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Abstract

Let Uq�g� be the quantized enveloping algebra corresponding to the semisim�
ple Lie algebra g� We describe algorithms to obtain the multiplication
table of a PBW�type basis of Uq�g�� We use this to obtain an algorithm
for calculating a Gr�obner basis of an ideal in the subalgebra U�� which
leads to a general construction of irreducible highest�weight modules over
Uq�g�� We also indicate how to compute the corresponding R�matrices�

�� Introduction

Quantized enveloping algebras have been widely studied� almost exclusively by
theoretical means �see� e�g�� ���� ���� ���	� In this paper we consider the problem
of computing with a quantized enveloping algebra� For this we need a basis of it�
along with a method for computing the product of two basis elements� To this
end we will use so
called PBW
type bases� The main subject of this paper will
be an algorithm for computing the product of two elements of such a PBW
type
basis� We use this to construct highest
weight modules over quantized enveloping
algebras� and the corresponding R
matrices�

Below we recall some notation and de�nitions� Here� as in the rest of this
paper� we borrow heavily from ���� A citation as ���� �����	 refers to the formula
��	 in paragraph ��� of ����

Let g be a split semisimple Lie algebra over Q� with root system �� We let V
be the vector space over R spanned by �� By W ��	 we denote the Weyl group
of �� On V we �x a W ��	
invariant inner product � � 	 such that ����	 � � for
all short roots �� This means that ����	 � �� �� �� where the last possibility only
occurs if � comes from a component of type G��

We work over the �eld Q�q	� For � � � we set

q� � q
�����
� �
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and for a non
negative integer n� �n�� � qn��� � qn��� � � � �� q�n��� � Furthermore�
�n��� � ������� � � � �n�� and �

n
k

�
�

�
�n���

�k����n� k���
�

Let � � f��� � � � � �lg be a simple system of �� Then the quantized enveloping
algebra Uq�g	 is the associative algebra �with one	 over Q�q	 generated by F��
K�� K��

� � E� for � � �� subject to the following relations

K�K
��
� � K��

� K� � � K�K� � K�K�

E�K� � q������K�E�

K�F� � q������F�K�

E�F� � F�E� � ����
K� �K��

�

q� � q���

together with� for � �� ��

��h����iX
k��

��	k
�
 � h�� ��i

k

�
�

E��h����i�k
� E�E

k
� �RE	

��h����iX
k��

��	k
�
 � h�� ��i

k

�
�

F ��h����i�k
� F�F

k
� �RF 	�

Let U�� U�� U� denote the subalgebras of Uq�g	 generated by respectively
the F�� the K��

� and the E�� Then ���� Theorem ��� states that the elements
FKE� where F � K� E run through bases of U�� U�� U� respectively� form a
basis of Uq�g	� Furthermore� the elements Kn�

��
� � �Knl

�l
where the ni are arbitrary

elements of Z� form a basis of U�� So the problem of �nding a basis of Uq�g	
boils down to �nding bases of U� and U�� Also� since these two algebras are
isomorphic� the problem is the same in both cases�

A very crude way to �nd a basis of U� is to use the fact that U� is iso

morphic to the free algebra generated by the E� modulo the ideal generated by
the relations �RE	� It is possible to show that this ideal has a �nite Gr�obner
basis� which we can calculate �see� e�g�� ���	� A basis of U� is then given by all
monomials in the E� that are not divisible by a leading monomial of an element
of the Gr�obner basis� However� a much more e�cient way of dealing with the
problem is via so
called PBW
type bases �cf�� e�g�� ���� ���� ���	� For � � �
we use the automorphism T� of Uq�g	� given by the formulas of ���� x���� Let
w� � s�i� � � � s�it be a reduced expression for the longest element in W ��	� For
 � k � t set Ek � T�i� � � �T�it�k

�E�t�k��	� It can be shown that the Ek are ele


ments of U�� and that the elements En�
� � � �Ent

t �where the ni � �	 form a basis
of U� �cf� ���	� We can de�ne elements Fk � U� similarly� Then the elements
Fm�
� � � �Fmt

t Kn�
��
� � �Knl

�l
Ep�
� � � �Ept

t �where mi� pi � �� ni � Z	 form a basis of
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Uq�g	� This basis is called a PBW
type basis �where PBW stands for Poincar�e

Birkho�
Witt	� The elements Fk� K��

�j
� Ek are called PBW�generators of Uq�g	�

It will be convenient to index the Fk� Ek by positive roots� For  � k � t set
�k � s�i� � � � s�it�k

��it�k��	� Then by E�k we also denote Ek� and similarly F�k

will denote Fk�
Now we consider the problem of computing the product of two basis elements�

For this it would be su�cient to have a set of relations of the form

AjAi � cjiAiAj � �ji�

where Ai� Aj are PBW
generators� and �ji is a linear combination of basis ele

ments� We call such a relation a skew commutation relation� or just commutation
relation if it is clear what we mean� We call the set of all such relations a multi�
plication table of this PBW
type basis of Uq�g	� Parts of the multiplication table
follow easily from the de�ning relations of Uq�g	� For all positive roots � � �
and � � ��

E�K
��
� � q������K�E�� and K��

� F� � q������F�K�

�cf� ���� ����		� We still need the commutation relations of E�� E� of E�� F��
and of F�� F� for arbitrary positive roots �� � � �� The main part of this
paper deals with describing algorithms for �nding these commutation relations
�Section �	� Then in Section � we apply this to construct highest weight modules
over quantized enveloping algebras� and the corresponding R
matrices� Finally
in Section � we give an example and an account of practical experiences with an
implementation of the algorithms in GAP��

We explain some more notation and terminology to be used in the sequel� Let
w � s�i� � � � s�im be a reduced expression in the Weyl group W ��	� Then we set
Tw � T�i� � � � T�im � It can be shown that this automorphism depends only on
the element of the Weyl group represented by w� not on the particular reduced
expression �cf� ���� ���	� Let u � s�j� � � � s�jm be a second reduced expression in
W ��	� If the reduced expressions w and u are equal �i�e�� �ik � �jk for all k	
then we write u � w� If u and w represent the same element of W ��	� then we
write u � w� We denote the length function on W ��	 by �� e�g�� ��w	 � m�

In the sequel we will assign a weight to certain elements of U�� Let e �
E�i�

� � �E�ir
be a monomial in the generators of U�� Then we say that e has

weight
Pr

k�� �ik � Also� if a is a linear combination of monomials of weight ��
then we say that a has weight �� We note that this means that the elements E�

have weight � for all � � � �cf� ���� �����		� Also if � �
Pl

i�� ki�i is such a

weight� then the level of � is the number
Pl

i�� ki�
In the sequel we will use the term straightening to denote the process of rewrit


ing elements of Uq�g	 to normal form� using a set of skew
commutation relations�
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�� Finding commutation relations

As before � is a root system� with simple system � � f��� � � � � �lg and Weyl
group W ��	� We �rst describe an algorithm for �nding the commutation relation
of E�� E�� for positive roots �� �� For this we suppose that � does not contain
components of type G�� A set of commutation relations for this case is known in
the literature� For the sake of completeness we have added such a set in Appendix
A�

Let w � s�i� � � � s�im be a reduced word in W ��	� For  � k � m set Xk �
T�i� � � � T�im�k

�E�im�k��
	� Then we say that a monomial of the form Xn�

i�
� � �Xnr

ir

is a w
monomial� A linear combination of w
monomials is called a w
expression�
Let pw be a w
expression� If for all monomials Xn�

i�
� � �Xnr

ir
appearing in pw we

have that i� � i� � � � � � ir then we say that pw is in normal form� Now let u
be a di�erent reduced expression for the same element in W ��	� i�e�� u � w� Let
pw be a w
expression� then pw is equal to pu� where pu is a certain u
expression
in normal form� �cf� ���� Proposition ����	� Here we describe a straightforward
algorithm for computing pu given pw�

First of all� we can transform w into u by a sequence of �elementary moves� �cf�
���� ���	� The proof of this result in �� translates to a straightforward algorithm
for obtaining such a sequence of elementary moves� We may assume that u is
obtained from w by one elementary move� This means that we may assume that
we are dealing with the rank � case� The generalisation to the general case is
straightforward� For the elementary move there are four possibilities� which we
treat separately� We denote the simple roots by �� ��

First suppose that the elementary move consists of replacing s�s� by s�s��
i�e�� h�� ��i � �� In this case X� � T��E�	 � E� and X� � E� commute� and we
get pu simply by interchanging the exponents of X�� X��

Secondly suppose that the elementary move consists of replacing s�s�s� by
s�s�s�� In this case h�� ��i � h�� ��i � �� We set X� � T�T��E�	 � E��
X� � T��E�	 and X� � E�� Also set Y� � T�T��E�	 � E�� Y� � T��E�	�
Y� � E�� The problem is to write the w
expression pw as a linear combination of
monomials �in normal form	 in the Y  s� We haveX� � Y�� X� � Y� and X� � ��
q��� 	Y�Y�� q��� Y�� �This last equality is obtained by writing X� as an expression
in the generators E�� E�� substituting E� � Y�� E� � Y� and straightening�
using the table for A� of Appendix A�	 We substitute these expressions in pw�
and we get a linear combination of monomials involving Y  s� Then we straighten
the monomials in this linear combination using the commutation rules for the
A�
case in Appendix A�

Thirly� suppose that h�� ��i � � and h�� ��i � ��� We set X� � T�T�T��E�	 �
E�� X� � T�T��E�	� X� � T��E�	� X	 � E�� and Y� � T�T�T��E�	 � E��
Y� � T�T��E�	� Y� � T��E�	� Y	 � E�� This case has two subcases� The �rst
one occurs when the elementary move consists of replacing s�s�s�s� by s�s�s�s��
For this case we have to transform an expression in X s into an expression in
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volving Y  s� We have that X� � Y	 and X	 � Y�� and

X� � � � q�		Y�Y	 � q��Y�

X� � �q�� � �q�� � q�
	Y �
� Y	 � �q�� � q��	Y�Y� � q��Y�

We substitute these expressions for the X s� and use the second table for type
B� of Appendix A� to straighten the result�

The second subcase occurs when s�s�s�s� is replaced by s�s�s�s�� In this
case we have

Y� � �q�� � �q�� � q�
	X�X
�
	 � �q�� � q��	X�X	 � q��X�

Y� � � � q�		X�X	 � q��X�

And we do the same as above� now substituting X s for Y  s and using the �rst
table for type B� of Appendix A�

The main part of the algorithm for computing the commutation relation of
E�� E� consists of a recursive procedure that uses relations from the rank �
case� This idea is taken from the proof of ���� Theorem ���� And essentially the
algorithm below is an e�ective version of that proof� Roughly the algorithm looks
as follows�
Algorithm CommutationRelation

