Constructing canonical bases of quantized enveloping algebras

Willem A. de Graaf Mathematical Institute, University of Utrecht, Utrecht, The Netherlands

Abstract

An algorithm for computing the elements of a given weight of the canonical basis of $U_q(\mathfrak{g})$ is described.

Define $U_q(\mathfrak{g}), U^-$, weight of an element, Weyl group, $s_i = s_{\alpha_i}, [m]!_{\alpha}, \Phi, \Delta$.

1 The canonical basis

We work in the subalgebra U^- of $U_q(\mathfrak{g})$. Let $w_0 = s_{i_1} \cdots s_{i_t}$ be a reduced expression of the longest element in the Weyl group. For $1 \leq k \leq t$ let $T_{i_k} = T_{\alpha_{i_k}} : U_q(\mathfrak{g}) \to U_q(\mathfrak{g})$ be the automorphism defined in [3], 8.13. Set $F_k = T_{i_1} \cdots T_{i_{k-1}}(F_{\alpha_{i_k}})$. Then F_k is an element of weight $\beta_k = s_{i_1} \cdots s_{i_{k-1}}(\alpha_{i_k})$. We also denote F_k by F_{β_k} . As usual we set $F_k^{(m)} = F_k^m/[k]!_{\alpha_{i_k}}$. Then the monomials

$$F_1^{(n_1)} \cdots F_t^{(n_t)}$$
 (1)

form a basis of U^- . This basis is called a PBW-type basis, and we call a monomial of the form (1) a PBW-monomial (relative to the chosen reduced expression of the longest element of the Weyl group). We have algorithms

for writing the product of any two PBW-monomials as a linear combination of PBW-monomials ([2]).

Let x be a monomial of the form (1). Then to stress the dependency of x on the choice of reduced expression for the longest element of the Weyl group, we say that x is a w_0 -monomial. We refer to the exponents n_1, \ldots, n_t as the first, second, ..., t-th exponent of x.

Let $\alpha \in \Delta$. The Kashiwara operators $\widetilde{F}_{\alpha}, \widetilde{E}_{\alpha} : U^{-} \to U^{-}$ are defined as follows. Let $w_{0} = s_{i_{1}} \cdots s_{i_{t}}$ be a reduced expression of the longest element of the Weyl group, such that $\alpha_{i_{1}} = \alpha$. Let u be a w_{0} -monomial with exponents n_{1}, \ldots, n_{t} . Then $\widetilde{F}_{\alpha}(u) = F_{1}^{(n_{1}+1)} \cdots F_{t}^{(n_{t})}$, and $\widetilde{E}_{\alpha}(u) = F_{1}^{(n_{1}-1)} \cdots F_{t}^{(n_{t})}$, if $n_{1} > 0$, and $\widetilde{E}_{\alpha}(u) = 0$ otherwise. (Note that $F_{1} = F_{\alpha}$.) The action of \widetilde{F}_{α} , \widetilde{E}_{α} is extended to the whole of U^{-} by linearity. It can be shown that this definition does not depend on the choice of reduced expression of the longest element in the Weyl group (cf. [3], 10.1).

Let \mathcal{A} be the ring consisting of all elements of $\mathbb{Q}(q)$ without pole at 0. Let $\mathcal{L}(\infty)$ be the A-lattice generated by the elements $\widetilde{F}_{\alpha_{k_1}}\cdots \widetilde{F}_{\alpha_{k_m}}(1)$, for $m \geq 0$. We consider the vector space $\mathcal{L}(\infty)/q\mathcal{L}(\infty)$, and we let $\mathcal{B}(\infty) \subset \mathcal{L}(\infty)/q\mathcal{L}(\infty)$ be the set of all nonzero cosets $\widetilde{F}_{\alpha_{k_1}}\cdots \widetilde{F}_{\alpha_{k_m}}(1)+q\mathcal{L}$. Then \widetilde{F}_{α} maps $\mathcal{B}(\infty)$ into itself and \widetilde{E}_{α} maps $\mathcal{B}(\infty)$ into $\mathcal{B}(\infty) \cup \{0\}$. Furthermore, $\widetilde{E}_{\alpha}\widetilde{F}_{\alpha}(b) = b$ for all $b \in \mathcal{B}(\infty)$. Also, if $\widetilde{E}(b) \neq 0$, then $\widetilde{F}_{\alpha}\widetilde{E}_{\alpha}(b) = b$ ([3], Proposition 10.12).

Now we let \overline{q} be the unique automorphism of U^- (viewed as Q-algebra) satisfying $\overline{q} = q^{-1}$ and $\overline{F}_{\alpha_i} = F_{\alpha_i}$. Elements that are invariant under \overline{q} are said to be bar-invariant. The bar-invariant elements include all monomials $F_{\alpha_{i_1}}^{(n_1)} \cdots F_{\alpha_{i_r}}^{(n_r)}$.

Let $\pi : \mathcal{L}(\infty) \to \mathcal{L}(\infty)/q\mathcal{L}(\infty)$ denote the projection map. Then for each $b \in \mathcal{B}(\infty)$ there is a unique $G(b) \in \mathcal{L}(\infty)$ such that $\pi(G(b)) = b$, and G(b) is bar-invariant (cf. [3], Theorem 11.10). The set of all G(b) for $b \in \mathcal{B}(\infty)$ is denoted by **B**. It forms a basis of U^- , called the canonical basis.

Now by results of Lusztig (e.g., [8] Theorem 42.1.10, [9], Proposition 8.2) we have that $\mathcal{L}(\infty)$ is spanned by all PBW-monomials (relative to any fixed reduced expression of the longest element in the Weyl group). Furthermore, $\mathcal{B}(\infty)$ consists of the cosets of the PBW-monomials. If $b \in \mathcal{B}(\infty)$ is the coset of the PBW-monomial x, then $G(b) = x + \sum_i \zeta_i x_i$, where the x_i are PBW-monomials, and $\zeta_i \in q\mathbb{Z}[q]$. We call x the principal monomial of G(b).

