proposed that the need for an adaptive immune system arose when long-lived
vertebrate organisms started to explore different ecological niches, and hence came into
contact with a wide variety of parasites. Commonly used arguments for the absence
of adaptive immunity in invertebrates are (i) that invertebrates are morphologically less
complex than vertebrates, (ii) that invertebrates are typically smaller and thus have fewer
cells than vertebrates, and (iii) that invertebrates-aselected, while vertebrates dke
selected (reviewed in [179]). There are many counter-examples, however, of long-lived
invertebrates such as corals, which may live up to hundreds of years, and invertebrates
that are larger than particular vertebratesy. octopi are larger than mice [179]. A satis-
factory explanation for the lack of adaptive immunity in invertebrates, and its evolution

in vertebrates thus remains elusive.

In this thesis we study what the adaptive immune system essentially adds to the innate
immune system. We hypothesise that adaptive immunity stores immunological decisions
in specific lymphocytes. Lymphocytes that have been instructed whether to respond, and
if so which type of immune response to mount, recall this instruction whenever they rec-
ognize their specific epitope. This is a form of “acquired pattern recognition,” allowing
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antigens to be promptly classified and dealt with. Being fairly independent of costimu-
latory signals [59, 77], instructed lymphocytes help to respond appropriately to antigens
that re-appear in a context that differs from their original contexg, pathogens that

hide in other tissues, or latent pathogens that temporarily do not cause any tissue damage.
In addition, instructed lymphocytes help to respond appropriately and promptly against
antigens that mutate during the life-span of a vertebrate, and against whole classes of
correlated antigens of which the immune system has encountered only a few members.
Storage of appropriate responses thus provides a selection pressure for the evolution of
adaptive immunity in vertebrates.

Polymorphism of MHC molecules

In addition to the diversity of lymphocytes there is another source of diversity in the
vertebrate immune system, which is due to variability in antigen presentation. Fora T
cell response to be induced, the proteins of a pathogen need to be degraded into pep-
tides which are subsequently bound by MHC molecules and presented on the surface of
APCs [235]. The resulting MHC—peptide complexes are recognized by T cell receptors.
MHC molecules come in two classes: MHC class | molecules present peptides to CD8
cytotoxic T cells, whereas class 1| MHC molecules interact with €O4helper cells.

It has been estimated that more than half of the binding energy of T cell receptors to
MHC—peptide complexes is directed at the MHC helices, while the remaining energy is
directed at the presented peptide [125]. The most variable regions of the T cell receptor,
i.e. the CDR3 regions, have most contact with the peptide while the more conserved
CDR1 and CDR2 regions mainly interact with the MHC [88].

Just like invertebrate histocompatibility molecules, MHC molecules in vertebrates are
highly polymorphic. Some MHC loci have been shown to express more than one hun-
dred different alleles [166, 223]. Due to this high MHC population diversity, immune
responses of different individuals against identical antigens are typically directed against
different subsets of the antigen peptides. The polymorphism of MHC molecules be-
comes apparent when vertebrate tissues are transplanted from one individual to another.
Typically those transplantations evoke strong immune responses, eventually leading to
rejection of the tissue graft.

Although both MHC molecules and T lymphocytes are known for their extreme degrees
of diversity, the underlying mechanisms are fundamentally different. Whereas lym-
phocytes owe their diversity to special somatic diversification processes [106], MHC
molecules have mutation rates similar to those of most other genes [164, 184]. An ex-
planation for the high degree of MHC polymorphism can not be sought in vertebrate
allograft rejections, as these are experimental artefacts and thus not naturally involved
in evolutionary selection [61]. One possibility is that the vertebrate MHC polymorphism
is a “relict” of the invertebrate histocompatibility polymorphism [43]. Alternatively, the
selection pressure for MHC diversity may be due to peptide presentation to the immune
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system. The two most commonly held views are that MHC polymorphism is due to
selection favouring MHC heterozygosity [68, 99—101, 212] or due to selection for hosts
with rare MHC molecules [19, 27, 195, 202].

Regarding the role of MHC molecules in pathogen presentation to the immune system,
the number of MHC genes expressed per individual is surprisingly small. Each human
individual expresses maximally six different classical MHC class | genes, and twelve
different MHC class Il molecules [167]. One would expect evolution to favour the ex-
pression of many MHC genes per individual. A solution to this paradox has been sought
in self-nonself discrimination. A widely accepted argument is that excessive expression
of MHC molecules leads to depletion of the T cell repertoire during self tolerance in-
duction [54, 62, 157, 164, 211, 222]. In this thesis we dispute this argument and show
that a different facet of self-nonself discrimination may be involved: the avoidance of
inappropriate immune responses against self antigens that fail to induce tolerance limits
an individual's MHC diversity.

Maintenance of lymphocyte diversity

The peripheral lymphocyte repertoire is under homeostatic control. Degpiteovo
production of lymphocytes in the bone marrow and the thymus, and proliferation of
peripheral lymphocytes upon antigenic stimulation, the total number of peripheral lym-
phocytes remains at a steady state. The mechanisms behind immune homeostasis are not
fully understood, but there is increasing evidence that competition between lymphocytes
plays an important role [80, 82]. It has been argued, however, that whenever different
clones compete for the same ligand, the clone with the highest affinity for the ligand is
expected to outcompete all other clones [63]. In ecology this is known aBrihei-

ple of Competitive Exclusiof86]. Competition between lymphocytes thus jeopardizes
the maintenance of a diverse lymphocyte repertoire [88]. Indeed it has been shown that
if the self-renewing T cell repertoire is maintained by stimulation with MHC—peptide
complexes, the repertoire of stimulating peptides needs to be as diverse as the T cell
repertoire itself [65].

Competition between different clones can also occur during the immune response to an
antigen. T cells recognizing the same epitope from an antigen appeared to compete for
limited antigenic stimulation [45]. This competition was shown to be epitope specific,
because these T cells did not interfere with T cells specific for other epitopes of the same
antigen [45]. The authors propose that upon antigenic stimulation, T cells compete for
space on the APCs and for specific antigen-presenting sites. In this thesis we derive
different T cell proliferation functions including T cell competition, and apply them to
study the nature of T cell competition during immune responses. Our analysis confirms
that T cells compete for antigenic sites on APCs. If APCs were to present epitopes of
a single specificity only, T cell competition would cause the immune response to be-
come monoclonal. We therefore propose that it is the variety of epitopes presented by
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different MHC molecules on the surfaces of APCs, that causes immune responses to be
multiclonal (.e. typically oligoclonal). If the adaptive immune system stores appro-
priate responses in lymphocyte clones, it is of vital importance that immune responses
are directed at multiple epitopes. It allows the immune system to recognize similarity
between antigens in terms of overlapping sets of epitopes, and hence to use previous
memory clones for the induction of the appropriate types of immune response against
correlated antigens.

This thesis

In this thesis a variety of mathematical and computer simulation models are applied
to study diversity in the vertebrate immune system. Part one of this thesis addresses
the evolutionary selection pressures underlying the diversity of lymphocytes and MHC
molecules. Part two deals with the maintenance of lymphocyte diversity during immune
responses.

In Chapters 2 and 3the evolution of lymphocyte diversity is studied. Previous math-
ematical models have suggested that the diversity of the adaptive immune system di-
rectly reflects the number of self antigens for which the immune system is tolerant
[62, 152, 228]. Chapter 2 shows that storage of appropriate effector mechanisms requires
a more specific lymphocyte system than was concluded from these previous models.
Lymphocytes need to be specific to avoid autoimmune responses against self antigens
that fail to induce tolerance, and to avoid inappropriate, cross-reactive responses against
foreign antigens. Repertoire diversity allows the immune system to reconcile specificity
with reactivity, which is needed to react to many different antigens [30, 34]. Chap-
ter 3 gives a simulation model of an adaptive immune system that somatically learns to
mount the appropriate type of immune response against different antigens. The model
shows how memory lymphocytes may contribute in subsequent immune responses by
providing signals about the context of novel antigens. The benefits of such a somatically
learning immune system outweigh the accompanying risks if (i) the immune repertoire
is sufficiently specific and (ii) there is some correlation between the antigens that are
encountered [31].

Chapters 4 and 5address the diversity of MHC molecules. In Chapter 4 several mecha-
nisms are investigated to explain why the number of different MHC molecules expressed
per individual is much lower than the MHC diversity at the population level. Using a
probabilistic model, we demonstrate that it is unlikely that this results from repertoire
depletion by negative selection in the thymas (62, 106, 157, 164, 211, 222]). Instead

two alternative explanations are proposed. First, it is shown that thanks to the degener-
acy of MHC—peptide binding, increasing an individual’s MHC diversity beyond 10-20
molecules hardly increases the likelihood that antigens are presented. Second, we show
that the avoidance of inappropriate immune responses, such as autoimmune responses
to ignored self antigens, yields a selection pressure decreasing an individiual's MHC
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diversity. Chapter 5 demonstrates that despite this limited individual MHC diversity,
host—pathogen coevolution can account for a very lamgeulationdiversity of MHC
molecules. Modelling the evolution of hosts and pathogens by computer simulation,
we show that a high MHC diversity is to be expected in host populations adapting to
pathogens with short generation times [21].

In Chapters 6 and 7we study competition between lymphocytes during immune re-
sponses. In Chapter 6 we derive a proliferation function involving competition for a
limited resource, which is applied to T cell proliferation. The function that we derive
is an extension of the standard Michaelis—Menten approximation for enzyme—substrate
reactions, which is frequently applied in theoretical models of the immune system. We
show that our new proliferation function is valid in a wider parameter range than the con-
ventional Michaelis—Menten approximation. In Chapter 7 our new proliferation function
is applied to an experimental study of the role of T cell competition during immune re-
sponses. We use amvitro proliferation assay in which both the concentration of T cells
and the antigen availability are varied. By fitting different mathematical T cell prolifer-
ation functions to then vitro data, we find — in line with previous experimental data
[45] — that upon stimulation with antigen, T cells compete for antigenic sites on APCs.

Chapter 8 provides an overall discussion on the evolution and maintenance of diversity
in the immune system.
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Chapter 2

Abstract

Protection against infection hinges on a close interplay between the innate immune sys-
tem and the adaptive immune system. Depending on the type and context of a pathogen,
the innate system instructs the adaptive immune system to induce an appropriate immune
response. Here, we hypothesise that the adaptive immune system stores these instruc-
tions by changing from a naive to an appropriate memory phenotype. In a secondary
immune reaction, memory lymphocytes adhere to their instructed phenotype. Because
cross-reactions with unrelated antigens can be detrimental, such a qualitative form of
memory requires a sufficient degree of specificity of the adaptive immune system. For
example, lymphocytes instructed to clear a particular pathogen may cause autoimmu-
nity when cross-reacting with ignored self molecules. Alternatively, memory cells may
induce an immune response of the wrong mode when cross-reacting with subsequent
pathogens. To maximize the likelihood of responding to a wide variety of pathogens,

it is also required that the immune system be sufficiently cross-reactive. By means of
a probabilistic model, we show that these conflicting requirements are met optimally
by a highly specific memory lymphocyte repertoire. This explains why the lympho-
cyte system that was built on a preserved functional innate immune system has such a
high degree of specificity. Our analysis suggests that (i) memory lymphocytes should be
more specific than naive lymphocytes, and (ii) species with small lymphocyte repertoires
should be more vulnerable to both infection and autoimmune diseases.

Introduction

There is increasing evidence that the vertebrate innate immune system is a homologue
of the invertebrate nonclonal immune system and that its evolution preceded the de-
velopment of the adaptive immune system [104, 105, 133, 141-144]. Interestingly, the
innate immune system was preserved when the adaptive immune system evolved. Innate
immunity forms an essential part of the vertebrate immune system by providing signals
for the activation of the adaptive immune system [75, 140-142, 144]. A hallmark of
immune responses is the “second signal” [38] delivered to the adaptive immune system
by innate antigen-presenting cells (APCs) that express the membrane proteins B7.1 and
B7.2. In the absence of such costimulatory signals from the innate system, T cells fail to
become fully activated and instead become anergic [107]. The adaptive immune system
is thus dependent on evolutionarily conserved signals. We adopt the view that the innate
system imposes its evolutionary knowledge on the lymphocyte system instructing it to
mount theappropriateesponse [75, 104, 140, 141].

This dependence raises an evolutionary problem. It is often argued that the adaptive
immune system evolved to cope with rapidly coevolving pathogens. The clonal dis-
tribution of randomly rearranged lymphocyte receptors renders a high flexibility, en-
abling the adaptive immune system to adapt more quickly to coevolving pathogens than
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the innate immune system can. However, if an adaptive immune response depends
strictly on the innate immune system, then pathogenic evasion of an innate response
implies evasion of an adaptive immune response (see also [105] and [142]). Viruses
have indeed been shown to interfere with the innate immune system by producing
proteins,e.g. soluble cytokine receptors or proteins that regulate antigen presentation
[17, 137, 196, 198, 199, 205], that put the immune system on the wrong track. Rapidly
coevolving pathogens thus cannot explain why the adaptive immune system has evolved
its diversity. Here, we hypothesise that the specificity of the adaptive immune system
is used to specifically store the instructions given by the innate immune system. Us-
ing a probabilistic model, we demonstrate that this task is best performed if memory
lymphocytes are highly specific.

Building a “world view”

We adopt the view that the innate immune system provides signals about the context of
antigenic epitopes [23, 52, 53, 75, 104, 140-142, 149, 182]. Depending on (i) the organ
where the epitope is detected [234], (ii) the presence of conserved pathogen-associated
molecular patterns [104, 140], and perhaps (iii) tissue damage [135], the innate system
signals whether the antigen should be attacked and if so, by which immune effector
mechanisms. We conjecture that the evolutionary information provided by the innate
system is stored in specific lymphocytes by their switch from their naive phenotype to a
particular responsive mode or to a nonresponsive mode. Lymphocytes can thus use their
specificity to build up a “world view,” to learn which epitopes are dangerous, which are
harmless, and which immune response is most appropriate [191]. They should switch to
a tolerant modee.g.to anergy, whenever the innate system provides a harmless context,
so that lymphocytes specific for self peptides, food antigens, and the intestinal flora
can be rendered tolerant [148]. Conversely, in a harmful context, lymphocytes should
be instructed to mount an appropriate immune response and to enter the solid tissue
[44, 148, 234]. All instructed lymphocytese. not only conventional memory cells but

also for example anergic cells, thus carry information about the appropriate response
for the epitopes they recognize. In our view, immunological memory should thus also
be regarded as qualitativememory of thetypeof immune response to be made. On

top of this comes the conventional quantitative form of memory in terms of increased
precursor frequencies.

There is good evidence that during a secondary encounter of the same epitope, lympho-
cytes recall their appropriate response [115, 159, 160] and no longer wait for instructions
from the innate system. An example, that a qualitative memory may enable lymphocytes
to skip over the innate instructions, is the memory for responsivemesgaonrespon-
siveness in mice transgenic for a lymphocytic choriomeningitis viral (LCMV) protein
[159]. In mice expressing the LCMV protein on their pancredtiells, LCMV-specific

T cells were neither tolerized nor activated by the LCMV protein. On infection with
LCMYV, however, the cells became stimulated and caused T-cell-mediated diabetes. Ap-
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parently, once the LCMV-specific lymphocytes had seen LCMV in an infectious context,
they were instructed to an aggressive response, which was subsequently remembered
such that the LCMV protein on the pancreas was regarded as a harmful antigen. Such an
LCMV-specific response could not be induced by LCMV infection in LCMV-transgenic
mice that had been tolerized with LCMV peptides [115]. Thus, nonresponsiveeess
susresponsiveness is qualitatively remembered by the immune system.

Another example supporting the concept of a qualitative form of immunological mem-
ory is the immunity against vaccinia virus (VV). VV is one of many viruses that express
proteins interfering with the innate immune system. It prevents its own presentation on
MHC molecules of infected cells, blocks the complement cascade and several cytokines,
and neutralizes chemokines in the local environment [199]. Tackling the immune sys-
tem at its innate base, the virus typically prevents the induction of an immune response
and thus manages to escape. Yet, vaccination against poxviruses has been extremely
successful [199]. Apparently, once an adaptive immune response has been triggered,
the host is insensitive to the viral immune evasive strategies. Our interpretation is that
a qualitative memory identifies the VV epitopes as harmful, thereby circumventing the
need for further innate instructions and enabling the host to prevent secondary VV in-
fections.

An immune system with qualitative memory has obvious advantages. The complex
decision whether and how to react to specific epitopes needs to be made only once.
Memory lymphocytes can thus prevent tissue damage by pathogens on reinfection
and on pathogen dissemination to other organs. There is, however, a drawback. In-
structed lymphocytes, which are fairly independent of further innate instructions, run
the risk of mounting inappropriate cross-reactive immune responses. For example, self-
reactive lymphocytes that have escaped self tolerance induction may become stimu-
lated by a pathogen and subsequently become aggressive towards self [12, 232]. Ad-
ditionally, memory lymphocytes may cross-react in response to subsequent pathogens
[73, 114, 193] and induce a memory response of the wrong made,Thl instead

of Th2. The immune system should therefore be specific enough to avoid such cross-
reactivity mistakes. On the other hand, the immune system should be sufficiently cross-
reactive to ensure an immune response against any pathogen. Here we develop a model
to calculate the optimal degree of specificity of lymphocytes to fulfill both requirements.

Specificity of memory

To calculate the optimal specificity of lymphocytes, we will define the probahiity

of surviving infection by any specific pathogen and calculate for which degree of lym-
phocyte cross-reactivity this probability is maximal. Let the degree of cross-reactivity of
lymphocytes be calleg, i.e. each clonotype has a chanct respond to a randomly se-
lected epitope. In a naive animalcorresponds to a conventional precursor frequency.
Species having evolved highly specific clonotypes have apalue, whereas those
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with cross-reactive clonotypes have a highalue. For simplicity, the affinity of clono-
types is not taken into account. A clonotype either responds to an epitope, if its affinity
is higher than a certain threshold affinity, or fails to respond.

Avoiding autoimmunity

To avoid autoimmunity, clonotypes responding to self epitopes should be rendered tol-
erant,i.e. removed from the functional naive repertoire. Consider an animal Rgth
different lymphocyte clones, and Igtbe the fraction of all self epitope$ that induce

self tolerance. The functional repertoire after tolerance indudticansists of all clono-
types that do not respond to any of thg tolerizing self epitopes. Suppose the animal is
infected by a pathogen, which for simplicity is represented by a single antigenic epitope.
The chance of mounting an immune respoRsé the chance that at least one clone in
the functional repertoir& will be stimulated by the pathogeie.

Pi:]-_(]-_p)Ra (1)
where the expected functional repertoire size is
R = Ro(1-p)’* (2)

(see [62] and [30] for similar derivations).

Complete self tolerance induction

First consider the simple case that all of the animal’s self epitopes induce toleiance,
considerf = 1. In Figure T, the probabilityP; of making an immune response is
plotted against the cross-reactivity parametelf the immune system is very specific,
there is a large chance that none of the clones will recognize the pathogen. On the
other hand, if lymphocytes are very cross-reactive, self tolerance induction impairs the
immune system by reducing the functional naive repertoire. The maximum valge of
(denoted by the arrow in Figureallis attained fop ~ 1/(fS) = 1/S. The optimal
specificity to mount immune responses to foreign antigens thus reflects the number of
self epitopes that induce self tolerance. This result is identical to the conclusion drawn
from previous models [62, 152, 228], namely that immune systems are diverse primarily
because animals have large numbers of self antigens.

Ignored self

Healthy animals, however, harbour potentially autoreactive lymphocytes that seem to be
ignorant of their specific self ligands [50, 185] and may cause autoimmunity after stim-
ulation [12, 159, 160, 232]. After infection by a pathogen, self tolerance is assured only
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Figure 1.  Avoiding autoimmunity. The chance of mounting an immune respBn&eandb),

the chance of remaining self toleraht (c), and the chance of surviving a pathogenic att&ck

(d), defined by equations (1-5), plotted against the cross-reagtivifjfymphocytes. Specificity

is simply the inverse of cross-reactivity. The arrows show that the optimal cross-reactivity in the
case of complete self tolerance inductiahié much larger than the optimal cross-reactivity when
some self epitopes fail to induce tolerand. (The black bars ira andd denote the specificity
ranges for which the corresponding survival chances are close to the optimeunior which

PF > 0.9989, with & = 100 different pathogens infecting a host (see text for further explanation).
Parameters ar§ = 10°, Ro = 10'°, andf = 1 (a) or f = 0.8 (b—0).

if none of the ignorant clonotypes is stimulated by cross-reactivities with this pathogen.
Let o denote the fraction of potentially autoreactive clones in the functional repertoire,
i.e. « is the fraction of clonotypes recognizing at least one ignored self epitope. Since
only a fractionp of this subset of clones will be stimulated by the pathogen, the frac-
tion of truly autoaggressive clones in the functional repertoire responding to a particular
pathogenic epitope isa. The chance?; of remaining self tolerant is the chance that
none of the clonotypes in the functional naive repertoire falls in this autoaggressive cat-
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egory. We are interested in the probabilitythat the animal will survive the pathogenic
attack,i.e. in the probability that the animal will make an immune respoaséwill
remain tolerant to the ignored seife.

Ps:PtP(i\t):Pt_(]-_p)Ra (3)

where P; ;) denotes the conditional probability of making an immune response given
that the animal remains tolerant, and

Pt = (1 _pa)Rv (4)
and
a=1—(1-p) =9 (5)

Note that the intuitive interpretation of equation (3) is that the survival ch&hads
equal to the overall chance to stay tolerant minus the chance to stay tolerant by making
no immune response at all.

The fraction of self epitopes that is ignored is unknown, but taRibfg as an example,

the dashed curve in Figure Hepicts the probability?; that the system will remain
tolerant to all ignored self epitopes when stimulated by a pathogen. This probability of
toleranceP; appears to be roughly inversely related to the probability of immuRity
denoted by the dashed curve in Figubke This is because lymphocyte specificities that
help epitope recognition, including self epitopes, will thwart self tolerance. The survival
chancepP; is depicted in Figured. The arrow in Figure d shows that the optimal
lymphocyte specificity is much higher now than in the case of complete self tolerance
induction. Prevention of autoimmunity to the ignored self apparently requires a high
specificity (see also [30]).

If self tolerance induction is incomplete, the most important parameter determining the
optimal specificity is the number of lymphocyte clones in the total repert@irethe

more lymphocytes are available, the more specific these lymphocytes should be (see
Figure Z). Highly specific lymphocytes reduce the chance of mounting autoimmune
responses and thus increase the survival chance of the animal. Surprisingly, the num-
ber of self epitopes$, which largely determines the optimal specificity under complete
tolerance induction, hardly affects the optimal specificity if self tolerance induction is
incomplete. Neither does the fraction of ignored self epitopes (), in that all curves

for which f < 0.8 are very similar to thg = 0.8 curve.

