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Abstract

We consider the problem of �nding low-cost spanning trees for sets of n points in the plane,
where the cost of a spanning tree is de�ned as the total number of intersections of tree edges
with a given set of m barriers. We obtain the following results:

(i) if the barriers are possibly intersecting line segments, then there is always a spanning
tree of cost O(min(m2;m

p
n));

(ii) if the barriers are disjoint line segments, then there is always a spanning tree of cost
O(m);

(iii) if the barriers are disjoint convex objects, then there is always a spanning tree of cost
O(n+m).

All our bounds are worst-case optimal.

1 Introduction

Consider a problem of batched point location: eÆciently locating n given points in a planar subdi-
vision de�ned by m line segments. This problem arises in many applications, but particularly in
work that gives a linear-time reconstruction of previously-computed geometric structures such as
the Voronoi or Delaunay diagrams [9]. In this work, the desired diagram is reconstructed incre-
mentally, adding the points in stages. In each stage, the algorithm faces a batched point location
problem to add the current points to the diagram de�ned by all the previously inserted points.
The algorithm could use standard point location or line-sweep methods, but this has a logarithmic
cost per point. Suppose instead that the algorithm knew how to connect the points by a path
or spanning tree that crosses the edges of the diagram only linearly many times. Then, once one
of the points is located, the spanning structure could be traversed through the diagram and the
remaining points located in linear time.

The construction of such spanning trees motivated the current investigation, in which we gen-
eralize the subdivision edges to allow other classes of geometric objects. Let P be a set of n points
in the plane, which we call sites, and let B be a set of m geometric objects, which we call barriers.
We assume that no site lies inside any of the barriers. An edge e, which is a straight line segment
joining two sites, has a cost c(e) that equals the number of barriers that e intersects. (When
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barriers are non-convex, an edge may intersect a barrier more than once. Such a barrier will still
be counted only once.) The cost of a spanning tree T for P is the sum of the costs of its edges:

c(T ) =
X

e2T

c(e):

(It would be more precise to speak of the cost with respect to B, but since the barrier set will always
be �xed and clear from the context, we omit this addition.) We are interested in cheap spanning
trees, that is, spanning trees with small cost, for several types of barriers. We obtain the following
results.

Section 2 deals with the case in which the barriers are possibly intersecting line segments. Here
we show that there are con�gurations in which any spanning tree has cost 
(min(m2;m

p
n)). We

also show how to construct a spanning tree with this cost.
Section 3 deals with various types of disjoint barriers. Here it turns out that much cheaper

spanning trees can be constructed. For instance, we are able to obtain a bound of O(n+m) when
the barriers are fat objects|discs for example. This bound is tight in the worst case.

The major result in this paper is given in Section 4, where we prove that for any set of n sites
and any set of m barriers that are disjoint convex sets, there is a spanning tree of cost O(m+ n).
This is optimal in the worst case. If the barriers are line segments, we show that there exists a
spanning tree in which no barrier segment is crossed more than four times. Thus, the batched
point location problem above can be solved by treating subdivision edges as barriers and forming
such a linear cost spanning tree.

All our proofs are constructive. Our construction in Section 3 indeed leads to an eÆcient
O((n + m) logm) algorithm to produce a spanning tree of low cost. The existence proofs are
more interesting, however, since a simple greedy algorithm will always construct a spanning tree
of minimal cost (and for the linear-time reconstruction goal the computation of the tree happens
during the preprocessing in any case).

The bounds mentioned above are signi�cantly better then the naive O(nm) bound. We close
this introduction by noting that if we wish to construct a triangulation on the sites, not just a
spanning tree, then the naive bound is tight in the worst case. This can be seen by the example
in Fig. 1.

m segments

n=2 pointsn=2 points

Figure 1: Any triangulation of the point set will have cost 
(nm).

2 Intersecting segment barriers

We start with the case of barriers in B that are possibly intersecting line segments.

Theorem 2.1 (i) For any set P of n sites and any set B of m possibly intersecting segments in
the plane, a spanning tree for P exists with a cost of O(min(m2;m

p
n)).
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(ii) For any n and m there is a set P of n sites and a set B of m segments in the plane, such that
any spanning tree for P has a cost of 
(min(m2;m

p
n)).

