
Multi-Objective Mixture-based Iterated Density Estimation
Evolutionary Algorithms

Dirk Thierens Peter A.N. Bosman
dirk.thierens@cs.uu.nl peter.bosman@cs.uu.nl

Institute of Information and Computing Sciences, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

We propose an algorithm for multi-objective
optimization using a mixture-based iterated
density estimation evolutionary algorithm
(M IDEA). The M IDEA algorithm is a prob-
abilistic model building evolutionary algo-
rithm that constructs at each generation a
mixture of factorized probability distribu-
tions. The use of a mixture distribution gives
us a powerful, yet computationally tractable,
representation of complicated dependencies.
In addition it results in an elegant procedure
to preserve the diversity in the population,
which is necessary in order to be able to cover
the Pareto front. The algorithm searches for
the Pareto front by computing the Pareto
dominance between all solutions. We test our
approach in two problem domains. First we
consider discrete multi-objective optimiza-
tion problems and give two instantiations of
M IDEA: one building a mixture of discrete
univariate factorizations, the other a mixture
of tree factorizations. Secondly, we look at
continuous real valued multi-objective opti-
mization problems and again consider two
instantiations of M IDEA: a mixture of con-
tinuous univariate factorizations, and a mix-
ture of conditional Gaussian factorizations as
probabilistic model.

1 Introduction

In classical evolutionary computation search is driven
by two interacting processes: selection focuses the
search to more promising points in the search space
while mutation and crossover try to generate new and
better points from these selected solutions. EÆcient
exploration requires that some information of what

makes the parents good solutions needs to be trans-
fered to the o�spring solutions. If there were no cor-
relation between the �tness of the parents and the o�-
spring the search process would essentially be an un-
biased random walk. Whether or not information is
passed between parents and o�spring depends on the
representation and accompanying exploration opera-
tors. For mutation this is usually accomplished by let-
ting it take small randomized steps in the local neigh-
bourhood of the parent solution. Crossover recombines
parts of two parent solutions which results in a more
globally oriented exploration step. This broader ex-
ploration requires a careful choice of genotype repre-
sentation and crossover operator. A common practice
in the design of evolutionary search algorithms is to
develop a number of representations and operators by
using prior domain knowledge, and picking the best
after a considerable number of experimental runs.

An alternative to this labour intensive task is to try to
learn the structure of the search landscape automati-
cally, an approach often called linkage learning (see for
instance [8]). In a similar e�ort to learn the structure
of the problem representation a number of researchers
have taken a more probabilistic view of the evolution-
ary search process ([1, 2, 7, 9, 11, 13, 15, 14, 17]). The
general idea here is to build a probabilistic model of
the current parent population and learn the structure
of the problem representation by inducing the depen-
dence structure of the problem variables. The explo-
ration operators mutation and crossover are now re-
placed by generating new samples according to this
probabilistic model (for a survey see [16]). In [2] we
have given a general algorithmic framework for this
paradigm called iterated density estimation evolution-
ary algorithm (IDEA). In this paper we will propose
an algorithm for multi-objective optimization within
the IDEA framework called M IDEA. The probabilis-
tic model build is a mixture distribution that not only
gives us a powerful and computationally tractable rep-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

resentation to model the dependencies in the popu-
lation, but also provides us with an elegant method
to preserve the diversity in the population, which is
needed in order to be able to cover the Pareto front.

2 Multi-objective optimization

Optimization is generally considered to be a search
process for optimal or near optimal solutions in some
search space where it is implicitly assumed that given
any arbitrary solution one can always tell which so-
lution is preferred. However such a single preference
criterion does not always exist. In multi-objective op-
timization problems di�erent objective functions have
to be optimized simultaneously. A key characteristic
of multi-objective optimization problems is the exis-
tence of whole sets of solutions that cannot be ordered
in terms of preference when only considering the ob-
jective function values. To formalize this we de�ne a
number of relevant concepts. Suppose we have a prob-
lem with k objective functions fi(x); i = 1 : : : k which
- without loss of generality - should all be minimized.