In practice, selection for the optimal specificity might be hard to accomplish. Once a
specificity has been selected for that gives sufficient protection against the typical total
number of different pathogens infecting a hdst (he driving force to evolve to an even
better specificity vanishes. It might therefore be more informative to consider the range
of specificities for whichP* is sufficiently large, say larger than9. If an individual

is exposed to about one hundred different pathogens on average, thistangd.9
contains all specificities for whicR; > 0.9989 (denoted by the black bars in Figures 1
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Figure 2. What determines the optimal specificity? The optimal cross-reactivity plotted against
the size of the total lymphocyte repertoiRg (a) or against the number of self epitopg€gb). If

self tolerance induction is completg & 1), the optimal cross-reactivity decreases as the number
of self epitopes increaseB)( The curves for whiclf = 0.8 are typical for all cases of incomplete

self tolerance inductionf( < 1). The optimal specificity in the case of incomplete tolerance
induction is thus hardly dependent on the fraction of self epitopes that induces tolefance (
Results indicate that if self tolerance induction is incomplete, the optimal cross-reactivity depends
mainly on the size of the lymphocyte repertoie¢ &énd is hardly dependent on the number of self

epitopes ).

andd, and the “error bars” in Figure 2). The specificity range for whitth> 0.9 in the
case of complete self tolerance induction overlaps with that of incomplete self tolerance
and is much wider. If self tolerance induction is complete, the optimal specificity level
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is thus not defined as sharply as it is when some epitopes fail to induce self tolerance,
and more particularly it is not as sharply defined aslthe value suggested previously

[62]. Summarizing, repertoires that run the risk of mounting autoimmune responses to
ignored self epitopes should be orders of magnitude more specific than repertoires that
need only to respond to many pathogecfsthe recent paper by Mason [130]).

Avoiding responses of an inappropriate mode

A second problem of cross-reactivity is that memory lymphocytes that have acquired a
certain mode of immunity during a primary immune reaction may respond to subsequent
pathogens [73, 114, 193] that require a different mode of response. Besides the widely
accepted ThlersusTh2 modes, many other modes of immunity may exist, varying in
the type of lymphocytes, effector mechanisms, and cytokines involved [109, 110]. It
has been demonstrated experimentally that the cytokine profile of a T cell response is
determined by the cytokines present during lymphocyte activation (reviewed in [109]
and [149]) and is epigenetically transmitted from mother to daughter lymphocyte [25,
26]. Thus, by secreting cytokines, cross-reactive memory cells may provide a wrong
context for a primary immune response to be induced and can as a consequence impair
immunity to subsequent pathogens.

The avoidance of such wrong mode responses is another driving force for the specificity
of the adaptive immune system. Consider again an animal with a functional lymphocyte
repertoire ofR clonotypes (to exclude any effect of self tolerance induction, equation (2)
is not yet substituted). The chanBe(i) of surviving infection by the*® pathogeni.e.

the chance of making an immune response without triggering any cross-reactive memory
clonotypes, is now dependent on the fraction of memory clones in the reperioéned
consequently on the number of previous infectiohs-(1). Only a fractionp of all
memory lymphocytes will recognize tli& pathogen, so that the fraction of clonotypes
cross-reacting with the present and one previous infectigmris The chanceP; to
survivek different pathogens is the product of all survival chances from the first until
thek*? pathogeni.e.

k
P, =[] P(0), (6)
i=1
where, by analogy with equations (3—4),
Py(i) = (1 —pm)" — (1 = p)", (7
and
m=np(i—1). (8)

Remember that any memory clone of an animal that has survived infectian-by )(
different pathogens can, by our definition, be responsive to a single previous pathogen
only.
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Figure 3.  Avoiding responses of an inappropriate mode. The chance of surviving a single

or multiple different pathogenic attacks, defined by equations (6-8), plotted against the cross-
reactivity (p) of lymphocytes. The curves denote the chances to survive infection by one, two, ten
and one hundred pathogens, respectively. The optima of the latter three curves nearly coincide.
The thick arrow denotes the optimum in the case of infection by one hundred pathogens. Results
indicate that if an animal is exposed to multiple different pathogens, and thus runs the risk of
mounting cross-reactive immune responses, clonotypes should be much more specific (see the
thick arrow) than they should be if immunity against a single pathogen were the only demand
(see the thin arrow). In the latter case, clonotypes should be maximally cross-reactivé)(

Parameters arB = 10'°, k = 1 (dotted),k = 2 (long dashed)k = 10 (dashed), an& = 100
(solid).

In Figure 3, the survival chanck; is plotted for serial infection by various numbers

of pathogens:. Figure 3 shows that the optimal specificity changes drastically from

p = 1 (i.e. 100% cross-reactivity), if the animal is exposed to only one pathogen, to

a highly specific optimum, in the case of more pathogens. Immunological memory,
and the accompanying risk of inducing inappropriate responses by cross-reactivity, thus
forces the immune system to be specific. Again, it is the repertoirefgiznd not

the number of different pathogehsthat largely determines the optimal specificity (see
Figure 3).

Of mice and men

Because the optimal specificity to avoid cross-reactive immune responses is largely de-
pendent on the size of the lymphocyte repertoire, our model predicts that the human and
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Figure 4.  Of mice and men. Comparison of the optimal clonotype specificity for huraans (
and mice B) if both types of inappropriate cross-reactive immune respongesautoimmunity
towards the ignored self and mode selection failure caused by cross-reactive, old memories, can
occur. The chance of surviving after infection by ten different pathogBnsdefined by equa-

tions (2), (5-6) and (8-9); solid), and the chance of mounting immune responses against those
ten different pathogensX'?, defined by equations (1-2); dotted), are plotted against the cross-
reactivity p of lymphocytes. The optimal cross-reactivity of mouse and human lymphocytes are
denoted by the thick arrows. Human lymphocytes should be orders of magnitude more specific
than mouse lymphocytes. The thin arrow denotes the optimal specificity of mice clonotypes if
resistance against many pathogens were the only demand. Paramet§rs-ate®, f = 0.8,

k =10, andRy = 10*° (for humans 4)) and R, = 107 (for mice (©)).

the mouse lymphocyte systems may be quite different. To illustrate the predicted differ-
ences, the two models of the previous section are combined. The cRgig® survive
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infection by thei*® pathogen is now the chance that none of the responding clonotypes
is either a memory clone or a clone specific for an ignored self epitope, minus the chance
that no immune response is made atiad,

Py(i) = (1= p(m + )" — (1 = p)"~, 9)

whereR is given by equation (2)y by equation (5), anéh by equation (8). The chance

to survivek pathogens is still given by equation (6). In Figure 4, the chance of mounting
ten immune response#’{°, dashed curves), and the chance of survivifg, (solid
curves) after serial exposure to ten different pathogéns (10) are plotted. The total
human lymphocyte repertoire is estimated to consist0df—10'2 T/B lymphocytes,
whereas the mouse repertoire consists of approximatlylymphocytes [51, 116].
Taking an average clone size of ten lymphocytes per clone, we estimate the number of
clonotypes in humans and mice to#8° and107, respectivelyi.e. a difference of three
orders of magnitude. Figure 4 shows that at the optimum of the survival curve, human
lymphocytes are orders of magnitude more specific than mouse lymphocytes. This is a
new prediction. Previous models [62, 152, 228] have predicted that lymphocytesin mice
and humans should be equally specifie, p ~ 1/S (provided that mice and humans
have similar numbers of self epitopes).

The need to avoid cross-reactivity with ignored self molecules and the avoidance of in-
appropriate cross-reactive memory responses are two independent driving forces for the
specificity of lymphocytes. For the current parameter setting, the optimal lymphocyte
specificity is mainly determined by the need to avoid autoimmune responses. For other
parameter settings.g. for a lower number of self antigens and a higher number

of pathogeng: with which an animal is typically infected, it may be the avoidance of
inappropriate memory responses that determines the optimum of the survival curve.

In the optimum, the number of different clones responding to a pathogen is approxi-
mately the same for mice and humans. Thanks to the high specificity of human clones,
humans should run a lower risk of mounting autoimmune responses than mice. The
mouse immune system must make a concession: whereas its protection against infec-
tions could be just as good as that of humans (see the thin arrow in Figutbd need

to avoid inappropriate cross-reactive responses forces the mouse immune system to be
more specific (see the thick arrow in Figuil® 4Thus, its resistance against infections is
somewhat reduced. Summarizing, mice are predicted to have a smaller survival chance
than humans because they suffer more from infectmmfirom autoimmunity.

Discussion

We have argued that the adaptive immune system specifically stores the instructions
given by the innate immune system and that the specificity of lymphocytes is used

largely for avoidance of inappropriate cross-reactive immune responses (see also [87]).
It has been suggested previously that the diversity of the immune system reflects the

22



How specific should immunological memory be?

number of self epitopes that induce tolerance [62, 152, 228]. Here, we have shown that
if there is any risk of inducing inappropriate cross-reactive immune responses, the im-
mune system needs to be much more specific than had been derived from these previous
models [62, 152, 228]. In particular, memory lymphocytes should not be triggered by
cross-reactive stimulation by food or self antigens [216].

Intuitively, it is hard to see how responsiveness to foreign antigens and avoidance of
inappropriate immune responses can be reconciled merely by selecting for a certain de-
gree of lymphocyte specificity [130]. In our framework, however, there is an asymmetry
between naive and memory clonotypes that allows this conflict to be solved. Inappropri-
ate immune responses come from memory clonotypes only. In our model, naive clones
do not run the risk of inducing an inappropriate immune response, because they either
remain naive or are properly instructed to switch to the required phenotype. It is this
asymmetry that allows for a high optimum of the survival curve at a high degree of
lymphocyte specificity.

By considering the risk of cross-reactive autoimmune responses, we have implicitly cal-
culated the optimal specificity ahemorylymphocytes. Because naive lymphocytes do
not run the risk of inducing inappropriate responses, it might be beneficial to have naive
cells that are more cross-reactive than memory cells. Interestingly, naive B cells indeed
appeared to react to a broader range of antigens than did memory B cells [207] (see also
[126] and references therein). Because B cell hypermutation and affinity maturation oc-
cur largely after the primary immune response [106, 154], it is tempting to suggest that
the function of B cell hypermutation is to induce higlsgecificmemory B cells, on top

of inducing a higheffinity secondary response (see also [138] and [126], in which a more
general form of specificity maturation was suggested). This idea is supported by the ob-
servation that beyond a certain avidity threshold there is no correlation between antibody
avidity and protection against infection [13, 233]. Recent x-ray crystallographic studies
uncovered a possible mechanism for specificity maturation: affinity-matured antibodies
are more specific because they have a more rigid configuration than germline antibodies
[227]. Selection for a high affinity thus seems to imply selection for a high specificity.

It has been demonstrated that lymphocytes specific for self antigens are routinely gen-
erated during B cell somatic mutations [174]. In combination with the strong selective
pressure on recognition of the original foreign antigen [14], specificity maturation may
reduce the chance of releasing lymphocytes with cross-reactivity for self antigens into
the periphery.

Throughout the calculations, the assumption was made that stimulation of a single clone
is sufficient for a functional immune response. Obviously, this is a strong simplifica-
tion. It is very likely that protection against infection and induction of autoimmunity
require activation of multiple clones. We have chosen for maximal simplicity, how-
ever, because the qualitative results of the model do not depend on such complications.
In their protecton theory, Cohn & Langman [56] proposed that lymphocytes act in a
concentration-dependent manner: to compensate for their larger lymph volume, large
animals would require more lymphocytes of the same antigen specificity than small an-
imals do. We can account for this argument in our model by considering the expected
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repertoire size per unit volume. All calculations would remain the same, and our claim
that immunological memory should be as specific as possible (per unit volume) remains
true. It is only the predicted difference between large and small animals that disappears
in the protecton version of our model. The protecton model need not be correct, how-
ever. Because of lymphocyte recirculation and homing to the sites of infections, large
animals may indeed profit from their large lymphocyte repertoire. Even if this is only
partly the case, our model correctly predicts a specificity and survival difference between
mice and humans.

The high optimal specificities that we calculate seem to be at odds with recent measure-
ments of precursor frequencies performed with MHC/peptide tetramers [78, 150] and
with other estimates of lymphocyte cross-reactivity [130]. It should be stressed, how-
ever, that the optimal cross-reactivities calculated here reflect precursor frequencies in
naiveanimals, which experimentally remain “soft numbers” [45, 150]. Naive precursor
frequencies may be orders of magnitude lower than the precursor frequencies reported
in MHC/peptide tetramer studies after immunization [78, 150]. Moreover, the precise
quantitative results of our model depend on the specific choice of parameters and simpli-
fications made (see also [30]). For example, we disregarded any safeguards that prevent
cross-reactive cells from causing inappropriate immune responses [174, 234]. Addi-
tionally, there is no affinity in our model, whereas experimental estimates of precursor
frequencies depend on the affinity cutoff of the specific assay that is used. Despite these
quantitative complications, however, our results show that the need to avoid inappropri-
ate immune responses imposes a strong selection pressure for the specificity of lympho-
cytes. Importantly, our model shows that the specificity constraints on lymphocytes are
even stronger than was concluded previously [62, 152, 228].

We are grateful to Ms S. McNab for linguistic advice and would like to thank Lee A.
Segel for extensive discussions.
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Abstract

During primary encounter of an antigen, the immune system has to decide which type of
immune response is most appropriate. For instance, noncytopathic viral infections typ-
ically require a cellular response while elimination of most bacteria typically requires

a humoral response. Such immunological decisions are based upon many factors such
as signals from the innate immune system, and/or the local tissue environment. We
hypothesise that the choice of the most appropriate type of immune response against
each antigen is stored by the immune system in the form of differentiated clonotypes.
Clonotypes that are triggered (or tolerized) by an antigen switch from a naive phenotype
to a new, stable mode of responsiveness (or unresponsiveness), allowing the appropri-
ate type of immune reaction to be regenerated upon restimulation of the clone. The
adaptive immune system may contribute to the decision as to which type of immune
response to mount, when novel antigens carry epitopes that the system has seen previ-
ously. This may go wrong, however, if differentiated cells coincidentally respond to new
antigens. We develop a simulation model and a probabilistic model to investigate under
which circumstances storing appropriate responses helps the immune system to rapidly
make correct decisions. We find that lymphocytes need to be specific in order to avoid
inappropriate, cross-reactive responses. Lymphocyte diversity is required to reconcile
specificity with reactivity against many antigens. Increasing the diversity of the immune
system does not hamper the positive contribution of memory lymphocytes in subsequent
responses.

Appropriate responses are stored by memory cells

Specific immunological memory is one of the most striking features of the vertebrate
immune system. By inducing a cellular or humoral response to invading pathogens, the
immune system is able to remove pathogens and to remember them specifically. Thus,
vertebrates are able to respond faster and more efficiently upon reinfection. Adaptive im-
munity, and the accompanying ability of specific immunological memory, evolved at the
transition from invertebrates to vertebrates, when gene rearrangements were employed
to generate highly diverse lymphocyte repertoires [4, 69, 129]. Because lymphocyte re-
ceptors are at least partially randomly generated, the adaptive immune system requires
self tolerance processes to avoid autoimmunity and mechanisms that allow naive lym-
phocytes to develop appropriate effector functions.

During primary antigenic encounter, there is a whole array of signals informing the im-
mune system on the nature of the antigen that is being recognized [23, 75, 104, 105, 140-
142, 182]. For example, the localization of the antigen [234], the presence of conserved
bacterial peptides [104, 140, 141, 149], the type of tissue damage [135], and the cy-
tokines and chemokines that are locally expressed [1, 158, 168], all influence the type
of immune response that is induced. Based on these signals, which collectively form the
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“context” of the antigen [52, 53], a complex decision is made as to whether to respond
or not, and if so which effector mechanism to use. For efficient elimination, different
pathogens require qualitatively differentimmune responses, varying from cellular to hu-
moral responses, and varyingérg. immunoglobulin isotype and cytokine expression
[106, 209]. For example, antigen encounter in the gut will tend to induce IgA responses,
gram-negative bacterial infections expressing LPS and causing tissue damage will gen-
erally trigger B cell responses, and recognition of viral RNA will typically induce a
cytotoxic T cell response [106].

Over evolutionary time, certain antigenic contexts may have become correlated with
the corresponding appropriate types of immune response. Alternatively, it has been pro-
posed that the choice of immune response is determined somatically, by (success-driven)
feedback mechanisms [190]. By whatever route the decision is made, we hypothesise
that the adaptive immune system stores the appropriate modes of response against dif-
ferent antigens in differentiated lymphocytes. The immune system thereby somatically
learns to associate the epitopes it has encountered with the appropriate modes of re-
sponse against them.

Memory cells influence subsequent responses

Once lymphocytes have been instructed as to which type of immune response to mount,
they recall their appropriate mode of response when restimulated in subsequent infec-
tions [177, 209]. It has been shown that differentiated T helper cells recall their cy-
tokine expression even in the presence of adverse costimulation (see [177] and refer-
ences therein). Cytokine production is somatically imprinted in differentiated lympho-
cytes by chromatin remodelling and DNA demethylation. Instructed lymphocytes can
thus epigenetically transfer their appropriate mode of response to their daughter cells
[25, 26, 176].

Memory lymphocytes can greatly influence immune responses against subsequent infec-
tions. The ease with which they are triggered, even at very low antigen concentrations
[5, 6, 40, 49, 170, 181, 204, 217], may explain why immune responses tend to be dom-
inated by memory lymphocytes from previous infections, a phenomenon termed “orig-
inal antigenic sin” [73, 114, 139]. It has for example been shown that the"CD&el
response against influenza is dominated by memory cells that cross-react with previous
influenza infections [92, 197]. Even for unrelated viruses such a bias to stimulation of
previous memory clones has been observed [193].

Instructed lymphocytes can also direct the differentiation of other, naive lymphocytes
[147]. CD4" T cells from transplantation-tolerant mice, for example, have been shown
to render naive cells tolerant upon adoptive transfer. Since the so induced tolerant cells
can in turn tolerize other naive lymphocytes this process was called “infectious trans-
plantation tolerance” [98, 172, 225]. Later, it was demonstrated that infectious suppres-
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sion can also take place between lymphocytes of different specificities. Anergic T cells,
rendered anergizia T-T cell presentation of their antigen, appeared to actively suppress
other T cell clonotypes, provided that both the anergic cells and the responder cells were
confined to the same antigen-presenting cell [210]. Analogously, memory lymphocytes
of a certain responsive mode may direct the differentiation of new, naive clonotypes,
for examplevia cytokine secretion [168]. It has been proposed that T cells affect each
other’s differentiatiorvia interactions with dendritic cells, which in turn promote the
differentiation of responding T cells to different cytokine profiles [37, 178, 180, 208].
Cytokine-mediated T helper cell differentiation is characterized by a positive feedback:
many cytokines promote their own expression by affecting the differentiation of par-
ticular T cell subsets [180]. Such a positive feedback has for example been observed
for IL-2, IL-4, IFN-~, IL-10 [90], and TGF# [187]. Spreading of a responsive mem-

ory phenotype from one (self) epitope to another has also frequently been observed in
autoimmune diseases [119, 218].

If cross-reacting memory clones happen to have the correct phenotype for a subsequent
antigenic challenge, they are obviously advantageous to their host. Since memory cells
are not confined to the lymphoid tissue and freely enter the solid tissue [44, 148, 234],
they can respond anywhere and any time their specific epitope is encountered. Addi-
tionally, responses due to memory cells are typically more prompt than primary immune
responses [5, 6, 40, 49, 59, 77, 170, 181, 204, 217], because memory cells are more
sensitive to low antigen doses, have less stringent requirements for costimulation, and
have already been instructed for the appropriate mode of response. Thus tissue damage
by pathogens upon reinfection and upon pathogen dissemination to other organs can be
prevented. Moreover, if pathogens mutate their antigenic structure, previous memory
lymphocytes recognizing epitopes that have remained unaltered may direct the differen-
tiation of new clonotypes recognizing altered epitopes of the pathogen.

Memory lymphocytes may also cause immunopathology, however. Being fairly inde-
pendent of signals from the innate immune system and the local tissue environment,
they run the risk of mounting inappropriate responses. Different antigens may possess
overlapping epitopes and thereby trigger memory lymphocytes with inappropriate phe-
notypes. Moreover, self-reactive clonotypes that have escaped self tolerance induction
may cause autoimmunity upon stimulation by external antigens [12, 159, 160, 232].

We have hypothesised in Chapter 2 that the immune system should be specific to mini-
mize the risk of mounting inappropriate immune responses by cross-reactivity [30, 34].
Here a simulation model is developed to study under which circumstances immuno-
logical memory can help the induction of new, appropriate immune responses, while
avoiding inappropriate cross-reactive responses. We find that both requirements are met
whenever the lymphocyte system is sufficiently specific and diverse. Although this re-
sult may seem to be at odds with the high cross-reactivity of T cells proposed by Mason
[130], a calculation in the Discussion shows that both views are perfectly compatible.
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A simulation model

To illustrate the basic principles of our hypothesis, we consider an immune system con-
sisting of Ry clonotypes. Each clonotype has a certain mode, being either naive, toler-
ant, or responsive in a particular type of response. The modes are represented by integer
numbers), 1,2, ..., m, where 0 means naive, 1 means tolerant, 2and. , m identify

the different types of responsive modes (such as Thl, Th2, IgA, IgE, etcetera). In the
simulations presented here, there are ten different modes. When the immune system is
challenged with an antigen we allow every epitope to be recognized by precisely one
clonotype, which is selected randomly. Depending on the cross-reactivity of the sys-
tem (here inversely related to its diversity), each clone may recognize multiple epitopes.
Clonotypes specific for tolerance-inducing self epitopes are initialized in the tolerant
mode; all other clonotypes are initially naive. At birth the system therefore consists of
clonotypes with mode zero or one. Self tolerance induction need not be complete. In
our simulations, a fractiorf of the self-specific clonotypes is initialized in the tolerant
mode; the other self-specific clonotypes remain ignorant of their respective self epitopes
[50, 169, 185]. Such ignorant clonotypes may induce autoimmunity when they become
triggered by pathogens [12, 159, 160, 232]. After birth the system is challenged with
different antigens, each representedebgtifferent (immuno-dominant) epitopes, and
each requiring a certain mode of response. Both the appropriate mode of response to an
antigen and the clonotypes recognizing its epitopes are selected randomly beforehand.
Pathogens never kill their hosisg. the simulations are continued even if an inappropri-

ate response is induced.

Whenever epitopes of antigens in our simulations are recognized by previous memory
clones, these memory clones determine what type of immune response is induced. The
modes of response suggested by different memory clonotypes need not be identical,
however. Any conflicts are resolved by treating each signal as a “vote” in the decision
making process. The ultimate decision is the mode for which there is a majority count.
In case there is a tie, the decision is chosen randomly from the largest votes. In the
absence of cross-reacting memory lymphocytes we assume that the combination of the
innate immune response, the context of the antigen, and possibly feedback mechanisms,
ultimately leads to the appropriate type of immune response. This need not be unreason-
able, because the innate immune system has learned about different kinds of pathogens
and antigenic contexts over evolutionary time.

In our simulations, once the system has decided which type of response to make to a par-
ticular antigen, all naive clonotypes recognizing that antigen switch to the corresponding
memory mode. Even if an inappropriate mode of response is triggered, naive lympho-
cytes switch (to the incorrect) mode. In accordance with experimental data [151, 176],
memory clonotypes involved in a response to an antigen do not switch mode.

