
Computing the treewidth
and the minimum fill-in
with the modular
decomposition

Hans L. Bodlaender
Udi Rotics

UU-CS-2001-22
July, 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computing the treewidth and the minimum

�ll-in with the modular decomposition

Hans L. Bodlaender
�

Udi Rotics
y

Abstract

Using the notion of modular decomposition we extend the class of
graphs on which both the TREEWIDTH and the MINIMUM-FILL-

IN problems can be solved in polynomial time. We show that if C is

a class of graphs which is modularly decomposable into graphs that

have a polynomial number of minimal separators, or graphs formed by

adding a matching between two cliques, then both the TREEWIDTH

and the MINIMUM-FILL-IN problems on C can be solved in polyno-

mial time. For the graphs that are modular decomposable into cycles

we give algorithms, that use respectively O(n) and O(n3) time for

TREEWIDTH and MINIMUM FILL-IN.

Keywords : treewidth, minimum �ll-in, modular decomposition,

minimal separators, polynomial algorithms, graph algorithms.

1 Introduction

A graph is chordal if it does not contains a chordless cycle of length at
least four as an induced subgraph. A triangulation of a graph is a chordal
supergraph with the same vertex set. The treewidth of a graph G, denoted
as treewidth(G) is the smallest clique number of all possible triangulations
of G minus 1. The minimum �ll-in of a graph G, denoted as min-�ll-in(G),
is the minimum of jE(H) � E(G)j taken over all triangulations H of G.

�Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,

3508 TB Utrecht, the Netherlands, hansb@cs.uu.nl.
ySchool of Mathematics and Computer Science, Netanya Academic College, P.O. Box

120, 42100 Netanya, Israel, rotics@mars.netanya.ac.il

1

The TREEWIDTH problem is to �nd treewidth(G) for a given graph G.
The MINIMUM-FILL-IN problem is to �nd min-�ll-in(G) for a given graph
G. These problems have drawn much attention due to applications in areas
such as Gaussian elimination of matrix, VLSI-layout, gate matrix layout and
algorithmic graph theory (see e.g. [1, 5, 24]). Both problems are NP-hard
in general [2, 27] but polynomial time algorithms exists for many special
graph classes such as: permutation graphs [6], circular arc graphs [26], circle
graphs [19], distance hereditary graphs [12], (q; q � 4)-graphs [3] and HHD-
free graphs [11]. Bouchitt�e and Todinca [8, 10] have shown that the treewidth
and minimum �ll-in of a graph can be computed in polynomial time if the
graph has a polynomial number of minimal separators. This result generalizes
several of the earlier results for special graph classes. In this paper we extend
the class of graphs on which these two problems can be solved in polynomial
time using the notion of modular decomposition as described below.

A set M of vertices of a graph G is called a module of G if every vertex
outside M is either adjacent to all vertices in M or to none of them. The
graph G and the singletons of G are called the trivial modules of G. A
graph G is called prime if all the modules in G are trivial. The modular
decomposition M(G) of G is a pair (T (G); �(G)), where T (G) is a labeled
tree and �(G) is a set of prime graphs associated with some of the internal
nodes of T (G). We say also that G is modularly decomposable into �(G).
For more details, see Section 2. The modular decomposition of a graph is
unique and can be found in linear time [14, 23]. We say that a class of graphs
C is modularly decomposable into a class of graphs D if every graph G 2 C
is modularly decomposable into graphs in D. We denote by n and m the
number of vertices and edges of a graph, respectively. We call a graph a
clique-matching graph if it can be obtained by taking two cliques with the
same number r of vertices and then adding a matching with r edges between
the cliques.

Dahlhaus [15] has shown that the TREEWIDTH and the MINIMUM-
FILL-IN problems can be solved in polynomial time on the class of graphs
which is modularly decomposable into chordal graphs. A result of a similar
type is that TREEWIDTH [7] can be solved in linear time on cographs,
i.e., on graphs modular decomposable into graphs with two vertices. In this
paper, we extend these result to a much larger class of graphs. In particular,
we show:

Theorem 1 Let Cc be a class of graphs for which there exists a constant

2

c such that for every graph G 2 C all the graphs in �(G) have at most nc

minimal separators (where n is the size of G) or are a clique-matching graph.
Then the TREEWIDTH and the MINIMUM-FILL-IN problems on C can be
solved in polynomial time.

We think the most interesting part of this theorem is where we deal
with graphs with a polynomial number of minimal separators; we added the
result on clique-matching graphs as these have exponentially many minimal
separators to show that computing TREEWIDTH and MINIMUM FILL-
IN with help of the modular decomposition is not restricted to graphs with
polynomially many separators. In fact, what we show is that we can compute
the treewidth (minimum �ll-in) in polynomial time given a prime graph which
either has polynomially many minimal separators or is a clique-matching
graph and for each module the treewidth (minimum �ll-in) of the subgraph
induced by the module and the number of vertices of the module. We expect
that there are more types of graphs that have this property; if this property
is established for a set of graphs D, then Theorem 1 can be extended in the
sense that we allow the graphs in �(G) also belong to D. In addition, we can
allow a prime graph H in our modular decomposition with only singleton
vertices below it, such that we can compute the treewidth (minimum �ll-
in) of H in any way (e.g., it is a regular grid, or it is a graph of treewidth
bounded by some constant).

We de�ne two new problems called the WI-TREEWIDTH and the WI-
FILL-IN problems. We show (see Theorems 9 and 45) that an algorithm for
solving the WI-TREEWIDTH (resp. the WI-FILL-IN) problem on a class
of graphs D can be used to solve the TREEWIDTH (resp. the MINIMUM-
FILL-IN) problem on a class of graphs which is modularly decomposable
into D with the same time complexity. We then present polynomial time al-
gorithms for the WI-TREEWIDTH and the WI-FILL-IN problems on the
classes of graphs with polynomially many separators, cycles, and clique-
matching graphs. Theorem 1 now follows by joining all these cases together.
The result for cycles is not needed for Theorem 1, but this algorithm is faster
than that obtained by applying the general result. (Cycles have a quadratic
number of minimal separators.)

The paper is organized as follows. In Section 2 we de�ne the
WI-TREEWIDTH problem and indicate the relation between this problem
and the TREEWIDTH problem. In Section 3 (resp. 4,5) we present a poly-
nomial time algorithm for the TREEWIDTH problem on the class of graphs

3

which is modularly decomposable into graphs with polynomially many mini-
mal separators (resp. cycles, clique-matching graphs). In Section 6 we obtain
these results also for the MINIMUM FILL-IN problem. Some �nal remarks
are made in Section 7.

2 De�nitions and preliminary results

The graphs we consider in this paper are undirected and loop-free. For a
graph G we denote by V (G) (resp. E(G)) the set of vertices (resp. edges)
of G. For X � V (G), we de�ne by G[X] the subgraph of G induced by X.
The subgraph of G induced by V (G) � X is denoted by G � X. N(v)
denotes the neighborhood of v in G, i.e., the set of vertices in G adjacent
to v. For W1; : : : ;Wr � V (G), G + clique(W1; : : : ;Wr) denotes the graph
G0, obtained from G by making Wi a clique, for 1 � i � r: V (G0) = V (G),
E(G0) = E(G)[ffv; wg j 9i(v; w 2 Wi and v 6= w)g. A vertex v is simplicial
in a graph G, if the neighbors of v form a clique.

De�nition Let a and b be distinct nonadjacent vertices. A set S � V is
a minimal a; b-separator if a and b are in di�erent connected components
of G � S and there is no subset of S with the same property. A minimal
separator is a set S of vertices for which there exists vertices a and b such
that S is a minimal a; b-separator.

For X � V we say that X is a potential maximal clique in G if X is
a maximal clique in some minimal triangulation H of G. We denote by
indp(G) the set of all independent sets in G, by cc(G) the set of all connected
components in G, by msep(G) the set of all minimal separators of G and by
potm(G) the set of all potential maximal cliques in G.

The following is an equivalent de�nition of treewidth which was intro-
duced by Robertson and Seymour in their work on graph minors [25].

De�nition A tree decomposition of G = (V;E) is a pair (fXi : i 2 Ig; T);
where fXi : i 2 Ig is a collection of subsets of V and T = (I; F) is a tree
such that:

1.
S

i2I Xi = V .

2. 8fu; wg 2 E; 9i 2 I : u; w 2 Xi.

4

3. 8i; j; k 2 I : if j is on a path in T from i to k then Xi \Xk � Xj.

The width of a tree decomposition (fXi : i 2 Ig; T) is maxi2I jXij � 1.
The treewidth of G (denoted as treewidth(G)) is the minimum width over
all tree decompositions of G.

A tree decomposition (fXi : i 2 Ig; T) with T a path (i.e., every node in T
has degree at most two) is called a path decomposition. A path decomposition
is often denoted by listing the successive sets Xi: (X1; X2; : : : ; Xr).

We say that a tree decomposition (fXi j i 2 Ig; T = (I; F)) is nice if
for every edge fi; jg 2 F , Xi 6� Xj and Xj 6� Xi. By contracting every
edge fi; jg 2 F for which Xi � Xj, we can make a tree decomposition nice
without increasing the treewidth. For a proof of Lemmas 2-5 see [7].

Lemma 2 Let (fXi j i 2 Ig; T = (I; F)) be a tree decomposition of G, and
suppose W � V (G) forms a clique in G. Then there exists an i 2 I with
W � Xi.

Lemma 3 Let (fXi j i 2 Ig; T = (I; F)) be a tree decomposition of G. Let
W1;W2 � V (G) and suppose for all v 2 W1, w 2 W2, fv; wg 2 E(G). Then
there exists an i 2 I with W1 � Xi or W2 � Xi.

Lemma 4 Let (fXi j i 2 Ig; T = (I; F)) be a tree decomposition of G and
let j 2 I. Then (fXi j i 2 Ig; T = (I; F)) is also a tree decomposition of
G + clique(Xj).

For disjoint graphs H and F we denote by H�F the graph G obtained by
taking the union of H and F and connecting all vertices of H to all vertices
of F : V (G) = V (H) [V (F) and E(G) = E(H) [E(F) [ffv; wg j v 2
V (H) and w 2 V (F)g.

Lemma 5

treewidth(H � F) = minftreewidth(H) + jV (F)j; treewidth(F) + jV (H)jg:

For an independent set X 2 indp(G), we de�ne G : X to be the graph ob-
tained from G by making each pair of neighbors of a vertex in X adjacent,
and then removing all vertices in X. We assume that there are two weight
functions w and t associating positive integer weights w(v) and t(v) for every

5

vertex v of G. The motivation for these weights is that when G is consid-
ered as a prime graph in a modular decomposition then each vertex v of G
corresponds to a module M(v) and w(v) and t(v) will be the size and the
treewidth of the module M(v), respectively.

For a set of vertices S we de�ne w(S) =
P

v2S w(v).
The weighted width of a tree decomposition (fXi j i 2 Ig; T = (I; F))

of G is (maxi2I w(Xi)) � 1. The weighted treewidth wtw(G) of G is the
minimum weighted width over all possible tree decompositions of G. Notice
that wtw(G) depends just on w and not on t.