Fix a simple root α and consider the action of F_{α} on $\mathcal{B}(\infty)$. We have that $\mathcal{B}(\infty)$ consists of the cosets of all PBW-monomials relative to a fixed reduced

expression w_0 of the longest element of the Weyl group. Therefore, if x is a w_0 -monomial, $\widetilde{F}_{\alpha}(x) = x' \mod q\mathcal{L}(\infty)$, where x' is a certain w_0 -monomial. We consider the problem of obtaining x' from x.

First we note that if w_0 happens to start with s_α , then x' is constructed from x by increasing the first exponent of x by 1. Now suppose that w_0 does not start with s_α . Let \tilde{w}_0 be a different reduced expression for the longest element of the Weyl group. Then there is a \tilde{w}_0 -monomial \tilde{x} such that $x = \tilde{x} \mod q\mathcal{L}(\infty)$. In analogy with Lusztig's notation (see [8], [7]), we write $\tilde{x} = R_{w_0}^{\tilde{w}_0}(x)$. If we can find \tilde{x} from x, then the problem of calculating $\tilde{F}_\alpha(x)$ is solved. Indeed, let \tilde{w}_0 be a reduced expression for the longest element of the Weyl group, starting with s_α . We find the $\tilde{x} = R_{w_0}^{\tilde{w}_0}(x)$, and increase its first exponent by 1. Denote the resulting monomial by \tilde{x}' . Finally we construct $x' = R_{\tilde{w}_0}^{w_0}(\tilde{x}')$. Then $\tilde{F}_\alpha(x) = x' \mod q\mathcal{L}(\infty)$.

We may assume that \widetilde{w}_0 can be obtained from w_0 by applying one braid relation. Suppose that this relation amounts to replacing $s_\alpha s_\beta \cdots$ by $s_\beta s_\alpha \cdots$, where both words are of length d. Then d = 2, 3, 4 or 6. Suppose that the first word occurs in w_0 on positions $p, p+1, \ldots, p+d-1$. Write $x = F_1^{(m_1)} \cdots F_t^{(m_t)}$ and $\tilde{x} = F_1^{(m'_1)} \cdots F_t^{(m'_t)}$ (where the F_i in \tilde{x} are defined relative to \widetilde{w}_0). We obtain the m'_i from the m_i in the following way.

- 1. If d = 2, then $m'_p = m_{p+1}$ and $m'_{p+1} = m_p$.
- 2. If d = 3, then set $\mu = \min(m_p, m_{p+2})$, and $m'_p = m_{p+1} + m_{p+2} \mu$, $m'_{p+1} = \mu$, $m'_{p+2} = m_p + m_{p+1} - \mu$.
- 3. If d = 4 then suppose that the move consists of replacing $s_{\alpha}s_{\beta}s_{\alpha}s_{\beta}$ by $s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}$. Set $a = m_p$, $b = m_{p+1}$, $c = m_{p+2}$, $d = m_{p+3}$.
 - (a) If α is short, then set $n_1 = \max(b, \max(b, d) + c a), n_2 = \max(a, c) + 2b, n_3 = \min(c + d, a + \min(b, d)), n_4 = \min(a, c).$ Set $\mu = \max(2n_3, n_2 + n_4)$ and $m'_p = n_1, m'_{p+1} = \mu - n_2, m'_{p+2} = n_2 + n_3 - \mu, m'_{p+3} = n_4 - 2n_3 + \mu.$
 - (b) If α is long, then set $p_1 = \max(b, \max(b, d) + 2c 2a), p_2 = \max(a, c) + b, p_3 = \min(2c + d, \min(b, d) + 2a), p_4 = \min(a, c).$ Set $\mu = \max(p_3, p_2 + p_4)$, and $m'_p = p_1, m'_{p+1} = \mu - p_2, m'_{p+2} = p_3 + 2p_2 - 2\mu, m'_{p+3} = p_4 - p_3 + \mu.$
- 4. If d = 6, then we consider the root system of type D_4 , along with its diagram automorphism ϕ of order 3. Let α_2 be the simple root fixed by

 ϕ , and $\alpha_1, \alpha_3, \alpha_4$ the other three. Set $v = s_1 s_3 s_4$. We use the following two reduced expressions for the longest element in the Weyl group: $v_0 = v s_2 v s_2 v s_2$ and $\tilde{v}_0 = s_2 v s_2 v s_2 v$. Let \tilde{U}_q be the corresponding quantized enveloping algebra, in which we use the PBW-bases relative to v_0 and \tilde{v}_0 .

For simplicity assume that the root system of $U_q(\mathfrak{g})$ is of type G_2 . Suppose that the braid relation amounts to replacing $w_0 = s_\alpha s_\beta s_\alpha s_\beta s_\alpha s_\beta s_\alpha s_\beta$ by $\widetilde{w}_0 = s_\beta s_\alpha s_\beta s_\alpha s_\beta s_\alpha s_\beta s_\alpha$, where α is long. Corresponding to a w_0 -monomial x with exponents m_1, \ldots, m_6 we construct the v_0 -monomial $y = \psi_1(x)$ with exponents $m_1, m_1, m_1, m_2, m_3, m_3, m_3, m_4, m_5, m_5, m_5, m_6$. Furthermore, to a \widetilde{w}_0 -monomial \widetilde{x} with exponents m_1, \ldots, m_6 correspondents m_1, \ldots, m_6 corresponds the \widetilde{v}_0 -monomial $\widetilde{y} = \psi_2(\widetilde{x})$ with exponents $m_1, m_2, m_3, m_3, m_4, m_5, m_6, m_6, m_6$. Now starting with a w_0 -monomial x we construct (using 1., and 2.) the \widetilde{v}_0 -monomial $\widetilde{y} = R_{v_0}^{\widetilde{v}_0}(\psi_1(x))$. Then we have $R_{w_0}^{\widetilde{w}_0}(x) = \psi_2^{-1}(\widetilde{y})$.