The performance of the model immune system is recorded by counting scores. In the
default situation, in which a decision is made by the innate system and the clonotypes
recognizing an antigen simply adopt the mode of the innate system, no score is given. All
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Figure1l. A simple example of a simulation with= 3 different epitopes per antigen. After self
tolerance induction most clonotypes are naive. (mode 0), except clonotypes 6 and 12 which
have been initialized in the tolerant modee( mode 1). The first antigen has to be rejected by

an immune response of mode 7, and triggers clonotypes 0, 3, and 7. Since these three clonotypes
are naive in the primary response, the decision as to which type of immune response to mount
is made by the innate immune system. Thus, clonotypes 0, 3, and 7 become memory clones of
mode 7, antigen 1 is rejected, and no score is obtained. Similarly, antigen 2 triggers three naive
clonotypes, which subsequently switch to memory mode 5. Antigen 3 triggers two memory clones
that overlap with antigen 2,e. clones 4 and 11, and triggers the naive clone 2. Because of the
memory votes by clones 4 and 11, an immune response of mode 5 is triggered. This yields a
positive score. Clone 2 correctly switches to mode 5. Antigen 4, requiring mode 9, coincidentally
triggers a memory clone (2) which is in mode 5. Thus, an inappropriate immune response is
induced, yielding a negative score. Naive clonotypes 5 and 10 incorrectly switch to mode 5.

cases in which previous memory clones establish the correct mode of response against
an antigen (without being responsive to any self antigens) yield a positive score. The
cases in which previous memory clones establish an incorrect mode of response against
an antigen yield a negative score. This includes the cases in which the majority of
the memory clonotypes involved is in the tolerant mode, and the adaptive system thus
refrains from responding. We also score the number of autoimmune responses, which
are induced when naive clonotypes that are ignorant of their self epitopes are triggered
into one of the responsive modes, by pathogens cross-reacting with those self epitopes
[12, 159, 160, 232]. An example of a small simulation is given in Figure 1.

Obviously, the adaptive immune system will only give a positive contribution to the
decision making process if there are groups of structurally related antiggngom-

ing from the same pathogen family or species, that require similar types of immune
reactions. To account for such groups of antigens, a fradtigrof all antigens in our
simulations is a mutant of another antigen. Mutant and wild-type antigens always re-
quire identical modes of response and share half of their epitopes; the other epitopes are
chosen randomly. All antigens are presented only oieeye study a “worst case” sce-
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nario, ignoring the conventional benefits of immunity obtained when the same antigen
rechallenges the immune system.

Somatic learning requires specificity

In Figure 2, the performance of immune systems that have been challenged with one
thousand different antigens is plotted as a function of the immune system divessity

and hence as a function of the specificity of clonotypes. Pamdis andc give the
fraction of challenges that yield a positive score, a negative score, and an autoimmunity
score, respectively. The different lines in the panels depict different degrees of corre-
lation between the antigense. P,, = 0 (solid), P,,, = 0.1 (dotted), andP,, = 0.2
(dashed).

Figure Za shows that memory clones help to make correct decisions whenever (i) there is
some correlation between the antigem=l(ii) the lymphocyte repertoire is sufficiently
specific. At a very low repertoire diversity, hardly any positive score is obtained because
most lymphocytes have been tolerized by self epitopes (see also [62]). At an interme-
diate repertoire diversity, the repertoire is no longer depleted during tolerance induction
but the positive scores that are obtained are largely coincidental. Even if there is no cor-
relation between the antigens (see the solid curve), these positive scores occur because
of random cross-reactions. Above a diversityldf = 10° clonotypes, this random-

ness disappears and the positive scores hardly depend on the diversity of the immune
system. Whatever the diversity of the system, a recurring epitope always triggers the
same clonotype. Increasing the repertoire $tgeand hence the specificity of the sys-

tem, therefore does not impair the positive contribution of memory lymphocytes to the
decision making during primary immune reactions.

At a low diversity, unrelated antigens expressing different epitopes and requiring differ-
ent modes of immune response will tend to trigger the same clonotypes. Hijlius2

trates that the adaptive immune system hence makes many mistakes. Previous memory
clones recognizing epitopes of unrelated antigens tend to induce wrong types of immune
response; clones that have previously been tolerized by self epitopes hinder the induc-
tion of immune responses to subsequent antigens. Figush@ws that such mistakes

(i) disappear at a large repertoire diversity, and (ii) hardly depend on the correlation
between the antigens.

Figure Z demonstrates that at a very low diversity, autoimmunity hardly occurs. This

is due to the large fraction of clonotypes that have been tolerized by self epitopes. At
a somewhat higher diversity, many autoimmune responses are induced due to cross-
reactions between foreign antigens and ignored self peptides. Such coincidental cross-
reactions disappear if the immune repertoire is very diverse. Summarizing, Figure 2
illustrates that in immune systems that store the appropriate modes of response in dif-
ferentiated lymphocytes, the benefits of immune memory outweigh the accompanying
disadvantages whenever the immune repertoire is sufficiently specific.
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Figure 2.  The performance of lymphocyte systems of different diversifig$ ¢hallenged

with one thousand different antigensa) (The fraction of challenges that yield a positive score
thanks to previous memory clones making correct decisidnd-He fraction of challenges yield-

ing a negative score due to inappropriate immune responses induced by previous memory clones
or due to lack of responsiveness caused by cross-reactive tolerant clapeghe (fraction of
challenges leading to autoimmunity caused by ignorant, self-specific clones that are triggered by
cross-reacting pathogens. The different curves denote different degrees of correlation between the
antigens that are encountere;, = 0 (uncorrelated antigens, solid curves), = 0.1 (dotted
curves), and?,, = 0.2 (dashed curves). Related antigens share 50% of their epitopes. There are
e = 6 different epitopes per antigen, a fractign= 0.5 of all S = 10> self antigens induces
tolerance, and there are ten different modes 9).
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A probabilistic model

In the simulation model described above, each epitope always triggers precisely one
clonotype. Thus, the model’s immune repertoire never fails to recognize an antigen.
It is more realistic to let clonotypes respond to epitopes with a certain probahility

so that any epitope triggers on average a fracgioof all clonotypes. In that case,
specificity required to avoid inappropriate cross-reactive immune responses needs to
be reconciled with sufficient cross-reactivity to allow immune responses against many
different antigens. We employ a probabilistic model to show that this conflict can be
solved if ymphocyte repertoires are sufficiently diverse (see also [30, 34]).

Let us consider an extreme scenario, by assuming no correlation between the antigens
that are encountered and considering an infinitely large variety of types of immune re-
sponses. Thus there is no positive contribution of memory lymphocytes. Instead we
focus on preventing inappropriate immune responses. Any situation in which an antigen
triggers a clonotype recognizing a self epitope is considered to be wrong. We no longer
distinguish between autoimmunity due to stimulation of naive self-specific lymphocytes,
and absence of response due to tolerant lymphocytes instructing naive lymphocytes to
adopt the tolerant phenotype. Just as in the simulation model, thefedifferent self
epitopes and?, clonotypes in the repertoire.

First consider the probability of mounting an appropriate immune reponse to an antigen
that expresses different epitopes. Having an infinite number of modes and no corre-
lation between the antigens that are encountered, any responding memory clonotype is
considered to cause an inappropriate immune response. Thus, an immune response will
only be appropriate if all clonotypes responding to an antigen are neither self specific nor
of the memory phenotype. In an animal wihdifferent self epitopes that has previously
encountered/ different foreign epitopes, the probabilitythat a responding clonotype

is naive (.e. not responsive against any of thé previously encountered epitopes) and

not specific for any self epitope is:

v (1—p)StM (1)

where we write “approximately equal” because of possible overlaps betsvaad M .

The probability that an antigen does not trigger any inappropriate immune response is
the chance that each clonotype in the repertoire either fails to respond (with probablity
1 — p), or responds and is naive and not specific for any self epitope (with probability
pv). This should hold for all of the: different epitopes of the antigen. Subtracting
the probability that all clones fail to respond to the antigen gives the probabilityf
mounting an appropriate immune response:

Py =(1=p+pv)Ho —(1-p)Fo. ()
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Repertoire diversity reconciles specificity with reactivity

In Figure 3 the probability of mounting an appropriate immune response is plotted as
a function of the cross-reactivity parameggrfor immune systems that need to avoid
cross-reactivity withS + M = 10° different epitopes. A low value of the recognition
probability p corresponds to a highly specific immune system; a highlue to a very
cross-reactive immune system. From left to right, the four curves represent immune
repertoires withR, = 10!, Ry = 10°, Ry = 107, and Ry = 10° clonotypes, re-
spectively. Whatever the diversity of the immune system, there is an optimal level of
cross-reactivity, above which many mistakes are made, and below which the immune
repertoire frequently fails to recognize antigens [30, 34, 62].

The three left-hand curves all have a cross-reactivity region in which the induction of
an appropriate immune response to an antigen is very likely,P?, ~ 1. The width

and height of this region increase with the diversity of the immune sy&gnit a low
repertoire diversity B, = 10°) many inappropriate immune responses are expected.
Such inappropriate responses can be prevented in large immune repertoires by being

0.871
0.67
0.47

0.27

Ly —— 10 3 N —
SPECIFIC DEGENERATE
— Cross-reactivity (log p)

Figure 3.  The probability?, of mounting an appropriate immune response against an antigen
with e = 10 different epitopes, as a function of the cross-reactiyityf lymphocytes. Cross-
reactivity with S + M = 10° self epitopes and previously encountered epitopes needs to be
avoided. If lymphocytes are very specific the immune system frequently fails to mount an immune
response against an antigen; if lymphocytes are very cross-reactive many inappropriate immune
responses are induced. Large immune repertoires can afford to be very specific, and thereby attain
a larger maximum value d?, than small immune repertoires.
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sufficiently specific. Thus, high repertoire diversity reconciles specificity (to avoid in-
appropriate immune responses) with reactivity against many antigens.

Inappropriate responses to novel antigens increase with age

0 2 4 6 8 10
— log ( StM)

Figure 4.  The probabilityP, of mounting an appropriate immune response against a new
antigen as a function of the (logarithm of the) number of epitafes M with which cross-
reactivity should be avoided. Since any immune system will encounter more and more different
epitopes with age, the horizontal axis also reflects the age of the immune system. Parameters are
Ry =107, e =10,andp =10"".

Since the adaptive immune system learns on a somatic time scale, adults tend to be better
protected against infections than naive individuals. In the probabilistic model we have
chosen to disregard any advantages conferred by memory lymphocytes. Although this
choice is artificial, it reveals an interesting insight. Figure 4 shows that as the memory
repertoire builds up with age, the chance to induce appropriate immune responses to
novel antigens decreases. On the horizontal axis we have plotted the number of epi-
topesS + M with which cross-reactivity should be avoided. Since this number can
only increase with age, it also reflects the age of the immune system. As the mem-
ory repertoire becomes more diverse, the chance increases that previous memory clones
cross-react with new antigens and induce inappropriate immune responses. This is in
good agreement with observations that childhood diseases such as measles and chicken-
pox typically cause more severe problems in adults than in children [28]. Although the
naive repertoires of adults should still be sufficiently diverse to recognize any new anti-
gen [10], we postulate that adult immune responses may be hampered by inappropriate
effector mechanisms induced by previous memory clones.
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Discussion

We have studied the hypothesis that the adaptive immune system stores the immunolog-
ical decisions made during primary immune responses in specific lymphocytes. Lym-
phocytes that have been instructed as to which type of immune response to mount recall
this instruction whenever they recognize their specific epitope. This allows the immune
system (i) to respond appropriately and promptly upon re-encounter of an antigen, even
if some of its epitopes have mutated, and (ii) to respond appropriately to whole classes
of correlated antigens, even if the immune system has been exposed to only one of their
members. We conjecture that the qualitative property of a memory dglenigs mode of
response, is essential in immunological memory [181, 209], on top of the conventional
increase in precursor frequency. An experimental comparison of naive and memory
lymphocytes supports this idea: when equal numbers of naive and memory lympho-
cytes were transferred to Rag™ mice, memory cells proliferated and performed their
effector function much faster than their naive counterparts [84].

Conventionally, the immune system is thought to be diverse to guarantee an effective
immune response to many different antigens (see for example [130]). In contrast, we
argue that the high diversity of the adaptive immune system reflects the need to store ap-
propriate modes of immunity against many different antigens in a very specific manner.
If lymphocytes were to be degenerate, inappropriate cross-reactive immune responses
would tend to be induced. According to our calculations, lymphocytes should be as spe-
cific as possible, within the constraints imposed by the size of the immune repertoire
(see also [34]). Evolution would thus select for diverse, specific immune repertoires,
with avoidance of inappropriate responses as the dominant selection pressure.

The diversity of the adaptive immune system has recently been estimated by étratila
[10]. It was shown that the human naive T cell repertoire consistd gfas.4 x 107
different T cell specificities. The upper bound of the human naive T cell diversity was
estimated to b&0?® different clonotypes. Such a repertoire diversity would be perfectly
functional according to our model. We have argued however, that the upper bound
estimated by Arstilat al.[10] is probably several orders of magnitude too low [111].

Throughout this chapter we have adopted the premise that the innate immune system is
capable of judging the infectivity of antigens [104]. Although not central to our argu-
ment, some problems remain. As pointed out by Bretscher [39], various non-pathogenic
antigens, such as xenogeneic red blood cells and rhesus factor, induce strong immune
responses even when administered without any adjuvant. Apparently, in the absence of
innate signals, naive clones that become triggered nevertheless switch to some type of
responsiveness, probably influenced by a context consisting of the local tissue environ-
ment only.

In our simulation model, we have allowed for an instructive role of memory clonotypes

in the differentiation of other, naive clones. Upon encounter of their antigen, memory
cells indeed recreate (at least part of) the cytokine context in which they themselves
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were originally stimulated [180]. There is some evidence, however, that spreading of a
memory phenotype from one clonotype to another may not always take place. The de-
creasing efficacy of repeated influenza vaccinations, for example, has been attributed to
old memory clones preventing proper stimulation of naive clonotypes specific for novel
epitopes in the vaccine [197]. Although we think the spreading of appropriate modes of
responsiveness plays an important role in adaptive immunity, our results do not depend
on this assumption. The fact that memory clones themselves have to respond appro-
priately is sufficient to explain why the adaptive immune system needs to be specific
(simulation results not shown).

It has been proposed previously that clonotypes that have switched to a regulator phe-
notype due to self tolerance induction in the thymus may educate a “second wave” of
clonotypes recognizing tissue-specific epitopes [147]. By analogy, in our model, toler-
ant clones may be helpful in preventing immune responses to antigens correlating with
tolerance-inducing self molecules. Such an instructive role of tolerant clones could,
however, be abused by pathogens. Pathogens could evade immune responses by the
mere expression of proteins cross-reacting with self proteins of their hosts. Spreading of
the tolerant phenotype to other clones recognizing truly foreign epitopes of the pathogen
would hinder the induction of a protective response. It remains unclear whether tolerant
clones specific for self epitopes can indeed obstruct the induction of an immune response
against a pathogen. Induction of immune responsiveness by innate signals may overrule
absence of responsiveness taught by tolerant clones. Additionally, the large population
diversity of MHC molecules [21] may thwart immune evasive strategies based on self
mimicry.

Since the theoretical number of different epitopes by far exceeds the size of any immune
repertoire, clonotypes need to recognize multiple epitopes in order to ensure an immune
response against any pathogen [130]. Mason [130] has estimated the total number of
differentimmunogenic epitopes to be of the orde6of 10'2, and calculated that each
clonotype in a repertoire d&, = 10® clones should recognize at ledsk 10° different
epitopes. Thus, it was concluded that T cells have to be “highly cross-reactive.” Our
conclusion that lymphocytes should be highly specific (see also [30, 34]) seems to flatly
oppose the conclusion drawn by Mason [130]. Both are fully consistent, however. In the
same repertoire witl, = 10® clonotypes and our “optimal” specificity of = 10~
(equation (2) withe = 1), any epitope would trigger only ten clones, but any clone
would recognize0~" x 6 x 10'2 = 6 x 10° different epitopes.

Summarizing, our models illustrate that specificity is a prerequisite of the adaptive im-

mune system. Reliable storage of immunological decisions to many antigens in differ-
entiated clones requires a highly diverse immune repertoire.
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Chapter 4

Abstract

Although major histocompatibility (MHC) molecules are extremely polymorphic, the
typical number of different MHC molecules expressed per individual is quite limited. A
commonly used explanation for this limited individual MHC diversity is that excessive
MHC expression would deplete the T cell repertoire during self tolerance induction. Re-
examining a previously proposed model for the optimum number of MHC molecules,
we here dispute this explanation. We show that depletion of the immune repertoire by
expression of extra MHC molecules only occurs at an unrealistically high MHC diversity
per individual. Two alternative explanations for the limited individual MHC diversity
are proposed. Firstly, because MHC molecules bind their ligands with great degeneracy,
expression of more than 10-20 different MHC molecules per individual hardly increases
the chance to present and respond to antigens. Secondly, we show that a low individual
MHC diversity helps to avoid autoimmune responses against self antigens that fail to
induce tolerance.

Introduction

Major histocompatibility (MHC) molecules, which are responsible for peptide presen-
tation to the adaptive immune system, are known for their high degree of polymor-
phism. For some MHC loci more than one hundred different alleles have been identified
[166, 223]. Nevertheless, the mutation rate of MHC molecules is comparable to that of
most other genes [164, 184]. Since MHC genes are codominantly expressed, MHC het-
erozygous individuals can present a larger variety of peptides to the immune system than
homozygous individuals can. MHC heterozygous individuals are therefore thought to
have a selective advantage, being better protected against infections [68, 99-101, 212].
Indeed, in a study of patients infected with HIV-1, it has been shown that the degree of
heterozygosity of MHC class | loci correlates positively with a delayed onset of AIDS
[46].

In view of the role of MHC molecules in induction of immune responses, it is surprising
that each individual expresses quite a limited number of different MHC genes. Just like
favouring MHC heterozygosity, one would expect evolution to favour the expression
of many MHC genes per individual. In reality, however, each human being expresses
only three classical MHC class | genes (HLA A, B, and C), and three MHC class I
gene pairs (coding for the and 3 chains of HLA DP, DQ, and DR). A heterozygous
individual can therefore maximally express six different class | MHC molecules and
twelve different class Il MHC molecules (due to trans-association ofitaed3 chains
within HLA DP, DQ, and DR) [167]. It has previously been proposed that the optimal
number of MHC molecules per individual is limited due to self tolerance induction in
the thymus. During negative selection, clonotypes that recognize thymic MHC—peptide
complexes with too high an affinity are deleted or rendered tolerant by other mechanisms
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[155]. Excessive expression of MHC molecules might thus lead to depletion of the T
cell repertoire [54, 62, 106, 157, 164, 211, 222].

Here we re-examine a previously proposed mathematical model for the optimal number
of MHC molecules per individual [157]. We show that it is unlikely that the limited indi-
vidual MHC diversity results from T cell deletion during self tolerance induction. Since
MHC molecules positively select basically non-overlapping parts of the T cell repertoire
(as has also been suggested by Bevan [24] and Fink & Bevan [76]), increasing an individ-
ual's MHC diversity tends tancrease the functional T cell repertoire [70]. We propose
two alternative explanations for the limited expression of MHC genes. Firstly, thanks
to the degeneracy of MHC—peptide binding [83, 108, 132], increasing an individual's
MHC expression beyond 10-20 different molecules hardly increases the likelihood that
antigens are presented. Secondly, we show that the avoidance of autoimmune responses
against ignored self antigens yields a selection pressure decreasing an individual's MHC
diversity.

Re-examining the optimal number of MHC molecules

Nowaket al.[157] developed a probabilistic model to test the verbal argumentthat T cell
deletion due to self-tolerance induction limits the individual MHC diversity. The optimal
number of different MHC molecule&! per individual was calculated by maximizing
the chanceP; to make an immune response against a single antigen (see also [62]). If
antigens typically express different (immuno-dominant) epitopes, this charéeis

given by:

P=1-(1-q+q(l—pf)yM. (1)

Here,q is the chance that an MHC molecule presents a randomly chosen pdpiile,
the size of the functional immune repertoife. the number of clones surviving both
positive and negative selection, gnis the chance that a clonotype recognizes a random
MHC—peptide complex. No immune response is induced if on all MHC molecules, all
epitopes are either not presented (with chaheeq), or presented but not recognized
by any of theR clonotypes in the functional repertoire (with charé¢e — p)*). Equa-

tion (1) reflects the positive effect of expression of many different MHC molecules on
the presentation of antigens.

The functional immune repertoit® in equation (1) is itself a function af/. Expres-

sion of many different MHC molecules reduces the functional T cell repertoire due to
negative selection. On the other hand it enlarges the repertoire due to positive selection:
only T cells that bind thymic MHC—peptide complexes with sufficient affinity enter the
functional T cell repertoire [76, 224]. Nowadt al.[157] modelled the net influence of
positive and negative selection on the functional repertoire as:

R=Ro(1-(1-n")1-0)", )
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Figure 1.  The chancE; to mount an immune response as a function of the number of different
MHC molecules per individuaM for the parameter values proposed by Nowakl.[157]. (a)

The low optimum following from the model by Nowadt al. [157] (equations (1-2)) is due to

too stringent negative selection, in which nonfunctional clones that fail to be positively selected
on a particular MHC molecule can nevertheless be negatively selected on that MHC molecule.
(b) Correction of this model (equations (3-5)) yields a much higher maxifhalalue with a

wide maximum, coming down only at very high individual MHC diversities. Parameters are:
e =1,¢ = 0.001, p = 108, Ry = 10'°. In the original model by Nowalet al. [157]

h = 0.0001 andt = 0.05 (a). For one MHC moleculeX/ = 1) these parameters are equivalent
toh* = 9.5 x 10~ ° andt* =5 x 10~ ° in the corrected modebj.

whereh was defined as the chance that a clone is positively selected on a random MHC
molecule,t as the chance that a positively selected clone is negatively selected on a
random MHC molecule, an&, as the total T cell repertoire before tolerance induction.

In order to enter the functional T cell repertoire, clones need to be positively selected
on at least onef the MHC molecules, but need to avoid negative selectiomlbof

the MHC molecules of a host. T cells that fail to be positively selected on a particular

MHC molecule, however, run at least a lower risk, and presumably no risk at all, to be

negatively selected on that MHC molecule [7, 11, 186]. Thus, there is a problem with

equation (2), which assumes that positive and negative selection on an MHC molecule
are independent processes.

This problem becomes apparent when the chafce® mount an immune response
against an antigen is plotted (see Figuag. 1At the optimum reported by Nowadt al.