For a set X 2 indp(G), the weighted treewidth of G with independent set
X denoted as wi(G;X) is de�ned by:

wi(G;X) = maxfwtw(G : X);max
v2X

ft(v) + w(N(v))gg:

The weighted independent treewidth of G (shortly the wi-treewidth of G) de-
noted as wi(G) is de�ned by:

wi(G) = min
X2indp(G)

wi(G;X)

For a set X 2 indp(G) such that wi(G) = wi(G;X) we say that X establishes
the wi-treewidth of G. The WI-TREEWIDTH problem is to �nd wi(G) for
a given graph G with weight functions w and t.

In the following text whenever we refer to wtw(G) we assume that the
weights of the vertices of G are de�ned by a weight function w. Similarly
whenever we refer to wi(G) we assume that the w-weights and the t-weights
of the vertices of G are de�ned by weight functions w and t, respectively.

Let V (G) = fv1; : : : ; vrg and let H1; : : : ; Hr be disjoint graphs. We denote
by G(H1; : : : ; Hr) the graph G0 obtained from G by substituting the graph
Hi for the vertex vi, for 1 � i � r: V (G0) = V (H1) [: : : V (Hr), E(G0) =
E(H1)[: : : E(Hr)[ffu; vgju 2 V (Hi) and v 2 V (Hj) and fvi; vjg 2 E(G)g.

The following lemma follows from the above de�nitions:

Lemma 6 Let G be a graph, where V (G) = fv1; : : : ; vrg. Let H1; : : : ; Hr

be disjoint cliques and let G0 = G(H1; : : :Hr). Let w be the weight function
on the vertices of G de�ned by: w(vi) = jV (Hi)j, for 1 � i � r. Then
treewidth(G0) = wtw(G).

Lemma 7 Let G be a graph, where V (G) = fv1; : : : ; vrg. Let H1; : : : ; Hr

be disjoint graphs and let G0 = G(H1; : : :Hr). Let w and t be the weight

6

functions on the vertices of G de�ned by: w(vi) = jV (Hi)j and t(vi) =
treewidth(Hi), for 1 � i � r. Then treewidth(G0) = wi(G).

Proof. We �rst show that wi(G) � treewidth(G0). Let k = treewidth(G0)
and let T = (fXi j i 2 Ig; T = (I; F)) be a tree decomposition of G0 of
width k. Let S = fvj j :9i(i 2 I and V (Hj) � Xi)g. In other words S
consists of all vertices vj such that the set of vertices of the corresponding
graph Hj is not included in any of the sets Xi of the tree decomposition T .
Let P = V (G) � S. For convenience we reorder the vertices of G such that
S = fv1; : : : ; vlg and P = fvl+1; : : : ; vrg. We also apply the same reordering
to the sets H1; : : : ; Hr to keep the convention that the graph Hi corresponds
to the vertex vi, for 1 � i � r. By Lemma 4 T is also a tree decomposition
of G1 = G0 + clique(V (Hl+1); : : : ; V (Hr)).

For vj 2 S let Yj =
S
fV (Hi) j fvi; vjg 2 E(G)g. Since V (Hj) is not

contained in any of the sets Xi of the tree decomposition T and for every
pair of vertices u 2 V (Hj) and v 2 Yj the edge fu; vg 2 E(G0), we get
from Lemma 3 that there exists i 2 I such that Yj � Xi. Hence by Lemma
4 T is also a tree decomposition of G1 + clique(Yj). Repeating the above
argument for each vertex in S we obtain that T is also a tree decomposition
of G2 = G1 + clique(Y1; : : : ; Yl). Let G3 = G2 � (V (H1) [: : : [V (Hl)).
Since G3 is a subgraph of G2 we have that treewidth(G3) � k. We now
observe that G3 = G : S(Hl+1; : : : ; Hr) + clique(V (Hl+1); : : : ; V (Hr)). By
Lemma 6 treewidth(G3) = wtw(G : S) and therefore we have shown that
wtw(G : S) � k.

Let Qi = G2[V (Hi) [Yi], for 1 � i � l. Clearly G2[Yi] is a clique and
Qi = Hi�G2[Yi]. By Lemma 5 treewidth(Qi) = treewidth(Hi) + jYij. Since
jYij = w(N(vi)) and treewidth(Hi) = t(vi) we get that treewidth(Qi) =
t(vi)+w(N(vi)). Since Qi is a subgraph of G2 we obtain that treewidth(Qi) �
k. Hence we have shown that t(vi) + w(N(vi)) � k, for 1 � i � l. Thus
wi(G) � wi(G; S) = maxfwtw(G : S);maxv2Sft(v) + w(N(v))gg � k.

Conversely, we show that treewidth(G0) � wi(G). Suppose wi(G) = k
and let S 2 indp(G) be a set of vertices establishing wi(G), i.e., wi(G) =
wi(G; S). Let P = V (G) � S. Again we reorder the vertices of G such that
S = fv1; : : : ; vlg and P = fvl+1; : : : ; vrg. We also apply the same reordering
to the sets H1; : : : ; Hr to keep the convention that the graph Hi corresponds
to the vertex vi, for 1 � i � r. Since wtw(G : S) � k there exists a tree
decomposition T = (fXi j i 2 Ig; T = (I; F)) of G : S of weighted treewidth
at most k. Let G1 = G : S(Hl+1; : : : ; Hr). Let T 0 = (fX 0

i j i 2 I 0g; T 0 =

7

(I 0; F 0)), where X 0
i =
S
fV (Hj) j vj 2 Xig, I 0 = I and F 0 = F be the tree

decomposition obtained from T by replacing each vertex vj occurring in Xi

by the set of vertices V (Hj). Since w(vj) = jV (Hj)j for 1 � j � r we get
that T 0 is a tree decomposition of G1 of width � k. Notice that G1 is equal
to G0[V (Hl+1) [: : : [V (Hr)] + clique(Y1; : : : ; Yl).

For 1 � j � l let Yj =
S
fV (Hi) j fvi; vjg 2 E(G)g and let clique(Yj)

denote the complete graph with vertex set Yj. Since wi(G) = k we have
that t(v1) + w(N(v1)) � k which implies that treewidth(H1) + jY1j � k. By
Lemma 5 we obtain that treewidth(H1� clique(Y1)) � k. Hence there exists
a tree decomposition T 1 = (fX1

i j i 2 I1g; T 1 = (I1; F 1)) for H1�clique(Y1)
of width at most k. By Lemma 2 there exist two nodes i1 2 I1 and i0 2 I 0

such that Yj is included both in X1
i1

and in X 0
i0 . We de�ne now a new tree

decomposition T 00 which is obtained by hooking the two trees T 0 and T 1 to
a new node z which is connected to the nodes i1 and i0. In other words,
T 00 = (fX 00

i j i 2 I 00g, T 00 = (I 00; F 00)), where I 00 = I1 [I [fzg, X 00
i = X 0

i if
i 2 I 0 or X 00

i = X1
i if i 2 I1, X 00

z = Yj, and F 00 = F 0[F 1[ffz; i1g; fz; i0gg. It
is now easy to see that T 00 is a tree decomposition of G0[V (H1) [V (Hl+1) [
: : : [V (Hr)] + clique(Y1; : : : ; Yl) of width � k. Repeating this argument for
j = 2; : : : ; l we obtain a tree decomposition of G0+clique(Y1; : : : ; Yl) of width
� k. Hence, treewidth(G0) � k. ut

We now give more details on the de�nition of the modular decomposition
M(G) = (T (G); �(G)) of a graph G. T (G) is a labeled tree of which labels
are either S (for Series), P (for Parallel) or N (for Neighborhood), and has
the following properties:

� The leaves of T (G) are the vertices of G.

� For an internal node h of T (G), the set M(h) of vertices of G occurring
in the subtree of T (G) rooted at h forms a module in G.

� Let h be an internal node of T (G) and let fh1; : : : ; hrg be the the set
of sons of h in T (G). If h is labeled S then every vertex of M(hi) is
adjacent to every vertex of M(hj) for all 1 � i; j � r, i 6= j. If h is
labeled P then no vertex of M(hi) is adjacent to any vertex of M(hj)
for all 1 � i; j � r, i 6= j. If h is labeled N then h is associated with
a unique prime graph Gh in �(G) such that V (Gh) = fh1; : : : ; hrg and
two vertices u 2 M(hi) and v 2 M(hj), for 1 � i; j � r, i 6= j are
adjacent if and only if fhi; hjg 2 E(Gh).

8

For more details on the modular decomposition of graphs, see for example
[13, 14, 16, 23]. From the above properties it follows that:

Lemma 8 Let M(G) = (T (G); �(G)) be the modular decomposition of a
graph G. Let h be an internal node of T (G) and let h1; : : : ; hr be the sons of
h in T (G).

1. If h is labeled S then G[M(h)] = C(G[M(h1)]; : : : ; G[M(hr)]), where C
denote the complete graph with vertex set V (C) = fh1; : : : ; hrg.

2. If h is labeled P then G[M(h)] = I(G[M(h1)]; : : : ; G[M(hr)]), where I
denote the edgeless graph with vertex set V (I) = fh1; : : : ; hrg.

3. If h is labeled N then G[M(h)] = Gh(G[M(h1)]; : : : ; G[M(hr)]), where
Gh is the prime graph in �(G) associated with h.

Recall that we say that G is modularly decomposable into �(G), where
�(G) is the set of prime graphs associated with the modular decomposition of
G, i.e., M(G) = (T (G); �(G)). We say that a class of graphs C is modularly
decomposable into a class of graphs D if every graph G 2 C is modularly
decomposable into graphs in D.

Theorem 9 Let C and D be classes of graphs such that C is modularly decom-
posable into D. Suppose that the WI-TREEWIDTH problem can be solved
in O(f(n;m)) time on D, where f is some polynomial function in n and m.
Then the TREEWIDTH problem can be solved in O(f(n;m) + n + m) time
on C.

Proof. Given a graph G 2 C we can �nd treewidth(G) by the following
algorithm:

1. Construct the modular decomposition M(G) = (T (G); �(G)) of G us-
ing the algorithm of [14] or [23].

2. Scan T (G) from bottom to top calculating treewidth(G[M(h)]) for each
internal node h reached according to the following rules. Let h1; : : : ; hr
be the sons of h in T (G).

� If h is labeled with P then

treewidth(G[M(h)]) = max
1�i�r

ftreewidth(G[M(hi)])g:

9

� If h is labeled with S then

treewidth(G[M(h)]) =

min1�i�rftreewidth(G[M(hi)]) + jM(h) �M(hi)jg:

� If h is labeled with N then obtain treewidth(G[M(h)]) from the
wi-treewidth of the graph Gh 2 �(G) corresponding to h, where
the weights of the vertices of Gh are de�ned by w(hi) = jM(hi)j
and t(hi) = treewidth(G[M(hi)]). In other words:

treewidth(G[M(h)]) = wi(Gh):

Note that since Gh 2 D we assume that there is an
O(f(jV (Gh)j; jE(Gh)j)) time algorithm for constructing wi(Gh)
and we use this algorithm to get treewidth(G[M(h)]) in this case.

3. Let r be the root of T (G), then treewidth(G) = treewidth(G[M(r)]).

To prove the correctness of the above algorithm we claim that in step (2)
above treewidth(G[M(h)]) is correctly obtained for each internal node h
reached. If h is labeled with P or S the claim is trivial. If h is labeled N the
claim follows from Lemmas 7 and 8.

