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Abstract

An algorithm for computing the elements of a given weight of the
canonical basis of U,(g) is described.

Define U,(g), U™, weight of an element, Weyl group, s; = s,,, [m]l,, @,
A.

1 The canonical basis

We work in the subalgebra U~ of U,(g). Let wo = s;, ---s;, be a reduced
expression of the longest element in the Weyl group. For 1 <k <{let T}, =
Ty, - U,(g) — U,(g) be the automorphism defined in [3], 8.13. Set Fy =
T; "'Tik_l(Faik)- Then Fj is an element of weight By = s; -+ s, ().
We also denote Fj, by Fjz,. As usual we set F,gm) = F["/[k]la, . Then the

monomials
TN 1)

form a basis of U~. This basis is called a PBW-type basis, and we call a
monomial of the form (1) a PBW-monomial (relative to the chosen reduced
expression of the longest element of the Weyl group). We have algorithms
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for writing the product of any two PBW-monomials as a linear combination
of PBW-monomials ([2]).

Let @ be a monomial of the form (1). Then to stress the dependency of
x on the choice of reduced expression for the longest element of the Weyl
group, we say that z is a wop-monomial. We refer to the exponents nq,... ,n;
as the first, second, ..., {-th exponent of z.

Let o € A. The Kashiwara operators F,, K, : U~ — U~ are defined as
follows. Let wo = s;, - - - 35, be a reduced expression of the longest element of
the Weyl group, such that a;, = a. Let u be a wo-monomial with exponents
ni,...,n;. Then ﬁa(u) = F1(n1+1) e Ft(nt), and Ea(u) = Fl(nl_l) e Ft(nt), if
ny > 0, and Ea(u) = 0 otherwise. (Note that Fy = F,.) The action of ﬁa,
E, is extended to the whole of U~ by linearity. It can be shown that this
definition does not depend on the choice of reduced expression of the longest
element in the Weyl group (cf. [3], 10.1).

Let A be the ring consisting of all elements of Q(¢) without pole at 0.
Let L(o0) be the A-lattice generated by the elements ﬁakl ---ﬁakm(l), for
m > 0. We consider the vector space L£(o00)/qL(0), and we let B(oco) C

L(00)/qL(0) be the set of all nonzero cosets Fop - ﬁakm(l) +qL. Then ﬁa
maps B(oo) into itself and E, maps B(oco) into B(oo) U {0}. Furthermore,
EL E,(b) = b for all b € B(oo). Also, if E(b) # 0, then F,E,(b) = b ([3],
Proposition 10.12).

Now we let ™ be the unique automorpism of U~ (viewed as Q-algebra)
satisfying § = ¢! and F,, = F,.. Elements that are invariant under ~ are
sa(id)to be(b&;r—invariant. The bar-invariant elements include all monomials
TR R

Let m: L(o0) = L(00)/qL(0) denote the projection map. Then for each
b € B(co) there is a unique G(b) € L(o0) such that 7(G(b)) = b, and G(b)
is bar-invariant (cf. [3], Theorem 11.10). The set of all G(b) for b € B(o0) is
denoted by B. It forms a basis of U™, called the canonical basis.

Now by results of Lusztig (e.g., [8] Theorem 42.1.10, [9], Proposition 8.2)
we have that £(o0) is spanned by all PBW-monomials (relative to any fixed
reduced expression of the longest element in the Weyl group). Furthermore,
B(co) consists of the cosets of the PBW-monomials. If b € B(oo) is the
coset of the PBW-monomial z, then G(b) = x + ). (;x;, where the z; are
PBW-monomials, and (; € ¢Z[q]. We call @ the principal monomial of G(b).

Fix a simple root « and consider the action of F, on B(co). We have that
B(o0) consists of the cosets of all PBW-monomials relative to a fixed reduced



expression wo of the longest element of the Weyl group. Therefore, if z is
a wo-monomial, F,(x) = 2’ mod ¢L(o0), where 2’ is a certain wo-monomial.
We consider the problem of obtaining ' from «.

