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Abstract

Given aterrain defined as a piecewise-linear function withn triangles, andm point siteson it, we
would like to identify the location on the terrain that minimizes the maximum distance to the sites. The
distance is measured as the length of the Euclidean shortest path along the terrain. To simplify the
problem somewhat, we extend the terrain to (the surface of) a polyhedron. To compute the optimum
placement, we compute the furthest-site Voronoi diagram of the sites on the polyhedron. The diagram
has maximum combinatorial complexityΘ(mn2), and the algorithm runs inO(mn2 log2mlogn) time.

1 Introduction

1.1 Problem statement

A (polyhedral) terrainis the graph of a piecewise-linear function defined over a simply-connected subset of
the plane. It can be represented by a planar triangulation where each vertex has an associated elevation. The
elevation of any point in the interior of an edge (triangle) is obtained by linear interpolation over the two
(three) vertices of the edge (resp. triangle). Polyhedral terrains are commonly used to model (mountainous)
landscapes.

This paper addresses thefacility location problemfor a set of sites on a terrain. More precisely, assume
that a set ofm point siteson a terrain, defined over a bounded rectangle and consisting ofn triangles, is
given. The distance between two points on the terrain is the minimum length of any path between those
points that lies on the terrain. Thefacility centerof the sites is the point on the terrain that minimizes the
maximum distance to a site. We assume throughout thatm≤ n.

To be able to utilize the extensive previous work on shortest paths on polyhedra, we show how to
transform the terrain to (the surface of) a polyhedron such that for any two pointsp andq on the original
terrain, any path betweenp andq that leaves the original terrain cannot be a shortest path. All facets of
the resulting polyhedron are triangles, and the total number of them is linear in the number of triangles of
the original terrain. The polyhedron is homeomorphic to a ball, so that its surface is homeomorphic to a
sphere. The transformation to a polyhedron can be applied to terrains that are defined over a rectangle and
to unbounded terrains.

Our algorithm constructs the furthest-site Voronoi diagram of the point sites on the surface of the
polyhedron obtained from the terrain. The location for the facility center can then be found by traversing
the edges and vertices of the furthest-site Voronoi diagram.
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1.2 Previous work and new results

In the Euclidean plane, the facility center, or the center of thesmallest enclosing discof a set ofm point
sites, can be determined inO(m) time. Several algorithms attain this bound. Megiddo [7] gave the first
deterministic linear-time algorithm, and a much simpler, randomized, linear–expected-time algorithm was
found by Welzl [15].

There is a close connection between the facility center and the furthest-site Voronoi diagram of the
sites. Namely, the facility center must lie at a vertex or on an edge of this diagram. In the plane, with
Euclidean distance, the furthest-site Voronoi diagram has cells only for the sites on the convex hull of the
set of sites, and all cells are unbounded.

It appears that on a polyhedron, some of the properties of furthest-site Voronoi diagrams in the plane no
longer hold. For instance, a bisector on the polyhedron is generically a closed curve consisting of as many
asΘ(n2) straight-line segments and/or hyperbolic arcs, in the worst case. In general, it may also contain
two-dimensional portions of the surface of the polyhedron.

Mount [9] showed that theclosest-siteVoronoi diagram ofmsites on (the surface of) a polyhedron with
n faces withm≤ n has complexityΘ(n2) in the worst case; he also gave an algorithm that computes the
diagram inO(n2 logn) time. We do not know of any previous work on furthest-site Voronoi diagrams on a
polyhedron.

The problem of computing the shortest path between two points along the surface of a polyhedron has
received considerable attention; see the papers by Sharir and Schorr [12], Mitchell, Mount and Papadim-
itriou [8], and Chen and Han [2]. The best known algorithms [2, 8] compute the shortest path between two
given points, the sourcesand destinationt, in roughlyO(n2) time. In fact, these algorithms compute a data
structure that allows one to compute the shortest path distance between the sources to any query pointp
in O(logn) time. The algorithm of Mitchell et al. [8] is a continuous version of Dijkstra’s algorithm for
finding shortest paths in a graph [4], while Chen and Han [2] solve the problem by determining shortest
paths in anunfoldingof the polyhedron; see also [1].

In his master’s thesis, van Trigt [14] gave an algorithm that solves the facility location problem on a
polyhedral terrain inO(m4n3 logn) time, usingO(n2(m2 + n)) space.

This paper gives anO(mn2 log2mlogn) time algorithm to compute the furthest-site Voronoi diagram
and find the facility center for a setS of m sites on the surface of a polyhedron withn faces. Given
the linear-time algorithm for finding the facility center in the plane, this bound may seem disappointing.
However, the algorithm for computing the furthest-site Voronoi diagram is near-optimal, as the maximum
combinatorial complexity of the diagram isΘ(mn2).

2 Extending a terrain to a polyhedron

In many practical situations, a terrain is defined over a rectangle, i.e., it is the graph of a piecewise-linear
function defined over[xleft,xright]× [ybottom,ytop]. To avoid complications involving the boundary of the
terrain, and to be able to use results on shortest paths and Voronoi diagrams on polyhedra, we extend the
terrain to the surface of a polyhedron. A similar transformation can be applied to unbounded terrains.

