
ACCARDI CONTRA BELL (CUM MUNDI):

THE IMPOSSIBLE COUPLING

VERSION: 22/10/01

Richard D. Gill (with an appendix by J.-Å. Larsson)
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1 Introduction

The paper is dedicated to Constance van Eeden on her 75th birthday. It
has been written with a mathematical audience in mind: in particular, an
audience of mathematical statisticians and probabilists, without prior knowl-
edge of quantum physics. Readers from physics are recommend to jump to
sections 6 and 7, after scanning the introduction.

[This parenthesis is intended for statisticians and probabilists. The paper
is concerned with a celebrated paradox of quantum mechanics. Some key-
words and phrases are locality, causality, counterfactuals, EPR (Einstein–
Podolsky–Rosen, 1935) correlations, the singlet state, entanglement, Bell’s
(1964) inequalities, and the Aspect experiment (Aspect et al., 1982a,b).
However the point of the paper is that almost the whole story can be told
in terms of elementary classical probability and statistics. The only physics
you should believe, is that the right mathematical model for the periodic,
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smooth, dependence of a certain correlation coefficient on a certain angle is
given by the appropriate sine curve. It seems to me that this little example
should be in every probability and statistics course as showing the power
of probabilistic reasoning and the importance of statistics in modern day
science. Moreover, there is growing realisation that quantum physicists are
up to interesting things these days (quantum information, quantum compu-
tation, quantum communication), and growing realisation that these things
involve probability and potentially statistics, and that we should get involved
too. So why not take this as an aperatif, before consulting say Barndorff-
Nielsen, Gill and Jupp (2001) or Gill (2001b) for a survey and a tutorial
respectively, on quantum statistical inference: statistical inference for data
coming from quantum experiments. Gill (2001a)—in another Festschrift—
even introduces quantum asymptotic statistics.]

The rest of the paper is structured as follows. Section 2 introduces the
ongoing controversy around the application of Bell’s (1964) inequality to
quantum mechanics. The inequality is the elementary

(1) P{X1 = Y2} ≤ P{X1 = Y1}+ P{X2 = Y1}+ P{X2 = Y2}

concerning coincidence probabilities between four 0/1-valued random vari-
ables. Its proof is postponed to Section 4. Though the inequality itself is
trivial, the question of whether or not it should be applicable to certain
real-world experiments is more subtle, and therein lies the controversy. The
interesting fact is that the inequality is apparently violated by experimen-
tally confirmed predictions of quantum mechanics.

In Section 3 we describe the celebrated Aspect experiment, which first
confirmed the violation of Bell’s inequality, predicted by Bell himself almost
twenty years earlier. In each of a long sequence of runs or trials, a pair
of photons are emitted from a source O and sent to two widely separated
polarization filters X, Y . In each trial, each filter has one of two possible
orientations (labelled 1, 2, supplied by independent agents A and B). Each
photon either passes or does not pass its filter. We set down some nota-
tion and describe the empirical finding of the experiments, concerning the
frequencies of various possible outcomes. We shall work with absolute fre-
quencies rather than relative frequencies or empirical correlations. This will
lead to a clean mathematical analysis without changing the conclusions.

Accardi and Regoli (2000a,b, 2001) claim to be able to reproduce these
frequencies, replacing the source of the photons and the two polarization
filters by three computers1. The author has publicly challenged Accardi

1A Microsoft Windows software package can be downloaded from from the web page
http://volterra.mat.uniroma2.it/chamstart.html. During installation some system
files are replaced. I need to reinstall my scanner driver, after installing the package. I ran
the programme with the options: save to file (instead of floppy), CHSH, cryptographic
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to violate Bell’s inequality in an Aspect-style experiment with a version of
this software, adapted so as to allow the outcome of each separate trial to
be revealed before the settings of the next are provided. The challenge is
provisionally accepted subject to finalising details of the protocol. The bet
has been fixed at 3000 Euros. The bet will be settled by an independent jury
who are only asked to verify the one-way connections between the computers,
and to observe if the empirical correlations violate Bell’s inequality by a pre-
agreed margin. The results of this paper allow the author to determine a
protocol which will be acceptable for him.

In Section 4 we prove (1). In Section 5 we write down the probabilities
of the events of interest in the Aspect experiment, which follow from a sine
law and certain choices of experimental settings. It is not a priori clear that
the set-up of Bell’s inequality should apply in the Aspect experiment, but
if it did, the results predicted by quantum mechanics and observed in the
physics laboratory would be impossible. In Section 6 we argue why Bell’s
inequality should apply to Accardi and Regoli’s experiment, with everyday
computers connected so as to mimic the possible communication lines be-
tween the calcium atom and the polarization filters. Since the behaviour
of photons at distant filters cannot be simulated with classical computers,
connected so as to respect the separation between the filters, it follows that
quantum mechanics does make extraordinary predictions, namely, it predicts
phenomena which for classical physical systems are impossible.