First we note that if wg happens to start with s,, then z’ is constructed
from x by increasing the first exponent of x by 1. Now suppose that wy
does not start with s,. Let wy be a different reduced expression for the
longest element of the Weyl group. Then there is a wy-monomial & such that
x = & mod gL(00). In analogy with Lusztig’s notation (see [8], [7]), we write
& = R (x). If we can find & from 2z, then the problem of calculating ﬁa(:p) is
solved. Indeed, let wy be a reduced expression for the longest element of the
Weyl group, starting with s,. We find the z = Rgg (x), and increase its first
exponent by 1. Denote the resulting monomial by #'. Finally we construct
v' = Ry (¥'). Then F,(x) = 2’ mod ¢L(o0).

We may assume that wy can be obtained from wq by applying one braid
relation. Suppose that this relation amounts to replacing s,s5 -+ by sgs, -« -,
where both words are of length d. Then d = 2, 3,4 or 6. Suppose that the first
word occurs in wq on positions p, p+1,... ,p+d—1. Write z = Fl(ml) e Ft(mt)
and & = Fl(mll) . Ft(mé) (where the F; in & are defined relative to wg). We
obtain the m! from the m; in the following way.

1. If d =2, then m} = m,y; and m),;, = m,,.

2. If d = 3, then set p = min(my, mp12), and m) = myy1 + Mmype — 4,

/ _ / —
M1 = [y Mopg = My + M1 — [

3. If d = 4 then suppose that the move consists of replacing s,s35,55 by
5350535q. et @ = my, b=my41, ¢ = Myyq, d = Myys.

(a) If « is short, then set ny = max(b, max(b,d) + ¢ — a), ny =
max(a,c) + 2b, ng = min(c + d,a + min(b,d)), ny = min(a,c).
Set 1 = max(2ns3,ng 4 ng) and m, = ny, m, | =y —ng, My, =
ny 4+ n3 — p, m;+3:n4—2n3—|—/,c.

(b) If « is long, then set p; = max(b, max(b,d) + 2¢ — 2a), ps =
max(a,c) + b, p3 = min(2¢ + d, min(b, d) + 2a), ps = min(a,c).
Set p = max(ps,ps + pa), and mj, = p1, My = p— P2, My, =
ps + 2pa — 24, My 5 = pa — ps + 4.

4. If d = 6, then we consider the root system of type Dy, along with its
diagram automorphism ¢ of order 3. Let a3 be the simple root fixed by



¢, and aq, as, oy the other three. Set v = sys354. We use the following
two reduced expressions for the longest element in the Weyl group:
Vo = USaVS0S2 and Vg = Savsyvsev.  Let U, be the corresponding
quantized enveloping algebra, in which we use the PBW-bases relative
to vg and vp.

For simplicity assume that the root system of U,(g) is of type G3. Sup-
pose that the braid relation amounts to replacing wg = 5,535,535,53 by
Wo = S3S453545354, Where a is long. Corresponding to a wg-monomial
x with exponents myq,... ,mg we construct the vo-monomial y = ¢ ()
with exponents my, my, my, mag, ms, ms, ms, mg, Mms, Ms, Ms, Mg.  Fur-
thermore, to a wo-monomial ¥ with exponents my,... ,mg corresponds
the vo-monomial § = 12(%) with exponents my, mq, ma, maq, ms, Mg, My,
my, ms, Mg, Mg, Mg. Now starting with a wo-monomial = we construct
(using 1., and 2.) the Dp-monomial § = RP(¢1(x)). Then we have
Rp(x) = 93(9).

Finally, if o happens to be short, then we follow the same steps, in the
reverse order.

First of all, 1., and 2. are proved in [§], 3. can be proved using [7], 12.5,
and 4. follows in the same way (see also [1]). At the end of Section 3 we
sketch a different proof of 2., 3.

2 The path method

We recall some facts on Littelmann’s path model. For more details and proofs
we refer to [5].