Proof. (i) Extend the line segments in B to full lines. For each cell in the resulting arrangement,
if the cell contains sites, choose a representative site and connect all sites in that cell to the
representative. The edges used for this have zero cost, since the cells are convex and contain
no barriers. Finally, compute a spanning tree on the set of representative sites with the
property that any line intersects O(

p
n0) edges of the spanning tree [4], where n0 is the

number of representatives. The cost of the spanning tree is O(m
p
n0). This proves part (i)

of the theorem, since n0 6 min(n;m2).

(ii) First consider the case with m > 2
p
n � 2. We assume for simplicity that n is a square.

We place the sites in a regular
p
n � p

n grid. In between any two consecutive rows we
put a bundle of bm=(2

p
n� 2)c horizontal barrier segments; in between any two consecutive

columns we put a bundle of bm=(2
p
n� 2)c vertical segments. The remaining segments are

placed arbitrarily. Figure 2(a) shows the construction for the case n = 25 and m = 16. Any

(a) construction for m > 2
p
n� 2 (b) construction for m < 2

p
n� 2

Figure 2: The lower bound constructions.

edge connecting two sites crosses at least one bundle. Hence, the cost of any spanning tree
is at least (n� 1)bm=(2

p
n� 2)c = 
(m

p
n).

Now consider the case with m < 2
p
n � 2. We arrange the barrier segments as shown in

Fig. 2(b) for the case m = 8: we have a group of bm=2c vertical segments and a group of
dm=2e horizontal segments, such that any vertical segment intersects any horizontal segment.
We place a site in each of the resulting \cells"; the remaining sites are placed in any cell.
Any spanning tree for P will have cost 
(m2).

�

3 Disjoint uncluttered barriers

Let P be a set of n sites in the plane, B a set of m disjoint barriers (of arbitrary shape). We
give an algorithm that uses a binary space partition (BSP) for the set of barriers to construct
a spanning tree for P . We analyze the cost of the resulting spanning tree for orthogonal BSPs.
Combining our analysis with known results on BSPs will then give us cheap spanning trees for
so-called uncluttered scenes (de�ned below).
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Given a BSP, our algorithm recursively associates with each node � of the BSP a subset P� � P ,
and constructs a spanning tree for P� . Initially � is the root of the BSP and P� = P ; the �nal
result is a spanning tree for P . There are three cases to consider.

(i) If P� contains at most one site, then we already have a spanning tree for P� .

(ii) If P� contains more than one site but � is a leaf of the BSP, then we connect the sites into
a spanning tree in an arbitrary manner.

(iii) In the remaining case, P� contains more than one site and � is an internal node of the BSP.
Let `� be the splitting line stored at �. The line `� partitions P� into two subsets. (Points
on the splitting line all go to the same subset, say the right one.) We recursively construct
a spanning tree for each of these subsets by visiting each child of � with the relevant subset.
Finally, if both subsets are non-empty we connect the two spanning subtrees by adding an
edge between the sites closest to `� on either side of `� .

We now analyze the worst-case cost of the constructed spanning tree for the special case of orthogo-
nal BSPs. (An orthonal BSP for B is a BSP whose splitting lines are all horizontal or vertical.) We
assume that the leaves of the BSP store at most c objects, for some constant c; thus the cells of the
�nal subdivision are intersected by at most c objects. (Note that we cannot require c = 0 unless
we restricted our attention to orthogonal barrier segments.) The number of fragments generated
by the BSP is the sum of the number of barriers stored at each leaf, over all leaves.

The following result will imply the existence of spanning trees of linear cost for several classes
of barriers, including orthogonal segments and convex fat objects.

Theorem 3.1 Let B be a set of disjoint simply-connected barriers in the plane, and let P be a
set of n sites in the plane. Suppose an orthogonal BSP for B exists that generates f fragments
and whose leaf cells intersect at most c barriers. Then there is a spanning tree for P with cost at
most O(f + k + cn), where k is the total number of vertical and horizontal tangencies on barrier
boundaries.

Proof. We consider the cost of the spanning-tree edges added in di�erent cases of our algorithm.
Each edge added in case (ii) intersects at most c barriers, so their total cost is at most c(n� 1).