As for the complexity, calculating the modular decomposition of a graph
using [14] or [23] takes O(n + m) time, i.e., step (1) takes O(n + m) time.
Noting that the number of nodes in T (G) is O(V (G)) and thatX

fjV (Gh)j j h is an internal node of T (G)g = O(V (G)) = O(n) andX
fjE(Gh)j j h is an internal node of T (G)g = O(E(G)) = O(m)

we get that step (2) takes at most O(f(n;m)) time. ut

3 Classes with a polynomial number of sepa-

rators

In this section, we shall prove Theorem 10.

Theorem 10 Let C be a class of graphs such that there is a polynomial p(n),
such that every graph in C with n vertices has at most p(n) minimal separa-
tors. Then the WI-TREEWIDTH problem on C can be solved in polynomial
time.

10

In the remainder of this section, let C be a class with polynomially many
minimal separators, as in the theorem above. First, we note that there is a
polynomial time algorithm which given a graph G 2 C, lists all the minimal
separator of G [20], and there is a polynomial time algorithm which given a
graph G 2 C, lists all the potential maximal cliques of G [10].

We shall use the de�nition of treewidth given in the introduction, i.e.,
treewidth(G) is the smallest clique number of all possible triangulations of
G minus 1. Similarly, the weighted treewidth of G, wtw(G) is the minimum
weighted clique-number of a triangulation of G minus 1. We say that a
triangulation H of G establishes the weighted treewidth of G if the weighted
clique number of H minus 1 is equal to wtw(G).

Let S be a sets of vertices in G. We denote by wiS(G) the minimum
wi-treewidth of G assuming that all the vertices of S are not included in the
independent set. Formally,

wiS(G) = minfwi(G;X) j X 2 indp(G) and S \X = ;g:

For S, a set of vertices of a graph G, we denote by GS the graph G +
clique(S), i.e., GS is the graph obtained by adding edges to G such that all
the vertices of S form a clique. For C, a connected component of G� S, we
let GS(C) denote the subgraph of GS induced by S [C, i.e., GS(C) is equal
to GS[S [C].

We start with some lemmas which are true for any graph G.

Lemma 11 Let K be a clique in G and let C1; : : : ; Ct be the connected com-
ponents of G�K. Then

wiK(G) = max
1�i�t

fwiK(GK(Ci))g:

Proof. Clearly, wiK(G) � max1�i�tfwiK(GK(Ci))g. Let X 2 indp(G)
be a set of vertices establishing wiK(G) and let G0 = G : X. By de�nition:
wiK(G) = maxfwtw(G0); maxv2Xft(v) + w(N(v))gg. Let Xi be the set of
all vertices of X which are either in Ci or have a neighbor in Ci. For i 6= j,
Xi \Xj = ; or else there is a path from Ci to Cj in G�K, a contradiction.
Hence X1; : : : ; Xt form a partition of X. Since G0[Ci � X] is connected,
and for i 6= j no vertex of X has a neighbor in Ci and in Cj it follows
that C1 � X; : : : ; Ct � X are the connected components of G0 � K. Thus

11

wtw(G0) = maxfwtw(G0
K(Ci � X)) : 1 � i � tg. Thus selecting the set Xi

in the graph GK(Ci) we obtain:

wiK(GK(Ci)) � maxfwtw(G0
K(Ci �X));max

v2Xi

ft(v) + w(N(v))gg:

Hence,

max
1�i�t

fwiK(GK(Ci))g �

maxfmax
1�i�t

fwtw(G0
K(Ci �X))g;max

v2X
ft(v) + w(N(v))gg =

wiK(G):

ut

The proof of Lemma 12 is similar to the proof of Lemma 11.

Lemma 12 Let K be a clique in G, let C be a connected component of G�K
and let KC be the set of all vertices in K having a neighbor in C. Then

wiK(GK(C)) = maxfw(K)� 1; wiKC(GKC(C))g:

Lemma 13 Let K be a clique in G, and let C1; : : : ; Ct be the connected
components of G � K. For 1 � i � t let Ki be the set of all vertices in K
having a neighbor in Ci. Then

wiK(G) = maxfw(K)� 1; max
1�i�t

fwiKi
(GKi

(Ci))gg:

Proof. Immediate from Lemmas 11 and 12. ut

Lemma 14 Let X be an independent set in G establishing wi(G). Let S be
a clique in a minimal triangulation Q of G : X that establishes wtw(G:X).
Let C1; : : : ; Ct be the connected components of G� S. Then

wi(G) = max
1�i�t

fwiS(GS(Ci))g:

Proof. Since X establishes wi(G) we have:

wi(G) = maxfwtw(G : X);max
v2X

ft(v) + w(N(v))gg:

Since S is a clique in Q, wtw(G : X) = wtw((G : X)+clique(S)) = wtw((G :
X)S). Likewise, for every v 2 X, the neighborhood of v in G is the same as
the neighborhood of v in GS. Hence wi(G) = wiS(G) = wiS(GS). Now the
formula follows from Lemma 11. ut

12

De�nition Let S � V and let C be a connected component of G� S. We
say that S is close to C if every vertex of S has a neighbor in C. In this case
we say also that C is a full component of S.

The following lemma is due to [18]:

Lemma 15 A set S of vertices is a minimal separator of a graph G if and
only if there exists two connected components C1 and C2 of G� S such that
S is close to C1 and to C2.

Lemma 16 Let X be an independent set in G. Let G0 = G : X and let S
be a minimal separator of G0. Let C 0

1; : : : ; C
0
t be the connected components

of G0 � S. For 1 � i � t let Xi = fv j v 2 X and N(v) \ C 0
i 6= ;g. Let

U = fv j v 2 X and N(v) � Sg and let v1; : : : ; vl be the vertices in U . Then
S is a minimal separator of G and the connected components of G � S are
C 0
1 [X1; : : : ; C

0
t [Xt; fv1g; : : : ; fvlg.

Proof. For i 6= j Xi \Xj = ;, or else there exists an edge in G0 from some
vertex in C 0

i to some vertex in C 0
j, a contradiction. Hence X1; : : : ; Xt; U form

a partition of X. Clearly, fv1g; : : : ; fvlg are connected components of G�S.

Claim 17 For 1 � i � t G[C 0
i [Xi] is a connected component of G� S.

Proof. We �rst show that G[C 0
i [Xi] is connected. Let u and v be any

two vertices in C 0
i. In G0[C 0

i] there is a path P connecting u and v. If all the
edges of P occur in G then P connects u and v in G[C 0

i]. If not all the edges
of P occur in G then we can replace any such edge, say e = fw; tg, by the
two edges fw; xg; fx; tg occurring in G[C 0

i [Xi], where x is the vertex of Xi

which is adjacent to both w and t. Thus, we can use P to construct a path
connecting u and v in G[C 0

i [Xi]. We have shown that for every two vertices
u; v 2 C 0

i u and v are connected in G[C 0
i [Xi]. Since every vertex in Xi has

a neighbor in C 0
i, it follows that for every two vertices u; v 2 C 0

i [Xi u and
v are connected in G[C 0

i [Xi]. Thus, G[C 0
i [Xi] is connected. Suppose that

G[C 0
i [Xi] is not a connected component of G � S. Then there exist two

vertices u 2 C 0
i [Xi and v 2 C 0

j [Xj, i 6= j, such that u and v are connected
by a path P in G � S. If all the edges of P occur also in G0 � S then C 0

i

is connected to C 0
j in G0 � S, a contradiction. The edges of P which do not

occur in G0 � S must be of the form fx; wg; fx; tg for some vertex x 2 Xi.
These two edges can be replaced by the edge fw; tg occurring in G0 � S.
Hence we can use P to construct a path connecting C 0

i to C 0
j in G0 � S, a

contradiction. ut

13

Since S is a minimal separator in G0 by Lemma 15 there exist two connected
components C 0

i and C 0
j such that S is close to C 0

i and to C 0
j in G0. Hence in

G S is close to C 0
i [Xi and to C 0

j [Xj. Thus, by Lemma 15 S is a minimal
separator in G. ut

The following lemma is due to [21].

Lemma 18 Let Q be a minimal triangulation of a graph G, let S be a mini-
mal separator of Q and let C1; : : : ; Ct be the connected components of Q�S.
Then S is a minimal separator of G and C1; : : : ; Ct are also the connected
components of G� S.

Lemma 19 Let X be an independent set in G. Let G0 = G : X and let Q
be a minimal triangulation of G0. Let S be a minimal separator of Q and
let C 0

1; : : : ; C
0
t be the connected components of Q � S. For 1 � i � t let

Xi = fv j v 2 X and N(v) \ C 0
i 6= ;g. Let U = fv j v 2 X and N(v) � Sg

and let v1; : : : ; vl be the vertices in U . Then S is a minimal separator of
G0 and the connected components of G0 � S are C 0

1; : : : ; C
0
t. Moreover, S

is a minimal separator of G and the connected components of G � S are
C 0
1 [X1; : : : ; C

0
t [Xt; fv1g; : : : ; fvlg.

Proof. By Lemma 18 S is a minimal separator of G0 and the connected
components of G0 � S are C 0

1; : : : ; C
0
t. By Lemma 16 S is a minimal sepa-

rator of G and the connected components of G � S are C 0
1 [X1; : : : ; C

0
t [

Xt; fv1g; : : : ; fvlg. ut

We say that v is a universal vertex in G if N(v) = V (G) � fvg. We denote
by univ(G) the set of all universal vertices in G.

Lemma 20 For every graph G with weight functions w and t,

wi(G) = minfminft(v) + w(N(v)) j v 2 univ(G)g;

min
S2msep(G)

fmaxfwiS(GS(C)) j C 2 cc(G� S)ggg: (1)

Proof. We show that the right hand side of the above formula is less than or
equals to wi(G) (the other direction is immediate). Let X be an independent
set in G establishing wi(G). Let G0 = G : X. If univ(G) \ X 6= ; then X
consists of a single vertex (say v) and wi(G) = t(v) + w(N(v)). Hence, we
assume that univ(G) \X = ;.

14

Suppose G0 is a clique. Let v be any vertex in X. Let S = N(v). Since
v =2 univ(G) and G0 is a clique S is a minimal separator in G. Clearly G0 is
triangulated. By Lemma 14 wi(G) = maxfwiS(GS(C)) j C 2 cc(G� S)g.

Suppose G0 is not a clique. Let Q be a minimal triangulation of G0 that
establishes wtw(G0). Clearly Q is not a clique. Hence, there exist a minimal
separator S in Q. By Lemma 19 S is a minimal separator in G. Since every
minimal separator in a chordal graph is a clique [17], S is a clique in Q.
Hence, by Lemma 14 wi(G) = maxfwiS(GS(C)) j C 2 cc(G� S)g. ut

For a set S 2 msep(G) and a set C 2 cc(G� S) we denote by SC the set of
vertices in S having a neighbor in C.

Lemma 21 Let S 2 msep(G) and let C 2 cc(G�S). Then SC 2 msep(G),
SC is close to C and

wiS(GS(C)) = maxfw(S)� 1; wi(SC)(GSC(C))g (2)

Proof. The claim that SC 2 msep(G) and SC is close to C was proved in
[11]. Formula 2 follows from Lemma 12. ut

From Lemmas 20 and 21 it follows that for every graph G, we can calculate
wi(G) by calculating wiS(GS(C)) for every pair (S;C) where S is a minimal
separator of G and C is a connected component of G � S such that S is
close to C (i.e., C is a full component of S). For an arbitrary graph the
number of such pairs may be exponential. However, if G is a weakly chordal
graph the number of such pairs is polynomial and there exists a polynomial
time algorithm for obtaining all these pairs. Our goal now is to show that
for all pairs (S;C) such that S is a minimal separator of G and C is a full
component of S, wiS(GS(C)) can be calculated in polynomial time on every
class of graph C which satisfy the condition mentioned in Theorem 10. The
key lemma for achieving this goal is Lemma 25, in which we shall use the
following de�nitions and lemmas.