Let P denote the weight lattice, and let X be the vector space over R
spanned by P. Let II be the set of all piecewise linear paths ¢ : [0,1] — X,
such that £(0) = 0. For o € A Littelmann defined operators f,,e, : [I —
ITUO0. Let A be a dominant weight and let £, be the path joining A and
the origin by a straight line. Let I\ be the set of all f,, --- fa, (£)) for
m > 0. Then £(1) € P for all £ € II,. Let € P be a weight, and let V()
be the highest-weight module over U,(g) of highest weight A\. A theorem of
Littelmann states that the number of paths in & € I, such that (1) = p is
equal to the dimension of the weight space of weight x in V() ([5], Theorem
9.1).



Let v = 25:1 k;a; be a linear combination of simple roots, with non-
negative integer coefficients. Set A = 25:1 k;Ai (where the A; are the funda-
mental weights). Then the dimension of the weight space of weight A — v in
V(A) is equal to the dimension of UZ,. In particular, the dimension of UZ,
is equal to the number of paths ¢ € I, such that £(1) = A — v.

Let wo = s;, -+ s;, be a fixed reduced expression of the longest element
in the Weyl group. Let v, A be as in the preceding paragraph, and let £ € 11,
be such that £(1) = A — . We define a sequence of integers ne = (n1,... ,n¢)
and a sequence of paths & in the following way. First we set £, = £. Suppose
that the elements &, ..., &1 and nq, ... ,ni_1 are defined. Then let n; be
maximal such that e (€k—1) # 0, and set & = en (€k—1). Following [6] we
call ne the adapted string corresponding to & (relative to the fixed reduced
expression of the longest element of the Weyl group). Let S, be the set of
adapted strings corresponding to all £ € I, such that (1) = A — p.

Let n = (n1,...,n¢) €5, and set

M, = c(Y??l) R A
t1

i,

and

by = Fyii - FIL(1) + gL(o0).

Let <jex be the lexicographical ordering on integer sequences of length ¢ (i.e.,
(M, ..., m)<iex(n1,...,n:) if there is a k such that m; = n; for © < k, and
my < ny). Then [6] Proposition 10.4 states

M, = G(b,) — Z Cp G by ), (2)
77/>1ex77
7' €Sy
where ¢, .+ € Z]q,q"].
In the sequel we write f7(£)) instead of fgill e fg:t(@), wheren = (ny,...,n).

3 Constructing canonical basis elements

Here we describe an algorithm for computing the elements of the canonical
basis of a given weight.

By <jex we denote the lexicographic ordering on the PBW-monomials of
U~ (i.e., Fl(ml) e Ft(mt)<1eXF1(m) e Ft(nt) if and only if (mq, ... ,m4)<tex(n1,... ,n4)).



Let @ be a PBW-monomial; then by b, we denote the element of B(c0)
such that G(b,) has principal monomial x. Also by e,(x) we denote the
maximal integer n such that Eg(bx) # 0. Note that if z is a wy-monomial,
where wy starts with s,, then ¢,(2) is equal to the first exponent of x.

Proposition 1 Let w = oy, " Sa
of ®. Let wg be any reduced expression for the longest element in the Weyl
group starting with w. Let

. be a reduced word in the Weyl group

7

v = FU T (Fa )™ e (Toy o Tay ) (Fay )™
be a PBW-monomial in U~. Then G(b,) is equal to x plus a qZ[q]-linear
combination of wo-monomials y such that y>\ecx.

In the proof we use two direct sum decomposition of U~ relative to a
simple root a:

U™ =U"nT(U")& F,U™, (3)

U =U"nT; (U7 ) & U F,, (4)

(cf. [3], 8.25, [9]). We have the corresponding projection maps 7 : U~ —
U-NTy (U Yand 7 : U™ = U NT;HU™) (cf. [9]). These maps can be
described as follows. Let wg = Sai, " Say, be a reduced expression for the
longest element in the Weyl group, where «;;, = . We have that U—NT,(U™)
is the linear span of all wg-monomials y, such that the first exponent of y is
zero. Now let ©w € U~ and write u as a linear combination of wg-monomials.
Then v = u; + uy, where u; consists of wp-monomials with first exponent
zero, and uy is a linear combination of wg-monomials with first exponent > 1.
Hence 71 (u) = uy.