Finally, if α happens to be short, then we follow the same steps, in the reverse order.

First of all, 1., and 2. are proved in [8], 3. can be proved using [7], 12.5, and 4. follows in the same way (see also [1]). At the end of Section 3 we sketch a different proof of 2., 3.

2 The path method

We recall some facts on Littelmann's path model. For more details and proofs we refer to [5].

Let P denote the weight lattice, and let X be the vector space over \mathbb{R} spanned by P. Let Π be the set of all piecewise linear paths $\xi : [0,1] \to X$, such that $\xi(0) = 0$. For $\alpha \in \Delta$ Littelmann defined operators $f_{\alpha}, e_{\alpha} : \Pi \to \Pi \cup 0$. Let λ be a dominant weight and let ξ_{λ} be the path joining λ and the origin by a straight line. Let Π_{λ} be the set of all $f_{\alpha_{i_1}} \cdots f_{\alpha_{i_m}}(\xi_{\lambda})$ for $m \geq 0$. Then $\xi(1) \in P$ for all $\xi \in \Pi_{\lambda}$. Let $\mu \in P$ be a weight, and let $V(\lambda)$ be the highest-weight module over $U_q(\mathfrak{g})$ of highest weight λ . A theorem of Littelmann states that the number of paths in $\xi \in \Pi_{\lambda}$ such that $\xi(1) = \mu$ is equal to the dimension of the weight space of weight μ in $V(\lambda)$ ([5], Theorem 9.1). Let $\nu = \sum_{i=1}^{l} k_i \alpha_i$ be a linear combination of simple roots, with nonnegative integer coefficients. Set $\lambda = \sum_{i=1}^{l} k_i \lambda_i$ (where the λ_i are the fundamental weights). Then the dimension of the weight space of weight $\lambda - \nu$ in $V(\lambda)$ is equal to the dimension of $U_{-\nu}^-$. In particular, the dimension of $U_{-\nu}^$ is equal to the number of paths $\xi \in \Pi_{\lambda}$ such that $\xi(1) = \lambda - \nu$.

Let $w_0 = s_{i_1} \cdots s_{i_t}$ be a fixed reduced expression of the longest element in the Weyl group. Let ν, λ be as in the preceding paragraph, and let $\xi \in \Pi_{\lambda}$ be such that $\xi(1) = \lambda - \nu$. We define a sequence of integers $\eta_{\xi} = (n_1, \ldots, n_t)$ and a sequence of paths ξ_k in the following way. First we set $\xi_0 = \xi$. Suppose that the elements ξ_0, \ldots, ξ_{k-1} and n_1, \ldots, n_{k-1} are defined. Then let n_k be maximal such that $e_{\alpha_{i_k}}^{n_k}(\xi_{k-1}) \neq 0$, and set $\xi_k = e_{\alpha_{i_k}}^{n_k}(\xi_{k-1})$. Following [6] we call η_{ξ} the adapted string corresponding to ξ (relative to the fixed reduced expression of the longest element of the Weyl group). Let S_{ν} be the set of adapted strings corresponding to all $\xi \in \Pi_{\lambda}$ such that $\xi(1) = \lambda - \mu$.

Let $\eta = (n_1, \ldots, n_t) \in S_{\nu}$ and set

$$M_{\eta} = F_{\alpha_{i_1}}^{(n_1)} \cdots F_{\alpha_{i_t}}^{(n_t)},$$

and

$$b_{\eta} = \widetilde{F}_{\alpha_{i_1}}^{n_1} \cdots \widetilde{F}_{\alpha_{i_t}}^{n_t}(1) + q\mathcal{L}(\infty).$$

Let $<_{\text{lex}}$ be the lexicographical ordering on integer sequences of length t (i.e., $(m_1, \ldots, m_t) <_{\text{lex}}(n_1, \ldots, n_t)$ if there is a k such that $m_i = n_i$ for i < k, and $m_k < n_k$). Then [6] Proposition 10.4 states

$$M_{\eta} = G(b_{\eta}) - \sum_{\substack{\eta' >_{\text{lex}} \eta \\ \eta' \in S_{\nu}}} c_{\eta,\eta'} G(b_{\eta'}),$$
(2)

where $c_{\eta,\eta'} \in \mathbb{Z}[q,q^{-1}]$.

In the sequel we write $f^{\eta}(\xi_{\lambda})$ instead of $f_{\alpha_{i_1}}^{n_1} \cdots f_{\alpha_{i_t}}^{n_t}(\xi_{\lambda})$, where $\eta = (n_1, \ldots, n_t)$.

3 Constructing canonical basis elements

Here we describe an algorithm for computing the elements of the canonical basis of a given weight.

By $<_{\text{lex}}$ we denote the lexicographic ordering on the PBW-monomials of U^- (i.e., $F_1^{(m_1)} \cdots F_t^{(m_t)} <_{\text{lex}} F_1^{(n_1)} \cdots F_t^{(n_t)}$ if and only if $(m_1, \ldots, m_t) <_{\text{lex}} (n_1, \ldots, n_t)$).

Let x be a PBW-monomial; then by b_x we denote the element of $\mathcal{B}(\infty)$ such that $G(b_x)$ has principal monomial x. Also by $\varepsilon_{\alpha}(x)$ we denote the maximal integer n such that $\widetilde{E}^n_{\alpha}(b_x) \neq 0$. Note that if x is a w_0 -monomial, where w_0 starts with s_{α} , then $\varepsilon_{\alpha}(x)$ is equal to the first exponent of x.

Proposition 1 Let $w = s_{\alpha_{i_1}} \cdots s_{\alpha_{i_r}}$ be a reduced word in the Weyl group of Φ . Let w_0 be any reduced expression for the longest element in the Weyl group starting with w. Let

$$x = F_{\alpha_{i_1}}^{(n_1)} T_{\alpha_{i_1}} (F_{\alpha_{i_2}})^{(n_2)} \cdots (T_{\alpha_{i_1}} \cdots T_{\alpha_{i_{r-1}}}) (F_{\alpha_{i_r}})^{(n_r)}$$

be a PBW-monomial in U^- . Then $G(b_x)$ is equal to x plus a $q\mathbb{Z}[q]$ -linear combination of w_0 -monomials y such that $y>_{lex} x$.