1. Pareto dominance: a solution x is said to domi-
nate a solution y (or x B y) i� 8i 2 f1; : : : ; kg :
fi(x) � fi(y)

V
9i 2 f1; : : : ; kg : fi(x) < fi(y):

2. Pareto optimal: a solution x is said to be Pareto
optimal i� @y : y B x:

3. Pareto optimal set: is the set PS of all Pareto
optimal solutions: PS = fx j @y : y B xg:

4. Pareto front: is the set PF of objective func-
tion values of all Pareto optimal solutions: PF =
fF(x) = (f1(x); : : : ; fk(x)) j x 2 PSg:

Note that the Pareto optimal set is de�ned in the pa-
rameter space, while the Pareto front is de�ned in the
objective space. Multi-objective problems have been
tackled with di�erent solution strategies. A strategy
which is particularly interesting from an evolutionary
computation viewpoint is to search for the Pareto front
- or for a representative set of Pareto optimal solu-
tions - by making use of the Pareto dominance con-
cept. The idea is to maintain a population of solu-
tions that cover the entire Pareto front. The notion of
searching a search space through maintaining a popu-
lation of solutions is a key characteristic of evolution-
ary algorithms, which makes them natural candidates
for multi-objective optimization algorithms following
the covering strategy. The �eld of evolutionary multi-
objective optimization has indeed seen an explosive
growth in recent years (for a survey see [4]).

3 Multi-objective mixture-based IDEA

The IDEA is a framework for Iterated Density Esti-

mation Evolutionary Algorithms that uses probabilis-
tic models to guide the evolutionary search [2]. A key
characteristic of this class of evolutionary algorithms
is the way they explore the search space. Contrary
to classical evolutionary algorithms who generate new
o�spring by applying crossover and mutation to indi-
vidual parent solutions, IDEAs generate new o�spring
by sampling from a probability distribution P̂ �t

& (Y).

The probability distribution P̂ �t
& (Y) is induced every

generation from the b�nc best performing individu-
als (n = population size, 0 < � < 1). One way of
achieving this, is by �nding a factorized probability
distribution. A factorized probability distribution is
product of probability density functions (pdfs). Fac-
torizations are usually composed either of multivariate
joint pdfs or of multivariate conditional pdfs in which
a single variable is conditioned on a multiple of oth-
ers. The model of the probability distribution P̂ �t

& (Y)
is determined in two steps. Firstly, a structure & im-
plying a factorization of the probability distribution
needs to be determined. Secondly, a vector of param-
eters � need to be �tted. The choice of structure & de-
�nes how the algorithm will explore the search space
and whether it will be able to �nd good solutions ef-
�ciently. In this paper we will discuss four structures
in the context of multi-objective optimization prob-
lems: a mixture of discrete univariate factorizations,
a mixture of tree factorizations, a mixture of continu-
ous univariate factorizations, and a mixture of condi-
tional Gaussian factorizations. Assuming without loss
of generality, we want to minimize C(y). For every
problem variable yi we introduce a corresponding ran-
dom variable Yi and de�ne P �(Y) to be a probability
distribution that is uniform over all vectors Y with
C(y) � �. Sampling from P �(Y) gives more samples
that evaluate to a value below �. To use this in an
iterated algorithm, we select the best b�nc samples in
each iteration t and let �t be the worst selected sample
cost. We then estimate the distribution of the selected
samples and thereby �nd P̂ �t

& (Y) as an approxima-
tion to the true distribution P �t(Y). New samples can
then be drawn from P̂ �t

& (Y) and be used to replace the
worst n�b�nc samples. This results in a elitist mech-
anism since we have a monotonically decreasing series
�0 � �1 � : : : � �t

end
.