Now consider an edge pq added in case (iii), and assume that the splitting line `� is vertical. Let
region(�) denote the region corresponding to �. Since the BSP uses only horizontal and vertical
splitting lines, region(�) is a rectangle, possibly unbounded on one or more sides. De�ne R� to be
the intersection of region(�) with the slab bounded by vertical lines through the sites p and q|see
Fig. 3. By the choice of p and q, there are no other points in gap R� , so R� will not overlap with
vertical slabs in the subtree of �.

p

q

region(�)
R�

Figure 3: Illustration for the proof of Theorem 3.1.
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Let b be a barrier intersected by pq. We will show how to charge this intersection to certain
features of the barriers. These features are:

� The intersections between barrier boundaries and splitting lines. The number of these
features is linear in the number of fragments f .

� Vertical and horizontal tangencies of barrier boundaries. The number of these features is k.

The charging of the intersection of pq with b is done as follows.

� If the boundary of b has a vertical tangent in the interior of R� , then we charge the inter-
section to this feature.

� Otherwise the boundary of b either intersects `� in a point r lying in the interior of region(�),
or it intersects the boundary of region(�) in a point r0 that is also on the boundary of R� .
Now we charge the intersection to r or r0, respectively. Observe that both r and r0 are
features of b.

Fig. 3 shows, for each of three intersected barriers, a feature to which the intersection with pq can
be charged. (Notice that there may be some choice, which can be made arbitrarily.) To bound the
number of times a feature gets charged, we observe that the regions R� of nodes � whose splitting
line is vertical have disjoint interiors. It follows that a vertical tangency is charged at most once,
and an intersection of a barrier boundary with a splitting line is charged at most twice (namely
at most once for each fragment that has the point as a vertex). Similarly, a feature is charged at
most twice from a node whose splitting line is horizontal. �

A �-cluttered scene in the plane is a set B of objects such that any square whose interior does not
contain a bounding-box vertex of any of the the objects in B is intersected by at most � objects
in B. A scene is called uncluttered if it is �-cluttered for a (small) constant �. It is known that
any set of disjoint fat objects, discs for instance, is uncluttered|see the paper by de Berg et al. [3]
for an overview of these models and the relations between them.

Theorem 3.2 Let B be a set of m disjoint objects in the plane, each with a constant number of
vertical and horizontal tangents, that form a �-cluttered scene, for a (small) constant �. Let P
be a set of n sites. Then there is a spanning tree for P with cost O(m + n). This bound is tight
in the worst case, even for unit discs. A spanning tree with this cost can be computed in time
O((m + n) logm).

Proof. De Berg [2] has shown that a �-cluttered scene admits an orthogonal BSP that generates
O(m) fragments such that any leaf cell of the BSP is intersected by at most O(�) fragments. Then
by Theorem 3.1 there is a spanning tree of cost O(m+ �n).

To see that this bound is tight, take a disc as the only barrier and place the sites around the
disc and so close to it that any edge connecting two sites crosses the disc. In this situation any
spanning tree must have cost 
(n). A row of m discs with two sites on either side is an example
in which any spanning tree must have cost 
(m).

De Berg gives an algorithm that constructs the orthogonal BSP in time O(m logm), given only
the corners of the bounding boxes of the barriers. The BSP induces a planar subdivision consist-
ing of O(m) boxes. We assign each site to the box containing it in time O(n logm) [2], and then
construct the spanning tree from the leaves of the BSP upwards. Since we only need to maintain
the leftmost, rightmost, topmost, and bottommost site in each node of the BSP, this can be done
in time O(n+m). �

Theorem 3.1 also implies that we can always �nd a spanning tree of cost O(m) when the barriers are
disjoint orthogonal segments, because Paterson and Yao [7] have shown that any set of orthogonal
line segments in the plane admits an orthogonal BSP of size O(m) whose leaf cells are empty. We
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can construct such a spanning tree in time O((n+m) logm): we need O(m logm) time to construct
the BSP [5], plus O((n+m) logm) time to locate the sites in the BSP subdivision using an optimal
point location structure [6], and O(n+m) for the bottom-up construction of the spanning tree.

In the next section we will show that a linear-cost spanning tree exists for any set of disjoint
barrier segments (even if they are not orthogonal), however, we do not know of an equally eÆcient
way to construct the tree in the general case.

4 Disjoint convex barriers

We now present the main result of our paper: Given any set P of n sites in the plane and any set
B of m disjoint convex barriers that do not contain any sites, there is a spanning tree of P whose
cost is at most 4m+ 3n. When the barriers are line segments, we can improve the upper bound
to 4m by ensuring that no segment barrier is intersected more than 4 times. We will concentrate
primarily on the case of segment barriers in our illustrations and examples.