Set v = 54, *+ Sa,, and let 3 be a simple root such that v(3) > 0. We
set wy = vsg; then wy is also a reduced expression for the longest element of
the Weyl group. We have v(3) > 0, but s,v(3) < 0, so that v(3) = a. Hence
T,(Fg) = F, (cf. [3], Proposition 8.20). Furthermore, U~ NT1(U™) is the
linear span of all wy-monomials with ¢-th exponent zero. This means that
we can decompose u € U~ according to the decomposition (4) by writing
u = uy + ug, where uy is a linear combination of wy-monomials with ¢-th
exponent zero, and wu, consists of wg-monomials with ¢-th exponent > 1.
Then 7 (u) = uy.



We have that BY = #H(B\ BN F,U™) is a basis of U~ N T,(U™), and
B; = 7;(B\BNUF,) is a basis of U= N T;HU™) (cf. [9]). Now [9],
Theorem 1.2 states that

T.(B7) = BJ. (5)

Proof. (Of Proposition 1). We use induction on r. Note that the result is

trivial for r = 1 as in that case x = Fc(y?ll) and G(b,) = x. Set o = v, and
wl = Tail (Fal‘2)(n2) e (Tail e j—‘ozl'r_1 )(Fair)(nr)7

x” - F(n2)TOzi2 (Faig,)(n?)) e (Talé Y Tair—l )(Falr)(nr)

(So that «' = T,(2").) We define wy as above. Then z” is a wo-monomial
and by induction G/(b,n) is equal to a” plus a ¢Z[g]-linear combination of
wo-monomials that are lexicographically bigger than a”. By the description
of m we see that the same holds for 7 (G(by)). Now, by (5) we have
that T,(7 (G(byn))) = 7F(G(b,)) for some G(b,) € B\ BN F,U". But
To(m, (G(byn))) is equal to T,(x") = 2’ plus a gZ[g]-linear combination of
wo-monomials, and therefore y = 2/. It follows that 7} (G(b,)) is equal to
2’ plus a gZ[q]-linear combination of wg-monomials that are lexicograpically
bigger than z’. From the description above of the map 71 we now see that
G/(by) is equal to 7T (G(b!)) plus a linear combination of wg-monomials with
non-zero first exponent, and these are lexicographically bigger than z’. Now
by [3] 11.12(1), we have that G(b,) = Fc(ynl)G(bx/) + R where R is a linear
combination of elements Gi(b.), with £,(z) > ny. By [3], 11.3(2), 11.12(3) we
have that G/(b,) € FEMT= for all PBW-monomials w. In particular, all
wo-monomials occurring in R have first exponent > ny, and therefore they
are bigger than z in the lexicographical ordering. O

Proposition (1) yields the following algorithm for constructing elements
of the canonical basis. From (2) we get

G(by) = M, + Z Cy G (). (6)

77/<1ex77

The M, Gi(b,) are all bar-invariant, and the latter form a basis of UZ,, hence
the ¢, are bar-invariant as well.

Let n € S,, and suppose that we have already constructed the elements
G/(by) for n'>1exn. In order to construct G(b,) we need to know the co-
efficients ¢, in (6). For by,by € B(oo) we write by <jexby if the principal
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monomial of G/(by) is smaller with respect to <jex than the principal mono-
mial of G/(by). Order the elements occuring in the sum on the right hand
side of (6) as by, <jexbn, <lex "+ <lexby,. We define a sequence of elements
Gy € U™. First set Gy = M,,. Suppose that Gy, ..., Gy are defined. Let (j
be the coefficient of the principal monomial of G(b,, ) in Gi_1, and let (} be
the unique bar-invariant element of Z[q, ¢™'] such that ¢ + ¢, € qZ[q]. Set
G = Gir—1 + (.G(by,). By induction on k, and Proposition 1 we have that
Com. = (o Hence G = G(b,).