3.1 Factorization mixtures by clustering

The structure of the sample vector may be highly non-
linear. This non-linearity can force us to use proba-
bilistic models of a high complexity to retain some of

this non-linearity. However, especially using relatively
simple probability density functions, the non-linear in-
teractions cannot always be captured even with higher
order models. The key issue is the use of clusters. The
use of clusters allows us to eÆciently break up non-
linear interactions so that we can use simple models
to get an adequate representation of the sample vec-
tor. Each cluster is processed separately in order to
have a probability distribution �t over it. The result-
ing probability distribution is a weighted sum of the
individual factorizations over each cluster:

P̂fhKi(Y) =

jKj�1X
i=0

�iP̂
i
fi
(Y) (1)

An e�ective way to set the mixture coeÆcients �i, is to
proportionally assign larger coeÆcients to the clusters
with a better average cost. Pelikan and Goldberg [14]
proposed this method to introduce niching in the prob-
abilistic model-building genetic algorithms. By taking
the absolute value of the di�erence of the average clus-
ter cost and the average initial sample vector cost, we
allow for both maximization as well as minimization
problems. Here we will make use of the randomized
Euclidean leader algorithm which is one of the fastest
clustering algorithms. The �rst sample to make a new
cluster is appointed to be its leader. The leader algo-
rithm goes over the sample vector exactly once. For
each sample, it �nds the �rst cluster that has a leader
being closer to the sample than a given threshold Td

(using the normalized Euclidean distance measure). If
no such cluster can be found, a new cluster is created
containing only this sample. To prevent the �rst clus-
ters from becoming a lot larger than the later ones, we
randomize the order in which clusters are inspected.

3.2 Multi-objective mixture-based IDEA

The algorithm discussed so far is still a single-objective
optimization algorithm. To change it into a multi-
objective Pareto covering optimization algorithm we
need to make the following modi�cations:

1. First, we have to search for the Pareto-front: in
the IDEA framework selection picks out the best
b�nc samples. Making this selection on the ba-
sis of Pareto dominance allows us to search for
the Pareto front. For each individual in the pop-
ulation we determine the number of individuals
by which it is dominated, calling this its domina-

tion count. All individuals are sorting according
to increasing domination count and the top b�nc
solutions are selected.

2. Second, we have to cover the Pareto-front: main-
taining diversity is needed to prevent the popula-
tion to converge to a single Pareto optimal point
instead of to a representative set of the entire
front. Since the mixture-based IDEA already con-
structs a set of clusters we can simply use this to
maintain the diversity. Note that the clustering
can be done in the parameter space or in the ob-
jective space, but to maintain a good covering of
the Pareto front clustering in the objective space
is more suitable.

Finally, the multi-objective mixture-based iterated
density estimation evolutionary algorithm - or M IDEA
- can be summarized as:

M IDEA(n, �)
1 Evaluate n randomly generated samples P
2 Iterate until termination

2.1 Compute the domination counts
2.2 Select the b�nc best samples from P) Ps

2.3 Set �t to the worst selected cost
2.4 Search Ps for a structure &

2.5 Estimate parameters � fit � &) P̂&(Y)

2.6 Draw n� b�nc new samples from P̂&(Y)
2.7 Evaluate the new samples
2.8 Add the new samples to Ps) new P

Depending on the type and complexity of the applica-
tion one has to choose the kind of factorization learned
during the structure search. To illustrate this we will
implement four versions of the M IDEA algorithm: two
for discrete and two for continuous multi-objective op-
timization problems.

3.2.1 M IDEA univariate and M IDEA tree

A simple structure one can apply for discrete prob-
lems is the mixture of univariate factorizations lead-
ing to the M IDEA univariate algorithm. The prob-
ability a problem variable has a certain value is as-
sumed to be independent of other problem variables.
Although this is a very strong assumption it appears
in practice that many problems can be solved this way.
When optimizing more complicated problems it is nec-
essary to learn more structure of the domain represen-
tation. One approach which is still simple enough to
be computationally eÆcient is to model the domain
variable interactions with a tree factorization. The
model thus becomes a mixture of trees, a probability
model recently proposed in [12]. The M IDEA tree can
be viewed as a generalization of the optimal depen-
dency tree algorithm [1] towards a mixture model and
adapted for multi-objective problems. Interestingly,
the use of a mixture of tree factorizations in proba-

bilistic model building EAs is currently also proposed
in relation with the Estimation Maximization learning
algorithm [17].

