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Abstract. A parser is a program that checks if a text is a sentence
of the language as described by a grammar. Traditionally, the program
text of a parser is generated from a grammar description, after which it is
compiled and subsequently run. The language accepted by such a parser
is, by the nature of this process, hardcoded in the program. Another
approach, primarily taken in the context of functional languages, allows
parsers to be constructed at runtime, thus dynamically creating parsers
by combining elements from libraries of higher level parsing concepts; this
explanins the the name “parser combinators”. Efficient implementation
of this concept relies heavily on the laziness that is available in modern
functional languages [13, 14]. This paper shows how to use parser com-
binators in a functional language as well as Java, and shows how parser
combinators can be implemented in Java. Implementing parser combi-
nators is accomplished by combining two libraries. The first one, written
in Haskell, defines error-correcting and analysing parser combinators [2].
The second one consists of a small Java library implementing lazy func-
tional behavior. The combinator library is straightforwardly coded in
Java, using lazy behavior where necessary. In this paper all three as-
pects, the two libraries and its combination, are explained.

1 Introduction

Creating a parser for a grammar normally is a two step process. As a starting
point some tool specific notation for a grammar specification is used. From this
grammar specification an executable specification in a programming language
is generated using a parser generator, subsequently compiled into an executable
format. For example, using Java [4], one could use JavaCC [1] to generate a Java
program to be compiled subsequently.

This two step process makes it possible to create highly efficient parsers.
The parser generation phase usually analyses a grammar and takes advantage
of programming language properties. However, this efficiency does not come
without a price.

Generally, all information about the original grammar has been lost when a
separate program is generated. Though this information can be added as ‘debug’



information to the generated parser, it will not repair the fact that the structure
of a grammar has been hardcoded into the generated program. In general, this
prevents the programmatic (runtime) manipulation of the original parser (and
grammar) as this would require (runtime) rebuilding of the generated informa-
tion.

Losing the ability to perform runtime manipulation and creation of parsers
often is not such a high price to pay, except in situations where the input language
described by a grammar may influence the grammar itself. For example, Haskell
[5, 13] allows the programmer to define operators with their priority as well as
associativity. The following lines, specifying the priority and left associativity of
some operators, are from the prelude of Hugs [9]:

infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘, :%, %

infixl 6 +, -

These declarations influence the way expressions are parsed and the abstract
syntax tree for expressions is constructed. A parser needs this runtime gathered
information about the precedence of operators to do its job. This can be accom-
plished via precedence parsing (see e.g. [3]) in the form of additional information
steering the parsing process. However, such a solution is tailored for this spe-
cial problem, that is, parsing expressions. A more general solution would be to
construct a parser at runtime using the declared fixity and priority information
about the operators. This is generally not possible when a generator is used.

In contrast, runtime manipulation of parsers is one of the strong points of
parser combinators [7, 6, 8, 10, 16, 15]. In the context of parser combinators, a
parser is a first class value, to be used or combined as part of other parsers and
passed around like any other (programming) language value.

Another advantage of parsers being first class citizens is that it allows the
definition of building blocks and the construction of abstract grammatical con-
structs out of these building blocks. This is similar to regular expressions (see
e.g. [3]) where regular expressions can be optional (using ?), be grouped (using (,
)) and repeated (using *, +). Parser combinators allow us to go one step further
by letting the programmer define his own abstractions. These abstractions then
can ease the construction of a parser for a grammar.

The flexibility of parser combinators however has its usual price: decreased
performance. Straightforward implementations of parser combinators [7, 6] rely
on backtracking, to determine which alternatives in a grammar production rule
are the ones matching a given input. Because of the non-linear (w.r.t. input
length and/or grammar size) runtime costs this is unacceptable except for demon-
stration purposes. Monad based parser combinators [8, 10] allow the restriction
of backtracking but this requires a careful grammar design. Only when (runtime)
analysis is done on combined parsers backtracking can be avoided [16, 15] and a
useful way of error recovery can be offered.

Parser combinator implementations which provide error correction and re-
porting as well as grammar analysis thus offer a solution to the grammar and
parser writer in which both flexibility and performance are at an acceptable level.
Efficient implementations for parser combinators however are generally written



in a functional language like Haskell, mainly because of the easy embedding of
parser combinators into the language. Also, the advanced type systems offered
by functional languages assist in detection of errors in an already complex im-
plementation. And, last but not least, parser combinator implementations need
laziness to allow “infinite” grammars, and to avoid unnecessary computations
while retaining their notational flexibility.

The aim of this paper is to make parser combinator implementations available
for imperative programming environments, and more specific, for Java. This
paper elaborates on several different, but related subjects. First, we want to show
how parser combinators can be used (section 2) and implemented (section 3).
Second, we want to show how parser combinators can be used in Java (section 4).
Finally, we will discuss how this can be implemented in Java (section 5).

It is assumed that the reader is familiar with Haskell as well as Java. Some
familiarity with parser combinators would be helpful. This is also the case for
implementation techniques for functional languages, especially graph reduction.
This paper does not go further than marginally explaining these subjects as it
is the goal to tie together different aspects of different paradigms.

As a running example we will use a small grammr, the foobar of parsing,
expressed in EBNF:

<expr> ::= <term> ((’+’ | ’-’) <term>)* .

<term> ::= <factor> ((’*’ | ’/’) <factor>)* .

<factor> ::= (’0’..’9’)+ | ’(’ <expr> ’)’ .

2 Parsing with parser combinators

2.1 Basics

Conceptually, a parser is something which takes textual input and returns a value
which is calculated using the recognised structure of the textual input. Using
generated parsers, this is often done explicitly by using a stack of (intermediate)
results. Each recognised nonterminal results in a value, which is pushed onto the
stack. The arithmetic value of the expression is used as an example throughout
this paper. A parser combinator captures this notion more directly by defining
a parser to be a function returning a result. The basic idea of such a parser’s
functionality is written in Haskell as:

type Parser = String -> Int

expr :: Parser

expr = ...

Thus a parser is a function taking an input string and yielding an integer
result.

