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Abstract� We consider the quadratic eigenvalue problem ��Ax � �Bx � Cx � �� Suppose that u is an
approximation to an eigenvector x �for instance obtained by a subspace method�� and that we want to determine
an approximation to the corresponding eigenvalue �� The usual approach is to impose the Galerkin condition
r��� u� � ���A � �B � C�u � u from which it follows that � must be one of the two solutions to the quadratic
equation �u�Au��� � �u�Bu�� � �u�Cu� � �� An unnatural aspect is that if u � x� the second solution has in
general no meaning� When u is not very accurate� it may not be clear which solution is the best� Moreover� when
the discriminant of the equation is small� the solutions may be very sensitive to perturbations in u�

In this paper we therefore examine alternative approximations to �� We compare the approaches theoretically
and by numerical experiments� The methods are extended to approximations from subspaces and to the polynomial
eigenvalue problem�
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�� Introduction� First consider the eigenvalue problem Ax � �x� with A a real symmetric
n � n matrix� Suppose that we have an approximate eigenvector u� The usual approximation to
the corresponding eigenvalue is given by the Rayleigh quotient of u

� � ��u� ��
u�Au

u�u
������

This Rayleigh quotient has the following attractive properties�
�� � satis�es the Ritz�Galerkin condition on the residual r��� u��

r��� u� �� Au� �u � u����	�

	� � satis�es the minimum residual condition on the residual

� � argmin��RkAu� �uk����
�

�Here and elsewhere in the paper� k � k stands for k � k���

� The function ��u� has as its stationary points exactly the n eigenvectors xi� so

d�

du
�xi� � �������

�Recall that stationary means that all directional derivatives are zero�� This implies that
a �rst order perturbation of the eigenvector only gives a second order perturbation of the
Rayleigh quotient� ��xi  h� � ��xi� O�khk���

Remark ���� When A is nonsymmetric� ����� and ����� still hold� but ���	� fails to hold�
One can show that instead of this ��u� v� �� v�Au

v�u
has as its stationary points exactly the right
left

eigenvectors combinations �xi� yi�� This suggests to replace the Ritz�Galerkin condition ����� by
the Petrov�Galerkin condition

r��� u� � Au� �u � v�

which is used in two�sided methods such as two�sided Lanczos �	� and two�sided JacobiDavidson
���� However� in this paper we assume that we have no information about the left eigenvector�

Now consider the quadratic eigenvalue problem

Q���x �� ��Ax �Bx  Cx � �������
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where A� B� and C are �complex� n � n matrices� In this paper� we examine generalizations
of the properties ���	������� for the quadratic eigenvalue problem� to derive di�erent eigenvalue
approximations� See ��� for a nice overview of the quadratic eigenvalue problem� For an eigenvector
x we have either one of the following properties�

� Ax and Bx are dependent� then Cx is also dependent� and there are two eigenvalues
�counting multiplicities� corresponding to x�

� Ax and Bx are independent� Cx lies in the span of Ax and Bx� and the corresponding
eigenvalue � is unique�

We will assume in the remainder of the paper that x has the second property� For a motivation
see Remark 	�	 at the end of Section 	���

Now let u be an approximation to an eigenvector x� for instance one obtained by a subspace
method� We will also assume that Au and Bu are independent� which is not unnatural in view of
the assumptions that Ax and Bx are independent� and u � x� see also Remark 	�	� We study ways
to determine an approximation � to the eigenvalue �� from the information of u� In Section 	��
we discuss the �classical� one�dimensional Galerkin method� while in Sections 	�	� 	�
� and 	�� we
introduce new approaches� The methods are compared in Section 
 and extended to subspaces
of dimension larger than one and to the polynomial eigenvalue problem in Section �� Numerical
experiments and a conclusion can be found in Section � and ��

�� Approximations for the quadratic eigenvalue problem�

���� One�dimensional Galerkin� For an approximate eigenpair ��� u� � ��� x� we de�ne
the residual r��� u� by

r��� u� �� Q���u � ���A �B  C�u�

The usual approach to derive an approximate eigenvalue � from the approximate eigenvector u is
to impose the Galerkin condition r��� u� � u� Then it follows that � � ��u� must be one of the
two solutions to the quadratic equation