3.2.2 M IDEA univariate and
M IDEA Gaussian

For multi-objective continuous function optimization
we can again use a mixture model where each compo-
nent distribution ignores conditional dependences be-
tween the variables. Inducing a mixture of univari-
ate factorizations is very simple and extremely fast.
A more intelligent search can be performed when us-
ing a model that learns conditional dependences be-
tween the variables. Here we induce a mixture of
conditionally factorized Gaussian probability density
functions. This structure has the advantage of be-
ing capable to learn conditional dependences between
variables, while at the same time being computation-
ally eÆcient enough to be applied at each generation.
Learning a conditional factorization from the vector of
selected samples can be done in a variety of ways [16].
Here we use an incremental algorithm that starts from
the empty graph with no arcs. Each iteration, the
arc to add is selected as the arc that increases some
metric the most. If no addition of any arc further in-
creases the metric, the �nal factorization graph has
been found. The metric used is the Bayesian Informa-
tion Criterion (for details see [3]).
Without detailed knowledge about the functions it is
not possible to tell which structure is optimal. To il-
lustrate the potential of each model we ran a number
of experiments on problems previously studied in the
literature.

4 Experimental results

4.1 Multi-objective 0/1 knapsack problem

Our �rst test function is a discrete multi-objective 0/1
knapsack problem taken from Zitzler and Thiele [18]
who introduced it to compare a number of di�erent
multi-objective evolutionary algorithms. The problem
is additionally interesting because of its real life practi-
cality and the large string lengths it requires. Whereas
the problem de�nition is relatively simple, optimiz-
ing it is diÆcult (NP-hard). The multi-objective 0/1
knapsack problem consists of a set of nI items and a
set of nK knapsacks. With each knapsack i, a weight
wi;j and a pro�t pi;j are associated with each item j.
Each knapsack i has an upper-bound ci on the amount
of weight it can hold, which is called the capacity con-

straint. The objective is to �ll each knapsack so that
the pro�t of the selected items is maximized, but with-

out violating the capacity constraints. If item i is se-
lected, it is automatically placed in every knapsack.
This creates a multi-objective interaction between the
knapsacks: the goal is to search for a vector of decision
variables x 2 f0; 1gnI such that each objective func-
tion fi in (f0(x); f1(x); : : : ; fnK�1(x)) is maximised
with

8i2f0;1;:::;nK�1g

2
4fi(x) =

nI�1X
j=0

pi;jxj

3
5

s.t. 8i2f0;1;:::;nI�1g

2
4nK�1X

j=0

wi;jxj � ci

3
5 :

To deal with the feasibility problem with respect to
the capacity constraints, we use a repair method. The
type of repair method used has a great inuence on
the way the search space is traversed and thus on the
performance of the optimization algorithm. To com-
pare di�erent algorithms with respect to their multi-
objective performance, it is important to use the same
repair method. To this end, we have used the same
approach as is in [18]. If a solution violates a con-
straint, the repair algorithm iteratively removes items
until all constrains are satis�ed. The order in which
the items are investigated, is determined by the max-
imum pro�t/weight ratio. The items with the lowest
pro�t/weight ratio are removed �rst. This amounts to
computing the quotients

qj = maxi2f0;1;:::;nK�1g

�
pi;j

wi;j

�

on beforehand and sorting the qj .
The pro�ts, weights and knapsack capacities are cho-
sen as follows: pi;j and wi;j are random integers cho-
sen from the interval [10,100], while the capacities ci
are set to half the items' weight in the corresponding
knapsack:

ci = 0:5

NI�1X
j=0

wi;j :