De�nition Let S � V and let x be a vertex of G which is not included in
S. We say that x is universal to S in G, if x is adjacent to all the vertices of
S in G. We let univ(S) be the set of all vertices of G which are universal to
S.

The following lemma is due to [9].

15

Lemma 22 Let G be a chordal graph and let K be a maximal clique in
G. Then K has no full component. In other words, for every connected
component C of G�K, K is not close to C.

The following lemma is due to [22].

Lemma 23 Let S be a minimal separator of G, let C1; : : : ; Ct be the con-
nected components of G�S, and let Qi be a minimal triangulation of GS(Ci),
for 1 � i � t. Then the graph

Si=t
i=1Qi is a minimal triangulation of G.

Lemma 24 Let S be a minimal separator of G, let C be a connected com-
ponent of G� S and let
 be a potential maximal clique of GS(C) such that

 \ C 6= ;. Then
 is a potential maximal clique of G.

Proof. Let C1; : : : ; Ct be the connected components of G � S. Assume
without loss of generality that C = C1. Since
 is a potential maximal clique
of GS(C1) there exist a minimal triangulation Q1 of GS(C1) such that
 is
a maximal clique in Q1. For 2 � i � t let Qi be a minimal triangulation of
GS(Ci). Be Lemma 23 the graph Q =

Si=t
i=1Qi is a minimal triangulation of

G. Since for i 6= j there is no edge in Q between a vertex in V (Qi)� S to a
vertex in V (Qj)� S, it follows that
 is also a maximal clique in Q. ut

Recall that potm(G) denote the set of all potential maximal cliques of a
graph G.

Lemma 25 Let S be a minimal separator of G and let C be a full component
of S, such that GS(C) is not a clique, then

wiS(GS(C)) = minfwi
(G
[S [C]) j either S �
 � S [C

and
 2 potm(G) or there exist x 2 C \ univ(S)

such that
 = N(x)g:

(3)

Proof. We �rst show that the left-hand side of Formula 3 is less then
or equals to the right-hand side of this formula. Let
 be a set of vertices
of G reaching the minimum value for the right-hand side of Formula 3, i.e.,
the right-hand side of Formula 3 is equal to wi
(G
[S [C]). Let X be an
independent set establishing wi
(G
[S [C]), and let H = G
[S [C] : X.
By de�nition:

wi
(G
[S [C]) = maxfwtw(H);max
v2X

t(v) + w(N(v))g:

16

wiS(GS(C)) �wi(GS(C); X) =

maxfwtw(GS(C) : X);max
v2X

t(v) + w(N(v))g:

The graph H can be obtained from the graph GS(C) : X by adding edges such
that all the vertices in
 form a clique. Thus, every triangulation of H is also
a triangulation of GS(C) : X which implies that wtw(GS(C) : X) � wtw(H).
It follows that

wiS(GS(C)) � maxfwtw(H);max
v2X

t(v) + w(N(v))g = wi
(G
[S [C]):

We now show that the right-hand side of Formula 3 is less then or equals
to the left-hand side of this formula. Let X be an independent set establishing
wiS(GS(C)) and let F = GS(C) : X. By de�nition:

wiS(GS(C)) = maxfwtw(F);max
v2X

t(v) + w(N(v))g:

Suppose there exists x 2 X, such that x 2 univ(S). Let
 = N(x) and let
F 0 = G
[S [C] : X. By de�nition:

wi
(G
[S [C]) �wi(G
[S [C]; X) =

maxfwtw(F 0);max
v2X

t(v) + w(N(v))g:

Since
 is a clique in F it follows that the graph F is equal to the graph F 0.
Replacing F 0 with F in the above formula we obtain that wi
(G
[S [C]) �
wiS(GS(C)). Thus, we have shown that if X \ univ(S) 6= ; then the right-
hand side of Formula 3 is less then or equals to the left-hand side of this
formula.

Suppose that there is no x 2 X such that x 2 univ(S). Let Q be a
minimal triangulation of F establishing wtw(F). Let
 be the maximal
clique of Q containing S and let F 0 = G
[S [C] : X. Since
 \X = ; we
get that:

wi
(G
[S [C]) �wi(G
[S [C]; X) =

maxfwtw(F 0);max
v2X

t(v) + w(N(v))g:

Since Q is a supergraph of F 0, wtw(Q) � wtw(F 0). Now since wtw(Q) =
wtw(F), we get that wtw(F) � wtw(F 0). Replacing F 0 with F in the above
formula we obtain that wi
(G
[S [C]) � wiS(GS(C)). In Claims 27 and

17

28 we show that S �
 and
 is a potential maximal clique of G. Thus, we
have shown that if X \ univ(S) = ; the right-hand side of Formula 3 is less
then or equals to the left-hand side of this formula.

Thus, the proof of Lemma 25 is completed by proving the following three
claims.

Claim 26 C �X is a full component of S in F .

Proof. We �rst show that the graph F [C � X] is connected. Let u and
v be two vertices in C � X. Since C is a connected component of G � S,
there exists a path P in G[C] from u to v. Let P 0 be the path obtained by
omitting all the vertices of X from P . Since for every vertex x of P which is
in X its predecessor and its successor on P are not in X and are connected
by an edge in F , it follows that P 0 is a path from u to v in F [C �X]. Thus,
F [C �X] is connected.

Let v be a vertex in S. Since C is a full component of S in G, there is
a vertex u 2 C such that v is adjacent to u in G. If u 2 X then let a be a
vertex in C �X such that u is adjacent to a in G. Note that since X is an
independent set and C contains more than one vertex (or else GS(C) will be
a clique), such a vertex a must exists. Now since a and v are both adjacent
to u in G and u 2 X it follows that a and v are adjacent in F . We have
shown that F [C � X] is connected and that for every vertex v 2 S there
exists a vertex in C �X which is adjacent to v in F . Thus, C �X is a full
component of S in F . ut

Claim 27 S �
.

Proof. By Claim 26 C � X is a full component of S in F . Since Q is
obtained by adding some edges to F , none of which connects C�X to other
connected components of S in F , it follows that C �X is a full component
of S in Q. By Lemma 22 no maximal clique of a chordal graph has a full
component. Since Q is chordal, it follows that S is not a maximal clique in
Q. Thus, S is a proper subset of the maximal clique
 in Q which contains
S. ut

Claim 28
 is a potential maximal clique of G.

Proof. Let Q0 be the graph obtained from Q by adding all the vertices of
X and all the edges connecting the vertices of X and their neighbors in G,

18

i.e., V (Q0) = V (Q)[X and E(Q0) = E(Q)[ffx; vg j x 2 X and v 2 N(x)g.
Since Q is chordal and for every vertex x 2 X, N(x) form a clique in Q,
it follows that Q0 is chordal. Thus, Q0 is a triangulation of GS(C). Let Q00

be the graph obtained from Q0 by omitting edges which are not in GS(C)
(chosen arbitrarily), such that Q00 is a minimal triangulation of GS(C). We
now show that
 is a clique in Q00.

Let u and v be two vertices in
. If u and v are adjacent in GS(C) then
u and v are also adjacent in Q00. Suppose u and v are not adjacent in GS(C).
Clearly, u and v are adjacent in Q. Suppose u and v are not adjacent in
Q00. If the removal of the edge fu; vg from Q from a chordless cycle, then
this cycle is also chordless in Q00, a contradiction. Thus, the removal of the
edge fu; vg from Q does not form a chordless cycle. Since Q is a minimal
triangulation of F , and the edge fu; vg was not removed from Q, it follows
that this edge is in F . Thus, u and v are adjacent in F but are not adjacent
in GS(C), which implies that there exists a vertex x 2 X such that u and v
are both adjacent to x in GS(C). Since we assume that x is not adjacent in
GS(C) (and therefore x is not adjacent in Q00) to all the vertices of S, there
exists a vertex y in S such that x is not adjacent to y in Q00. Now x; y; u; v
form a chordless cycle in Q00, a contradiction.

We have shown that
 is a clique in Q00. Now since Q00 is a minimal
triangulation of GS(C), we obtain that
 is a potential maximal clique in
GS(C). By Lemma 24
 is also a potential maximal clique of G. ut

As mentioned above, this completes the proof of Lemma 25. ut

Using Formula 3 we can calculate wiS(GS(C)) by taking the minimum
value of wi
(G
[S[C]) for all
 such that either
 2 potm(G) and S �
 �
S [C or there exist x 2 C \ univ(S) such that
 = N(x). But how can we
calculate the values of wi
(G
[S[C]) for all these
's? If
 2 potm(G) then
the answer to this question is given in Formula 4 of Lemma 29. If
 = N(x)
for some x 2 C\univ(S) then the answer to this question is given in Formula
5 of Lemma 31.

Lemma 29 Let S 2 msep(G) and let C be a connected component of G�S.
Let
 be a potential maximal clique of G such that S �
 � S [C. Let
C1; : : : ; Ct be the connected components of GS(C) �
, and for 1 � i � t let

i denote the set of all vertices in
 having a neighbor (in the graph G) in
Ci. Then for 1 � i � t,
i �
,
i 2 msep(G) and

wi
(G
[S [C]) = maxfw(
)� 1; max
1�i�t

fwi
i(G
i(Ci))gg: (4)

19

Proof. Since
 be a potential maximal clique of G such that S �
 � S[C,
it is clear that
 is also a potential maximal clique of GS(C). Let Q be
a minimal triangulation of GS(C) such that
 is a maximal clique in Q.
Suppose that for some 1 � i � t
i =
. It follows that Ci is a full component
of
 in Q. By Lemma 22 no maximal clique in Q has a full component, a
contradiction. Thus, we have shown that for 1 � i � t,
i �
. The
correctness of Formula 4 follows from Lemma 13. A proof of the claim that

i 2 msep(G) is given in Lemma 5 of [9]. We now present a di�erent proof
of this claim. For 1 � i � t, let xi be some vertex in
 �
i and let yi be
some vertex in Ci. Clearly,
i is a minimal xi; yi separator in Q.

Claim 30
i is a minimal xi; yi separator in G
i.

Proof. Since
i is a minimal xi; yi separator in Q and Q is obtained by
adding some more edges to G
i, we get that
i separates xi and yi in G
i .
Let a be a vertex in
i. Since Ci is a full component of
i there is a path
P1 from a to yi such that besides a all the vertices of the path are in Ci. We
now show that there exists a path P2 connecting a and xi such that besides
a all the vertices of P2 are not included in
i [Ci.

We shall use the property that the graph G
i can be obtained from Q by
removing the edges of E(Q) � E(G
i) one after the other (in an arbitrary
order) such that each time an edge fu; vg is removed a new chordless cycle
containing u and v is formed.