Any terrain defined over a rectangle[xleft,xright]× [ybottom,ytop] and consisting ofn triangles can be
extended withO(n) additional triangles to the surface of a polyhedron that is homeomorphic to a sphere,
such that for any two pointsp,q on the original terrain, any path fromp to q that leaves the original terrain
cannot be a shortest path on the polyhedron. The construction is as follows:

The polyhedron will be shaped somewhat like a box, with the original terrain ‘on top’ (see Figure 1).
Let d be an upper bound on the length of the shortest path between two points on the original terrain.
Such an upper bound can easily be found inO(n) time, by summing the lengths of the longest sides of
all triangles. First, we extend the domain of the terrain to[xleft−d,xright + d]× [ybottom−d,ytop+ d]. For
each vertexv = (xv,yv,zv) on the original boundary of the terrain, we add a vertexv′ = (x′v,y′v,z′v) on the
new boundary, withz′v = zv, and withx′v andy′v chosen such that the Euclidean distance betweenv andv′

is minimized. Next, we add an edge(v,v′). Note that each of the new edges is horizontal (normal to the
z-axis), and in the projection onto the(x,y)-plane it is perpendicular to the original and new boundary. The
new vertices on the new boundary of the terrain are connected with edges along this new boundary. Note
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that these edges on the new boundary are not all horizontal, unless the edges on the original boundary are
horizontal. Next, the resulting new “rectangles” are triangulated by adding a diagonal edge. So far, we
have constructed the top of the polyhedron; an example is shown in Figure 1.

Figure 1: Extending a terrain (shaded) to the top of a ‘box-like’ polyhedron.

Letzlow be thez-value of the lowest vertex in the terrain. The ‘bottom’ of the polyhedron is the rectangle
([xleft−d,xright + d]× [ybottom−d,ytop+ d],zlow−1).

From the vertices on the boundary of the top of the polyhedron, we start edges parallel to thez-axis, and
ending at the boundary of the bottom rectangle. The resulting vertical rectangles are triangulated by adding
diagonal edges. Finally, we place a vertex in the interior of the bottom rectangle, and connect it with edges
to all vertices on the boundary of the bottom rectangle. The resulting polyhedron is highly degenerate, but
our algorithm is not influenced by these degeneracies.

Because of the dimensions of the top of the polyhedron, no shortest path fromp to q, both on the
original terrain, can leave the top of the polyhedron. For any path fromp to q that stays on the top of the
polyhedron, the maximal sub-paths that lie outside the original terrain can be replaced by shorter paths
along the boundary of the original terrain. Therefore, any shortest path on the polyhedron betweenp andq
will lie completely on the original terrain.

For unbounded terrains, a similar transformation can be applied by limiting the domain of the terrain to
a rectangle that encloses allmpoint sites (in the projection onto the(x,y)-plane). The size of this rectangle
should be large enough to guarantee that no shortest path between two point sites leaves the rectangle.
Next, we convert the resulting terrain to a polyhedron as before.

3 The complexity of the furthest-site Voronoi diagram on a polyhe-
dron

Previous papers on shortest paths on polyhedra [12, 8, 2, 14] use a number of important concepts that we
will need as well. We review them briefly after giving the relevant definitions.
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In the remainder of this paper,P is the surface of a polyhedron. As stated before, we only allow
polyhedra homeomorphic to a ball, so that their surfaces are homeomorphic to a sphere. For two points
p and p′ on P, we define thedistanced(p, p′) to be the length of the shortest path fromp to p′ alongP.
Let Sbe a set ofm point sites onP. Consider first a single sites∈ P. For any pointp on P we consider a
shortest path fromp to s; note that in general such a path need not to be unique. Such a shortest path has
a number of properties. First, if it crosses an edge ofP properly, then a principle of refraction holds. This
means that if the two incident triangles were pivoted about their common edge to become co-planar, then
the shortest path would cross the edge as a straight-line segment. This principle is calledunfolding. For
any vertex on the polyhedron, we define itstotal angleas the sum of the interior angles at that vertex in
each of the triangles incident to it. The shortest path cannot contain any vertex for which the total angle is
less than 2π, except possibly at the sourcep and the targets.

Any shortest path crosses a sequence of triangles, edges, and possibly, vertices. If two shortest paths
on the polyhedron cross the same sequence (in the same order), we say that these paths have the sameedge
sequence. If a shortest path fromp to scontains a vertex of the polyhedron, the vertex reached first fromp
is called thepseudorootof p. If the path does not contain any vertex, then sites is called the pseudoroot of
p.

Theshortest-path map (SPM) of sis defined as the subdivision ofP into path-connected regions where
the shortest path tos is unique and has a fixed edge sequence. For non-degenerate placements ofs, the
closures of the regions coverP, so the portion ofP outside any region, where more than one shortest path
to s exists, consists of one-dimensional pieces. When two pseudoroots have the same distance tos, the
complement of the regions of the SPM may have two-dimensional parts.

It is known that the shortest-path map of a site has complexityO(n2); this bound is tight in the worst
case. The SPM restricted to a triangle is actually the planar Euclidean Voronoi diagram for a set of pseudo-
sites with additive weights (see Figure 2). The pseudo-sites are obtained from the pseudoroots by unfold-
ing the triangles in the edge sequence to the pseudoroot so that they are all co-planar. The weight of a
pseudo-site is the shortest-path distance from the corresponding pseudoroot to the sites. It follows that the
boundaries of regions in the SPM within a triangle consist of straight-line segments and/or hyperbolic arcs.
For any point on a hyperbolic arc or a segment there are two shortest paths toswith different pseudoroots.
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Figure 2: The SPM of a sites, restricted to a triangle, is the Euclidean Voronoi diagram for a set of pseudo-
sites with additive weights. The weight of a pseudo-site is the shortest-path distance from the pseudo-site
to s.

Given two sitess and t on the polyhedron, thebisector β(s, t) is the set of those pointsp on the
polyhedron equidistant froms andt. The bisector consists of straight-line segments, hyperbolic arcs, and
may even contain two-dimensional regions. Such regions occur only when two sites have exactly the same
distance to some vertex ofP. For simplicity, we assume that these degeneracies do not occur.