This definition of what a parser is (i.e. its type) turns out to be insufficient
as it is unknown how much of the input has been used by a parser. A parser
only consumes part of the input, so, what is left over after a parser returns its
result should also be returned:

type Parser = String -> (Int,String)



BNF Combinator Result

symbol ’s’ pSym ’s’ ’s’
choice x | y x ’<|>’ y result of x or result of y
sequence x y x ’<*>’ y result of x applied to result of y
empty pSucceed v v

Fig. 1. Basic parser combinators and BNF.

The result of a parse now has become a tuple containing the result and the
remainder of the input.

A second problem is the handling of errors. We will look at error recovery
later (section 3.2) and for the time being consider an error to be a situation where
no result can be computed. This can be encoded by letting a parser return a list
of results. The empty list indicates an error:

type Parser = String -> [(Int,String)]

This also allows a parser to return multiple results, a feature which is used
by the simplest implementation to handle alternatives of a grammar production
rule. This definition is the most commonly ([7, 6]) used. Finally, we generalise
the Parser type by parameterising it with the type of the input symbols and
the tupe of the result:

type Parser sym res = Eq sym => [sym] -> [(res,[sym])]

In this setting the BNF constructs have their parser combinator counterparts
defined as functions. A parser for terminal symbol ’a’ is constructed using the
basic function pSym:

pSucceed :: a -> Parser s a

pSym :: Eq s => s -> Parser s s

(<|>) :: Eq s => Parser s a -> Parser s a -> Parser s a

(<*>) :: Eq s => Parser s (b -> a) -> Parser s b -> Parser s a

Sequencing and choice are explicitly constructed using <*> and <|> respec-
tively (see figure 1). The <factor> nonterminal of the example grammar now
translates to

pFact = pNat

<|> pSym ’(’ <*> pExpr <*> pSym ’)’

This definition is not yet correct. Apart from a missing definition for pNat
it is unclear what the result of pFact is. BNF does not enforce the grammar
writer to specify anything about results since a BNF grammar definition only
says something about the concrete syntax, not the underlying semantics.

Each parser returns a value as the result of parsing a piece of input. The sym-
bol parser pSym just returns the parsed symbol itself, whereas the choice parser



combinator <|> conceptually returns the result of the chosen alternative1. The
parser for the empty string pSucceed returns the passed parameter as its result
because no input was parsed to derive a value from. The sequence combinator
requires the result of its left argument to be a function, which is then applied
to the result of the second parser. With these rules in mind the definition for
pFact can be written as:

pFact = pNat

<|> pSucceed (\_ e _ -> e)

<*> pSym ’(’ <*> pExpr <*> pSym ’)’

The result of pNat now is a natural number or the value of another expression,
both an Int in the example. The result values of the parenthesis are not used.

2.2 Higher order parser combinators

One of the nicest features of using parser combinators embedded in a general
purpose programming language is that it allows the programmer to define his
own combinators and abstractions. For example, the second alternative of the
definition for pFact in the preceding section parses an expression surrounded by
parenthesis. We could abstract over this ‘surrounded by parenthesis’ by defining:

pParens x = pSucceed (\_ e _ -> e) <*> pSym ’(’ <*> x <*> pSym ’)’

The combinator pParens itself is a special case of the combinator pPacked
representing the abstraction ‘surrounded by ...’:

pPacked l r x = pSucceed (\_ e _ -> e) <*> l <*> x <*> r

pParens = pPacked (pSym ’(’) (pSym ’)’)

The combinator pPacked itself may be built upon several ‘throw a result
away’ abstractions:

pPacked l r x = l *> (x <* r)

The *> and <* combinators are variants of the sequence combinator <*>
which throw away the result of the left respectively right parser given as argu-
ment to the respective combinators:

f <$> p = pSucceed f <*> p

p <* q = (\ x _ -> x) <$> p <*> q

p *> q = (\ _ x -> x) <$> p <*> q

The application parser combinator <$> is a shorthand for the already used
combination of pSucceed f followed by an arbitrary parser p, used for applying
a function to the result of p.

Even more useful are combinators which encapsulate repetition, as the coun-
terpart of * and + in the EBNF grammar at the end of section 1. For example,
the parser pNat for an integer may be written as
1 When using the implementation based on lists, as in this section, a list of results
will be returned.



pDigit = (\d -> ord d - ord ’0’) <$> pAnySym [’0’..’9’]

pNat = foldl (\a b -> a*10 + b) 0 <$> pList1 pDigit

The combinator pList1 takes a parser for a single element of a repetition and
uses it to parse a sequence of such elements. The result of pList1 is a non-empty
list of result values of the single element parser. In this example this list is then
converted to an Int value.

All the combinator variants parsing a sequence behave similarly to pList1.
The variants differ in the handling of the single element results and the minimum
number of repetitions:

p ‘opt‘ v = p <|> pSucceed v

pFoldr alg@(op,e) p = pfm where pfm = (op <$> p <*> pfm) ‘opt‘ e

pList p = pFoldr ((:), []) p

pList1 p = (:) <$> p <*> pList p

The basic building block of these sequencing combinators is the folding com-
binator pFoldr which works similar to the foldr from Haskell. A unit value e is
used as the result for an empty list and a result combining operator op is used
to combine two result values. The combinator pList then uses pFoldr to build
a list from the sequence. This list may be empty, i.e. no elements may be parsed,
whereas pList1 parses a sequence non-zero length.

For pFoldr and its derivatives the way elements of a sequence are combined
is fixed. That is, the programmer specifies alg@(op,e) and the parsed input
does not influence this. However, this does not work for:

<term> ::= <factor> ((’*’ | ’/’) <factor>)* .