Since
 is a clique in Q, xi and a are adjacent in Q. If the edge fxi; ag
belongs to G
i then we can take P2 = fx; ag. Suppose that the edge fxi; ag
does not belong to G
i. Removing the edge fxi; ag from Q we obtain a graph
Q0 such that there is a chordless cycle in Q0 containing fxi; ag. This cycle
can be considered as two disjoint paths from xi to a. It follows that at least
one of these two paths (say R0) does not include any vertex of
i besides a.
Since
i separates xi from yi, it follows that R0 does not include any vertex
of Ci. Thus R0 is a path from xi to a in Q0 which does not include any vertex
of
i [Ci besides a. If all the edges of the path R0 are in G
i then we can
take P2 = R0.

Suppose not all the edges of the path R0 are in G
i. Let fu; vg be any
edge on R0 which is not in G
i and let Q00 be the graph obtained from Q0 by
removing the edge fu; vg. By a similar argument we can obtain a path R1

connecting the vertices u and v in Q00 which does not include any vertex of

i [Ci besides a. Thus, there exist a path R00 from xi to a in Q00, such that

20

all the vertices of R00 are included in R1 [R0. If all the edges of R00 are in
G
i then we can take P2 = R00. Otherwise, we repeat the above process until
we �nally obtain a path R from u to v in G
i which does not include any
vertex
i [Ci besides a, and we take P2 = R. Note that the above process
will terminate since after each iteration we remove from the considered graph
one more edge of E(Q)�E(G
i) and thus (in the worst case) we will �nally
reach the graph G
i.

Let P be the path obtained from the union of the paths P1 and P2. Thus,
P is a path in G
i from xi to yi through a which does not include any vertex
of
i besides a. It follows that
i � fag does not separates xi and yi in
G
i. Since a was chosen as an arbitrary vertex in
i, we obtain that
i is a
minimal xi; yi separator in G
i . ut

By Claim 30 there exists two vertices xi and yi such that
i separates xi
and yi in G. Let a be any vertex in
i. By Claim 30 there exists a path
P from xi to yi through a in G
i which does not include any vertex of
i

besides a. Since no edge of P connects two vertices of
i, all the edges of
P are included in G. Thus, that
i � fag does not separates xi and yi in
G. Since a was chosen as an arbitrary vertex in
i, we obtain that
i is a
minimal xi; yi separator in G. ut

Lemma 31 Let S 2 msep(G) and let C be a connected component of G�S.
Let x be a vertex in C \ univ(S) and let
 = N(x). Let C1; : : : ; Ct be the
connected components of GS(C)�
, and for 1 � i � t let
i denote the set
of all vertices in
 having a neighbor (in the graph G) in Ci. Then Formula
5 holds and for 1 � i � t, either G
i(Ci) is a clique or
i 2 msep(G) and

i [Ci � S [C.

wi
(G
[S [C]) = maxfw(
)� 1; max
1�i�t

fwi
i(G
i(Ci))gg: (5)

Proof. The correctness of Formula 5 follows from Lemma 13. Suppose
G
i(Ci) is not a clique. Clearly, one of the connected components of GS(C)�

 is fxg. Let Cj denote this connected component. Since G
i(Ci) is not a
clique we obtain that Ci 6= Cj, (i.e., i 6= j). Thus, x is not in
i [Ci which
implies that
i [Ci � S [C. Let y be any vertex in Ci. We claim that

i is a minimal x; y separator in G. Since Ci is a connected component of
GS(C)�
 it follows that any path from y to x in G must go through a vertex
in
. Suppose there is a path from y to x which does not go through any

21

vertex in
i. It follows that there exists a vertex z 2
 on this path adjacent
to some vertex in Ci. But this implies that z must be in
i, a contradiction.
Thus,
i is an x; y separator in G. Let a be any vertex in
i. Since a 2
i

there is a neighbor w 2 Ci of a in G. Since G[Ci] is connected there is a
path P1 from w to y such that all the vertices of P1 are in Ci. Now the
path P = x; a; P1, goes in G from x to y through a and does not include any
vertex in
i besides a. It follows that
i � fag does not separates x and y
in G. Since a was chosen as an arbitrary vertex in
i, it follows that
i is a
minimal x; y separator in G. ut

We are now ready to present the main steps of the algorithm for calcu-
lating wi(G) for a given graph G 2 C with weight functions w and t, where
C is a class of graphs satisfying the conditions mentioned in Theorem 10.

1. Compute and store in some data structure D the set of all pairs (S;C)
such that S is a minimal separator inG and C is a connected component
of G� S.

2. Compute and store in another data structure D0 the set of all pairs
(
; C) such that
 is a potential maximal clique in G and C is a
connected component of G�
.

3. Order the elements in D with respect to increasing size of jSj + jCj.
Now in this order calculate for the elements (S;C) in D the value of
wiS(GS(C)) as follows:

(a) If S is not close to C then let SC be the set of vertices in S having
a neighbor in C. By Lemma 21 SC is a minimal separator in G.
Thus, calculate wiS(GS(C)) using Formula 2.

(b) If GS(C) is a clique then wiS(GS(C)) is equal to minv2C t(v) +
w(S [C � fvg).

(c) If S is close to C and GS(C) is not a clique then calcu-
late wiS(GS(C)) using Formula 3 by taking the minimum of
wi
(G
[S [C]) for all the
's indicated in this formula. Let
Y denote the set of all these
's. To construct Y �rst add to
Y the set of vertices
 = N(x), for each vertex x 2 C which is
universal to S. Then use the data structure D0 to �nd all the
potential maximal cliques
 of G such that S �
 � S [C, and

22

add all these
's to Y . Now for each
 in Y calculate the value
of wi
(G
[S [C]) as follows:

� If
 is a potential maximal clique of G such that S �
 � S[
C, calculate wi
(G
[S [C]) using Formula 4. Note that the
values of wi
i(G
i(Ci)) mentioned in Formula 4 have already
been calculated by previous steps of the algorithm since
i 2
msep(G), Ci is a connected component of G�
i and
i[Ci �
S [C.

� If there exists a vertex x in C \ univ(S) such that
 = N(x),
calculate wi
(G
[S [C]) using Formula 5. Note that the
values of wi
i(G
i(Ci)) mentioned in Formula 5 can be calcu-
lated as follows. If G
i(Ci) is not a clique then wi
i(G
i(Ci))
have already been calculated by previous steps of the algo-
rithm since
i 2 msep(G), Ci is a connected component of
G �
i and
i [Ci � S [C. If G
i(Ci) is a clique then
wi
i(G
i(Ci)) is equal to minv2Ci t(v) + w(
i [Ci � fvg).

4. Now based on the value of wiS(GS(C)) for all pairs (S;C) inD calculate
wi(G) using Formula 1.

The correctness of the above algorithm follows from Lemmas 20,21,25, 29
and 31. From the assumptions on C it is clear that the above algorithm has
a polynomial time complexity. Thus, we have shown that Theorem 10 holds.

We now analyze the complexity of the above algorithm as a function of
the following parameters:

� let n and m denote the number vertices and edges in the input graph
and assume that m � n.

� let s and p be the number of minimal separators and potential maximal
cliques in the input graph, respectively. We assume that p � n.

� let the time complexity of the algorithms for listing all the minimal
separators and all the potential maximal cliques of the input graph, be
O(s0) and O(p0) respectively.

Constructing all the pairs (S;C) in the structure D can be done in
O(maxfsm; s0g) time. The number of such pairs is O(sn). Similarly,
constructing all the pairs (
; C) in the structure D0 can be done in

23

O(maxfpm; p0g) time and the number of such pairs is O(pn). Ordering the
elements in D with respect to increasing size of jSj+ jCj can be done easily
in O(s(n2)) time using bucket sort (i.e., putting the elements of D in buckets
1; : : : ; n depending on their sizes).

Now for each pair (S;C) in D the algorithm scans all the potential max-
imal cliques and for each potential maximal clique
 considers the pairs
(
i; Ci) in D0. Clearly, all these pairs can be constructed in O(peC), where
eC denotes the number of edges in G[C]. Summarizing on all the connected
components of S, we obtain that the total time spent by the algorithm for
S is O(pm) and thus the total time spent for scanning all the pairs in D
is O(spm). We obtain that the total time complexity of the algorithm is
O(maxfs0; p0; spmg). Note that s0 � n3s [4] and that p0 � n2ms2 [10].

For the class of weakly chordal graphs, it was shown in [9] that the s =
O(m) and p = O(m) and that spm > maxfs0; p0g. Thus, we have shown:

Corollary 32 The WI-TREEWIDTH problem on the class of weakly chordal
graphs can be solved in O(m3) time.

Now by Theorem 9 we get:

Theorem 33 Let C be a class of graphs which is modularly decomposable
into the class of weakly chordal graphs. Then the TREEWIDTH problem on
C can be solved in O(m3) time.

Another easy consequence of the results in this section is:

Corollary 34 Let C be a class of graphs which is modularly decomposable
into graphs with at most c logn vertices, for some constant c. Then the
TREEWIDTH problem on C can be solved in polynomial time.

4 Cycles

In this section, we show that for the class of graphs C which is modularly
decomposable into the class of cycles, the TREEWIDTH problem on C can be
solved in linear time. Note that a polynomial (but not linear) time algorithm
can be derived with the results of the previous section. We shall need the
following de�nition.

24

Lemma 35 Let G be a weighted cycle with weight function w. Then

wtw(G) = min
v2V (G)

fw(v)g+ max
fv;xg2E(G)

fw(v) + w(x)g � 1:

Proof. Suppose v0; v1; : : : ; vn�1 are the successive vertices in the cycle G,
and without loss of generality, suppose w(v0) = minv2V fw(v)g.

First, we give a construction that realizes the required weighted treewidth.
Now, take a tree, that is actually a path, with successive nodes i1; i2; : : : ; in�2,
and take Xij = fvj; vj+1; v0g. One can verify that this is a tree decomposition
of G with weighted treewidth exactly w(v0)+maxfv;xg2E(G)fw(v)+w(x)g�1.

We now show that the weighted treewidth of G is at least w(v0) +
maxfv;xg2E(G)fw(v) + w(x)g � 1. Let (fXi j i 2 Ig; T = (I; F)) be a tree
decomposition of G. Now, suppose w(vj) + w(vj+1) = maxfv;xg2E(G)fw(v) +
w(x)g. Clearly vi and vj+1 must be included in Xi for some i 2 I. If there
is no other vertex of G in Xi then it follows that the graph obtained from G
after omitting the edge fvj; vj+1g is disconnected, a contradiction (since G
is a cycle). Thus Xi must contains at least one more vertex u which implies
that the weighted treewidth of G is at least w(u) + w(vj) + w(vj+1) � 1 �
w(v0) + w(vj) + w(vj+1)� 1. ut

In the following lemmas, we assume that G is a cycle with vertices
v0; v1; : : : ; vn�1 and with edges fvi; vi+1g, 0 � i � n � 1, where we iden-
tify vn with v0, and v�1 with vn�1. We also assume we have weights w(vi)
and t(vi) for the vertices of G. For shorter notation, we write w(i) for w(vi)
and t(i) for t(vi). We assume that n � 5. (This implies that for every in-
dependent set I � V (G), G : I is again a cycle: if n � 4, then this is not
necessary). For n � 4, we can �nd wi(G) in constant time.

We will now discuss how to compute wi(G). Suppose, without loss of
generality, that w(0) = min0�i�n�1w(i). The following lemma states that we
may assume that v0 is not included in an independent set I establishing the
wi-treewidth of G.