One can obtain a spanning tree of cost O(m log(n+m)) for segments in several ways. One way
is to analyze a slightly adapted version of the BSP-based algorithm in terms of the depth of the
underlying BSP, and use the fact that any set of m disjoint segments in the plane allows a BSP
of size O(m logm) and depth O(logm) [7]. Another way is to use a divide-and-conquer approach
based on cuttings. With neither of these two approaches have we been able to obtain a linear
bound. The solution presented next, therefore, uses a di�erent, incremental approach.

We assume that the barriers and the sites are all strictly contained in a �xed bounding box, say
an axis parallel unit square. We denote the upper-left and the upper-right corners of the bounding
box by cl and cr, respectively. We will assume in the following that the sites, the common tangents
of barriers in B, and the two points cl and cr are in general position collectively. This is not a
serious restriction, but does make the description easier.

Let T be a spanning tree on P [ fcl; crg with straight edges and no self-intersections. (Note
that the minimum cost spanning tree may require self-intersections. Our construction proves that
self-intersections are not necessary to achieve the linear bound.) For two sites q; r of T , we denote
by path(q; r) the path between q and r in T .

s1s2

s3

s4 s5

site
segment

spine edge

non-spine edge

cl cr

Figure 4: A spined trees among �ve segment barriers.

We call path(cl; cr) the spine of T . The spine of T partitions the bounding box into two parts:
the part above the spine which is bordered by path(cl; cr) and the upper edge of the bounding box,
and the remaining part below the spine. Note that a point above the spine, in this de�nition, may
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see some edge of the spine above it since we do not assume x-monotonicity of path(cl; cr). We say
that the tree T is spined if

(1) all the sites are either on or above the spine, and

(2) both cl and cr are leaves of T .
Fig. 4 shows an example of a spined tree among 5 segment barriers and 9 sites, including the
arti�cial sites cl and cr. The spine of the spined tree T is depicted by solid bold lines.

We will show how to build a spined tree by inserting sites in order of decreasing y-coordinate,
starting with the single edge clcr. The construction of the tree will be the same for all disjoint,
convex barriers; the inductive analysis will be di�erent for segment barriers and for general con-
vex sets. Before we begin, we need some additional notation and lemmas for barriers and their
interaction with a spined tree T .

The spine of T may intersect a barrier b several times, cutting b into a number of connected
components. We call the connected components lying below the spine the barrier components of
b. Recall that sites are not allowed to lie inside barriers, so each intersection of the spine with b is
an interval on a single spine edge, and the barrier components are convex. The intersections with
the spine incident on a barrier component are called its anchors.

The next de�nitions are made with respect to a chosen point p in the bounding box below the
spine of T . As p will be �xed throughout the following arguments, our notation does not show the
dependence on p.

The point p induces a depth-order on the barriers (more precisely, on the parts of the barriers
lying above the horizontal line through p). We say that a barrier b2 obscures b1, and write b2 � b1,
if a ray with positive y-direction starting at p intersects b2 before it intersects b1, as in Fig. 5. The
relationship � is acyclic, and its transitive closure is a partial order [1, Section 10.5].

cl cr

p

q

b1

b2

spine

Figure 5: We have b2 � b1. Two of the three
barrier components below the spine block q.
Their anchors are marked by squares.

cl cr

p

qe

e re = r0q0

Figure 6: A good edge e, with the barriers
that block points qe and re.

We say that a point q in the bounding box is visible from p if the segment pq does not intersect
the spine of T except possibly at q. (Barriers do not play a role in this de�nition.) We will call an
edge e of the spine visible from p if it contains points visible from p in its interior.

Let Q = fq1; q2; : : : ; qtg denote the set of sites of the spine of T that are visible from p, listed
in order from cl to cr. Note that q1 = cl if cl is visible from p and qt = cr if cr is visible.
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For a spine edge e, we de�ne qe to be the �rst site visible from p when we traverse the spine of
T from e towards cl. We de�ne re similarly as the �rst site when we traverse from e to cr. The
sites qe and re are consecutive in the sequence of visible sites Q.

Let q0, r0 be the points on path(qe; re) such that path(q
0; r0) is the maximal subpath of path(qe; re)

that is visible from p. Note that p; q0; qe are collinear with possibly qe = q0 and p; r0; re are collinear
with possibly re = r0, as in Fig. 6. If the edge e is visible from p, then e is the only visible edge on
path(qe; re), and the points q0, r0 lie on e:

For a point q on the spine visible from p, we say that a barrier component b blocks q if it
intersects the line segment pq. The following proposition will be used later.

