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Facility Location on Terrairis

Boris Aronov  Marc van Kreveld  Rerg van Oostrurh  Kasturi Varadarajah

Abstract

Given aterrain defined as a piecewise-linear function withriangles, andn point siteson it, we
would like to identify the location on the terrain that minimizes the maximum distance to the sites. The
distance is measured as the length of the Euclidean shortest path along the terrain. To simplify the
problem somewhat, we extend the terrain to (the surface of) a polyhedron. To compute the optimum
placement, we compute the furthest-site Voronoi diagram of the sites on the polyhedron. The diagram
has maximum combinatorial complexi®mr?), and the algorithm runs i®(mr?logZ mlogn) time.

1 Introduction

1.1 Problem statement

A (polyhedral) terrainis the graph of a piecewise-linear function defined over a simply-connected subset of
the plane. It can be represented by a planar triangulation where each vertex has an associated elevation. The
elevation of any point in the interior of an edge (triangle) is obtained by linear interpolation over the two
(three) vertices of the edge (resp. triangle). Polyhedral terrains are commonly used to model (mountainous)
landscapes.

This paper addresses tfaeility location problenfor a set of sites on a terrain. More precisely, assume
that a set ofn point siteson a terrain, defined over a bounded rectangle and consistindriaingles, is
given. The distance between two points on the terrain is the minimum length of any path between those
points that lies on the terrain. THiacility centerof the sites is the point on the terrain that minimizes the
maximum distance to a site. We assume throughounth&mn.

To be able to utilize the extensive previous work on shortest paths on polyhedra, we show how to
transform the terrain to (the surface of) a polyhedron such that for any two goartdq on the original
terrain, any path betwegmandq that leaves the original terrain cannot be a shortest path. All facets of
the resulting polyhedron are triangles, and the total number of them is linear in the number of triangles of
the original terrain. The polyhedron is homeomorphic to a ball, so that its surface is homeomorphic to a
sphere. The transformation to a polyhedron can be applied to terrains that are defined over a rectangle and
to unbounded terrains.

Our algorithm constructs the furthest-site Voronoi diagram of the point sites on the surface of the
polyhedron obtained from the terrain. The location for the facility center can then be found by traversing
the edges and vertices of the furthest-site Voronoi diagram.
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1.2 Previous work and new results

In the Euclidean plane, the facility center, or the center ofstin@llest enclosing disof a set ofm point

sites, can be determined @(m) time. Several algorithms attain this bound. Megiddo [7] gave the first
deterministic linear-time algorithm, and a much simpler, randomized, linear—expected-time algorithm was
found by Welzl [15].

There is a close connection between the facility center and the furthest-site Voronoi diagram of the
sites. Namely, the facility center must lie at a vertex or on an edge of this diagram. In the plane, with
Euclidean distance, the furthest-site Voronoi diagram has cells only for the sites on the convex hull of the
set of sites, and all cells are unbounded.

It appears that on a polyhedron, some of the properties of furthest-site Voronoi diagrams in the plane no
longer hold. For instance, a bisector on the polyhedron is generically a closed curve consisting of as many
asO(n?) straight-line segments and/or hyperbolic arcs, in the worst case. In general, it may also contain
two-dimensional portions of the surface of the polyhedron.

Mount [9] showed that thelosest-sitd/oronoi diagram omsites on (the surface of) a polyhedron with
n faces withm < n has complexity®(n?) in the worst case; he also gave an algorithm that computes the
diagram inO(n?logn) time. We do not know of any previous work on furthest-site Voronoi diagrams on a
polyhedron.

The problem of computing the shortest path between two points along the surface of a polyhedron has
received considerable attention; see the papers by Sharir and Schorr [12], Mitchell, Mount and Papadim-
itriou [8], and Chen and Han [2]. The best known algorithms [2, 8] compute the shortest path between two
given points, the sourceand destination, in roughlyO(n?) time. In fact, these algorithms compute a data
structure that allows one to compute the shortest path distance between thessouang query poinp
in O(logn) time. The algorithm of Mitchell et al. [8] is a continuous version of Dijkstra’s algorithm for
finding shortest paths in a graph [4], while Chen and Han [2] solve the problem by determining shortest
paths in arunfoldingof the polyhedron; see also [1].

In his master’s thesis, van Trigt [14] gave an algorithm that solves the facility location problem on a
polyhedral terrain irD(m*n®logn) time, usingO(n?(m? 4 n)) space.

This paper gives a®(mr?log? mlogn) time algorithm to compute the furthest-site Voronoi diagram
and find the facility center for a s& of m sites on the surface of a polyhedron withfaces. Given
the linear-time algorithm for finding the facility center in the plane, this bound may seem disappointing.
However, the algorithm for computing the furthest-site Voronoi diagram is near-optimal, as the maximum
combinatorial complexity of the diagram@&mr?).

2 Extending a terrain to a polyhedron

In many practical situations, a terrain is defined over a rectangle, i.e., it is the graph of a piecewise-linear
function defined ovefXeft, Xright] X [Ybottom; Ytop|. TO avoid complications involving the boundary of the
terrain, and to be able to use results on shortest paths and Voronoi diagrams on polyhedra, we extend the
terrain to the surface of a polyhedron. A similar transformation can be applied to unbounded terrains.