In the proof we use two direct sum decomposition of U^- relative to a simple root α :

$$U^- = U^- \cap T_\alpha(U^-) \oplus F_\alpha U^-, \tag{3}$$

$$U^- = U^- \cap T^{-1}_{\alpha}(U^-) \oplus U^- F_{\alpha}, \tag{4}$$

(cf. [3], 8.25, [9]). We have the corresponding projection maps $\pi_{\alpha}^{+}: U^{-} \to U^{-} \cap T_{\alpha}(U^{-})$ and $\pi_{\alpha}^{-}: U^{-} \to U^{-} \cap T_{\alpha}^{-1}(U^{-})$ (cf. [9]). These maps can be described as follows. Let $w_{0} = s_{\alpha_{i_{1}}} \cdots s_{\alpha_{i_{t}}}$ be a reduced expression for the longest element in the Weyl group, where $\alpha_{i_{1}} = \alpha$. We have that $U^{-} \cap T_{\alpha}(U^{-})$ is the linear span of all w_{0} -monomials y, such that the first exponent of y is zero. Now let $u \in U^{-}$ and write u as a linear combination of w_{0} -monomials. Then $u = u_{1} + u_{2}$, where u_{1} consists of w_{0} -monomials with first exponent zero, and u_{2} is a linear combination of w_{0} -monomials with first exponent ≥ 1 . Hence $\pi_{\alpha}^{+}(u) = u_{1}$.

Set $v = s_{\alpha_{i_2}} \cdots s_{\alpha_{i_t}}$, and let β be a simple root such that $v(\beta) > 0$. We set $\widetilde{w}_0 = vs_\beta$; then \widetilde{w}_0 is also a reduced expression for the longest element of the Weyl group. We have $v(\beta) > 0$, but $s_\alpha v(\beta) < 0$, so that $v(\beta) = \alpha$. Hence $T_v(F_\beta) = F_\alpha$ (cf. [3], Proposition 8.20). Furthermore, $U^- \cap T_\alpha^{-1}(U^-)$ is the linear span of all \widetilde{w}_0 -monomials with *t*-th exponent zero. This means that we can decompose $u \in U^-$ according to the decomposition (4) by writing $u = u_1 + u_2$, where u_1 is a linear combination of \widetilde{w}_0 -monomials with *t*-th exponent zero, and u_2 consists of \widetilde{w}_0 -monomials with *t*-th exponent ≥ 1 . Then $\pi_\alpha^-(u) = u_1$. We have that $B_{\alpha}^{+} = \pi_{\alpha}^{+}(\mathbf{B} \setminus \mathbf{B} \cap F_{\alpha}U^{-})$ is a basis of $U^{-} \cap T_{\alpha}(U^{-})$, and $B_{\alpha}^{-} = \pi_{\alpha}^{-}(\mathbf{B} \setminus \mathbf{B} \cap U^{-}F_{\alpha})$ is a basis of $U^{-} \cap T_{\alpha}^{-1}(U^{-})$ (cf. [9]). Now [9], Theorem 1.2 states that

$$T_{\alpha}(B_{\alpha}^{-}) = B_{\alpha}^{+}.$$
 (5)

Proof. (Of Proposition 1). We use induction on r. Note that the result is trivial for r = 1 as in that case $x = F_{\alpha_{i_1}}^{(n_1)}$ and $G(b_x) = x$. Set $\alpha = \alpha_{i_1}$ and

$$x' = T_{\alpha_{i_1}}(F_{\alpha_{i_2}})^{(n_2)} \cdots (T_{\alpha_{i_1}} \cdots T_{\alpha_{i_{r-1}}})(F_{\alpha_{i_r}})^{(n_r)},$$
$$x'' = F_{\alpha_{i_2}}^{(n_2)} T_{\alpha_{i_2}}(F_{\alpha_{i_3}})^{(n_3)} \cdots (T_{\alpha_{i_2}} \cdots T_{\alpha_{i_{r-1}}})(F_{\alpha_{i_r}})^{(n_r)}.$$

(So that $x' = T_{\alpha}(x'')$.) We define \widetilde{w}_0 as above. Then x'' is a \widetilde{w}_0 -monomial and by induction $G(b_{x''})$ is equal to x'' plus a $q\mathbb{Z}[q]$ -linear combination of \widetilde{w}_0 -monomials that are lexicographically bigger than x''. By the description of π_{α}^{-} we see that the same holds for $\pi_{\alpha}^{-}(G(b_{x''}))$. Now, by (5) we have that $T_{\alpha}(\pi_{\alpha}^{-}(G(b_{x''}))) = \pi_{\alpha}^{+}(G(b_{y}))$ for some $G(b_{y}) \in \mathbf{B} \setminus \mathbf{B} \cap F_{\alpha}U^{-}$. But $T_{\alpha}(\pi_{\alpha}^{-}(G(b_{x''})))$ is equal to $T_{\alpha}(x'') = x'$ plus a $q\mathbb{Z}[q]$ -linear combination of w_0 -monomials, and therefore y = x'. It follows that $\pi^+_{\alpha}(G(b_{x'}))$ is equal to x' plus a $q\mathbb{Z}[q]$ -linear combination of w_0 -monomials that are lexicograpically bigger than x'. From the description above of the map π^+_{α} we now see that $G(b_{x'})$ is equal to $\pi^+_{\alpha}(G(b'_x))$ plus a linear combination of w_0 -monomials with non-zero first exponent, and these are lexicographically bigger than x'. Now by [3] 11.12(1), we have that $G(b_x) = F_{\alpha}^{(n_1)}G(b_{x'}) + R$ where R is a linear combination of elements $G(b_z)$, with $\varepsilon_{\alpha}(z) > n_1$. By [3], 11.3(2), 11.12(3) we have that $G(b_u) \in F_{\alpha}^{(\varepsilon_{\alpha}(u))}U^{-}$ for all PBW-monomials u. In particular, all w_0 -monomials occurring in R have first exponent > n_1 , and therefore they are bigger than x in the lexicographical ordering.

