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Summary Intercept and deterministic trend functions are known to have a sub-
stantial effect on cointegration analysis, and notably on the asymptotic distributions
of various test statistics. In this paper we propose a unifying approach to the anal-
ysis of cointegrated vector autoregressions by allowing for a wide class of trend
functions. Next, estimates of these trends are incorporated in the asymptotic dis-
tributions of the test statistics. This approach allows incorporating elaborate drift
functions in cointegration analysis, while avoiding the issue of the significance of the
trend these functions give rise to. Simulation techniques can yield the appropriate
critical values.
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1. INTRODUCTION

Cointegration analysis for trending economic time series amounts to investigating the
presence of common stochastic trends. A useful approach to test for cointegration, which
is based on a vector autoregressive model (VAR) specification, is summarized in Johansen
(1995). To estimate the cointegrating relations and the common trends, which both can
be of economic interest, likelihood-based test statistics can be constructed.

When a VAR model includes for example an unrestricted intercept term, the common
trends in the vector system contain a deterministic linear trend component. This linear
trend component can be removed by imposing the appropriate restriction on the vector
of intercepts. When the model includes an unrestricted deterministic linear trend term,
the common trends display quadratic trend behaviour, see, e.g. Johansen (1994).

As the common trends reflect the driving forces behind the economic time series, the
inclusion of deterministic regressors should somehow match with the empirically observed
patterns in the data. At present there are no formal methods to obtain insights into the
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most appropriate way how one should account for deterministics in possibly cointegrated
VAR models. Currently, one therefore analyses several options, e.g. restricted versus
unrestricted parameters of the trend term, in order to investigate the robustness of the
estimated cointegrating relations. Needless to say that with more than one option, one
may face widely varying estimation results which are difficult to compare and to evaluate.

In this paper we propose a cointegration analysis which overcomes the drawbacks of
choosing between a limited number of alternative trend specifications which each lead to a
different asymptotic theory for the relevant test statistics. The main idea of our proposal
is that a wide class of trend functions is allowed for in the VAR model. The relevant
estimates of these trends are then incorporated in the asymptotic distribution of the test
statistic. In the extremal cases, our approach equals the Johansen approach. A useful

side-effect of our approach is that more general functions than only linear and quadratic
1

trends can be used. For example, trend functions such as ¢! or t~2 can be considered.
Putting these in the cointegrating equations, our method allows one to investigate the
stationarity of, for example, z(t) = y(t) — z(t) — ¢t—2. This model is useful in case one
examines convergence between for example country-specific macroeconomic aggregates.
In section 2 relevant models are reviewed with a focus on the consequences of the
inclusion of drift terms. An alternative asymptotic approach is chosen to result in an
alternative testing procedure for cointegration where the influence of the deterministic
terms is dealt with more carefully. In section 3 the derivation is outlined of the max-
imum likelihood estimates of the parameters in an error correction mechanism model
and in section 4 an outline of the proof is given of the main theorem on the asymptotic
distributions of the trace test in various asymptotic regimes for the drift term.

2. COINTEGRATION MODELS WITH TRENDS

This section deals with the influence of the deterministic model terms on the asymptotic
distribution of the tests for cointegration. After the influence is examined, an asymptotic
setting is developed in which a wide class of deterministic terms can be incorporated in
the analysis. Finally, an alternative testing procedure is constructed from the theoretical
results.

2.1. The Model

Consider the p-dimensional vector autoregressive process X; defined by
N»Hmwkﬁlu+...+mkkﬁlk+ﬂvgﬁ+m? ﬁHHuuMA AHV

for fixed starting values X _j11,..., X and i.i.d. errors €; with covariance matrix Q. The
deterministic term D; can include all kinds of deterministic functions of time, restricted
only by integrability. Following Engle and Granger (1987), This VAR process can be
rewritten in error correction mechanism (ECM) form:

k—1
AX,=TIX, 1 + ) TiAX, i+ @D +¢, (2)

=1
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Cointegration Analysis in the presence of Flexible Trends 3

where II = MUMOHH II; -7 and T'; = IMUMHIH II;, and where A is the first difference
operator. If there is at least one root L = 1 in the characteristic polynomial |II(L)| =
|I =TI, L —...—TI;L*|, the process has a unit root, which is denoted by I(1). When the

process is I(1), it can be shown that the matrix IT is singular, i.e. IT = a3’ for some p X r
matrices a and 3.