For <term> the combination of two factors within a sequence of factors is
determined by the operator in between. In other words, the result of parsing an
operator determines how two factors are to be combined. The parsing result of
(’*’ | ’/’) thus somehow has to be used to combine two factors. This is done
by the chain combinator pChainl used to define pTerm and pExpr as follows:

pTerm = pChainl ( (*) <$ pSym ’*’

<|> div <$ pSym ’/’

)

pFact

pExpr = pChainl ( (+) <$ pSym ’+’

<|> (-) <$ pSym ’-’

)

pTerm

The combinator pChainl (and its right associative variant pChainr) take
two parsers, one for the elements of a sequence and one for the separator be-
tween them. For pTerm the elements of the sequence are pFact’s, separated by
either a * or a /. The chain combinators expect the result of the separator
parser to be a function accepting (at least) two arguments. This is precisely
what (*) <$ pSym ’*’ and div <$ pSym ’/’ return.



module Extended0 where

import Basic0

infixl 4 <$>, <$, <*, *>, <**>, <??>

infixl 2 ‘opt‘

pAnySym:: Eq s => [s] -> Parser s s

opt :: Eq s => Parser s a -> a -> Parser s a

(<$>) :: Eq s => (b -> a) -> Parser s b -> Parser s a

(<$ ) :: Eq s => a -> Parser s b -> Parser s a

(<* ) :: Eq s => Parser s a -> Parser s b -> Parser s a

( *>) :: Eq s => Parser s a -> Parser s b -> Parser s b

(<**>) :: Eq s => Parser s b -> Parser s (b->a) -> Parser s a

(<??>) :: Eq s => Parser s b -> Parser s (b->b) -> Parser s b

pAnySym = foldr (<|>) pFail . map pSym

p ‘opt‘ v = p <|> pSucceed v

f <$> p = pSucceed f <*> p

f <$ p = const f <$> p

p <* q = (\ x _ -> x) <$> p <*> q

p *> q = (\ _ x -> x) <$> p <*> q

p <**> q = (\ x f -> f x) <$> p <*> q

p <??> q = p <**> (q ‘opt‘ id)

pFoldr alg@(op,e) p

= pfm where pfm = (op <$> p <*> pfm) ‘opt‘ e

pFoldrSep alg@(op,e) sep p

= (op <$> p <*> pFoldr alg (sep *> p)) ‘opt‘ e

pFoldrPrefixed alg@(op,e) c p = pFoldr alg (c *> p)

pList p = pFoldr ((:), []) p

pListSep s p = pFoldrSep ((:), []) s p

pListPrefixed c p = pFoldrPrefixed ((:), []) c p

pList1 p = (:) <$> p <*> pList p

pChainr op x = r where r = x <**> (flip <$> op <*> r ‘opt‘ id)

pChainl op x = f <$> x <*> pList (flip <$> op <*> x)

where

f x [] = x

f x (func:rest) = f (func x) rest

pPacked l r x = l *> x <* r

pOParen = pSym ’(’

pCParen = pSym ’)’

pParens = pPacked pOParen pCParen

Fig. 2. Higher order parser combinator functions.



module Basic0 where

infixl 3 <|>

infixl 4 <*>

type Parser s a = ...

pSucceed :: a -> Parser s a

pFail :: Parser s a

pSym :: Eq s => s -> Parser s s

(<|>) :: Eq s => Parser s a -> Parser s a -> Parser s a

(<*>) :: Eq s => Parser s (b -> a) -> Parser s b -> Parser s a

pSucceed v input = ...

pFail input = ...

pSym a input = ...

(p <|> q) input = ...

(p <*> q) input = ...

data Reports = Error String Reports

| NoReports

deriving Eq

instance Show Reports where

show (Error msg errs) = msg ++ "\n" ++ (show errs)

show (NoReports ) = ""

parse :: Parser s a -> [s] -> (a,Reports)

parse p inp = ...

Fig. 3. Basic parser combinator functions.

The definition for the chain combinator as well as the other combinators can
be found in figure 2.

As we will consider different implementations of parser combinators in sec-
tion 3 we will interface with a parser via a function parse which hides the
invocation details and returns a result as well as error messages, see figure 3. In
figure 4 it is shown how the function parse is used in a small calculator based
on the preceding definitions for pExpr (see figure 5 for the complete listing).

3 Implementing parser combinators

Implementations of parser combinators have to take care of several aspects:

– checking if input is accepted by a grammar (error detection).
– returning a value as directed by the input (syntax directed computation).



on :: Show a => Parser Char a -> [Char] -> IO ()

on p inp -- run parser p on input inp

= do let (res, msgs) = parse p inp

putStr (if msgs == NoReports then "" else "Errors:\n" ++ show msgs)

putStr ("Result:\n" ++ show res ++ "\n")

main :: IO ()

main = do putStr "Enter expression: "

inp <- getLine

pExpr ‘on‘ inp

main

Fig. 4. Usage of ’parse’ to interface with parser.

pDigit = (\d -> ord d - ord ’0’) <$> pAnySym [’0’..’9’]

pNat = foldl (\a b -> a*10 + b) 0 <$> pList1 pDigit

pFact = pNat

<|> pParens pExpr

pTerm = pChainl ( (*) <$ pSym ’*’

<|> div <$ pSym ’/’

)

pFact

pExpr = pChainl ( (+) <$ pSym ’+’

<|> (-) <$ pSym ’-’

)

pTerm

Fig. 5. Expression parser.



– if input is not accepted make attempts to repair (error recovery).
– minimizing the amount of unnecessary parsing steps by performing grammar

analysis.

The first and second of these aspects are easily implemented [7, 6] by following
the suggested representation of section 2. Error recovery attempts to repair a
parse by adding symbols to the inputstream or deleting symbols from the input-
stream. Finally, by analysing a grammar lookahead information can be extracted.
Of these subjects all except the grammar analysis are covered in the following
paragraphs.

3.1 Backtracking

When backtracking, a parser just returns all possible parses and makes no at-
tempt to predict if one will fail or not. In particular, a combinator just makes
an attempt to parse by trying out its components. The combinator pSym is the
only combinator really making a decision about the correctness of the input.
The parser actually works like a recursive descent parser and will -if necessary-
check all the returned solutions.

pSucceed v input = [ (v , input)]

pFail input = [ ]

pSym a (b:rest) = if a == b then [(b,rest)] else []

pSym a [] = []

(p <|> q) input = p input ++ q input

(p <*> q) input = [ (pv qv, rest )

| (pv , qinput) <- p input

, (qv , rest ) <- q qinput

]

parse :: Parser s a -> [s] -> (a,Reports)

parse p inp

= let results = p inp

filteredResults = filter (null . snd) results

in case filteredResults of

[ ] -> (undefined,Error "no correct parses" NoReports)

[(res,_) ] -> (res,NoReports)

((res,_):rs) -> (res,Error "ambiguous parses" NoReports)

This ‘reference’ implementation (based on [7, 6]) of the building blocks for
parser combinators is not efficient. For smaller examples without many alterna-
tive productions for a nonterminal this approach still works. A grammar having
many alternatives will lead to a recursive descent parsing process where all al-
ternatives are descended, without making an attempt beforehand to determine
which alternatives surely will yield no valid parse.