Proposition (1) yields the following algorithm for constructing elements of the canonical basis. From (2) we get

$$G(b_{\eta}) = M_{\eta} + \sum_{\eta' <_{\text{lex}} \eta} c_{\eta,\eta'} G(b_{\eta'}).$$
(6)

The M_{η} , $G(b_{\eta})$ are all bar-invariant, and the latter form a basis of $U_{-\nu}^{-}$, hence the $c_{\eta,\eta'}$ are bar-invariant as well.

Let $\eta \in S_{\nu}$, and suppose that we have already constructed the elements $G(b_{\eta'})$ for $\eta' >_{\text{lex}} \eta$. In order to construct $G(b_{\eta})$ we need to know the coefficients $c_{\eta,\eta'}$ in (6). For $b_1, b_2 \in \mathcal{B}(\infty)$ we write $b_1 <_{\text{lex}} b_2$ if the principal monomial of $G(b_1)$ is smaller with respect to $<_{\text{lex}}$ than the principal monomial of $G(b_2)$. Order the elements occuring in the sum on the right hand side of (6) as $b_{\eta_1} <_{\text{lex}} b_{\eta_2} <_{\text{lex}} \cdots <_{\text{lex}} b_{\eta_r}$. We define a sequence of elements $G_k \in U^-$. First set $G_0 = M_{\eta}$. Suppose that G_0, \ldots, G_{k-1} are defined. Let ζ_k be the coefficient of the principal monomial of $G(b_{\eta_k})$ in G_{k-1} , and let ζ'_k be the unique bar-invariant element of $\mathbb{Z}[q, q^{-1}]$ such that $\zeta_k + \zeta'_k \in q\mathbb{Z}[q]$. Set $G_k = G_{k-1} + \zeta'_k G(b_{\eta_k})$. By induction on k, and Proposition 1 we have that $c_{\eta,\eta_k} = \zeta'_k$. Hence $G_r = G(b_\eta)$.

Example 2 We consider the root system of type B_2 , with simple roots α , β , where α is long. We use the reduced expression $s_{\alpha}s_{\beta}s_{\alpha}s_{\beta}$ of the longest element in the Weyl group. The generators of the corresponding PBW-type basis of U^- are F_{α} , $F_{\alpha+\beta}$, $F_{\alpha+2\beta}$, F_{β} . Let $\nu = 3\alpha + 2\beta$; we compute the elements of the canonical basis of weight ν .

The set S_{ν} consists of the adapted strings $\eta_1 = (3, 2, 0, 0), \eta_2 = (2, 2, 1, 0), \eta_3 = (2, 1, 1, 1), \eta_4 = (1, 2, 2, 0)$ (in lexicographical order). First of all $M_{\eta_1} = F_{\alpha}^{(3)}F_{\beta}^{(2)} = G(b_{\eta_1})$. Now we consider η_2 . Using the algorithms to compute products of PBW-monomials in U^- ([2]), we get

$$M_{\eta_2} = F_{\alpha}^{(2)} F_{\beta}^{(2)} F_{\alpha} = F_{\alpha}^{(2)} F_{\alpha+2\beta} + q F_{\alpha}^{(2)} F_{\alpha+\beta} F_{\beta} + (1+q^4+q^8) F_{\alpha}^{(3)} F_{\beta}^{(2)}$$

Here the coefficient of $F_{\alpha}^{(3)}F_{\beta}^{(2)}$ is not contained in $q\mathbb{Z}[q]$. We repair this situation, and we get that

$$G(b_{\eta_2}) = M_{\eta_2} - G(b_{\eta_1}) = F_{\alpha}^{(2)} F_{\alpha+2\beta} + q F_{\alpha}^{(2)} F_{\alpha+\beta} F_{\beta} + (q^4 + q^8) F_{\alpha}^{(3)} F_{\beta}^{(2)}.$$

Thirdly, $M_{\eta_3} = F_{\alpha}^{(2)} F_{\alpha+\beta} F_{\beta} + (q^{-3} + q^{-1} + q + q^3 + q^5 + q^7) F_{\alpha}^{(3)} F_{\beta}^{(2)}$. Here we get

$$G(b_{\eta_3}) = M_{\eta_3} - (q^{-3} + q^{-1} + q + q^3)G(b_{\eta_1}) = F_{\alpha}^{(2)}F_{\alpha+\beta}F_{\beta} + (q^5 + q^7)F_{\alpha}^{(3)}F_{\beta}^{(2)}.$$

Finally, $M_{\eta_4} = F_{\alpha}F_{\alpha+\beta}^{(2)} + (1+q^4)F_{\alpha}^{(2)}F_{\alpha+2\beta} + (q+q^5)F_{\alpha}^{(2)}F_{\alpha+\beta}F_{\beta} + (q^4 + q^8 + q^{12})F_{\alpha}^{(3)}F_{\beta}^{(2)}$. Here the coefficient of $F_{\alpha}^{(2)}F_{\alpha+2\beta}$ does not lie in $q\mathbb{Z}[q]$. So we have to subtract the element of the canonical basis with that principal monomial, i.e., $G(b_{\eta_2})$. We get

$$G(b_{\eta_4}) = M_{\eta_4} - G(b_{\eta_2}) = F_{\alpha} F_{\alpha+\beta}^{(2)} + q^4 F_{\alpha}^{(2)} F_{\alpha+2\beta} + q^5 F_{\alpha}^{(2)} F_{\alpha+\beta} F_{\beta} + q^{12} F_{\alpha}^{(3)} F_{\beta}^{(2)}.$$