There is a reverse representation result when we consider processes which are I(1) that
gives the non-differences series in terms of parameters of the process in ECM form. This
representation is useful to show the impact of model assumptions on the non-differenced
process. The original result is due to Engle and Granger (1987) and a proof is found in
Johansen (1995).

Denote by 3, a p x (p — r) matrix with the property that 3’3, = 0. The space
spanned by the columns of 3, is now orthogonal to the space spanned by 3, i.e. we
have a decomposition of the p-dimensional space into the directions determined by the
columns of 8 and 3, .

Theorem 1. Granger’s representation theorem If for the process (1) |IL(L)| = 0 implies
that |L| > 1 or L = 1, and rank(Il) = v < p in (2), then there are p X r matrices B and
a such that

II=af. (3)

If, additionally, the matriz o' LB is of full rank, then AX, and B'X; are trend stationary
and we can represent the solution of (2) by

t
Xy =C> (& + ®D;) + C(L) (e + ®Dy) + Pg, Xo, (4)

=1

where C = B (/TR )"/, T =1— MwHH T; and C(L) = 3772, C;L’ with exponen-
tially fast decreasing coefficients C; and Pz, = B.(B' BL)" B, the projection on the
space spanned by the columns of B1. The process Xy is a cointegrated I(1) process with
cointegrating vectors [3.

In the representation (4), X; can be split in a trend stationary part, C(L)(e; + ®D;) +
Pg, Xy and a non-stationary part, QMUMHHA@. + ®D,). From this it is seen that §'X; —
E(B'X,) is stationary, since 5'C' = 0. The columns of § are the r cointegrating rela-
tions for X;, whereas in the directions 8, the non-stationary random walk components
will dominate. The cointegration assumption II = a3’ states that there are at most r
cointegrating relations. This is exploited in the testing procedures described below.

In the extreme case that rank(IT)=0, there are no such « and § that II = o8’ and
both a; and ) are square matrices. Then C is of full rank and the series is I(1) in
all directions. In this case # = 0 and we have no cointegration. In particular the series
B X, is I(1) and without cointegration.

In the other extreme case rank(II)=p and we can take o = II and 8 = I, and
conclude that X, is stationary in all directions and the choice of 3 = I, shows us that
all the individual series are I(0) and so the series itself is I(0).

In the following the error correction representation (2) with II = af’ is used as
the general model for I(1) series with 7 cointegrating relations, denoted as H,. The
advantage of the ECM form over the conventional VAR-model (1) is that in the former
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4 Siersma, Franses, Gull

the long- and short-term dynamics are isolated in a3 and T'y,...,Ts_1, respectively.
The Granger’s representation of the ECM form is used whenever properties of the non-
differenced process are to be examined.

2.2. The Impact of the Drift Term

The role of the deterministic term is found to be crucial in inference and estimation
procedures involving the above models. For different forms of the deterministic terms
the asymptotic distributions of test statistics will also differ. It is important to know what
the properties of the process are for various forms of the deterministic part ®D; before
focusing on the asymptotics. Since the part ® D, enters in our analysis in a model for the
first differenced series, this part is called the drift of the process. The deterministic part
of the non-differenced series is called the trend of the process. We now proceed with a
brief treatment of some forms of drifts in cointegrated processes often used for practical
purposes.

A cointegrated process without drift amounts to a constant trend and stationary
cointegrating relations. In case of no drift the Granger representation has the form

t
Xy =C> e +C(L)e + P, Xo.

=1

In the process X, a constant Pz, X is observed. The cointegrating relations however are
centered around zero, this is because 8’ X; = §'C(L)e; is a zero mean, stationary process.
This process, denoted by Hy(r), can be used to model a series when the individual
variables are known to be proportional to each other in the long run.