The closest-site Voronoi diagramof a setS of m sites onP, denoted by VD(S), is a planar graph
embedded inP that subdividesP into maximal open regions associated with the sites inS, with the property
that a pointp∈ P lies in the region of a sites∈ S if and only if d(p,s)< d(p,s′) for eachs′ ∈ Swith s′ 6= s.
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The interior of the boundary between two adjacent regions is anedgeof the Voronoi diagram; it is easy to
see that each edge lies on a bisector of two sites inS. The non-empty intersections of the closures of three
or more regions of the Voronoi diagram are itsvertices. We assume that all vertices have degree three;
otherwise, a degeneracy is present.

The furthest-site Voronoi diagramof a setSof m sites onP is a similar subdivision ofP into maximal
open regions. The difference is that a pointp∈ P lies in the region of a sites∈ S if and only if d(p,s) >
d(p,s′) for eachs′ ∈ Swith s′ 6= s. In this paper, we give a new algorithm for computing the furthest-site
Voronoi diagram of a setSof sites on a polyhedron. We will use the notationR (s) to denote the region of
s∈ S in the Voronoi diagram. Whether this is the region ofs in VD(S) or FVD(S) should be clear from
context.

The following facts are crucial for the algorithm below to work and for the analysis to hold. Lemmas 1,
2, and 3 are similar to the lemmas in the paper of Leven and Sharir [6]; they are general statements about a
large class of metrics and hold under very general conditions.

Lemma 1 In the closest-site Voronoi diagram of a set S of sites on P, the regionR (s) of a site s∈ S is
path-connected.

Proof: Let p be a point inR (s), let π(p,s) be a shortest path fromp to s, and letp′ be an arbitrary point on
π(p,s). The sub-pathsπ(p, p′),π(p′,s) ⊂ π(p,s) are also shortest paths, and d(p,s) = d(p, p′) + d(p′,s).
It follows that d(p′,s)< d(p′, t) for anyt ∈ S, t 6= s; otherwise, there would be a path fromp to t via p′ no
longer than d(p,s), contradicting the fact thatp is closer tos than tot. Hence, any pointp′ on π(p,s) lies
in R (s), and any two pointsp andq in R (s) are connected viasby a path that lies completely inR (s).

Lemma 2 Bisectorβ(s, t) is connected and homeomorphic to a circle.

Proof: Consider the closest-site Voronoi diagram of{s, t}. The closures ofR (s) andR (t) in this Voronoi
diagram cover the whole surface of the polyhedron, and, by the previous lemma, bothR (s) andR (t) are
path-connected. SinceP is homeomorphic to a sphere,β(s, t), which is the common boundary ofR (s) and
R (t), must be connected and homeomorphic to a circle.

Lemma 3 For any three distinct sites s, t, and u, bisectorsβ(s, t) andβ(s,u) intersect at most twice.

Proof:
Consider the closest-site Voronoi diagram of{s, t,u}. At an intersectionχ of β(s, t) andβ(s,u), we

have d(χ,s) = d(χ, t) = d(χ,u). Therefore,χ also lies on the third bisectorβ(t,u), and thus is a vertex of
the Voronoi diagram of{s, t,u}, incident toR (s), R (t), andR (u).

Now suppose for the sake of contradiction that the bisectorsβ(s, t) andβ(s,u) (and consequentlyβ(t,u))
intersect in at least three distinct pointsχ1, χ2, andχ3. Connect each ofs, t,u to each ofχ1,χ2,χ3 by a
shortest path. It is always possible to pick the paths in such a manner that no two of the paths sharing an
endpoint cross, though they may overlap (if the paths crossed, they could be replaced by new paths that
share the initial portion from the common endpoint to the point of crossing).

Consider a pair of the paths not sharing an endpoint, sayπ(s,χ1) andπ(t,χ2). The former is contained
in the closure ofR (s), the latter in the closure ofR (t), and their interesection lies inβ(s, t). In particular,
the two paths cannot cross.

To summarize, the six points and the nine interconnecting paths form a non-crossing embedding of
K3,3, the 3×3 complete bipartite graph, on the topological sphereP — a contradiction.

Any family of simple closed curves (in this case, on a topological sphere) of which every two cross
at most twice is called afamily of pseudocircles.Thus for every fixeds∈ S, the bisectors{β(s, t) : t 6= s}
form a set of pseudocircles. Every bisector partitions the surface of the polyhedron into two path-connected
two-dimensional regions, orpseudodisks. We call the region that containss the interior (with respect tos)
of a pseudocircle; the region not containings is called theexterior.

Lemma 4 LetB be a set of pseudocircles on the surface of a simple polyhedron P. If the common interior
of the pseudocircles inB is non-empty, then their common exterior is path-connected.
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Proof: Suppose for the sake of contradiction that the common interior of the pseudocircles inB is non-
empty, and that their common exterior is not path-connected. LetB ′ ⊆ B be a minimal subset of pseu-
docircles such that their common exterior consists of at least two path-connected regionsR1,R2. Observe
that bothR1 andR2 must be incident to all pseudocircles inB ′. Otherwise, the removal of a pseudocircle
not incident to, say,R1 would leaveR1 unchanged and can only enlargeR2, but it cannot join the two
regions, which contradicts the minimality ofB ′. Also observe that all pseudocircles inB ′ must intersect:
a pseudocircle that lies completely in the interior of another one is not incident toR1 andR2, and can be
removed without affecting the two regions.