Any terrain defined over a rectangb@ert, Xright] * [Yoottom, Ytop] @nd consisting oh triangles can be
extended withO(n) additional triangles to the surface of a polyhedron that is homeomorphic to a sphere,
such that for any two pointg, q on the original terrain, any path fromto g that leaves the original terrain
cannot be a shortest path on the polyhedron. The construction is as follows:

The polyhedron will be shaped somewhat like a box, with the original terrain ‘on top’ (see Figure 1).
Let d be an upper bound on the length of the shortest path between two points on the original terrain.
Such an upper bound can easily be foundim) time, by summing the lengths of the longest sides of
all triangles. First, we extend the domain of the terraifiXig: — d, Xight + d] X [Yoottom— d, Ytop+ d]. For
each vertew = (xy, W, 2,) on the original boundary of the terrain, we add a vesex (X,Yi,Z,) on the
new boundary, wittZ, = z,, and withx,, andy,, chosen such that the Euclidean distance betwesrdV
is minimized. Next, we add an edge V). Note that each of the new edges is horizontal (normal to the
z-axis), and in the projection onto tfie y)-plane it is perpendicular to the original and new boundary. The
new vertices on the new boundary of the terrain are connected with edges along this new boundary. Note



that these edges on the new boundary are not all horizontal, unless the edges on the original boundary are
horizontal. Next, the resulting new “rectangles” are triangulated by adding a diagonal edge. So far, we
have constructed the top of the polyhedron; an example is shown in Figure 1.

Figure 1: Extending a terrain (shaded) to the top of a ‘box-like’ polyhedron.

Letzoy be thez-value of the lowest vertex in the terrain. The ‘bottom’ of the polyhedron s the rectangle
([Xiett — d, Xright +d] X [Ybottom— d, Yiop+-d], Zow — 1).

From the vertices on the boundary of the top of the polyhedron, we start edges parallet &xitieand
ending at the boundary of the bottom rectangle. The resulting vertical rectangles are triangulated by adding
diagonal edges. Finally, we place a vertex in the interior of the bottom rectangle, and connect it with edges
to all vertices on the boundary of the bottom rectangle. The resulting polyhedron is highly degenerate, but
our algorithm is not influenced by these degeneracies.

Because of the dimensions of the top of the polyhedron, no shortest pathpftorg, both on the
original terrain, can leave the top of the polyhedron. For any path fsaonq that stays on the top of the
polyhedron, the maximal sub-paths that lie outside the original terrain can be replaced by shorter paths
along the boundary of the original terrain. Therefore, any shortest path on the polyhedron bhebmeen
will lie completely on the original terrain.

For unbounded terrains, a similar transformation can be applied by limiting the domain of the terrain to
a rectangle that encloses allpoint sites (in the projection onto thir, y)-plane). The size of this rectangle
should be large enough to guarantee that no shortest path between two point sites leaves the rectangle.
Next, we convert the resulting terrain to a polyhedron as before.

3 The complexity of the furthest-site Voronoi diagram on a polyhe-
dron

Previous papers on shortest paths on polyhedra [12, 8, 2, 14] use a humber of important concepts that we
will need as well. We review them briefly after giving the relevant definitions.



In the remainder of this papep, is the surface of a polyhedron. As stated before, we only allow
polyhedra homeomorphic to a ball, so that their surfaces are homeomorphic to a sphere. For two points
p andp’ on P, we define thalistanced(p, p’) to be the length of the shortest path frgnto p’ alongP.

Let Sbe a set ofn point sites orP. Consider first a single sitec P. For any pointp on P we consider a
shortest path fronp to s; note that in general such a path need not to be unique. Such a shortest path has
a number of properties. First, if it crosses an edge pfoperly, then a principle of refraction holds. This
means that if the two incident triangles were pivoted about their common edge to become co-planar, then
the shortest path would cross the edge as a straight-line segment. This principle isictdldthg For

any vertex on the polyhedron, we definetit¢al angleas the sum of the interior angles at that vertex in
each of the triangles incident to it. The shortest path cannot contain any vertex for which the total angle is
less than &, except possibly at the sourpeand the targes.

Any shortest path crosses a sequence of triangles, edges, and possibly, vertices. If two shortest paths
on the polyhedron cross the same sequence (in the same order), we say that these paths havedhe same
sequencelf a shortest path fromp to s contains a vertex of the polyhedron, the vertex reached first from
is called thepseudoroodf p. If the path does not contain any vertex, then sitecalled the pseudoroot of
p.

Theshortest-path map (SPM) oisdefined as the subdivision Bfinto path-connected regions where
the shortest path teis unique and has a fixed edge sequence. For non-degenerate placensetihe of
closures of the regions covBr so the portion oP outside any region, where more than one shortest path
to s exists, consists of one-dimensional pieces. When two pseudoroots have the same disatite to
complement of the regions of the SPM may have two-dimensional parts.

