
Box-Trees and R-trees with Near-Optimal Query Time�

P. K. Agarwaly, M. de Bergz, J. Gudmundssonz, M. Hammarx, H. J. Haverkortz

y Dept. of Computer Science, Box 90129, Duke University, Durham,
NC 27708-0129, USA, pankaj@cs.duke.edu

z Institute of Information and Computing Sciences, Utrecht University,
PO Box 80.089, 3508 TB Utrecht,fherman,joachim,markdbg@cs.uu.nl

x Dept. of Computer Science, Lund University,
Box 118, 221 00 Lund, Sweden, mikael@cs.lth.se

Keywords: bounding-volume hierarchy, R-tree, cs-box-tree, kd-interval-tree, window query, rectangle-inter-
section query

Abstract

A box-tree is a bounding-volume hierarchy that uses axis-aligned boxes as bounding volumes.
The query complexity of a box-tree with respect to a given type of query is the maximum num-
ber of nodes visited when answering such a query. We describe several new algorithms for
constructing box-trees with small worst-case query complexity with respect to queries with axis-
parallel boxes and with points. We also prove lower bounds on the worst-case query complexity
for box-trees, which show that our results are optimal or close to optimal. Finally, we present
algorithms to convert box-trees to R-trees, resulting in R-trees with (almost) optimal query com-
plexity.

1 Introduction

Motivation and problem statement. Window queriesreport all objects of a given set that in-
tersect a queryd-rectangle, that is, ad-dimensional box. Preprocessing a setS of geometric ob-
jects inRd for answering such queries is central to many applications and has been widely stud-
ied in several areas, including computational geometry, computer graphics, spatial databases,
GIS, and robotics [7, 17]. In order to expedite and simplify the data structure, a window query
is often answered in two steps. In the first step, called thefiltering step, each object is replaced
by the smallest box containing the object and the query procedure reports the bounding boxes
that intersect the query window. (Instead of boxes, other simple shapes such as spheres, el-
lipsoids, cylinders have also been used.) The second step, called therefinement step, extracts
the actual objects among these bounding boxes that intersect the query window [4, 19]. A few
recent results show that under certain reasonable assumptions on the input objects, the number

�The work by P.A. is supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan fel-
lowship, by NSF grants ITR–333–1050, EIA–9870724, EIA–997287, andCCR–9732787, and by a grant from the
U.S.-Israeli Binational Science Foundation. The work by H.H. is supported by the Netherlands’ Organization for
Scientific Research (NWO).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of bounding boxes intersecting a query window is not much larger than the number of objects
intersecting the window, which makes this approach quite attractive; see the paper by Zhou and
Suri [21] and the references therein. There has been much work on the filtering step, and we
also focus on this step. More precisely, we wish to preprocess a setS of n d-rectangles inRd so
that all rectangles ofS intersecting a queryd-rectangle can be reported efficiently. We will refer
to this query as therectangle-intersection query. A related query is therectangle-containment
query in which we want to report all rectangles inS that contain a query point.

A number of data structures with good provable bounds for answering rectangle-intersection
queries have been proposed. Unfortunately they are of limited practical use because the amount
of storage used is rather high:O(n logn) storage and evenO(n) storage with a large hidden
constant are often unacceptable. Therefore in practice one usually uses simpler data structures.
A commonly used structure for answering rectangle-intersection queries, rectangle-containment
queries, and in fact many other types of queries is thebounding-box hierarchy, or box-treefor
short, sometimes also called AABB-tree: this is a treeT , in which each leaf is associated with
a rectangle of the input setS, and each interior node� is associated with the smallest boxB�

enclosing all the rectangles stored at the leaves of the subtree rooted at�. All the rectangles of
S intersecting a query rectangleR are reported by traversingT in a top-down manner. Suppose
the query procedure is visiting a node�. If B� \R = ;, there is nothing to do. IfB� � R, then
it reports all rectangles stored in the subtree rooted at�. Finally, if B� \ R 6= ; butB� 6� R, it
recursively visits the children of�. We say thatR crossesa node� if B� \R 6= ; andB� 6� R.
If the fan-out ofT is bounded, then the query time is proportional to the number of nodes of
T thatR crosses plus the number of rectangles reported. We define the stabbing number of
T to be the maximum number of its nodes crossed by a rectangle. It is therefore desirable to
construct a bounding-box hierarchy with small stabbing number.

In many applications, especially in the database applications, the setS is too large to fit in
the main memory, therefore it is stored on disk. In that case, the main goal is to minimize
the number of disk accesses needed to answer a window query, and the performance of an
algorithm is analyzed under the standard external memory model [2]. This model assumes
that each disk access transmits a contiguous block oft units of data in a singleinput/output
operation(or I/O). The efficiency of a data structure is measured in terms of the amount of disk
space it uses (measured in units of disk blocks), the number of I/Os required to answer a query,
and the number of I/Os needed to construct the data structure. In the context of bounding-box
hierarchies, several schemes have been proposed that construct a tree as above but in which the
fanout of each node depends ont. Some notable examples of external-memory bounding-box
hierarchies are various variants of R-trees; see the survey paper [11]. We can still define the
crossingnodes and thestabbing numberas earlier, and one can argue that the number of I/Os
needed to answer a query is proportional to the stabbing number plus the output size.

In this paper we study the problem of constructing bounding-box hierarchies, both in main
and external memory, that have low stabbing number, and consequently, low query complexity.

Previous results. As noted above, several efficient data structures have been proposed for
answering a rectangle-intersection query. For example, Chazelle [5] showed that a com-
pressed range tree can be used to answer ad-dimensional rectangle-intersection query in time
O(logd�1 n + k) usingO(n logd�1 n= log logn) space (wherek is the number of rectangles re-
ported). This data structure is too complex to be practical even inR

2 . As for bounding volume
hiearchies, we know of only one result on the query complexity of rectangle-intersection queries
(besides the results on R-trees discussed later): if one maps eachd-rectangle to a point inR2d ,

2



constructs a kd-tree on these points, and converts the kd-tree back to a box-tree, then the query
time is known to beO(n1�1=2d+ k) [1, 15]. A number of heuristics based onkd-trees have also
been proposed to answer rectangle-intersection queries [1, 18]. Several papers [12, 14] describe
how to construct bounding-box hierarchies or other bounding-volume hierarchies (for example,
usingk-DOPs as bounding volumes), but they do not obtain bounds on the worst-case query
complexity.1

Some of the most widely used external-memory bounding-box hierarchies are the R-tree and
its variants. An R-tree, originally introduced by Guttmann [13], is aB-tree, each of whose
leaves is associated with an input rectangle. All leaves of an R-tree are at the same level, the
degree of all internal nodes except of the root is betweent and2t, for a given parametert, and
the degree of the root varies between2 and2t. We will refer tot as theminimum degreeof the
tree. To minimize the query complexity, several methods have been proposed [9, 10, 11, 16] for
ordering the input rectangles along the leaves—varying from simple heuristics to space filling
curves—but none of them guarantee the worst-case performance. In the worst case, a linear
number of bounding boxes might intersect a query rectangle even if it intersects onlyO(1) input
rectangles. The only analytical results are by Theodoridis and Sellis [20], who present a model
that predicts the average performance of R-trees for range queries, and Faloutoset al. [10], but
they prove bounds on the query time only in the 1-dimensional case when the input intervals
are uniformly distributed and have at most two different lengths. Recently, de Berget al. [6]
described an algorithm for constructing an R-tree on rectangles inR

2 so that allk rectangles
containing a query point can be reported inO((� + log �) logn= log t) I/Os. Here� is the
ratio of the maximum and the minimumx-lengths of the input rectangles, and� is thepoint-
stabbing numberof S, that is,� is the maximum number of input rectangles containing any
point in the plane. For a rectangle-intersection query, the number of I/Os isO((� + log � +
w + k) logn= log t), wherew is the ratio of thex-length of the query rectangle to the smallest
x-length of an input rectangle.