Let p1 (p2) be a point in the interior ofR1 (R2, respectively). Sincep1 andp2 lie in different components
of the common exterior of the pseudocircles inB ′, there exists a closed path in the union of their interiors
that separatesp1 and p2. Indeed, the situation must be as depicted in Figure 3: each pseudocircle can
intersect at most two other pseudocircles. Otherwise, the incidence graph of the pseudocircles would
contain a chord, so we could drop at least one of the pseudocircles and still find a closed path in the union
of the interiors of the remaining ones that separatesp1 andp2. On the other hand, the incidence graph of
the pseudocircles inB ′ must be a complete graph, since every two of them intersect.

p1

p2

Figure 3: Pseudocircles separatingp1 from p2.

It follows that the number of pseudocircles inB ′ is at most three, and inspection of all topologically
different arrangements of up to three pseudocircles shows that in none of these arrangements the pseudocir-
cles have a common exterior of two or more path-connected regions if their common interior is non-empty.

Lemma 5 Bisectorβ(s, t) consists of O(n2) straight-line segments and hyperbolic arcs.

Proof: The claim follows directly from the fact that the Voronoi diagram ofm sites on a polyhedron with
n faces withm≤ n has complexityΘ(n2) in the worst case; see the paper by Mount [9].

Since the edges of the closest- and furthest-site Voronoi diagram lie on the bisectors of pairs of sites
from S, each edge also consists ofO(n2) line segments and hyperbolic arcs. To simplify our exposition,
the intersections between two adjacent segments or arcs on a Voronoi edge are referred to asbreakpoints,
as opposed to theverticesof the diagram that we defined before. We consider the point where a bisector
crosses an edge ofP also to be a breakpoint.

Lemma 6 The furthest-site Voronoi diagramFVD(S) of a set S of m sites on a polyhedron has O(m) cells,
vertices, and edges.

Proof: Let Rs>t be the region of points that are further away froms than fromt, for s, t ∈S. In this notation
R (s) =

⋂
t∈S,t 6=sRs>t . By Lemmas 3 and 4, this intersection is the common exterior of a set of pseudo-disks

that all contains and thus is path-connected. So we have at most one cell (region) for each site inS, and
each vertex of the diagram has degree at least three. By Euler’s relation for planar graphs, the number of
vertices and edges of FVD(S) is alsoO(m).

We define thetotal complexityof FVD(S) to be the sum of the number of vertices and breakpoints in
FVD(S).
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Lemma 7 The maximum total complexity ofFVD(S) is Θ(mn2).

Proof: Each edge of FVD(S) is a connected portion of some bisectorβ(s, t) for two sitess, t ∈ S. Conse-
quently, the upper bound follows from Lemmas 6 and 5.

As for the lower bound, we describe a construction that shows that FVD(S) for a setSof m≤ n point
sites on a non-convex polyhedronP with O(n) edges can have total complexityΩ(mn2). The construction
will focus on proving anΩ(mn)-bound for the number of breakpoints on a single edge ofP. It is described
for point sites in the plane with obstacles. This can then be “lifted” to a non-convex polyhedron.

First we will describe the location of the sites, then the obstacles. Assume that|S| is even; we splitS
into S1 andS2 with k = m/2 points each. Figure 4 shows the configuration of the sitesS1 = {s1, . . . ,sk}
(in the figure,k = 5). For ease of description, we also specify two additional pointss0 andsk+1; these
arenot sites. The sitess1, . . . ,sk ∈ S1 and the pointss0 andsk+1 are placed equally spaced on the lower
semi-circle of a circleC1. For 1≤ i ≤ k+ 1, let bi−1 be the point where the bisectorβ(si−1,si) meets the
upper semi-circle ofC1. Note that any point on the (shorter) arc ofC1 betweenbi−1 andbi is further away
from si than from any other site inS1. Let γi denote the cone originating at sitesi that is bounded by the
rays ray(si ,bi−1) and ray(si ,bi). The portion of the coneγi outsideC1 is further away fromsi than from any
other site inS1. Figure 4 only shows the conesγ2, γ3 andγ4.

C2

h5

h4h2
h1 h3

s0 s6

a b

s1

s2 s3
s4

s5

b0

b1

b2b3

b4

b5

γ2γ3γ4

C1 C2

`4 `3 `2`

Figure 4: The configuration ofS1 and the obstacles inC2 (detail).

Let ` be a horizontal line lying some distance above the circleC1. The second set of sitesS2 =
{s′1, . . . ,s′k} is obtained by reflecting the setS1 through`. That is,s′i is such that̀ is the bisector ofsi

ands′i . The points inS2 lie on a circleC ′1 which is the reflection ofC1. The coneγ′i is defined analogously
and is the reflection ofγi . Let `i be the intersection of coneγi and`. Note that̀ i is also the intersection of
γ′i and`.

We have specified the point sites. Now we will specify the location of the obstacles. The important
fact is that the conesγi , . . . ,γk have a common intersection around the center of circleC1. Let C2 be a
small circle lying within this common intersection, and let the segmentab be the horizontal diameter of
C2. Figure 4 (detail) shows the circleC2 and the segmentab. Let a′b′ be the reflection ofab through`. Our
obstacle set will be the segmentsab anda′b′ minus a number of narrow holes (through which a path can
pass). The segmentab has an evenly spaced seth1, . . . ,hn of narrow holes. The segmenta′b′ also has an
evenly spaced seth′1, . . . ,h