[157], having40 different MHC molecules, the chance to respond to a single epitope
is only P, = 0.002. This low immunity chance results from too stringent negative
selection. The immune repertoire is severely impaired, because T cells that fail to be
positively selected on a particular MHC molecule can nevertheless be negatively selected
on that MHC molecule. The negative selection term in equation (2) should instead
only involve those MHC molecules that positively select a particular T cell. Having
40 different MHC molecules and a positive selection probabilityaof 0.0001, this
typically amounts to a single MHC molecule per clonotype.
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Surprisingly, the solution to this problem is a reparameterization of equation (2). Let
us first consider the fraction of thymocytes that is tolerized (with chahger MHC
molecule) by negative selection. Subsequently, we define the clhértbat a T lym-
phocyte surviving negative selection is positively selected on a random MHC molecule.
The functional repertoire is then given by:

R=Ro(1-t)M(1—(1-h""), ©)
which is identical in form to equation (2), but has a different interpretatiat ahdh*.

Similarly, equation (1) should be changed such that clonotypes only recognize peptides
presented by those MHC molecules of the individual on which they were positively
selected. Let us definB* as the number of clonotypes from the functional repertoire
that is expected to be positively selected by a particular MHC molecule of the individual,
ie.

R* = h*Ro(1 —t")M . (4)
The chance?; to mount an immune response against a random antigen then becomes:
Pi=1—(1—q+q(1—p")*)M, (5)

wherep* is the probability that a clonotype in the functional repertoire recognizes a
random peptide presented by an MHC molecule that the clone was positively selected
on,i.e.p* = p/h*.

Figure b illustrates how these corrections influence the results by Navak [157].

If the parameter values agfandh used by Nowalet al. [157] are translated into the
corresponding values fot andh* in the corrected modélthere is a whole range o
values — varying from approximately 5000 to>210° different MHC molecules per
individual — for which immune responses are very likely to occw, P; ~ 1. For

the parameter setting used by Nowetkal. [157], in which0.01% of all T cells passes
positive selection and.0005% of all T cells is negatively selected per MHC molecule,
negative selection thus fails to explain why the number of different MHC molecules per
individual is so limited.

Better parameters for thymic selection

The parameter estimates used by Nowa#ll.[157], however, are not in line with recent
experimental data. It has been estimated that approxim@@élyof all thymic T cells
fails to be positively selected on any of the MHC molecules of a host [221]. Atieé&st

1The parameter setting used by Nowetlal.[157] wash = 0.0001 andt = 0.05, i.e. per MHC molecule
0.01% of all T cells passes positive selection @n€005% of all T cells is negatively selected. For one MHC
molecule, this translates into* = h(1—t) = 9.5x 10~% andt* = th = 5 x 10~ in the corrected model.
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Figure 2. The chanc®; to mount an immune response as a function of the number of different
MHC molecules per individuaM for an experimentally based parameter setti)y.The model

by Nowaket al. [157] (equations (1-2), dashed curve) yields a much lower and more sharply
defined optimum than the corrected model (equations (3-5), solid curve). Parameters=are:
0.05 [108], p = 108, Ry = 10'° [157], ande = 10 [62]. In the original model (dashed
curve)h = 0.01, and¢ = 0.5, whereas in the corrected model (solid cur#€) = 0.005, and

t* = 0.005. (b) The model by De Boer & Perelson [62] did not involve positive selection. To
account for a thymic output ¢f% (again with ten different MHC molecules), negative selection
needs to functionally delete as much 2% of the repertoire per MHC molecule. The curve
(equations (3-5)) shows that in the absence of positive seledtior=(1) and the presence of
severe negative selectioti (= 0.26) one obtains a low optimal number of MHC molecules per
individual and a high immunity chande .

of all positively selected cells has been shown to undergo negative selection in the
thymus [221]. The remaining% of all thymic T cells ends up in the mature repertoire
[60, 194, 224]. Since an individual has typically of the order of ten different MHC
molecules, these estimates would translate kiite= 0.005 and¢* = 0.005 per MHC
molecule in the corrected model (equations (3-5)). In the original model by Netedk

[157] (equations (1-2)) it would amount ko= 0.01 per MHC molecule. Thus, if there

are ten different MHC molecules, positively selected lymphocytes are again typically
selected on only one of them. To account fdi0& deletion of all positively selected

cells due to negative selection, the chance to be negatively selected on such an MHC
molecule should be = 0.5.

Figure 2 illustrates that also for these experimentally based parameters, the original
model [157] (dashed curve) yields a lower optimal number of MHC moledulemd a

lower maximal immunity chance; than the corrected model (solid cunve)t T cells

are only negatively selected on MHC molecules on which they are also positively se-
lected, good protection is achieved for an MHC diversity between 10 and 2000 different
molecules.

2For these parameters, the percentage of T cells surviving thymic selection by ten different MHC molecules
is 5% in the corrected model ar@l01% in the original model [157].
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Our model thus disputes the common idea that T cell deletion during negative selection
explains why the individual MHC diversity is limited [54, 62, 106, 157, 164, 211, 222].
Since different MHC molecules select basically non-overlapping sets of T cell clohes (
[24, 76]), addition of extra MHC molecules tends to enlarge the functional repertoire
(see also [70]). Deletion of functional T cells by adding extra MHC molecules only
occurs at unrealistically high individual MHC diversities. A low optimal number of
MHC molecules can only be found if it is assumed that lymphocytes are very likely to
be positively selected, as was done by De Boer & Perelson [62] (see Figuia 2heir
model, all deletion occurring in the thymus was due to negative selection. Obviously, in
that case depletion of the T cell repertoire occurs even at low MHC diversities. A low
optimal MHC number can, however, not be reconciled with the experimental finding
that 90% of the T cell repertoire dies due to lack of positive selection [221]. Why
then are there so few MHC molecules per individual? An interpretation suggested by
Figure 2 is that, thanks to the degenerate binding of peptides to MHC molecules, a
limited individual MHC diversity is simply sufficient to have a good chance to present
and respond to antigens.

Avoiding inappropriate responses

Another possibility is that the number of different MHC molecules per individual is
limited to avoid the induction of inappropriate, cross-reactive immune responses. In-
appropriate responses occur when different antigens requiring different modes of re-
sponsiveness trigger the same T cell clone [31, 34]. An example of an inappropriate
response is when a self-specific clonotype that is ignorant of its self epitope is triggered
by a cross-reacting foreign epitope and subsequently induces an autoimmune disease
[12, 159, 160, 232]. The likelihood of such inappropriate immune responses increases
with the number of epitopes that are presented to the immune system. Once there are
sufficient MHC molecules to ensure presentation of antigens, having a greater diversity
of MHC molecules may thus be detrimental.

To study this hypothesis we extend the model described above with the cRahte

stay tolerant to all self peptides. This is expressed as the chance that during an immune
response, on all of th& MHC molecules of a host, foreign epitopes are either not pre-
sented (with probability —¢), or presented but not recognized by any of the responding,
ignorant self-specific clonotypes (with probabilitil — p*a)%"):

Pi=(1-q+q(l-pa))M. (6)

The probability that a clone from the functional repertoire is ignorant and self-spécific

SNote that equation (6) checks for each peptide-MHC complex from a foreign antigen whether the re-
sponding clones are autoreactive. Thus equation (6) gives an underestimatipif oiones recognize mul-
tiple peptide—MHC complexes coming from the same foreign antigen. In our parameter setting, this chance
is negligible forA/ < 10° since the probability that a particular clone recognizes an MHC—peptide complex
during challenge with one antigenig*gep* < 5 x 10~ 4.
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is given by:
a=1-(1-p")sM (7)

whereS; denotes the number of self epitopes that fail to induce self tolerancel/énd
denotes the expected number of MHC molecules that positively select one particular
clone from the functional repertoire:
Mh*
M= 8
T—a-h") ©

Note that the decrease I with increasingl/ is due to (i) the increasing presentation of
foreign epitopes, and (ii) the increasing fraction of ignorant, self-specific lymphaeytes
due to the increasing number of peptide—-MHC complexes formed by self antigens that
fail to induce tolerance. The chanég to mount an appropriate response to an antigen
is the chance’, to stay tolerant minus the probability that all clones fail to respond:

Pa:Pt_(]-_Pi), (9)

whereP; is given by equation (5).
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0.67
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Figure 3. The chancE, to mount areppropriatémmune response, as defined by equations (3—
9) (solid curve), as a function of the number of different MHC molecules per indivitiiaAs

a reference we have also plotted tRecurve (dashed curve, equations (3-5)). Parameters are:
g=0.05p=10"% Ry =10 e = 10, h* = 0.005, t* = 0.005, andS; = 2 x 10*.

Figure 3 shows that involving the chance to mount an autoimmune response (solid curve)
yields a sharply defined, low optimal MHC numbég. approximately eight MHC
molecules per individual. Yet, the chanBg to make an appropriate immune response

in that optimum remains close to one. Apparently, the system can reconcile the need to
respond to many antigens with the need to avoid cross-reactive, autoimmune responses,
by selecting for a relatively low MHC diversity. At the left-hand top of the curve,
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adding MHC molecules hardly increases the chaRc® mount an immune response
against an antigen (see the dashed curve), while it significantly decreases thehance
to stay self tolerant. Interestingly, the curve in Figure 3 has a second peak at a high
number of different MHC molecules per individual. At this right-hand peak, both self
and foreign epitopes are presented as many different MHC—peptide complexes. The im-
mune system then finds a balance between prevention of autoimmunity due to a severely
depleted repertoire, and immunity against foreign antigens thanks to the formation of
many different peptide—MHC complexes per epitéhis scenario is extremely waste-

ful, since at the right-hand peak ortly)6% of the total T cell repertoire survives thymic
selection.

If autoimmunity is less of a problem, th, curve no longer has two peaks. For ex-
ample, if lymphocytes are highly specifie.§. p = 10~?), the risk of autoimmunity

by cross-reactions becomes negligible, and#heand P; curves become virtually in-
distinguishable. Nevertheless, Figure 3 demonstrates that an increase in autoimmunity
due to cross-reactions is a possible side-effect of expression of a large individual MHC
diversity.

Discussion

We have investigated why the number of different MHC molecules expressed per indi-
vidual is so limited as compared to the large population diversity of MHC molecules.

It is often quite loosely argued that individuals should not express too many different
MHC molecules as this would lead to T cell repertoire depletion during self tolerance
induction (seee.g. [54, 106, 164, 222]). Nowakt al. [157] translated this verbal ar-
gument into a mathematical model involving both positive and negative selection of T
cells by MHC molecules in the thymus. We have re-examined this model [157], and
have shown that it involved too stringent negative selection. T cells that failed to be
positively selected on certain MHC molecules could nevertheless be negatively selected
on those MHC molecules.

The present study shows that if T cells are only negatively selected on MHC molecules
on which they could also be positively selected, adding MHC molecules tends to enlarge
the functional T cell repertoire. Extra MHC molecules mainly tolerize lymphocytes that
were not positively selected anyway in the absence of those MHC molecules. There
is recent experimental support for a net enrichment of the T cell repertoire in MHC
heterozygous hosts [70]. Our calculations show that depletion of the T cell repertoire
by addition of extra MHC molecules is expected to occur only at unrealistically high
MHC diversities. A low optimal number of MHC molecules can only be obtained if
(nearly) all T cell deletion occurring in the thymus is due to negative selection, as was
proposed by Matzinger [134] and modelled by De Boer & Perelson [62]. There is a

4The position and height of the right-hand peak should be taken with care since our equations may become
imprecise at very high values aff.
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large body of data, however, showing that most thymic T cell deletion is due to lack
of interaction with self MHC molecules [76, 221, 224]. We therefore conclude that T
cell deletion during self tolerance induction fails to explain why the typical number of
different MHC molecules per individual is so limited.

Unfortunately, direct estimates for the fraction of T cells that are positively and nega-
tively selectedper MHC moleculeare not available. We have therefore used the total
estimates of positive and negative selection [221] and the thymic output [60, 194, 224]
to calculate the positive and negative selection parameters per MHC molecule in our
model, assuming that an individual typically expresses ten different MHC molecules.
This may seem a circular argument as we have thereby forced the equations to give re-
alistic results at an individual diversity of ten MHC molecules. The bias works the other
way around, however, because we find that T cell depldadsto explain an optimal
diversity of about ten different MHC molecules per individual.

Throughout our calculations, we have assumed that T cells can only recognize antigens
presented on MHC molecules on which they could also be positively selected. The
importance of T cell receptor binding to the MHC part of peptide—MHC complexes has
been demonstrated experimentally. About 63% of the binding energy of a T cell receptor
to a peptide—-MHC complex has been shown to be directed at the MHC helices, while the
other 37% is directed at the presented peptide [125]. Moreover, it has been demonstrated
that T cell avidity for an MHC molecule contributes significantly to T cell specificity,
and that it can even compensate for lack of avidity for the peptides presented by the
MHC molecule [183].

Our model suggests that the limited MHC diversity per individual may be a direct con-
sequence of degenerate MHC—peptide binding [83, 108, 132]. Once an individual ex-
presses of the order of ten different MHC molecules, the selection pressure for more
MHC diversity vanishes. This is in agreement with the fact that hardly any correlation
has been found between particular MHC haplotypes and resistance against particular
infectious diseases [171, 231]. Expression of 10-20 different MHC molecules per in-
dividual may be sufficient to present and respond to virtually any antigen. In contrast
to the lack of correlations between MHC molecules and resistance against infectious
diseases, strong correlations have been found between certain MHC haplotypes and sus-
ceptibility to autoimmune diseases [153, 231]. Such correlations are to be expected if
autoimmunity is due to mimicry between foreign-peptide—-MHC complexes and self-
peptide-MHC complexes. We have extended our model with autoimmunity, by includ-
ing ignorant self-specific clonotypes that can be triggered by foreign antigens. Our
analysis demonstrates that avoidance of cross-reactive, autoimmune responses yields a
selection pressure for a limited individual MHC diversity.

Despite the fact that different selection pressures may limit an individual’s MHC diver-
sity, we will show in Chapter 5 that there will be selection for a large diversity of MHC

molecules at the population level. A large population diversity of MHC molecules al-
lows different individuals to respond differently to identical antigens, thereby giving
protection against coevolving pathogens.
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Introduction

There are ample examples of pathogens adapting towards evasion of immune responses.
Viruses such as influenza rapidly alter their genetic make-up. Each year there appear to
be sufficient susceptibles lacking memory lymphocytes from previous influenza infec-
tions to give rise to a new epidemic [36, 197]. During HIV infection, such alterations
occur at an even faster rate, enabling the virus to repeatedly escape from the immune
response within a single host [156]. Hosts, on the other hand, are selected for coun-
teracting immune evasive strategies by pathogens. Since the generation time of hosts
is typically much longer than that of pathogens, these host adaptations are expected to
evolve much more slowly, however.

A well-known example commonly thought to reflect adaptation of hosts to pathogens
is the polymorphism of major histocompatibility (MHC) molecules. MHC molecules
play a key role in cellular immune responses. When a pathogen infects a host cell,
the proteins of the pathogen are degraded intracellularly, and a subset of the resulting
peptides is loaded onto MHC molecules, which are transported to the cell surface. Once
presented on the surface of a cell in the groove of an MHC molecule, T lymphocytes can
recognize the peptides of a pathogen and mount an immune response against them.

The population diversity of MHC molecules is extremely large: for some MHC loci, over
one hundred different alleles have been identified [166, 223]. Nevertheless, the mutation
rate of MHC genes does not differ from that of most other genes [164, 184]. Studies of
nucleotide substitutions at MHC class | and class Il loci have revealed that there is Dar-
winian selection for diversity at the peptide binding regions of MHC molecules. Within
the MHC-peptide-binding regions, the rate of nonsynonymous substitutions is signifi-
cantly higher than the rate of synonymous substitutions; in other regions of the MHC
the reverse is true [99, 100, 164, 165]. Compared to the enormous population diversity
of MHC molecules, their diversity within any one individual is quite limited (see Chap-
ter 4). Humans express maximally six different MHC class | genes (HLA A, B and C),
which are codominantly expressed on all nucleated body cells. Additionally, there are
maximally twelve different MHC class Il molecules (HLA DP, DQ and DR), which are
expressed on specialized antigen-presenting cells [167]. The complete sequence of the
human MHC has been unraveled recently [145]. Despite the high population diversity
of MHC molecules, MHC genes appear to be extremely evolutionarily conserved. Al-
lelic MHC lineages have persisted over long evolutionary time spans, often predating the
divergence of present-day species [112, 113, 118, 136]. As a consequence, individual
MHC alleles from a species tend to be more closely related to particular MHC alleles
from other species, than to the majority of alleles occurring within the species [165].

Due to the high population diversity of MHC molecules, different individuals will typ-
ically mount an immune response against different subsets of the peptides of any par-
ticular pathogen. Pathogens that escape from presentation by the MHC molecules of a
particular host, may thus not be able to escape from presentation in another host with
different MHC molecules. MHC polymorphism may therefore seem a good strategy of
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host populations to counteract escape mechanisms of pathogens. This is a group selec-
tion argument, however, which fails to explain how such a polymorphism could have
evolved [27].

The mechanisms behind the selection for MHC polymorphism have been debated for
over three decades. A commonly held view is that MHC polymorphism is due to selec-
tion favouring heterozygosity. Since different MHC molecules bind different peptides,
MHC heterozygous hosts can present a greater variety of peptides, and hence defend
themselves against a larger variety of pathogens compared to MHC homozygous indi-
viduals. This hypothesis is known as the theory of “overdominance” or “heterozygote
advantage” [68, 99-101, 212]. A recent study of patients infected with HIV-1 supports
this theory. It was shown that the degree of heterozygosity of MHC class | loci corre-
lated with a delayed onset of AIDS. Individuals who were homozygous at one or more
loci typically progressed more rapidly to AIDS [46].

It has been argued that selection for heterozygosity alone cannot explain the large MHC
diversity observed in nature [165, 230]. Although there is general agreement upon the
significance of overdominant selection, it has been proposed that additional selection
pressures should be involved in the maintenance of the MHC polymorphism [165, 230].
A frequently studied additional mechanism is “frequency-dependent selection.” This
theory states that evolution will favour pathogens that avoid presentation by the most
common MHC molecules in the host population. Thus there will be a permanent se-
lection force favouring hosts that carry raeg. new, MHC molecules. Since hosts
with rare MHC alleles have a higher fitness, the frequency of rare MHC alleles will in-
crease, and common MHC alleles will become less frequent. The result is a dynamic
equilibrium, maintaining a polymorphic population [19, 27, 195, 202].

Both selection for heterozygosity and frequency-dependent selection have been mod-
elled extensively. Most models address either of the two hypotheses, and are so-called
“top-down” models. Assuming that heterozygous individuals have a higher fitness than
homozygous individuals (see for example [212]), or assuming that individuals carrying
rare alleles have a higher fithess than individuals carrying common alleles (see for ex-
ample [212, 230, 231]), it has been shown that an existing MHC polymorphism can be
maintained.

Here we take a more mechanistic approach by making no assumptions about selective
advantages or disadvantages. We develop a computer simulation to study the coevolu-
tion of diploid hosts with haploid pathogens. Our model allows us to study the effect of
selection for heterozygosity and frequency-dependent selection on the polymorphism of
MHC molecules, by comparing simulations in which pathogens do coevolve with sim-
ulations in which they do not. Starting from a population diversity of only one MHC
molecule, we show that a diverse set of functionally different MHC molecules is ob-
tained. Our analysis demonstrates that selection involving rapid evolution of pathogens
can account for a much larger MHC diversity than selection for heterozygosity alone
can.

53



Chapter 5

Simulating the coevolution of hosts and pathogens

We have developed a genetic algorithm [96] to investigate the coevolution of pathogens
and MHC molecules. Genetic algorithms are frequently applied as problem-solving
tools, using the principles of evolution to find solutions in for example optimization
problems. Instead, we use them here as a simulation of evolution (see also [79, 161]),
and thereby take them “right back to where they started from” [103].

In our simulations, we consider a population§f,; diploid hosts, each represented

by a series of bit strings coding for two allelesiét MHC loci. Pathogens are haploid

and occur inNg independent species of maximalN; different genotypes. For sim-
plicity, we omit the complex process of protein degradation into peptides, and model
each pathogen byWp bit strings representing the set of peptides that can possibly be
recognized by a host. Peptide presentation by an MHC molecule can occur at different
positions on the MHC molecule, and is modelled by complementary matching. Peptides
areL p bits long, and MHC molecules afg,, bits long. For each peptide of a pathogen

we seek for each MHC molecule of a host the position at which the peptide finds the
maximal complementary match. If the number of complementary bits at this position is
at least a predefined threshdlg, the peptide is considered to be presented by that par-
ticular MHC molecule. In the simulations presented here, pathogens condistef 20
different peptides, which arBp = 12 bits long. MHC molecules aré,; = 35 bits

long, and present a peptide if at ledst = 11 out of 12 peptide bits match with the
MHC. Thus, the chance that a random MHC molecule presents a randomly chosen pep-
tide is7.3%%, and the chance that a pathoge\gf = 20 peptides escapes presentation

by a randomly chosen MHC molecule 3 = 22%. Hosts carrying different MHC
molecules will hence typically present different peptides of the pathogens.

The quality of different MHC molecules varies. Some MHC molecules may be more
stably expressed on the surfaces of host cells than others, or fold into a better peptide-
binding groove. To model such MHC differences, a random quality pararieter

@ < 1 (drawn from a uniform distribution) is attributed to every MHC molecule in
the population. These quality differences between MHC molecules prevent extensive
drift in simulations with random pathogens. The fitness contribution of a host—pathogen
interaction is determined by the quality of the best MHC molecule that is able to present
a peptide of the pathogen. We omit the role of lymphocytes by assuming that every
peptide that gets presented is recognized by at least one functional clonotype. The role
of lymphocytes, and in particular the (functional) deletion of lymphocytes during self
tolerance induction, is studied in a follow-up paper (work in progress, see also [34]).

At each generation, every host interacts with every genotypically different pathogen. To
account for the shorter generation time of pathogens, we can allow for several pathogen

1The chance that a random peptide binds at a random, predefined position of an MHC mol&gule is
Zf:PLT (LiP) (0.5)LP . Thus, the chance that a random MHC molecule presents a randomly chosen peptide
is1—(1— Py)km—Lp+l = 73%.
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generations per host generation. The fitngssf a host is proportional to the fraction
of pathogensiit is able to present:

Npath

fn= Z Qi/Npatn (1)

i=1

where N4, denotes the total number of different genotypes in the pathogen popula-
tions. (); denotes the quality of the best MHC molecule presenting at least one peptide
of pathogeri; we set; to zero if none of the MHC molecules of a host present pathogen
i. Similarly, the fitness, of a pathogen is proportional to the fraction of hosts that the
pathogen can infect without being presented on the host's MHC molecules:

Nhost

fpzl_ Z Qj/Nhost (2)
j=1

where(); is the quality of the best MHC molecule of hgsthat presents at least one
peptide of the pathogen. Agaify; is set to zero if none of the MHC molecules of host
j present the pathogen.