It is known that the shortest-path map of a site has complé&Xity); this bound is tight in the worst
case. The SPM restricted to a triangle is actually the planar Euclidean Voronoi diagram for a set of pseudo-
sites with additive weights (see Figure 2). The pseudo-sites are obtained from the pseudoroots by unfold-
ing the triangles in the edge sequence to the pseudoroot so that they are all co-planar. The weight of a
pseudo-site is the shortest-path distance from the corresponding pseudoroot toghe feilews that the
boundaries of regions in the SPM within a triangle consist of straight-line segments and/or hyperbolic arcs.
For any point on a hyperbolic arc or a segment there are two shortest patvighdifferent pseudoroots.
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Figure 2: The SPM of a sitg restricted to a triangle, is the Euclidean Voronoi diagram for a set of pseudo-
sites with additive weights. The weight of a pseudo-site is the shortest-path distance from the pseudo-site
tos.

Given two sitess andt on the polyhedron, theisector3(s,t) is the set of those pointg on the
polyhedron equidistant fromandt. The bisector consists of straight-line segments, hyperbolic arcs, and
may even contain two-dimensional regions. Such regions occur only when two sites have exactly the same
distance to some vertex & For simplicity, we assume that these degeneracies do not occur.

The closest-site Voronoi diagrarof a setS of m sites onP, denoted by VDS), is a planar graph
embedded if® that subdivide® into maximal open regions associated with the siteS; imith the property
that a pointp € P lies in the region of a sitee Sif and only if d(p,s) < d(p,s) for eachs € Swith s #s.



The interior of the boundary between two adjacent regions edgeof the Voronoi diagram; it is easy to
see that each edge lies on a bisector of two sit& the non-empty intersections of the closures of three
or more regions of the Voronoi diagram are visrtices We assume that all vertices have degree three;
otherwise, a degeneracy is present.

Thefurthest-site Voronoi diagraraf a setS of m sites onP is a similar subdivision oP into maximal
open regions. The difference is that a pgint P lies in the region of a site € Sif and only if d(p,s) >
d(p,s) for eachs € Swith s # s. In this paper, we give a new algorithm for computing the furthest-site
Voronoi diagram of a se$ of sites on a polyhedron. We will use the notatfiis) to denote the region of
s e Sin the Voronoi diagram. Whether this is the regionsofh VD(S) or FVD(S) should be clear from
context.

The following facts are crucial for the algorithm below to work and for the analysis to hold. Lemmas 1,
2, and 3 are similar to the lemmas in the paper of Leven and Sharir [6]; they are general statements about a
large class of metrics and hold under very general conditions.

Lemma 1 In the closest-site Voronoi diagram of a set S of sites on P, the rdgji@p of a site sc S is
path-connected.

Proof: Let p be a pointirR (s), letT(p,s) be a shortest path fromto s, and letp’ be an arbitrary point on
T(p,s). The sub-pathsi(p, p'), (p’,s) C T(p,s) are also shortest paths, anghgs) = d(p, p’) +d(p',s).
It follows that d p',s) < d(p/,t) for anyt € St # s, otherwise, there would be a path frqmo t via p’ no
longer than dp, s), contradicting the fact that is closer tos than tot. Hence, any poinp’ onTi(p,s) lies
in R (s), and any two pointp andq in R (s) are connected viaby a path that lies completely R (s).

Lemma 2 Bisectorp(s,t) is connected and homeomorphic to a circle.

Proof: Consider the closest-site Voronoi diagram{sft }. The closures oR (s) andR (t) in this Voronoi
diagram cover the whole surface of the polyhedron, and, by the previous lemm& ®thndR (t) are
path-connected. Sindeis homeomorphic to a sphefg(s,t), which is the common boundary Bf(s) and
R (t), must be connected and homeomorphic to a circle.

Lemma 3 For any three distinct sites s, t, and u, bisectf(s,t) andp(s,u) intersect at most twice.

Proof:

Consider the closest-site Voronoi diagram{sft,u}. At an intersectiory of (s,t) and(s,u), we
have dx,s) = d(x,t) = d(x,u). Thereforex also lies on the third bisectd(t,u), and thus is a vertex of
the Voronoi diagram ofs,t,u}, incident toR (s), R (t), andR (u).

Now suppose for the sake of contradiction that the bise@i@$) andB(s,u) (and consequentf§(t,u))
intersect in at least three distinct points X2, andyxs. Connect each of;t,u to each ofx1,X2,X3 by a
shortest path. It is always possible to pick the paths in such a manner that no two of the paths sharing an
endpoint cross, though they may overlap (if the paths crossed, they could be replaced by new paths that
share the initial portion from the common endpoint to the point of crossing).

Consider a pair of the paths not sharing an endpointrggy1) andrt, x2). The former is contained
in the closure oR (s), the latter in the closure & (t), and their interesection lies B(s,t). In particular,
the two paths cannot cross.

To summarize, the six points and the nine interconnecting paths form a non-crossing embedding of
K3 3, the 3x 3 complete bipartite graph, on the topological sptere- a contradiction.

Any family of simple closed curves (in this case, on a topological sphere) of which every two cross
at most twice is called gamily of pseudocirclesThus for every fixed € S, the bisector§p(s,t) : t # s}
form a set of pseudocircles. Every bisector partitions the surface of the polyhedron into two path-connected
two-dimensional regions, grseudodisksWe call the region that contaisgheinterior (with respect tcs)
of a pseudocircle; the region not containgig called theexterior.

Lemma 4 LetB be a set of pseudocircles on the surface of a simple polyhedron P. If the common interior
of the pseudocircles iB is non-empty, then their common exterior is path-connected.