Proposition 4.1 For a spine edge e, a barrier component that blocks qe has no anchor in path(qe; q
0),

and a barrier component that blocks re has no anchor in path(r0; re).

From the perspective of point p, an edge e of the spine is called a good edge if and only if

(1) edge e is visible from p,

(2) any anchors left of re for barrier components that block re are on e,

(3) any anchors right of qe for barrier components that block qe are on e.

We will see that a good edge can be used to extend a spined tree T down to p by adding segments
pqe and pre and deleting edge e.

Lemma 4.2 For a point p in the bounding box that has smaller y-coordinate than any site of the
spined tree T , there is at least one good edge e.

Proof. Let B denote the set of barrier components that have anchors on the spine and that block
sites on the spine. We assume that B is non-empty, as otherwise the existence of a good edge is
trivial.

Choose barrier component b0 2 B that is minimal with respect to the \obscures" relation �,
and let e be a spine edge containing an anchor of b0. Let q = qe, r = re. Since b0 blocks a site on
the spine and has an anchor on e, it blocks at least one of q and r.

We show that either e is a good edge, or there is a good edge adjacent to q or r. We consider
cases that depend on whether the anchor edge e is visible from p.

Case 1: Suppose that the anchor edge e is visible from p|equivalently, e contains the points
q0 and r0. By minimality of b0, no other b 2 B can intersect both pq and pr. By Propo-
sition 4.1, therefore, any barrier component that blocks q must have its anchor left of q or
right of q0 on e. Similarly, any barrier component that blocks r must have its anchor right
of r or left of r0 on e. Thus, e is a good edge.

Case 2: Suppose that e is not visible, and assume, without loss of generality, that b0 blocks q.
Note that b0 cannot also block r because its anchor at e is on path(r0; r). In fact, no barrier
component b 2 B can block r because of the minimality of b0 along pr

0. But now the edge f
that is immediately to the right of r along the spine must be visible from p. Let w = rf be
the �rst visible site right of r along the spine. Any barrier component that blocks w and has
an anchor left of w must therefore have this anchor on f . Thus, f is a good edge.

In either case we �nd a good edge, and the lemma is proven. �

Using a good edge, we can construct a spined tree of P [ fcl; crg. We do so �rst for segment
barriers.

Lemma 4.3 Given a bounding box, with upper corners cl and cr, that contains P , a set of n
sites, and B, a set of m barriers that are disjoint line segments, then there is a spined tree T of
P [ fcl; crg such that each segment b 2 B is stabbed by T at most 2 + u(b) times, where u(b)
denotes the number of endpoints of b that are above the spine of T (and hence is at most two).
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cl cr

p

q

e r

b0

b1 b2

q0

b1 blocks q
b2 blocks r

Figure 7: Case 1

cl cr

p

r0

b0

q = q0

w

f
r

Figure 8: Case 2.

Proof. The proof is by induction on the number of sites in P . We �x the barrier set B throughout.
If P is empty, there are only two sites cl and cr. The edge between cl and cr does not stab any

barrier of B, so the claim holds.
Assume now that P contains at least one site. Let p be the lowest site, that is, the site with

the smallest y-coordinate, and let P 0 = P nfpg. Let T 0 be the spined tree of P 0 [fcl; crg provided
by the inductive assumption.

By Lemma 4.2, the spine of T 0 contains a good edge e. Let q = qe, r = re. Our spined tree T
is obtained from T 0 by adding the two edges pq and pr and removing e. Since q and r are visible
from p, we do not create any self-intersections, and since e is in path(q; r), T remains a tree. The
new spine goes through the edges pq and pr and it is clear that all sites are either on or above this
spine. If q = cl (or r = cr) then the visible edge e must be incident on cl (or cr), which guarantees
that cl and cr remain leaves of the tree. Therefore, T is indeed a spined tree of P [ fcr; crg.

New stabbings are created when a barrier segment b 2 B is stabbed by pq or pr. We have three
subcases: (a) b is stabbed by both pq and pr, (b) b is stabbed by pq but not by pr, and (c) b is
stabbed by pr but not by pq. Since (c) is symmetric to (b), we consider subcases (a) and (b).