As a first application of the algorithm for constructing elements of the canonical basis we give an inefficient algorithm for constructing highestweight modules. Let λ be a dominant weight. Let v_{λ} be a highest-weight vector of the highest weight module $V(\lambda)$. Then according to [3], Theorem 11.10 (d), the set $\{G(b) \cdot v_{\lambda} \mid b \in \mathcal{B}(\infty)\} \setminus \{0\}$ is a basis of $V(\lambda)$. Using the path method it is straightforward to decide which $b \in \mathcal{B}(\infty)$ satisfy $G(b) \cdot v_{\lambda} = 0$. Let $b = b_{\eta}$ for some adapted string η . Then $G(b) \cdot v_{\lambda} = 0$ if and only if $f^{\eta}\xi_{\lambda} = 0$ (this will be the content of Lemma 4). Furthermore, we only have to check $b \in \mathcal{B}(\infty)$ of weight ν such that the multiplicity of $\lambda - \nu$ in $V(\lambda)$ is non-zero. By a standard algorithm we can calculate the set of all those ν (using the path method for example). Now the nonzero $G(b) \cdot v_{\lambda}$ form a basis of the highest-weight module, and we use the G(b) such that $G(b) \cdot v_{\lambda} = 0$ to rewrite all other vectors to linear combinations of basis elements. We remark that this algorithm is rather inefficient because the dimension of $U_{-\nu}^{-}$ grows quickly as the level of ν increases. A more efficient algorithm for constructing highest-weight modules is indicated in [2].

Example 3 We use the same notation as in Example 2. Let $\lambda = \lambda_1$ be the first fundamental weight. Then $V(\lambda)$ has a weight space of weight $-\lambda_1 = \lambda - 2\alpha - 2\beta$. The elements of the canonical basis of weight $2\alpha + 2\beta$ are

$$G(b_{1}) = F_{\alpha}^{(2)}F_{\beta}^{(2)}$$

$$G(b_{2}) = F_{\alpha}F_{\alpha+\beta}F_{\beta} + (q^{3} + q^{5})F_{\alpha}^{(2)}F_{\beta}^{(2)}$$

$$G(b_{3}) = F_{\alpha}F_{\alpha+2\beta} + qF_{\alpha}F_{\alpha+\beta}F_{\beta} + (q^{2} + q^{6})F_{\alpha}^{(2)}F_{\beta}^{(2)}$$

$$G(b_{4}) = F_{\alpha+\beta}^{(2)} + q^{2}F_{\alpha}F_{\alpha+2\beta} + q^{3}F_{\alpha}F_{\alpha+\beta}F_{\beta} + q^{8}F_{\alpha}^{(2)}F_{\beta}^{(2)}.$$

They correspond to the strings $\eta_1 = (2, 2, 0, 0), \eta_2 = (1, 1, 1, 1), \eta_3 = (1, 2, 1, 0)$ and $\eta_4 = (0, 2, 2, 0)$ respectively. Now only $f^{\eta_3}\xi_{\lambda} \neq 0$. So $G(b_i) \cdot v_{\lambda} = 0$ for i = 1, 2, 4. Let x_i denote the principal monomial of $G(b_i)$. We see that $x_i \cdot v_{\lambda} = 0$ for i = 1, 2, and $x_4 \cdot v_{\lambda} = -q^2 x_3 \cdot v_{\lambda}$.

We end this section with a sketch of a proof of case 3. of the formulas for the exponents m'_i in Section 1. We have to study the case where the root system is of type B_2 . We let α, β be the simple roots, where β is long. First suppose that we use the reduced expression $s_\alpha s_\beta s_\alpha s_\beta$. Then by [6], Corollary 2, the set $C_1^{s,r}$ of adapted strings of weight $s\alpha + r\beta$ consists of all $\eta_{l,m} = (s - m, r - l, m, l)$, such that $0 \leq m \leq s, 0 \leq l \leq r$ and $2(r-l) \ge m \ge 2l$. Here we have $\eta_{l,m} >_{lex} \eta_{l',m'}$ if m < m' or m = m' and l < l'. Now

$$F_{\alpha}^{(s-m)} F_{\beta}^{(r-l)} F_{\alpha}^{(m)} F_{\beta}^{(l)} = \sum_{\substack{i,j \ge 0 \\ i+j \le r-l \\ 2i+j \le m}} q^{(m-2i-j)(2r-2l-2i-j)+2(r-l-i-j)i} \\ \begin{bmatrix} s - 2i - j \\ s - m \end{bmatrix}_{\alpha} \begin{bmatrix} r - i - j \\ l \end{bmatrix}_{\beta} F_{\alpha}^{(s-2i-j)} F_{2\alpha+\beta}^{(i)} F_{\alpha+\beta}^{(j)} F_{\beta}^{(r-i-j)}$$

By studying the coefficients in this expression, and following the algorithm for computing elements of the canonical bases it can be shown that the principal monomial of $G(b_{\eta_{l,m}})$ is $F_{\alpha}^{(s-m)}F_{2\alpha+\beta}^{(l)}F_{\alpha+\beta}^{(r-m+l)}F_{\beta}^{(r-m+l)}$ if $m \leq r$, and $F_{\alpha}^{(s-m)}F_{2\alpha+\beta}^{(m+l-r)}F_{\alpha+\beta}^{(2r-2l-m)}F_{\beta}^{(l)}$ if $m \geq r$. Now suppose that we use the reduced expression $s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}$. In this case