Another deficiency of this implementation is that an error in the input is not
handled at all; the parser simply concludes that no parse tree can be built and



will return an empty list of results. No indication of the location of an error is
given.

Both of these problems can be remedied by passing extra information around.
In the basic ideas for passing this information around are discussed. As an exam-
ple of the error correction is taken. The grammar analysis required for preventing
unnecessary tryouts of alternatives is left out and can be found in [2].

3.2 Error recovery

Handling errors as well as performing grammar analysis requires a non-trivial
definition of a parser. This section only serves to give an idea of the required
structures and leaves out details. For an understanding of parser combinator
usage and its Java counterpart, this section may be skipped.

A parser still is something which accepts input and produces a value as a
result of parsing the given input. In the following definition of Parser this is
expressed by ([s] -> Result b) and ([s] -> Result (a,b)), which are the
functions performing the actual parsing.

type Result c = ((c,String),[Int])

type Parser s a b = ([s] -> Result b)

-> ([s] -> Result (a,b))

A difference is that output not only contains a result, but error messages (a
String) and a list of costs (Int’s) as well. This is expressed in the definition of
Result. Each element of the list of costs describes the cost of a parsing step.

Another difference is that each parser is given a continuation representing
the stack of symbols that still have to be recognised. This can best be seen by
looking at the definition of pSucceed:

addresult v ~(~(r,msgs), ss) = (((v,r), msgs), ss)

pSucceed v = \k input -> (addresult v) (k input)

The combinator pSucceed is a function accepting the continuation parser
k and input. The combinator returns both the given v as well as the result of
parsing the rest of the input via the invocation k input. The construction of this
combination is performed in addresult. The result is obtained by applying the
continuation to the input. The input is by definition not modified by pSucceed
and passed along unmodified.

This definition for pSucceed and other parser combinators works because
an expression like k input is lazily evaluated. So it can be referred to, and be
returned as a result without being evaluated at all. Laziness becomes even more
important when the result of k input is inspected. This happens when choices
have to be made, in particular when a choice has to be made between error
corrections. The given construction then allows to inspect the parsing future.

The combinator pSym is the combinator where the actual comparison with
input takes place. Consequently, this is also the place where possible error cor-
rections can be tried:



addstep s ~( v , ss) = (v , s:map (+s) ss)

addmsg m ~(~(r,msgs), ss) = (( r , m++msgs), ss)

insert a = addresult a.addstep (penalty a)

.addmsg (" Inserted:" ++ show a++"\n")

delete b = addstep (penalty b)

.addmsg (" Deleted :" ++ show b++"\n")

pSym a k inp@(b:bs) | a == b = addstep 0.addresult b.k $ bs

| otherwise = best ((insert a) (k inp))

((delete b) (pSym a k bs))

pSym a k inp@[] = (insert a) (k inp)

penalty s = if s == ’\EOT’ then 1000 else (ord s -ord ’a’)::Int

best = ...

Though more complicated than the previous version, pSym still inspects a
symbol of the input. If a matching symbol is found it is added as a result (via
addresult) with zero cost (via addstep). If the end of the input is reached an
insertion in the inputstream of the expected symbol will be made, followed by a
parse attempt of the continuation k on the input. If the expected symbol does
not match the actual input symbol two repair actions are possible. Either the
expected symbol is missing and should be inserted, or the actual input symbol
should be deleted from the inputstream. In all the cases where a correction is
made, a non-zero cost (penalty) is added to the result. The correction attempts
are tried and compared using the function best:

best left@(lvm, []) _ = left

best _ right@(rvm,[]) = right

best left@(lvm, 0:ls) right@(rvm, 0:rs) =

addstep 0 (best (lvm, ls) (rvm, rs))

best left@(lvm, ls) right@(rvm, rs)

= ( if (ls ‘beats‘ rs) 4 then lvm else rvm

, zipWith min ls rs)

([] ‘beats‘ rs ) _ = True

(_ ‘beats‘ [] ) _ = False

( [l] ‘beats‘ (r:_)) _ = l < r

((l:_) ‘beats‘ [r] ) _ = l < r

((l:ls) ‘beats‘ (r:rs)) n = (if n == 0 then l < r

else (ls ‘beats‘ rs) (n-1))

The function best compares two parses by comparing their costs and choos-
ing the parse with the lowest cost. If necessary, best looks into the ‘future’ until
it finds non-zero costs. These are then compared, but only a limited number of
steps ahead (here: 4) in order to avoid excessive tryouts of corrections.

Selecting between alternatives using best is seen more clearly in the definition
of the choice combinator <|>:

p <|> q = \k input -> p k input ‘best‘ q k input

p <*> q = \k input -> let (((pv, (qv, r)),m),st) = p (q k) input

in (((pv qv, r), m), st)

pFail = \_ _ -> ((undefined, []), repeat 10000)



The combinator <*> is relatively simple since no comparisons have to be
made, only extraction of results and applying the result of p (pv) to the result
of p (pv). The messages and the costs are passed unmodified.

Further discussion of the implementation of these parser combinators falls
outside the scope of this paper. Part of its origin can be found in [16, 15]. How-
ever, it should be noted that the Haskell library for parser combinators is con-
structed alongs the lines discussed here, and also allows different functions best
to be used. The Java version of the library consequently also allows this.

4 Parser combinators in Java

Writing a parser in Java, using parser combinators, (currently) boils down to
compiling the Haskell definition to its Java equivalent by hand. A library of
functions on top of a small lazy functional engine (section 5) has to be used for
this purpose. This library provides the same functionality as the parser combi-
nator library, combined with a minimal necessary subset of the Haskell prelude.