Lemma 36 There is an independent set I � V (G)�fv0g, such that wi(G) =
wi(G; I).

Proof. By de�nition, there is an independent set I � V (G), such that
wi(G) = wi(G; I). If v0 62 I, we are done. Suppose v0 2 I. We will prove the
lemma by showing that wi(G; I) � wi(G; I � fv0g). It is suÆcient to show

25

that wtw(G : I) � wtw(G : (I � fv0g)), as clearly maxvi2Ift(i) +w(i� 1) +
w(i + 1)g � maxvi2I�fv0gft(i) + w(i� 1) + w(i + 1)g.

Write r = min0�i�n�1;vi 62I w(i). By Lemma 35,

wtw(G : I) = r + max
fx;yg2E(G:I)

fw(x) + w(y)g � 1; and

wtw(G : (I � fv0g)) = w(0) + max
fx;yg2E(G:(I�fv0g))

fw(x) + w(y)g � 1:

By assumption, r � w(0). G : I and G : (I � fv0g) are cycles that only
di�er in a few edges: G : I has an edge fvn�1; v1g and G : (I � fv0g) has
edges fvn�1; v0g and fv0; v1g. Now, as w(n � 1) + w(0) � w(n� 1) + w(1),
and w(0) + w(1) � w(n � 1) + w(1), we have that wtw(G : I) � wtw(G :
(I � fv0g)), and the claim then follows. ut

Now, assume v0 62 I. We now can write wi(G; I) in more detail as:

wi(G; I) = max

8<
:

w(0) + w(j � 1) + w(j + 1)� 1 j 1 � j � n� 1; vj 2 I
w(0) + w(j) + w(j + 1)� 1 j 0 � j � n� 1; vj; vj+1 62 I
t(j) + w(j � 1) + w(j + 1) j 1 � j � n� 1; vj 2 I

9=
;

To �nd the independent set I � V (G) � fv0g for which this term is
minimal, we use dynamic programming.

For i � 1 and a set I � fv1; : : : ; vi�1g, de�ne

h(I; i) = max

8<
:

w(0) + w(j � 1) + w(j + 1)� 1 j 1 � j � i� 1; vj 2 I
w(0) + w(j) + w(j + 1)� 1 j 0 � j � i� 1; vj; vj+1 62 I
t(j) + w(j � 1) + w(j + 1) j 1 � j � i� 1; vj 2 I

9=
;

For i = 0, de�ne h(;; 0) = w(0)� 1.
Write h(i) = minI�fv1;:::;vi�1g;I2indp(G) h(I; i). Clearly, h(n) = wi(G).

26

Lemma 37 (i) h(0) = w(0)� 1.

(ii) h(1) = 2w(0) + w(1)� 1.

(iii) For 2 � i � n� 1,

h(i) = minfmaxfh(i� 2); w(0) + w(i� 2) + w(i)� 1;

t(i� 1) + w(i� 2) + w(i)g;

maxfh(i� 1); w(0) + w(i� 1) + w(i)� 1)gg:

(iv)

h(n) = minfmaxfh(n� 1); 2w(0) + w(n� 1)� 1g;

maxfh(n� 2); 2w(0) + w(n� 2)� 1;

t(n� 1) + w(n� 2) + w(0)gg:

Proof. (i), (ii). The only candidate for set I is the empty set.
(iii). Let 2 � i � n� 1. Let A denote the minimum value of h(I; i) over

all independent sets I � fv1; : : : ; vi�1g with vi�1 2 I. We claim that:

A = maxfh(i� 2); w(0) + w(i� 2) + w(i)� 1; t(i� 1) + w(i� 2) + w(i)g:

We show �rst A is at least the above term. For any independent set I �
fv1; : : : ; vi�1g with vi�1 2 I note that vi�2 62 I, and we have that h(I; i) �
h(I�fvi�1g; i�2) � h(i�2). Also, we have h(I; i) � w(0)+w(i�2)+w(i)�1,
and h(I; i) � t(i�1)+w(i�2)+w(i), as these terms appear in the de�nition
of h(I; i). Hence, A is at least the above term. To show that A is exactly
the above term we observe that for any independent set I 0 � fv1; : : : ; vi�3g
with h(I 0; i � 2) = h(i � 2), the set I 0 [fvi�1g is an independent set and
h(I 0 [fvi�1g; i) = maxfh(i� 2); w(0) +w(i� 2) + w(i)� 1; t(i� 1) +w(i�
2) + w(i)g.

A similar analysis shows that the minimum value of h(I; i) over all inde-
pendent sets I � fv1; : : : ; vi�1g with vi�1 62 I is exactly maxfh(i� 1); w(0) +
w(i� 1) + w(i)� 1g. Part (iii) of the claim now follows.

(iv) With arguments, similar to part (iii) of this proof, one observes that
the minimum value of h(I; n) over all I � fv1; : : : ; vn�1g with vn�1 2 I is
exactly maxfh(n� 2); 2w(0) +w(n� 2)� 1; t(n� 1) +w(n� 2) +w(0)g, and
that the minimum value of h(I; n) over all I � fv1; : : : ; vn�1g with vn�1 62 I
is exactly maxfh(n� 1); 2w(0) + w(n� 1)� 1g. ut

27

The above lemma gives a dynamic programming algorithm to compute
all values h(i), and hence to compute the wi-treewidth of G (which equals
h(n)) in O(n) time. Hence by Theorem 9 we have:

Theorem 38 Let C be a class of graphs which is modularly decomposable
into the class of cycles. Then the WI-TREEWIDTH problem on C can be
solved in O(n + m) time.

5 Clique-matching graphs

In the previous sections, we have seen that WI-treewidth can be solved in
polynomial time for graphs with a polynomial number of minimal separators.
There are however also graph classes with an exponential number of minimal
separators for which we also can solve the WI-treewidth problem, and hence
that can be used as prime graphs in a modular decomposition for graphs we
want to compute the treewidth of. In this section, we give a simple set of
graphs of this type. We expect that it is possible to obtain similar results for
much more general classes of graphs, but leave that here for further research.

Say a graph G is a clique-matching graph, if it is isomorphic to a graph
Cr = (Vr [Wr; Er), with Vr = fv1; : : : ; vrg, Wr = fw1; : : : ; wrg, and
Er = ffvi; vjg j 1 � i; j � r; i 6= jg [ffwi; wjg j 1 � i; j � r; i 6= jg [
ffvi; wig j 1 � i � rg, i.e., Cr is formed by taking two disjoint cliques of r
vertices each, and then connecting the ith vertex in the �rst clique with the
ith vertex of the second clique for each i, 1 � i � r. An example is given in
Figure 1.

v1

v2

v3

v4

w1

w2

w3

w4

Figure 1: The clique-matching graph C4.

First, we will show that we can compute the weighted treewidth of a
clique-matching graph Cr given with a weight function w on its vertices. For
a set of vertices S, we write w(S) =

P
v2S w(v).

28

Lemma 39 The weighted treewidth of Cr equals the minimum weighted width
of a path decomposition (X1; : : : ; Xs) of Cr with X1 = Vr and Xs = Wr.

Proof. As a path decomposition (X1; : : : ; Xs) of Cr with X1 = Vr and Xs =
Wr is also a tree decomposition of Cr, we have that the weighted treewidth
is never larger than the weighted width of such a path decomposition.

Suppose we have a tree decomposition (fXi j i 2 Ig; T = (I; F)) of Cr of
width R. There must be a node iV 2 I with Vr � XiV , and a node iW 2 I
with Wr � XiW . Let P be the path in T with endpoints iV and iW . For
every edge fvj; wjg 2 Er, there must be a node i on P with vj; wj 2 Xi.
Thus, when we remove all nodes from I that do not belong to P , we still
have a tree decomposition of Cr, and, as P is a path, this actually is a path
decomposition. Add one additional node with set Vr and make it adjacent
to iV , and an additional node with set Wr and make it adjacent to iW and
we have the required path decomposition of Cr; clearly the weighted width
of this path decomposition cannot be more than R. ut

Lemma 40 Suppose wj is the vertex of minimum weight from all the vertices
in W [V . Then

wtw(Cr) = max(wtw(Cr � fvj; wjg); w(V)) + w(wj) (6)

Proof. First, note that W is a full component of V . Thus, by Lemma 22,
in every triangulation of C, V cannot be a maximal clique hence there is a
clique that contains V in such a triangulation; as the weight of this clique is
at least w(V) + w(wj), we have that w(V) + w(wj) � wtw(Cr).

Consider a path decomposition (X1; : : : ; Xs) of Cr as in Lemma 39 of
minimum weighted width, say R. There must be an �, 1 � � � s with
vj; wj 2 X�. Now, if 1 � � � �, vj 2 X�, and if � � � � s, wj 2 X�; hence
(X1 � fvj; wjg; X2 � fvj; wjg; : : : ; Xs � fvj; wjg) is a path decomposition of
Cr�fvj; wjg of weighted width at most R�min(w(vj); w(wj)) = R�w(wj).
So, we have wtw(Cr � fvj; wjg) + w(wj) � wtw(Cr).

If we have a path decomposition (X1; : : : ; Xs) of Cr � fvj; wjg of min-
imum width R0 with X1 = V � fvjg, Xs = W � fwjg, then (V; V [
fwjg; X1 [fwjg; X2 [fwjg; : : : ; Xs [fwjg) is a path decomposition of
Cr, again of the form as stated in Lemma 39 of weighted width at most
max(R0 + w(wj); w(V) + w(wj)). So, wtw(Cr) � max(wtw(Cr � fvj; wjg) +
w(wj); w(V) + w(wj)). The lemma now follows. ut

29

Of course, when vj is the minimum weight vertex from W [V , then

wtw(Cr) = max(wtw(Cr � vj; wj); w(W)) + w(vj) (7)

Note also that Cr � fvj; wjg is again a clique-matching graph. Thus, we can
determine the weighted treewidth of Cr by repeatedly �nding the vertex of
minimum weight, removing this minimum weight vertex and its neighbor
in the other clique, recursively computing the weighted treewidth of the
resulting graph and then applying Equation 6 or 7. Thus, we have

Lemma 41 The weighted treewidth problem can be solved in O(n logn) time
on clique-matching graphs.

Note that every independent set in a clique-matching graph either con-
tains no vertices, a single vertex, or one vertex in each of the two cliques, so
there are O(n2) independent sets in a clique-matching graph. Suppose we
want to compute wtw(Cr : fvig). Note that wi is simplicial in Cr : fvig. The
following lemma is well known for the unweighted case; its extension to the
weighted case is trivial.

Lemma 42 Let v be a simplicial vertex in a graph G. Then wtw(G) =
max(w(N(v) [fvg); wtw(G� fvg)).

As Cr : fvig � fwig is again a clique-matching graph, this directly gives
an O(n logn) time algorithm to compute the weighted treewidth of a graph
of the form Cr : fvig or Cr : fwig. Similarly, for i0 6= i00, vi0 and wi00 are
simplicial in Cr : fvi0 ; wi00g, so we can also compute the weighted treewidth
of these graphs in O(n logn) time. Actually, after we have an ordering of
the vertices of Cr, we do not need to sort again the vertices of each of the
graphs Cr : X, and thus for each of these, we can then compute its weighted
treewidth in linear time. Hence, we have:

Theorem 43 The WI-TREEWIDTH problem can be solved in O(n3) time
on clique-matching graphs.