At the end of each generation all individuals are replaced by fitness-proportional re-
production. The sizes of the host population and all pathogen species remain constant.
All fitnesses are rescaled such that the highest fitness in each population/species be-
comes one and the lowest becomes zero. The different individuals in the host popu-
lation, and the different genotypes in each pathogen species reproduce according to a
fithess-dependent reproduction function:

Py = — 3)
() =
Ej:le 75

where P, (i) is the reproduction probability of hostor pathogen genotype f. de-

notes its rescaled fitness, ands the total number of different individuals in the host
population or genotypes in the particular pathogen species. In our simulations, the se-
lection coefficients is set to one so that the reproduction chance of the fittest individ-
ual is 2.73 times higher than that of the individual with the lowest fitness. Pathogen
genotypes reproduce asexually; new-born pathogens come from parents of the same
pathogen species. New-born hosts have two parents, each of which donates a ran-
domly selected MHC allele. During reproduction point mutations can occur. Both
peptides and MHC molecules have a mutation chance ef 0.1% per bit per gen-
eration. The chance for a new-born host to receive a nonmutated MHC molecule is thus
(1 — p)t» = 96.6%, and the chance for a new-born pathogen to receive a nonmutated
peptide is(1 — p)~* = 98.8%. One cycle of fitness determination, reproduction, and
mutation defines a generation. We study evolution over many generations.
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A dynamically maintained polymorphism

The simulation model allows us to study the mutual influence of host and pathogen co-
evolution on the composition of MHC molecules in the host population, and peptides in
the pathogen species. In particular, we will (i) study whether a polymorphic set of MHC
molecules can develop from an initially nondiverse host population, and (i) investigate
the relative roles of frequency-dependent selection and selection for heterozygosity, in
maintaining the polymorphism of MHC molecules.

All simulations are initialized with random pathogen genotypes, and all hosts initially
carry identical MHC molecules.e. there is neither variation between MHC molecules
within the hosts, nor between the hosts. Two examples of such simulations are shown
in Figure 1, in which the average fitnesses of the pathogens and the hosts are plotted as
a function of the host generatienTo study the effect of the typically short generation

time of pathogens, we consider two different cases. In one of them (Figa@sdb)

the pathogens evolve just as fast as the hosts, while in the other case (Figaneki}l

the pathogens evolve one hundred times faster than the hosts. Since there is no initial
MHC diversity, the pathogens immediately attain a relatively high fitness, and the hosts
a correspondingly low fitness, in both simulations. Any pathogen that is able to infect
one host s able to infect all hosts, and hence rapidly takes over the pathogen population.
Under this selective pressure caused by the pathogens, the hosts develop an MHC poly-
morphism (as will be shown in the next section), and in so doing regain a high fitness.
After about 300 host generations a quasi-equilibrium is approached which is followed
until generationt = 1000. A similar equilibrium is attained if the host population is
initialized with random MHC molecules (not shown). The average fithesses during the
quasi-equilibrium depend on the relative generation time of the pathogens. The faster
the pathogens evolve, the higher their average fitness, and the lower the average fitness
of the hosts (Figure 2). Once the pathogens evolve one hundred times faster than the
hosts, the average pathogen fithess saturates.

The quasi-equilibrium that is approached is a dynamic one. AsRe@ Queersitua-

tion, hosts and pathogens are continually counteracting each other by adaptation. This
follows from additional simulations in which fromh = 1000 onwards, further evolu-

tion of either the hosts or the pathogens is prevented. If the pathogens and the hosts
evolve equally fast, and the evolution of the hosts is subsequently halted, the pathogens
markedly increase their fitness (Figu@® 1Such an increase of the average pathogen fit-
ness is not observed, however, if the pathogens were evolving one hundred times faster
than the hosts before the evolution of the hosts was stopped (FigureTheir short
generation time apparently enabled the pathogens to “completely” adapt during each
host generation even before the host population was frozen. Stopping the evolution of
the hosts then hardly makes a difference. Remarkably, once the evolution of the hosts
is stopped, the pathogens that used to evolve as fast as the hosts attain a significantly
higher average fitness (Figura)than the pathogens that used to evolve faster than the
hosts (Figure @). The reason for this difference will be addressed in the next section.
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Figure 1.  The average fitnesses of pathogans)(and hostslf, d) in a simulation in which

the pathogens evolve as fast as the hagt)( and a simulation in which the pathogens evolve

one hundred times faster than the hostsd), plotted against the host generatibnNote that

by equations (1) and (2), the average host and pathogen fitnesses in a single simulation always
sum up to one. The simulations are initialized with MHC-identical hosts and random pathogens.
Coevolution is stopped at host generatiog 1000. We either stop the evolution of the hosts, and

let only the pathogens go on evolving, €), or we stop the evolution of the pathogens, and let
only the hosts go on evolvindp(d). The grey lines denote the average fitness of randomly created
pathogens evaluated on the fixed host populations of genetatot000 (&, c), and the average
fitness of random, heterozygous hosts evaluated on the fixed pathogen populations of generation
t = 1000 (b, d). Parameters areVyost = 200, N, = 1, Ns = 50, N¢ = 10, Np = 20,

Lp =12, Ly =35, Ly = 11.

Likewise, if the evolution of the pathogens is stopped and only the hosts go on evolv-
ing, the hosts evolve such that they can resist almost all pathogenthey approach
fitness one (Figuredilandd). Pathogens that evolve in a non-evolving host population
attain a larger average fitness than random pathogens (see the grey lines in Fagures 1
andc). Similarly, evolving hosts in the presence of a hon-evolving pathogen population
attain a higher fitness than random, heterozygous hosts (see the grey lines in Figures 1
andd). Thus, evolving hosts and pathogens have the capacity to adapt to non-evolving
populations of pathogens or hosts, respectively.
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Figure 2.  The average fitnesses of pathogehsuid hostsk) over the last one hundred gen-
erations of the coevolution.é. betweent = 900 and¢ = 1000). Results are shown for four
different simulation types: F = fixed (non-evolving) pathogens, 1 = pathogens evolving as fast
as the hosts, 10 = pathogens evolving ten times faster than the hosts, 100 = pathogens evolving
one hundred times faster than the hosts. In the coevolutionary simulations there are typically two
different genotypes per pathogen species (not shown). We therefore initialized the F simulation
with two randomly chosen pathogen genotypes per species. The error bars denote the standard
deviations of the average host and pathogen fithesses in time. For parameters see the legend of
Figure 1.

Host and pathogen evolution

As soon as a coevolutionary simulation is started, the number of different MHC
molecules in the host population rapidly increases to reach a high quasi-equilibrium
diversity (see Figure 3). This diversification also occurs if the pathogens do not evolve
at all. In that case, the high population diversity of MHC molecules is due to selection
favouring heterozygous hosts. The faster the pathogens evolve, however, the larger the
MHC population diversity becomes (see Figueg.4

To check if the MHC molecules arising in a host population are really different from
each other, and do not differ at a few mutations only, we have calculated the average
genetic distance (Hamming distance) between all different MHC molecules in the host
population (Figure B). Evolution of the pathogens appears to increase MHC diversity;
the shorter the generation time of the pathogens, the larger the genetic distance between
the MHC molecules of the hosts. Thus, rapidly coevolving pathogens trigger selection
for a functionally diverse set of MHC molecules.

In order to measure to what extent the pathogens evade presentation on the MHC
molecules of the hosts, we have calculated the average fraction of peptides from the
pathogen genotypes that is presented by the MHC molecules in the host population. The
faster the pathogens evolve, the better their evasion of presentation by the hosts’ MHC
molecules (see the patterned bars in Figure 5). If the pathogens evolve, the average frac-
tion of peptides that is presented by the MHC molecules of the hosts is smaller than the
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Figure 3.  Evolution of MHC polymorphism. The number of different MHC molecules in the
host population plotted from the start of the coevolutior=( 0) until host generatiomn = 300.

The generation time of the pathogens is one hundred times shorter than that of the hosts. For
parameters see the legend of Figure 1.
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Figure 4.  MHC molecules become functionally polymorphia) The average number of dif-
ferent MHC molecules in the host populatiob) The average of the Hamming distances between
all possible pairs of different MHC molecules in the host population. For parameters and axis
labels see the legends of Figures 1 and 2.

expected 7.3% that we calculated above for MHC molecules binding random peptides.
Thus, the pathogens in our simulations indeed evolve towards evasion of presentation
by the particular MHC molecules that are present in the host population.

We have applied a similar analysis to the simulations in which either the hosts or the
pathogens are prevented from evolving. This analysis partially explains our earlier
observation that pathogens evolving in a frozen host population that has been strin-
gently selected by rapidly coevolving pathogens (Figueattain a lower fithess than
pathogens evolving in a host population that has been selected only moderately (Fig-
ure 1a). If the pathogens do not evolve faster than the hosts, the fraction of pathogen
peptides recognized by the hosts’ MHC molecules decreases dramatically when the evo-
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Figure 5. Pathogens evolve towards evasion of presentation by the particular MHC molecules
that are present in the host population. The average presentation efficiency of the MHC molecules,
i.e. the average fraction of peptides from the pathogen genotypes that is presented by the MHC
molecules, is plotted for different pathogen generation times. The patterned bars denote the aver-
age presentation efficiency of the MHC molecules of coevolving hostdetween host genera-

tiont = 900 and¢ = 1000 in Figure 1. The white bars denote the average presentation efficiency
of the MHC molecules that have been frozen at host generatieni000 in Figure 1, after the
pathogens have been allowed to evolve for one thousand generagohstween host generation

t = 1900 and¢ = 2000 in Figure 1. For parameters and axis labels see the legends of Figures 1
and 2.

lution of the hosts is stopped (see the white bars denoted by F and 1 in Figure 5). Appar-
ently, during the coevolution the hosts specialized on the particular pathogens that were
present in the population. This specialization enables the pathogens to escape immune
recognition once the evolution of the hosts is stopped. In contrast, if the pathogens
evolve faster than the hosts during the coevolution, the hosts cannot specialize on the
particular pathogens that are presentin the population. As a consequence, the pathogens
fail to escape immune recognition once the evolution of the hosts is stopped (see the
white bars denoted by 10 and 100 in Figure 5). Another reason why the evolutionary
history of a frozen host population influences the escape possibilities of a pathogen lies
in the polymorphism of the hosts’ MHC molecules. As we have seen above, the faster
the evolution of the pathogens is, the more polymorphic the MHC molecules of the hosts
become. Thus, pathogens evolving in a frozen host population that used to be stringently
selected by rapidly coevolving pathogens, have more difficulty in escaping presentation
by the highly polymorphic MHC molecules of the hosts.

Heterozygosityversusfrequency-dependent selection

Since the evolution of pathogens can be switched off in our model, we can separately
study the effect of selection for heterozygosity. In coevolutionary simulations there will
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be selection for heterozygosity, as well as frequency-dependent selection. One possibil-
ity to exclude evolution of the pathogens is to let the hosts evolve in response to a fixed
pathogen population. As we have seen, in that case hosts adapt to the specific pathogens
that are present (Figure 5). To exclude this specialization we have also performed sim-
ulations in which at every host generation all pathogens are replaced by random ones
(denoted by R in the figures).

0.5

fraction heterozygous hosts

(b) ©
0.2 0.2

0.1 0.1 |

fraction of peptides
presented by hosts
fraction of peptides
presented by MHCs

P

R F 1 10 100 R F 1 10 100

Figure 6.  Hosts become functionally heterozygow®. The average fraction of heterozygous
hosts. b) The average fraction of peptides from the pathogens presented by the lpstbe (
average fraction of peptides from the pathogens presented by the individual MHC molecules of
the hosts. R denotes the simulation in which pathogens are introduced randomly at every host gen-
eration. Like the fixed pathogen population denoted by F, randomly introduced pathogen species
consist of two randomly created pathogen genotypes per species. For parameters and axis labels
see the legends of Figures 1 and 2.

The role of selection for heterozygosity appears to be strong under all conditions. Dur-
ing the quasi-equilibrium, the fraction of heterozygous hosts is always close to one (Fig-
ure @). To check if this heterozygosity is also functionag, if the two MHC molecules

of a host are generally presenting different peptides, we compare the average fraction of
peptides from the pathogens that are presented by the hosts (Fifjuneéts the average
fraction of peptides from the pathogens presented by their individual MHC molecules
(Figure &). It appears that in all simulations, the hosts (with their two MHC molecules)
present nearly twice as many peptides as their individual MHC molecules. Thus, the
hosts in our simulations indeed typically carry functionally different MHC molecules.
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@) (b)

100

# MHCs in population
Hamming distance

R F 100 R F 100

Figure 7.  Selection for heterozygositersusfrequency-dependent selectiom) The average
number of different MHC molecules in the host population, ddhe average Hamming distance
between the different MHC molecules. We have plotted a coevolutionary simulation in which the
pathogens evolve one hundred times faster than the hosts (100), and two simulations in which the
pathogens do not evolve (R and F). The coevolutionary simulation represents the MHC diversity
that evolves in the presence of both frequency-dependent selection and selection for heterozygos-
ity, while the two latter simulations (R and F) represent the MHC diversity that evolves under
selection for heterozygosity only.

In order to study the relative roles of selection for heterozygosity and frequency-
dependent selection, we compare the MHC polymorphism arising in the absence and
presence of frequency-dependent selection. Figarghdws that heterozygosity plus
frequency-dependent selectiare( a simulation with evolving pathogens, denoted by
100) results in a much higher degree of polymorphism than selection for heterozygosity
alone (.e. simulations with non-evolving pathogens, denoted by R and F). The aver-
age genetic differences between the MHC molecules that arise support this notion (see
Figure ). Summarizing, our simulations show (i) that a polymorphic set of MHC
molecules rapidly develops in an initially nondiverse host population, and (ii) that se-
lection by coevolving pathogens can account for a much larger population diversity of
MHC molecules than mere selection for heterozygosity can.

Discussion

We have shown that both the origin and the maintenance of MHC polymorphism can
be understood in a model that does not assumeagoyoriselective advantage of het-
erozygous hosts or hosts with rare MHC molecules. By starting our simulations with
MHC-identical hosts, we have in fact studied a “worst case” scenario. Polymorphisms of
MHC-like molecules seem to have been present since colonial or multicellular life [43].
Thus, theorigin of MHC polymorphism may not lie in immune function. De Boer [61]
for example showed that in primitive colonial organisms the preservation of “genetic
identity” is sufficient to account for highly polymorphic histocompatibility molecules.
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Our simulation model demonstrates that coevolution of hosts and pathogens yields a
larger MHC polymorphism than merely selection for heterozygosity. Our analysis thus
supports the view that additional selection pressures on top of overdominant selection do
play arole in the evolution of the MHC polymorphism [165, 230]. It has been shown ex-
perimentally that many MHC alleles have persisted for significant evolutionary periods
of time [112, 113, 118, 136]. This has been used as an argument against frequency-
dependent selection [99], but was later demonstrated to be compatible with selection for
rare MHC molecules [212]. Analysis of the persistence of particular MHC alleles in our
simulations would allow to study this in more detail.

In order to increase the speed of our simulations, we have used a rather high mutation
frequency of the hosts’ MHC moleculese. 1 = 0.001 per bit per generation. De-
creasing this mutation frequency indeed resulted in a lower MHC population diversity.
Increasing the host population size in our simulations, on the other hand, increased the
MHC polymorphism. Using a mutation frequency of MHC moleculegef 10~ and

a host population size df,,s; = 1000 hosts, we still found a population diversity of ap-
proximately 30 different MHC molecules. Independently of the choicesafd Ny, .st,

the MHC polymorphism that was attained in coevolutionary simulations was always
considerably ¢.g. 5-fold) higher than the polymorphism arising under overdominant
selection only (results not shown).

Regarding the enormous population diversity of MHC molecules observed in nature
[166, 223], it is surprising that the number of different MHC molecules expressed per
individual is quite limited [167]. In our simulations hosts carry only one MHC gene.
What would change if this number of MHC genes per individual would be increased?
Individuals expressing more MHC genes would be expected to have a selective advan-
tage, in that more pathogens would be presented. This selective advantage would vanish,
however, once the chance to present (at least one peptide from) any pathogen approaches
100%. For the parameter setting used here, the chance that a random pathogen consisting
of twenty peptides evades presentation by a single MHC molecifile is 22%. In the
absence of pathogen evolution, expression of about ten different MHC molecules would
thus be sufficient to ensure the presentation of virtually any pathogen. In coevolutionary
situations, however, the selection for expression of MHC molecules that are different
from the other MHC molecules in the population would remain. This selection will
only disappear when the number of different MHC molecules per individual becomes so
large that every host is expected to present all pathogen peptides. Ifindividuals no longer
draw different “samples” from the pool of peptides from each pathogen, pathogens may
be expected to exploit this “predictability” of the hosts’ immune responses [231]. In
Chapter 4, for instance, we have demonstrated that increasing the number of MHC loci
increases the likelihood of autoimmunity [35]. Extension of the current model with host
self molecules and a variable number of MHC genes may shed light on the role of such
mechanisms in the maintenance of the MHC polymorphism (work in progress).
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Chapter 6

Abstract

The parameter domain for which the quasi-steady state assumption is valid can be con-
siderably extended merely by a simple change of variable. This is demonstrated for a
variety of biologically significant examples taken from enzyme kinetics, immunology,
and ecology.

Introduction

Prototypical in biochemistry is the reversible reaction between enzymed substrate
S to give complexC, which irreversibly yields produd®:

E+S 22 0% E4P. (1a)

—1

The classical Michaelis—Menten approximation for scheme (1a) is the archetypal exam-
ple for the use of the quasi-steady state (QSS) approximation. This approximation is a
major simplifying step throughout biology, with its enormous range of time scales, and
indeed in many other branches of science. The quasi-steady state assumption (QSSA)
often yields revealing analytic formulas and it frequently circumvents problems of stiff-
ness in the numerical integration of systems of differential equations. It is thus of con-
siderable utility to be able to characterize parameter domains wherein a QSSA provides
a valid approximation.

Virtually all biochemistry texts discuss the application of the QSSA to scheme (1a) and
its consequences, such as the use of the Lineweaver—Burk plot to obtain the maximum
velocity of the reactioi,,,., and the Michaelis consta#t,,. As far as we know, none of
these texts indicates conditions under which the QSSA should be valid. Such conditions
do appear in the literature, but only rather recently has it been shown [163, 189, 192]
that the usually cited requiremen} < Sy is too strong; the classical QSSA is in fact
valid providing that

Ey < So+ Ky, , (1b)
wherekK,, is the Michaelis constant. See the derivation of condition (11) below.
This chapter examines scheme (1a) when there is an excess of enzyme, so that condition
(1b) does not hold. The classical QSSA breaks down in these situations, which can
be encounteredh vivo [203, 206] or in biotechnological applications. Remarkably, a

simple change of variable permits the validity of the classical QSSA to be considerably
extended so that the new situations are covered in many instances.
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We show that “enzyme excess” arises naturally in schemes of the form

E+S ¢ c*Eqas. )

k_1

One example of scheme (2) is the proliferation of T cells in response to antigen. Then
S denotes a replicating T celly a site on an antigen-presenting cell (APC), and

a complex of a T cell bound to an APC. This scheme has been analysed by De Boer
& Perelson [63] employing the classical Michaelis—Menten approach. We here improve
upon this earlier analysis. Another instance of scheme (2) is one whgisia catalytic

RNA molecule whileS is another RNA molecule whose replication is catalysedzby

[72].

A major point of this chapter is to show that, paradoxically, the standard QSSA for the
complexC in fact remains valid in a parameter domain that overlaps condition (1b),
but also considerably extends condition (1b), provided merely that the free substrate
concentratiors is replaced by the total substrate concentrafiea S + C'. In pursuing

this goal, we employ and extend earlier considerations concerning the validity of the
QSSA. Thus this chapter also serves as a brief and up to date primer and case study on
how to estimate when the QSSA is applicable.

After discussing the “total QSSA” for the prototype example of scheme (1a), we present
several models where the same basic idea leads to useful new approximate solutions:

models for replication schemes such as scheme (2) and for certain predator—prey inter-
actions.

The standard QSSA and its limits of validity

Differential equations corresponding to scheme (1a) can be written as

% = —kl(Eg — C)S + kflC N (3&)
= h[(B - 05 - K], (3b)
where
K, = kot ks (4)
k1
The conservation law
E+C=E, (5a)
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yields E. Initial conditions are

S(0) = So, (5b)
co = o, (5c)
E() = Ep, (5d)
P(0) 0. (5e)

(Note that the choic(0) = 0 does not influencé, E or C.)

In the standard approach, one assumes that after a fast traasant,be regarded as in
equilibrium. FromdC'/d¢ = 0 it follows that

EyS

C= .

(6)

A differential equation forS, valid after the transient, can be most easily derived by
realizing that ifdC/dt is effectively zero, then equation (3b) can be added to equation
(3a), yielding

ds
o _ 7
i k2C', (7a)
ie.
dS  kEyS
dt = Kn,+S° (7b)

It is conventional to assume that the substrate level changes negligibly during the fast
transient so that equation (5b) can also serve as an “initial condition” for equation (7b).
Differential equation (7b) and initial condition (5b) thus constitute the QSSA. One hopes
that this QSSA will provide a good approximation for calculating the post-transient de-
velopment of the system under consideration.

According to the procedure described by Segel [189], the first step in attempting to
determine the parameter ranges for which the QSSA is valid is to estimate two time
scales. These atg;, the time that characterizes the duration of the fast transient, and
ts, the magnitude of time required for a significant changg during the post-transient
period. To estimate the fast time scale we model the initial rapid accumulation of

C' by substitutingS = Sy in equation (3b). This transforms equation (3b) into a linear
equation of which

1

ky (S() + Km) (8)

tc =
is the time scale. Another way to obtain the same estimate: é$ to realize (from
equation (6) withS = Sy) that during the fast transient the total change of the complex
is approximatehNAC = Ey Sy / (K., + So). At the maximum rate at which the complex
increases (see equation (3b)) this indeed takes AC/ (ki EySo) time units.
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To estimate the slow (substrate) time saaleve considerlS/d¢ after the fast transient,
i.e. equation (7b). We employ the characterizationt @that was suggested by Segel
[188], i.e. we take the maximum post-transient change in substfgtedivided by the
post-transient maximum ¢&S/d¢|, obtained by substituting = S, in equation (7b).
Thus we write

So
fg =20 9
S = 145/t mar (%)
i.e.
. K., +Sp
ts = “hoBe (9b)

The first condition necessary for the QSSA is that the fast time ggakeindeed much
smaller than the slow time scalg. This yields

ko Eo

- 1. 10
o + Km)? & (10)

Secondly, to insure that equation (5b) can be taken as an “initial condition,” we require
that there be a small fractional depletion of substrate during the initial transient. This
is ensured by demanding that the fractional chajiy€/Sy| is small during the fast
transient. We overestimat®S by the product of the maximum rate of depletion%f

i.e. (from equation (3a)k; EySo, with the duration of the fast transiefit. From this

we find that the conditiopAS/Sy| < 1 requires
Ey
— 1. 11

Since condition (10) can be written

Ey 1

<1
So+ K,, 1+ (k_l/kg) + (S()k‘l/k‘Q)

we see that condition (11) is stronger than condition (10). Thus, condition (11) guaran-
tees the accuracy of the classical QSSA.

The effects of replacing free by total substrate concentration
In conditions of enzyme excess, when condition (11) and hence the standard QSSA are
not expected to be valid we introduce tio¢al substrate concentratia$i, where

S=S+C. (12)

S rather thanS will now be our substrate variable. The total subst&ieannot be de-
pleted by the formation of complex. Because the validity of the classical QSSA depends
strongly on negligible initial depletion of substrate (see the derivation of equation (11)),
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this simple variable change is expected to have an important effect. We derive the condi-
tions for the QSSA of this redefined “total substrate” model, which we term the tQSSA.