In order to test inequalities between expected values, one will in practice
compute averages, and must take account of statistical variability of the
outcome. Now quantum mechanics predicts the same results whether one
does one trial in each of thousands of laboratories, or does thousands of trials,
sequentially, in one laboratory. In the former case one might be prepared to
assume independence from one trial to another, but in the latter case, it is
harder to rule out. In the case of a computer network simulation, in which
the software has been written by an opponent, one cannot rule out anything
at all. In Section 7 we show, using the martingale Bernstein inequality of
van de Geer (2000), that this does not provide a loophole for the Accardi and
Regoli experiment. Thirty thousand trials carried out according to a simple
protocol are sufficient that both Gill’s and Accardi’s error probabilities are
much smaller than one in a million.

Section 8 contains some closing remarks and further references.

2 Accardi contra Bell

Quantum mechanics makes statistical (or if you prefer, probabilistic) pre-
dictions about the world. Some of the strangest are connected to the phe-

variant, N = 1, and obtained correlations which were not equal to ±1, so it does not
appear to do its job.
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nomenon of entanglement, whereby two quite separate quantum systems (for
instance, two distant particles) behave in a coordinated way which cannot be
explained classically. Despite the fact that these properties are well known
and experimentally verified (most recently, see Tittel et al. (1998), with
pairs of photons passing below Lake Geneva through Swiss Telecom’s glass-
fibre cable network, between locations 10 Km distant from one another)
controversy still surrounds them.

A popular explanation of entanglement runs something like this. “Paint
one ping-pong ball red, another blue; put them in closed boxes and send
them randomly to two distant locations. Before the boxes are opened either
box could contain either ball. If one box is opened and turns out to contain
a red ball, then far away and instantaneously, the state of the other box sud-
denly changes: it contains a blue ball.” This is what Reinhard Werner calls
the ping-pong ball test: to judge any popular explanation of some quantum
mechanical paradox, replace the objects in the story by ping-pong balls,
and check if it makes sense. Well, this ping-pong story does make sense,
but rather misses the point. The behaviour we are trying to explain is a
bit more complex (too complex for newspaper articles, but not too complex
for mathematical statisticians). I will describe it precisely in the next sec-
tion. Quantum mechanics would not have caused scientists of the calibre
of Schrödinger, Bohr, and Einstein such intellectual discomfort if it were
this easy to explain entanglement. The whole point which Bell was trying
to make with his inequalities is that the dependence in the behaviour of
distant but entangled particles is contradictory to ‘local realism’. Loosely
speaking, this phrase means a classical (though possibly probabilistic) ex-
planation of the correlation in the behaviour of such particles, through their
carrying information from the place where they were generated or ‘born’ to
the places where they are measured or observed. In other words, a story like
the ping-pong story will not explain it.

Repeatedly, elaborate and exotic theories have been put forward to ex-
plain away the problem. Non-measurable events (Pitowsky, 1989), p-adic
probabilities (Khrennikov, 1995a,b, 1997, 1998, 1999), and most recently, the
chameleon effect (Accardi and Regoli, 2000a,b, 2001) have all been tried. In
the mean time much of the physics community ignores the controversy, and
many have misunderstood or minimalised Bell’s contribution, which goes
back, via Bohm, to a celebrated thought experiment of Einstein, Podolsky
and Rosen (1935). To give a local example, Nobel prize-winner G. ’t Hooft
learnt from his uncle N. van Kampen, a staunch adherant of the Copenhagen
interpretation, that Bell’s inequalities were not worth much attention, since
they are derived by consideration of what would have happened if a differ-
ent experiment had been performed, which according to Bohr’s Copenhagen
school is taboo. Counterfactuals have a bad name in quantum physics. Con-
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sequently ’t Hooft (1999) was till recently unaware, that a deterministic and
classical hidden layer behind quantum mechanics—such as the one he is at-
tempting to develop himself—is forced to be grossly non-local. He now has
the onerous task of explaining why it is that, although every part of the
universe is connected with invisible and instantaneous wiring to every other
part, reality as we know it, still has that familiar ‘local’ look; while only
in some special situations do we observe some very precisely circumscribed
evidence of hidden non-locality.