′
n of narrow holes; the only difference is that these holes are slightly shifted to

the left.
We specified all the points and obstacles. Now, we will argue that the line` is intersected byk = m/2

edges of FVD(S), each of which crosses̀Ω(n) times. Let us focus on the portioǹi of the line`. Since
any point in`i is further away fromsi (resp. s′i) than from any other site inS1 (resp. S2), si ands′i are
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the only relevant sites for FVD(S) near`i. We will now argue thatβ(si ,s′i) crosses̀ Ω(n) times. For
1≤ j ≤ n, let pi, j (resp. p′i, j ) be the point of intersection of the line throughsi (resp.s′i) andhj (resp.h′j )

and the linè . Because of the horizontal shift of the holes ina′b′, the points occur interleaved on`i in the
sequencep′i,1, pi,1, p′i,2, pi,2, . . . , p′i,n, pi,n. This is illustrated in Figure 5 for̀2. For 1≤ j ≤ n, sincesi can
“see” pi, j whereass′i cannot, there is a neighborhood aroundpi, j that is closer tosi than tos′i . By symmetric
reasoning, there is a neighborhood aroundp′i, j that is closer tos′i than tosi . It follows that the bisector
β(si ,s′i) must cross̀ i betweenp′i, j andpi, j , and also betweenpi, j andp′i, j+1. Thus,β(si ,s′i) crosses̀ i Ω(n)
times, as illustrated in Figure 5.

p2,2p2,1 p2,3 p2,4 p2,5

p′2,2p′2,1 p′2,3 p′2,4 p′2,5
`2

β(s2,s′2)

Figure 5: Detail ofβ(s2,s′2).

One getsΩ(kn) = Ω(mn) crossings for linè , Ω(n) per `i . The pattern can be repeated onn lines
parallel to` and sufficiently close tò. This givesΩ(mn) crossings for each of then lines. The sites and the
obstacles can be perturbed to a general position without affecting the lower bound complexity. By treating
the lines as edges on a polyhedron, and raising vertical cylinders with the obstacles as bases, we obtain the
claimedΩ(mn2) bound for the total complexity of FVD(S) on a polyhedron.

The facility center ofS can be found by traversing the edges of FVD(S), and determining for each
elementary arc or line segment of each edge the point that maximizes the distance to the two sites of the
regions on both sides of the edge. These distances can be computed inO(1) time, if FVD(S) is appropri-
ately labeled, and the maximum of all these distances determines the location of the facility center. Since
FVD(S) has maximum total complexityO(mn2), we obtain the following.

Corollary 1 GivenFVD(S), the facility center of S can be computed in O(mn2) time.

4 Computing the furthest-site Voronoi diagram

In this section, we describe our algorithm for computing the furthest-site Voronoi diagram of the given set
S of m sites on the surface of polyhedronP, consisting ofn triangles. Our algorithm uses ideas from the
algorithm of Ramos [11] for computing the intersection of unit spheres in three dimensions. We first give
an outline of the algorithm, and get into the details in the subsequent subsections.

The algorithm for computing FVD(S) works as follows:

• If |S| = 1, then FVD(S) has no vertices and edges, and only a single cell that is the whole surface
of the polyhedron. If|S| = 2, compute the closest-site Voronoi diagram (which is equivalent to the
furthest-site Voronoi diagram) with the algorithm of Mount [9] inO(n2 logn) time. The diagram
has no vertices, one edge (the bisector of the two sites, which is a closed curve, homeomorphic to a
circle), and two regions. The bisector of the two sites consists ofO(n2) line segments and hyperbolic
arcs. For each of these segments and arcs we maintain the two pseudoroots that are closest to the
two sites inS respectively, and the distances of these pseudoroots to the two sites. We need this
information to determine the facility center after FVD(S) has been computed.

• Otherwise, if|S| ≥ 3, subdivideS into two subsetsR (the red sites) andB (thebluesites) of about
equal size, i.e.,|R|= b|S|/2c, and|B|= d|S|/2e.

• Recursively compute FVD(R) and FVD(B).

• Merge FVD(R) and FVD(B) into FVD(R∪B) = FVD(S) as follows:
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– Determine the set of sitesR0 ⊆ R that have a non-empty region in FVD(R), i.e., such that
FVD(R) = FVD(R0). Observe that the remaining sites inR\R0 do not influence the final
diagram and can be discarded. Similarly, computeB0⊆ B.

– Determine alow-degree independent set R′0 ⊂ R0, which is a subset with the property that the
region of a sites∈ R′0 has at most 9 neighbors in FVD(R0), and no two sitess,s′ ∈ R′0 are
neighbors in FVD(R0). (Two sites are said to beneighborsif their regions share an edge of
the diagram.) ComputeR1 = R0 \R′0 and FVD(R1), and repeat this step to generate a Dobkin-
Kirkpatrick hierarchy [5]R0 ⊃ R1 ⊃ . . . ⊃ Rk and their furthest-site Voronoi diagrams, such
thatRk has only a constant number of sites. Do the same for the blue sites to obtainB0⊃ B1⊃
. . .⊃ Bl and their furthest-site Voronoi diagrams. See Section 4.2 for details.

– Compute FVD(Ri ∪Bl ) for 0≤ i ≤ k, exploiting the fact thatBl has only a constant number
of sites. Similarly, compute FVD(Rk∪Bj) for 0≤ j ≤ l . This is thebasic merge step. See
Section 4.3 for details.

– Compute FVD(Ri ∪Bj) from FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj). This is thegeneric merge
step, which when repeated gives FVD(R0∪B0) = FVD(S). See Section 4.4 for details.

During the construction of FVD(S), we create closest- and furthest-site Voronoi diagrams of subsets of
Sas intermediate structures. We maintain FVD(S) and these intermediate structures as doubly connected
edge lists [3, 10], to be able to efficiently determine and preserve topological relations between Voronoi
regions, edges, and vertices.