With simple additional bookkeeping, the corresponding tree decompo-
sitions can be built. A more detailed analysis of the choice of vertices
in the independent set can possibly bring the time for computed the WI-
TREEWIDTH for clique-matching graphs down.

30

6 Minimum �ll-in

In this section we show that the results presented at the previous sections
hold also for the MINIMUM FILL-IN problem. We start by introducing
more de�nitions and notations. The minimum �ll-in of a graph G, denoted by
min-�ll-in(G), is the minimum of jE(H)�E(G)j taken over all triangulations
H of G. For a triangulationH of G such that jE(H)�E(G)j = min-�ll-in(G)
we say that H establishes the minimum �ll-in of G. The complete �ll-in of
G, denoted by complete-�ll-in(G) is the number of edges that must be added
to turn G into a clique:

complete-�ll-in(G) =
1

2
jV (G)j � (jV (G)j � 1)� jE(G)j:

The MINIMUM FILL-IN problem is to �nd min-�ll-in(G) for a given graph
G.

Let G be a graph with weight functions w, f and c. The weighted
minimum �ll-in of G, denoted by wf(G) is de�ned as the minimum ofP

fv;xg2E(H)�E(G) w(v) � w(x) taken over all triangulations H of G. For a

triangulation H of G such that wf(G) =
P

fv;xg2E(H)�E(G) w(v) � w(x) we
say that H establishes the weighted �ll-in of G. The weighted complete �ll-in
of G, denoted by wcf(G) is de�ned by wcf(G) =

P
fu;vg=2E(G) w(u) � w(v).

Notice that wf(G) and wcf(G) depends just on w and not on f and c.
Recall that for a set of vertices S we de�ne f(S) =

P
v2S f(v) and c(S) =P

v2S c(v). For a set X 2 indp(G), the weighted minimum �ll-in of G with
independent set X denoted as wif(G;X) is de�ned as follows:

wif(G;X) = f(X)+c(V (G)�X)+wf(G : X)+
X

fu;vg2E(G:X)�E(G)

w(u)�w(v):

The weighted independent minimum �ll-in of G (shortly the wi-�ll-in of G)
denoted as wif(G) is de�ned by:

wif(G) = min
X2indp(G)

wif(G;X):

For a set X 2 indp(G) such that wif(G) = wif(G;X) we say that X
establishes the wi-�ll-in of G. The WI-FILL-IN problem is to �nd wif(G)
for a given graph G with weight functions w, f and c.

31

Let S be a set of vertices in G. We denote by
wifS(G) the minimum wi-�ll-in of G assuming that none of the vertices of S
are in the independent set. Formally,

wifS(G) = minfwif(G;X) j X 2 indp(G) and S \X = ;g

We omit the proofs of Lemma 44 and Theorem 45 since they are similar
to the proofs of Lemma 7 and Theorem 9, respectively.

Lemma 44 Let G be a graph, where V (G) = fv1; : : : ; vrg. Let H1; : : : ; Hr

be disjoint graphs and let G0 = G(H1; : : : ; Hr). Let w and f and c be
the weight functions on the vertices of G de�ned by: w(vi) = jV (Hi)j,
f(vi) = min-�ll-in(Hi) and c(vi) = complete-�ll-in(Hi), for 1 � i � r.
Then min-�ll-in(G0) = wif(G).

Theorem 45 Let C and D be classes of graphs such that C is modularly
decomposable into D. Suppose that the WI-FILL-IN problem can be solved
in O(f(n;m)) time on D, where f is some polynomial function in n and m.
Then the MINIMUM FILL-IN problem on C can be solved in O(f(n;m) +
n + m) time.

We now consider each of the graph classes mentioned in the previous
sections.

6.1 Classes with a polynomial number of minimal sep-

arators

In Section 3 we presented an algorithm for solving the WI-TREEWIDTH
problem on any class of graphs C with a polynomial number of minimal sep-
arators. The algorithm is based on Formulas 1-5. Using the same method
we can solve the WI-FILL-IN problem on any class of graphs C with a poly-
nomial number of minimal separators based on Formulas 8-12 below which
corresponds to Formulas 1-5 respectively.

We omit the proofs of Lemmas 46,47,48,49,50,51,52,53,54 since they are
similar to the proofs of Lemmas 11,12,13,14,20,21,25,29,31 respectively.

Lemma 46 Let K be a clique in G and let C1; : : : ; Ct be the connected com-
ponents of G�K. Then

wifK(G) = c(K) +
i=tX
i=1

(wifK(GK(Ci))� c(K)):

32

Lemma 47 Let K be a clique in G, let C be a connected component of G�K
and let KC be the set of all vertices in K having a neighbor in C. Then

wifK(GK(C)) = c(K) + wifKC(GKC(C))� c(KC)

Lemma 48 Let K be a clique in G, and let C1; : : : ; Ct be the connected
components of G � K. For 1 � i � t let Ki be the set of all vertices in K
having a neighbor in Ci. Then

wifK(G) = c(K) +
i=tX
i=1

(wifKi
(GKi

(Ci))� c(Ki)):

Lemma 49 Let X be an independent set in G establishing wif(G). Let S
be a clique in a minimal triangulation Q of G : X that establishes wf(G:X).
Let C1; : : : ; Ct be the connected components of G� S. Then

wif(G) = c(S) + wcf(G[S]) +
i=tX
i=1

(wifS(GS(Ci)� c(S)))

Lemma 50 For every graph G with weight functions w, f and c,

wif(G) = minfminff(v) + c(N(v)) + wcf(G[N(v)]) j v 2 univ(G)g;

min
S2msep(G)

fc(S) + wcf(G[S]) +
X

C2cc(G�S)

(wifS(GS(C))� c(S))gg:

(8)

Lemma 51 Let S 2 msep(G) and let C 2 cc(G�S). Then SC 2 msep(G),
SC is close to C and

wifS(GS(C)) = c(S) + wif(SC)(GSC(C))� c(SC) (9)

Lemma 52 Let S be a minimal separator of G and let C be a full component
of S, such that GS(C) is not a clique, then

wifS(GS(C)) = minfwif
(G
[S [C]) j either S �
 � S [C

and
 2 potm(G) or there exist x 2 C \ univ(S)

such that
 = N(x)g:

(10)

33

Lemma 53 Let S 2 msep(G) and let C be a connected component of G�S.
Let
 be a potential maximal clique of G such that S �
 � S [C. Let
C1; : : : ; Ct be the connected components of GS(C) �
, and for 1 � i � t let

i denote the set of all vertices in
 having a neighbor (in the graph G) in
Ci. Then for 1 � i � t,
i �
,
i 2 msep(G) and

wif
(G
[S [C]) = c(
) +
i=tX
i=1

(wif
i(G
i(Ci))� c(
i)): (11)

Lemma 54 Let S 2 msep(G) and let C be a connected component of G�S.
Let x be a vertex in C \ univ(S) and let
 = N(x). Let C1; : : : ; Ct be the
connected components of GS(C)�
, and for 1 � i � t let
i denote the set
of all vertices in
 having a neighbor (in the graph G) in Ci. Then Formula
12 holds and for 1 � i � t, either G
i(Ci) is a clique or
i 2 msep(G) and

i [Ci � S [C.

wif
(G
[S [C]) = c(
) +
i=tX
i=1

(wif
i(G
i(Ci))� c(
i)) (12)

6.2 Cycles

In this section we show that for a class of graphs C which is modularly
decomposable into the class of cycles the MIN-FILL-IN problem on C can be
solved in O(n3) time. We obtain this result by showing that the WI-FILL-IN
problem on cycles can be solved in O(n3) time. In other words we show how
to compute wif(G) for a given cycle G with weight functions w; f and c. We
assume that G is of length at least 4 (otherwise we can calculate wif(G) in
constant time).

We denote by fv1; : : : ; vng the successive vertices on G. For 1 � i �
j�2 � n we denote by G(i; j) the cycle obtained by adding the edge fvi; vjg
to the subgraph of G induced by fvi; : : : ; vjg, i.e., G(i; j) = G[fvi; : : : ; vjg] +
ffvi; vjgg. Similarly, we denote by G(j; i) the cycle obtained by adding the
edge fvi; vjg to the subgraph of G induced by fvj; : : : ; vn; v1; : : : ; vig. We
de�ne G(i; i + 1) = G[fvi; vi+1g] for 1 � i � n � 1, and G(j; j � 1) =
G[fvj�1; vjg] for 2 � j � n.

34

Lemma 55

wif(G) = min
1�i�j�2�n

wif(1(fvi; vjg); G(i; j)) + wif(1(fvi; vjg); G(j; i))+

w(vi) � w(vj)� (c(vi) + c(vj))

(13)

Proof.

(�) Suppose that the minimum of the right hand side of the above formula
is reached for the two integers i; j. Let X1 and X2 be the set of vertices
establishing wif(1(fvi; vjg); G(i; j)) and wif(1(fvi; vjg); G(j; i)) and let Q1

and Q2 be triangulations establishing wf(G(i; j) : X1) and wf(G(j; i) : X2),
respectively. Let X = X1 [X2 and let Q be the graph de�ned by: V (Q) =
V (G) � X and E(Q) = E(Q1) [E(Q2). Now since H is a triangulation of
G : X we get that wif(G;X) is at most the right hand side of Formula 13.

(�) Let X be a set of vertices establishing wif(G;X). Suppose X = ;,
i.e., wif(G) = c(V (G)) +wf(G). Let Q be a triangulation of G establishing
wf(G). Let fvi; vjg be any edge in E(Q) � E(G). Let Q1 = Q[fvi; : : : ; vjg]
and Q2 = Q[fvj; : : : ; vn; v1 : : : ; vig]. Now observing that Q1 and Q2 are
triangulations of G(i; j) and G(j; i) respectively, we get that the right-hand
side of Formula 13 for these i and j is at most wif(G).

Suppose X 6= ;, i.e., there exists x 2 X. Let vi and vj be the two
neighbors of x in G. Now using a similar argument we can obtain that the
right-hand side of Formula 13 for these i and j is at most wif(G). ut

De�ne

A(i; j) =

(
1 if ji� jj � 2;

0 otherwise:

We omit the proof of the following lemma which is similar to the proof
of Lemma 55.

Lemma 56 For 1 � i � j � 2 � n,

wif(1(fvi; vjg); G(i; j)) =

min
i<l<j

wif(1(fvi; vlg); G(i; l)) + wif(1(fvl; vjg); G(l; j))+

A(i; l) � w(vi) � w(vl) + A(l; j) � w(vl) � w(vj)� c(vl):

(14)

35

wif(1(fvi; vjg); G(j; i)) =

min
l2fj+1;:::;n;1;:::;i�1g

wif(1(fvj; vlg); G(j; l)) + wif(1(fvl; vig); G(l; i))+

A(j; l) � w(vj) � w(vl) + A(l; i) � w(vl) � w(vi)� c(vl):

(15)

We now order all pairs i; j such that 1 � i � j � 2 � n by increas-
ing order of j � i and calculate in this order wif(1(fvi; vjg); G(i; j)) and
wif(1(fvi; vjg); G(j; i)) using Formulas 14 and 15. Since each calculation
takes O(n) time and we have O(n2) pairs the total time for calculating these
values is O(n3). Having all these values we can compute wif(G) using For-
mula 13 in O(n2) time. We have shown that the WI-FILL-IN problem on
the class of cycles can be solved in O(n3) time. Hence by Theorem 45 we
get:

Theorem 57 Let C be a class of graphs which is modularly decomposable
into the class of cycles. Then the MINIMUM-FILL-IN problem on C can be
solved in O(n3) time.