Our results. In this paper we first describe several algorithms for constructing box-trees, and
we prove lower bounds on the worst-case query complexity of box-trees. The lower bounds
actually hold for all bounding volume hierarchies that use convex shapes as bounding volumes.

Our first algorithm, like the approach mentioned earlier, is based on a kd-tree inR
2d .

By changing the structure slightly and doing a more careful analysis, we are able to obtain
O(n1�1=d + k) query complexity for rectangle-intersection queries. We also prove a lower
bound showing that this bound is optimal.

For disjoint input in the plane, we show how to construct a box-tree that still has almost
optimal query time for rectangle-intersection queries, but much better query times for point
queries. In fact, it is already better for point-queries when the point-stabbing number� of the
input iso(n= log4 n): the time for rectangle-intersection queries isO(

p
n logn+

p
� log2 n+k),

and the time for point queries isO(
p
� log2 n + k). We also develop a box-tree withO((� +p

�) log2 n + k) query time for use with query rectangles with aspect ratio�. One would hope
that similar improvements are possible in higher dimensions. One of our lower-bound results
shows that this is not possible: in dimensionsd � 3, the
(n1�1=d + k) lower bound on the
query complexity holds even for hypercubes as query ranges, and any bounding-box hierarchy

1Barequetet al.[3] gave an algorithm to construct a bounding-box hierarchy inR
2 , and they claimed that if the

rectangles inS are pairwise disjoint, then the resulting hierarchy hasO(logn) stabbing number. But the argument
presented in the paper has a technical problem.

3



that achieves this query time cannot have a better worst-case query time for point queries, even
when the input consists of disjoint ‘almost-unit-hypercubes’.

Finally, we give general methods to convert box-trees with small query complexity into R-
trees with small query complexity. When we apply these results to our box-trees, we improve
the result of de Berget al. [6]: our query complexity does not depend on the parameterw
(which makes their query complexity linear in the worst case), and it is linear in

p
� instead of

in �. We also introduce the concept ofsemi-R-trees; these are similar to ordinary R-trees—the
degree of each internal node, except for the root, is betweent and2t for some given parameter
t—except that the leaves do not have to be at the same level. We give a general algorithm to
convert a box-tree with small query complexity into a semi-R-tree with small query complexity;
the bound obtained here is better than that for R-trees. This leads to semi-R-trees with (almost)
optimal query complexity.

All box-tree construction algorithms in this paper run inO(n logn) time, and all box-tree-to-
(semi-)R-tree conversion algorithms run inO(n) time.

2 Lower Bounds

In this section we give lower bounds on the query complexity of semi-R-trees of minimum
degreet in various settings. Since semi-R-trees are more general than R-trees, the same bounds
hold for R-trees. By choosingt = 2, we obtain lower bounds for box-trees.

We start with a simple generalization of the 2-dimensional lower bound given by de
Berget al. [6].

Theorem 2.1 For anyn andd � 2, there is a set ofn disjoint unit hypercubes inRd with
the following property: for any semi-R-treeT of minimum degreet there is a query box not
intersecting any box fromS such that a query with that box visits
((n=t)1�1=d) nodes inT .

Proof: Consider a set ofn unit hypercubes arranged in ann1=d � � � � � n1=d grid, and the
following set of query ranges: for each axis, we choosen1=d � 1 thin boxes orthogonal to it
and separating the ‘slices’ of the grid from each other. Now any bounding box ont hypercubes
intersects at leastd(t1=d�1) of the query ranges. Hence, the total number of incidences between
the ranges and the bounding boxes is at least
((n=t) � t1=d). As there areO(n1=d) ranges, there
must be one that intersects
((n=t)1�1=d) bounding boxes. �

Next we describe a construction that proves lower bounds on rectangle-containment queries
and that is also useful for a number of other cases. For any" > 0, we call ad-rectangle an
"-hypercubeif the length of each edge is between1 and1 + ". We fix a parameter� � 1 and
construct a setS = fb(0); : : : ; b(n � 1)g of n "-hypercubes inRd . We also construct two sets
of query pointsQ1 andQ2, calledprimary andsecondarypoint sets, that lie in the common
exterior of the rectangles inS and have the following property: for any semi-R-treeT on S
with minimum degreet, either a point ofQ1 lies in at least� bounding boxes ofT or a point
of Q2 lies in 
((n=t)=�1=(d�1)) bounding boxes ofT . From this we derive the desired lower
bounds. We first describe the setS and then construct the point sets.

Let n1; : : : ; n2d be the outward normals of ad-rectangle. We can pair these normals into
d pairs(n11; n12), (n21; n22), . . . , (nd1; nd2) so that no pair contains opposite normals, that is,
ni1 6= �ni2 for 1 � i � d. Let hi be the2-plane spanned by the vectorsni1 andni2 and
containing the origin. Letb be ad-rectangle containing the origin. Sinceni1 6= �ni2, the facets
fi1; fi2 of b normal toni1 andni2, respectively, share a(d � 2)-facefi, which is orthogonal to
the2-planehi. The intersection offi andhi is a pointci. Conversely, by specifying a pointci on

4



eachhi, 1 � i � d, we can represent a uniqued-rectangle in whichci lies on the facets normal
to ni1 andni2. We will therefore define each rectangleb(j) 2 S by ad-tuple(c1(j); : : : ; cd(j)),
where the facets ofb(j) whose outward normals areni1 andni2 pass throughci(j). We next
describe how to choose the pointsci(j), for 1 � i � d and0 � j < n.

On each2-planehi, we choose a linèi of slope�1; the exact equation of̀i will be specified
below. We will refer toh1 as theprimaryplane, and tohi, for i > 1, as asecondary plane. Set
�̂ = �1=(d�1). We placen pointsp1(0); : : : ; p1(n � 1) on `1 (sorted along̀ 1 by ascendingni1-
coordinate, and consequently, by descendingni2-coordinate) and setc1(j) = p1(j) for every
0 � j < n. For eachi > 1, we place�̂ pointspi(0); : : : ; pi(�̂ � 1) on `i and assignci(j) to
these points as follows. Let�(j) = (�0(j); : : : ; �d�2(j)) be the representation ofj mod � in
radix �̂, that is,

Pd�2
k=0 �k(j)�̂

k = j mod �. For eachi > 1, we setci(j) = pi(�d�i(j)). Note
thatn=�̂ points have the same value ofci(j). We choosè i and the points oǹi so that each
bj is an"-hypercube, e.g. by putting all pointspi(j) at a distance of at least1=2 and at most
(1 + �)=2 from the origin, both in their projection on theni1-axis and on theni2-axis.