Proof: Suppose for the sake of contradiction that the common interior of the pseudocir8eis imon-
empty, and that their common exterior is not path-connected BL&t B be a minimal subset of pseu-
docircles such that their common exterior consists of at least two path-connected RgiRnsObserve
that bothR; andR, must be incident to all pseudocirclesBi. Otherwise, the removal of a pseudocircle
not incident to, sayR; would leaveR; unchanged and can only enlarBg but it cannot join the two
regions, which contradicts the minimality Bf. Also observe that all pseudocirclesBr must intersect:
a pseudocircle that lies completely in the interior of another one is not incidéiitandR,, and can be
removed without affecting the two regions.

Let p1 (p2) be a pointin the interior dR; (Ry, respectively). Since; andpz lie in different components
of the common exterior of the pseudocircledif) there exists a closed path in the union of their interiors
that separatep; and py. Indeed, the situation must be as depicted in Figure 3: each pseudocircle can
intersect at most two other pseudocircles. Otherwise, the incidence graph of the pseudocircles would
contain a chord, so we could drop at least one of the pseudocircles and still find a closed path in the union
of the interiors of the remaining ones that separg@teand pz. On the other hand, the incidence graph of
the pseudocircles iB’ must be a complete graph, since every two of them intersect.

Figure 3: Pseudocircles separatimgfrom py.

It follows that the number of pseudocirclesB is at most three, and inspection of all topologically
different arrangements of up to three pseudocircles shows that in none of these arrangements the pseudocir-
cles have a common exterior of two or more path-connected regions if their common interior is non-empty.

Lemma 5 Bisectorf(s,t) consists of @n?) straight-line segments and hyperbolic arcs.

Proof: The claim follows directly from the fact that the Voronoi diagranmos$ites on a polyhedron with
n faces withm < n has complexityd(n?) in the worst case; see the paper by Mount [9].

Since the edges of the closest- and furthest-site Voronoi diagram lie on the bisectors of pairs of sites
from S, each edge also consists@fn?) line segments and hyperbolic arcs. To simplify our exposition,
the intersections between two adjacent segments or arcs on a Voronoi edge are referbedahppmnts
as opposed to theerticesof the diagram that we defined before. We consider the point where a bisector
crosses an edge Bfalso to be a breakpoint.

Lemma 6 The furthest-site Voronoi diagrafRVD(S) of a set S of m sites on a polyhedron hgsipcells,
vertices, and edges.

Proof: LetRq. be the region of points that are further away frethan fromt, for s;t € S. In this notation

R (S) = MNtestxsRs>t- By Lemmas 3 and 4, this intersection is the common exterior of a set of pseudo-disks
that all contairs and thus is path-connected. So we have at most one cell (region) for eachSitnith

each vertex of the diagram has degree at least three. By Euler’s relation for planar graphs, the number of
vertices and edges of FB) is alsoO(m).

We define theotal complexityof FVD(S) to be the sum of the number of vertices and breakpoints in
FVD(S).



Lemma 7 The maximum total complexity B¥/D(S) is ©(mr?).

Proof: Each edge of FVIB) is a connected portion of some bisedgs, t) for two sitess;t € S. Conse-
guently, the upper bound follows from Lemmas 6 and 5.

As for the lower bound, we describe a construction that shows that BMDr a setS of m < n point
sites on a non-convex polyhedrBrwith O(n) edges can have total complex@®(mr?). The construction
will focus on proving ar(mn)-bound for the number of breakpoints on a single edde df is described
for point sites in the plane with obstacles. This can then be “lifted” to a non-convex polyhedron.

First we will describe the location of the sites, then the obstacles. AssumiSitimeven; we spliS
into S and S, with k = m/2 points each. Figure 4 shows the configuration of the Stes {si,...,s}
(in the figure,k = 5). For ease of description, we also specify two additional pantsnd s, 1; these
arenotsites. The sitesy,...,s € § and the pointsy ands. 1 are placed equally spaced on the lower
semi-circle of a circl€C;. For 1<i < k+ 1, lethi_; be the point where the bisect®s_1,s) meets the
upper semi-circle o€;1. Note that any point on the (shorter) arc@afbetweerb;_; andby; is further away
from s than from any other site i6;. Lety denote the cone originating at siethat is bounded by the
rays rays,bi_1) and rays, bi). The portion of the cong outsideC; is further away frons than from any
other site inS;. Figure 4 only shows the congs ys andyy.
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Figure 4: The configuration &, and the obstacles ity (detail).

Let ¢/ be a horizontal line lying some distance above the cifale The second set of site€® =
{s],...,5} is obtained by reflecting the s& through¢. That is,§ is such that is the bisector of
andsg. The points in$; lie on a circleC; which is the reflection of1. The coney is defined analogously
and is the reflection ofi. Let/; be the intersection of congand/. Note that/; is also the intersection of
Y, and/.

We have specified the point sites. Now we will specify the location of the obstacles. The important
fact is that the coneg,...,yk have a common intersection around the center of citgleLet C, be a
small circle lying within this common intersection, and let the segnagriie the horizontal diameter of
C.. Figure 4 (detail) shows the circ@ and the segmemtb. Let &by be the reflection o&b through?. Our
obstacle set will be the segmerails anda’l/ minus a number of narrow holes (through which a path can
pass). The segmenb has an evenly spaced swt ..., h, of narrow holes. The segmeaty also has an
evenly spaced sét;, ..., h;, of narrow holes; the only difference is that these holes are slightly shifted to
the left.