A process with a constant drift term can be used to model a series with a linear trend.
With this constant drift, i.e. ®D; = pu, the process can be written as

t
X, =CY €+ Cpt+ C(L)(e + ) + P, Xo.

=1

In this case the process itself has a linear trend but the cointegrating relations only allow
for a constant since 3'X; = B'C(L)(e; + p). In this process, denoted by Hi(r), the
equilibrium relations are proportional with a constant added.

A process with a general drift term ® D, implies a trend of ®C S_'_ | D;+C®(L)(D;)+
Ps, Xy, i.e. a term proportional to the primitive function of Dy, the drift itself and a
constant. Thus a polynomial drift of degree k for example, implies a trend which is a
polynomial of order k£ + 1.

Foe the process H;(r) with a constant drift term, a restriction on the drift parameters
changes its properties. Such processes exhibit linear trends and a constant term in the
cointegrating relations. From the Granger representation it is seen that the linear part
of the trend enters the process through the coefficient C', i.e. through the combination
o . As a nested process of the full constant drift process a restricted process arises
when o = ap, ie. o/, p = 0. Now Cu = Cap = 0 and the linear term cancels. Still
this process allows for a constant in the r cointegrating relations, but the non-differenced
process itself loses the deterministic linear trend term and only a constant remains.
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Cointegration Analysis in the presence of Flexible Trends 5

In general we can have the model restriction that o/, ®; = 0 for some columns of ®.
Those parts of the deterministic drift will not contribute to the trend of the process as
primitives of the drift, i.e. to the part C'® MMHH D; of the trend.

To distinguish between the restricted process and the full process is important. Even
though it is a nested case of a process with a constant drift, its asymptotics are different
as shown in Johansen (1995) for some specific cases. The choice between the use of the
full model or the restricted model may be based on economic insight, when modelling
economic time series. Frequently, however, especially when the drift term gets more
complicated, we may need tests to see which is the most appropriate. Given the wide
range of possibilities, these tests may not be easy to use and interpret. Therefore, it is
the purpose of our paper to suggest a cointegration method that does not require such
tests.

We see that implicitly one has to choose between the several ways of dealing with
the trend, before focusing on the amount of cointegrating relations. Given that it is
well known that mistakenly in- or excluding deterministic terms biases estimates of the
cointegration rank, this aspect can be inconvenient. In the next subsection a more general
way of dealing with the trend term in the testing procedure is presented where we do
not have to choose between various ways to handle trend behaviour.

2.3. The Asymptotic Regime for the Drift Term

To deal with more general trends in a more general way, a new asymptotic framework is
needed . To do this, two new approaches are introduced.

Asymptotic Regimes. In economic modelling only part of the underlying processes is
observed. Economic theory may indicate a time trend, but this might not be so clear
from the data at hand. Or, different economic views may contradict one another on the
deterministic part of the process. In general, trends are many times not clearly visible in
the data and economic theory is sometimes not clear about them either. This uncertainty
about the trend is focused on in our inference.

A process with a constant drift, i.e. ®D; = p, is used to explain our approach. This
process has Granger representation

t
Xy =C> e+ Cut+C(L)(es +p) + Ps, Xo, t =1,...,T. (5)

=1

A process generated by this model exhibits a dominating linear time trend Cut in the
long run, since it is the only factor without a finite limit if premultiplied by T-%. To
focus on the uncertainty of the trend, the constant u is made dependent on 7', denoted
by pr. Then the representation (5) becomes

t
X, =CY €+ Cprt+ C(L)(er + pr) + Ps, Xo. (6)
=1

Three distinct cases of asymptotic behaviour for the constant drift are distinguished.
Firstly, we have the dominating case of ur = p as in (5). This case corresponds with a