Finally, we choose a setQ1 of n � 1 points on the primary planeh1 and a setQ2 of (d �
1)(�̂ � 1) points on the secondary planes, as follows. Supposeh1 is thex1x2-plane. For each
1 � j � n � 1, we choose the pointq(j) = (x1(p1(j � 1)); x2(p1(j))) and add it toQ1. In
other words, if we regard the points on`1 as the convex corners of a staircase,Q1 is the set
of concave corners of the staircase. To constructQ2, we repeat the same step for each of the
secondary planes, thus obtaining�̂ � 1 points on each of them. These points will be on the
boundary of some of the input boxes, but we can shift them a little to make them disjoint from
all input boxes.

Lemma 2.2 Let T be any semi-R-tree of minimum degreet on the setS constructed above.
Then either there is a primary query point contained in
(�) bounding boxes stored inT , or
one of the secondary query points is contained in
(n=(t�1=(d�1))) bounding boxes stored inT .

Proof: We first prove the lemma for box-trees, which are binary trees. Suppose that all primary
query points are contained in less than�=2 bounding boxes stored in the interior nodes inT .
Then the number of incidences between these points and interior nodes’ bounding boxes is at
most (n � 1)�=2. Since there aren � 1 interior nodes inT , they store at least(n � 1)=2
bounding boxes that contain less than� primary query points. Observe that a bounding box for
input boxesb(j); b(j 0) 2 S containsjj � j 0j primary query points, because there are that many
concave corners in the staircase between cornersc1(j) andc1(j 0). We conclude that there are
at least(n � 1)=2 bounding boxes that store boxesb(j); b(j 0) (and perhaps some more boxes)
with jj � j 0j < �. But if jj � j 0j < � thenj 6� j 0 (mod �), so�(j) 6= �(j 0). This implies
that there is at least onei with 2 � i � d such thatci(j) 6= ci(j

0). Hence, the bounding
box storingb(j); b(j 0) will contain one of the secondary query points. So in total we have at
least(n � 1)=2 incidences between secondary query points and bounding boxes, so one of the
(d � 1)(b�� 1) = O(�1=(d�1)) secondary query points is contained in
(n=�1=(d�1)) bounding
boxes.

The generalization to semi-R-trees follows easily from the observation that a semi-R-tree of
minimum degreet has
(n=t) nodes. If each primary query point is contained in less than�=2
bounding boxes, we then get
(n=t) nodes whose bounding box contains less than� primary
query points. From that point on, we can basically follow the argument above. �

We can use this lemma to prove lower bounds for several settings. By substituting� =
(n=t)1�1=d, we prove the following lower bound for point queries.

5



b(0)
b(1)

b(
p
n� 1)

b(
p
n)

b(
p
n+ 1)

b(n� 1)

b(0); b(
p
n); b(2

p
n):::b((

p
n� 1)

p
n)

b(1); b(1 +
p
n); b(1 + 2

p
n):::b(1 + (

p
n� 1)

p
n)

b(
p
n� 1); b(2

p
n� 1):::b(n� 1)

n11

n12

n21

n22

primary plane

secondary plane

Figure 1: The lower bound construction in two dimensions for� = �̂ =
p
n. In this case, the

primary and the secondary plane coincide. Each of the lower left corners is shared by
p
n boxes

(shown slightly displaced for clarity). The black dots indicate the locations of the query points
in Q1 andQ2.

Theorem 2.3 For anyn, d � 2, and" > 0, there is a setS of n "-hypercubes inRd with the
following property: for any semi-R-treeT of minimum degreet there is a point not contained
in any box fromS such that a query with that point visits
((n=t)1�1=d) nodes inT .

Next, we modify the above construction so that the same bound can be achieved ind � 3 even
if the input consists of a set ofn disjoint"-hypercubes and the queries are hypercubes.

Theorem 2.4 For anyn, d � 3, and" > 0, there is a setS of n disjoint"-hypercubes inRd with
the following property: for any semi-R-treeT of minimum degreet there is a hypercube not
intersecting any box fromS such that a query with that hypercube visits
((n=t)1�1=d) nodes
in T .

Proof: We apply a variant of the construction above with� = n1�1=(d�1) to obtain a set of
(d � 1)-dimensional boxes in the hyperplanex1 = 0. The variation is that we treat all planes
on which we put the corners as secondary planes. We use the remaining dimension to make the
boxes intod-dimensional"-hypercubes, and we translate each box into thex1-direction such
that they become disjoint and intersect thex1-axis in the orderb(1); b(2); : : : ; b(n). In between
every pairb(j); b(j + 1) we put a query point. Thesen � 1 query points play the role of the
primary query points. The secondary query points are replaced by query ranges which are hy-
percubes. We can do that in such a way that the intersection of such a range with a secondary
plane is a square that missesS and that has one corner coinciding with the secondary query
points we had previously. It is easy to see that the bound in Lemma 2.2 still holds. �

6



Finally, we observe that the proof of the preceding theorem actually shows that in higher dimen-
sions any semi-R-tree with small (say, polylogarithmic) query complexity for points must have
large (near-linear) query complexity for ranges. More precisely, it shows the following result.

Theorem 2.5 For anyn, d � 3 and" > 0, there is a setS of n disjoint"-hypercubes inRd with
the following property: for any semi-R-treeT of minimum degreet, if the number of nodes
visited by any point query is�, then there is a hypercube not intersecting any box fromS such
that a query with that hypercube visits
(n=(t�1=(d�1))) nodes inT .

3 From kd-trees to Box-Trees

In this section we describe and analyze several methods to construct box-trees using kd-
trees. For convenience we will allow our box-trees to have nodes of degree up to2d + 3—it is
easy to convert these trees to binary trees without affecting the asymptotic bounds on the query
complexity. Query ranges (other than points) will be assumed to be open, while input boxes,
bounding boxes and cells in space decompositions are closed.

3.1 The configuration-space approach

The basic method. Let S be a set ofn arbitrary, possibly overlapping,d-rectangles inRd ,
which we call theworkspace. As noted in the introduction, we can represent ad-rectangleb =Qd

i=1[x
�
i (b); x

+
i (b)] by a point(x�

1 (b); x
�
2 (b); :::; x

�
d (b); x

+
1 (b); x

+
2 (b); :::; x

+
d (b)) in R

2d , which
we call theconfiguration space. We build a2d-dimensional kd-tree on these points.

A kd-tree is a binary space decomposition tree, which is used to index points. Every node in
a2d-dimensional kd-tree is associated with a cell, which is a2d-rectangle, and an axis-parallel
splitting hyperplane. The splitting plane divides the cell into two rectangular subcells, one for
each child of the node.

The root cell is chosen large enough to contain all input points. The tree is then built re-
cursively by determining splitting planes for all cells. The orientations of the splitting planes
depend on the level in the tree, in such a way that all possible orientations (2d in this case) take
turns in a round-robin fashion on any path down into the tree. The location of each splitting
plane is chosen such that the numbers of input points in the resulting subcells differ by at most
one. When a cell contains only one input point, we make it a leaf of the tree and do not split it
further.

To transform the kd-tree in configuration space into a box-tree in workspace, proceed as
follows. Replace the representative point in each leaf by the corresponding input box. Then,
going bottom-up, store in each internal node the bounding box of its children. We call the
resulting box-tree aconfiguration-space box-tree, or cs-box-treefor short.