We specified all the points and obstacles. Now, we will argue that the imetersected bk = m/2
edges of FVDS), each of which crossesQ(n) times. Let us focus on the portighof the line¢. Since
any point in¢; is further away frons (resp. s) than from any other site i (resp. &), s ands are



the only relevant sites for FV(3) near(;. We will now argue thaf(s,s) crosse¥ Q(n) times. For
1<j<nletpi;j (resp.p;) be the point of intersection of the line through(resp.) andhj (resp.h))
and the line/. Because of the horizontal shift of the holesallty, the points occur interleaved dnin the
Sequencey; 1, Pi1, P 2, Pi2; -, Pin, Pin. Thisis illustrated in Figure 5 fof,. For 1< j <n, sinces can
“see” pi j whereas cannot, there is a neighborhood aroymglthat is closer t@ than tos. By symmetric
reasoning, there is a neighborhood aroqq‘]gthat is closer tog than tos. It follows that the bisector
B(s,s) must crosg; betweenp; ; andp; j, and also betweep j andp ;. ;. Thus,B(s..5) crosseg; Q(n)
times, as illustrated in Figure 5.

B(s2.5))

p'2,1
2]

/ /
P24 P25

/ /
P22 P23

Figure 5: Detail of3(s,S,).

One getsQ(kn) = Q(mn) crossings for line/, Q(n) per¢;. The pattern can be repeated otines
parallel to¢ and sufficiently close té. This givesQ(mn) crossings for each of thelines. The sites and the
obstacles can be perturbed to a general position without affecting the lower bound complexity. By treating
the lines as edges on a polyhedron, and raising vertical cylinders with the obstacles as bases, we obtain the
claimedQ(mr?) bound for the total complexity of FV{$) on a polyhedron.

The facility center ofS can be found by traversing the edges of @D and determining for each
elementary arc or line segment of each edge the point that maximizes the distance to the two sites of the
regions on both sides of the edge. These distances can be comp@gd ime, if FVD(S) is appropri-
ately labeled, and the maximum of all these distances determines the location of the facility center. Since
FVD(S) has maximum total complexi®(mr?), we obtain the following.

Corollary 1 GivenFVD(S), the facility center of S can be computed itn@?) time.

4 Computing the furthest-site Voronoi diagram

In this section, we describe our algorithm for computing the furthest-site Voronoi diagram of the given set
S of msites on the surface of polyhedr®nconsisting of triangles. Our algorithm uses ideas from the
algorithm of Ramos [11] for computing the intersection of unit spheres in three dimensions. We first give
an outline of the algorithm, and get into the details in the subsequent subsections.

The algorithm for computing FV[5) works as follows:

e If |§ =1, then FVOS) has no vertices and edges, and only a single cell that is the whole surface
of the polyhedron. IfS = 2, compute the closest-site Voronoi diagram (which is equivalent to the
furthest-site Voronoi diagram) with the algorithm of Mount [9] @(n?logn) time. The diagram
has no vertices, one edge (the bisector of the two sites, which is a closed curve, homeomorphic to a
circle), and two regions. The bisector of the two sites consig® of) line segments and hyperbolic
arcs. For each of these segments and arcs we maintain the two pseudoroots that are closest to the
two sites inS respectively, and the distances of these pseudoroots to the two sites. We need this
information to determine the facility center after F{&) has been computed.

e Otherwise, if|§ > 3, subdivideSinto two subset® (the red sites) and (the blue sites) of about
equal size, i.e|R| = ||9/2], and|B| = [|]/2].

¢ Recursively compute FV[R) and FVO(B).
e Merge FVDOR) and FVDB) into FVD(RUB) = FVD(S) as follows:



— Determine the set of siteRy C R that have a non-empty region in FYR), i.e., such that
FVD(R) = FVD(Ry). Observe that the remaining sitesR\ Ry do not influence the final
diagram and can be discarded. Similarly, comBst€- B.

— Determine dow-degree independent sef R Ry, which is a subset with the property that the
region of a sites € R, has at most 9 neighbors in F{Rp), and no two sites,s' € R; are
neighbors in FVDRy). (Two sites are said to beeighborsif their regions share an edge of
the diagram.) Compute; = Ry \ Ry and FV(Ry), and repeat this step to generate a Dobkin-
Kirkpatrick hierarchy [5]Ry D Ry D ... D R and their furthest-site Voronoi diagrams, such
thatRy has only a constant number of sites. Do the same for the blue sites to BptaiB; D
... D By and their furthest-site Voronoi diagrams. See Section 4.2 for details.

— Compute FVDR UB) for 0 <i <k, exploiting the fact thaB, has only a constant number
of sites. Similarly, compute FVR UBj) for 0 < j <I. This is thebasic merge stepSee
Section 4.3 for details.

— Compute FVOR UBj) from FVD(R UBj+1) and FVOR+1 UBj). This is thegeneric merge
step which when repeated gives F{By U Bg) = FVD(S). See Section 4.4 for details.

During the construction of FV[%), we create closest- and furthest-site Voronoi diagrams of subsets of
Sas intermediate structures. We maintain f¥Dand these intermediate structures as doubly connected
edge lists [3, 10], to be able to efficiently determine and preserve topological relations between Voronoi
regions, edges, and vertices.