Example 2 We consider the root system of type By, with simple roots «,
B3, where o is long. We use the reduced expression s,sgs,ss of the longest
element in the Weyl group. The generators of the corresponding PBW-type
basis of U™ are F,, Foyp, Fuyep, F3. Let v = 3a + 283; we compute the
elements of the canonical basis of weight v.

The set S, consists of the adapted strings n; = (3,2,0,0), n, = (2,2,1,0),
ns =(2,1,1,1), na = (1,2,2,0) (in lexicographical order). First of all M, =
FC(YS)Fﬁ(2 = ((b,,). Now we consider ny. Using the algorithms to compute
products of PBW-monomials in U~ ([2]), we get

My, = FPEOF, = FPFopas + qFO FospFs + (1+ ' + ¢ FPFP.
Here the coefficient of FC(YS)Fﬁ(Q) is not contained in ¢Z[gq]. We repair this
situation, and we get that

Glbyn) = My, = Glby) = P Fapas + aF P FusoFs + (q' + ) PP ESY,
Thirdly, M,, = Fc(yz)Fa_l_ﬁFﬁ + (@t g+ P+ ¢+ q7)FC(YS)Fﬁ(2). Here we
get

G(b,,) = M, — (q_3 + q_l +q+ QS)G(bm) = Fo(zz)Foz-I—ﬁFﬁ + (q5 + q7)F£3)Fﬁ(2).

Finally, M,, = F,FC, 4+ (14 ¢) P Faas + (¢ + @) PP FaysFs + (g* +
@+ qlz)FéS)Fﬁ(Z). Here the coeflicient of Fc(yz)FaHﬁ does not lie in ¢Z[q]. So
we have to subtract the element of the canonical basis with that principal
monomial, i.e., G(b,,). We get

G(bm) = M774 _G(bﬁ2) = FaF(i)ﬁ—I'q4Fo(z2)Foz+2ﬁ‘|‘q5Fo(¢2)Fa+ﬁFﬁ‘I‘(]leO(ZS)Fﬁ(z).

O



As a first application of the algorithm for constructing elements of the
canonical basis we give an inefficient algorithm for constructing highest-
weight modules. Let A be a dominant weight. Let vy, be a highest-weight
vector of the highest weight module V(A). Then according to [3], Theorem
11.10 (d), the set {G(b) - vy | b € B(oo)} \ {0} is a basis of V(A). Us-
ing the path method it is straightforward to decide which b € B(oo) satisfy
G(b) - vy = 0. Let b = b, for some adapted string n. Then G(b) - v\ = 0 if
and only if f7¢, = 0 (this will be the content of Lemma 4). Furthermore,
we only have to check b € B(oo) of weight v such that the multiplicity of
A — v in V(A) is non-zero. By a standard algorithm we can calculate the
set of all those v (using the path method for example). Now the nonzero
G/(b) - vy form a basis of the highest-weight module, and we use the G(b) such
that G/(b) - vy = 0 to rewrite all other vectors to linear combinations of basis
elements. We remark that this algorithm is rather inefficient because the
dimension of UZ, grows quickly as the level of v increases. A more efficient
algorithm for constructing highest-weight modules is indicated in [2].

Example 3 We use the same notation as in Example 2. Let A = Ay be the
first fundamental weight. Then V(X) has a weight space of weight —A; =
A — 2a — 23. The elements of the canonical basis of weight 2a + 23 are

(by) = FOF

(by) = F, FawFﬁ +(*+ Y PP

(bs) = Iy Fa+2ﬁ + qF o Forsbs+ (¢* +q )F(Q)Fﬁ(z)
(bs) a+5 + PP Fovop + CFLFoypbs + ¢°FC )F( )

QD

Q

G

They correspond to the strings n; = (2,2,0,0), 2 = (1,1,1,1), 73 = (1,2,1,0)
and ny = (0,2,2,0) respectively. Now only f”*”’@ # 0. So G(b;) - vy =0 for
= 1,2,4. Let x; denote the principal monomial of G(b;). We see that
zi-vy=0fori=1,2 and z4 vy = —q¢%x3 - v).