In the introduction we pointed out that it can be used to do rectangle-intersection queries in
O(n1�1=2d+k) time; in this paper we will show how to improve the upper bound toO(n1�1=d+
k).

For the analysis of the range query complexity of the cs-box-tree, we need the following fact
about kd-trees, given here without proof.

Lemma 3.1 The number of cells at depthi in a d-dimensional kd-tree that intersect an axis-
parallelf -flat (0 � f � d) isO(2if=d).

A kd-tree and, hence, our box-tree has the following property: the number of objects stored in
the two subtrees of any given node differ by at most one. We call such treesperfectly balanced.

7



The perfect balance in our box-tree will be advantageous when we will convert it to an R-tree.
We can now analyze the range query complexity of a cs-box-tree.

Lemma 3.2 Let S be a set ofn possibly intersecting boxes in the plane. There is a perfectly
balanced box-tree forS such that the number of nodes at leveli that are visited by a range query
with an axis-aligned box isO(2i(1�1=d) + k), wherek is the number of boxes inS intersecting
the query range. The box-tree can be built inO(n logn) time.

Proof: Let Q =
Qd

i=1(x
�
i (Q); x+i (Q)) be a query range. We can restrict our attention to the

interior nodes visited, since the number of visited leaves is at most one more. We distinguish
two types of visited interior nodes�. The first type is where at least one of the input boxes
stored in the subtree of� intersectsQ. Obviously there are onlyO(k) such nodes at a given
level i. The second type is where all input boxes in the subtree of� are disjoint fromQ. The
interior of any input box disjoint fromQ must be separated fromQ by a hyperplane through
a facet ofQ. Not all input boxes are separated fromQ by the same hyperplane, otherwise the
bounding box of� would not intersectQ and� would not be visited. Hence, there are at least
two such hyperplanes separatingQ from an input box in the subtree of�.

Assume w.l.o.g. thatxi = x�
i (Q) is one of these separating hyperplanes, and letb be the input

box it separates fromQ. Then we must havex+i (b) � x�
i (Q). But there must also be a boxb0

with x+i (b
0) > x�

i (Q), otherwise the bounding box of� would not intersectQ. We conclude
that the points representingb andb0 in the configuration space lie on or on opposite sides of
the hyperplanex+i = x�

i (Q). Consequently, the hyperplanex+i = x�
i (Q) intersects the cell in

configuration space of the node in the kd-tree corresponding to�.
We can apply the same argument to the second hyperplane separatingQ from an input box

(the hyperplanexj = x+j (Q), for example), to show that there is a hyperplane in configuration
space with points on or on opposite sides (x�

j = x+j (Q) in the example).
We can conclude the following. SupposeQ visits a node� of the second type. Then in

configuration space there is a pair of hyperplanes, both of the formx+i = x�
i (Q) orx�

i = x+i (Q)
and both intersecting the cell in configuration space of the kd-tree node corresponding to�.
But then the cell is also intersected by the(2d � 2)-flat that is the intersection of these two
hyperplanes. By Lemma 3.1 there are onlyO(2i(2d�2)=2d) = O(2i(1�1=d)) such nodes at leveli.

For the building time, see section 3.4. �

This leads directly to the following theorem.

Theorem 3.3 Let S be a set ofn possibly intersecting boxes in the plane. There is a perfectly
balanced box-tree forS such that the number of nodes visited by a range query with an axis-
aligned box isO(n1�1=d + k logn), wherek is the number of boxes inS intersecting the query
range. The box-tree can be built inO(n logn) time.

Proof: From Lemma 3.2 we get a bound for the stabbing number on each level in the tree.
Since a kd-tree has heightdlogne, so has a cs-box-tree, and summation over all levels yields a
total query complexity of

Pdlog ne
i=0 O(2i(1�1=d) + k) = O(n1�1=d + k logn). �

Improving the query time. We now show how to reduce theO(k logn) term in the query
complexity toO(k). The idea is the same as in a priority search tree [7]: input elements (boxes
in our case) that have a high chance of being reported are pushed to high levels in the tree. In

8



our case, the boxes that extend farthest in one of thexi-directions are stored high in the tree.
More precisely, the construction of the treeT for a setS of boxes inRd is as follows.

If jSj = 1, thenT consists of a single leaf node storing the input box inS. Otherwise we
make a node� storing the bounding boxB� of all boxes inS, and proceed as follows.

For each of the2d inner normals of the facets ofB� , take the box fromS that extends farthest
in the direction of that normal. This results in a setS� of at most2d boxes. Each box inS� is
put in a so-calledpriority leaf, which is an immediate child of�.

If the setS n S� of remaining boxes contains less than two boxes, then this box (if it exists)
is put as a leaf child of�. If two or more boxes remain, we split the set of boxes into two
(almost) equal-sized subsets with an axis-parallel hyperplane in configuration space. Like in a
normal kd-tree, the orientation of the splitting plane depends on the level in the tree, so that all
2d orientations take turns in a round-robin fashion on any path from the root down into the tree.

The subset of boxes whose representative points lie to one side of the cutting hyperplane are
stored recursively in one subtree of�. The subset of boxes whose representative points lie to
the other side of the cutting hyperplane are stored recursively in another subtree of�.

Next we analyze the query complexity of the tree resulting from this construction, which we
call a cs-priority-box-tree. In our analysis we bound the number of visited nodes of a given
weight, where the weight of a node is defined as the number of input boxes stored in its subtree.
This will be useful when we convert this box-tree into a semi-R-tree.

Lemma 3.4 The number of nodes of weight at leastw visited by a query with a query boxQ is
O((n=w)1�1=d + k).

Proof: Let Q =
Qd

i=1(x
�
i (Q); x+i (Q)). We can restrict our attention to the visited nodes of

weight at least2d, as the total number of visited nodes is at most a constant times larger than
this number. Let� be such a visited node of weight at least2d. There are two cases.

The first case is where one of the priority leaves directly below� stores a box intersectingQ.
Clearly there are at mostk such nodes.

The second case is when all priority leaves directly below� store boxes disjoint fromQ.
Thus each such box’s interior is separated fromQ by a hyperplane through a facet ofQ. We
claim that not all boxes can be separated by the same hyperplane. Suppose for a contradiction
that there is a facetf whose containing hyperplane separates all boxes of the priority leaves
fromQ. Then in particular it would separate the box that extends farthest in the direction of the
inner normal of the facetf , contradicting thatQ intersects the bounding box stored at�. So we
have two distinct hyperplanes through facets ofQ separating a box in the subtree of� fromQ.

The box-tree that we have constructed basically corresponds to a kd-tree in configuration
space, as before. The priority leaves make that the tree in configuration space is strictly speaking
not a kd-tree, but it is easy to see that Lemma 3.1 still holds. Moreover, there is still a one-to-one
correspondence between nodes of the box-tree and nodes of the kd-tree in configuration space.
Hence, we can use the fact that there are two distinct hyperplanes through facets ofQ separating
a box in the subtree of� from Q in the same way as in the proof of Lemma 3.2: it implies that
there is a(2d� 2)-flat in configuration space (defined by a pair of facets ofQ) intersecting the
cell in the kd-tree corresponding to�. It follows that the total number of nodes� to which the
second case applies at a given leveli isO(2i(1�1=d)).