To return to the exotic explanations, Accardi in a number of papers
has strongly argued that the randomness in quantum mechanics is not the
randomness of urns, but of chameleons. By this he means that in classical
probability, with the paradyme being choosing a ball out of an urn contain-
ing balls of different colours, the values of variables on the different outcomes
are fixed in advance. A ball in an urn already has a particular colour, and
this colour is not influenced by taking the ball out of the urn and looking
at it. However the colour of a chameleon, let loose out of its cage, depends
on its environment. Moreover if there is a chance that the chameleon is
mutant, we will not be able to predict in advance what colour we will see.
His image of the Aspect experiment has a pair of chameleons, one mutant
and one normal, instead of the pair of ping-pong balls. There is some value
in this imagery. Quantum mechanics is incompatible with thinking of the
values of physical quantities as being fixed in advance of measurement. How-
ever, in my opinion, if chameleons are to be thought of as classical physical
objects (they may be mutant but not telepathic) it will not be possible to
simulate quantum systems with them. But Accardi and Regoli (2000a,b,
2001) now claim that they have simulated Accardi’s chameleons on a PC,
and more recently, on a network of PCs. The programme can be downloaded
from http://volterra.mat.uniroma2.it/chamstart.html. I have much
respect for Accardi’s many solid and deep contributions to quantum prob-
ability and quantum physics. On the other hand I cannot find fault with
Bell’s argument. I have therefore bet Luigi Accardi 1000 Euro (raised at his
request to 3000 in view of the more stringent requirements which I have put
down) that he cannot violate Bell’s inequalities, in an experimental setup
to be outlined below. Preparation of this bet required me to take a new
look at the inequalities and in particular to study the effect of possible time
dependence in repeated trials. Most mathematical treatments consider one
trial and then invoke the law of large numbers and the central limit the-
orem, assuming independence. Now, quantum mechanics makes the same
predictions when one independently carries out one trial each in many lab-
oratories over the world, as when one makes many trials sequentially at one
location. But actual experiments, and also Accardi and Regoli’s computer
experiment, are done sequentially in time. Therefore in order to show that
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sequentially designed classical experiments (in particular, using computers
or chameleons) cannot simulate quantum systems, we are not able to assume
independence. It will become clear that it is essential that the experiment
is randomised and the randomization is disclosed sequentially, with the out-
comes of the trials also being disclosed sequentially, in step. We will see that
a martingale structure will prevent the computer from taking advantage of
information gathered in past trials. Put another way, the separation in time
of consecutive trials will play a similar role to the separation in space which
is already central to Bell’s inequality.

3 The Aspect experiment

In an experiment carried out in Orsay, Paris, in 1982 by Alain Aspect and
his coworkers, a calcium atom O is excited by a lazer, and then returns
to its unexcited state by emitting a pair of photons in equal and opposite
directions. The photons always have equal polarization. In fact, their joint
state of polarization is a so-called quantum entangled state having rather
remarkable properties, as we will see. This is repeated many times (and
there are many calcium atoms involved), producing a long sequence of n
pairs of photons. We will refer to the elements of this sequence as ‘trials’.

Each pair of photons speed apart until intercepted by a pair of polariza-
tion filters X and Y , at two locations several meters apart in the laboratory.
We will call these locations ‘left’ and ‘right’. The orientations of the polar-
ization filters can be set, independently at the two locations, in any desired
direction. In the Aspect experiment, at each location a series of independent
random choices between two particular directions was made, independently
at the two locations.

Each photon either passes or does not pass through its filter. What
happens is registered by a photo-detector. The experiment thus produces,
in total, four sequences of binary outcomes: the filter-settings, both left and
right, and the outcomes ‘photon passes’ or ‘photon doesn’t pass’, both left
and right.

We will be particularly interested in the following event which either does
or does not happen at each trial, namely, ‘the two photons do the same’:
both pass or neither passes. Each trial is characterized by one of four possible
combinations of settings of the two filters. We label these combinations by
a pair of indices (i, j), i = 1, 2 for the left setting and j = 1, 2 for the right
setting (we will be specific about the particular orientations later). Since at
each trial, i and j are chosen independently and with equal probabilities, the
four joint outcomes of the settings will occur approximately equally often,
each approximately n/4 times. Let Nij denote the number of times that the
two photons do the same, within the subset of trials with joint setting (i, j).
In Section 6 we will argue that in a ‘local realistic’ description of what is
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going on here, one will have

(2) N12 � N11 +N21 +N22.

In fact one has four inequalites: each of the four random counts should
be less than the sum of the other three, modulo random noise, which is
what we indicate with the ‘approximate inequality’ symbol. Violation of
the inequality, if at all, would be due to statistical variation and therefore at
most of the order of

√
n, if one may assume independence between the trials.

If we allow for sequential dependence then perhaps a worse violation could
occur by chance, and it is the purpose of this paper precisely to quantify
how large it could be.

Quantum mechanics predicts that, if the angles are chosen suitably, one
can have

(3) N12 � N11 +N21 +N22,

and this is what Aspect et al. (1982a,b) experimentally verified; in particular
the second paper introduced the randomly varying polarization filter settings
(so far missing in Accardi and Regoli’s (2000b, 2001) experiment). Nowadays
this experiment can be done in any decent university physics laboratory,
though twenty years ago the experiment was a tour de force. In fact one
usually replaces the absolute frequencies in the equations (2) and (3) by
relative frequencies. Since the denominators will be roughly equal, this does
not make much difference, and working with absolute frequencies allows a
much cleaner mathematical analysis below.

Actually I am simplifying somewhat and will not go into the major com-
plications involved when one takes account of the fact that not all emitted
photons are detected. To be honest it must be said that this still leaves
a tiny, but rapidly dissappearing, loophole for local realism in ever more
sophisticated and paranoid (conspiracy theory) forms. For the latest the-
oretical progress in this area see Larsson (2000), Larsson and Semitecolos
(2001), Massar (2001); and for experimental progress, Rowe et al. (2001).