We end this section with a sketch of a proof of case 3. of the formulas
for the exponents m! in Section 1. We have to study the case where the
root system is of type Bs. We let «, 3 be the simple roots, where [ is
long. First suppose that we use the reduced expression s,s35,53. Then by
[6], Corollary 2, the set C}”" of adapted strings of weight sa + r3 consists
of all g = (s — myr — I,m, 1), such that 0 < m < s, 0 <! < r and



2(r — 1) > m > 2l. Here we have 0, >1exNirm if m < m’ or m = m’ and

Fo(ls_m)Fﬁ(r_l)Fo(lm)Fﬁ(l) — Z q(m—Qi—j)(2T—21—2i—j)+2(r—l—i—j)i

i,j>0
itj<r—1
2t+3<m
s—=21—jg| |r—1—7 s—2i—j) (&) () plr—i—j)
[ s—m ] [ [ ]5 L ])F2a+ﬁFa+ﬁFﬁ .

By studying the coefficients in this expression, and following the algorithm
for computing elements of the canonical bases it can be shown that the

) is Fo(ls—m)F(l) F(m—?l)F(r—m—I—l)

Y SN 5 if m <r, and

principal monomial of G/(b,, .

F(s—m)Fz(m—l—ﬁl—r)F(Qrﬁ—Ql—m)Fﬁ(l) o >
o a+ a+ =

Now suppose that we use the reduced expression sgs,sgs,. In this case
the set C3" of adapted strings of weight sav + 3 consists of all (;,, = (r —
m,s — [,m,l) such that 0 <[ < s, 0<m <r,s—101>m>m (cf. [6],
Corollary 2). We have that (jm,<iexCrm if m <m’orm=m"and [ <. In

this case the principal monomial of G(b,,,) is Fﬁ(r_m)Fc(yiTg_SH)Fé;;lﬁ—l_m)Fc(yl)

if s < 2m, and FYTMEY FTED T of 5 > om,

Suppose that the braid relation consists of replacing s, 555,55 by s55,5354.

We start with a PBW-monomial # = FC(YG)FQ(Z)+5FC(Y25F5(C[). We form the
adapted string n such that G(b,) has principal monomial x. By the descrip-
tion of the principal monomials above we have that n = (a, c+max(b, d), 2b+
¢, min(b, d)). Now we use the bijection ¢ : 7" — €5, such that ff = f¢()
for all § € C}". According to [6], Proposition 2.4 it is given by ¢(n) =
(ny,n2,ns,n4), where n; = max(b, max(b,d) + ¢ — a), ny = max(a,c) + 2b,
ns = min(c + d,a + min(b,d)), ny = min(a,c). Now ¢(n) corresponds to
the PBW-monomial Fﬁ(m)Fc(j_ng_m)FQ(Zj__ﬁnS)Fém) if ng + ny < 2ns, and to
Fﬁ(m)Fc(yi“ﬁ)FQ(Zj__ﬁm)Fc(yn2+2n4_2n3) if ng + ny > 2n5. This implies the formulas
in the case 3(a); the case 3(b) is similar.

Also the formula in case 2. can be proved this way.

4 Canonical bases of modules

Let A be a dominant weight, and V(A) the corresponding highest-weight
module over U,. For o € A we have the Kashiwara operators F,, F, :

10



V(A) — V(X) defined by [3], 9.2(2), (3). Let vy be a fixed highest-weight
vector, and let L(A) be the A-module spanned by all Fvail "'ﬁair (vy), for
r > 0. Furthermore, B()) is the set of non-zero cosets modgL(\) of these
elements ([3], §9.5).