To finish the proof, observe that nodes at the lowermostblog(w=(2d))c levels have weight
less thanw. Adding the bounds for the second case on the remaining levels, we getPdlog ne�blog(w=(2d))c

i=0 O(2i(1�1=d)) = O((n=w)1�1=d).
For the building time, see section 3.4. �

9



The following theorem follows directly.

Theorem 3.5 Let S be a set ofn possibly intersecting boxes inRd . There is a box-tree for
S such that the number of nodes that are visited by a range query with an axis-aligned box is
O(n1�1=d + k), wherek is the number of boxes inS intersecting the query range.

3.2 The kd-interval-tree approach

The cs-box-tree of the previous section has optimal query complexity for point queries (and
range queries) if the input consists of arbitrary, intersecting boxes. Unfortunately, if the input
boxes are disjoint then the query complexity for point queries does not improve. In this section
we develop a different box-tree, thekd-interval tree, whose query complexity is much better
if �, the point-stabbing number of the input setS, is small. The query complexity for range
queries increases only slightly. This approach only works in the plane; Theorem 2.5 states that
a similar result in more than two dimensions cannot be obtained.

The basic idea behind kd-interval trees is again to use a kd-tree, but this time in the workspace
(which is now the plane). Since the objects in the workspace are rectangles, not points, many
of them may intersect the cutting line. These boxes are taken out and handled separately, like
in an interval tree. To make kd-interval trees more efficient, we introduce priority leaves, like
in the previous section.

The 1-dimensional case. First we describe how a setS of boxes all intersecting a given line
` are handled. With a slight abuse of terminology, we call a tree for this case a 1-dimensional
kd-interval tree.

If jSj = 1, thenT consists of a single leaf node storing the input rectangle inS. Otherwise
we make a node� storing the bounding boxB� of all rectangles inS, and proceed as follows.

For each of the4 inner normals of the edges ofB�, take the rectangle fromS that extends
farthest in the direction of that normal. This results in a setS� of at most4 rectangles. Each
rectangle inS� is put in apriority leaf.

Consider the set of intersections of the edges of the remaining rectangles with`. Let p be
the median of these intersection points. The rectangles inS n S� containingp are stored in a
subtree of� that is a 2-dimensional cs-priority-box-tree as described in the previous section.
The rectangles inS n S� completely to one side ofp are stored recursively as a 1-dimensional
kd-interval tree in a second subtree of�. The rectangles inS n S� completely to the other side
of p are stored recursively in another subtree of�.

We call the nodes in the main 1-dimensional kd-interval tree1D-nodes. Such a node corre-
sponds to an interval on the defining line`. We call the nodes of the 2-dimensional cs-priority-
box-treescs-nodes.

We start by analysing the query complexity when we query with a segment on the line`.

Lemma 3.6 If we query a 1-dimensional kd-interval tree storing a set S ofn rectangles with a
line segment on the defining linè, then we visit at mostO(logn + k) nodes, wherek is the
number of rectangles to be reported.

Proof: Observe that the query segments intersects a rectangle (or bounding box) if and only
if it intersects the intersection of that rectangle (or bounding box) with`.

Consider a 1D-node that is visited when we query withs. When the interval corresponding
to this node is completely contained ins, then by the above observation all rectangles in the

10



Q

Figure 2: Querying a 1-dimensional kd-interval tree with a boxQ.

subtree intersects. Hence, there cannot be more thanO(k) such nodes. When the interval is
not completely contained ins, then it contains an endpoint ofs, and there are onlyO(logn)
such nodes.

Now consider a cs-node� that is visited. Letp be the point oǹ common to all rectangles
in the subtree of�. Assume w.l.o.g. that̀ is vertical andp lies inside or aboves. Then the
rectangle in the subtree extending farthest downward must intersects. This rectangle is stored
in a priority node directly below�, so we can charge the visit of� to this answer. �

Next we analyze the query complexity when we query with a box.

Lemma 3.7 (i) If we query a 1-dimensional kd-interval tree storing a set S ofn rectangles with
a query boxQ, then we visit at mostO(

p
�=w logn + k) nodes of weight at leastw, wherek

is the number of rectangles to be reported.
(ii) If � isO(logn), then the query time reduces toO(logn+ k).
(iii) If the projection ofQ onto the linè that stabs the rectangles inS contains the intersections
of all rectangles with̀ , then the query time reduces toO(k).

Proof: (i) See Figure 2. IfQ intersects̀ then the query is equivalent to querying withQ \ `,
so the result follows from the previous lemma. Otherwise, assume w.l.o.g. that` is vertical
and thatQ lies to the right of̀ . Consider a 1D-node� that is visited when we query withQ.
When the interval corresponding to this node is completely contained in the projection ofQ
onto`, then the rectangle in the subtree extending farthest to the right must be intersected. This
rectangle is stored in a priority leaf immediately below�, to which we can charge the visit of�.
Hence, there can be at mostk such nodes. When the interval is not completely contained in the
projection ofQ, then it contains an endpoint of the projection ofQ, and there are onlyO(logn)
such nodes.

Now consider a 2-dimensional cs-priority-box-tree that is visited. Suppose the interval of the
1D-node that is the parent of this subtree is completely contained inQ. Then we can argue again
(using the priority leaves) that we can charge all the visited nodes to rectangles intersectingQ.
If the interval of the 1D-node that is the parent of this subtree is not completely contained in
the projection ofQ, we argue as follows. First observe that the interval must then contain
an endpoint of the projection ofQ, so there are onlyO(logn) such parent nodes. In the 2-
dimensional configuration-space box-tree below such a parent, we apply Lemma 3.4 to bound
the number of visited nodes of weightw by O(

p
n0=w + k0), wheren0 is the number of boxes

stored in the cs-priority-box-tree andk0 is the number of answers reported in this subtree. Note

11



thatn0 � �, since the cs-box-trees are used only to store sets of boxes that share a single point.
Hence, the overall number of cs-nodes visited isO(

p
�=w logn + k), finishing the proof of

part (i) of the lemma.
(ii) For the proof of part (ii), we analyze the number of cs-nodes visited in a different way.

Note that cs-nodes in a single cs-priority-box-tree share a single point on`. If this point is
contained in the projection ofQ onto`, then we can use the priority nodes to charge all nodes
visited in this cs-box-tree to rectangles intersectingQ.

If the defining point of a cs-prority-box-tree lies outside the projection ofQ onto`, then each
cs-node� visited in this cs-box-tree must have at least one rectangle that contains an endpoint
of the projection ofQ. For each such node�, the rectangle in its subtree which extends farthest
into (or beyond) the projection ofQ, is stored in a priority node directly below�, to which we
can charge the visit of�. In all cs-box-trees together, at most2� priority nodes can contain
one of the two endpoints; therefore, at mostO(�) cs-nodes with defining points outside the
projection ofQ can be visited.

In total, we find a bound ofO(logn+�+k), which reduces toO(logn+k) if � isO(logn).
(iii) If the projection ofQ onto ` contains the intersections of all rectangles with`, it also

contains all intervals corresponding to the nodes in the box-tree. Therefore, we can use the
priority leaves again to charge all the visited nodes to rectangles intersectingQ. �

The 2-dimensional case. Our kd-interval tree for a general setS of rectangles in the plane is
defined as follows.