This results in half of the items to be expected in
the optimal solutions. We performed tests on prob-
lems with two knapsacks (nK = 2) allowing us to plot
the Pareto front found by M IDEA and to make a vi-
sual comparison with results obtained by the Strength
Pareto Evolutionary Algorithm (SPEA) and the Non-
dominated Sorting Genetic Algorithm (NSGA). In [18]
a total of 8 algorithms were compared but for clarity
we restrict ourselves here to SPEA and NSGA: they
are the most commonly known and SPEA gave the
best results of all 8 algorithms. Three di�erent knap-
sack problems with an increasing number of items were

7500

8000

8500

9000

9500

10000

7000 7500 8000 8500 9000 9500 10000

MIDEA (univariate)
IDEA (no clustering, univariate)

MIDEA (trees)
SPEA
NSGA

Figure 1: knapsack 250 items

17500

18000

18500

19000

19500

20000

16500 17000 17500 18000 18500 19000 19500

MIDEA (univariate)
IDEA (no clustering, univariate)

MIDEA (trees)
SPEA
NSGA

Figure 2: knapsack 500 items

studied, nI 2 f250; 500; 750g. The data sets are the
same as those used by Zitzler and Thiele (available on
http://www.tik.ee.ethz.ch/ zitzler/testdata.html).

In our experiments we �xed the selection size to
b�nc = 200 (� = 0:3, population size n = 667). We
have also �xed the number of evaluations to be the
same as in the tests by Zitzler and Thiele, respectively
f60000; 80000; 100000g for increasing values of nI . For
the univariate factorization the �nal front reported is
obtained by combining the results of 30 independent
runs (similar to Zitzler and Thiele), but it should be
noted that individual runs give an almost as wide cov-
ering of the Pareto front. Results for the tree factor-
ization are only from one single run. The clustering is
done in the objective space using the leader algorithm
with Td chosen so as to get at least 5 clusters.

Figures 1, 2, and 3 show the results for the M IDEA
with a mixture of univariate distributions, and for the
M IDEA with a mixture of trees. To study the inuence
of the clustering we have also tested the univariate
distributions without clustering. The graphs give also
a rough sketch of the front found by SPEA and NSGA
in [18]. A number of observations can be made:

1. The M IDEA algorithm found solutions with high
objective function values. Performance is compa-

25000

25500

26000

26500

27000

27500

28000

28500

29000

24500 25000 25500 26000 26500 27000 27500 28000 28500 29000 29500

MIDEA (univariate)
IDEA (no clustering, univariate)

MIDEA (trees)
SPEA
NSGA

Figure 3: knapsack 750 items

rable to SPEA for the problem sets with 250 and
500 items. For the knapsack problem with 750
items M IDEA �nds a Pareto front that clearly
dominates the solutions found by SPEA. The re-
sults from NSGA are substantially worse.

2. The M IDEA algorithm found a widely covered
Pareto front, wider than SPEA and NSGA.

3. Clustering is necessary for the covering to take
place: without it the algorithm �nds only a small
part of the Pareto front.

4. On the two larger problem sets (nI 2 f500; 750g)
the Pareto front obtained by the mixture of uni-
variate distributions is slightly better than the
front found by the mixture of trees. It is reason-
able to assume that this is only an indication of
the faster convergence speed of the mixture of uni-
variate distributions. When more function evalua-
tions would be done one might expect the mixture
of trees algorithm to catch up, and even surpass-
ing it for more diÆcult problems. This should be
further investigated though.

4.2 Multi-objective continuous function
optimization

Next to the multi-objective 0/1 knapsack problem we
also tested the M IDEA algorithm on multi-objective
continuous function optimization problems taken from
the literature [5].