© Royal Economic Society 1998



6 Siersma, Franses, Gull

near certainty that the linear trend is supported by the data when T is large. Asymptot-
ically, the p-value of rejecting a linear trend moves to zero. Secondly, we have a balanced
case of pup = tﬂ\w. Now the deterministic part will also converge to a finite limit when
we premultiply (6) by T—%. The linear trend is now blurred by the stochastic process.
In terms of chances there is a 10% to 90% chance that the linear term is accepted statis-
tically. In this case the p-value of rejecting a linear trend is asymptotically distributed
somewhere between a uniform distribution on [0, 1] and a distribution with all mass at
zero. Finally we have the case where the linear part vanishes as the rest converges, i.e.
pr = pI'~1. This case corresponds with an insignificant probability that the linear term
is present, i.e. economic theory may suggest a linear term, but there is no evidence of a
linear trend in the data. The p-value will be uniformly distributed in the limit.

The notion of the three asymptotic regimes devloped to a general model for the drift
gives rise to the following three different cases, all having different asymptotics.

1

Definition 1. Define ®1 7 = ®1, ®o.0 = &7 2 and ®37 = @37 and define Nw@ for
it =1,2,3 as the solution of

k-1
AXY =af X+ Y TiAX) + @0, + Q)
=1

such that by Granger’s representation theorem, Nw@ 18 given as

t t
XV =CY € +C01r > Di+C(L)(e + @i7Dy) + P, Xo. (8)

=1 1=1

The meaning of these cases is the same as in the above model with linear trend. In the
dominating case of ¢ = 1 the significancy of the trend is guaranteed. In the balanced case
of i = 2 the deterministic part is partly hidden by the stochastic part. In the vanishing
case of ¢ = 3 the trend is not discernable from the stochastics of the process.

Note that all three cases have the same estimators and models, and that only dif-
ferent assumptions are made about the asymptotic behaviour of the trends. The above
asymptotic assumptions on the drift parameters are for the purpose of determining the
asymptotic certainty of the linear part of the trend only. Likelihood ratio tests, such
as described in Johansen (1995), may be quite clear about whether or not a trend term
should be included, but (extensions of) these tests are what we want to avoid in the
following.

Asymptotic Approach.  From (8) it is seen that in general the deterministic part of the
series is composed of the drift and lags of itself, a constant term, and the drift summed
over the elapsed time. The main difference between trend and drift is thus the extra sum
of drift terms seen in the trend. Since this sum is in general not a closed expression, its
convergence is not straightforeward.

We aim to impose an asymptotic approach that deals with all possible drift terms
at the same time. In most previous literature on cointegration, asymptotics were done
simply by moving the time to infinity. Here however, we rewrite the drift term as D, =
&A%v By doing this, the dataset becomes larger when T increases, but time does not
move to infinity. It is as if the data was collected at a higher frequency.
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Cointegration Analysis in the presence of Flexible Trends 7

The following convergence result is an important support for this alternative asymp-
totic approach.

Lemma 2. For u € [0,1] we have that if T — o0

[Tu]

Ty () — \ " dy)dy (9)

This lemma shows that the trend in the series should be composed of a term proportional
to a primitive function of the drift function d(u), and the drift itself plus a constant term.
This result holds for the whole class of integrable functions d and thus states that in our
asymptotic approach all sums of reasonable drift functions converge if divided by T

Again this alternative definition of the drift term is an asymptotics assumption; sim-
ilar to the assumptions on the parameters ®; 7, which are also asymptotics assumptions.
If the model was used to forecast a series, the drift should be taken D; since we are
actually moving further in time, and T fixed in ®; v to make ® constant in time.

The asymptotical framework that is constructed in the above serves two purposes.
The first is to establish a balanced case between the two extreme cases where the asymp-
totics of the trend are clear. It is already stated that assumptions about the trend are
sometimes not wanted and the freedom there is in the balanced case is exploited in the
testing procedure below. The second is to be able to include a general class of functions
in the analysis rather than two or three most used ones. This is achieved by the unortho-
dox approach to asymptotics that does not extend into infinite time and so bounds the
trend limits to an O(T~2) function.