If jSj = 1, thenT consists of a single leaf node storing the input box inS. Otherwise we
make a node� storing the bounding boxB� of all boxes inS, and proceed as follows.

For each of the4 inner normals of the edges ofB�, take the rectangle fromS that extends
farthest in the direction of that normal. This results in a setS� of at most4 rectangles. Each
rectangle inS� is put in apriority leaf, which is an immediate child of�.

If the setS nS� of remaining rectangles contains less than two rectangles, then this rectangle
(if it exists) is put as a leaf child of�. If two or more rectangles remain, we split the cell
corresponding to� using a vertical or horizontal line (depending on the level� in the tree).
This splitting line` is chosen such that the number of rectangles inS n S� lying completely
to either side of̀ is at mostbjS n S�j=2c. The rectangles inS n S� lying to one side of̀ are
stored recursively in one subtree of�. The rectangles inS n S� lying to the other side of̀ are
stored recursively in another subtree of�. The rectangles inS n S� intersecting̀ are stored
in a 1-dimensional kd-interval tree, as explained above. We call the nodes of the main tree,
which correspond to 2-dimensional cells,2D-nodes. Next we analyze the performance of the
kd-interval tree.

Lemma 3.8 The number of nodes of weight at leastw that are visited by a range query with
an axis-aligned box isO(

p
n=w logn+

p
�=w log2 n + k), wherek is the number of reported

answers. The number of such nodes visited by a point query isO(
p
�=w log2 n + k). If � is

O(logn), we may omit the
p
�=w factor.

Proof: Consider a 2D-node that is visited when we query with an axis-aligned rectangleQ.
We distinguish four different types of such nodes (see Figure 3). We bound their number and
the number of nodes visited in 1-dimensional kd-interval-subtrees for each type separately.

Inner nodes:These are 2D-nodes whose bounding boxes lie completely insideQ. The num-
ber of inner nodes is easy to bound, since all rectangles in the subtree of such a node intersectQ.

12



corner

piercing

Q
inner

side

Figure 3: Four different types of 2D-nodes with respect to a query rangeQ.

Q

Figure 4: Piercing nodes with parallel splitting lines (to the left) and orthogonal splitting lines
(to the right).

Hence, the total number of such nodes, or nodes in their 1-dimensional associated kd-interval
trees, isO(k).
Side nodes:These are 2D-nodes whose bounding boxes cut exactly one edge ofQ. In this
case the rectangle that extends farthest into the direction of the inner normal of this edge must
intersectQ. This rectangle is stored in a priority leaf immediately below the node. The same
reasoning applies to their 1-dimensional associated kd-interval trees. Hence, the total number
of side nodes or nodes in their associated kd-interval trees isO(k).
Piercing nodes:These are 2D-nodes that cut two opposing edges ofQ, but do not contain any
corners ofQ. From Lemma 3.1 and the fact that all nodes at the lowermostblog(w=(2d))c levels
of the tree must have weight less thanw, we conclude that the number of 2D-nodes with weight
at leastw that intersect any edge ofQ must be bounded by

Pdlog ne�blog(w=(2d))c
i=0 O(2i=2) =

O(
p
n=w). Now there are two cases—see Figure 4: the splitting line used at such a node

� is orthogonal to the intersected edges, or it is parallel to them. In the former case we can
apply Lemma 3.6 to obtain aO(logn + k0) bound on the number of nodes visited in the 1-
dimensional kd-interval tree associated with�, wherek0 is the number of reported answers. In
the latter case we can apply Lemma 3.7(iii) to get a bound ofO(k0). Hence, we get a grand total
of O(

p
n=w logn+ k).

Corner nodes:These are 2D-nodes that contain one or more corners ofQ. There areO(logn)
such nodes. To obtain the total number of visited nodes in the associated 1-dimensional kd-
interval trees, we have to multiply this by the bound of Lemma 3.7, leading to a total of
O(
p
�=w log2 n+ k) in the general case, orO(log2 n+ k) if � isO(logn).

There are no other types of nodes whose bounding boxes intersectQ. Adding up the number
of nodes for all four cases gives the desired bound for box-queries. Note that in the case of

13



point queries, we only have corner nodes. For the building time, see section 3.4. �

This leads to the following theorem.

Theorem 3.9 Let S be a set ofn possibly intersecting boxes in the plane, such that no single
point is contained in more than� boxes. There is a box-tree forS such that the number of nodes
visited by a range query with an axis-aligned box isO(

p
n logn +

p
� log2 n + k), wherek is

the number of boxes inS intersecting the query range. The number of nodes visited by a point
query isO(

p
� log2 n + k). If � is O(logn), this reduces toO(log2 n). The box-tree can be

built in O(n logn) time.

3.3 The longest-side-first approach

Recall that a kd-interval tree is basically a modified kd-tree, where each node is split by a line.
The orientations of these lines depend on the level in the tree in such a way, that orientations
take turns in a round-robin fashion on any path from the root down into the tree. An interesting
variation of the kd-interval tree arises when we replace the round-robin splitting strategy by
the longest-side splitting rule as suggested by Dickerson et al. [8]. In such a longest-side-first
kd-interval tree, the number of nodes whose corresponding cell is pierced by a query rectangle
is small if the query rectangle is fat. We use this to prove the following lemma.

Lemma 3.10 The number of nodes of weight at leastw that are visited by a range query with
an axis-aligned box isO((�+

p
�=w) log2 n+ k), wherek is the number of reported answers.

The number of such nodes visited by a point query isO(
p
�=w log2 n + k). If � is O(logn),

theO(
p
�=w) factor can be omitted from the bounds.

Proof: In the analysis in the previous subsection, the piercing nodes were responsible for the
O(
p
n=w logn) term in the query complexity. This term arose because in a normal kd-tree

there can beO(
p
n=w) piercing nodes, and in each of the associated 1-dimensional kd-interval

trees,O(logn) nodes could be visited.
In the longest-side-first kd-tree, however, the number of disjoint cells that cut opposing sides

of a query rectangle of aspect ratio� is O(� logn) [8]. As before, we have two types of
piercing nodes: those with splitting lines that are orthogonal to the intersected edges ofQ, and
those with parallel splitting lines. For the first case, observe that such splitting lines separate
two disjoint cells that cut opposing sides of the query rectangle. This implies that there can
be at mostO(� logn) piercing nodes with orthogonal splitting lines, each of which can have a
1-dimensional kd-interval tree in whichO(logn + k0) nodes are visited. For the second case,
observe that the total number of piercing nodes on all levels in the tree is at mostO(� log2 n),
and each of them can have a 1-dimensional kd-interval tree in whichO(k0) nodes are visited.
Hence, we get a grand total ofO(� log2 n+ k) for both types of piercing nodes.

Since the other cases in the analysis of the original kd-tree still go through, the lemma
follows. �

Theorem 3.11 Let S be a set ofn boxes in the plane with stabbing number�. There is a box-
tree forS such that the number of nodes that are visited by a range query with a rectangular
range of aspect ratio� isO((�+

p
�) log2 n+k), wherek is the number of boxes inS intersect-

ing the query range. The number of such nodes visited by a point query isO(
p
� log2 n + k).