First we will look at the mixture of Gaussian pdfs us-
ing learning conditional factorizations. We �xed the
selection size to b�nc = 250 (� = 0:3, population size
n = 834). Clustering is done using the leader algo-
rithm in both the objective space as well as the pa-
rameter space, with Td chosen so as to get approxi-
mately 3 clusters on the Pareto front. The �nal front
reported is obtained by combining the results of 10

MOP2 MOP4 EC4 EC6

Obj. 3754 10762 1019330 9535
Par. 3754 35348 2500000 8835
None 3754 43058 2500000 8426

Figure 4: Average number of evaluations.

independent runs. As before it should be noted that
individual runs give an almost as wide covering of the
Pareto front. The average number of required evalua-
tions for each type of clustering is stated in �gure 4.
For comparison, we also tested an approach using no

clustering. Termination is enforced when the domi-
nation count of all of the selected samples equals 0.
At such a point, the selected sample vector contains
only non-dominated solutions. Note that this does not
have to imply at all that full convergence has been ob-
tained since the front itself may not be optimal. To
prevent the alternative of allowing an arbitrary num-
ber of generations or evaluations, a good termination
criterion might be when non of the selected samples
is dominated by any of the selected samples in the
previous generation. For now, we restrict ourselves to
the simple termination criterion, keeping in mind that
premature convergence is possible. No single run was
allowed more than 2 1

2
� 106 evaluations. Finally the

conditional Gaussian factorizations are searched using
the BIC metric with � = 1

2
(which makes this measure

similar to the minimum description length measure).

Name Objectives Domain

MOP2
f0 = 1� e

�

Pl�1
i=0

�
yi�

1p
l

�
2

f1 = 1� e
�

Pl�1
i=0

�
yi+

1p
l

�
2 [�4; 4]3

MOP4
f0 =

Pl�2
i=0�10e

�0:2
q

y2
i
+y2

i+1

f1 =
Pl�1

i=0 jyij
0:8 + 5sin(y3i)

[�5; 5]3

EC4

f0 = y0

f1 =
�
1�

q
y0

�

 = 91 +
Pl�1

i=1

�
y2i � 10cos(4�yi)

�
[�1; 1]�
[�5; 5]9

EC6

f0 = 1� e�4y0sin6(6�yi)

f1 =
�
1� (f0

)
�

 = 1 + 9
�Pl�1

i=1
yi
9

�0:25 [0; 1]10

In �gures 5 and 6, the results using objective clus-
tering on MOP2 and MOP4 are shown respectively.
For each of these two problems, none of the individ-
ual runs di�er signi�cantly from the combined result.
Moreover, the results of parameter clustering as well
as no clustering at all are also similar to these results,
so we omit further graphs for these two problems. The
table in �gure 4 indicates that using the M IDEA al-
gorithm requires only a few evaluations to adequately
solve the two MOP problems.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f1

f0

Figure 5: Result for MOP2 (objective clustering).

-12

-10

-8

-6

-4

-2

0

-20 -19 -18 -17 -16 -15 -14

f1

f0

Figure 6: Result for MOP4 (objective clustering).

Compared to EC4, the two MOP problems are rela-
tively simple. Converging to the optimal front is very
diÆcult in EC4. In �gure 4, we can see that we indeed
require a vastly larger number of evaluations. Only
when we cluster in the objective space, do we on av-
erage require less than the maximum of 2 1

2
� 106 eval-

uations. However, closely observing the results points
out that premature convergence has often taken place
in the algorithm with objective clustering. Figure 7
shows the individual plots of each run. Taking more
clusters in combination with a larger population size
to e�ectively �ll up and use these additional clusters,
might lead to a better estimation of the promising re-
gions of the multi-objective space. To illustrate this,
we have plotted the resulting fronts after 10 runs for
objective clustering with b�nc = 500 and Td such that
we have approximately 5 clusters, and for parameter
clustering with b�nc = 125 and Td such that we have
7 clusters. The results in �gure 8 show that very good
results are obtained with these settings. It should also
be noted that some sort of clustering is crucial to be
able to tackle diÆcult problems such as EC4: when no
clustering is applied the results are rather poor even
for large populations sizes.