6.3 Clique-matching graphs

In this section, we give a polynomial time algorithm for the WI-FILL-IN
problem for clique-matching graphs. Suppose that Cr = (V [W;Er) is a
weighted clique-matching graph with 2r vertices. We �rst give an algorithm
to compute the weighted �ll-in of a clique-matching graph Cr.

We �rst show that there is an ordering of the vertices of W such that the
triangulation is formed by making every vertex wj adjacent to all vertices vi
with wi later than wj in the ordering.

Lemma 58 Let Q be a minimal triangulation of Cr. There is an ordering
� of the vertices of W such that E(Q) = Er [ffwi; vjg j wi � wj; 1 � i �
r; 1 � j � r; i 6= jg.

Proof. Use induction to r. For r = 1 the lemma follows immediately since
E(Q) = E(C). Suppose the lemma holds for r � 1. Let Q be a minimal
triangulation of the graph Cr. As V has a full component, there must be a
vertex wi in W such that V [fwig forms a clique in Q. If vi is adjacent in
Q to any vertex wj, j 6= i, then triangulation Q is not minimal. It follows
that the graph Q0 , obtained by removing vi and wi and their adjacent edges

36

from Q is a minimal triangulation of Cr�fvi; wig. Let �0 be the ordering on
W � fwig such that E(Q0) = E(Cr � fvi; wig) [ffwi0; vjg j wi0 �

0 wj; 1 �
i0 � r; 1 � j � r; i0; j 6= ig. Now, let � be the ordering on W such that for
all wj; wj0 2 W �fwig, wj � wj0 if and only if wj �0 wj0, and for all wj 2 W ,
wi � wj, i.e., we take ordering �0 and add wi as smallest element. One now
easily sees that � ful�ls the condition of the lemma. ut

We also have that given an ordering � of W , the edge set Er [
ffwi; vjg j wi � wj; 1 � i � r; 1 � j � r; i 6= jg gives a triangulation
of Cr. For an ordering � of W , let the �ll-in of the ordering be

FI(�) =
X

wi�wj ; 1�i�r; 1�j�r; i6=j

w(wi) � w(vj)

FI(�) exactly denotes the total weight of all edges added in the triangulation
corresponding to ordering �, and thus the problem to compute the weighted
�ll-in of Cr becomes the problem to �nd an ordering � of W with minimum
�ll-in FI(�).

Lemma 59 An ordering � has minimum �ll-in among all orderings of W ,
if and only if for all wi, wj 2 W

wi � wj)
w(wi)

w(vi)
�
w(wj)

w(vj)

Proof. Consider an ordering � of W . Suppose wi and wj are successive
elements in this ordering with wi � wj, i.e., there is no wi0 =2 fwi; wjg
with wi � wi0 � wj. Let �0 be the ordering obtained from � by switching
the order of wi and wj (and keeping the relative order for all other pairs).
Considering all the terms that appear in FI(�) and FI(�0), we see that
FI(�0)� FI(�) = w(wj) �w(vi)� w(wi) � w(vj).

If w(wi)
w(vi)

>
w(wj)

w(vj)
then w(wj) � w(vi) � w(wi) � w(vj) < 0, hence FI(�0) <

FI(�). Thus, if � has minimum �ll-in among all orderings of W , it must

order the vertices of W with respect to non-decreasing values of w(wi)
w(vi)

.

If w(wi)
w(vi)

=
w(wj)

w(vj)
, then w(wj)�w(vi)�w(wi)�w(vj) = 0, so FI(�0) = FI(�).

As all orderings of W that give the vertices in order of non-decreasing values
w(wi)
w(vi)

can be obtained from each other by a number of switches of successive
elements of equal such values, we have that all such orderings have the same
�ll-in, so all of these have minimum �ll-in. ut

37

Lemma 59 directly gives an O(r2) algorithm to solve the WEIGHTED
FILL-IN problem on clique-matching graphs: sort the vertices in W with
respect to the values w(wi)

w(vi)
, and then build the corresponding triangulation

as described above. As the triangulated graph has �(r2) edges, this latter
step dominates the running time. Only computing the value of the weighted
�ll-in can be done a little faster: one can compute in total linear time all
terms

P
wi�wj

w(vj) for all wi 2 W , and then directly compute FI(�) =P
wi2W

w(wi) �
P

wi�wj
w(vj).

Lemma 60 The WEIGHTED FILL-IN problem on clique-matching graphs
can be solved in O(n logn) time. A triangulation of a clique-matching graph
with minimum weighted �ll-in can be found in O(n2) time.

As in Section 5, we use that a clique-matching graph has independent
sets of size at most two, and that for every wi 2 X, vi is simplicial in Cr : X,
and for every vi 2 X, wi is simplicial in Cr : X. Moreover, we can use the
following simple lemma.

Lemma 61 Let v be a simplicial vertex in G. Then the weighted �ll-in of G
equals the weighted will-in of G� v.

Thus, we can try all O(n2) independent sets X of G, and as the graphs
obtained after removing simplicial vertices from G : X are again clique-
matching graphs, use in each case the algorithm to compute the weighted
�ll-in of each of these graphs. Note that we can reuse the orderings of the
vertices; i.e., we need to sort the vertices only once for their values w(wi)

w(vi)
.

Thus, we have:

Lemma 62 The WI-FILL-IN problem can be solved in O(n3) time for clique-
matching graphs.

7 Conclusions

Consider the following operation, that given a graph G and for every vi 2
V (G) a graph Hvi, gives the graph G(Hv1 ; : : : ; Hvn). Theorems 9 and 45
show that the treewidth and minimum �ll-in of the composed graph are a
function of the numbers of vertices and treewidths (respectively, minimum
�ll-ins) of the graphs Hvi . These functions are expressed by respectively the

38

WI-TREEWIDTH and WI-FILL-IN problems. In this paper, we have shown
for a number of classes of graphs that for graphs in these classes these notions
are computable, i.e., graphs in these classes can play the role of the graph
G in the substitution operation when we want to compute the treewidth
or minimum �ll-in. In particular, we looked at graphs with a polynomial
number of separators (a fairly large class of graphs) and at clique-matching
graphs (a rather restricted class of graphs, introduced just to show that there
are also solvable cases with an exponential number of separators.) A natural
question is how to solve the WI-TREEWIDTH and WI-FILL-IN problems
on other interesting classes of graphs in polynomial time, for instance the
class of graphs of treewidth at most some �xed number k.

Acknowledgements

We thank the referees for their careful reading and helpful comments on an
earlier version of this paper. The �rst author was partially supported by EC
contract IST-1999-14186: Project ALCOM-FT (Algorithms and Complexity
- Future Technologies). The second author wishes to thank the Natural
Science and Engineering Research Council of Canada and the Fields Institute
for �nancial assistance.

References

[1] S. Arnborg. EÆcient algorithms for combinatorial problems on graphs
with bounded decomposability { A survey. BIT, 25:2{23, 1985.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277{284, 1987.

[3] L. Babel. Triangulating graphs with few P4's. Disc. Appl. Math., 89:45{
57, 1998.

[4] A. Berry, J. Brodat, and O. Cogis. Generating all minimal separators of a
graph. In Proceedings 25nd International Workshop on Graph-Theoretic
Concepts in Computer Science WG'99, pages 167{172, 1999.

39

[5] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Ap-
proximating treewidth, pathwidth, frontsize, and minimum elimination
tree height. J. Algorithms, 18:238{255, 1995.

[6] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth
of permutation graphs. SIAM J. Disc. Math., 8(4):606{616, 1995.

[7] H. L. Bodlaender and R. H. M�ohring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Math., 6:181{188, 1993.

[8] V. Bouchitt�e and I. Todinca. Minimal triangulations for graphs with
\few" minimal separators. In Proceedings ESA'98, pages 344{355.
Springer Verlag, Lecture Notes in Computer Science, vol. 1461, 1998.

[9] V. Bouchitt�e and I. Todinca. Treewidth and minimum �ll-in of weakly
triangulated graphs. In Proceedings STACS'99, pages 197{208. Springer
Verlag, Lecture Notes in Computer Science, vol. 1563, 1999.

[10] V. Bouchitt�e and I. Todinca. Listing all potential maximal cliques of a
graph. In H. Reidel and S. Tison, editors, Proceedings STACS'00, pages
503{515. Springer Verlag, Lecture Notes in Computer Science, vol. 1770,
2000.

[11] H. Broersma, E. Dahlhaus, and T. Kloks. Algorithms for the treewidth
and minimum �ll-in of hhd-free graphs. In Proceedings 23nd Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science
WG'97, pages 109{117. Springer Verlag, Lecture Notes in Computer
Science, vol. 1335, 1997.

[12] H. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for
minimum �ll in and treewidth for distance hereditary graphs. Disc.
Appl. Math., 99:367{400, 2000.

[13] H. Buer and R. H. M�ohring. A fast algorithm for the decomposition of
graphs and posets. Mathematics of Operations Research, 8(2):170{184,
1983.

[14] A. Cournier and M. Habib. A new linear algorithm for modular de-
composition. In T. Sophie, editor, Trees in algebra and programming,
CAAP'94, pages 68{84. Springer Verlag, Lecture Notes in Computer
Science, vol. 787, 1994.

40

[15] E. Dahlhaus. Minimum �ll-in and treewidth for graphs modularly de-
composable into chordal graphs. In Proceedings 24nd International
Workshop on Graph-Theoretic Concepts in Computer Science WG'98,
pages 351{358. Springer Verlag, Lecture Notes in Computer Science, vol.
1517, 1998.

[16] E. Dahlhaus, J. Gustedt, and R. M. McConnell. EÆcient and practical
modular decomposition. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 26{35, 1997.

[17] G. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg,
25:71{76, 1961.

[18] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, New York, 1980.

[19] T. Kloks. Treewidth of circle graphs. Int. J. Found. Computer Science,
7:111{120, 1996.

[20] T. Kloks and D. Kratsch. Listing all minimal separators of a graph.
SIAM J. Comput., 27(3):605{613, 1998.

[21] T. Kloks, D. Kratsch, and H. M�uller. Approximating the bandwidth for
asteroidal triple-free graphs. J. Algorithms, 32:41{57, 1999.

[22] T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum �ll-in
of asteroidal triple-free graphs. Theor. Comp. Sc., 175:309{335, 1997.

[23] R. M. McConnell and J. Spinrad. Modular decomposition and transitive
orientation. Disc. Math., 201:189{241, 1999.

[24] R. H. M�ohring. Graph problems related to gate matrix layout and PLA
folding. In E. Mayr, H. Noltemeier, and M. Sys lo, editors, Computational
Graph Theory, Comuting Suppl. 7, pages 17{51. Springer Verlag, 1990.

[25] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7:309{322, 1986.

[26] R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Treewidth of
circular-arc graphs. SIAM J. Disc. Math., 7:647{655, 1994.

41

[27] M. Yannakakis. Computing the minimum �ll-in is NP-complete. SIAM
J. Alg. Disc. Meth., 2:77{79, 1981.

42