4.1 Lazy functional programming in Java

When using parser combinators, parsers are functions, and functions are repre-
sented by Objects which can be apply’d to arguments. Before we look at the
Java equivalent of the Haskell expression parser combinators, we first show how
lazy evaluation is realised in Java. The definition and usage of factorial in Haskell
is used to show how this is done:

fac n = if n > 0

then n * fac (n-1)

else 1

main = fac 10

We will give several equivalents in Java with the purpose of showing how
laziness can be used in varying degrees.

In Java, the factorial is normally (that is, imperatively) written as:

int fac( int n )

{

if ( n > 0 )

return n * fac( n-1 ) ;

else

return 1 ;

}

However, Java is a strict language, all arguments are computed before being
passed to a method. This behavior has to be avoided because laziness is required
instead. Since it is not possible to rely on basic Java evaluation mechanisms,
basic functionality like integer arithmetic and method invocation is offered in a
functional Java equivalent, packaged in a small Java library.



First, we have to define the factorial function. The Java library for the func-
tional machinery contains a Function class which can be subclassed to define
a new function. To be more precise, for fac we have to subclass Function1, a
subclass of Function for defining one-argument functions. It is required to de-
fine the method eval1 for the subclass of Function1. This method is used by
the evaluation mechanism to perform the actual evaluation of a function once a
parameter has been bound:

import uu.jazy.core.* ;

import uu.jazy.prelude.* ;

public class Fac

{

static Eval fac =

new Function1()

{

public Object eval1( Object n )

{

return

Prelude.ifThenElse.apply3

( Prelude.gt.apply2( n, Int.Zero )

, Prelude.mul.apply2

( n

, fac.apply1( Prelude.sub.apply2( n, Int.One ) )

)

, Int.One

) ;

}

} ;

...

}

The definition uses the core package because the class Function1 belongs
to it. The prelude package offers a subset of the Haskell prelude. For example
the test n > 0 is written as Prelude.gt.apply2( n, Int.Zero ). Basically, all
function definitions in a Haskell program are translated to subclasses of Function
and all function applications are translated to the invocation of an appropriate
variant of apply on an instance of such a subclass.

The big difference between the two given Java solutions is that the first one
computes the result when invoked and the latter one creates an application data
structure describing the computation. Only when explicitly asked for, this data
structure is evaluated and returns the value represented by the data structure.
This is done by calling the method eval from class Eval:

public class Fac

{

...

public static void main(String args[])



{

System.out.println( fac( 10 ) ) ;

System.out.println

( ((Int)Eval.eval( fac.apply1( Int.valueOf( 10 ) ) )).intValue() ) ;

}

}

Both Java variants are shown for comparison. For the lazy variant, an appli-
cation of fac to 10 is built by wrapping the integer in a Int object2. The function
fac is then applied to this Int and the resulting application structure is passed
to eval for evaluation. The result is known to be an Int and downcasted as such
for printing.

The given program can be written in different varieties. For example, the
library provides builtin showing of values used by the library. The last line of
main could also have been written as

IO.showln( fac.apply1( Int.valueOf( 10 ) ) ) ;

The method showln offers the equivalent of Java’s println, but for the lazy
values used by the library.

It also is possible to mix the two programming paradigms. For example, it is
not necessary to delay the computation of the if n > 0 expression:

static Eval fac2 =

new Function1()

{

public Object eval1( Object n )

{

if ( Int.evalToI( n ) > 0 )

return

Prelude.mul.apply2

( n

, fac2.apply1( Prelude.sub.apply2( n, Int.One ) )

) ;

else

return Int.One ;

}

} ;

The decision made in the if n > 0 expression has to be made anyway, so, it
may as well be done immediately after entering eval1. The overhead of laziness
is avoided by using the strict evaluation of Java. These optimisations eventually
will lead to the Java only solution. It is up to the programmer and the need for
laziness to decide how much laziness is required. As a conclusion of the discussion
of these mechanims a final variant as an optimisation example:

static Eval fac3 =

new Function1()

{

2 Int is the equivalent of java.lang.Integer.



public Object eval1( Object n )

{

int nn = Int.evalToI( n ) ;

if ( nn > 0 )

return

Prelude.mul.apply2

( n

, fac3.apply1( Int.valueOf( nn-1 ) )

) ;

else

return Int.One ;

}

} ;

The lazy subtraction is replaced by a strict one. This can also be done for
the multiplication.

As a final note, one can observe that all values manipulated by the library are
Object’s. As a consequence typing information is irretrievably lost. In practice,
this easily leads to difficult to detect bugs. This situation can best be avoided by
first making the program work in Haskell and then compile it by hand to Java
using this informally introduced compilation scheme.

4.2 Parser combinators

Let us now look at the definition of parser combinators in Java.

ParsingPrelude p = new ParsingPrelude( new ParsingListsCore() ) ;

/*

pExpr = pChainl ( (+) <$ pSym ’+’

<|> (-) <$ pSym ’-’

)

pTerm

*/

Object pExpr =

p.pChainl

( p.pOr

( p.pAppL( Int.add, p.pSym( ’+’ ) )

, p.pAppL( Int.sub, p.pSym( ’-’ ) )

)

, pTerm

) ;

This definition resembles the corresponding Haskell definition as closely as
possible. First, a parsing library ParsingPrelude is constructed. It is necessary
to do this because the parsing library itself is parameterised with the basic parser
combinators. The derived combinators are built on top of these core combinators.
In this case it is parameterised with the backtracking implementation using lists
(section 3.1).



Wherever possible, the fact that functions are Objects is hidden by using Java
wrapper methods. For example, the Java function pChainl actually is defined
to apply its arguments to the Java representation of a Haskell function:

public final Eval pChainl = ... ;

public final Eval pChainl( Object op, Object x )

{

return pChainl.apply2( op, x ) ;

}

Other functions like integer addition are defined in separate libraries, most
of them can be found in the Prelude class or a specific class associated with
the type of a value. For example, the Java class Int defines the integer addition
function add used in the definition of pExpr. This function also can be found in
the Prelude but is defined more generically using a simple implementation of
the Haskell class mechanism. This is not further explained here.