4.1 Edge tracing

Several stages of the algorithm for constructing F8Dinvolve the computation of new Voronoi cells

of FVD(S) for S C S, or the madification of existing Voronoi cells. A basic step is the generation of
Voronoi edges or parts of Voronoi edges. Recall that the edges of 8Y e on the bisectors of sites in

S, and consist 0O(n?) hyperbolic arcs and/or straight line segments each. To generate ae tddés
incident to the regions of,s; € S, we need to know a starting point of the edge (i.e., the location of one
of the vertices of FVIDS) incident toe), and an endpoint (i.e., the location of the other vertex incident

to €). We calculate the bisect@(s,s;) in O(n?logn) time using the algorithm of Mitchell et al. [8]. We
store it as a doubly linked list of hyperbolic arcs and straight line segments. Next, we trB¢grsg,

until we reach the starting point @ From that point on, we output the hyperbolic arcs and straight line
segments of whicle consists, until we reach the endpointefTraversing3(s,s;j) takesO(n?) time, and
testing whether we have reached the starting point or the endpaérdasf be done i©(1) time for each
elementary hyperbolic arc or straight line segment. Hence, the total time needed to generate an edge of
FVD(S) is O(n?logn). The amount of memory needed is bounded by the size of the shortest path maps of
s ands;, and off(s, sj), which isO(n?). These results are summarized in the following lemma:

Lemma 8 Given a set of sites S on a polyhedron P with n triangles and the two vertices incident to an
edge e oFVD(S) for S C S, e itself can be computed ifi8logn) time using @n?) memory.

Suppose that we have generated all the edges of the regspa &, includinge, the common edge of
the regions of ands;j. Later on in the algorithm, we may have to generate the edges of the regpn of
includinge. Rather than computing the bisectorspfands; again, bisector computations are cached, so
any bisector is computed no more than once, and no edge is generated more than once.

In some cases we need a variation on the edge tracing procedure. As before, we compute a bisector of
two sites (or retrieve it from the cache, if it has been computed before), traverse it until we find the starting
point of the edge that is to be generated, and output hyperbolic arcs and straight line segments from that
moment on. The difference is that we don’t have a single endpoint at which we stop the tracing, but a
constant number of candidate endpoints, and we stop when we have reached the first of these. Testing
whether we have reached any of the candidate endpoints @Kegime per hyperbolic arc or straight
line segment, and this edge tracing variation also req@te$logn) time andO(n?) memory per Voronoi
edge.



4.2 Constructing the hierarchy for Ry and By.

We describe how to compute the hierardky> Ry O ... D Ry and their furthest-site Voronoi diagrams;
for By, this is done analogously. The computation is similar to the Dobkin-Kirkpatrick hierarchy construc-
tion [5].

Let G be the dual graph of FV[R), i.e.,Go = (Ro, Eo), with (s,sj) € Eg for 5,S; € Ry if the regions
of s ands; share an edge in FV[Ry). Note that FVIRy) andGo are planar graphs. Aimdependent set
of vertices in a grapls = (V,E) is a setv/ C V such that there is no edge, v;) in E for anyv;,vj e V'.
Snoeyink and van Kreveld [13] showed that for any planar gfaph(V, E) with nvertices, an independent
setV’ of vertices of degree at most 9 wifff’| > |V|/6 can be found ifD(n) time. We apply this td&3, to
find an independent sBf, C Ry in O(|Rp|) time. A sites € R, has at most 9 neighbors in F\(Rp), no two
sitess, s’ € R; are neighbors in FV[Ry), and|Ry| > |Ro|/6.

To compute FVOR;) = FVD(Ro \ Ry), we remove the sites iR;, one at a time fronRy and update
the diagram after the removal of each site. &ebe such a site iR, and letp be a point that lies in the
region in FVO(Ry) of . After updating the diagranp must lie in the region of a sitg that is a neighbor
of 59 in FVD(Ry), since furthest-site Voronoi regions are connected. So the regign®flivided among
its neighbors, of which there are only a constant number, and all diagram edges in that region lie on the
bisectors of those neighbors (see Figure 6).

(1) ) (3)

[ S

Figure 6: Removing a sit®), and dividing its region among its neighbors.

Letvy,...,V be the at most 9 vertices of the regionsgin clockwise order. Legy, ..., e be the edges
of R (sp), with g incident tov; andvi; for 1 <i < k, and withey incident tovx andv;. Finally, lets be
the neighbor of, whose region is incident tq for 1 <i < k. See Figure 7.

We will describe how to reconstruBt(s;) after the removal of; for R (s2),...,R () this is similar.
Edgee; is no longer an edge & (s1), and it is removed. Vertices andv; are also removed; the edges
of R (s1) incident to these verticeg/(ande,) have to be extended into the regionsef Recall thag] lies
on the bisectoB(sy,s«) of s1 ands,, andé, lies onf(sy,sz). We extende] by tracingB(sy, s) as described
in Section 4.1, starting at the location\af At some pointp on the bisector, the distance betwgeands;
and the distance betwe@mands, equals the distance betwepmand some other neighbgrof 5. At this
point p we reach a new vertex & (s1). Note that this vertex is also a vertex of the closest-site Voronoi
diagram ofsy, sc ands. We have finished the reconstructiongfat this point, record the new vertex of
R (s1), and proceed with the next edgeRf{s;) by tracingB(si1,s ). This is repeated until we finally trace
B(s1,s2) and end up at the location @f, which concludes the reconstructionf{s; ).