Let U7 be the Z-form of U~. It is spanned over Z[q, g '] by all PBW-
monomials (2). Let ¢y : U; — V(A) be the map defined by ¢\(u) = uvy,
and set Vz(A) = ¢ (U7 ). We consider the Z[g]-module L7(X) = L(A)NV7z(A)
(cf., [3], §11.1 - 11.6). In this section we describe an algorithm for obtaining
a basis of Lz(A), along with a set of coset representatives for the elements of
B(A).

We have that ) induces a map (which we denote by the same symbol)
o) L(00)/qL(0) — Lz(X)/qLz(A). By [3], Theorem 10.10 we have that
er(B(0)) \ {0} = B(X). Furthermore, [3], Theorem 11.10 states that the
set of p\(G(b)), where b € B(oo) is such that ¢(b) # 0 is a basis over Z[q]
of Lz(A). So we can find a basis of Lz(A) by computing elements of the
canonical basis of U7, and taking their image under ¢,. However, many
of these images will be zero. Here we describe a more direct approach for
computing ¢\ (G(b)), without computing G(b) first.

Let n = (n1,...,n:) be an adapted string, relative to the reduced expres-
810N Wy = Sg,, """ Sq,, - Lhen we write F" for Fvgill e ﬁ;ﬁt (where the Fvak are

the Kashiwara operators on U~ or the Kashiwara operators on V(X)).

Lemma 4 Let n be an adapted string, and set b = ﬁ”(l) mod ¢L(o0). Then
©x(b) = 0 if and only if f7(€\) = 0.

Proof. By [4], Theorem 4.1 we have that f7¢, = 0 if and only if Eby = 0,
where by = ¢, (1). By [3], Proposition 10.9 this is equivalent to @A(Fv”(l )=
0, which, by [3], Theorem 11.10(d) is equivalent to G/(b,) - vy = 0. O

For an adapted string  we denote by x, the PBW-monomial with the
property ﬁ”(l) = x, mod ¢L(o0). Note that we can compute z, by usingthe

algorithm for computing the action of ﬁa, described at the end of Section 1.

Corollary 5 B()) consists of all cosets x, - vy mod gL(o0), where i runs
over all adapted strings with f7(€)) # 0.

Proof. This follows immediately from Lemma 4, along with ¢\(B(o0)) \

{0} = B(A). O
We note that this corollary gives an immediate algorithm for constructing
a set of coset representatives for the elements of B(\).
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By = we denote the involution of V(A) defined by w-vy = @ - vy, for
ue U™,

Lemma 6 Let b € B(A). Then there is a unique element v(b) € Lz(A)

such that v(b) = b mod ¢L(N) and v(b) = v(b). Let b/ € B(oo) be such that
(b)) = b; then v(b) = ©(G(D)).

Proof. It is clear that o(G/(0')) has the listed properties. Suppose that
the element v € Lz(A) also has these properties. Then we write v as a
linear combination of elements ,\(G(0")). Because v is bar-invariant, the
coefficients in this expression must be bar-invariant as well. Because the
e (G(b")) form a basis of Lz(A) over Z[q], the coefficients must lie in Z[q].
This means that the coefficients are elements of Z. Since v = b mod ¢L(\)
we have that the only ¢\ (G(b”)) that has a non-zero coefficient is @\ (G(V)).

O

Now the algorithm is straightforward. Let v be a weight such that A — v
is a weight of V((X). Let &1,... & be the paths in Il such that & (1) = A—wv.
Let n1,...,7n, be the corresponding adapted strings (relative to some fixed
reduced expression for the longest element in the Weyl group). Suppose that
they are ordered so that 7;<jexniy1. Set w; = x,, - vy, and w; = M,, - v,.
Suppose that vy = v(b,,),... ,vx = v(by,,) are already constructed. Write
0;<lexVj i Ty, <lexTy, -

Now write wg1; = Z;:l Ciju;, where (;; € Z[q,q']. We go through
the v,,, starting with the one which is biggest in the <jo, ordering. If the
coefficient of a w,, in the expression for wy1 does not lie in Z[q], then we add
a suitable bar-invariant multiple of v,, to remedy this situation. Proposition
1 implies that this algorithm terminates with the correct result.
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