Accardi and Regoli (2000b, 2001) claim that they can programme three
computers, one representing the calcium atoms and sending information to
two other computers, representing the polarization filters, to reproduce the
predictions of quantum mechanics, or at the least, to satisfy (3). My bet is
that their experiment will however reproduce (2). The protocol of the ex-
periment stipulates that I provide two streams of binary outcomes to each of
the two ‘polarization filters’, representing the choices of setting (orientation)
of each filter. Graphically one trial of the experiment looks like this:

(4) A −→ X ←∼ O ∼→ Y ←− B

↓ ↓ ↓ ↓
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where X and Y denote the two polarization filters, O denotes the calcium
atom, A and B are two operators (Alice, Bob) independently choosing the
settings at X and Y . The downwards arrows coming from A and B represent
exact copies of the settings sent by A and B to X and Y . The wiggly
arrows emanating from O are supposed to suggest a quantum rather than
a classical (straight) connection. Accardi claims he can replace them with
straight arrows. The statistician must process four downward streams of
binary data: the settings from A and B, and the outcomes from X and Y .

4 Bells’ inequality

This little section derives Bell’s inequality, which lies behind the prediction
(2). For the time being treat this as a background fact from probability
theory. Why it should be relevant to a local realistic version of the Aspect
experiment, we will argue in Section 6. Actually, the inequality I prove
is nowadays often called the Clauser–Horne–Shimony–Holt (1969), or just
CHSH inequality, as it is better tuned to a stringent experimental distinc-
tion between quantum mechanical and classical systems. The way it will be
proved here, as a probabilistic consequence of a deterministic inequality, is
often attributed to Hardy (1993). In fact, others also earlier used this argue-
ment, and its seeds are already in Bell’s paper. Some trace the inequality
back to the works of the nineteenth century logician Boole. I learnt it from
Maassen and Kümmerer (1998). Bell himself, along with most physicists,
gives a more involved proof, since the physics community does not make use
of standard probabilistic notation and arguments. I also prefer, for trans-
parency, an inequality in terms of probabilities of coincidences to one in
terms of correlations (which however are what the physicists prefer to talk
about).

Let X1, Y1, X2, Y2 denote four 0/1-valued random variables. Think of
them positioned at the vertices of a square, with X1 opposite to X2, Y1

opposite to Y2. Each side of the square connects one of the X variables to
one of the Y variables, and therefore represents an experiment one could
possibly do with two photons and two polarization filter settings. Convince
yourself, by following through the choice of a 0 or a 1 for X1, that

(5) X1 �= Y1 & Y1 �= X2 & X2 �= Y2 =⇒ Y2 �= X1.

Taking the negation of each side and reversing the implication, it follows
that

(6) X1 = Y2 =⇒ X1 = Y1 or X2 = Y1 or X2 = Y2.

Now use one of the first properties of probability:

(7) P{X1 = Y2} ≤ P{X1 = Y1}+ P{X2 = Y1}+ P{X2 = Y2}.
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If you are interested in correlations, or rather product moments, note
that (physicist’s notation) 〈X1, Y2〉 = E(X1Y2) = 2P{X1 = Y2} − 1.

5 Coincidence probabilities for entangled photons

The two photons in the Aspect experiment have in some sense exactly equal
polarization. If the two polarization filters left and right are in perpendicu-
lar orientations, exactly one of the two photons will pass through the filter.
For instance, if one filter is oriented horizontally, and the other vertically,
one might imagine that the calcium atom either produces two horizontally
polarized photons, or two vertically polarized photons, each with probabil-
ity half. With probability half, both photons are horizontally polarized, and
the one which meets the horizontal filter, passes through it, while the other
meets a vertical filter and is absorbed. With probability half both photons
are vertically polarized and again, exactly one passes the two filters. The
same holds for any two perpendicularly oriented filters: the probability of
coincidence—the two photons do the same—is zero. If however the two fil-
ters are oriented in the same direction, for instance, both horizontal, then
either both photons pass, or both do not pass (each of these possibilities
has probability half). The probability of coincidence is one. Now imagine
keeping one filter fixed and slowly rotating the other. At zero degrees differ-
ence, the probability of coincidence is 1, at 90 degrees, it is 0, at 180 degrees
it is back to one, and so on. It is a smooth curve (how could it not be
smooth?), varying periodically between the values 0 and 1. Recalling that
cos(2θ) = 2 cos2(θ) − 1, and that the cosine function is itself a shifted sine
curve, we conclude that if the probability of coincidence is a sine curve, it
has to be the curve cos2(θ): it varies between 0 and 1, taking these values
at θ = π/2 and θ = 0.

Quantum mechanics predicts precisely this probability of coincidence.
The quantum state involved, is the only pure state having the natural ro-
tational invariance so this answer is pretty canonical. Recall that quantum
mechanics is characterized by wave-particle duality: we know that photons
are particles, when we look to see with a photo-dector if one is present or not.
But we also know that light behaves like waves, exhibiting interference pat-
terns. Waves are smooth but particles, especially deterministic particles, are
discrete. However, random particles can have smoothly varying behaviour.
It seems that randomness and non-locality is a necessary consequence of the
fundamental wave-particle duality of quantum mechanics, i.e., of reality.