Input� two reduced words w�� w� in W ��	� and two simple roots �� � such that

� w� � w�w
�
�� where w�

� �� �

�� w�
� � s�� � � � s�r � where �� � ��

�� ��w�s�	 	 ��w�	�

Output� X � Tw��E�	Tw��E�	 � q�w���w���Tw��E�	Tw��E�	� where X is a w�

expression�

Step � If ��w�	 �� �� then by a recursive call compute Y � E�Tw���E�	 �

q���w
�

���Tw���E�	E�� To Y apply Tw� and return the result�

Step � If ��w�	 � �� then we set w � w�
� � s�� � � � s�r and u � s�� � � � s�r�� � If

��w	 � � then return �� Otherwise we use a recursive procedure to calculate
X� distinguising a few cases according to the Dynkin diagram of the roots
� and �r�

Comments� We will �ll in the recursive procedure of Step � later� We will
prove that it terminates by induction on the pair ���w�	 � ��w�	� ��w�		� where
pairs of this form are lexicographically ordered� It is clear that the recursive call
of Step  terminates by induction on this pair� Also if in Step �� ��w	 �  then
the commutation relation is � by ���� �����	�

In the recursive procedure of Step � we will need an algorithm Straighten�
For a reduced word y it takes a y
expression that is not in normal form� and
straightens it� This algorithm gets the commutation relations it needs from calls
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to CommutationRelation� If ��y	 � ��w	 then those calls will terminate by induc

tion� Indeed� write y � s�� � � � s�m � then the algorithm CommutationRelation will
be called with words y�� y�� where y� � s�� � � � s�i � and y� � s�� � � � s�j � But then
��y�	 � ��y�	 � ��y	 �  � ��w	 � ��w�	 � ��w�	�

Now we describe the recursive procedure of Step �� On several occasions
we will need two more words in the Weyl group� If ��us�	 � ��u	 then we
use the exchange condition to get a reduced word v � s�� � � � !s�i � � � s�r�� such
that v � us�� �Here the ! means that the corresponding generator is omit

ted�	 Also� if ��vs�r	 � ��v	� then we use the exchange condition to get a
word x � s�� � � � !s�j � � � !s�i � � � s�r�� �or x � s�� � � � !s�i � � � !s�j � � � s�r��	� such that
x � vs�r� Throughout the description of the algorithm the indices i and j will
be �xed�

Since � does not contain components of type G�� there are four possibilities
for the Dynkin diagram of �� �r� We treat each of these cases separately� and for
each case we prove that the algorithm terminates with the correct output�
A� Suppose that h�� ��r i � ��
Here we return CommutationRelation�� u� �� �	�

Proof� Becausews� � us�s�r we have that us� is a reduced word� so the recursive
call is correct� By induction it will terminate� and return a u
expression� which
is also a w
expression� Finally� h�� ��r i � � implies that T�r�E�	 � E�� so that
X � E�Tu�E�	 � q���u��Tu�E�	E�� �

B� Suppose that h�� ��r i � h�r� �
�i � ��

If ��us�	 	 ��u	 then we take the following steps�

� Set " � CommutationRelation�� u� �� �	 and
� � CommutationRelation�� u� �� �r	�

�� Set "� � Straighten�q���u�r�Tu�E�r	" � q���r
"Tu�E�r		�

�� Set �� � Straighten��Tu�E�	 � q���r
q���u��Tu�E�	�	�

�� Return "� � ���

Proof� The recursive calls of � terminate by induction� We have that "�� are
u
expressions� Therefore the input to the straightening algorithm in �� is a w

expression� By what we have seen above� this call will terminate� and the output
will be a w
expression� The input to the same algorithm in �� is a us�
expression�
Therefore this call will terminate� Also� because � has weight � � u�r we have
that �Tu�E�	 � q���u�r�u��Tu�E�	� � ��� where �� is a u
expression� Therefore
the terms with Tu�E�	 cancel� and the output at �� will be a w
expression�

We have

E�Tu�E�	 � q���u��Tu�E�	E� � "� �	

and

E�Tu�E�r	 � q���u�r�Tu�E�r	E� � �� ��	
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We also have T�r�E�	 � E�rE� � q���r
E�E�r � so that

E�Tw�E�	 � E�Tu�E�r	Tu�E�	 � q���r
E�Tu�E�	Tu�E�r 	�

Now by using �	 and ��	 this can be rewritten as

q���w��Tw�E�	E��q���u�r�Tu�E�r	"�q
��
�r

"Tu�E�r	��Tu�E�	�q���r
q���u��Tu�E�	��

This shows that the algorithm gives the correct output� �

If ��us�	 � ��u	 then we take the following steps�

� If i � � then return Tu�E�r	�

�� If i ��  then calculate Y � CommutationRelation�� v� �� �r	� which gives Y
as a v
expression� We transform it into a u
expression� and return that�

Proof� We recall that v � s�� � � � !s�i � � � s�r��� If i �  then s�v��	 � u� � �
�here we use that ��zs�	 � ��z	 �  if and only if z
 	 �� ���� Proposition ���	�
Therefore v� is a positive root �because ��vs�	 � ��v	 � 	 sent to a negative
one by s�� so that v� � �� By ���� Proposition ����� Tv�E�	 � E�� Furthermore�
using ���� �����	� we see that Tw�E�	 � TvT�T�r�E�	 � Tv�E�r	� Therefore X �
Tv�E�	Tv�E�r	�q�v��v�r�Tv�E�r	Tv�E�	 � Tv�E�E�r�q��� E�rE�	 � TvT��E�r	 �
Tu�E�r 	�

If i ��  then X � E�Tv�E�r 	 � q���v�r�Tv�E�r 	E� can by recursion be written
as a v
expression� �Note that ��vs�r	 	 ��v	� otherwise ��u	 � � � ��us�rs�	 �
��vs�s�rs�	 � ��vs�rs�s�r	 � ��v	 � � � ��u	 � 	� We have that u � vs�
so we can transform this v
expression into a u
expression� using the algorithm
described at the beginning of this section� �

C� Suppose that h�� ��r i � �� and h�r� ��i � ��
In this case we have ��� �r	 � ��� ��� �	 � � and ��r� �r	 � �� If ��us�	 	 ��u	

then we take the following steps�

� Set " � CommutationRelation�� u� �� �	 and
� � CommutationRelation�� u� �� �r	�

�� Set "� � Straighten�q���u�r�Tu�E�r	" � q��"Tu�E�r		�

�� Set �� � Straighten��Tu�E�	 � q������u��Tu�E�	�	�

�� Set # � "� � ���

�� Set U � Straighten�q���u�r�Tu�E�r 	#� #Tu�E�r		�

�� Set ��� � Straighten��Tu�E�r	 � q�����u�r�Tu�E�r	�	�

�� Set V � Straighten�q�����u�r�Tu�E�r 	�
� � q����Tu�E�r		�

�� Set ���� � Straighten����Tu�E�	 � q�	����u��Tu�E�	���	�

�� Return U�V�����

q�q�� �
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Proof� The fact that all calls terminate follows easily by induction� Again �� is
a u
expression� So in ��� # is a w
expression� Also U is a w
expression� As ���

has weight � � �u�r we have that ���Tu�E�	 � q�	����u��Tu�E�	��� � ����� where
���� is a u
expression� Therefore the output of the algorithm is a w
expression�

Using ���� �����	 together with �	 and ��	 �which also hold in this case	 we
infer that

E�TuT�rT��E�r	 �E�Tu�E�r	Tu�E�	 � q��E�Tu�E�	Tu�E�r	

�q���ws���r��TuT�rT��E�r 	E� � q���u�r�Tu�E�r 	"

� q��"Tu�E�r	 � �Tu�E�	 � q������u��Tu�E�	��

Here the terms with � reduce to ��� and it follows that

E�TuT�rT��E�r	 � q���ws���r��TuT�rT��E�r 	E� � #� ��	

Now the formula following ���� �����	 implies that

�q � q��	E�TuT�r�E�	 � E�Tu�E�r	TuT�rT��E�r	 � E�TuT�rT��E�r	Tu�E�r	�

Rewriting this� using ��	 and ��	 we get

�q � q��	E�TuT�r�E�	 ��q � q��	q���w��TuT�r�E�	E�

� q���u�r�Tu�E�r 	#� #Tu�E�r	

� �TuT�rT��E�r	 � q���ws���r��TuT�rT��E�r	��

The terms with # straighten without problems� For the terms with � we note
that we have

�Tu�E�	 � q������u��Tu�E�	� � ��� ��	

�Tu�E�r	 � q�����u�r�Tu�E�r	� � ���� ��	

Using ��	 and ��	� along with ��� �����	 we calculate

�TuT�rT��E�r	 ��Tu�E�r 	Tu�E�	 � q���Tu�E�	Tu�E�r	

�q���us��r�TuT�rT��E�r	� � q�����u�r�Tu�E�r	�
� � q����Tu�E�r 	

� ���Tu�E�	 � q�	����u��Tu�E�	����

Again the terms with �� straighten without problems to a u
expression� Fur

thermore� the terms with ��� rewrite to ���� which is also a u
expression� So the
output of the algorithm is correct� �

If ��us�	 � ��u	 then we take the following steps�

� If i �  then return q���
q�q��Tu�E�r	

��
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�� If i ��  and ��vs�r	 	 ��v	 then execute the following

�a	 Set " � CommutationRelation�� v� �� �r	� and
� � CommutationRelation�� u� �� �r	�

�b	 Transform " to a u
expression and set U � Straighten�q���u�r�Tu�E�r 	"�
"Tu�E�r		�

�c	 Transform � into a vs�
expression� Then � only involves v
monomials�
along with products of powers of Tv�E�	 and v
monomials� We have
that

Tv�E�	nTv�E�r	 �

q��nTv�E�r	Tv�E�	n � �

nX
i��

q�n���	i	Tu�E�r	Tv�E�	n��� ��	

Using this and commutation relations obtained by recursion we straighten
�Tv�E�r	� In the straightening process we may encounter expressions
of the form mTv�E�r 	� where m is a v
monomial� Using relations ob

tained by recursion we can rewrite this as q���v�r�Tv�E�r	m � a� where
� is the weight of m� and a is a v
expression� which we transform
to a u
expression� Also we may encounter expressions of the form
Tv�E�	n �m �Tv�E�r	� where m is a v
monomial� We can rewrite this as
q���v�r�Tv�E�	nTv�E�r 	m�Tv�E�	na� Here Tv�E�	na is a vs�
expression�
which we can transform into a u
expression� Using ��	 we can deal with
the �rst summand� This yields an expression of the form Tu�E�r	Tv�E�	n��m�
After transforming Tv�E�	n��m to a u
expression this becomes a w

expression� So we can rewrite �Tv�E�r	 as q���v�r�Tv�E�r	� � ��� where
�� is a w
expression�

�d	 Return U���

q�q�� �

�� If i �� � ��vs�r	 � ��v	� and j �  then return Tu�E�r 	�

�� If i �� � ��vs�r	 � ��v	� and j ��  then set Y � CommutationRelation�� x� �� �	�
Transform Y into a u
expression� and return the result�

Proof� Here if i �  we get

X � Tv�E�T�T�r�E�	 � T�T�r�E�	E�	

�
q� � 

q � q��
Tv�T��E�r 		

� �
q� � 

q � q��
Tu�E�r	

��

�In the second to last equality we used ���� Appendix ���	�	 If i �� � then we
distinguish two cases� If ��vs�r	 	 ��v	� then we have by recursion

E�Tv�E�r	 � q���v�r�Tv�E�r	E� � "� ��	
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E�Tu�E�r	 � q���u�r�Tu�E�r	E� � �� ��	

where " is a v
expression� and � is a u
expression� Now� using ���� ��� we see that
�q � q��	E�TvT�T�r�E�	 � E�Tu�E�r	Tv�E�r	 � E�Tv�E�r	Tu�E�r	� Rewriting
this� using ��	 and ��	 we get

�q � q��	X � q���u�r�Tu�E�r	" � "Tu�E�r	 � �Tv�E�r	 � q���v�r�Tv�E�r	��

And this last expression is equal to U � ��� We note that ��	 follows from ����
Appendix ���	� ��	�

If ��v�r	 � ��v	 then we note that Tw�E�	 � TxT�rT�T�r�E�	 � Tx�E�	 �cf�
���� �����		� If j �  then we have that x�r � � and therefore Tx�E�r	 � E��
This means that X � Tx�E�rE� � q��E�E�r	 � TxT�rT��E�r	 � Tu�E�r	� �In
the second to last equality we used ���� �����	�	 If j ��  then we use that
��xs�	 	 ��x	 �indeed� otherwise ��u	 � � � ��xs�rs�s�rs�	 � ��xs�s�rs�s�r	 �
��x	 � � � ��u	 � 	� So the recursive call in �� is justi�ed� By induction we
have that X � E�Tx�E�	 � q���x��Tx�E�	E� is an x
expression� which we can
transform to a u
expression� �

D� Suppose that h�� ��r i � � and h�r� ��i � ���
In this case we have ��� �r	 � ��� ��� �	 � � and ��r� �r	 � �� If ��us�	 	 ��u	

then we take the following steps�

� Set " � CommutationRelation�� u� �� �	 and
� � CommutationRelation�� u� �� �r	�

�� Set "� � Straighten�q���u�r�Tu�E�r	" � q��"Tu�E�r		�

�� Set �� � Straighten��Tu�E�	 � q������u��Tu�E�	�	�

�� Return "� � ���

Proof� Again all recursive calls terminate by induction�
Using ���� �����	 we have

E�TuT�r�E�	 � E�Tu�E�r	Tu�E�	 � q��E�Tu�E�	Tu�E�r 	�

Rewriting this using �	 and ��	 �which also hold in this case	 we get

E�TuT�r�E�	 �q���us�r��TuT�r�E�	E� � q���u�r�Tu�E�r	" � q��"Tu�E�r	

� �Tu�E�	 � q������u��Tu�E�	��

Here the terms with " do not pose any di�culties� Furthermore� the terms with
� rewrite to ��� We have that the "� of �� is a w
expression� so the output is a
w
expression as well� �

If ��us�	 � ��u	 then we take the following steps�

� If i �  then return �q � q��	Tu�E�r	�
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�� If i ��  and ��vs�r	 	 ��v	 then execute the following steps�

�a	 Set " � CommutationRelation�� v� �� �r	� and
� � CommutationRelation�� v� �� �	�

�b	 Set "� � Straighten�q���v��Tv�E�	" � q��"Tv�E�		�

�c	 Set �� � Straighten��Tv�E�r 	 � q������v�r�Tv�E�r	�	�

�d	 Set U � "� � ��� Transform U to a u
expression and return the result�

�� If i �� � ��vs�r	 � ��v	� and j �  then set U � Tv�E�	� Transform U to a
u
expression and return the result�

�� f i �� � ��vs�r	 � ��v	� and j ��  then set U � CommutationRelation�� x� �� �	�
Transform U into a u
expression� and return the result�

Proof� If i �  then

X � Tv�E�T�T�r�E�	�T�T�r�E�	E�	 � �q� q��	TvT��E�r	 � �q� q��	Tu�E�r	�

�In the second to last equality we used ���� Appendix ���	�	 If i ��  then we �rst
suppose that ��vs�r	 	 ��v	� After Step �a	 we have