In case (a), we �rst observe that the barrier components of b blocking q and r are identical,
as the triangle pqr does not intersect the spine of T 0. It follows that this barrier component has
no anchor on any edge of T 0 because conditions (2) and (3) of a good triple imply that the only
anchor edge could be e, which is not possible for the line segment b. Thus, the stabbing number
of b becomes two without violating the inductive assumption.

In case (b), b is stabbed by pq but not by pr. Let C denote the closed curve formed by edges
pq, pr and path(q; r). Let b0 be the barrier component of b blocking q.

First suppose that b0 has no anchor on path(q; r). Then one endpoint of b is in the interior
of the cycle C. Since the interior of C is below the spine of T 0 and above the spine of T , the
number of endpoints of b above the spine is increased by one, accounting for the new stabbing and
maintaining the inductive assumption.

Next suppose that b0 has an anchor on path(q; r). By Proposition 4.1 and the conditions of a
good triple, this anchor must lie on e. Since e is removed in forming T , the inductive assumption
is maintained in this case as well. �

We now present our �rst main theorem.

Theorem 4.4 Given a set B of non-intersecting line segments and a set P of sites in the plane,
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there is always a straight-edge spanning tree of P without self-intersections that stabs each line
segment of B at most 4 times.

Proof. We choose a bounding box that properly contains all the objects of B and P . Let cl and
cr be the upper-left and upper-right corners of the bounding box, respectively. Then, applying
Lemma 4.3 to B and P [fcl; crg, we obtain a spined tree T . The arti�cial sites cl and cr are leaves
of T , and removing them results in a spanning tree of P that stabs each line segment of B at most
4 times. �

We now turn to the case of convex barriers. We can prove a simple bound using Theorem 4.4
as follows.

Corollary 4.5 Given a set B of m non-intersecting convex barriers and a set P of n sites in the
plane that are not contained in any barriers, there is always a straight-edge spanning tree of P
without self-intersections with cost at most n+O(m).

Proof. Construct a straight-edge planar subdivision of complexity O(m), such that each barrier
is completely contained in the interior of a face, and no face contains more than one barrier [1].
Let B0 be the set of edges of the subdivision. Applying Theorem 4.4 on P and B0 results in a
spanning tree T of P without self-intersections that intersects B0 at most O(m) times. If an edge e
of T intersects k segments of B0, it can intersect at most k+1 faces of the subdivision, and there-
fore at most k+1 barriers in B. If follows that the cost of T with respect to B is at most n+O(m). �

We can establish a better dependence on m if we re�ne the analysis of our spined tree.

Lemma 4.6 Given a bounding box, with upper corners cl and cr, that contains P , a set of n sites,
and B, a set of m barriers that are disjoint convex sets, then there is a spined tree T of P [fcl; crg
such that

z1 + 2m1 + n1 + 2m2 6 3n+ 4m;

where z1 is the number of intersections of barriers with non-spine edges of T , m1 is the total
number of barrier components, n1 is the number of sites on the spine, and m2 is the number of
barriers lying stricly below the spine.

Proof. The inductive construction of the tree is identical to that in the proof of Lemma 4.3. We
therefore concentrate on maintaining the inductive assumption as we add p to tree T 0 to form T .
That is, as we take a good edge e, let q = qe and r = re, add pq and pr, and delete edge e. Let z01,
m0

1
, m0

2
, n0

1
denote the quantities of the inductive assumption for T 0.

If ` is the number of vertices on path(q; r), not counting q and r themselves, then n1 = n0
1
+1�`.

Let C denote the closed curve formed by pq, pr, and path(q; r), and let k1 be the number of barrier
components lying inside C. Since e is a good edge, a barrier component that has an anchor on
path(q; r) outside of e cannot intersect either pq or pr, and so all such intersections are created
by the k1 barrier components in C. We count these intersections using the following Davenport-
Schinzel sequence [8]: Label each of the k1 barrier components, then walk along path(q; r) and
create the sequence of labels encountered. For any consecutive identical labels, omit all but one
representative. The resulting sequence cannot have an abab subsequence, since that would indicate
that barrier components a and b intersect below the spine. The longest such sequence with k1
letters has length 2k1� 1. Each repetition can be charged against a vertex of path(q; r), since each
edge on this path can intersect a convex barrier component at most once. Thus, the total number
of intersections is at most 2k1 + `, and so z1 6 z01 + 2k1 + `.