If we substituteS for S the governing equations become

ds
Fri —koC', (13a)
dC _
prli kl[(EO—C)(S—C)—KmC], (13b)
with initial conditions
50) = So, (14a)
co = 0. (14b)

AssumingdC'/dt = 0 as before, but now using equation (13b), we find tHathould
be replaced by a solution of the quadratic

C*—(By+K,, +S)C+ES=0. (15)

The constraintC’ < Ej, which follows from the conservation law (5a) and the non-
negativity of £, implies that equation (15) has a unique solution. (One takes the negative
square root in the quadratic formula.)

Quadratics such as equation (15) are common in kinetic calculations. For use in further
kinetic manipulations, itis helpful to replace the somewhat complicated analytic formula
for the solution of the quadratic by a simpler and more transparent expression. (This
step is not essential to our main line of argument.) Such an expression is provided by
a two-point Pad approximant [15]. The lowest order Radpproximant consists of the
quotient of two linear functions o§. AroundS = 0 and forS — oo we approximate
equation (15) by

C = % (16a)
and
C=E, (16b)
respectively. Thus the Padpproximantis
" E +Elgi +5 an

Formula (17) can also be obtained by neglecting@Aeerm in equation (15). This is
consistent if for any value o,

E,S _
Eo+ Km+ S 0 (18)
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i.e.if for any value ofS,

S K,, Ey K,
1< (1+=—+22)(14+ 2 4+22) . 19
( Ey E0>< S 5) (19)

This certainly holds ifS is either large or small compared f&,. EvenifS = E,

the right side of condition (19) is not less théh+ K,,/Ep)?. Thus we conclude that
neglecting theC? term in equation (15) to obtain equation (17) is indeed justified. Cha
& Cha [48] and Cha [47] developed another method for deriving equation (17) as an
approximation of equation (15). Cha [47] numerically shows that the approximation is
generally good.

To obtain an estimate for the range of validity of the new tQSSA, let us first estimate the

time scale for the fast transient. During this period the complex concenti@theygins

from an initial value of zero and remains relatively small. Thus, again neglecting the

terms quadratic i’ when adapting equation (13b) for our present purposes, we obtain
dC

In equation (20) we have made the simplifying approximation, which should be well

warranted during the brief transient, th&{t) ~ So. From the solution of equation (20)

it is clear that

1
ki1(Eo + So + Ky) -~

Note thatt~ can again be derived by calculatidg”/|dC'/dt|,.x as outlined just below
equation (8).

tc = (21)

It is at first surprising that the time scate in equation (21) is not the same as its
counterpartin equation (8). ThA'C” approach to calculating. leads to the realization

that the different values @t can be traced to the different expressions of equations (6)
and (17) forC. However, for equation (6) to be valid then it is necessary btk

So + K., (condition (11)). If this is the case then tlig term is negligible in equation
(17), at least until the considerable time elapsesSftw drop belowsS,. Additionally, if

the E, term is negligible, the alternative formulas fGrand fort. are in fact identical.
Thus whenever the alternatives of the classical QSSA given by equations (8) and (6) are
valid they give answers that are indistinguishable from the tQSSA counterparts given
by equations (21) and (17); only when equations (8) and (6) are invalid are they truly
different from equations (21) and (17).

In order to estimate the slow time scalg we again consider the maximum change
of S divided by the maximum rate of change of total substrate after the fast transient.
From equation (13a) with' given by the Paelapproximant of equation (17), and with

S = Sy, calculation 0fSy /|dS /dt|max Yields

Ey+ S0+ K,

T Eo (22)

tg =

71



Chapter 6

The necessary condition for the validity of the tQS$AK t<, thus takes the following
form:
ks Eqy
ki1(Eo 4+ So + Kin)?

<1. (23)

To check that initial condition (14a) is appropriate for our tQSSA, we require that the
change ofS is small during the fast transient. Paralleling the derivation of condition
(11), we multiply the maximal value ¢flS /d¢| with the durationt - of the transient. By
equation (13a) this maximum rate of chang&si€’,,,.x. An upper limit forC,, ., during

the fast transient is the QSS value that the complex is approaching. Employing the Pad”
approximant (equation (17)), and substitutifig= Sy (which is also an overestimate),

we estimate’,,,... With this we find that condition (23) is also the condition that ensures
that|AS/So| is small.

Thus condition (23) suffices for the validity of the tQSSA. Below we confirm numeri-
cally that if equation (23) is not satisfied we indeed find that (i) after the fast transient,
trajectories fail to correspond to the QSSA and also that (ii) during the fast transient,
total substrate is depleted by the formation of product.

Finally we observe that we can rewrite equation (23) in the form

Ey+ Sy k1>< SO+Km>
1+ +— )1+ —)>1. 24a
( ks / k1 ks Ey (242)

The left side of condition (24a) is always greater than unity, so that we expect that
the QSSA will always be at least roughly valid. Moreover, there are several different
conditions any one of which guarantees that condition (24a) holds. These are

Eo+So > ky/ki, (24Db)
ko > ko, (24c)
So+ K., > E. (24d)

Note from condition (24d) the important finding that when the standard QSSA is valid,
then so is the tQSSA. Thus it appears that our new approach considerably extends the
parameter range for which a QSSA can be applied.

Comparing the standard QSSA with the tQSSA

Conditions (11) and (23) can be plotted in parameter space to compare the regions of va-
lidity of the QSSA and the tQSSA. Note that this need not be a fair comparison because
conditions (11) and (23) need not be equally strong for systems (3) and (13), respec-
tively. Both conditions are of the fornfi(Ey, Sg) < 1. For definiteness, we draw in

72



Extending the quasi-steady state approximation

Figure 1 the regions corresponding f0E,, So) < 0.1. Fork, = 10, k_; = 1, and

ky = 0.1 (i.e. K,, = 0.11) the standard QSSA is valid in the dotted region in Figuae 1

The tQSSA is valid for any initial condition, by condition (24c). Upon increasing the
rate of product formation té, = 10 (i.e. K,,, = 1.1), a relatively small curved region
appears within which the tQSSA is not valid (see Figuperiote the change in scale).

The (dotted) validity region of the standard QSSA has remained almost the same. Thus
Figure 1 illustrates that when the standard QSSA is valid, the tQSSA is valid also. Ad-
ditionally, the figure suggests that the tQSSA is valid for a much larger domain of initial
conditions.

ia) ihj
|9

0 gl ol L 0 4
] 25 50 ] I 2

=S %0

Figure 1.  Validity of the QSS and the tQSS assumptions for the standard enzyme—substrate—
complex scheme (1a), in thB,—S, plane. Parameters ake = 10 andk_; = 1. In panela,

k2 = 0.1 (K,, = 0.11), while in panelb, k2 = 10 (K,, = 1.1). Dotted domain: QSSA valid.
Shaded domain: tQSSA valid.

Generally, an analysis like that of Figure 1 can best be performed in terms of dimension-
less parameters. We nevertheless show the original parameters because the figure would
remain qualitatively the same if we were to employ the following three dimensionless
parameters:

EO S[) k2
n X o X, and &k T (25a)
The dotted and shaded regions in Figure 1 would now, respectively, correspond to
n KN
<01 and — <01, 25b
1+0 — n+o+1)2— (25b)

which have the same form as the curves in Figure 1 when plotted as functigns of
ando. (Increasinge, corresponds to increasimg which indeed decreases the regionin
which the tQSSA is valid.) We stress that the results of Figure 1 provide representative
examples of the ranges of validity of the QSSA and the tQSSA.
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Numerical confirmation
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Figure 2.  Trajectories approaching the QSS approximation of the product model (equations
(3)—(5)) with (paneld, d) and without (panelg, c) change of variables from free substr&téo

total substrateS. In the substrate versus complex phase plane the heavy lines depict numerically
computed trajectories of the full model for initial conditio§0) = 0 andS(0) = S(0) = 0.1.

The light curves depict the QSS equations@qri.e. equation (6) or the solution of equation (15).
The arrows indicate the direction of the trajectories: a high arrow density implies a relatively rapid
traversal. Parameters de = 10 andk_; = 1. In panelsaandb, k> = 0.1 (K,, = 0.11), while

in panelsc andd, k2 = 10 (K, = 1.1).

In Figure 2 we numerically compare the two QSS approximations irbtie and the

S—C phase planes. The solutionsds¥ /d¢ = 0, given by equation (6) and the valid root

of equation (15), are shown as light lines in Figurasafdb, respectively, for different
values ofEyy. The heavy lines represent exact solution trajectories for the corresponding
values ofEy, with initial conditionsC'(0) = 0 andS(0) = S(0) = 0.1. An important
assumption for the QSS approximation is that the change in the substrate during the fast
transient is small,.e. the initial portion of the trajectory should be nearly vertical in the

phase plane.

On the basis of Figure 1 we expect for = 0.1 that the standard QSSA will become
invalid by increasingf, while the tQSSA will remain unaffected. This is confirmed
by Figures 2 andb. For Ey = 0.01 the trajectory starts out rapidly and vertically
and then sharply turns left to slowly follow the QSS solution in both Figueeari?ib.
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For Ey = 1 the trajectory of the standard model in Figuedgpicts strong and rapid
depletion of substrate before the relatively slow QSS solution is attained. This is not the
case in Figure B, with the change of variables, evenif, = 100. Thus the tQSSA is
valid, where the classical QSSA fails.

For k; = 10 the expectation is more challenging. The standard QSSA should simply
lose validity by increasind’y. The tQSSA however should become worse at intermedi-
ate values off, but become accurate again at high values (by condition (24)). This is
confirmed in Figures@andd. As expected the behaviour of the standard QSSA model
in Figure 2 is comparable to that in Figure@2Moreover, the trajectories of the tQSSA
model indeed show the strongest substrate depletion ilgen 1. Additionally, when

Ey = 1 we see that after the fast transient the trajectory fails to approach the tQSS ap-
proximation. Remember that condition (23) pertains to both the difference in time scales
and to the depletion of substrate.

The reverse QSSA

There is an alternative approach to simplifying the governing equations (3), by assuming
thatdS/dt = 0 rather thandC/dt = 0. This approach, termed the reverse QSSA
(rQSSA for short), has been outlined by Segel & Slemrod [192]. Like the tQSSA, the
rQSSA is valid wherky is “large,” in contrast to the validity conditionF, small” for

the classical QSSA. In the Appendix we show that in the parameter range where the
rQSSA is valid, our new and simpler tQSSA is valid also, and that both approximations
give similar results.

The replication model

Initial conditions with largef, are typical of theeplication schemé€). The differential
equations corresponding to scheme (2) are

ds

o = hiE - O)S+ (ko +2k)C (262)
% = ki [(Bo - C)S — K] (26b)

where equation (26b) is identical to equation (3b), and the conservation law and initial
conditions are identical to equations (5a—d).

The standard QSSA approach for this replication model proceeds analogously to the
analysis of equations (6-11). Thus, settift@d/d¢t = 0 in equation (26b), we obtain
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equation (6), which upon substitution into equation (26a) gives

as
g 27
dt 207 ( a)
ie.
dS  k2FoS
T K, 45 (27D)

S(0) = Sp is assumed as an “initial condition.” Note that in equation (29b)creases
by replication, in contrast to equation (3a) whetelecreases by transformation into
product.

Because the differential equations of the complex,equations (26b) and (3b) are the
same for the standard and replication models, the fast time ge@ealso the same and

is hence given by equation (8). Upon contemplating the slow time sgale observe

that equation (27b) is identical to equation (7b) except for a difference in sign. However,
we cannot employ the characterization (9a)tfpbecause substrate now increases,

the maximum change of substrate is not defined. Instead we propose a slightly modified
estimate ofs: we calculate the relative change in substrage,(dS/dt)/S, right after

the fast transient,e. whenS =~ S,. Thus, we consider equation (27) f8(0) = Sy,

divide by Sy, and take the inverse to obtaig given by equation (9). Note that this
modified estimate also applies to the product model of equations (3a—b), and that both
approaches give the same estimate for the slow time scale.

For consistency we require that the substrate is hardly depleted during the fast transient.
From equation (26a) the maximum depletion ratg,i& S, which maximally lasts

time units. This again yields condition (11). Thus, we find equations (10) and (11) as
the two conditions for the QSSA. We conclude that there is no difference in the QSSA
conditions for thestandardapproaches to the product and replication models.

Replacing free by total substrate: the tQSSA

DefiningS = S + C as in equation (12) we write for scheme (2)

ds

o = kO (28a)
dC _
S = kil -0)F-0)-Kadl, (28b)

where the equation fatC'/dt is again identical to equation (13b) and the initial condi-
tions are given by equations (14a—b).

SolvingdC'/dt = 0 we find equation (15) and its Padpproximant equation (17). For
calculating the fast time scate: we employ equation (20) to obtain equation (21). For
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the slow time scaleg we considerlS/dt right after the fast transiente. we use equa-

tion (28a) withC' approximated by equation (17), asd= Sy, to obtain equation (22)

and hence equation (23). As before, equation (23) also guarantees the approximate ini-
tial condition (14a).

(1] ik
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Figure 3.  Similar to Figures&2andb, but for the replication model (equations (26a—b)) with
k2 = 0.1. The light QSS curves are the same as in Figure 2 (but note different scales). Since now
dS/dt > 0, these curves are traced “backwards.”

Our finding that the QSS approximation is extended by making a tQSSA is illustrated
for the present example in Figure 3. The light lines depict the same QSS solutions as
those in Figures@andb. The heavy lines again represent the exact trajectories for the
same parameters and initial conditions. E@r= 0.01 the trajectory has the required
nearly vertical initial behaviour. Faf, = 1 andE, = 100 the trajectories in Figurel3

have the required initial behaviour, whereas those in Figamdoot.

Figure 4 illustrates in a different way the advantage of the total substrate formulation in
the replication model. We plot the free and total substrate concentraficars S, as
functions of time. Here F denotes the solution of the full model,equations (26a—b)
or (28a-b), Q that of the QSSA modeék. equation (26a) with (6) or (28a) with the
valid solution of equation (15), and P that of the Pagbproximationi,e. equation (28a)
with (17). WhenE, = 0.01 < Sp = 0.1 the QSSA is valid in both models and all
solutions are identical (not shown). By, = 100 > Sy, = 0.1 the two tQSS variants
Q and P closely resemble the full solution F (Figui®.4However, there is a large
difference between Q and F in the classical model of Figaretide “approximation”
Q incorrectly shows a rapid growth in free substr&tehile in factS initially decays
rapidly, owing to complex formation, before replication causes rapid growth dhis
defect is absent when we change variableS {eee Figure B), for S is not depleted by
complex formation.

77



Chapter 6

inl I
09— Lty
F. et
F
5 5
ol .l
& 2 |
||j o :ﬂ:’ 100 Ilj- 0 fu ] 100
FTima Tima

Figure4. Time plots of free substrate concentraficand total substrate concentratiSrior the
replication model (equations (26a—b)), for high concentrations of enzyme. The solution of the full
model is marked as F, that of the quasi-steady state model as Q, and that ofeteppeaakimation

as P. Parameters are as in Figure 3. The initial condition€'é% = 0, S(0) = S(0) = 0.1, and

E(0) = 100.

T cell proliferation

De Boer & Perelson [63] modelled T cell growth on the basis of schemes similar to
scheme (2). They derived the equivalent of equation (27), added a source and decay
term, and proposed the following model of T cell growth, where “substrate” now means
the free T cell densit{":

dT pA

Here A is the concentration of sites presenting antigen ansl the source of naive T
cells from the thymus. Equation (29) naturally implements competition between T cells
for seeing antigen. The interesting implications of this model are discussed by De Boer
& Perelson [63]. The main problem with this model is that it has an unboupded
capitarate of T cell growth. The growth rate of a T cell population increases without
bound asd — co. We are now able to solve this problem by changing variables to total
T cells, T = T + C, and using equations (17) and (28a—b) to write

dT — pA
— =0+ T|———-1]. 30
7 <K+T+A > (30)

Here p represents the maximum proliferation rate for an individual T cell (which is
formally achieved whenl — o). This model is much more realistic and also accounts
for competition between T cells for seeing antigen.
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A disadvantage of introducing is the quadratic equation one has to solve. equa-

tion (15)), which, for instance, prevents one from repeating the analysis of De Boer &
Perelson [63] for > 1 T cell populations seeing. > 1 different antigens. De Boer &
Perelson [64] do derive a model farT cell populations interacting with one antigen.

Predator—prey interactions

The Lotka—Volterra model for a predator species feeding upon a prey species is classical
in ecology. A general model for the interaction between a pfegnd predatol” is

dd_)t( = X(1-X)—af(X,Y), (31a)
% = abf(X,Y)—¢Y , (31b)
where
fX,)Y)=XY, (32a)
or
FEY) = (32b)

Equation (32b) is the Holling type Il response. Since in equation (328} V) « YV
whenX > K, the parametet is interpreted as the maximum number of prey eaten per
predator per unit time.

Employing the approach outlined above we can formally derive a generalized interaction
term F(X,Y’) from the scheme

X+Y & 0 04y, 33)
—1

whereb is the growth rate of the predator due to eating prey. Changing variables to total
preyX = C + X and total predators = C'+Y and making a QSSA fat’, we obtain

% W [(X—O)¥ —C)— K,C] =0, (34a)
or
C =~ XE — . (34b)
K,+X+Y
In addition
dX
E = —kyC (35a)
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and

dy
o = bkaC (35b)

Writing k2 = a andK,,, = K we thus obtain

- XY
K+X+Y
as a general interaction function. Because this saturates as a funcfigrite# param-
etera in equations (31a—b) has the same interpretation as it has in the Holling type I

response.

Having a general function, we observe that the Holling type Il response is retrieved
when we assume that there is an excess of prey,.X > Y, so that from equation
(34b)X > C. Equation (34a) then simplifies into

Y
K+X'

!

dC
a ~hl

=
ol

Y -C)-KnC] =0 giving F(X,Y) = (37)

Similarly, assuming an excess of predataes,Y” ~ Y, equation (34a) simplifies into

Y
):K+7’ (38)

=~

% =k[Y(X-C)-K,C] =0 giving  F(X,

il

which allows for interference between predators. The paramet@wever loses the
above interpretation.

Our general function given by equation (36) has been proposed previously on intuitive
grounds by DeAngelist al. [67] and Beddington [20]. The fact that this function can
now be formally derived supports its usage in ecological models, and provides clues
and/or precautions for how to generalize equation (36) for a system with several predator
and prey species (see [64]). Functions like this have also been proposed in the context
of ratio-dependent predator—prey interactions [9]. We think equation (36) is appropriate
in this context because fof > K it resembles the Holling function, with its maximum

rate of predation per predator, whereasXok Y it allows for the interference between
predators that is characteristic of models with ratio-dependent predation.

Summary and discussion

Rather remarkably, there is still more to say about the standard enzyme-substrate—com-
plex scheme (1a), with its mathematical formulation given by equations (3)—(5). In the
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classical approach, the concentrations of free substratied the complexX’ are taken

as dependent variables. The quasi-steady state assumption (QSH#)= 0 is made,
resulting in equation (6) faf’ as a function of and hence differential equation (7b) for
dS/dt. Itis assumed that little substrate is consumed during the initial transient period
before the QSSA is valid, so th8t0) = S is taken as the initial condition for equation
(7b). The validity of this procedure is assured if condition (11) holds.

We have explored a different approach, where the total substrate concenfaton
employed instead of. Again the assumptiodC/d¢ = 0 is made, but now this results
in the quadratic equation (15) f6fas a function of. We show that equation (17) offers
an accurate Padapproximation for equation (15), which provides an explicit formula
for C. An equation fordS/dt can now be written, which is solved subject to the initial
conditionS(0) = Sp. The validity of this total QSSA (tQSSA) is assured by condition
(23).

By changing variables from free substrafeto total substrateS we have enlarged

the domain of parameters for which it is permissible to employ the classical QSSA,
dC/dt = 0. It might be objected that this is getting something for nothing, for how can
the same assumption be rendered more acceptable merely by a simple change of vari-
ables? However, recall (see [189]) that the essential reason why the QSSA holds is that
the QSS variable (her®€) has a fast intrinsic rate of change compared to the “non-QSS
variable” (hereS). For the parameter range of interest, our new “non-QSS varighle”

the total substrate concentration, changes very much more slowlysttaard hence our
change of variable should indeed lead to an improved approximation.

The classical QSSA loses its validity when condition (11) fdiks,when there is little
substrate compared to enzyme. The allegedly slow (substrate) variable then becomes fast
due to rapid formation of complex. This effect, which is particularly important during

the initial transient, is evaded by the change of variables to total substrate, because total
substrate can only change by the formation of product. This explaingwagpears in
conditions (23) and (24).

When checking the validity of the classical QSSA, for example, we ascertained that the
phase plane curv@ = C(S) of equation (6) was indeed approached by the numerical
solution of the governing equations. This check also indicates that the grap$ig for
andC'(t) that are derived from the QSSA will be close to the correct values. The reason
is that if indeed equation (6) holds, then equation (7b) is a good approximation to the
true equation forlS/d¢. Hence the solution of equation (7b) should yield a good ap-
proximation, provided that the basic problem is not ill conditioned (so that a small error
in the problem can lead to a large error in the solution) and provided that integration has
not been carried out so long that even large errors have had a chance to accumulate.

For definiteness, in this paragraph we continue to discuss general matters in the frame-
work of the classical QSSA. We have stressed that justification of the QSSA requires
demonstrating two things, for the parameter domain in question. These are (i) that af-
ter a fast transient, one can approximate dig d¢ equation by regarding it at steady
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state, yieldingC' = C(S), and (i) that the true initial conditio§ = S, remains ap-
proximately true after the transient. The path to demonstrating (ii) was transparent —
estimate the change $during the transient. It is not clear, however, that our checking
whetherts < tg is the right way to demonstrate (i). (Althoughistclear that consis-
tency demands that the duration of the fast transient is relatively brief.) It appears that
the best way to show that < ts ensures thaf’ = C(S) is to usetc andts in a for-

mal adoption of suitable scaled variables, as described by Segel & Slemrod [192]. These
authors show that’ = C(S) emerges from a singular perturbation analysis where the
small parameter is the rati: /t .

The change of variables into total substrate may give rise to complications in situations
where the substrate also reacts with other variables. In the standard model one may
assume that free substrate reacts with another variable but substrate in complex does
not. Making the change of variables one typically writes that the total substrate variable,
and hence both free substrate and complex, reacts with other variables. In the context
of immunology, for an example of a T cell population interacting with both antigen and
another (regulator) T cell population, see Borghans & De Boer [29].

When the work reported here was essentially completed, we learned that there were an-
tecedents for part of it. With precedent from the careful studies of Straus & Goldstein
[206] and Goldstein [89] on enzyme—substrate—inhibitor systems, Reiner [175], Cha &
Cha [48] and Cha [47] used total substrate concentration in pursuing the implications of
the QSS assumptiatC'/d¢ = 0. They thus employed equation (15) to determihas a
function of S. They discussed different approximations of equation (15) in different pa-
rameter domains, but they never challenged the basic assungtjeit = 0. That this
assumption could well be inappropriate was recognized by Lim [121], who illustrated
his assertion by a numerical example.