To determine whether we have reached a vertex during the edge tracing, we precompute all thee points
that are equidistant to three neighborsgpfFor a fixed triple of neighbors &, these pointp are theO(1)
vertices of the closest-site Voronoi diagram of the triple, which can be compu@hfogn) time again
with the techniques from Mitchell et al. [8] and Mount [9]. Computing the Voronoi diagrams for all triples
of the at most 9 neighbors &f takes asymptotically the same amount of time. We trace a constant number
of edges, and for each hyperbolic arc or straight-line segment on these edges we determine in constant time
(by testing theD(1) precomputed vertices of the Voronoi diagrams of triples of neighboss)afhether
we have reached the endpoint of the edge that we are generating. It follows that the removal of a single site
and the reconstruction involved takBgn?logn) time.
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Figure 7: The reconstruction & (s;) after the removal of.

After all the sites irR;, have been removed froRy and FVIO(R;) has been constructed, we recursively
repeat the procedure of removing an independent set of sites to creal@®fyD. ,FVD(Ry). The total
number of diagrams we construct this wayddogm).

Sinceyk ,|Ri| is a geometric series, the total time for computing all independent s@tsis The the
reconstruction of the diagram after the removal of a single site @kedogn) time, and the total number
of sites removed is less than It follows that the construction of the hierarcRy D Ry O ... D R¢ and
their furthest-site Voronoi diagrams tak@$émr?logn) time in total. By Lemma 7, the size of F\B;) =
O(|Ri|n?). Therefore, the total size of all bisectors and diagrams construc@ris’).

4.3 The basic merge step

In the basic merge step, we compute RRUBy) for 0 <i <k, and FVOR(UBj) for 0 < j <I. We
will exploit the fact thatB, and R contain only a constant number of sites. We will only describe the
computation of FVDR; UB;) for a fixedi; all other diagrams are computed similarly.

e Foreach site € R, andb € B, we compute the region ofin FVD({r,b}). To do this, we compute the
closest-sité/oronoi diagram for sites andb using theO(nlogn) algorithm of Mitchell et al. [8, 9].
The region ofr in FVD({r,b}) is clearly the region ob in the closest-site diagram. The total time
for all pairsr andb is O(|Ri|n?logn), since there are oniQ(|R;|) pairs.

e Next, we compute the region of each site R in FVD({r} UBy) by successively intersecting the
regions ofr in FVD({r,b}) over allb € By with a line-sweep. We do this separately for each triangle
of P met by an edge of either of the two regions to be intersected. The total number of intersection
computations for a single sitec R; is |B|| — 1, which is bounded by a constant. Sirgehas only a
constant number of siteshas a constant number of neighbors in R{B} UB') for anyB’ C By, and
the complexity of the region afin any of these diagrams @(n?). This means that the intersections
can be computed i®(n?logn) time for a single red site € R;. The time taken for all the sites R
is O(|Ri[n?logn).
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e Next, we compute the region of each site R in FVD(R UB;) by intersecting its regions in
FVD({r}uUBy) and FVDOR)) with a line-sweep as above. Since the complexity of the region of
rin FVD(R UB,) is O(n?) and the complexity of the region ofin FVD(R,) is O(N; - n?), whereN;
is the number of neighbors ofin FVD(R)), the time needed to compute the region of a singlersite
in FVD(R UB)) is O(nzlogn- NrlogN;). Summing this over all € R; gives

O(n’logn ¥ N:logN;).

rerj

We have thal\r <mforallr € R, andy,.g Nr = |Ri|. The time needed to compute the region of
each site € R in FVD(R UB,) is therefore bounded b9(|Ri|n?logmlogn).

e To complete the computation of F\(B UBy), it remains to compute the regions of the blue sites.
We have computed the regions of all red sites, and carefully maintained topological relations between
each region of a red site and its neighbors. Using the topological information, we do a depth-first
traversal of the regions in FV[® UB) (that is partially constructed), starting in the region of a red
site. When a region of a blue site is visited for the first time, it has to be constructed. At least one of its
edges has already been computed, namely, the edge incident to its predecessor in the traversal. Zero
or more of the other edges of the region are incident to red regions; these have also been computed
already. We still have to trace these edges, namely to find the starting points for the edges that have
not been computed yet. These atae edgesthe edges between two blue regions. All blue edges
are sub-edges of the edges of F\B), of which there are only a constant number. The endpoints
of these edges are either vertices of H¥8p), or they are vertices of a red region. The latter vertices
can be determined i®(|R; |n?) time by traversing the edges of all regions of red sites, and reporting
the vertices that are incident to blue edges. The total number of endpoints of blue edges is bounded
by O(|Bj|), which is a constant, so we can exploit the techniques described in Section 4.1 to trace the
blue edges iD(n’logn) time per edge. The total time for computing the regions of the blue sites is
O(|R|n?logn).