The main diÆculty with problem EC6 is that the opti-
mal front is not uniformly distributed in its solutions.

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

f1

f0

run 0
run 1
run 2
run 3
run 4
run 5
run 6
run 7
run 8
run 9

Figure 7: All runs for EC4 (objective clustering).

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

f1

f0

Objective Clustering
Parameter Clustering

Figure 8: Results for EC4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f0

Figure 9: Result for EC6 (objective clustering).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f0

Figure 10: Result for EC6 (parameter clustering).

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

f1

f0

Figure 11: Result for EC4 with univariate factoriza-
tion (objective clustering).

Without clustering, we are therefore very likely to �nd
only a part of the front. Furthermore, by clustering in
parameter space, we also have no guarantee to �nd a
good representation of the front since the parameter
space is directly related to the density of the points
along the front. On the other hand, clustering this
space does give a means of capturing more regions than
a single cluster can. If we are to cluster in the objective
space, we should have no problem �nding a larger part
of the front unless the problem itself is very diÆcult as
is the case for instance with EC4. In �gures 9 and 10,
the results for objective clustering and parameter clus-
tering are shown respectively. Using parameter clus-
tering is clearly not e�ective. It should also be noted
that the Pareto front found in �gure 9 seems to coin-
cide with the optimal Pareto front, which is not trivial
to achieve since the fast elitist non-dominated sorting
GA (NSGA-II [6]), the strength Pareto Evolutionary
Algorithm (SPEA [18]), and the Pareto-archived evo-
lution strategy (PAES [10]) are all reported to con-
verge to a sub-optimal front ([6]).

In the experiments so far, the structure learned at each
generation is a conditionally factorized Gaussian prob-
ability density function. It might well be possible that
the �tness function can be optimized without the need
to learn the conditional dependences between vari-
ables. In this case it would be computationally more
eÆcient to use a probability density structure that ig-
nores the interactions between the variables. To get a
feeling of the impact of this choice we have optimized
the functions EC4 and EC6 with a mixture of univari-
ate factorizations. A population size of b�nc = 125,
resp. b�nc = 50 (� = 0:3) was used, with a cluster
threshold = 1.5, resulting in 3 to 5 clusters. Cluster-
ing was done in the objective space, and a total of 10
runs were performed. Figures 11 and 12 show that
the Pareto front found is of similar quality than in
the previous experiment using conditionally factorized
Gaussian pdfs with objective clustering. The average

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f1

f0

Figure 12: Result for EC6 with univariate factoriza-
tion (objective clustering).

amount of function evaluations for EC4 was 209635,
while for EC6 the number was 2284. These �gures are
substantially lower than those found before (see �g-
ure 4), indicating that for these functions the compu-
tational e�ort spent by learning a more powerful and
complicated model seems to be unnecessary. It should
be noted that this gives only a rough impression about
convergence speed and quality of the algorithms. Fu-
ture studies will have to look at the inuence of pop-
ulation size, selection threshold, and cluster size.

5 Conclusion

We have proposed the multi-objective mixture-based
iterated density estimation evolutionary algorithm
M IDEA. M IDEA builds a mixture distribution as
probabilistic model resulting in a computational ef-
�cient method to represent complicated dependencies,
and at the same time in an elegant procedure to
search for a good covering of the Pareto front. As
speci�c instantiations of the proposed algorithm we
have implemented a mixture of univariate factoriza-
tions and a mixture of tree factorizations for discrete
multi-objective optimization, and a mixture of contin-
uous univariate factorizations and a mixture of condi-
tional Gaussian factorizations for continuous optimiza-
tion problems. Experiments showed good results for
all models, including the simple univariate models.

References

[1] S. Baluja and S. Davies. Using optimal dependen-
cy{trees for combinatorial optimization: Learning the
structure of the search space. In D.H. Fisher, ed.,
Proc. of the 1997 Int. Conf. on Machine Learning.
Morgan Kau�man Pub., 1997.