If � is O(logn), theO(
p
�) factor can be omitted from the bounds. The box-tree can be built

in O(n logn) time.

14



3.4 Building the box-trees

All boxtrees mentioned in this section, can be built inO(n logn) time. Since the construction
algorithms are very similar, we will explain them together.

We start by sorting all input boxes byx�
i -coordinate andx+i -coordinate for all dimensions

1 � i � d. This costsO(n logn) time. Using suitable list structures and cross-pointers, we can
now do the following operations:

� in O(1) time, selecting a box with an extreme value for one of the2d coordinates and
removing it from the2d sorted lists;

� in O(1) time, determine the bounding box of the set (and, if necessary, determine the
dimension in which the bounding box is largest);

� in O(n) time, splitting the set of boxes in two, such that all boxes whose value for a
particular coordinate is smaller than the median for that coordinate go in one list, while
the remaining boxes go in the other list, and at the same time splitting the2d sorted lists
in sorted lists for each of the two subsets.

� in O(n) time, splitting the set of boxes in three subsetsS�, S0 andS+ with respect to
some discriminating dimensioni, such that there is a valuex0i such that all boxes inS�

are on one side of the hyperplanexi = x0i , all boxes inS+ are on the other side, and
all boxes inS0 intersect the plane,jS�j � n=2 andjS+j � n=2—and at the same time,
splitting the2d sorted lists in sorted lists for each of the three subsets.

This operation can be implemented by choosingx0i to be the median value of the union
of thex�

i - andx+i -coordinates. Using the lists ordered by these two coordinates, we can
find the median value inO(n) time. By definition, at mostn coordinate values can be
smaller than the median and at mostn coordinate values can be greater than the median.
This implies that at mostn=2 input boxes can be completely on one side of the median
hyperplane, and at mostn=2 can be completely on the other side. After we have found
the median, we can just check all boxes to see on which side they are, assign them to one
of the three subsets, and then split the sorted lists accordingly.

The boxtrees can now be built top-down recursively, following the descriptions in the previ-
ous subsections. First we make a root for a tree that has to store all boxes, we calculate how to
divide these boxes among its children, and then we split the set of boxes, giving each child its
own subset. With the above operations we can do this for cs-box-trees, cs-priority-box-trees,
kd-interval trees as well as for longest-side-first kd-interval trees inO(n) time, wheren is the
number of boxes that has to be stored in the tree rooted at this node.

Then we construct the childrens’ subtrees recursively, spendingO(n) time in total for each
level in the tree. Since all box-trees constructed in this section have heightO(logn), the total
time for division and construction isO(n logn).

Adding the time needed for sorting to the time needed for division and construction, we get
a total building time ofO(n logn).

4 From box-trees to R-trees

In the previous section we described several algorithms to construct box-trees with good
query complexity. In this section we give general theorems to convert them to (semi-)R-trees.

15



We start with a general theorem that converts any box-tree to an R-tree. Recall that theweight
of a box-tree node is the number of input boxes stored in its subtree.

Theorem 4.1 Let T be a box-tree for a set ofn boxes inRd such that any query with a range of
a given type visits at mostf(w) nodes of weightw or more. ThenT can be converted inO(n)
time to an R-tree of minimum degreet where every query with a range of the same type visits
at mostO(f(t) logn= log t) nodes.

Proof: We simply read out the leaves fromT in order, and then construct an R-tree where the
boxes occur in the same order in the leaves. We can build this R-tree bottom-up, level by level.
First we construct the R-tree nodes just above leaf level by repeatedly taking2t leaves from the
list and giving them a new R-tree node as their parent. We continue doing this until less than
4t leaves are without parent: these leaves are then divided into two groups (if there are more
than2t) or made children of a single parent (if there are no more than2t leaves left). Next, we
consider the new parent nodes just constructed as leaves, and construct the next level of the tree,
and so on, until we reach the level where only one node is constructed (the root). In this way,
we spendO(1) time for each node to connect it to a parent node, thus getting a total running
time ofO(n).

Consider a bounding boxB stored in the R-tree. It is the bounding box for some input boxes
that were stored in consecutive leaves in the box-treeT . Let �(B) be the lowest common
ancestor of these leaves. Since the minimum degree in the R-tree ist, the weight of�(B) is
t or more. Furthermore, the nodes�(B) for the bounding boxesB stored at a fixed level in
the R-tree must be distinct, because their defining sets form a partition of the leaves inT into
consecutive sequences. Hence, we can charge the visited nodes of the R-tree to visited nodes
of weightt or more inT , in such a way that a node inT does not get charged more than once
from nodes at a fixed level in the R-tree. Since the depth of the R-tree isO(logn= log t), the
bound follows. �

The construction of Theorem 4.1 results in losing a logarithmic factor in the query complexity.
Next we show how to improve this result for perfectly balanced box-trees. Recall that a box-tree
is called perfectly balanced if for any node the weight of its left and right child differ by at most
one.

Theorem 4.2 Let T be a perfectly balanced box-tree for a set ofn boxes inRd such that any
query with a range of a given type visits at mostf(i) nodes at leveli in T . ThenT can be
converted inO(n) time to an R-tree of minimum degreet where every query with a range of
the given type visits at mostO(

P(log n= log t)�1
i=0 f(i log t)) nodes.

Proof: We first prove that any perfectly balanced tree has the following property: the weights
of all nodes at a fixed level in the tree differ by at most one. The proof is by induction on the
level. The statement is trivially true at level zero (the level of the root). Now assume all nodes at
a given level have weightw orw+1. Then the balancing condition guarantees that the nodes at
the next level have weightw=2 orw=2+1 (in casew is even) or they have weight(w+1)=2�1
or (w + 1)=2 (in casew is odd). So in both cases the weights at the next level differ by at most
one.

We can now construct an R-tree fromT as follows. From the leaf level of the box-tree, walk
up the tree until a leveli is encountered where all nodes have weight at leastt. Thus there must
be at least one node with weight at mostt � 1 on the level just belowi, and therefore, by the
perfect-balance property, no node on that level has weight more thant. This implies that the

16



weight of nodes at leveli cannot exceed2t. Hence, each subtree rooted at a node at this level
can be compressed in a single leaf (which will be a node in the R-tree). Recurse on the new
tree. The recursion ends when there are less thant leaves, which are compressed to a single
node which will form the root of the R-tree. It is immediately clear that this construction can
be done inO(n) time.

The bound on the query complexity immediately follows from the construction. �

Finally, we can show that that we can also improve Theorem 4.1 for the general case if we
are willing to settle for semi-R-trees instead of real R-trees. Recall that the difference between
a semi-R-tree and an R-tree is that in the former we do not require all leaves to be at the same
depth.

Theorem 4.3 Let T be a box-tree for a set ofn boxes inRd such that any query with a range of
a given type visits at mostf(w) nodes of weightw or more. ThenT can be converted inO(n)
time to a semi-R-tree of minimum degreet where every query with a range of the same type
visits at mostO(f(t)) nodes.