���  ��  � � ���	���

where � � ��u� � u�Au� � � ��u� � u�Bu� and � � ��u� � u�Cu� An unnatural aspect is that if
u � x� the second solution of �	��� has in general no meaning� If u is close to x� we will be able to
decide which one is best by looking at the norms of the residuals� But if u is not very accurate� it
may not be clear which solution is the best� This may for instance happen when we try to solve
����� by a subspace method� in the beginning of the process� the search space may not contain
good approximations to an eigenvector� This problem is also mentioned in ��� p� 	�	��

Moreover� when the discriminant

	 � 	�u� �� �� � ����	�	�

is small� then the solutions of �	��� may be very sensitive to perturbations in u �see also Section 
��
Thus the second solution of �	��� is not only useless� but it may also hinder the accuracy of the
solution that is of interest�

We therefore examine alternative ways to approximate �� We generalize the Galerkin property
���	� and minimum residual property ���
� for the quadratic eigenvalue problem in the following
three subsections� In Section 
 the approaches are compared using a generalization of ������

���� Two�dimensional Galerkin� In the standard eigenvalue problem� we deal with two
vectors u and Au� which are asymptotically �by which we mean when u� x� dependent� Therefore
it is natural to take the length of the projection of Au onto the span of u as an approximation
to the eigenvalue� which is exactly what the Rayleigh quotient ��u� does� For the generalized
eigenvalue problem we have a similar situation�

In the quadratic eigenvalue problem� however� we deal with three vectors Au� Bu� and Cu�
which asymptotically lie in a plane� Therefore it is natural to consider the projection of these
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three vectors onto a certain plane� spanned by two independent vectors p and q� To generalize the
approach of ���	�� de�ne the generalized residual r�
� �� u� by

r�
� �� u� �� �
A �B C�u��	�
�

The idea behind this is that we want to impose conditions on r such that 
 forms an approximation
to ��� and � an approximation to �� Then both 
�� and � may be good approximations to
the eigenvalue �� A generalization of ���	� is obtained by imposing two Galerkin conditions
r�
� �� u� � p and r�
� �� u� � q for speci�c independent vectors p� q� This leads to the system

W �Z

�


�

�
� �W �Cu� where W �

�
p q

�
� Z �

�
Au Bu

�
��	���

When W �Z is nonsingular� �	��� de�nes a unique 
 and �� A logical choice for p and q is any
linear combination of Au� Bu� and Cu� Speci�cally� one could take the �least�squares� plane such
that

k�I � ��Auk�  k�I ���Buk�  k�I � ��Cuk�

is minimal� where � is the orthogonal projection onto the plane� Let z be the normal of the sought
plane� then one may verify that k�I � ��Auk� � k�z�Au�zk� � jz�Auj�� If D denotes the n � 

matrix with Au� Bu� and Cu as its columns� then z is the vector of unit length such that kz�Dk�
is minimal� So we conclude that z is the minimal left singular vector of D� and for p and q we can
take the two �largest� left singular vectors� Another choice for p and q as well as its meaning are
discussed in Section 	���

���� One�dimensional minimum residual� Two other approaches� discussed in this and
the following subsection� generalize the minimum residual approach ���
�� First� we can minimize
the norm of the residual with respect to ��

min
��C

k���A �B C�uk��	���

For complex �� di�erentiating the square of �	��� with respect to Re��� and Im��� gives two mixed
equations of degree three in Re��� and Im���� or an equation �the so�called resultant� of degree nine
in only Re��� or Im��� �see Section ��� Of course� only the real solutions of these equations are of
interest� We may solve the equations numerically �see the numerical experiments in Section ��� In
the special case that we know that � is real� we would like to have a real approximation �� Then
di�erentiating the square of �	��� with respect to � gives the cubic equation with real coe�cients

� kAuk���  �Re��Au��Bu���  	 �kBuk�  	Re��Cu��Au��  	Re��Cu��Bu� � ���	���

which can be solved analytically� This is for instance the case for the important class of quasi�
hyperbolic quadratic eigenvalue problems�

Definition ���� �Cf� ��� p� ����� A quadratic eigenvalue problem Q���x � � is called quasi�
hyperbolic if A is Hermitian positive de�nite� B and C are Hermitian� and for all eigenvectors of
Q��� we have

�x�Bx��  ��x�Ax��x�Cx��

It is easy to see that all eigenvalues of quasi�hyperbolic quadratic eigenvalue problems are real�
In the next subsection we will also discuss a suboptimal solution of �	��� that involves the

solution of a resultant equation of degree �ve instead of nine�

���� Two�dimensional minimum residual� Another idea is to minimize the norm of the
generalized residual �	�
� with respect to 
� ��

�
�� ��� � argmin������C�k�
A �B  C�uk��	���
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To solve this� consider the corresponding overdetermined n� 	 linear system

Z

�


�

�
� �Cu�

with Z as in �	���� By assumption Au and Bu are independent� so 
� and �� are uniquely
determined by �


�
��

�
�� �Z�Cu � � �Z�Z���Z�Cu�

where Z� denotes the pseudoinverse of Z� We see that �	��� is a special case of �	���� namely the
case where we choose p � Au and q � Bu� so W � Z�

Returning to �	���� we can de�ne a suboptimal solution by solving for � � C such that����
�
��

�

�
�
�

�
��

������	���

is minimal� Di�erentiating the square of �	��� with respect to Re��� and Im��� gives two mixed
equations of degree three in Re��� and Im���� or a resultant equation of degree �ve in only Re���
or Im��� �see Section ��� compare this with the resultant of degree nine for the optimal solution�

The following remark explains why we assumed in Section 	 that both of the pairs Ax and
Bx� and Au and Bu are independent�

Remark ���� When Au and Bu are dependent� then the one�dimensional minimum residual
approach reduces to the one�dimensional Galerkin approach� while the two�dimensional methods
are not uniquely determined� When Ax and Bx are dependent� then� though the approaches may
be uniquely determined� the results may be bad� For example� the matrix Z in the two�dimensional
methods is ill�conditioned if u is a good approximation to x�

�� Comparison of the methods� Concerning the cost� all methods require three matrix�
vector multiplications �Au� Bu� and Cu� and additionally O�n� time� In this section� we compare
the quality of the methods by two di�erent means� First� we investigate the in�uence of pertur�
bations of u to �� and then we examine backward errors�

A nice property that an approximate eigenvalue can �or should� have is that it is close to
the eigenvalue if the corresponding approximate eigenvector is close to the eigenvector� In other
words� we like the situation where

j��x h�� �j � j��x h� � ��x�j is small
for small khk� When � is di�erentiable with respect to u in the point x this is equivalent to the
condition �������u �x�

���� is small��
���

We now examine the four approaches from the previous section with this criterion� starting with
the one�dimensional Galerkin approach� Equation �	��� de�nes � implicitly as a function of �� ��
and �� say f��� �� �� �� � �� with f��� ��x�� ��x�� ��x�� � �� When 	�x� 	� �� the Implicit Function
Theorem states that locally � is a function of �� �� and �� say � � ���� �� ��� and that

D����x�� ��x�� ��x�� � ���D�f�
��D�������f���� ��x�� ��x�� ��x��

� 
 �p
��x�

� ���� �� ���

So when 	 is small� which means that �	��� has two roots that are close� we may expect that j���j
is large for small perturbations of x� see the numerical experiments�

Remark ���� As in the standard eigenvalue problem� � � ��u� v� as solution of

�v�Au���  �v�Bu��  �v�Cu� � �
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is stationary in the right
left eigenvector combinations �xi� yi�� We assume� however� that we have
no information about the �approximate� left eigenvector�

Now consider the two�dimensional Galerkin method �	���� and the two�dimensional mini�
mum residual method �	���� In both cases� � and 
�� can be taken as approximation to ��
By di�erentiating �	���� it can be seen that 	�

	u
�x� � w��Q��� and

	�
	u
�x� � w��Q���� where

w�� w� are certain linear combinations of the vectors p and q that span the plane of projec�
tion� From Section 	 it is clear that the plane for the two�dimensional Galerkin method is con�
tained in spanfAu�Bu�Cug� while the plane for the two�dimensional minimum residual method is
spanfAu�Bug� Since spanfAx�Bx�Cxg � spanfAx�Bxg� we conclude that 	�

	u
�x� and 	�

	u
�x� are

the same for both two�dimensional methods�
For the second approximation� 
��� we have that

��
���

�u
�x� �

�

�
� �

�u
�x�� ��

�u
�x���
�	�

This suggests that 
�� might give inaccurate approximations for small �� which is con�rmed by
numerical experiments� see Experiment ����

The e�ects of perturbations of u for the results of the one�dimensional minimum residual
approach is hard to analyze� amongst other things it depends upon the position of the zeros of
the polynomials �see �������

A second interesting tool to compare the methods of Section 	 is the notion of the backward
error�

Definition ���� �Cf� ���� The backward error of an approximate eigenpair ��� u� of Q is
de�ned as

���� u� �� minf� � ����A �A�  ��B �B�  �C �C��u � ��
k�Ak � ���� k�Bk � ���� k�Ck � ��� g�

The backward error of an approximate eigenvalue � of Q is de�ned as

���� �� min
kuk��

���� u��

In ��� Theorems � and 	�� the following results are proven�

���� u� �
krk

��j�j�  �� � j�j ��
� ���� �

�min�Q����

��j�j�  �� � j�j ��
��
�
�

In the numerical experiments we therefore examine the quality of the computed � by examining krk
and �min�Q����� which� for convenience� are also called backward errors� Note that the backward
errors are related� �min�Q���� � krk�

�� Extensions�

���� Approximations from subspaces� We can also use the techniques described in Sec�
tion 	 for approximations to eigenpairs from subspaces of dimension larger than one� Let U be a
k�dimensional subspace� where for subspace methods one typically has k� n� and let the columns
of U form a basis for U � The Ritz�Galerkin condition

��Au �Bu Cu � U � u � U �
leads� with the substitution u � Us� to the projected quadratic eigenvalue problem

���U�AU  �U�BU  U�CU �s � �������

which in general yields 	k Ritz pairs ��� u�� For a speci�c pair� one can �re�ne� the value � by

the methods of Section 	� Although it is not guaranteed that the new e� is better� it seems to
be often the case� see the numerical experiments� Moreover� we have knowledge of the backward
error� which we will discuss in a moment�
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Then� as a second step� one can �re�ne� the vector u by taking eu � Ues� where
es � the �smallest� right singular vector of e��AU  e�BU  CU

�For the Arnoldi method for the standard eigenvalue problem� a similar re�nement of a Ritz vector
has been proposed in �
��� This step is relatively cheap� because all matrices are �skinny�� Givene�� the vector eu minimizes the backward error ��e�� u�� see �
�
�� It is also possible to repeat these
two steps to get better and better approximations� leading to Algorithm ����

Input� a subspace U
Output� an approximate eigenpair ��� u� with u � U
�� Compute an approximate eigenpair ��� u� according to the standard RitzGalerkin method

for k � ���� � � �
�� Compute a new �k choosing one of the methods of Section �
�� Compute the �smallest� singular vector sk of ��

k
AU � �kBU � CU

�� uk � Usk

Alg� ���� Re�nement of an approximate eigenpair ��� u��

During this algorithm� we do not know the �forward� error j�k � �j� but the backward errors
krk and �min��

�
kAU  �kBU  CU � are cheaply available� they can be used to decide whether

or not to continue the algorithm� When we take the optimal one�dimensional minimum residual
method in each step� we are certain that the backward error krk decreases monotonically� In
Experiment ��
 we use the two�dimensional Galerkin approach in every step�

Remark ���� For the symmetric eigenvalue problem� the possibility of an iterative procedure to
minimize kAu���u�uk over the subspace U is mentioned in ���� in the context of �nding inclusion
intervals for eigenvalues� Moreover� a relation between the minimalization of kAu � ��u�uk and
the smallest possible Lehmann interval is given�

���� The polynomial eigenvalue problem� Consider the polynomial eigenvalue problem

��lAl  �l��Al��  � � � �A�  A��x � ��

De�ne the generalized residual as

r�
�� � � � � 
l� u� �� �
lAl  
l��Al��  � � � 
�A�  A��u�

Both the l�dimensional Galerkin method

r�
�� � � � � 
l� u� � fp�� � � � � plg
and the l�dimensional minimum residual method

min
���


��l

kr�
�� � � � � 
l� u�k

lead to a system of the form

W �Z

�
��


l
���

�

	

� � �W �A�u����	�

where Z �
�
Alu � � � A�u

�
� For the l�dimensional minimum residual method we haveW � Z�

for the l�dimensional Galerkin approach with �least�squares� l�dimensional plane� W consists of
the l largest left singular vectors of

�
Z A�u

�
� Assuming that the vectors A�u� � � � � Alu are

independent� ���	� has a unique solution� In principle we can try every quotient 
l�
l��� 
l���
l���
� � � � 
��
�� 
�� and also some other combinations like 
l��
l��
��� as an approximation to �� When
� is small� 
� will probably be the best� The one�dimensional minimum residual approach is less
attractive� as the degree of the associated polynomials �cf� �	��� and ������ increases fast�
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�� Numerical experiments� The experiments are carried out in Matlab and Maple� First
a word on solving �	��� for the optimal� and �	��� for the suboptimal one�dimensional minimum
residual approach� Write � � ��  i��� 
� � 
�  i
�� and �� � ��  i��� Di�erentiating the
square of �	��� with respect to �� and �� leads to two mixed equations �in �� and ��� of degree
three� With Maple the equations are manipulated so that we have two equations of degree nine
in �� or �� only� which are called the resultants� When we know that � is real� then we get the
cubic equation �	����

Di�erentiation of �	��� with respect to �� and ��� leads to�
���  ��

�
� � 
� 

�
�
��� � 
��� � �

�
�� � ��

���  ��
�
�  
� 

�
�
��� � 
��� � �

�
�� � ��

�����

Because of the missing ��� and ��� terms� in the �rst and second equation respectively� the cor�
responding resultants have degree only �ve� All equations were solved numerically by a Maple
command of the form

solve�resultant� equation� �x� y�� equation� �x� y� � y�� x��

Of course� we only have to solve one resultant� say for Re���� then Im��� can be solved from a cubic
equation� In our experiments� many equations have a unique real solution� making it unnecessary
to choose� When there is more than one real solution� we take the one that minimizes the norm
of the residual�

Experiment ���� Our �rst example is taken from ��� p� 	����

A �

�
� � � �
� � �
� � �

	
� � B �

�
� � �� �
	 �� �
� � �

	
� � C � I��

This problem has two eigenvectors for each of which there exist two eigenvalues�
�
� � �

�T
corresponds to � � ��	 and � � ��
� while

�
� � �

�T
corresponds to � � 
i� In line with

our assumptions� we do not consider these� Instead� we focus on the other eigenpairs ��� x� �
��
�
� � �

�T �
and ��� x� �

�
�
� � �

�T �
� For the last pair we consider the problem for

��� � �� We simulate the situation of having a good approximation u � x by adding a random
�complex� perturbation to x�

u �� x � �w � kx � �wk�
where w is a normalized vector of the form rand�����i�rand������ �For all experiments� we take
�seed��� so that our results are reproducible�� Table ��	 gives the results of the four approaches
for � � ����� The �rst row of the two�dimensional Galerkin �Gal�	� and two�dimensional minimum
residual �MR�	� approaches represents 
��� while the second gives � as approximation to �� The
�rst row of the one�dimensional minimumresidual method �MR��� represents the optimal solution�
while the second is the suboptimal solution� For clarity� the meaning of the di�erent rows is �rst
summarized in Table ����

Table ���� The rows of Tables 
�� to 
��� with their meaning�

row nr� label meaning

� Gal� best approximation �of the two� of the onedimensional Galerkin method
� Gal� ��� approximation of the twodimensional Galerkin method
� � approximation of the twodimensional Galerkin method
� MR� optimal approximation of the onedimensional minimum residual method

 suboptimal approximation of the onedimensional minimum residual method
	 MR� ��� approximation of the onedimensional minimum residual method
� � approximation of the onedimensional minimum residual method

For � � �� all other approaches �Gal�	� MR��� and MR�	� give a smaller �forward� error
than the classical one�dimensional Galerkin method �Gal���� The ��� approximation of the two�
dimensional approaches Gal�	 �row 
� and MR�	 �row �� is particularly good� The sensitivities
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Table ���� The approximations of the onedimensional Galerkin �Gal��� twodimensional Galerkin �Gal��
��� and ��� onedimensional minimum residual �MR�� optimal and suboptimal�� and twodimensional minimum
residual �MR�� ��� and �� approaches for � � � and ��� � �� The other columns give the �forward� error j���j�
and krk and �min�Q���� for the backward errors�

Method appr� for � � � error krk �min appr� for ��� � � error krk �min

Gal� ������
�������i ������� ������ ������� ������������
	i �����
� ������ ������
Gal� ������������
�i �����	� ������ ������� ��������������i ������� �����
 �����	

������� ������� ������ ������� �����	�������	i ������� �����	 ������
MR� ��������������i ������� ������ ������� ������	�������i ������� �����	 ����	�

������������	�i ������� ������ ������� ��������������i ������� �����	 ������
MR� ������	�����
�i �����	� ������ ������� ������
�������i ������	 ������ �����	

������	 ������� ������ ������� �����	�������	i ������� �����	 ������

for the two�dimensional approaches k����uk � � and k��
�����uk � ��

 also indicate this� The
suboptimal solution of MR�� has a larger backward error krk� but a smaller forward error than
the optimal solution� For the discriminant �	�	� we have 	 � 	��

For ��� � �� the �
��� approximations �rows 	 and �� are bad� which was already predicted
by �
�	�� The sensitivities are k����uk � 
�� and k��
�����uk �� and for the discriminant we
have 	 � ��

Experiment ���� For the second example we construct matrices such that the discriminant
	 is small and hence the zeros of �	��� almost coincide� For small �  � de�ne

A � I�� B �

�
� � � �
� �	 	
� � �

	
� � C �

�
� � ���p� �
� �� � 	
� � �

	
� �

One may check that x �
�
� � �

�T
is an eigenvector with corresponding eigenvalue � 

p
��

�The second solution � � p
� to �	��� is close to the eigenvalue� but has no meaning�� The

discriminant is equal to ��� We take � � ���	� so � � ����� We test the approaches for � � ����

and � � ����� see Table ��
�

Table ���� The approximations of the onedimensional Galerkin �Gal��� twodimensional Galerkin �Gal��
��� and ��� onedimensional minimum residual �MR�� optimal and suboptimal�� and twodimensional minimum
residual �MR�� ��� and �� approaches for � � ����� for 	 � ���� and 	 � ����� respectively� The other columns
give the �forward� error j� � �j� and krk and �min�Q���� for the backward errors�

Method appr� �	 � ����� error krk �min appr� �	 � ����� error krk �min

Gal� ������������i ����
� ������ ������	 ������������i ������ ������ �������

Gal� ����	�������i �����
 ������ �����
� �����	�����
i ������ ������ �������	

����
�������i ����
� ������ ������� �����
������i �����
 ������ ��������
MR� �����	����
�i ����
� ������ ������� ������������i �����
 ������ ��������

�����������	i �����	 ������ ������� ������������i ������ ������ �������

MR� ����
�������i ������ ����
� �����
� �����	�����
i ������ ������ ��������

������������i ����
� ������ ������� �����
������i �����
 ������ ��������

The sensitivities for the two�dimensional methods Gal�	 and MR�	 are k����uk � 
�� and
k��
�����uk � ���� and j	j � ��� � ���	� Because the discriminant is small� and the sensitivities
are very modest� it is no surprise that all other approximations are much better �measured in
forward or backward error� than Gal���

Experiment ���� For the last example we take A� B� and C random symmetric matrices
of size ���� ���� We try to approximate the eigenvalue � � ��		��  	����
i� for � � ���� and
� � ���	� see Table ����

The sensitivities for Gal�	 and MR�	 are k����uk � 
�� � ��� and k��
�����uk � 	�� � ����
and j	j � 	�� ����
� Indeed� we see that the two �
��� approximations �row 	 and �� are the best�
together with the optimal MR�� solution �row ��� Note that for larger matrices� the computation
of �min�Q���� is expensive� In practice� one does not compute it� but it is shown here to compare
the methods�
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Table ���� The approximations of the onedimensional Galerkin �Gal��� twodimensional Galerkin �Gal��
��� and ��� onedimensional minimum residual �MR�� optimal and suboptimal�� and twodimensional minimum
residual �MR�� ��� and �� approaches for � � ������� ������i� and 	 � ���� and 	 � ����� respectively� The
other columns give the �forward� error j� � �j� and krk and �min�Q���� for the backward errors�

Method appr� �	 � ����� error krk �min appr� �	 � ����� error krk �min

Gal� 	��	�����i ���� ���� ����
 �����������i ������ ����� ������
Gal� ���
���	�i ���� ���� ���
� ���������	�i ������ ����� ����
�

	��������i ���� ���
 ����� �����������i �����
 ����� ������
MR� �������	�i ���� ���� ����� ���������	�i ������ ����� ����




��������i ���� 
��� ����� ����	������i ���
�� ����� ������
MR� �������	
i ���� ���� ���	� ���������	�i ������ ����� ����
�

��		���	�i ���� 	��� ����� ����������
i ����
� ����	 ���
�


Next� we test Algorithm ���� We start with a three�dimensional subspace U � consisting of
the same vector as above �� � ������ completed by two random �independent� vectors� We
determine six Ritz pairs according to ������ and re�ne the one with � approximating the eigenvalue
� � ��		�� 	����
i by Algorithm ���� where in every step we choose the 
��� approximation of
the two�dimensional Galerkin method� The results� shown in Table ���� reveal that both u and �
are improved four times� after which they keep �xed in the decimals shown� Note that the smallest
possible angle of a vector in U with x is

��U � x� � ���I � UU��x� x� � ��	��� � ���	�

Table ���� Re�nementof an approximate eigenvalueby Algorithm��� for � � �������������i� The columns
give the iteration number� angle between u and x� �forward� error j���j� and krk� �� �� �min��

�AU � �BU �CU�
and �� �� �min�Q���� � �min��

�A� �B � C� for the backward errors�

iteration ��u� x� ������� � error ������� krk ������� �� ������� �� �������

� ������ �������������i 	����� ������ ���		� ������
� 	�
��� ������������	i ������ ����	� ������ �����

� 	�
��
 �������������i ��	��� ������ ������ ���	��
� 	�
��� �������������i ��
��� ������ ������ ���
��
� � 	�
��� �������������i ��
�	� ������ ������ ���
�


We see that in particular the �rst step of the algorithm considerably improves the approximate
eigenpair� After four steps� the angle of the re�ned approximate eigenvector with the optimal
vector in U is less than 
� of the angle that the Ritz vector makes with the optimal vector�
The error in � is more than halved� Note again that �� �� �min���A  �B  C� is expensive� but
�� �� �min��

�AU  �BU  CU � is readily available in the algorithm�

�� Conclusions� The usual one�dimensional Galerkin approach for the determination of an
approximate eigenvalue corresponding to an approximate eigenvector may give inaccurate results�
especially when the discriminant of equation �	��� is small� We have proposed several alternative
ways that all require the same order of time and that often give better results� Based on our
analysis and the numerical experiments� we recommend the approximations of the two�dimensional
approaches Gal�	 and MR�	� because they are cheap to compute and give good results� For small
eigenvalues� one should take the ��� approximations� The MR�� method ensures a minimal
residual �backward error��

The approaches are also useful for approximations from a subspace and for polynomial eigen�
value problems of higher degree�
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