Functions can also be defined by subclassing from subclasses of class Function:

/*

pNat = foldl (\a b -> a*10 + b) 0 <$> pList1 pDigit

*/

Object pNat =

p.pApp

( Prelude.foldl

( new Function2()

{

public Object eval2( Object a, Object b )

{

return

Int.valueOf

( Int.evalToI(a) * 10

+ Int.evalToI(b) ) ;

}

}

, Int.Zero

)

, p.pList1( pDigit )

) ;

Here, a function taking two arguments, expressed by instantiating a subclass
of the Java class Function2, is passed to foldl. This new subclass of Function2
is required to define method eval2. The method eval2 (and similar ones with
similar names) computes the function result, in this case strictly by evaluating
the result immediately.

Finally, the parser built using the preceding definitions is used with some
input:

/*

on :: Show a => Parser Char a -> [Char] -> IO ()



on p inp -- run parser p on input inp

= do let (res, msgs) = parse p inp

putStr (if msgs == NoReports

then ""

else "Errors:\n" ++ show msgs)

putStr ("Result:\n" ++ show res ++ "\n")

*/

protected static void on( ParsingPrelude parsing, Object parser, String inp )

{

Tuple pres =

Tuple.evalToT

( parsing.parse( parser, Str.valueOf( inp ) ) ) ;

Object errors = Eval.eval( pres.second() ) ;

if ( errors != Reports.NoReports )

IO.putStr

( Prelude.concat2

( Str.valueOf( "Errors:\n" )

, Prelude.show( errors )

) ) ;

IO.showln( pres.first() ) ;

}

The Java method on contains calls to eval, either directly on indirectly via
evalToT (evaluate to Tuple). As mentioned before, the method eval performs
the actual computation of function applications. The preceding definitions only
define the function applications but do not yet evaluate them.

5 Mapping lazy functional behavior to Java

To make parser combinators useable in Java we have chosen for a rather straight-
forward solution, namely to write down the Java solution in terms of functions.
In order to be able to use functions as they are used in a functional language, we
have to be able to treat them as first class citizens, that is, we have to be able
to pass functions as parameters, and return them as result. In Java, the only
kind of first class ’thing’ available is Object. Therefore, functions are modelled
as objects. Their basic usage has been shown in the previous section.

In a language like Java the application of a function to parameters, the evalu-
ation of parameters and the evaluation of a function are performed in one action,
the method invocation. For parser combinators, this does not work. Results of a
parse are already used before they are completely evaluated (see section 3.2). A
lazy implementation generally allows this. Though laziness is not always consid-
ered an essential ingredient of functional languages, it is essential to make our
parser combinators work.



5.1 The basic lazy functional engine

Lazy implementations of functional languages come in different flavours [11]
among which the STG implementation [12] is considered to be the fastest. This
approach is also taken by [17] to compile for the Java virtual machine. The
approach taken here is to provide a graph reduction engine, without explicit
usage of a stack, constructed in such a way that the Java machinery is used as
effectively as possible while at the same time offering ease of use from the Java
programmers point of view.

As a starting point, let us look at the following Haskell program:

addOne :: [Int] -> [Int]

addOne [] = []

addOne (l:ls) = l+1 : addOne ls

main = addOne [1,2,3]

The function addOne takes a list of integers and returns a list where each
integer element has been incremented by 1. The result of main is [2,3,4]. Using
the lazy functional Java library, the definition of addOne is expressed in Java as:

static Eval addOne =

new Function1()

{

public Object eval1( Object l )

{

List ll = List.evalToL( l ) ;

if ( ll.isEmpty() )

return List.Nil ;

else

return

List.Cons

( Prelude.add.apply2( ll.head(), Int.One )

, addOne.apply1( ll.tail() ) /*<-*/

) ;

}

} ;

The function uses the predefined class List to construct a new list. Nil
denotes the empty list. The method Cons constructs a new cons cell with head
and tail; it is the equivalent of Haskell’s :. The function is then used by passing
it the list [1,2,3] which is a convenient notation for (1:(2:(3:[]))) where :
constructs a cons cell used in list representations. The application of addOne to
the list is subsequently evaluated and shown via IO.showln.

import uu.jazy.core.* ;

import uu.jazy.prelude.* ;

public class AddOne

{

...



public static void main(String args[])

{

List l123 = List.Cons

( Int.One, List.Cons

( Int.Two, List.Cons

( Int.Three, List.Nil

) ) ) ;

IO.showln( addOne.apply1( l123 ) ) ;

}

}

The function addOne can also be written using a Java method. The recursive
invocation of addOne then is done before the result of addOne is returned; the
essential difference can be found in the line marked with /*<-*/.

static Object addOne( Object l )

{

List ll = List.evalToL( l ) ;

if ( ll.isEmpty() )

return List.Nil ;

else

return

List.Cons

( Prelude.add.apply2( ll.head(), Int.One )

, addOne( ll.tail() )

) ;

}

public static void main(String args[])

{

List l123 = ...

IO.showln( addOne( l123 ) ) ;

}

This produces the same result for the list [1,2,3] but is computed in a
different way. The recursive invocation of addOne is done strictly (non-lazy), by
computing the result of the invocation before passing it to the list constructor
List.Cons. Alternatively, strictness could also have been achieved by replacing
the line marked with /*<-*/ by:

static Eval addOne2 =

new Function2()

{...

, eval( addOne2.apply1( ll.tail() ) ) /*<-*/

...}

The strict evaluation order is enforced by the invocation of eval.
Strict evaluation order can be encoded more efficiently, but poses two prob-

lems when compared with lazy computation order. First, strict evaluation order
may compute more than is necessary. For example, suppose that from addOne
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[1,2,3] only the first element is needed. Using a strict evaluation order all
elements are computed before the result [2,3,4] is returned, whereas lazy eval-
uation returns the partially evaluated list (2:(addOne 2:(3:[]))) instead.