E�Tv�E�r	 � q���v�r�Tv�E�r	E� � "� ��	

E�Tv�E�	 � q���v��Tv�E�	E� � �� ��	

where � and " are v
expressions� Also by ���� �����	 we have

E�TvT�T�r�E�	 � E�Tv�E�	Tv�E�r	 � q��E�Tv�E�r	Tv�E�	�

Rewriting this using ��	 and ��	 we get

X � �Tv�E�r	 � q������v�r�Tv�E�r 	� � q���v��Tv�E�	" � q��"Tv�E�	�

We rewrite the terms with "� which results in a vs�
expression� As � has weight
� � v��	 we have that �Tv�E�r	 � q������v�r�Tv�E�r	� � ��� where �� is a v

expression� This means that the terms with � rewrite to ��� So the U in �d	 is a
vs�
expression� which we transform into a u
expression� If ��vs�r	 � ��v	� then
we have Tw�E�	 � TxT�rT�T�r�E�	 � Tx�E�	 ����� �����		� If j �  then� using
���� Appendix ���	� we get X � Tx�E�rE� � q��E�E�r 	 � TxT�r�E�	 � Tv�E�	�
which we transform to a u
expression� If j �� � then we have the same as in case
C	� �

Now we have an algorithm for �nding the skew
commutator of E� and E�

for all positive roots �� � � �� In order to �nd the skew
commutator of F�� F�

we use the automorphism � of Uq�g	 given by ��F�	 � E�� ��E�	 � F� and
��K�	 � K��

� �cf� ���� ���	� By ���� �����	 we have that

��Tw�E�		 �

�Y
���

��q�	
�m�

�
Tw�F�	�
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where w� � � �
P

���m�
� Using this� and the commutation relation of E��
E� we easily get the commutation relation of F�� F��

We turn our attention towards �nding the skew
commutator of E� and F��
where �� � are arbitrary positive roots� The following lemma is useful� Here the
weight of an element of U� is de�ned in the same way as the weight of an element
of U��

Lemma � Let �� � � � be two positive roots� then E�F� � F�E� � "� where "
is a linear combination of monomials of the form FKE� where K � U�� and the
weight of F � U� is of lower level than � and the weight of E � U� is of lower
level than ��

Proof� This can be seen by writing E� and F� as expressions in the generators
�i�e�� E�� F� for 
 � �	� Then we straighten the product E�F� using the de�ning
relations of Uq�g	� Each time we use a relation of the form E�F� � F�E� �
�����K� �K��

� 	��q� � q��� 	� we replace one monomial by at most two� However�
in the one arising from the second term� the total level of the E s and the total
level of the F  s has dropped� Hence the result is F�E� plus a linear combination
of monomials FKE� where F is an expression in the generators of lower level
than �� and E is an expression in the generators of lower level than �� We �nally
rewrite these as linear combinations of monomials in the PBW
generators� which
does not change their weight� �

In principle the proof of Lemma  gives an algorithm for computing the com

mutation relation of E� and F�� However� because the expression of E�� F� in
the generators can be rather large� a more e�cient algorithm works as follows�

First we suppose that � � � is a simple root� If � is also a simple root� then
we know the commutation relation from the de�ning relations of Uq�g	� If � is
not a simple root� then� because E� lies in U�� there is at least one commutation
relation of the form E�E� � q�����E�E� � E� � #� where # involves E� for �
of lower level than �� This allows us to write E� as a linear combination e of
monomials involving only E� where � is of lower level than �� By recursion we
already know the commutation relations of F� with those elements� Finally we
straighten eF�� Lemma  ensures that all commutation relations needed for this
are already known�

If � is not a simple root� then we do the same as above� this time writing F�

as a linear combination f � involving only F�� where 
 is of lower level than ��
We straighten E�f using the relations that we already know� Again Lemma 
ensures that all commutation relations we need are already known�

We conclude that we have algorithms for determining a multiplication table
of a PBW
type basis of Uq�g	�
Remark� It is possible to show that the output X of the algorithm Commuta�

tionRelation only involves monomials in Tw�T�� � � �T�r���E�r 	� � � � � Tw�T���E��	�
cf� ���� Theorem ��� Roughly the argument given there runs as follows� First
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we note that we only have to prove this for the case where ��w�	 � �� For
 � i � r we set 
i � s�� � � � s�r�i

��r�i��	� �We use the same notation as in
the statement of the algorithm�	 Suppose that in X there occurs a monomial
of the form Em�

��
� � �Emr��

�r��
Em
� � where m 	 � �we recall that 
r � �� � �	�

Then� because the weight of this monomial must be � � w� we have that
w� � �m�	��

Pr��
i�� mi
i� Now we have w��� � � as ��w��s�	 � ��w��	� Also

we have w��
i � �� Indeed� write 
i � wi��r�i��	� then s�i � wis�iw
��
i � and this

implies that ��w��s�i	 � ��w��	� Using the above� we infer that � � �� which is
a contradiction�

�� Highest�weight modules and R�matrices

In this section we denote the weight lattice of � by P � Furthermore� the funda

mental weights are denoted by �� � � � � l� so that P � Z� � � � � �Zl�

Let V be an irreducible �nite
dimensional module over Uq�g	� Then there is
a dominant weight  � P such that V is isomorphic to the �nite
dimensional
highest weight module L�	 with highest weight  �cf� ���� Theorem ���	� So
the problem of constructing the irreducible modules over Uq�g	 boils down to
constructing the �nite
dimensional highest
weight modules� These modules are
constructed in the following way� Let  � r�� � � � ��rll be a dominant weight�
We let J�	 be the left ideal of Uq�g	 generated byE� for � � �� along with K��

� �
q��	��� for � � �� Then we construct the Verma module M�	 � Uq�g	�J�	�
This is a Uq�g	
module� But also M�	 �� U� �as vector spaces	� where the
isomorphism respects the left action of U�� Let I�	 be the left ideal of U�

generated by F r���
��

� � � � � F rl��
�l

� This left ideal is also a Uq�g	
submodule and by
���� ���� Theorem ��� we have that L�	 � U��I�	 is the irreducible highest

weight module over Uq�g	 with highest weight � In order to construct a basis of
the quotient U��I�	� we calculate a Gr�obner basis of I�	�

We consider the problem of calculating Gr�obner bases of ideals in U�� As be

fore we �x a reduced expression s�i� � � � s�it of the longest element in the Weyl
group� And for  � k � t we set �k � s�i� � � � s�it�k

��it�k��	� and Fk � F�k �

T�i� � � � T�it�k
�F�it�k��

	� Then U� is spanned by the monomials F n�
� � � �F nt

t � Fur

thermore� from the properties of the output of the algorithm CommutationRela�

tion we see that for j 	 i

FjFi � q��i��j�FiFj � "ij�

where "ij involves only Fi��� � � � � Fj��� Now let � be the ordering of the set
of monomials de�ned in the following way� Let a� � Fm�

� � � �Fmt

t and a� �
F n�
� � � �F nt

t � Then a� � a� if and only if the last non
zero coe�cient of �m� �
n�� � � � �mt � nt	 is negative� Then for any monomial a appearing in "ij� we
have a � FiFj� This shows that U� is a solvable polynomial ring in the sense of
���� This means that there are algorithms to compute Gr�obner bases of left and
twosided ideals of U� �cf� ���	�



W� A� de Graaf� Computing with quantized enveloping algebras �


Now we can calculate a Gr�obner basis of I�	� and construct a basis of L�	�
Furthermore� the weights of L�	 and their multiplicities are equal to the weights
and multiplicities of the irreducible highest
weight module with highest weight
 over g �cf� ���� Theorem ���	� This implies immediately that the algorithm for
�nding a Gr�obner basis described in ��� generalizes to this setting�

Let V be a highest
weight module over Uq��	� We now have all ingredients for
constructing an R
matrix corresponding to V � For this we follow the construction
in Chapter � of ���� By ���� Proposition ���� we see that a PBW
type basis
immediately yields dual bases as in ���� x��� Using this� the operator $ from ����
x��� can easily be constructed� For the construction of the map f from ���� x����
we need a set of representatives ��� � � � � �r of P�Z�� along with an algorithm
that for given � � P �nds a �i and a 
 � Z� such that � � �i � 
� This can
be done by calculating the Smith normal form of the Cartan matrix of �� and
using Proposition ��� of Chapter � of ��� Now by composing $ and the map %f
from ���� x���� we �nd an R
matrix corresponding to V �

�� Examples and practical experiences

Let � be the root system of type B�� There are three simple roots� which we
denote by �� �� 
� We have that ����	 � ��� �	 � �� �
� 
	 � �� ��� �	 �
��� ��� 
	 � � and ��� 
	 � ��� We compute the commutation relation of E�

and T�T�T�T�T�T��E�	� We have �r � 
 and the � of the algorithm is also �
here� So we are in case C	� Also u � s�s�s�s�s�� and ��us�	 � �� Furthermore
v � s�s�s�s� is a reduced expression such that v � us� in the Weyl group�
Therefore we have that i � �� Also ��vs�	 � � 	 ��v	� Hence we execute Step �
of the second piece of algorithm of case C	� By inductive calls �which we leave
to the reader	 we have " � T��E�	 and � � �q� � q��	T�T��E�	T��E�	� In this
case it is straightforward to transform " into a u
expression� as " � T�T��E�	�
Then the straightening operation of Step b� gives U � ��q � q��	T�T�T��E�	�
We perform Step c� After transforming � to a vs�
expression we get � � �q� �
q��	T�T�T�T��E�	T��E�	 � �q� � q��	Tv�E�	T��E�	� We straighten �Tv�E�	�
Using a commutation relation that we get from a recursive call we get

Tv�E�	T��E�	Tv�E�	 � Tv�E�	Tv�E�	T��E�	 � �q � q��	Tv�E�	T�T��E�	�

Transforming the second term into a u
expression we get that it is equal to

�q�� � q��	T�T�T�T��E�	T��E�	 � �q � q��	T�T�T��E�	�

By relation ��	 we have that the �rst term is equal to

q��Tv�E�	Tv�E�	Tv�E�	 � Tu�E�	T��E�	�

Using T��E�	 � T�T��E�	 and summing we get that

�� � �q� � q��	�Tu�E�	T�T��E�	 � �q�� � q��	T�T�T�T��E�	T��E�	

� �q � q��	T�T�T��E�		�
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Then in Step d� we return

�q� �  � q��	T�T�T��E�	 � �q � q��	T�T�T�T�T��E�	T�T��E�	

� � � q�		T�T�T�T��E�	T��E�	�

which is equal to E� � T�T�T�T�T�T��E�	 � q��T�T�T�T�T�T��E�	 � E��
We have implemented the algorithms described in this paper in the computer

algebra system GAP� ����	� By E we denote the algorithm for �nding the com

mutation relations of the E�� E�� By FE we denote the algorithm for �nding the
commutation relations of the E�� F�� In Table  we display some computation
times� of these algorithms for several root systems�

Table �� Running times �in seconds� of the algorithms E and FE� for several root systems�

type A� B� C� D� D� D� E� E� E� F�

E � �� �� �	 
	� �
� �� �	 


�� 
�
FE � 	
 �� 
� �� 
� �� ��� � ��

We remark the following

	 The algorithms are e�cient enough to be able to deal with most root sys

tems of rank � ��

	 However� for E the algorithm FE did not terminate� Some elements com

puted by the algorithm turned out to be so large that the program was not
able to do the computations in ��M of RAM�

	 From the computation times for D����� and by comparing D and E we
see that the computation time increases rapidly if the number of roots
increases�

In Table � we list some computation times for the algorithm for construct

ing a highest
weight module� Table � contains some computation times for the
algorithm for computing an R
matrix� On these tables we remark the following

	 The algorithm for constructing a highest
weight module is e�cient enough
to be able to construct rather high
dimensional modules�

	 For F	 we constructed a ���
dimensional module� and for E� a ��
dimensional
module� However� the �rst construction ran markedly longer than the sec

ond� This is caused by the fact that the multiplication of PBW elements
is much more time consuming in the F	 case� as the multiplication table is
denser �i�e�� contains elements with� on the average� more monomials than
the table in the E� case	� In the F	 case a multiplication took on the average
����� seconds� while this was ����� seconds in the E� case�

�The computations were done on a Pentium ���
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	 The construction of R
matrices is only feasible for rather low
dimensional
modules� This is caused by the fact that the endomorphism $ is the sum of
all $�� where � runs over all weights that are di�erences of weights of L�	�
For L�	 of higher dimension there are many more such �� Furthermore�
the dimension of the spaces U�

� increases rapidly� Therefore the calculation
of $ becomes rather cumbersome�

Table �� Running times �in seconds� of the algorithm for constructing a highest�weight mod�
ule� for two root systems� and several highest�weights�

type � dimL��� time
F� �������
� �� 
�
F� �
������� �� 
�
F� �����
��� �� 
��

E� �
����������� � �
E� �����
������� ��
 
��
E� �������
����� ���� 
���

Table �� Running times �in seconds� of the algorithm for computing an R�matrix� for several
root systems� and several highest�weight modules�

type � dimL��� time
G� ���
� 
	 
	

G� ����� � ���
C� ���
��� 
	 

�
C� ������� �
 ���
D� �
������� � 
�
D� ���
����� �� ���

Appendix A

Here we list multiplication tables for the rank � cases� In all cases �� � will be
the two simple roots�

We start with A�� where h�� ��i � h�� ��i � �� Here we use the reduced
expression s�s�s� for the longest element of the Weyl group� �By symmetry the
other reduced expression gives exactly the same table�	 We have the elements
T�T��E�	 � E�� E��� � T��E�	 and E�� They satisfy the following relations
�cf� ���� ����	&

E���E� � q�E�E���

E�E� � q��� E�E� � E���

E�E��� � q�E���E��

In the case of B� we assume that h�� ��i � � and h�� ��i � ��� which
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means that ��� �	 � ��� ����	 � � and ��� �	 � �� In this case we have two
reduced expressions for the longest element in the Weyl group� which lead to
di�erent multiplication tables� If we use s�s�s�s�� then we set T�T�T��E�	 � E��
T�T��E�	 � E���� T��E�	 � E���� and E�� They satisfy the following relations
�cf� ���� Appendix �	&

E���E� � q�E�E���

E����E� � E�E���� �
q� � 

q � q��
E�
���

E�E� � q��E�E� � E���

E����E��� � q�E���E����

E�E��� � E���E� � �q � q��	E����

E�E���� � q�E����E��

Taking s�s�s�s� as reduced expression� we set T�T�T��E�	 � E�� T�T��E�	 �
E����� T��E�	 � E��� and E�� In this case we have the following relations&

E����E� � q�E�E����

E���E� � E�E��� � �q � q��	E����

E�E� � q��E�E� � E���

E���E���� � q�E����E���

E�E���� � E����E� �
q� � 

q � q��
E�
���

E�E��� � q�E���E��

Finally we deal with the case of G�� In this case we assume that h�� ��i �
�� h�� ��i � ��� This means that ��� �	 � ��� ����	 � � and ��� �	 �
�� The reduced form of the longest element in the Weyl group that we use is
w� � s�s�s�s�s�s�� This leads to six PBW
generators in U�� namely E�� E����
E������ E����� E����� E�� � Here E��� � T�T�T�T��E�	� etc�	 We computed
the multiplication table of the elements E� by computing a Gr�obner basis of the
ideal �of the free algebra generated by E�� E�	 generated by the elements �RE	�
Below we list the result&

E���E� � q�E�E���

E�����E� � q�E�E����� � �q� � q	 � q� � 	E
���
���

E����E� � E�E���� � �q� � q��	E
���
���

E����E� � q��E�E���� � �q� � q�� � q	E����� � �q� � 	E���E����

E�E� � q��E�E� � E���

E�����E��� � q�E���E�����
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E����E��� � qE���E����� � �q� �  � q��	E�����

E����E��� � E���E���� � �q� � q��	E���
����

E�E��� � q��E���E� � �q � q��	E����

E����E����� � q�E�����E����

E����E����� � q�E�����E���� � �q� � q	 � q� � 	E
���
����

E�E����� � E�����E� � �q� � q��	E���
����

E����E���� � q�E����E����

E�E���� � qE����E� � �q� �  � q��	E����

E�E���� � q�E����E��
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