4.1 Edge tracing

Several stages of the algorithm for constructing FVD(S) involve the computation of new Voronoi cells
of FVD(S′) for S′ ⊆ S, or the modification of existing Voronoi cells. A basic step is the generation of
Voronoi edges or parts of Voronoi edges. Recall that the edges of FVD(S′) lie on the bisectors of sites in
S′, and consist ofO(n2) hyperbolic arcs and/or straight line segments each. To generate an edgee that is
incident to the regions ofsi ,sj ∈ S′, we need to know a starting point of the edge (i.e., the location of one
of the vertices of FVD(S′) incident toe), and an endpoint (i.e., the location of the other vertex incident
to e). We calculate the bisectorβ(si ,sj) in O(n2 logn) time using the algorithm of Mitchell et al. [8]. We
store it as a doubly linked list of hyperbolic arcs and straight line segments. Next, we traverseβ(si ,sj),
until we reach the starting point ofe. From that point on, we output the hyperbolic arcs and straight line
segments of whiche consists, until we reach the endpoint ofe. Traversingβ(si ,sj ) takesO(n2) time, and
testing whether we have reached the starting point or the endpoint ofe can be done inO(1) time for each
elementary hyperbolic arc or straight line segment. Hence, the total time needed to generate an edge of
FVD(S′) is O(n2 logn). The amount of memory needed is bounded by the size of the shortest path maps of
si andsj , and ofβ(si ,sj), which isO(n2). These results are summarized in the following lemma:

Lemma 8 Given a set of sites S on a polyhedron P with n triangles and the two vertices incident to an
edge e ofFVD(S′) for S′ ⊆ S, e itself can be computed in O(n2 logn) time using O(n2) memory.

Suppose that we have generated all the edges of the region ofsi ∈ S′, includinge, the common edge of
the regions ofsi andsj . Later on in the algorithm, we may have to generate the edges of the region ofsj ,
includinge. Rather than computing the bisector ofsi andsj again, bisector computations are cached, so
any bisector is computed no more than once, and no edge is generated more than once.

In some cases we need a variation on the edge tracing procedure. As before, we compute a bisector of
two sites (or retrieve it from the cache, if it has been computed before), traverse it until we find the starting
point of the edge that is to be generated, and output hyperbolic arcs and straight line segments from that
moment on. The difference is that we don’t have a single endpoint at which we stop the tracing, but a
constant number of candidate endpoints, and we stop when we have reached the first of these. Testing
whether we have reached any of the candidate endpoints takesO(1) time per hyperbolic arc or straight
line segment, and this edge tracing variation also requiresO(n2 logn) time andO(n2) memory per Voronoi
edge.
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4.2 Constructing the hierarchy for R0 and B0.

We describe how to compute the hierarchyR0 ⊃ R1 ⊃ . . . ⊃ Rk and their furthest-site Voronoi diagrams;
for B0, this is done analogously. The computation is similar to the Dobkin-Kirkpatrick hierarchy construc-
tion [5].

Let G0 be the dual graph of FVD(R0), i.e.,G0 = (R0,E0), with (si ,sj) ∈ E0 for si ,sj ∈R0 if the regions
of si andsj share an edge in FVD(R0). Note that FVD(R0) andG0 are planar graphs. Anindependent set
of vertices in a graphG = (V,E) is a setV ′ ⊂V such that there is no edge(vi ,vj) in E for anyvi ,vj ∈V ′.
Snoeyink and van Kreveld [13] showed that for any planar graphG= (V,E) with n vertices, an independent
setV ′ of vertices of degree at most 9 with|V ′| ≥ |V|/6 can be found inO(n) time. We apply this toG0 to
find an independent setR′0⊂R0 in O(|R0|) time. A sites∈R′0 has at most 9 neighbors in FVD(R0), no two
sitess,s′ ∈R′0 are neighbors in FVD(R0), and|R′0| ≥ |R0|/6.

To compute FVD(R1) = FVD(R0 \R′0), we remove the sites inR′0 one at a time fromR0 and update
the diagram after the removal of each site. Lets0 be such a site inR′0, and letp be a point that lies in the
region in FVD(R0) of s0. After updating the diagram,p must lie in the region of a sites′ that is a neighbor
of s0 in FVD(R0), since furthest-site Voronoi regions are connected. So the region ofs0 is divided among
its neighbors, of which there are only a constant number, and all diagram edges in that region lie on the
bisectors of those neighbors (see Figure 6).

(1) (2) (3)

Figure 6: Removing a sites0, and dividing its region among its neighbors.

Let v1, . . . ,vk be the at most 9 vertices of the region ofs0 in clockwise order. Lete1, . . . ,ek be the edges
of R (s0), with ei incident tovi andvi+1 for 1≤ i < k, and withek incident tovk andv1. Finally, letsi be
the neighbor ofs0 whose region is incident toei for 1≤ i ≤ k. See Figure 7.

We will describe how to reconstructR (s1) after the removal ofs0; for R (s2), . . . ,R (sk) this is similar.
Edgee1 is no longer an edge ofR (s1), and it is removed. Verticesv1 andv2 are also removed; the edges
of R (s1) incident to these vertices (e′1 ande′2) have to be extended into the region ofs0. Recall thate′1 lies
on the bisectorβ(s1,sk) of s1 andsk, ande′2 lies onβ(s1,s2). We extende′1 by tracingβ(s1,sk) as described
in Section 4.1, starting at the location ofv1. At some pointp on the bisector, the distance betweenp ands1

and the distance betweenp andsk equals the distance betweenp and some other neighborsi of s0. At this
point p we reach a new vertex ofR (s1). Note that this vertex is also a vertex of the closest-site Voronoi
diagram ofs1, sk andsi . We have finished the reconstruction ofe′1 at this point, record the new vertex of
R (s1), and proceed with the next edge ofR (s1) by tracingβ(s1,si). This is repeated until we finally trace
β(s1,s2) and end up at the location ofv2, which concludes the reconstruction ofR (s1).

