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This paper reviews higher order resonance in two degrees of freedom Hamilto-
nian systems. We consider a positive semi-definite Hamiltonian around the origin.
Using normal form theory, we give an estimate of the size of the domain where
interesting dynamics takes place, which is an improvement of the one previously
known. Using a geometric numerical integration approach, we investigate this in
the elastic pendulum to find additional evidence that our estimate is sharp. In an
extreme case of higher order resonance, we show that phase interaction between
the degrees of freedom occurs on a short time-scale, although there is no energy
interchange.

1 Introduction

Studies on two degrees of freedom Hamiltonian system has a long history:
dating back to Euler in 1772 with his description of three body problem.
The presence of resonance in a Hamiltonian system of differential equations,
strongly affects the dynamics. In this paper, we give a review of studies
on higher order resonance in two degrees of freedom Hamiltonian system. An
early discussion of this problem, using formal methods, is given by Kevorkian®.

The analysis in this paper involves asymptotic analysis (perturbation
method) and normalization. Using these techniques, we construct an approxi-
mation to the original system and then study the dynamics of the approximate
system. We also use a numerical method to gain confirmation of our analytical
result. The numerical method that we used 1s based heavily on a geometrical
approach to preserve some of the geometric structure of the system.

We start this paper with a mathematical setting of two degrees of freedom
Hamiltonian system in R% We also give a brief idea of the normalization
in this section. For introduction to Hamiltonian system, see Abraham and
Marsden' or Arnol’d?, for normalization see Churchil et.al.*. In Section 3 we
study the resonance domain, which is the main focus of interest in higher order
resonance. Using normal form, we show that we can improve the estimate of

*On leave from Jurusan Matematika, FMIPA, Institut Teknologi Bandung, Ganesha no.
10, Bandung, Indonesia
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the size of this domain. We check this statement also numerically and it
is presented in Section 4. The last section, we present part of an on going
research on an extreme type of higher order resonance.

2 Two degrees of freedom Hamiltonian systems at higher
order resonance

Consider a two degrees of freedom Hamiltonian system, defined in R* with
coordinate (g, p) = (¢1, ¢2, p1, p2) and a symplectic form dgAdp = dg Adp; +
dgs A dps, with Hamiltonian

1

1
H = §w1(Q12 +p1%) + 5(-02((]22 +p2°) + Hs(q,p) + Halg,p)+ ..., (1)

where Hj is a homogeneous polynomial of degree & and wy,ws > 0. Let ¢
be a small parameter (¢ < 1). We localize in the neighborhood of the origin
by rescaling the variables by ¢1 = €41, 2 = €¢z2, p1 = €p1, and ps = €p3.
Dividing the Hamiltonian (1) by €2, we arrive at the Hamiltonian

1 1
H = wi(a” + p7) + 5waleo” + po”) + Hs(q,p) + " Halg,p) +.., (2)

where we have dropped the bar.

The idea of Birkhoff normalization is to transform the Hamiltonian
such that it depend only on the so-called action variables. In general, this
is only possible in the non-resonance situation. We proceed by bringing
the Hamiltonian (2) to the Birkhoff-Gustavson normal form. Consider the
resonance relation: nwy + mws = 0. Let (n,m) integer solution of the
resonance relation such that |n|+ |m| = r while m and n are relatively prime.
Introducing the action variables 7; = (¢; + p;?)/2 and the angle variables
¢p; = arctan(p;/¢;), j = 1,2, the Hamiltonian (2) is transformed to the
normal form of the form

H=wim +wir + P(r1, 79,8) + ™R (11, 72, 1, 2), (3)

where P is a polynomial of degree [r/2]. Moreover, the function R depend
only on the resonance combination angle: ny1+meps (instead of an individual
angle).

3 The resonance domain

In this paper we are interested on the higher order resonance cases: r > 5.
For the lower order resonance (r = 3 and r = 4), see for instance Nayfeh
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and Mook”, or van der Burgh'®. Sanders® is one of the first who described
the dynamics of (2) at high order resonance. He found that the phase-space
is foliated by invariant tori parameterized by taking the actions 7 and
to be constant. Using the KAM theorem, most of these tori persist under a
Hamiltonian perturbation. There exists also the so-called resonant manifold.
A neighborhood of this manifold, called the resonance domazin, is the location
where interesting dynamics is found. At each energy level, the normal form
produces at least one elliptic periodic solution and one saddle type periodic
solution; they lie in the resonance manifold which is embedded in the energy
manifold.