Now suppose that we use the reduced expression $s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}$. In this case the set $C_2^{s,r}$ of adapted strings of weight $s\alpha + r\beta$ consists of all $\zeta_{l,m} = (r - m, s - l, m, l)$ such that $0 \leq l \leq s, 0 \leq m \leq r, s - l \geq m \geq m$ (cf. [6], Corollary 2). We have that $\zeta_{l,m} <_{lex} \zeta_{l',m'}$ if m < m' or m = m' and l < l'. In this case the principal monomial of $G(b_{\zeta_{l,m}})$ is $F_{\beta}^{(r-m)}F_{\alpha+\beta}^{(2m-s+l)}F_{2\alpha+\beta}^{(s-l+m)}F_{\alpha}^{(l)}$ if $s \leq 2m$, and $F_{\beta}^{(r-m)}F_{\alpha+\beta}^{(l)}F_{2\alpha+\beta}^{(m-l)}F_{\alpha}^{(s+l-2m)}$ if $s \geq 2m$. Suppose that the braid relation consists of replacing $s_{\alpha}s_{\beta}s_{\alpha}s_{\beta}$ by $s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}$. We start with a PBW-monomial $x = F_{\alpha}^{(a)}F_{2\alpha+\beta}^{(b)}F_{\alpha+\beta}^{(c)}F_{\beta}^{(d)}$. We form the adapted string η such that $G(b_{\eta})$ has principal monomial x. By the descrip-

Suppose that the braid relation consists of replacing $s_{\alpha}s_{\beta}s_{\alpha}s_{\beta}$ by $s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}s_{\beta}s_{\alpha}$. We start with a PBW-monomial $x = F_{\alpha}^{(a)}F_{2\alpha+\beta}^{(b)}F_{\alpha+\beta}^{(c)}F_{\beta}^{(d)}$. We form the adapted string η such that $G(b_{\eta})$ has principal monomial x. By the description of the principal monomials above we have that $\eta = (a, c + \max(b, d), 2b + c, \min(b, d))$. Now we use the bijection $\phi : C_1^{s,r} \to C_2^{s,r}$, such that $f^{\theta} = f^{\phi(\theta)}$ for all $\theta \in C_1^{s,r}$. According to [6], Proposition 2.4 it is given by $\phi(\eta) = (n_1, n_2, n_3, n_4)$, where $n_1 = \max(b, \max(b, d) + c - a)$, $n_2 = \max(a, c) + 2b$, $n_3 = \min(c + d, a + \min(b, d))$, $n_4 = \min(a, c)$. Now $\phi(\eta)$ corresponds to the PBW-monomial $F_{\beta}^{(n_1)}F_{\alpha+\beta}^{(2n_3-n_2)}F_{2\alpha+\beta}^{(n_2-n_3)}F_{\alpha}^{(n_4)}$ if $n_2 + n_4 \leq 2n_3$, and to $F_{\beta}^{(n_1)}F_{\alpha+\beta}^{(n_4)}F_{\alpha+\beta}^{(n_2+2n_4-2n_3)}$ if $n_2 + n_4 \geq 2n_3$. This implies the formulas in the case 3(a); the case 3(b) is similar.

Also the formula in case 2. can be proved this way.

4 Canonical bases of modules

Let λ be a dominant weight, and $V(\lambda)$ the corresponding highest-weight module over U_q . For $\alpha \in \Delta$ we have the Kashiwara operators $\widetilde{F}_{\alpha}, \widetilde{E}_{\alpha}$: $V(\lambda) \to V(\lambda)$ defined by [3], 9.2(2), (3). Let v_{λ} be a fixed highest-weight vector, and let $\mathcal{L}(\lambda)$ be the A-module spanned by all $\widetilde{F}_{\alpha_{i_1}} \cdots \widetilde{F}_{\alpha_{i_r}}(v_{\lambda})$, for $r \geq 0$. Furthermore, $\mathcal{B}(\lambda)$ is the set of non-zero cosets $\mathrm{mod}q\mathcal{L}(\lambda)$ of these elements ([3], §9.5).

Let $U_{\mathbb{Z}}^-$ be the \mathbb{Z} -form of U^- . It is spanned over $\mathbb{Z}[q, q^{-1}]$ by all PBWmonomials (2). Let $\varphi_{\lambda} : U_{\mathbb{Z}}^- \to V(\lambda)$ be the map defined by $\varphi_{\lambda}(u) = uv_{\lambda}$, and set $V_{\mathbb{Z}}(\lambda) = \varphi_{\lambda}(U_{\mathbb{Z}}^-)$. We consider the $\mathbb{Z}[q]$ -module $\mathcal{L}_{\mathbb{Z}}(\lambda) = \mathcal{L}(\lambda) \cap V_{\mathbb{Z}}(\lambda)$ (cf., [3], §11.1 - 11.6). In this section we describe an algorithm for obtaining a basis of $\mathcal{L}_{\mathbb{Z}}(\lambda)$, along with a set of coset representatives for the elements of $\mathcal{B}(\lambda)$.

We have that φ_{λ} induces a map (which we denote by the same symbol) $\varphi_{\lambda} : \mathcal{L}(\infty)/q\mathcal{L}(\infty) \to \mathcal{L}_{\mathbb{Z}}(\lambda)/q\mathcal{L}_{\mathbb{Z}}(\lambda)$. By [3], Theorem 10.10 we have that $\varphi_{\lambda}(\mathcal{B}(\infty)) \setminus \{0\} = \mathcal{B}(\lambda)$. Furthermore, [3], Theorem 11.10 states that the set of $\varphi_{\lambda}(G(b))$, where $b \in \mathcal{B}(\infty)$ is such that $\varphi(b) \neq 0$ is a basis over $\mathbb{Z}[q]$ of $\mathcal{L}_{\mathbb{Z}}(\lambda)$. So we can find a basis of $\mathcal{L}_{\mathbb{Z}}(\lambda)$ by computing elements of the canonical basis of U^- , and taking their image under φ_{λ} . However, many of these images will be zero. Here we describe a more direct approach for computing $\varphi_{\lambda}(G(b))$, without computing G(b) first.

Let $\eta = (n_1, \ldots, n_t)$ be an adapted string, relative to the reduced expression $w_0 = s_{\alpha_{i_1}} \cdots s_{\alpha_{i_t}}$. Then we write \widetilde{F}^{η} for $\widetilde{F}_{\alpha_{i_1}}^{n_1} \cdots \widetilde{F}_{\alpha_{i_t}}^{n_t}$ (where the \widetilde{F}_{α_k} are the Kashiwara operators on U^- or the Kashiwara operators on $V(\lambda)$).