Now suppose A chooses, for X, between the orientations α1 = 0 and
α2 = π/3, while B chooses, for Y , between the orientations β1 = −π/3 and
β2 = 0. The absolute difference between each α and each β is 0, π/3, or
2π/3 = π−π/3. Since cos(π/3) = 1/2 = − cos(π−π/3) the four probabilities
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of coincidence are 1/4, 1/4, 1/4, 1, and

(8) 1 � 1
4

+
1
4

+
1
4
.

6 Why Bell applies to Accardi’s computers

Consider one trial. Suppose the computer O sends some information to X
and Y . It may as well send the same information to both (sending more,
does not hurt). Call the information λ. Operator A sends α1 or α2 to X.
Computer X now has to do a computation, and output either a 0 or a 1
(‘doesn’t pass’, ‘does pass’). In our imagination we can perfectly clone a
classical computer: i.e., put next to it, precisely the same apparatus with
precisely the same memory contents, same contents of the hard disk. We can
send α1 to one of the copies and α2 to the other copy; we can send λ to both
(classical information can be cloned too). By the way, quantum systems
cannot be cloned—that is a theorem of quantum mechanics! Therefore both
copies of the computer X can do their work on both possible inputs from
A, and the same input from O, and produce both the possible outputs.
Similarly for Y .

Let us now suppose that this is actually the mth trial. I suppose that
computers O, X and Y may be using pseudo-random number generators and
that I model the seeds of the generators with random variables. This means
that I now have defined four random variables Xm1, Xm2, Ym1 and Ym2, the
values of two of which are actually put on record, while the other two are
purely products of your and my imagination. Which are put on record is
determined by independent (of everything so far) Bernoulli trials, the choices
of A between index 1 or 2 for the X variables, and of B between index 1
or 2 for the Y variables. Let me directly define variables Um11, Um12, Um21,
Um22 which are indicator variables of the four possible joint outcomes. Thus
the sum of these four 0/1 variables is identically 1, and each is Bernoulli(1

4).
I will allow Accardi and Regoli’s computers, at the mth trial, to use results
obtained so far in its computations for the current trial. So we arrive at the
following model: for each m = 1, ..., n, the vector (Um11, Um12, Um21, Um22)
is multinomial(1; 1

4 ,
1
4 ,

1
4 ,

1
4), independent of all preceding U , X and Y vari-

ables, and independent of the current X and Y variables. The counts on
which the bet depends are Nij =

∑
m Umij1{Xmi = Ymj}. I compute the

expectation of this by first conditioning, within the mth term, on the cur-
rent and preceding X and Y variables and on the preceding U variables.
By conditional independence and by taking the expectation of a conditional
expectation I find ENij = 1

4

∑
m P{Xmi = Ymj}. Therefore

(9) E(N12 −N11 −N21 −N22)

=
1
4

∑
m

(
P{Xm1 = Ym2}−P{Xm1 = Ym1}−P{Xm2 = Ym1}−P{Xm2 = Ym2}

)
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≤ 0,

by Bell’s inequality (7). In expectation Accardi must lose. If each trial is
independent of each other, the deviation can be at most of the order of

√
n.

In the next section we will see that serial dependence cannot worsen this
at all, because of the obvious (super)martingale structure in the variable of
interest.

7 Supermartingales

Let us allow the choices of computers O, X and Y at the mth trial to depend
arbitrarily on the past up to that time. Write �1 = (1, 1, 1, 1),

�Um = (Um1, Um2, Um3, Um4) = (Um12, Um11, Um12, Um22)

and

�Xm = (1{Xm1 = Ym2},−1{Xm1 = Ym1},−1{Xm2 = Ym2},−1{Xm1 = Ym2}).
Define ∆m = �Um · �Xm and Sm =

∑r
m=1 ∆r. Define ∆̃m = 1

4
�1 · �Xm and S̃m =∑m

r=1 ∆r. Let Fm denote the σ-algebra of allX, Y and U variables up to and
including the mth trial. Let the smaller σ-algebra Am be the σ-algebra gen-
erated by Fm−1 together with Xm1, Xm2, Ym1, Ym2. Thus Fm is generated
by Am together with �Um. In the previous section we basiccally made the
computation E(∆m|Fm−1) = E(E(∆m|Am)|Fm−1)) = E(∆̃m|Fm−1) where
surely, ∆̃m ≤ 0 and |∆m − ∆̃m| ≤ 1. Define σ2

m = Var(∆m − ∆̃m|Fm−1).
We have moreover the bounds −1

2 ≤ ∆̃m ≤ 0 and 0 ≤ σ2
m ≤ 1. Define

Vm =
∑m

r=1 σ
2
r .

To warm up, we investigate whether we can obtain a Chebyshev-like
inequality in this situation. The answer will be yes, but the inequality will
be too poor for practical use. After that we will make better use of the
fact that all summands are bounded, and derive a powerful Bernstein-like
inequality.