[2] P.A.N. Bosman and D. Thierens. Expanding from
discrete to continuous estimation of distribution al-
gorithms: The IDEA. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, and H.-P.

Schwefel, eds., Parallel Problem Solving from Nature
{ PPSN VI, pages 767{776. Springer, 2000.

[3] P.A.N. Bosman and D. Thierens. Mixed IDEAs.
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-
2000/2000-45.ps.gz, 2000.

[4] C.A. Coello Coello. A comprehensive survey
of evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems,
1(3):269{308, 1999.

[5] K. Deb. Multi-objective genetic algorithms: Problem
diÆculties and construction of test problems. Evolu-
tionary Computation, 7(3):205{230, 1999.

[6] K. Deb, S. Agrawal, A. Pratap, and T. Meyari-
van. A fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II. In
M. Schoenauer et al., eds., Parallel Problem Solving
from Nature, pages 849{858. Springer, 2000.

[7] M. Gallagher, M. Fream, and T. Downs. Real{valued
evolutionary optimization using a exible probability
density estimator. In W. Banzhaf et al., eds., Proc. of
the 1999 Genetic and Evolutionary Computation Con-
ference, p. 840{846. Morgan Kaufmann, 1999.

[8] D.E. Goldberg, K. Deb, H. Kargupta, and G. Harik.
Rapid, accurate optimization of diÆcult problems us-
ing fast messy genetic algorithm. In S. Forrest, ed.,
Proc. of the 5th International Conference on Genetic
Algorithms, pages 56{64. Morgan Kaufmann, 1993.

[9] G. Harik, F. Lobo, and D.E. Goldberg. The compact
genetic algorithm. In Proc. of the 1998 IEEE Int.
Conf. on Evolutionary Computation, pages 523{528.
IEEE Press, 1998.

[10] J. Knowles and D. Corne. The pareto archived evo-
lution strategy: a new baseline algorithm for multi-
objective optimisation. In A. Zalzala et al., eds., Pro-
ceedings of the 1999 Congress on Evolutionary Com-
putation, pages 98{105. IEEE Press, 1999.

[11] P. Larranaga, R. Etxeberria, J. Lozano, and J. Pena.
Optimization by learning and simulation of bayesian
and gaussian networks. TR-EHU-KZAA-IK-4-99.

[12] M. Meila and M.I. Jordan. Estimating dependency
structure as a hidden variable. In M.I. Jordan et al.,
eds., Proceedings of Neural Information Processing
Systems, pages 584{590. MIT Press, 1998.

[13] H. M�uhlenbein and T. Mahnig. FDA { a scalable evo-
lutionary algorithm for the optimization of additively
decomposed functions. Evol. Comp., 7:353{376, 1999.

[14] M. Pelikan and D.E. Goldberg. Genetic algo-
rithms, clustering, and the breaking of symmetry. In
M. Schoenauer et al., eds., Parallel Problem Solving
from Nature, pages 385{394. Springer, 2000.

[15] M. Pelikan, D.E. Goldberg, and E. Cant�u-Paz. BOA:
The bayesian optimization algorithm. In W. Banzhaf
et al., eds., Proc. of the 1999 Genetic and Evolution-
ary Computation Conference, pages 525{532. Morgan
Kaufmann, 1999.

[16] M. Pelikan, D.E. Goldberg, and F. Lobo. A
survey of optimization by building and using
probabilistic models. ftp://ftp-illigal.ge.uiuc.edu/
pub/papers/IlliGALs/99018.ps.Z, 1999.

[17] R. Santana, A. Ochoa, and M. Soto. The mixture of
trees factorized distribution algorithm. This volume.

[18] E. Zitzler and L. Thiele. Multiobjective evolution-
ary algorithms: A comparative case study and the
strength pareto approach. IEEE Transactions on Evo-
lutionary Computation, 3(4):257{271, 1999.