Lemma 4 Let η be an adapted string, and set $b = \widetilde{F}^{\eta}(1) \mod q\mathcal{L}(\infty)$. Then $\varphi_{\lambda}(b) = 0$ if and only if $f^{\eta}(\xi_{\lambda}) = 0$.

Proof. By [4], Theorem 4.1 we have that $f^{\eta}\xi_{\lambda} = 0$ if and only if $\tilde{F}^{\eta}b_{\lambda} = 0$, where $b_{\lambda} = \varphi_{\lambda}(1)$. By [3], Proposition 10.9 this is equivalent to $\varphi_{\lambda}(\tilde{F}^{\eta}(1)) = 0$, which, by [3], Theorem 11.10(d) is equivalent to $G(b_{\eta}) \cdot v_{\lambda} = 0$.

For an adapted string η we denote by x_{η} the PBW-monomial with the property $\widetilde{F}^{\eta}(1) = x_{\eta} \mod q\mathcal{L}(\infty)$. Note that we can compute x_{η} by using the algorithm for computing the action of \widetilde{F}_{α} , described at the end of Section 1.

Corollary 5 $\mathcal{B}(\lambda)$ consists of all cosets $x_{\eta} \cdot v_{\lambda} \mod q\mathcal{L}(\infty)$, where η runs over all adapted strings with $f^{\eta}(\xi_{\lambda}) \neq 0$.

Proof. This follows immediately from Lemma 4, along with $\phi_{\lambda}(\mathcal{B}(\infty)) \setminus \{0\} = \mathcal{B}(\lambda)$.

We note that this corollary gives an immediate algorithm for constructing a set of coset representatives for the elements of $\mathcal{B}(\lambda)$.

By – we denote the involution of $V(\lambda)$ defined by $\overline{u \cdot v_{\lambda}} = \overline{u} \cdot v_{\lambda}$, for $u \in U^-$.

Lemma 6 Let $b \in \mathcal{B}(\lambda)$. Then there is a unique element $v(b) \in \mathcal{L}_{\mathbb{Z}}(\lambda)$ such that $v(b) = b \mod q\mathcal{L}(\lambda)$ and $\overline{v(b)} = v(b)$. Let $b' \in \mathcal{B}(\infty)$ be such that $\varphi_{\lambda}(b') = b$; then $v(b) = \varphi(G(b'))$.

Proof. It is clear that $\varphi(G(b'))$ has the listed properties. Suppose that the element $v \in \mathcal{L}_{\mathbb{Z}}(\lambda)$ also has these properties. Then we write v as a linear combination of elements $\varphi_{\lambda}(G(b''))$. Because v is bar-invariant, the coefficients in this expression must be bar-invariant as well. Because the $\varphi_{\lambda}(G(b''))$ form a basis of $\mathcal{L}_{\mathbb{Z}}(\lambda)$ over $\mathbb{Z}[q]$, the coefficients must lie in $\mathbb{Z}[q]$. This means that the coefficients are elements of \mathbb{Z} . Since $v = b \mod q\mathcal{L}(\lambda)$ we have that the only $\varphi_{\lambda}(G(b''))$ that has a non-zero coefficient is $\varphi_{\lambda}(G(b'))$.

Now the algorithm is straightforward. Let ν be a weight such that $\lambda - \nu$ is a weight of $V(\lambda)$. Let ξ_1, \ldots, ξ_r be the paths in Π_{λ} such that $\xi_k(1) = \lambda - \nu$. Let η_1, \ldots, η_r be the corresponding adapted strings (relative to some fixed reduced expression for the longest element in the Weyl group). Suppose that they are ordered so that $\eta_i <_{\text{lex}} \eta_{i+1}$. Set $u_i = x_{\eta_i} \cdot v_{\lambda}$, and $w_i = M_{\eta_i} \cdot v_{\lambda}$. Suppose that $v_1 = v(b_{\eta_1}), \ldots, v_k = v(b_{\eta_k})$ are already constructed. Write $v_i <_{\text{lex}} v_j$ if $x_{\eta_i} <_{\text{lex}} x_{\eta_j}$.

Now write $w_{k+1} = \sum_{j=1}^{r} \zeta_{ij} u_j$, where $\zeta_{ij} \in \mathbb{Z}[q, q^{-1}]$. We go through the v_m , starting with the one which is biggest in the $<_{\text{lex}}$ ordering. If the coefficient of a u_m in the expression for w_{k+1} does not lie in $\mathbb{Z}[q]$, then we add a suitable bar-invariant multiple of v_m to remedy this situation. Proposition 1 implies that this algorithm terminates with the correct result.

References

- R. W. Carter. Canonical bases, reduced words, and Lusztig's piecewiselinear function. In Algebraic groups and Lie groups, pages 61-79. Cambridge Univ. Press, Cambridge, 1997.
- [2] W. A. de Graaf. Computing with quantized enveloping algebras: PBWtype bases, highest-weight modules, *R*-matrices. J. of Symbolic Computation, to appear.

- [3] J. C. Jantzen. Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics. American Mathematical Society, 1996.
- M. Kashiwara. Similarity of crystal bases. In Lie algebras and their representations (Seoul, 1995), pages 177–186. Amer. Math. Soc., Providence, RI, 1996.
- [5] P. Littelmann. Paths and root operators in representation theory. Ann. of Math. (2), 142(3):499-525, 1995.
- [6] P. Littelmann. Cones, crystals, and patterns. Transform. Groups, 3(2):145-179, 1998.
- [7] G. Lusztig. Introduction to quantized enveloping algebras. In New developments in Lie theory and their applications (Córdoba, 1989), pages 49-65. Birkhäuser Boston, Boston, MA, 1992.
- [8] G. Lusztig. Introduction to quantum groups. Birkhäuser Boston Inc., Boston, MA, 1993.
- [9] G. Lusztig. Braid group action and canonical bases. Adv. Math., 122(2):237-261, 1996.