To determine whether we have reached a vertex during the edge tracing, we precompute all the pointsp
that are equidistant to three neighbors ofs0. For a fixed triple of neighbors ofs0, these pointsp are theO(1)
vertices of the closest-site Voronoi diagram of the triple, which can be computed inO(n2 logn) time again
with the techniques from Mitchell et al. [8] and Mount [9]. Computing the Voronoi diagrams for all triples
of the at most 9 neighbors ofs0 takes asymptotically the same amount of time. We trace a constant number
of edges, and for each hyperbolic arc or straight-line segment on these edges we determine in constant time
(by testing theO(1) precomputed vertices of the Voronoi diagrams of triples of neighbors ofs0) whether
we have reached the endpoint of the edge that we are generating. It follows that the removal of a single site
and the reconstruction involved takesO(n2 logn) time.
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Figure 7: The reconstruction ofR (s1) after the removal ofs0.

After all the sites inR′0 have been removed fromR0 and FVD(R1) has been constructed, we recursively
repeat the procedure of removing an independent set of sites to create FVD(R2), . . . ,FVD(Rk). The total
number of diagrams we construct this way isO(logm).

Since∑k
i=0 |Ri | is a geometric series, the total time for computing all independent sets isO(m). The the

reconstruction of the diagram after the removal of a single site takesO(n2 logn) time, and the total number
of sites removed is less thanm. It follows that the construction of the hierarchyR0 ⊃ R1 ⊃ . . . ⊃ Rk and
their furthest-site Voronoi diagrams takesO(mn2 logn) time in total. By Lemma 7, the size of FVD(Ri) =
O(|Ri |n2). Therefore, the total size of all bisectors and diagrams constructed isO(mn2).

4.3 The basic merge step

In the basic merge step, we compute FVD(Ri ∪Bl ) for 0≤ i ≤ k, and FVD(Rk∪Bj) for 0≤ j ≤ l . We
will exploit the fact thatBl andRk contain only a constant number of sites. We will only describe the
computation of FVD(Ri ∪Bl) for a fixedi; all other diagrams are computed similarly.

• For each siter ∈Ri andb∈Bl , we compute the region ofr in FVD({r,b}). To do this, we compute the
closest-siteVoronoi diagram for sitesr andb using theO(n2 logn) algorithm of Mitchell et al. [8, 9].
The region ofr in FVD({r,b}) is clearly the region ofb in the closest-site diagram. The total time
for all pairsr andb is O(|Ri |n2 logn), since there are onlyO(|Ri |) pairs.

• Next, we compute the region of each siter ∈ Ri in FVD({r}∪Bl ) by successively intersecting the
regions ofr in FVD({r,b}) over allb∈ Bl with a line-sweep. We do this separately for each triangle
of P met by an edge of either of the two regions to be intersected. The total number of intersection
computations for a single siter ∈Ri is |Bl |−1, which is bounded by a constant. SinceBl has only a
constant number of sites,r has a constant number of neighbors in FVD({r}∪B′) for anyB′ ⊆Bl , and
the complexity of the region ofr in any of these diagrams isO(n2). This means that the intersections
can be computed inO(n2 logn) time for a single red siter ∈ Ri . The time taken for all the sites inRi

is O(|Ri |n2 logn).
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• Next, we compute the region of each siter ∈ Ri in FVD(Ri ∪ Bl ) by intersecting its regions in
FVD({r}∪Bl ) and FVD(Ri) with a line-sweep as above. Since the complexity of the region of
r in FVD(Ri ∪Bl ) is O(n2) and the complexity of the region ofr in FVD(Ri) is O(Nr ·n2), whereNr

is the number of neighbors ofr in FVD(Ri), the time needed to compute the region of a single siter
in FVD(Ri ∪Bl ) is O(n2 logn ·Nr logNr). Summing this over allr ∈Ri gives

O(n2 logn ∑
r∈Ri

Nr logNr) .

We have thatNr ≤m for all r ∈ Ri , and∑r∈Ri
Nr = |Ri |. The time needed to compute the region of

each siter ∈ Ri in FVD(Ri ∪Bl ) is therefore bounded byO(|Ri |n2 logmlogn).

• To complete the computation of FVD(Ri ∪Bl ), it remains to compute the regions of the blue sites.
We have computed the regions of all red sites, and carefully maintained topological relations between
each region of a red site and its neighbors. Using the topological information, we do a depth-first
traversal of the regions in FVD(Ri ∪Bl ) (that is partially constructed), starting in the region of a red
site. When a region of a blue site is visited for the first time, it has to be constructed. At least one of its
edges has already been computed, namely, the edge incident to its predecessor in the traversal. Zero
or more of the other edges of the region are incident to red regions; these have also been computed
already. We still have to trace these edges, namely to find the starting points for the edges that have
not been computed yet. These areblue edges, the edges between two blue regions. All blue edges
are sub-edges of the edges of FVD(Bl ), of which there are only a constant number. The endpoints
of these edges are either vertices of FVD(Bl ), or they are vertices of a red region. The latter vertices
can be determined inO(|Ri |n2) time by traversing the edges of all regions of red sites, and reporting
the vertices that are incident to blue edges. The total number of endpoints of blue edges is bounded
by O(|Bj |), which is a constant, so we can exploit the techniques described in Section 4.1 to trace the
blue edges inO(n2 logn) time per edge. The total time for computing the regions of the blue sites is
O(|Ri |n2 logn).