A second problem arises when addOne is passed an infinite list, as in

take 5 (addOne (repeat 1))

The Haskell function repeat produces an infinite list of 1’s. The function
take takes a certain amount of elements from a list (passed as arguments), here
producing the result [2,2,2,2,2]. Because strict evaluation evaluates the argu-
ment to addOne first an attempt is made to compute the infinite list [1,1,..].
In Java, the invocation of addOne prints the expected output, but the strict
variation addOne2 gives a stack or memory overflow:

Object lInfinite = Prelude.repeat.apply1( Int.One ) ;

IO.showln( Prelude.take.apply2( Int.Five, addOne.apply1( lInfinite ) ) ) ;

IO.showln( Prelude.take.apply2( Int.Five, addOne2.apply1( lInfinite ) ) ) ;

Figure 7(a) shows a graph representation of addOne [1,2,3]. The graph
encodes the structure of the computation of addOne [1,2,3]. In this graph
representation nodes either consists of an application, denoted by @, or a node
consists of plain data. Figure 6 shows a simple usage of @. The @ should be
read as “apply the left child to the right”, as indicated in figure 6(a). Its Java
equivalent is

left_child.apply1( right_child )

If the left child itself is also such an application (figure 6(b)) it reads as

(left_left_child.apply1( left_right_child )).apply1( right_child )

which is equivalent to

left_left_child.apply2( left_right_child, right_child )
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A computation step consists of the evaluation of a @ node in the graph de-
scribing the computation. The evaluation process replaces a @ by its result,
which may be a plain value or yet another @ node. In figure 7(c) the result
(2:(addOne 2:(3:[]))) of the application addOne [1,2,3] can be seen. The
graph for addOne [1,2,3] has been replaced by its result consisting of a Cons
cell. The Cons cell still contains an unevaluated value, the remaining application
addOne [2,3].

The Cons cell is considered to be in weak head normal form, because the
cell itself cannot be further evaluated, even though it still refers to unevaluated
applications. Only when the value of such an unevaluated application really is
needed, it has to be evaluated.

The difference between strictness and laziness can be found at the interme-
diate stage of the computation of addOne [1,2,3], shown in figure 7(b). The
evaluation of @" returns the Cons cell. Strictness requires the right child @" of
@’ to be evaluated before @" is evaluated, laziness does not.

Such is the power and convenience of laziness. This is consequently also the
mechanism which has to be imitated by the Java lazy functional library.

Figure 8 shows the Java class structure used to model a reducable graph.
Figure 9 shows instances of such graphs, the Java counterparts of figure 7. The
graph is used by an evaluator which considers anything except Apply objects to
be non-reducable (normal form).

The structure of the class diagram as well as its interpreter are derived from
a small evaluator for lambda expressions, see figure 10 for an overview of the
core functionality of the evaluator written in Haskell and figure 11 for the Java
variant. Only the Java variant is discussed here. The basic idea of the evalua-
tor is that it is given a graph representing a computation. This graph contains
either application nodes, that is, instances of (a subclass of) class Apply, or it
contains something else. Only if a node is an application node further compu-
tation steps are taken, otherwise it cannot be evaluated further and the node is
simply returned. This work is done in the method eval:

public static Object eval( Apply av )

{
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if ( av.nrNeededParams == 0 )

{

av.evalSet() ;

Object vv = av.funcOrVal ;

av.nrNeededParams = -1 ;

if ( vv instanceof Apply )

return av.funcOrVal = eval( (Apply)vv ) ;

}

else if ( av.nrNeededParams > 0 )

return av ;

else

return av.funcOrVal ;

}

public static Object eval( Object v )

{

if ( v instanceof Apply )

return eval( (Apply)v ) ;

return v ;

}

An Apply object contains a field nrNeededParams used for remembering the
state an Apply instance is in. A value < 0 is used to indicate that it is already
evaluated, > 0 means that not enough arguments are available and == 0 means
that it should be evaluated. The actual evaluation is delegated to the Apply
object itself via method evalSet. This allows subclasses of Apply to provide an
optimised version of their evaluation.

If the result of the evaluation is another Apply, the process is repeated, in
this case by recursively invoking eval.3

The default implementation of evalSet extracts the left child of the of an
Apply node in the reduction graph. This left child result in a function, which is
subsequently applied to its arguments:

public abstract class Apply extends Eval

{

protected Object funcOrVal ;

protected int nrNeededParams = 0 ;

protected void evalSet()

{

funcOrVal = ((Eval)eval(funcOrVal)).evalOrApplyN

( getBoundParams() ) ;

}

}

If the left child does not evaluate to a function it is an error. The application
of the function to its arguments (retrieved via getBoundParams) either performs

3 The library contains evaluator variants which avoid the usage of the Java stack by
reversing pointers between Apply nodes.



data Expr = Var String

| Val Int

| Nil

| Cons Expr Expr

| ApplyN Expr [Expr]

| FunctionN [String] Expr

substN :: Env -> Expr -> Expr

substN env e@(Var s )

= case lookup s env of {Nothing -> e; Just v -> v}

substN env (ApplyN func args )

= ApplyN (substN env func) (map (substN env) args)

substN env l@(FunctionN formals body )

= FunctionN formals (substN (filter (not.(‘elem‘ formals).fst) env) body)

substN _ e

= e

eval appn@(ApplyN func args)

= let (val, restargs)

= case eval func of

(FunctionN formals body)

-> ( eval (substN (zip formals args) body)

, (drop (length formals) args)

)

in if null restargs

then val

else eval (ApplyN val restargs)

eval whnf

= whnf

Fig. 10. Lambda expression evaluator.



the actual function evaluation, if enough arguments are available, or returns a
new application node:

public abstract class Function extends Eval

{

protected int nrParams ;

protected abstract Object evalN( Object[] vn ) ;

protected Object evalOrApplyN( Object[] vn )

{

Object res = null ;

if ( nrParams > vn.length )

res = applyN( vn ) ;

else

{

res = ((FunctionN)this).evalN

( Utils.arrayTake( nrParams, vn ) ) ;

if ( nrParams != vn.length )

res = ((Eval)res).applyN

( Utils.arrayDrop( nrParams, vn ) ) ;

}

return res ;

}

}

If there are leftover arguments, these are applied to the result of the function
application. Further evaluation is performed by the method eval.

The actual function invocation is done by method evalN. A subclass of
Function is expected to implement this method. In practice, the Java lazy func-
tional library offers convenience classes and methods for functions with 1, 2, 3,
4, 5, or more (N) arguments. The corresponding names of the function classes
consist of “Function” suffixed with the number of arguments taken. The names
of the evaluation methods defined by the ‘Functional’ programmer use “eval”
as a prefix, as already shown in prevous examples.