Writing ¢ = ne1+meps as the resonance combination angle, the equations
of motion derived from the normal form (3) is

. _ _.m4n—-4 IR s
Tp=¢ Doy =12

p=nl 4+ miE 4 O(),

(4)

where we have re-scaled time by &?#, and P, is the quadratic part of P.
Consider a system of two linear equation

mr + nr =F, 5
Wil mis =), ®)

for some F, € R*t. Note that the first equation in (5) represents nothing but
the approximate energy manifold Hy, = E,. If

m n
n62P2 82 P,
9712 752

A= £0,

then the location of the resonance domain can be approximated by the solution
of (5). Moreover, transfer of energy (or interaction) between the degrees of
freedom occurs in the neighborhood of that solution. Sanders® also gave an
estimate for the size, d., of the resonance domain, which is of 0(6_(m+”_4)/6),
and the time-scale of interaction is e~ ("m+7)/2,

In van den Broek?, numerical evidence has been given that the size is
actually smaller than the above estimation, so there is room for improvement
of the estimate of d.. In Tuwankotta and Verhulst'?, we use a geometric
approach to give an estimate for d.. The idea is to use the normal form
theory to construct an approximation of Poincaré section of the flow of (2).
Suppose we construct the section in the ¢i-pi-direction. Each of the periodic
solutions (inside the resonance domain) mentioned above will appear as an
n-periodic point of the map. Obviously, there will be 2n of such points in
the section (since we have two periodic orbits). The saddle type point will be
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Figure 1. An illustration of calculation of the estimate for the d..

connected to its neighboring saddle point with a heteroclinic cycle. We draw a
line connecting the origin and one of the elliptic points. This line will intersect
the heteroclinic cycle. The estimate for d. in Tuwankotta and Verhulst!? is
achieved by estimating the distance between the two intersection points. We
summarize in the following lemma.

Lemma 3.1 In two degrees of freedom Hamiltonian systems at higher order
resonance m : n with m and n natural numbers satisfying m+n > 5, the size
d. of the resonance domain s

d. = O( ™57, (6)
with a time-scale of interaction O(e~(m+7)/2),

The presence of an appropriate discrete symmetry completely changes the
hierarchy of resonances in the system. As demonstrated in Tuwankotta and
Verhulst!?, the 1 : 2-resonance for instance, has to be viewed as a 2 : 4-
resonance in the presence of mirror symmetry in the second degree of freedom.
As a consequence, it becomes a higher order resonance and thus the lemma
above holds. The number of periodic solutions in the resonance manifold
embedded in the energy manifold is then doubled.

4 Geometric Integration based on a splitting method

As mentioned previously, the first indication that the estimate of d. can be
improved, is found numerically. The next thing for us to do is then to check the
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estimate (6) numerically. For this purpose, we choose the Elastic Pendulum,
which is a classical mechanical problem with discrete symmetry. This system
serves as a model of a lot of applications, see the references in Tuwankotta
and Verhulst'?.

The elastic pendulum is a mathematical pendulum in which the rod is
replaced by a linear spring. The Hamiltonian of the elastic pendulum is

2 2 _ 2
H= oo (2 i) + 5 (4 52)" = mgl(z + 1) cos(y),  (7)

where ¢ 1s the deviation from the vertical position, z is the radial oscillations,
s is the spring constant, m is the mass of the pendulum, and [ is the after
load length of the pendulum. See Nayfeh? van der Burgh!®? Tuwankotta and
Verhulst!? Tuwankotta and Quispel'! for details.

Due to the size of the domain which is relatively small, and the time-
scale of interaction which is relatively long, it is not easy to get the numerical
confirmation of the estimate (6). We need a method of time integration that
is accurate enough after relatively long integration time as well as being fast
in the real time computation.