Putting everything together, computing F#®U B ) takesO(|R |n?logmlogn) time, and computing
FVD(R¢UB) takesO(|Bj|n?logmlogn) time. Since botlF¥ o |R/| andy!_,|B;| are bounded bp(m),
the time needed for computing all the diagrams in the basic merge stémis’logmlogn). The amount
of memory needed in the basic merge step is linear in the complexity of all bisectors and diagrams that we
computed, which i©(mr?).

4.4 The generic merge step

The generic merge step is the computation of KR Bj) from FVD(R UBj,1) and FVO(R 11 UB;j),
which eventually gives the required FYRyUBp) = FVD(S). First some terminology: we call the sites
in Riy1 theold red sites, and the sites &\ Ri11 thenewred sites. Similarly, the sites i1 are theold
blue sites, and the sites By \ Bj, 1 are thenewblue sites. Now consider any vertexf FVD(R UB;).
The important fact is that not all three Voronoi regions incident to that vertex correspond to new sites; there
must be at least one old red or blue site whose face is incidenbcause new red (blue) regions form an
independent set in FVR) (resp. FVOOB;)). So to determine all the vertices of FYR UB;), it suffices
to compute the regions in FMBR U B;) of all old red and blue sites.

Consider an old red site The region of in FVD(R UBj+1) contains all points that are further from
r than from any other site il UBj,1, and the region of in FVD(R 1 UB;j) contains all points that
are further fromr than from any other site iRi;1 UBj. The region ofr in FVD(R; UB;) is therefore
the intersection of its regions in FB; UBj.1) and FVO(R 11 UBj). We can compute this intersection
for each face of the polyhedron separately by a line-sweep of the regiansnd¥fVD(R; UBj;1) and
FVD(Ri+1UBj). The time needed for computing the vertices of R®DU B;) is therefore bounded by
O(ClogC), whereC = max(n?|R UBj1/,n?|Ri;1UBj|,n?|R UB;|), which in turn is at most?(|Ri| + |Bj|).
Hence, computing the vertices of FVR UB;) takesO(n?(|R | + |Bj|) log(n?(|Ri| +|Bj|))) = O(n?(|R | +
|Bj|)logn) (recall thatm < n).

12



The edges of FVIR UB;j) are either edges incident to the faces of old red or blue sites (which we
already computed), or edges between the faces of two new sites of the same color (these edges are sub-edges
of edges in FVIR) or FVD(B;), and can easily be traced), or they are edges between the faces of a new
red and a new blue site. For the latter category of edges we already have the incident vertices computed,
and we can trace the edges after computing the bisector of the new red and new blue site. The total
number of bisectors we have to compute and trace is boundé&® byB;|, so this take©(n?logn(|Ri| +
|Bj|)) time. We conclude that computing FYR UB;) from FVD(R UBj,1) and FVOR 1 UB;) takes
O(n?logn(|R | +|Bj)) time.

Summing thisoverall & i <k, 0< j <I gives time

k |
OfrPlogny 5 (R + i)
i=0j=

We have

k| k
3 3 1Bl =03 [Bol) = OBol) = O(mlogrm)
1=0]= 1=

and similarlyzrzoz'j:0|Ri| = O(mlogm). It follows that the total time spent in all the iterations of the
generic merge step 8(mr?logmlogn).

4.5 Total running time and memory requirements

The time for merging FVIDR) and FVO(B) into FVD(RU B) is dominated by the generic merge step,
which require®D(mrflogmlogn) time; the total running time satisfies the recurrence

T(1) = 0O
T(2) = O(n’logn)
T(m = T(|m/2])+T([m/2])+O(mrflogmlogn)

which solves tal (m) = O(mr?log? mlogn).
The memory requirements of the algorithm are linear in the size of all diagrams that are constructed in
the process, which i©(mr?logm).

Theorem 1 The complexity of the furthest-site Voronoi diagram of m sites on the surface of a polyhedron
with n triangles has complexi®(mr?). The diagram can be computed ir(r@?logzmlog n) time, using
O(mr?logm) memory.

5 Conclusions and further research

We have shown that the furthest-site Voronoi diagram of &%dtm sites on the surface of a polyhedron

P with n triangles has maximum complexi§(mr?), and we have given an algorithm for computing the
diagram inO(mr?IogzmIogn) time. Once the diagram has been computed, the facility center, which is the
point onP that minimizes the maximum distance to a sit&jican be found ird(mr?) time by traversing

the edges of the diagram.

The merge step in our divide-and-conquer approach for the computation of3y\¥quite compli-
cated, and it would be pleasant to find a simpler method. Merging the recursively computed diagrams by
sweeping seems natural, but the number of intersections of edges of both diagrams can be superlinear in
m, while only a linear number of them can end up as a vertex of the resulting diagram.

It would be a challenge to find an output-sensitive algorithm, i.e., an algorithm that takes time propor-
tional to the number edges/vertices in the diagram plus the number of their intersections with the edges
of P. Even more ambitious would be the computation of the diagram without explicitly representing all
intersections of furthest-site Voronoi edges and edges of the polyhedron.

Another interesting issue is approximation: find Gmr?) time) a point with the property that the
distance to the furthest site is at m@$tt- €) times the radius of the smallest enclosing circle.

13



Finally, it is worth investigating whether the facility location problem can be solved without construct-
ing the furthest-site Voronoi diagram. Recall that the facility location problem in the plane can be solved
using techniques related to fixed-dimensional linear programming [7, 15].
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