It follows from the computations above that Sm − S̃m is a martingale
with respect to the filtration (Fm)n

m=1, and so is (Sm− S̃m)2−Vm, while S̃m

is a decreasing, negative process and Vm an increasing, positive, predictable
process. By the inequality of Lenglart (1977) it follows that for any η > 0
and δ > 0, P{supm≤n(Sm − S̃m)2 ≥ η} ≤ δ/η + P{Vn ≥ δ}. Choosing
η = k2n and noting that Vn ≤ n, we find the inequality

(10) P{Sn ≥ k
√
n} ≤ δ

k2n
+ P{Vn ≥ δ} ≤ δ

k2n
+
n

δ
,

by Chebyshev’s inequality. The right hand side is minimal at δ = n/k giving
us the inequality

(11) P{Sn ≥ k
√
n} ≤ 2

k
.
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This is nowhere as good as the result of applying Chebyshev’s inequality
when all trials are independent,

(12) P{Sn ≥ k
√
n} ≤ 1

k2
,

but it would allow us to choose a (huge) sample size and critical value to
settle my bet with Luigi Accardi. Note that I can for free replace Sn by
supm≤n Sm in these inequalities, so there is no chance that Accardi can
win by stopping when things are looking favourable for him (they won’t).
However the sample size is prohibitively large, for the rather small error
probabilities which we would like to guarantee.

In fact we can do much better, using exponential bounds for martingales,
generalizing the well-known Bernstein (1924), Hoeffding (1963), or Bennett
(1962) inequalities for sums of bounded, independent random variables, and
more generally for independent random variables with bounded exponential
moment. From van de Geer (2000), Lemma 8.9 and its corollaries, applied
to the martingale Sm − S̃m, we get in a similar way:

(13) P{ sup
m≤n

Sm ≥ k
√
n} ≤ exp

(
−1

2k
2

1 + k/
√
n

)
.

Thus at the root n scale, the tail of our statistic can be no heavier than
Gaussian; though for much larger values (at the scale of n) it can be as heavy
as exponential. This behaviour is no worse than in the i.i.d. case. In fact,
in the i.i.d. case, and only bounding the tail probability of Sn, the classical
Bernstein inequality just has k/

√
n replaced by k/3

√
n. Continuous time

martingale versions of the Bernstein inequality can be found in Shorack and
Wellner (1986), while a modern treatment of the inequality for independent
random variables can be found in Pollard (2001, Ch. 11).

Note that if we had been working with the relative instead of the absolute
frequencies, we could have treated the four denominators in the same way,
used Bonferroni, and finished with a very similar but messier inequality.

We can now specify precisely a protocol for the computer experiment,
which must settle the bet between Accardi and the author. In order that
the supermartingale structure is present, it suffices that the settings and
the outcomes are generated sequentially: Gill provides settings for trial 1,
then Accardi provides outcomes for trial 1, then Gill provides settings for
trial 2, Accardi outcomes for trial 2, and so on. Between subsequent trials,
computers X, O and Y may communicate with one another in any way they
like. Within each trial, the communications are one way only, from O to
X and from O to Y ; and from A to X and from B to Y . A very rough
calculation from (13) shows that if both accept error probabilities of one in
a million, Accardi and Gill could agree to a sample size of thirty thousand,
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and a critical value +n/32, half way betweeen the Bell expectation bound
0 and the Aspect experiment expectation +n/16. I am supposing here that
Accardi plans not just to violate the Bell inequality, but to simulate the
Aspect experiment with the filter settings as specified by me. I am also
supposing that he is happy to rely on Bernstein’s inequality, in the opposite
direction.

The experiment will be a bit easier to perform, if Accardi does not want
to exploit the allowed communication between his computers, between trials.
In that case one might as well store the entire initial contents of memory
and hard disk, of computer O, within computers X and Y . Now computers
X and Y can each simulate computer O, without communicating with one
another. Now we just have computers A and X, connected one-way, and
completely separately, B and Y , also connected one-way. We carry out n
sequential trials on each pair of computers.

It would be even more convenient if these trials could be done simultane-
ously, instead of sequentially. Thus computers A and B would deliver to X
and Y , in one go, all the settings for the n trials. We now lose the martingale
structure. For the mth trial, one can condition on all preceding and subse-
quent settings. Conditioning also on the intial contents of computers X and
Y , we see that the outcomes of the mth trial are now deterministic functions
of the random settings for the mth trial. Thus we still have Bell’s inequal-
ity: in expectation, nothing has changed. But the martingale structure is
destroyed; instead, we have something like a Markov field. Is there still a
Bernstein-like inequality for this situation? It is not even clear if a Cheby-
shev inequality is available, in view of the possible correlations which now
exist between different outcomes. However, since we have the Bell inequality
in expectation, one could put the onus on keeping the variance small, on the
person who claims they can simulate quantum mechanical correlations on a
classical computer. For instance, Accardi might believe that he can keep the
second decimal digit of Nij/n fixed, when n is as large as, say, ten thousand.
Then one could do the experiment in ten times four batches of ten thousand,
sending files by internet forty times. Within each group of four batches, I
supply a random permutation of the four joint settings (i, j). We settle on a
critical value halfway between our two expectations, but Accardi must also
agree to lose, if the second decimal digits of each group of 10 Nij/n, n being
the size of the batch now, ever vary. Am I safe? I feel uneasy, without
Bernstein behind me.