Novel is delineation of the domains of validity of the various approximations, our central
goal. Perhaps it should go without saying that the approach taken here can also be
applied, at least in principal, to the many other kinetic equations where some type of
QSSA could be appropriate.

Appendix: the reverse QSSA

We here present the reverse QSSA (rQSSA for short) of Segel & Slemrod [192] in a
somewhat altered and extended form, since we wish to compare its results with those
obtained above. Upon settinlg/d¢ = 0 in equation (3a) we obtain

KC
S—m, (39)
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where
K=k i/k . (40)
Substitution of equation (39) into equation (3b) yields

dc

= = k(. 41

= kO (41)
(Another way to obtain equation (41) is to add equation (3a) to (3b) after setting
dS/dt = 0.) The complex concentratiofi’ typically decreases substantially during
the transient, but nonetheless an appropriate initial condition for equation (41) can be
derived [192].

A necessary condition for the validity of the rQSSA is that the time sgalfor post-
transient changes it is long compared to the time scale for the rapid transient
changes irs that occur before equation (39) is satisfied. From equation {413, k5 *.
To estimate s we begin by employing equation (12) to replatey S — C in equation
(39). Rearranging the resulting equation we obtain

C?—(Ey+S+K)C+ES=0. (42)

Equation (42) differs from equation (15) only in thtappears in equation (42) where
K,, appears in equation (15). Given thitremains close t@, during the transient,
we can replacéy,, by K in the Pa@ formula (17) to estimate that at the end of the
transientC' has the valu€’, where

€= Eo foffi So (43)
C(0) = C is the appropriate “initial condition” for equation (41).
Replacing” by@ in equation (3a) yields
% = —ki(Ey —C)S + k_1C . (44)
It follows that[k; (E, — C')]~" provides an estimate of,, i.e.
K+ Ey + So (45)

tong ——— .
57 ki Eo(K + Eo)

This estimate is conservatives(is slightly overestimated). From the conditiofn <
tc, we thereby obtain the following conservative estimate for the parameter domain
wherein the rQSSA is valid:

ko (K + Ep)Ey

— . 46
k1 K+E0+S() ( )
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By comparison, condition (23) for the validity of the “total” or tQSSA can be written

ko (Km + Ep + Sp)?
ky E, '

(47)

The tQSSA is valid in a strictly larger parameter domain than the rQSSA because

(K + Eo + So)? . (K + Ep + Sp)? . (K + Ey)Ey
E, E, K+FEy+ Sy~

(48)

When both the tQSSA and the rQSSA are valid, that is when condition (46) holds, con-
sistency demands that both approximations be virtually identical. Comparing equations
(42) and (15), we see that this will be the case if

Ey+S+Kn,~FEy+S+K, (49)

or
kiEo+kiS+ko+k 1 ~kiFEo+kS+Fk_. (50)
However, condition (50) indeed holds, since condition (46) implies tha& k1 Ep.

Thus the tQSSA is to be preferred because it has a wider range of validity than the
rQSSA and it does not require special derivation of a post-transient “initial condition.”
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Abstract

By fitting different mathematical T cell proliferation functionsitovitro T cell prolif-

eration data, we studied T cell competition for stimulatory signals. In our lymphocyte
proliferation assays both the antigen availability and the concentration of T cells were
varied. We show that proliferation functions involving T cell competition describe the
data significantly better than classical proliferation functions without competition, thus
providing direct evidence for T cell competitian vitro. Our mathematical approach
allowed us to study the nature of T cell competition by comparing different proliferation
functions involving (i) direct inhibitory T-T interactions, (ii) antigen-specific resource
competition, or (iii) resource competition for nonspecific factors such as growth factors,
and access to the surface of antigen-presenting cells (APCs). We show that resource
competition is an essential ingredient of T cell proliferation. To discriminate between
antigen-specific and nonspecific resource competition, the antigen availability was var-
ied in two manners. In a first approach we varied the concentration of APCs, displaying
equal ligand densities; in a second approach we varied the antigen density on the sur-
face of the APCs, while keeping the APC concentration constant. We found that both
resource competition functions described the data equally well when the antigen avail-
ability was increased by adding APCs. When the APC concentration was kept constant,
the nonspecific resource competition function yielded the best description of the data.
Our interpretation is that T cells were competing for “antigenic sites” on the APCs.

Introduction

Competition between lymphocytes for stimulatory and survival signals is thought to
play a pivotal role in the homeostatic control of the immune system. The steady-state
population sizes of naive and memory T cell compartments [214-216], and of resting
B cell and activated IgM-secreting B cell compartments [2, 3] are all independently
regulated by cellular competition within each compartment. Due to competition between
lymphocytes, cellular death rates and/or renewal rates are density-dependent functions
of the peripheral population sizes [80, 82, 216]. By such density-dependent mechanisms
homeostasis is established.

There is a qualitative difference between the regulation of total T and B cell numbers.
Although it has been shown that part of the B cell repertoire is maintained by compet-
itive renewal in the periphery [2], B cells predominantly compete for survival signals
[82]. Memory T cells, however, mainly compete for stimulatory signals [80], affecting
proliferation rates at high T cell concentrations. Here we study T cell competition and
focus on the effect of high concentrations of T cells with the same specificity on the rate
of T cell proliferation.

The nature of the signals for which T cells are competing remains elusive. Previous
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experiments have suggested that T cell competition is antigen-specifi§+ Clzell
competition was studieih vivo by reconstituting lethally irradiated mice with mixtures

of precursor bone marrow cells from normal nontransgenic and T cell receptor (TCR)-
transgenic mice [80]. It was shown that the proliferative capacity of the TCR-transgenic
cells was diminished in the presence of other T cells, indicating that competition between
T cells occurred. Moreover, nontransgenic cells appeared to have a selective advantage
over TCR-transgenic cells in seeding the peripheral lymphoid tissue, suggesting that
cells were competing for antigens.

Lymphocyte competition may, however, also act at a more global level, if ymphocytes
compete for nonspecific factors such as growth factors, nutrients or access to the surface
of APCs. The fact that transgenic mice attain total peripheral lymphocyte numbers sim-
ilar to those in normal mice has been interpreted as evidence for a global homeostatic
control, acting independently of cell specificity [81]. This argument was weakened by a
mathematical model which showed that such equal total lymphocyte numbers could also
be obtained when only an antigen-specific homeostatic control was taken into account
[65]. The experimental data [80, 81] thus fail to give a decisive answer about the nature
of the factors controlling immune homeostasis. The advantage of an antigen-specific
homeostatic control would be that the diversity of the immune system can be main-
tained. If all clonotypes were to compete for the same resoureeg-—a growth factor

— the clonotype responding most vigorously would outcompete all other clonotypes
[63].

In this chapter we studied T cell proliferation, and in particular the nature of T cell
competition, by fitting several mathematical proliferation functions to data frowtro
lymphocyte proliferation assays. Proliferation was measured both as a function of the
antigen concentration and as a function of the number of T cells competing for antigen.
The aim of this study was twofold: on the one hand to provide insights into the relative
importance of inhibitory T-T interactions, antigen-specific resource competition, and
nonspecific resource competition in T cell proliferation, by mathematical analysis of
vitro data; on the other hand, to provide an experimental validation of several T cell pro-
liferation functions that are frequently used in theoretical immunology. Briefly, our anal-
ysis shows that T cell proliferation functions allowing for T cell competition describe
the experimental data significantly better than conventional noncompetitive saturation
functions. This demonstrates that T cell competition plays airolgtro. We show that

most of the competition in our assays can be attributed to competition for antigenic sites
on APCs.
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Materials and methods

T cells and antigens

The generation and maintenance of thedCX1a T cell clone have been described pre-
viously [22]. Briefly, the Z1a T cell clone was derived from the draining lymph nodes of
a Lewis ratimmunized in the hind footpads with guinea pig myelin basic protein (MBP)
in complete Freund’s adjuvant. T cell clone Z1a is reactive with the 72—85 amino acid
sequence of MBP and with peptide 72<8p., an analogue of the native peptide which
has a higher MHC class Il RT1'Bbinding affinity [226]. T cells were cyclically res-
timulatedin vitro for 3 or 4 days in the presence of irradiated (3000 rads) thymocytes
as APCs and 1pg/ml MBP, and propagated for 6 or 7 days. Cells were restimulated in
Iscove’s modified Dulbecco’s medium (Gibco), supplemented witH 2wis rat serum,
2mM L-glutamine, (50uM) 2-mercaptoethanol, and antibiotics. Propagation was per-
formedin Iscove’s modified Dulbecco’s medium, supplemented with 2raglutamine,

(50 uM) 2-mercaptoethanol, antibiotics, Zfetal calf serum (FCS), 20 EL-4 super-
natant (IL-2 source), andZd nonessential amino acids. All experiments were also per-
formed with the Lewis rat CB" T cell clone A2b, specific for the 176—190 amino acid
sequence of mycobacterial heat shock protein HSP65 [8, 97], yielding similar results
(data not shown).

T cell proliferation

Proliferative responses of T cells were measured in triplicate cultures in flat-bottom
microtiter plates (Costar). T cells were cultured at different concentrations in 0.2 ml
Iscove’s modified Dulbecco’s medium supplemented withFBCS, 2mML-glutamine,

(50 uM) 2-mercaptoethanol, and antibiotics in the presence of irradiated (3000 rads)
thymocytes as APCs. To exclude any effects of free antigen or T-T cell presentation
[210], T cells were incubated with APCs that had been prepulsed with peptide. APCs
were prepulsedx107 cells per ml) with MBP 72—85;9, (or HSP65 176-190, data not
shown) for 1.5 hours &7 °C (5% CO,) and thoroughly washed. In our first approach,
APCs were prepulsed with a standard peptide concentratimug/ml), after which T

cells were incubated with different concentrations of APCs (varying fdix 10° to

2.5 x 108 cells per well). In the second approach, APCs were prepulsed with differ-
ent concentrations of peptide (varying from 1 to 5a§ml), after which T cells were
incubated with a standard concentration of APCs {0° cells per well). T cell con-
centrations varied from.5 x 10 to 32 x 10* cells per well. Total T cell proliferation

was measured at 24 hours by addition @fithymidine during the last 16 hours of a

24 hours culture period. Cells were harvested on fibreglass filters,? BijdHymidine
incorporation was measured by liquid scintillation counting.
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Statistical procedures

The optimal fits of the mathematical functions to the data were determined by using a
generalized Gauss—Newton method to minimize the sum of the squared residuals (SSR)
between the logarithms of the experimental and theoretical data. The logarithmic trans-
formation was made because the experimental errors were likely to be proportional to
the PH]-thymidine incorporation levels measured. To ascertain that the minima found
were not reflecting local minima, the optimization procedure was repeated for various
initial conditions. All conditions tested gave rise to the same minimal SSR and parame-
ter values.

T cell proliferation functions

Without competition

In theoretical studies of the immune system, it is common practice to describe T cell
proliferation as a linear function of the concentration of antigen-specific T Cekst-
urating over the concentration of antigen-presenting sites on APCs

A
T* = pT—— . 1
T x 1)

Here,T* is a measure of total T cell proliferatione. the amount of {H]-thymidine
incorporation in our experimental assays. The parametepresents the maximum
[H]-thymidine incorporation of T cells, anfl is a saturation constant giving the con-
centration of antigenic sites at which the rate of T cell proliferation is half-maximal.
This saturation function describes the typical picture that is observedro: total T

cell proliferation increases with the antigen concentration until a certain plateau level
is reached. In some experiments, T cell proliferation decreases at very high antigen
concentrations, leading to log bell-shaped proliferation curves [131]. Here we focused
only on the first part of the curves, where T cell proliferation increases when the antigen
concentration increases.

According to the conventional proliferation function of equation (1), doubling the num-
ber of T cells doubles totat H]-thymidine incorporation, regardless of the antigen avail-
ability. When antigen becomes limiting, this function may behave unrealistically, as T
cells are expected to compete for the limiting antigenic resource. Thus, a T cell compe-
tition term may be an essential ingredient of T cell proliferation functions.
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Inhibitory T-T interactions

Several mechanisms have been described by which T cells may directly influence each
others’ proliferation/survival. By cytokine secretion [90] or consumption [91, 124], T
cells may inhibit cell division of other T cells in the local environment. Alternatively, T
cells may present antigens to other T cells, generally inducing the responding T cells to
become anergic [210]. If T lymphocytes indeed directly hinder each other by means of
inhibitory T-T interactions, total T cell proliferation can be described by:

T* = pT —eT?, (2)

A+ K

where T cell competition is modelled by thd2 term (see [33] for an application).
According to equation (2), a T cell approaches its maximum proliferationorathen

the antigen availability is large and the T cell population is small; the proliferation per T
cell decreases when the total concentration of T cells increases.

Antigen-specific resource competition

We have previously proposed, and applied [29], an alternative proliferation function,
based on the conjecture that T cells inhibit each other indirectly by competing for a
limiting antigenic resource [32, 64]. Such a function can be derived from the interactions
between free T cell§’; and free antigenic sites on APCls. When a T cell binds to

a free antigenic site on an APC, it forms a compiéxvhich may either dissociate or

lead to T cell proliferation. Thus, a cellular immune response can be represented by the
following interaction scheme:

Tf-f-Af?k(—L)C, (3)

where the constants andk_; are reaction rates, and new T cells are formed by pro-
liferation proportionally to the number of T cell-antigen complexesn the Appendix
we show that this scheme yields the following T cell proliferation function:

A

T =pT——
p A+cT+ K’

(4)
whereA is the total concentration of antigenic sitég(A = Ay +C), andT is the total
concentration of antigen-specific T celise( ' = Ty + C). In equation (4)¢ reflects

the degree of T cell competition for antigen bindingc K= 0 this function amounts to

the conventional saturation function of equation (1)c¢ ®alue larger than zero would
indicate that T cells are indeed competing for their antigenic resource. Competition
between T cells thus results naturally from the decreasing antigen availability due to T
cell-antigen complex formation.
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Nonspecific resource competition

T cells may also compete for nonspecific resources, such as growth factors, nutrients
and/or access to the surface of APCs. To account for such an antigen-independent form
of competition, we propose a third T cell proliferation function. Assuming that compe-
tition for nonspecific resources affects the maximum proliferation rate of T cells, total T
cell proliferation can be described by:

T A

T = p———— 5
p1+sTA+K’ (5)

wheres reflects the degree of T cell competition. Again, the proliferation per T cell
decreases when the total concentration of T cells increases. Unlike the antigen-specific
competition term of equation (4), the nonspecific competition term of equation (5) in-
volves all T cell clones competing for the same nonspecific resoerge all clones
recognizing their antigen on the same APC.

Results and discussion

The effect of T cell competition on proliferation was studigdvitro, by performing
lymphocyte proliferation assays with the encephalitogenid €D cell clone Zla. In

the assays, both the concentration of T cells and the concentration of antigen were var-
ied. In a first approach, APCs were prepulsed with a standard concentration of peptide,
after which increasing concentrations of prepulsed APCs, displaying the same ligand
densities, were incubated with T cells.

To minimize any changes in the numbers of T cells in the wells during the experiment,
proliferation had to be measured as early as possible. In a pilot stitjytHymidine in-
corporation for several combinations of antigen and T cell concentrations was measured
at different time pointsi(e. 17, 24, 40, 65, and 88 hours) after the start of the incubation
period. At all time points T cell proliferation could be detected (data not shown). At the
earliest time pointi(e. 17 hours), the dose—response curves of several T cell concen-
trations did not yet saturate as a function of the antigen concentration. From 24 hours
onwards, the typically observed picture of proliferation saturating as a function of the
antigen concentration was found (data not shown). Therefore, in all further experiments
total T cell proliferation was measured by theH]-thymidine incorporation 24 hours
after incubation.
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Number of T cells per well:

#T=05*104 ¢T=1¥104  vT=2¢104 oT=4*104 T=8*104 oT=16*104

(a) Without competition: equation (1)

e0a <

<

¥
v
o

0.2

(b) Inhibitory T-T interactions: equation (2)

0.2

0.2

1

0.2

0 1 2 3 0 1 2 3

number of APCs per well (x106)

92

(I129/widd) 1199 1 Jad asuodsal annelaijold



T cell competition

Figure 1.  Proliferative responses of different concentrations of Z1a T cells in response to differ-
ent concentrations of equally prepulsed APCs. Graphs compare experimental results (in symbols)
and best theoretical fits (curves). The experimental data were fitte)l thg conventional satu-

ration function without T cell competition (equation (1)p) the proliferation function involving
inhibitory T-T interactions (equation (2)))(the antigen-specific resource competition function
(equation (4)), andd) the nonspecific resource competition function (equation (5)), respectively.

In the left-hand panels the data are expressed as total proliferative responses, whereas in the right-
hand panels the same data are expressed as proliferative responses per T cell. Parameters of the
theoretical curves are listed in Table 1.

To study which of the T cell proliferation functions derived above could give the best
description of the experimental data, the different functions were fitted to the results of
the proliferation assays. For each of the proliferation functions the set of parameters
giving the best fit to the data was computed by minimization of the SSR between the
experimental data and the function studied.

Because the experimental data included backgrotidfihymidine incorporation, the
proliferation functions first had to be extended with a term accounting for background
proliferation. Background proliferation increased with the concentration of T cells. This
proliferation was probably due to prior T cell stimulation, since the Z1a and A2b clones
were maintained by a weekly phase of restimulation and expansion. In the absence of T
cells, PH]-thymidine incorporation was low{ 200 cpm). Assuming that background

T cell proliferation was indeed due to prior T cell stimulation, we modelled it as a term
independent of T cell-antigen complex formation. Thus, in the fitting procedure all
functions described above were extended by adding the feen brT + ba A + b,
accounting for backgroundfi]-thymidine incorporation due to T cells, background
incorporation due to APCs, and background incorporation in the absence of both T cells
and APCs, respectively.

Figure 1 summarizes the results. All panels represent the same set of experimental data,
denoted by the symbols. The left-hand panels show the total T cell proliferative re-
sponses, while the right-hand panels show the same data expressed as the proliferative
responseper T cell From the left-hand panels of Figure 1 it can be seen that total T cell
proliferation increased both with the concentration of T cells and with the APC concen-
tration. If competition for T cell proliferation occurs, one would expect the proliferative
responseper T cellto decrease when the T cell concentration increases. Indeed, the
right-hand panels of Figure 1 show that T cells at high T cell concentrations had a lower
proliferation rate per T cell than cells at low T cell concentrations. Thus T cell competi-
tion played a role in our assays.
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Table 1.  Results of the curve-fitting procedure of the first and second experimental approaches.
Parameters were estimated by minimizing the SSRs between the logarithms of the total responses
and the proliferation functions. Parameters giving the best fit to the data are followed by the corre-
sponding standard deviations in parentheses. Background proliferation was modelled by the term
B =0brT +baA + b. Inthe second experimental approach, in which the concentration of APCs
was not varied, no discrimination could be made between background proliferation due to APCs
and background proliferation in the absence of APCs. Therefore both sources of background
[®H]-thymidine incorporation in the latter experiment were combined inbtterm. Except for

the K andc parameters, the parameter values of the two experimental approaches are of the same
order of magnitude. The differences between khandc parameters of the two approaches re-

flect the two different ways in which the antigen concentration was vafigdandc; involve the

number of antigenic sites per AP@G)( whereask» andc, involve the number of antigenic sites
established peng peptide {r). Indeed, the estimates of tli€ parameters and theparameters

differ by the same order of magnitudeg. about 5 orders of magnitude. The parameteasdbr

are given in cpm/(cells per mly,a in cpm/(sites per ml)K; and K in sites per mlg; andes in

sites per cellg in cpm/(cells per mB, s in 1/(cells per ml) and in cpm.

The best theoretical fits between the total T cell proliferative responses and the pro-
liferation functions derived above are denoted by the curves in the left-hand panels of
Figure 1. It should be emphasised that in each panel all data were fitted simultaneously,
explaining why the individual theoretical curves do not optimally fit the individual T
cell concentration data sets. The parameter sets for which the optimal fits were obtained
are given in Table 1. Although all four functions yielded a reasonable fit to the data, the
right-hand panels of Figure 1 expose the shortcomings of both the conventional prolif-
eration function without competition (Figure)l and the function involving inhibitory

T-T interactions (Figureld). Both functions failed to account for the inhibitory effect

of large T cell numbers on the proliferative response per T cell. Only the functions
incorporating resource competition (either antigen-specific, Figorerlnonspecific,
Figure M) yielded good descriptions of the proliferative responses per T cell, indicating
that T cells were competing indirectly, for shared resources.

Statistical analysis of the sums of the squared residuals (SSRs) of the different prolifer-
ation functions yielded that all proliferation functions involving T cell competition gave

a significantly better fit to the data (F-tegt< 0.001) than the conventional saturation
function without competition (see Figure 2). In Figure 2 the antigen-specific resource
competition of equation (4) is denoted by A, the nonspecific resource competition func-
tion of equation (5) by N, the inhibitory T-T interaction function of equation (2) is
denoted by T, and the conventional saturation function of equation (1) by C. Solid ar-
rows denote model extensions giving significantly better fits to the data, while dashed
arrows denote extensions that did not lead to significantly better fits. It was of interest
to determine whether extension of the competition functions with an extra competition
term could significantly improve the fit to the experimental data. To this end, three new
proliferation functions, each combining two of the competition terms described above
(denoted by NA, AT, and NT) were fitted to the experimental data. Figure 2 shows that
once the proliferation function involved resource competition (A or N), the fit to the ex-
perimental data could not be significantly improved by adding another competition term.
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T
F=90 (3.4) F=84
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Figure 2.  Statistical comparison of the SSRs of the different proliferation functions of the first
experimental approach, with SSRs in parentheses. Arrows represent different model extensions
and are accompanied by the corresponding F values. Solid arrows denote model extensions that
significantly improved the fit to the experimental data (F-test; 0.001); dashed arrows denote
extensions that did not lead to significantly better fitsx 0.001). C represents the conventional
saturation function without competition (equation (1)), T the inhibitory T-T interaction function
(equation (2)), A the antigen-specific resource competition function (equation (4)), and N the
nonspecific resource competition function (equation (5)). The proliferation function denoted by
NA combines both forms of resource competition, AT combines antigen-specific competition and
inhibitory T-T interactions, and NT combines nonspecific resource competition and inhibitory
T-T interactions.

The proliferation function involving inhibitory T-T interactions (T), however, could be
improved by incorporating either form of resource competition. Thus the SSR analysis
demonstrates that T cell competition was mainly due to resource competition.