Proof: We start by converting the binary box-tree to a forest of at least 1 and at mostt � 1
semi-R-trees. This is done recursively as follows. If the box-tree is just a leaf, we leave it as it
is. Otherwise, we convert the left and the right subtree separately, getting two forests of at least
2 and at most2(t� 1) semi-R-trees in total. We distinguish two cases:

� The total number of semi-R-trees is less thant. In this case, we are done immediately.

� The total number of semi-R-trees is at leastt. In this case, we combine the semi-R-trees
in the two forests into a single semi-R-tree by making the semi-R-trees in the forests the
children of a new root node. Note that the new root node has betweent and2(t � 1)
children. The descendant leaves of this new root node are exactly the descendant leaves
of the box-tree node which is being converted, so the associated bounding box is exactly
the same; no new bounding box is introduced.

In the end we get a forest of at least 1 and at mostt � 1 semi-R-trees. If it is not a single tree,
we combine the trees in the forest into one tree by adding a root node.

Clearly each node in the box-tree will be processed exactly once and will be processed in
O(1) time if the forest operations are implemented suitably. Therefore, the conversion of a
complete box-tree takesO(n) time.

No new bounding boxes are introduced, no bounding box in the boxtree appears more than
once in the semi-R-tree, and no internal nodes with weight less thant are constructed. This is
easily seen to result in a semi-R-tree with the desired bound on the query complexity.�

By applying the conversion algorithms of the theorems above to the structures from the previous
section, we obtain the following results.

Corollary 4.4 Let S be a set ofn boxes inRd with stabbing number�.

(i) There is an R-tree forS of minimum degreet such that the number of nodes visited by any
box query isO((n=t)1�1=d + k logn= log t), wherek is the number of reported answers.

(ii) There is an semi-R-tree forS of minimum degreet such that the number of nodes visited
by any box query isO((n=t)1�1=d + k).

17



(iii) When d = 2, there is a semi-R-tree forS of minimum degreet such that the number of
nodes visited by any box query isO(

p
n=t logn+

p
�=t log2 n+ k), and the the number

of nodes visited by any point query isO(
p
�=t log2 n + k). In both bounds,k is the

number of reported answers. If� is O(logn), theO(
p
�=t) factor can be omitted from

the bounds.

(iv) Whend = 2, there is a semi-R-tree forS of minimum degreet such that the number of
nodes visited by any query with a rectangle of aspect ratio� is O((� +

p
�=t) log2 n +

k), wherek is the number of reported answers. If� is O(logn), the bound reduces to
O(� log2 n+ k).

(v) For the cases mentioned under (iii) and (iv) there is also an R-tree of minimum degree
t for which the number of visited nodes isO(logn= log t) times the number of visited
nodes in the semi-R-tree.

All R-trees can be constructed inO(n logn) time.

Proof: Part (i) follows from Theorem 4.2 and Lemma 3.2. Part (ii) follows from Theorem 4.3
and Theorem 3.5, and part (iii) follows from Theorem 4.3 and Lemma 3.8. Part (iv) follows
from Theorem 4.3 and Theorem 3.10. To obtain part (v), we use Theorem 4.1 instead of
Theorem 4.3. �

5 Conclusions

We have developed now algorithms to construct box-trees (bounding-volume hierarchies us-
ing axis-aligned boxes as bounding volumes) and we analyzed the complexity of rectangle-
intersection queries and point-containment queries for these structures. We also proved lower
bounds showing that our results are optimal or almost optimal. Finally, we gave algorithms to
convert our box-trees to (semi-)R-trees with optimal or almost optimal query complexity.

The bounds that we get, except for the case of fat ranges in the plane, are rather
disappointing—even though they are optimal. In practice, one would hope for much better per-
formance. It would be interesting to see under which conditions one can obtain better bounds
for, say, box-queries inR3 . We also would like to see how our trees behave in practice—the
lower-bound constructions are rather contrived—and to compare them experimentally against
trees constructed by known heuristics.

In many applications it is important to support fast insertions and deletions, and it would be
interesting to develop box-trees or R-trees that support fast insertion and deletion, while still
guaranteeing close to optimal query complexity.

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors,Advances in Discrete and Computational Geom-
etry, volume 223 ofContemporary Mathematics, pages 1–56. American Mathematical
Society, Providence, RI, 1999.

[2] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

18



[3] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B. Mitchell, and A. Tal. BOXTREE: A
hierarchical representation for surfaces in 3D. InComputer Graphics Forum, volume 15,
pages 387–396, 1996.

[4] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger. Multi-step processing of spatial
joins. In Proc. ACM-SIGMOD International Conference on Management of Data, pages
197–208, 1994.

[5] B. Chazelle. A functional approach to data structures and its use in multidimensional
searching.SIAM Journal of Computing, 17:427–462, 1988.

[6] M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low stab-
bing number. InProc. 8th European Symposium on Algorithms, LNCS, volume 1879,
pages 167–178, 2000.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geome-
try: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[8] M. Dickerson, C. Duncan, and M. Goodrich. K-D trees are better when cut on the longest
side. InProc. 8th European Symposium on Algorithms, volume 1879 ofLNCS, pages
179–190, 2000.

[9] C. Faloutos and I. Kamel. Packed R-trees using fractals. Report CS-TR-3009, University
of Maryland, College Park, 1992.

[10] C. Faloutos, T. Sellis, and N. Roussopoulos. Analysis of object oriented spatial access
methods. InProc. ACM-SIGMOD International Conference on Management of Data,
pages 426–439, 1987.

[11] V. Gaede and O. G¨unther. Multidimensional access methods.ACM Computing Surveys,
30:170–205, 1998.

[12] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: a hierarchical structure for rapid
interference detection. InACM Computer Graphics Proceedings, pages 171–180, 1996.

[13] A. Guttmann. R-trees: a dynamic indexing structure for spatial searching. InProc. ACM-
SIGMOD International Conference on Management of Data, pages 47–57, 1984.

[14] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient col-
lision detection using bounding volume hierarchies of k-DOPs.IEEE Transactions on
Visualization and Computer Graphics, 4(1):21–36, 1998.

[15] U. Lauther. 4-dimensional binary search trees as a means to speed up associative searches
in design rule verification of integrated circuits.Journal of Design Automation and Fault-
Tolerant Computing, 2(3):241–247, 1978.

[16] S. Leutenegger, M. A. Lopez, and J. Edington. STR: A simple and efficient algorithm for
R-tree packing. InProc. 13th IEEE International Conference on Data Engineering, pages
497–506, 1997.

[17] Y. Manolopoulos, Y. Theodoridis, and V. Tsotras.Advanced Database Indexing. Kluwer
Academic Publishers, 1999.

19



[18] J. Nievergelt and P. Widmayer. Spatial data structures: concepts and design choices. In
M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors,Algorithmic Foundations
of Geographic Information Systems, volume 1340 ofLNCS, pages 153–198. 1997.

[19] J. Orenstein. A comparison of spatial query processing techniques for native and parameter
spaces. InProc. ACM SIGMOD Conference on Management of Data, pages 343–352,
1990.

[20] Y. Theodoridis and T. Sellis. A model for the prediction of R-tree performance. InProc.
Annual Symposium on Principles of Database Systems, pages 161–171, 1996.

[21] Y. Zhou and S. Suri. Analysis of a bounding box heuristic for object intersection. InProc.
10th Annual Symposium on Discrete Algorithms (SODA), 1999.

20