In the actual Aspect experiment, a different set of angles were chosen, so
as to yield, by an inequality of Cirel’son (1980), the most extreme violation
of the Bell inequality which is allowed within quantum mechanics. Thus if
an even larger violation had been observed, one would not just have had
to reject the specific quantum mechanical calculations for this particular
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experiment, but more radically have to reject the accepted rules of quan-
tum mechanics, altogether. Many authors have therefore considered those
settings as providing “the most strong violation of local realism, possible”.
However, we would say that the strongest violation occurs, when one is able
to reject local realism, with the smallest possible number of samples. Thus
concepts of efficiency in statistical testing, should determine “the strongest
experiment”.

Van Dam (2002) studies this problem from a game-theoretic point of
view, in which the believer in quantum mechanics needs to find the ex-
perimental set-up which provides the maximal “minimum Kullback-Leibler
distance between the quantum mechanical predictions and any possible pre-
diction subject to local realism”. Such results can be reformulated in terms
of size, power, and sample size, using Bahadur efficiency (large deviations).

Many authors discuss the Aspect experiment and Bell inequalities in a
version appropriate for spin half particles (for instance, electrons) rather than
photons. The translation from photons to electrons is: double the angles,
and then rotate the settings in one wing of the experiment by 180◦. To
explain the doubling: a polarization filter behaves oppositely after rotating
90◦, and identically after rotating 180◦. A Stern-Gerlach magnet behaves
oppositely after rotating 180◦, identically after rotating 360◦. As for the
rotation: the photons in the Aspect experiment are identically polarized
while the spin of the spin half particles in the companion experiment are
equal and opposite. The quantum state used in the spin half version is the
famous Bell or singlet state, |01〉− |10〉, while for photons one uses the state
|01〉+|10〉, where the 0 and 1 stands for “spin-up”, “spin-down” for electrons,
and “horizontal polarization”, “vertical polarization” for photons.

8 A different kind of probability, or nonlocality?

The relation between classical and quantum probability and statistics has
been a matter of heated controversy ever since the discovery of quantum
mechanics. It has mathematical, physical, and philosophical ingredients and
much confusion, if not controversy, has been generated by problems of in-
terdisciplinary communication between mathematicians, physicists, philoso-
phers and more recently statisticians. Authorities from both physics and
mathematics, perhaps starting with Feynman (1951), have promoted vigor-
ously the standpoint that ‘quantum probability’ is something very different
from ‘classical probability’. Most recently, Accardi and Regoli (2000a) state
“the real origin of the Bell’s inequality is the assumption of the applicability
of classical (Kolmogorovian) probability to quantum mechanics” which can
only be interpreted as a categorical statement that classical probability is
not applicable to quantum mechanics. Malley and Hornstein (1993) con-
clude from the perceived conflict between classical and quantum probability
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that ‘quantum statistics’ should be set apart from classical statistics.
We disagree. In our opinion, though fascinating mathematical facts and

physical phenomena lie at the root of these statements, cultural preconcep-
tions have also played a role. Probabilistic and statistical problems from
quantum mechanics fall definitely in the framework of classical probability
and statistics, and the claimed distinctions have retarded the adoption of
statistical science in physics. The phenomenon of quantum entanglement in
fact has far-reaching technological implications, which can only be expressed
in terms of classical probability; their development will surely involve clas-
sical statistics too. Emerging quantum technology (entanglement-assisted
communication, quantum computation, quantum holography and tomogra-
phy of instruments) aims to capitalise on precisely those features of quantum
mechanics which in the past have often been seen as paradoxical theoretical
nuisances.

Our stance is that the predictions which quantum mechanics makes of the
real world are stochastic in nature. A quantum physical model of a particu-
lar phenomenon allows one to compute probabilities of all possible outcomes
of all possible measurements of the quantum system. The word ‘probability’
means here: relative frequency in many independent repetitions. The word
‘measurement’ is meant in the broad sense of: macroscopic results of inter-
actions of the quantum system under study with the outside world. These
predictions depend on a summary of the state of the quantum system. The
word ‘state’ might suggest some fundamental property of a particular collec-
tion of particles, but for our purposes all we need to understand under the
word is: a convenient mathematical encapsulation of the information needed
to make any such predictions.

Now, at this formal level one can see analogies between the mathemat-
ics of quantum states and observables—the physical quantities of quantum
mechanics—on the one hand, and classical probability measures and random
variables on the other. This analogy is very strong and indeed mathemat-
ically very fruitful (also very fruitful for mathematical physics). Note that
collections of both random variables and operators can be endowed with al-
gebraic structure (sums, products, . . . ). It is a fact that from an abstract
point of view a basic structure in probability theory—a collection of random
variables X on a countably generated probability space, together with their
expectations

∫
XdP under a given probability measure P—can be repre-

sented by a (commuting) subset of the set of self-adjoint operators Q on
a separable Hilbert space together with the expectations tr{ρQ} computed
using the trace rule under a given state ρ, mathematically represented by
another self-adjoint operator having some special properties (non-negative
and trace 1).