By mean of an example, Tuwankotta and Quispel 11 demonstrated how
the Baker-Campbell-Hausdorf (BCH) formula can be used to construct an
approximation of the flow of (7). The idea is to split the Hamiltonian (7)
into parts which are individually integrable. By composing the exact flow
of each part, and using the BCH formula, the numerical integration scheme
is then constructed. Using this method, an independent confirmation that
our estimate is sharp, is achieved. See Tuwankotta and Quispel'! for details,
Table 1 for numerical result and also Figure (2).

Resonance | Resonant | Analytic | Numerical | Error
part log. (d.) log. (d.)

4:1 Hsg 1/2 0.5091568 | 0.01

6:1 Hr 3/2 1.5079998 | 0.05

4:3 Hr 3/2 1.4478968 | 0.09

3:1 Hg 2 2.0898136 | 0.35

Table 1. Comparison between the analytic estimate and the numerical computation of the
size of the resonance domain of four of the most prominent higher order resonances of the
elastic pendulum. The second column of this table indicates the part of the expanded
Hamiltonian in which the lowest order resonant terms are found.

Apart from this confirmation, we note that this splitting method preserves
some geometric properties of the system such as, linear symmetry, time-
reversal symmetry, the symplectic form and also the linear resonance.
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Figure 2. Plots of log(d.) against log(s) for various resonances. The 4 : l-resonance is
plotted using '—o’, the 3 : 1-resonance is using '—4’, the 4 : 3-resonance is using '— X’ and
the 6 : 1 resonance is using '—x’.

5 Systems with widely separated frequencies

Studies on coupled oscillator systems have a long history. They serve as
models in many applications, such as vibrating mechanical structures. Most
of the concern in these studies is to see how energy interchanges between
the oscillators. In this frame work, our preceding sections suggest that in
the higher order resonance case, the energy exchanged between the oscillators
is small. This is in agreement with the traditional knowledge in this field.
However, in 1990, a lot of studies (see Haller®) have been devoted to an
extreme type of higher order resonance, i1.e. systems with widely separated
frequencies.

In the Hamiltonian case, Broer et.al. gave a description of the unfolding
of the origin of this type of system. Using normal form and singularity theory,
they found that the codimension of the origin is 1 for the non semi-simple
case and 3 for the semi-simple case. As a supplement to this study, we study
also the dynamics in time of the semi-simple type of this system and some
degeneracies due to symmetry (see Tuwankotta and Verhulst!3).

The Hamiltonian that we consider is

1 1
H= 5(@12 +pi?) + §E(Q22 + p2?) + Hz(q) + Halg) + - - . . (8)

We re-scale the variables in the usual way to arrive at the perturbative Hamil-
tonian. The unperturbed Hamiltonianis I, = %(qlz—l—mz). We then normalize
(8) with respect to the S!-action defined by the flow of the Hamiltonian vector
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Figure 3. Phase portrait of the Poincaré section on (g2, p2)-plane for fixed value of I, # 0
and 8 # 0. The geometry of phase-space of the system (9) is achieved by taking the cross
product of them with S*

field Xy,. The normalized Hamiltonian is

2

where a and (§ are parameters. If § = 0, the system degenerates to a linear
system. Apart from I,, there is one other parameter D = 1 — 4a 31, which is
important for the bifurcation scenario in this system. See Figure (3).

1 1
H=1I+¢ (— (g2> + p2”) — aloga — 36(123) : (9)

The conclusion of this section is that in Hamiltonian system with widely
separated frequencies, there are no energy interchanges. Nevertheless, the
phase interaction between the oscillators is stronger than the the one we found
in the previous section. For the degenerate case and details in the study on
this type of systems, see Tuwankotta and Verhulst!3.

6 Discussion

We have presented a review on higher order resonance in two degrees of free-
dom Hamiltonian systems. The estimate of the size of the resonance domain
where the interesting dynamics takes place, has been improved. We also
show numerical evidence that our new estimate is sharp. In dealing with
the higher order resonance numerically, the geometric integration provides
relatively cheap computation time in getting accurate results. The study of
Hamiltonian systems with widely separated frequencies will be completed in
the near future.
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