Putting everything together, computing FVD(Ri ∪Bl ) takesO(|Ri |n2 logmlogn) time, and computing
FVD(Rk∪Bj) takesO(|Bj |n2 logmlogn) time. Since both∑k

i=0 |Ri | and∑l
i=0 |Bj | are bounded byO(m),

the time needed for computing all the diagrams in the basic merge step isO(mn2 logmlogn). The amount
of memory needed in the basic merge step is linear in the complexity of all bisectors and diagrams that we
computed, which isO(mn2).

4.4 The generic merge step

The generic merge step is the computation of FVD(Ri ∪Bj) from FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj),
which eventually gives the required FVD(R0∪B0) = FVD(S). First some terminology: we call the sites
in Ri+1 theold red sites, and the sites inRi \Ri+1 thenewred sites. Similarly, the sites inBj+1 are theold
blue sites, and the sites inBj \Bj+1 are thenewblue sites. Now consider any vertexv of FVD(Ri ∪Bj).
The important fact is that not all three Voronoi regions incident to that vertex correspond to new sites; there
must be at least one old red or blue site whose face is incident tov, because new red (blue) regions form an
independent set in FVD(Ri) (resp. FVD(Bj)). So to determine all the vertices of FVD(Ri ∪Bj), it suffices
to compute the regions in FVD(Ri ∪Bj) of all old red and blue sites.

Consider an old red siter. The region ofr in FVD(Ri ∪Bj+1) contains all points that are further from
r than from any other site inRi ∪Bj+1, and the region ofr in FVD(Ri+1∪Bj) contains all points that
are further fromr than from any other site inRi+1∪Bj . The region ofr in FVD(Ri ∪Bj) is therefore
the intersection of its regions in FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj). We can compute this intersection
for each face of the polyhedron separately by a line-sweep of the regions ofr in FVD(Ri ∪Bj+1) and
FVD(Ri+1∪Bj). The time needed for computing the vertices of FVD(Ri ∪Bj) is therefore bounded by
O(C logC), whereC= max(n2|Ri∪Bj+1|,n2|Ri+1∪Bj |,n2|Ri∪Bj |), which in turn is at mostn2(|Ri |+ |Bj |).
Hence, computing the vertices of FVD(Ri ∪Bj) takesO(n2(|Ri |+ |Bj |) log(n2(|Ri |+ |Bj |))) = O(n2(|Ri |+
|Bj |) logn) (recall thatm< n).
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The edges of FVD(Ri ∪Bj) are either edges incident to the faces of old red or blue sites (which we
already computed), or edges between the faces of two new sites of the same color (these edges are sub-edges
of edges in FVD(Ri) or FVD(Bj), and can easily be traced), or they are edges between the faces of a new
red and a new blue site. For the latter category of edges we already have the incident vertices computed,
and we can trace the edges after computing the bisector of the new red and new blue site. The total
number of bisectors we have to compute and trace is bounded by|Ri ∪Bj |, so this takesO(n2 logn(|Ri |+
|Bj |)) time. We conclude that computing FVD(Ri ∪Bj) from FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj) takes
O(n2 logn(|Ri |+ |Bj |)) time.

Summing this over all 0≤ i ≤ k, 0≤ j ≤ l gives time

O(n2 logn
k

∑
i=0

l

∑
j=0

(|Ri |+ |Bj |))

We have
k

∑
i=0

l

∑
j=0

|Bj |= O(
k

∑
i=0

|B0|) = O(k|B0|) = O(mlogm),

and similarly∑k
i=0 ∑l

j=0 |Ri | = O(mlogm). It follows that the total time spent in all the iterations of the
generic merge step isO(mn2 logmlogn).

4.5 Total running time and memory requirements

The time for merging FVD(R) and FVD(B) into FVD(R∪B) is dominated by the generic merge step,
which requiresO(mn2 logmlogn) time; the total running time satisfies the recurrence

T(1) = O(1)
T(2) = O(n2 logn)
T(m) = T(bm/2c) + T(dm/2e) + O(mn2logmlogn)

which solves toT(m) = O(mn2 log2mlogn).
The memory requirements of the algorithm are linear in the size of all diagrams that are constructed in

the process, which isO(mn2 logm).

Theorem 1 The complexity of the furthest-site Voronoi diagram of m sites on the surface of a polyhedron
with n triangles has complexityΘ(mn2). The diagram can be computed in O(mn2 log2mlogn) time, using
O(mn2 logm) memory.

5 Conclusions and further research

We have shown that the furthest-site Voronoi diagram of a setSof m sites on the surface of a polyhedron
P with n triangles has maximum complexityΘ(mn2), and we have given an algorithm for computing the
diagram inO(mn2 log2mlogn) time. Once the diagram has been computed, the facility center, which is the
point onP that minimizes the maximum distance to a site inS, can be found inO(mn2) time by traversing
the edges of the diagram.

The merge step in our divide-and-conquer approach for the computation of FVD(S) is quite compli-
cated, and it would be pleasant to find a simpler method. Merging the recursively computed diagrams by
sweeping seems natural, but the number of intersections of edges of both diagrams can be superlinear in
m, while only a linear number of them can end up as a vertex of the resulting diagram.

It would be a challenge to find an output-sensitive algorithm, i.e., an algorithm that takes time propor-
tional to the number edges/vertices in the diagram plus the number of their intersections with the edges
of P. Even more ambitious would be the computation of the diagram without explicitly representing all
intersections of furthest-site Voronoi edges and edges of the polyhedron.

Another interesting issue is approximation: find (ino(mn2) time) a point with the property that the
distance to the furthest site is at most(1+ ε) times the radius of the smallest enclosing circle.
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Finally, it is worth investigating whether the facility location problem can be solved without construct-
ing the furthest-site Voronoi diagram. Recall that the facility location problem in the plane can be solved
using techniques related to fixed-dimensional linear programming [7, 15].
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