‘Quantum probability’, or ‘noncommutative probability theory’ is the
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name of the branch of mathematics which studies the mathematical struc-
ture of states and observables in quantum mechanics. It is a fact that a basic
structure in classical probability theory is isomorphic to a special case of a
basic structure in quantum probability. Brief introductions, of a somewhat
ambivalent nature, can be found in the textbooks, on classical probability,
of Whittle (1970) and Williams (2001). Kümmerer and Maassen (1998),
discussed in Gill (1998), use the “quantum probabilistic modelling” of the
Aspect experiment—which just involves some simple linear algebra involving
2× 2 complex matrices—to introduce the mathematical framework of quan-
tum probability, giving the violation of the Bell inequalities as a motivation
for needing “a different probability theory”. From a mathematical point
of view, one may justly claim that classical probability is a special case of
quantum probability. The claim does entail, however, a rather narrow view
of classical probability. Moreover, many probabilists will feel that abandon-
ing commutativity is throwing away the baby with the bathwater, since this
broader mathematical structure has no analogue of the sample outcome ω,
and hence no opportunity for a probabilist’s beloved probabilistic arguments.

Many authors have taken the probabilistic predictions of quantum the-
ory, as exemplified by those of the Aspect experiment, as a defect of classical
probability theory and there have been proposals to abandon classical prob-
ability in favour of exotic alternative theories (negative, complex or p-adic
probabilities; nonmeasurable events; noncommutative probability; . . . ) in
order to ‘resolve the paradox’. However in our opinion, the phenomena are
real and the defect, if any, lies in believing that quantum phenomena do not
contradict classical, deterministic, physical thinking. This opinion is sup-
ported by the recent development of (potential) technology which acknowl-
edges the extraordinary nature of the predictions and exploits the discov-
ered phenomena (teleportation, entanglement-assisted communication, and
so on). In other words, one should not try to explain away the strange fea-
tures of quantum mechanics as some kind of defect of classical probabilistic
thinking, but one should use classical probabilistic thinking to pinpoint these
features.

The violation of the Bell inequalities show that any deterministic, un-
derlying, theory intending to explain the surface randomness of quantum
physical predictions, has to be grossly non-local in character. For some
philosophers of science, for instance Maudlin (1994), this is enough to con-
clude that “locality is violated, tout court”. He goes on to analyse, with
great clarity, precisely what kind of locality is violated, and he investigates
possible conflicts with relativity theory. Whether or not one says that local-
ity is violated, depends on the meaning of the word “local”. In our opinion,
it can only be given a meaning relative to some model of the physical world,
whether it be implicit or explicit, primitive or sophisticated.



Accardi contra Bell 17

Since quantum randomness is possibly the only real randomness in the
world—all other chance mechanisms, like tossing dice or coins, can be well
understood in terms of classical deterministic physics—there is justification
in concluding that “quantum probability is a different kind of probability”.
And all the more worth studying, with classical statistical and probabilistic
tools, for that.

Acknowledgements. I am grateful to Hermann Thorisson for the subtitle
of this paper; see Thorisson (2000) for the connection with the probabilistic
notion of coupling.

A What went wrong?

This appendix is provided by Jan-Åke Larsson (jalar@imf.au.dk), Ma-
PhySto, Aarhus. It points out the error in the Accardi and Regoli construc-
tion.

In Accardi and Regoli (2001), it is argued that the Bell inequality can
be violated by a classical system after a local dynamical evolution. After a
dynamical evolution, in the Schrödinger picture an expectation is obtained
as

(14) E(F ) =
∫∫

F (λ1, λ2)(ψ0 ◦ P )(dλ1, dλ2),

while in the Heisenberg picture,

(15) E(F ) =
∫∫

P (F )(λ1, λ2)ψ0(dλ1, dλ2).

Perhaps it should be underlined here that the two above expressions are
equivalent representations of the same physical system. This means among
other things that the possible values of the observables (values of the random
variables, outcomes of the experiment) in the right-hand sides should be
equal, regardless of the representation. In mathematical language, R(F ) =
R(P (F )).

In Accardi and Regoli (2001), it is claimed that P (F ) in the Heisenberg
picture is of a certain form:

(16) P (F )(λ1, λ2) = F (T1,aλ1, T2,bλ2)T ′
1,a(λ1)T ′

2,b(λ2)

For the physical system in question in Accardi and Regoli, R(F ) = {±1}, so
the only Tis that can be used if (16) holds are those for which

(17) T ′
1,a(λ1)T ′

2,b(λ2) = 1 a.e.
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The model (18) in Accardi and Regoli (2001) does not follow this require-
ment, but instead, the measurement results in the Heisenberg picture lie in
the interval [−√2π,

√
2π]. The Bell inequality (the CHSH inequality) is only

valid for systems for which the results are in {±1} ([−1, 1]), and for such
systems, the correlation is less exciting.
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Kümmerer, B. and Maassen, H. (1998). Elements of quantum probability.
Quantum Probability Communications 10, 73–100.
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