It remains to bound the increase in the total number of barrier components. The number of
components of a barrier b can only increase if a component of b blocks both q and r. Let k2 be
the number of such barrier components. We have m1 = m0

1 � k1 + k2. Conditions (2) and (3) of a
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good edge imply that a barrier component blocking both q and r cannot have an intersection with
the spine of T 0, except possibly in e. Furthermore, among these k2 barrier components, only one
can intersect e. This implies that m2 6 m0

2
� (k2 � 1).

To summarize, we have

z1 + 2m1 + n1 + 2m2 6 (z01 + 2k1 + `) + 2(m0
1
� k1 + k2) + (n01 + 1� `) + 2(m0

2
� k2 + 1)

= z0
1
+ 2m0

1
+ n0

1
+ 2m0

2
+ 3 6 3(n� 1) + 4m+ 3 = 3n+ 4m;

which completes the proof. �

Theorem 4.7 Given a set B of m non-intersecting convex barriers and a set P of n sites in the
plane that are not contained in any barriers, there is always a straight-edge spanning tree of P
without self-intersections with cost at most 4m+ 3n.

Proof. As in the previous proof, construct a bounding box with upper corners cl and cr. Applying
Lemma 4.6 to B and P [fcl; crg, we obtain a spined tree T . Let z2 be the number of intersections
between barriers and the spine edges of T . Using the Davenport-Schinzel argument of the lemma,
we �nd that

z2 6 2m1 + n1;

and so the total number of intersections between barriers and the tree T is bounded by

z1 + z2 6 z1 + 2m1 + n1 + 2m2 6 3n+ 4m:

Removing the arti�cial sites cl and cr from T gives the �nal spanning tree without increasing this
cost. �

When n is large compared to m, we can prove a better bound|but the tree may become
self-intersecting.

Corollary 4.8 Given a set B of m non-intersecting convex barriers and a set P of n sites in the
plane that are not contained in any barriers, there is always a straight-edge spanning tree of P
(possibly with self-intersections) with cost at most 13m+ n+ 3.

Proof. We construct a vertical decomposition for B. This is a partition of the complement of
SB

into at most 3m + 1 \trapezoids"|regions bounded from above and below by the boundary of
one barrier, and on the left and right by vertical segments. Each trapezoid can be split by a line
segment into two \sub-trapezoids" bounded on one side by a barrier and on the other three sides
by straight segments.

Let now P1 be a set of representative points obtained by chosing one arbitrary site of P in each
trapezoid that contains sites. Furthermore, let P2 be another point set obtained by chosing one
arbitrary site of P in each sub-trapezoid that contains at least one site but no point of P1. Let k1
and k2 be the cardinality of P1 and P2, respectively.

We now apply Theorem 4.7 to the sets P1 and B, resulting in a spanning tree T of P1, with cost
at most 4m+3k1. We then connect each point in P2 to the representative point in the same trape-
zoid. This results in at most 2k2 intersections with barriers (namely at most two in each trapezoid).
Finally, we connect each point in P n (P1 [ P2) to the point of P1 [ P2 in the same sub-trapezoid.
This results in at most n� (k1+k2) intersections (namely at most one in each sub-trapezoid). The
cost of the resulting tree is therefore 4m+ 3k1 + 2k2 + n� k1 � k2 = 4m+ 2k1 + k2 + n. Since k1
and k2 are bounded by 3m+ 1, the claim follows. �
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5 Conclusions

In this paper we have studied spanning trees among n points whose edges cross few among a given
set of m barriers. When the barriers are disjoint, near-linear bounds for the cost of such a tree
can be obtained by several simple arguments. Using more sophisticated techniques, we were able
to show that a linear-cost spanning tree is possible in many cases.

We note that the number of barriers crossed by linking two points is not a distance function
and does not satisfy the triangle inequality. This means that the existence of other low-cost
structures among the points, such as Hamiltonian paths and matchings, remains an interesting
research problem.

While we have given an eÆcient algorithm to compute spanning trees based on an orthogonal
BSP, we are not aware of an equally eÆcient algorithm to construct a linear-cost spanning tree for
the case of arbitrary line segments or convex barriers. Can this be done in O(n logn) time?

The constants in our bounds of Section 4 are not tight. It would be especially interesting to show
a tight bound on the maximum number of crossings of segment barriers. Is there a con�guration
that requires four crossings for at least one barrier?
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