Figure 3.  Proliferative responses of different concentrations of Z1la T cells in response to a

standard concentration of APCs prepulsed with different concentrations of MBPs42+<850r
details see the legend of Figure 1.
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Chapter 7

To study the nature of the resources for which the T cells were competing, the analysis
was repeated with a different experimental approach. APCs were incubated at a standard
concentration with Z1a T cells, after prior prepulsing with increasing concentrations of
peptide, leading to increasing ligand densities on the APCs. The results are summarized
in Figure 3. Because of the wide range of antigen concentrations, the results of the sec-
ond experimental approach were plotted on a logarithmic horizontal axis. This explains
the sigmoid shape of the proliferation curves. The proliferation function involving non-
specific resource competition (Figurd)3jave the best description of the data. Both the
standard saturation function without competition (Figuseéhd the competition func-

tion involving inhibitory T-T interactions (Figureb3 failed to describe the inhibitory
effect of large T cell concentrations on the proliferation per T cell, demonstrating again
that resource competition plays a ratevitro.

T
F=78 (4.5) F=16
i AT

NT
(1.8) : (3:4)
N
: / (5'4)\ |
F=1! F=104 F=28 1F=1
A
(1N.8) @9)
F:0.3\\‘ F=49
AN
NA

(18

Figure 4.  Statistical comparison of the SSRs of the different proliferation functions of the
second experimental approach. For details see the legend of Figure 2.

The SSR analysis of the second experimental approach is summarized in Figure 4.
Extending the conventional saturation function of equation (1) (C) with inhibitory T—

T interactions (T) did not significantly improve the fit to the data, whereas extension
with a resource competition term (A or N) again did. Interestingly, the nonspecific re-
source competition function (N) now gave a much better fit than the antigen-specific
resource competition function (A), and was the only competition function that could not
be significantly improved by extension with another competition term. Extension with a
term accounting for nonspecific resource competition significantly inproved the fit of the
antigen-specific competition function (& NA). Thus, nonspecific resource competi-
tion must have played a significant role in the second experimental approach. Increasing
the antigen availability by increasing the concentration of presented peptides on APCs
(approach 2) apparently differs from increasing the antigen availability by increasing
the concentration of APCs presenting peptides (approach 1). Our interpretation is that T
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cells are competing for antigenic sites on APCs, for spaces on APCs where T cells

can bind to their specific antigen without being disturbed by surrounding T cells. Be-
cause the concentration of APCs was fixed in the second experimental approach, there
was a limited number of APC sites T cells could bind to. Prepulsing with higher peptide
doses might thus have increased the peptide concentyaioantigenic sitebut might

have failed to increase the actual antigeailabilityfor T cells.

In the second experimental approach, it would be more appropriate to explicitly model
the concentration of antigenic sitdsas a saturation function of the peptide concentra-
tion used for prepulsing the APCs (see Appendix). When such a saturation is substi-
tuted in equation (4), a proliferation function is obtained that has the same qualitative
behaviour as the nonspecific resource competition of equation (5), explaining why the
latter function described the data better than the antigen-specific resource competition
function of equation (4). Because in the first experimental approach the number of anti-
genic sitesA increased linearly with the concentration of APCs, both functions gave a
good fit to the data in Figure 1. Additionally, the fact that the data fitting in our two ex-
perimental approaches gave qualitatively different results suggests that T cells were not
merely competing for resources such as growth factors or nutrients in the medium. If T
cells were competing for such APC-independent resources, one would expect Figures 2
and 4 to be similar. Finally, when the analysis was repeated with arthritogenic A2b T
cells, the same qualitative picture as Figures 2 and 4 was obtained. This confirms that T
cells compete for antigenic sites on APCs.

Conclusion

By mathematical analysis of data from T cell proliferation assays in which both the
concentration of antigen-presenting sites and the concentration of T cells were varied,
we have shown evidence for T cell competitiarvitro. Our results are in full agreement
with in vivo data demonstrating that the proliferative capacity of T cells is influenced
not only by the antigen availability but also by the presence of other T agdls,T

cell competition [80, 215, 216]. In theoretical models of the immune system, T cell
competition terms are often applied for their stabilizing effect on T cell population sizes
[66]. The results presented here provide an experimental validation for the use of such
T cell competition terms.

Our mathematical approach enabled us to discriminate between three qualitatively dif-
ferent forms of T cell competitioni.e. direct inhibitory T-T interactions, antigen-
specific resource competition, and nonspecific resource competition. The best descrip-
tion of the experimental data was obtained with proliferation functions involving re-
source competition. Comparison of two different experimental approaches, in which
the antigenic ligand concentration was controlled differently, indicated that T cells were
mainly competing for antigenic sites on APCs. T cell competition for antigenic sites
thus seems to be a phenomenon arising naturally from the interactions of T cells with
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their ligands, which should be taken into account in both experimental and theoretical
studies of T cell proliferation. The relative importance of competition for a site on an
APC, and competition between cells binding the same MHC—peptide complex, remains
to be elucidated by developing models and experiments involving multiple T cell clones
competing for multiple antigens.

Appendix

Derivation of the antigen-specific competition function

The T cell interaction scheme (3) can be described by the following differential equation
for the T cell-antigen complex&s.

% =k TrA; —k_,C. (6)

Following Borghan®t al. [32], we make a quasi-steady state (QSS) approximation for
the T cells in complex), and substitute the equations for the total concentration of
T cellsT = Ty + C, and the total concentration of antigenic sites= A; + C into
equation (6), giving:

dc B ke
E_kl((T—C)(A—O)—KC)_O, where K = “=- (7)

If the concentration of T cells and antigens in complekeis small [32] compared to
the total concentration of T cell§, and compared to the total concentration of antigenic
sitesA, theC? terms in equation (7) can be neglected, yielding:

AT

C%A+J+K’

where c=1. (8)

According to Huisman & De Boer [102], thisvalue becomes a parameter that may
deviate frome = 1 if T cell proliferation is modelled as a multistep process in which
a T cell-antigen complex() first becomes an activated T cell, which subsequently
proliferates to form two free T cell§§). For maximal simplicity, we have left out this
activated T cell stage, but we do allow fetbeing a parameter that can be estimated
freely. Since total T cell proliferation is assumed to be proportional to the total number
of T cell-antigen complexeS, total [?H]-thymidine incorporation can be modelled by
T* = pC, i.e. by equation (4).
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Transforming peptides and APCs into antigenic sites

To become stimulated, a T cell has to bind to an APC and interact with the appropriate
MHC—peptide complex. Because only a limited number of T cells can bind to one APC

at any time, T cells compete for “sites” on APCs where T cells can bind and antigen

is presented [65]. In the first experimental approach, the antigenic site concentration
(4) is increased by adding APCs, and is thus proportional to the APC concentration:

A =nA.. HereA. represents the concentration of APCs artle number of antigenic

sites per APC. In the second approach, however, it is more appropriate to model the
antigenic site concentration as a saturation function of the peptide concentration:

AP
A=m i ©
with A, denoting the peptide concentration used to prepulse the APGsnoting the
peptide concentration at which the antigenic site concentration is half-maximak, and
representing the number of antigenic sites establisheggef peptide at low peptide
concentrations. Because substitution of equation (9) into the antigen-specific resource
competition function of equation (4) yields a competition function that is very similar
to the nonspecific resource competition function of equation (5), but involves one more
parameter than equation (5), we refrained from substituting equation (9) when we fit-
ted the experimental results of Figure 3. Instead we substituted the linear domain of
equation (9)j.e. A = mA,.

Since bothn andm are unknown, we have scaled thand K parameters by dividing
both the numerator and the denominator of the proliferation functions of equations (1),
(2), (4) and (5) by: in the first experimental approach, andryn the second approach.

In the fitting procedure we have thus estimated= ¢/n and K; = K/n for the first
experimental approach and = ¢/m and K, = K/m for the second experimental
approach. This explains the differencegiand K in the first and second experimental
approach (see the legend of Table 1 for further details).

We thank Lex Borghans and Jorge Carneiro for useful discussions.
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Chapter 8

Different sources of diversity

This thesis addresses various sources of diversity in the vertebrate immune system. In
particular, we have studied the diversity employed by lymphocytes, which are responsi-
ble for therecognitiorof antigens, and the diversity of major histocompatibility (MHC)
molecules, which are responsible for theesentatiomf antigens to the immune sys-
tem. In principle, lymphocytes and MHC molecules are involved in the sameitask,

to allow immune responses to many foreign antigens, while avoiding inappropriate re-
sponses such as autoimmunity. Given the diversity of foreign and self molecules, it is
perhaps not surprising that both MHC molecules and lymphocytes have a high degree
of diversity. Nevertheless, they differ fundamentally in the level at which their diversity
is expressed. While any vertebrate individual expresses a huge diversity of B and T
lymphocytes, the diversity of MHC molecules is mainly evident at the population level.
This suggests that MHC and lymphocyte diversity play quite distinct functional roles.

Evolutionary and somatic learning

Central to this thesis is the hypothesis that the adaptive immune system stores immuno-
logical decisions in lymphocytes. The decision as to which type of immune response
to induce against an antigen is based on the context of the anéigeits localization

[234], any tissue damage caused by the antigen [135], and/or signals from the innate im-
mune system [104]. If effector or memory clones recognize a subset of the epitopes that
are expressed by an antigen, they too form part of the antigen context, and provide infor-
mation on the type of immune response that is to be induced. Being fairly independent
of costimulatory signals, such instructed lymphocytes help to eliminate pathogens upon
re-encounter even before any tissue damage has been done, and help to induce appropri-
ate immune responses against new antigens that correlate with previously encountered
antigens. The vertebrate immune system thus combines the evolutionary wisdom of the
innate immune system with somatic learning by the adaptive immune system.

Somatic learning by the adaptive immune system has an illustrative analogy with the way
the brain learns about fear. A consequence of “learned fear” is that the body reacts as if it
is in danger even if a situation “doesn’t contain anything that is intrinsically threatening,
yet is bristling with signs you have learned to associate with danger” [16]. We think this
concept applies to lymphocytes as well. Even without an inflammatory context, effector
and memory lymphocytes recognizing certain epitopes of an antigen will associate the
antigen with previously encountered antigens and respond accordingly. As we have
shown in Chapters 2—4, this has important implications for the diversity of lymphocytes
and MHC molecules.
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Diversity of lymphocytes

There is good evidence that the adaptive immune system of vertebrates evolved when
recombination-activating genes (RAGs) became inserted into a vertebrate receptor gene
[4, 95], enabling recombination of parts of the genome, and thereby expression of a
huge diversity of specific lymphocytes [10]. It has been suggested that the diversity of
the vertebrate immune system arose as a side-effect of the genetic coding for antigen-
receptors. Using an evolutionary model it has been shown that immune systems with
somatic recombination naturally evolve a large repertoire diversity to respond to a wide
variety of pathogens. Under similar conditions, in immune systems lacking somatic
recombination the number of different receptors naturally decreases [213].

Alternatively, it has been proposed that the need for self-nonself discrimination is the
driving force for the diversity of the adaptive immune system. Using mathematical mod-
els it has been shown that the diversity of lymphocytes giving optimal protection against
infections reflects the number of self antigens that need to be tolerized [62, 152, 228].
We have shown in Chapter 2 that avoidance of inappropriate immune responses calls
for an even higher specificity and diversity than was concluded from these previous
models. Because a significant part of all self epitopes fails to induce self tolerance
[50, 169, 185], cross-reactive lymphocytes would run the risk of being triggered by for-
eign antigens and subsequently turning autoaggressive against so-far ignored self anti-
gens [12, 159, 160, 232]. Likewise, lymphocytes that have been instructed to mount a
particular type of immune response against an antigen should not cross-react with other
antigens that normally invoke a different type of immune response. According to our cal-
culations, lymphocytes should be as specific as possible within the constraints imposed
by the size of the immune repertoire. (Large) vertebrates with large immune repertoires
would therefore be predicted to have more specific lymphocytes, and hence a smaller
chance to suffer from infections and autoimmune diseases, than (small) vertebrates with
small immune repertoires.

We have studied the storage of appropriate responses by lymphocytes in Chapter 3, and
found that the advantages conferred by an adaptive immune system outweigh its dis-
advantages whenever (i) the immune repertoire is sufficiently specific, and (i) there is
some correlation in terms of overlapping epitopes between antigens that require similar
types of immune response. If the adaptive immune system were insufficiently specific,
the immune system would be better off without it, because inappropriate immune re-
sponses would tend to be induced. Lymphocyte diversity reconciles specificity (required
to avoid inappropriate responses) with reactivity (required to respond to many antigens).
We have shown that the contribution of memory lymphocytes in immune responses to
new antigens is not hampered by increasing the size of the immune repertoire. One
therefore expects evolution to select for highly diverse and specific lymphocyte reper-
toires.
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Diversity of MHC molecules

In contrast to lymphocytes, MHC molecules bind their ligands degenerately. Neverthe-
less, hundreds of different MHC molecules have been observed, albeit only at the popu-
lation level [166, 223]. Individuals express only a small fraction of this MHC diversity
[167]. In Chapter 4, we have disputed the widely held view that the individual diversity

of MHC molecules is limited to avoid T cell repertoire depletion during self tolerance
induction [54, 62, 106, 157, 164, 211, 222]. Re-examining a previously proposed model
[157], we have shown that expression of extra MHC molecules tends to increase the
functional T cell repertoire and that repertoire depletion only occurs at an unrealistically
high individual MHC diversity. Additionally, we have demonstrated that the selection
pressure for a larger MHC diversity within an individual fades away once there are of
the order of ten different MHC molecules per individual. Expression of a larger individ-
ual MHC diversity has the added disadvantage that the chance of inducing inappropriate
immune responses increases. Foreign peptides presented by MHC molecules may form
complexes that — from the T cell point of view — look similar to complexes of MHC
molecules presenting ignored self molecules. Excessive MHC diversity therefore in-
creases the chance that lymphocytes that have been triggered by foreign peptides cause
autoimmune responses against so-far ignored self antigens.

By simulating the evolution of hosts and pathogens, we have demonstrated in Chap-
ter 5 that a large polymorphism of MHC molecules naturally arises in host populations
infected by pathogens. The simulations show that there is selection favouring heterozy-
gosity at the MHC loci [68, 99-101, 212]. If the hosts and pathogens in our simula-
tions coevolve, there is frequency-dependent selection in addition, which favours the
expression of rare MHC molecules [19, 27, 195, 202]. Rare MHC molecules tend to
provide protection against pathogens that avoid presentation by the most common MHC
molecules in the population. We have shown that the MHC polymorphism arising under
host—pathogen coevolution is significantly larger than the polymorphism arising under
selection for heterozygosity only. In the simulations of Chapter 5 there is no explicit
disadvantage of expression of many different MHC molecules per individual, as we pro-
posed in Chapter 4. If a disadvantage of a high individual MHC diversity is taken into
account, the effect of heterozygosity selection on the MHC polymorphism diminishes
at a sufficiently high individual diversity. Heterozygosity selection works by favouring
the individuals with the largest MHC diversity. Selection for expression of rare MHC
molecules, on the other hand, would remain.

For other defence systenesg.the restriction—modification (RM) system which protects
bacteria against invading genetic material, two modes of diversity have been described:
an individual-based mode in which every bacterium expresses all possible RM speci-
ficities, and a population-based mode in which each bacterium expresses maximally one
RM system, with the total set of RM systems being expressed at the population level
[162]. Pagie & Hogeweg [162] demonstrated that such a population-based mode even
exists in the absence of any costs for expression of RM systems. Expressing a limited
number of defence systems per individual allows individuals to be different from each

106



Summarizing discussion

other. Analogously, the population diversity of MHC molecules allows different verte-
brate individuals to respond differently to identical antigens, thereby giving protection
against coevolving pathogens. The MHC diversity within any individual allows verte-
brates to reconcile this population diversity with presentation of many antigens.

Diversity of immune responses

Upon antigenic challenge, MHC molecules and T lymphocytes aggregate at the cell sur-
face of APCs to enable the induction of an appropriate response. During the T cell-FAPC
contact — a dynamic interaction [219] which typically lasts several hours [117] — the
engaged T cell receptors (TCRs) and MHC—peptide complexes are temporarily unavail-
able for other T cell-APC contacts. In Chapter 6 we have derived a T cell proliferation
function accounting for the temporary unavailability of both antigen and TCRs. We
have applied this proliferation function in Chapter 7, and have shown evidence for com-
petition between T lymphocytes of the same specificity for antigen-presenting sites on
APCs. If differentlymphocyte clones were to compete for a single ligand, the clone with
the highest affinity for that ligand would be expected to outcompete all other clones [63].
T cell competition would thereby jeopardize the reliable storage of appropriate types of
immune response in multiple lymphocyte clones, which is needed for recognition of cor-
related antigens. We conjecture that the immune system may employ its MHC diversity
at the individual level to allow the presentation of multiple epitopes per antigen, and
thereby to preventimmune responses from becoming monoclonal.

In summary, this thesis demonstrates that it is neither the pathogen di-
versity nor the self diversity, but instead the need to avoid inappropriate
immmune responses, that can explain the diversity in the immune sys-
tem. For example, avoidance of autoreactivity to self molecules that
fail to induce self tolerance can explain both the enormous individual
diversity of lymphocytes and the limited individual diversity of MHC
molecules. The individual MHC diversity that is left may play a role in
the distributed storage of immunological decisions in the presence of T
cell competition. The diversity of coevolving pathogens does explain
the diversity of MHC molecules at the population level.
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Samenvatting

Het immuunsysteem kenmerkt zich door zijn grote diversiteit. Miljarden witte bloedcel-
len (lymfocyten), elk met andere receptoren op het celoppervlak, bieden bescherming
tegen ziekteverwekkende parasieten, baetedi virussen (pathogenen). Tijdens in-
fecties vermenigvuldigen zich alleen de lymfocyten die specifiek het infecterende pa-
thogen herkennen, zodat het pathogen kan worden verwijderd en het lichaam beter be-
schermd is als het een tweede keer door hetzelfde pathogefiegeerd wordt. Om-

dat lymfocyt-receptoren grotendeels aselect worden samengesteld, bestaat het risico dat
lymfocyten zich richten tegen lichaamseigen moleculen. Om zulke autoimmuunreacties
te voorkomen worden lymfocyten die lichaamseigen moleculen herkennen verwijderd of
geihactiveerd. Hetimmuunsysteem leert zo lichaamseigen van lichaamsvreemde stoffen
te onderscheiden.

Behalve door de enorme diversiteit aan lymfocyten kenmerkt het immuunsysteem zich
ook door de veelheid aan verschillerggeenimmuunreacties. Zo induceert een virale
infectie in de long een heel ander soort immuunreactie dan een ledetafiéctie van

de darm. Een in het oog springend verschil in immuunreacties is het onderscheid tus-
sen B- en T-cel-reacties. B-lymfocyten herkennen pathogenen in hun natuurlijke vorm
en produceren antilichamen als ze een pathogen herkennen. T-lymfocyten daarentegen,
herkennen pathogenen alleen nadat stukjes eiwit (peptiden) van pathogenen gepresen-
teerd zijn op zogenaamdeajor histocompatibilityMHC-) moleculen op het opperviak

van antigeen-presenterende cellen.

Ook deze MHC-moleculen staan bekend om hun grote diversiteit. MHC-moleculen ver-
schillen vooral daar waar peptides worden gebonden. Verschillende MHC-moleculen
induceren daardoor verschillende T-cel-reacties. In tegenstelling tot de diversiteit van
lymfocyten komt de diversiteit van MHC-moleculen vooral tot uitdrukking op popu-
latieniveau en niet zozeer op individueel niveau. In elk individu zorgen grofweg tien
verschillende MHC-moleculen voor de presentatie van pathogenen aan het immuunsys-
teem. Op populatieniveau zijn echter honderden verschillende MHC-moleculen gevon-
den. Doordat praktisch elk individu een andere set MHC-moleculen tot expressie brengt,
verschillen individuen in hun immuunreacties tegen identieke pathogenen.

In dit proefschrift worden wiskundige modellen en computersimulaties gebruikt om te
onderzoeken welke evolutionaire selectiedruk de diversiteit van lymfocyten en MHC-
moleculen kan verklaren. De grote individuele diversiteit aan lymfocyten werd veelal
gezien als een aanpassing aan de grote diversiteit aan pathogenen waaraan gastheren
worden blootgesteld. De modellen in dit proefschrift laten echter zien dat niet de afweer
tegen veel verschillende pathogenen maar juist het wonek'van ongewenste immuun-
reacties een hoge diversiteit van lymfocyten vereist. Een centrale hypothese in dit proef-
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schrift is dat lymfocyten die eenmaal een peptide herkend hebben)rstrgeerd zijn

over het type immuunreactie dat ze moeten induceren, dit fenotype “onthouden.” Wan-
neer ze hun peptide opnieuw tegenkomen “weten” dergelijke lymfocyten dus al welk
type immuunreactie gemaakt moet worden. Een gevaar van zo’'n somatisch lerend im-
muunsysteem is dat gestrueerde lymfocyten een verkeerd soort immuunreactie teweeg
kunnen brengen als ze ook reageren op peptides van pathogenen die een ander soort
immuunreactie vereisen. De modellen in dit proefschrift laten zien dat er daardoor een
evolutionaire selectiedruk is op de expressie van een zo specifiek en divers mogelijke set
van lymfocyten per individu.

Gezien de rol van MHC-moleculen in immuunreacties is het verbazingwekkend dat
de individuele MHC-diversiteit zo klein is vergeleken met de populatiediversiteit van
MHC-moleculen. Een veelgebruikte argumentatie hiervoor is dat een beperkte MHC-
diversiteit per individu vooremt dat het T-cel-repertoire uitgeput raakt tijdens zelf-
tolerantie-inductie. Dit proefschrift laat echter zien dat dit verbale argument niet kan
werken. Een negatief effect van MHC-moleculen op het T-cel-repertoire blijkt pas op
te treden bij een onrealistisch hoge individuele MHC-diversiteit. De modellen sugge-
reren twee alternatieve verklaringen voor de beperkte individuele MHC-diversiteit. Al-
lereerst vervalt de selectiedruk voor een grotere individuele MHC-diversiteit zodra het
aantal verschillende MHC-moleculen per individu hoog genoeg is om de presentatie
van willekeurige pathogenen te kunnen garanderen. Ten tweede bieden extra MHC-
moleculen een verhoogd risico op het ontstaan van ongewenste immuunreacties, zoals
bijvoorbeeld immuunreacties tegen lichaamseigen moleculen die er niet in geslaagd zijn
zelf-tolerantie te induceren.

Ondanks de selectiedruk tegen een te hoge individuele MHC-diversiteit, blijft er selec-
tie voor de expressie van MHC-moleculen die binnen de populatie weinig voorkomen.
Pathogenen kunnen dankzij hun relatief snelle evolutie “leren” om niet gepresenteerd te
worden op MHC-moleculen die algemeen voorkomen in de populatie. Door anders te
zijn dan de andere individuen binnen een populatie verkrijgt een gastheer bescherming
tegen zulke evoluerende pathogenen.

Hoewel zowel lymfocyten als MHC-moleculen betrokken zijn bij dezelfde taak, name-
lijk het opbouwen van immuniteit tegen pathogenen en het vaodd van autoimmuni-

teit, is er dus een fundamenteel verschil in hun diversiteit. Dit proefschrift laat zien dat
zowel de grote individuele diversiteit van lymfocyten als de lage individuele diversiteit
van MHC-moleculen kan worden verklaard uit de noodzaak ongewenste immuunreac-
ties zoals autoimmuunreacties te voorkomen.
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