5.2 Optimisations

The basic implementation as shown in figure 11 can be significantly improved
in terms of efficiency by exploiting knowledge about the number of required
and given parameters for a Function. For example, the addition of two Int’s,
assuming the existence of attribute value holding the integer value, can be
defined as:

new Function2()

{

protected Object eval2( Object v1, Object v2 )

{

return

new Int

( ((Int)eval(v1)).value



public abstract class Eval

{

public Apply applyN( Object[] vn )

{

return new ApplyN( this, vn ) ;

}

public static Object eval( Apply av )

{

if ( av.nrNeededParams == 0 )

{

av.evalSet() ;

Object vv = av.funcOrVal ;

av.nrNeededParams = -1 ;

if ( vv instanceof Apply )

return av.funcOrVal = eval( (Apply)vv ) ;

}

else if ( av.nrNeededParams > 0 )

return av ;

else

return av.funcOrVal ;

}

public static Object eval( Object v )

{

if ( v instanceof Apply )

return eval( (Apply)v ) ;

return v ;

}

public abstract Object[] getBoundParams() ;

}

public abstract class Function extends Eval

{

protected int nrParams ;

protected abstract Object evalN( Object[] vn ) ;

protected Object evalOrApplyN( Object[] vn )

{

Object res = null ;

if ( nrParams > vn.length )

res = applyN( vn ) ;

else

{

res = ((FunctionN)this).evalN

( Utils.arrayTake( nrParams, vn ) ) ;

if ( nrParams != vn.length )

res = ((Eval)res).applyN

( Utils.arrayDrop( nrParams, vn ) ) ;

}

return res ;

}

}

public abstract class Apply extends Eval

{

protected Object funcOrVal ;

protected int nrNeededParams = 0 ;

protected void evalSet()

{

funcOrVal = ((Eval)eval(funcOrVal)).evalOrApplyN( getBoundParams() ) ;

}

}

class ApplyN extends Apply

{

protected Object[] pN ;

public ApplyN( Object f, Object[] p )

{

super( f ) ;

pN = p ;

}

public Object[] getBoundParams()

{

return pN ;

}

}

Fig. 11. Lambda expression evaluator in Java (a sketch of).



+ ((Int)eval(v2)).value

) ;

}

} ;

It now is statically known that this function takes exactly two arguments.
If an application ApplyN only contains one argument for the function, the eval-
uator does not need to evaluate the application. The call to evalSet can then
be avoided. If exactly two arguments are passed, an even greater positive ef-
fect on performance can be achieved by redefining the method evalSet to
call the method eval2 of the Function2 directly. In this way the overhead of
evalOrApplyN can be avoided.

Both cases (not enough and exact number of arguments) are optimised by
the definition of appropriate subclasses, shown in figure 12 for Function2. The
first case -not enough arguments- is dealt with by administering that still one
argument more is needed; nrNeededParams is set to 1:

public abstract class Function2 extends Function

{

public Apply apply1( Object v1 )

{

return new Apply1F2( this, v1) ;

}

}

class Apply1F2 extends Apply1

{

public Apply1F2( Object f, Object p1 )

{

super( f, p1 ) ;

nrNeededParams = 1 ;

}

}

The second case -exact number of arguments- is delt with by redefining
evalSet:

public abstract class Function2 extends Function

{

public Apply apply2( Object v1, Object v2 )

{

return new Apply2F2( this, v1, v2 ) ;

}

}

class Apply2 extends Apply

{

protected Object p1, p2 ;

...

}



class Apply2F2 extends Apply2

{

protected void evalSet()

{

funcOrVal = ((Function2)funcOrVal).eval2( p1, p2 ) ;

}

}

The method evalSet is now defined more efficiently.

5.3 Performance

Due to the interpretative nature of the implementation, a parser using parser
combinators in Java is no speed deamon. No extensive testing has been done, so
only an indication of performance is given. For testing, a small parser copying
input characters to output was used, giving the following measurement on a 4940
byte file:

3198 ms., 275832 evaluations, 0.011594013 ms. per eval

Each character took approximately 56 evaluations (calls to evalSet). The
test was performed on an Apple Powerbook G3 with a 500Mhz PowerPC run-
ning Java 1.1.8. The error correcting limited lookahead variant of the parser
combinators was used. The obtained speed is roughly equivalent to (some 25%
slower than) the speed of running the interpreted Haskell variant using Hugs on
the same platform.

6 Conclusions

Parser combinators with error correction and on-the-fly grammar analysis allow
the grammar writer an easy, flexible way of writing an executable grammar.
Though performance in Haskell using a Haskell compiler has an acceptable per-
formance this cannot be said for a straightforward Java implementation based
on the literal translation in this paper.

Another aspect is that all information about the type of a parser is lost
because of the limitations of the Java typing system. All values as manipulated
by parser combinators are of type Object, or at best of those displayed in figure 8.
This makes use of parser combinators typeless, generally leading to difficult to
detect bugs. It is advisable to first make a working Haskell version and then
compile this by hand to Java, or, preferably, let a compiler do this work.

With these observations in mind, the authors feel that there may well be a
place for parser combinators in Java, as described here. Especially when perfor-
mance is a lesser issue, but flexibility is more important, for example in interac-
tive systems where compilation is done for small pieces at a time. Furthermore,
a better efficiency can be achieved by performing as much as possible in Java. A
first candidate would be tokenisation, not necessarily a task requiring laziness.



public abstract class Function2 extends Function

{

public Apply apply1( Object v1 )

{

return new Apply1F2( this, v1) ;

}

public Apply apply2( Object v1, Object v2 )

{

return new Apply2F2( this, v1, v2 ) ;

}

}

class Apply2 extends Apply

{

protected Object p1, p2 ;

...

}

class Apply1F2 extends Apply1

{

public Apply1F2( Object f, Object p1 )

{

super( f, p1 ) ;

nrNeededParams = 1 ;

}

}

class Apply2F2 extends Apply2

{

public Apply2F2( Object f, Object p1, Object p2 )

{

super( f, p1, p2 ) ;

}

protected void evalSet()

{

funcOrVal = ((Function2)funcOrVal).eval2( p1, p2 ) ;

}

}

Fig. 12. Expression evaluator optimisations for Function2.
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