2.4. The Asymptotic Distribution of the Rank Test

The above approaches have their influence on the distribution of the statistic of the rank
test. The three asymptotic regimes we established in the previous section are expected
to give different asymptotic distributions for this statistic. This is seen clearly in the
theorem below. Not only does it discern between the asymptotic regimes, it is also
stated in a general way to account for deterministic functions of a wide class.

The so called trace test is considered, which is the test for H,. in the general model
H, for a certain model D; = d(+) for the drift. The corresponding test statistic is given
by

P
—2log Q(H,|H,) = =T »_ log(1 —X), (10)

1=r+1
where \>/T N m( are the ordered eigenvalues of the eigenvalue problem (28) below. The

asymptotic distribution of the trace test statistic for the three cases of asymptotic be-
haviour of the drift term is given by the following theorem. The proof of this theorem is
found in Section 4.
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8 Siersma, Franses, Gull

Theorem 3. The asymptotic distribution of the rank test statistic The limit distribution
of the likelihood ratio test statistic for the hypothesis Il = af’, where o and 3 are p X r
matrices, is given by

tr \M@E:& \Mﬁﬁ% H\OHE&E\ (11)

where B is a p —r dimensional Brownian motion and F depends on the model for and
the asymptotic behaviour of the deterministic term. If the deterministic term ®D; =
Gﬁﬂ&%v for the three cases of asymptotic behaviour ¢ = 1,2,3 from definition 1 and if
a1 ®; # 0 then in case i = 1 of a dominating trend, we define dy(u) as the stacked entries
d;(u) of d(u) for which [ d;(y)dy & span(d(w)) with m the dimension of dy(u) and we
have
mmﬁv — \»:&A@v
.Nﬂ - u

0= 2 asy - Aoz )

where A11 and A2 are determined by correcting the p — r — m dimensional B(u) and

%o: dy(y)dy, respectively, for the drift term d(w). In the case i = 2 of balanced trends we
have

(12)

Flu) = Blu) + o, B \D " d)dy — Asd(u) (13)

where Ay is determined by correcting B(u) + o, @5 %o: d(y)dy for the deterministic drift
d(u). Finally, in the case i = 3 of vanishing trends

F(u) = B(u) — Asd(u) (14)
where As is determined by correcting B(u) for the deterministic d(u) process.

From this theorem it is seen that the asymptotic distribution depends on the amount
of cointegrating relations and the chosen model for the drift term. Only in the case i = 2
of balanced trends it depends also on the factor o/, ®5. This is the general theorem that
gives the distributions for the testing procedure described below.

2.5. Testing for Cointegration with Flexible Trends

The three aysmptotic regimes have a clear connection. From the above the three different
types of asymptotic behaviour of the deterministic part are seen to result in different
asymptotic distributions of the likelihood ratio test for the cointegrating rank. Until
now these three cases are investigated separately. When the interaction between the
asymptotic behaviours is examined, it is to be expected that the asymptotic distributions
of the rank test will converge to a second if the asymptotic behaviour becomes the other.
Denote the three asymptotic trace test distributions for a certain model by try, try
and trg corresponding to the cases i = 1,2,3, and focus on the ECM-model (7) in case
i = 2 of balanced trends:
k—1
AX, = o/BXo1 + Y TiAXi,+ 8T 72D + ¢ (15)
i=1

The next result shows the relation between the balanced case and the two extremal cases.
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Cointegration Analysis in the presence of Flexible Trends 9

Theorem 4. Convergence of the asymptotic regimes For the model (15) with fized deter-
ministic part we have that

by - 0=try RS trs AHQV
and

Dy — 00 =>try B tr (17)

where % denotes convergence in distribution.

The proof of this theorem is given in section 4. Note that ®» = 0 implies o/, &3 = 0
which is exactly the condition necessary to let the deterministic part not contribute to
the trend as a primitive function as described in Section 2.2, which, in case of a constant
drift term, leads to the model H(r).

An alternative testing procedure can be derived from the above convergence theorem.
We already stated that the usual way to do cointegration analysis is first to choose
between models with or without some columns of o/, ® = 0, for example choose H;(r)
instead of H;(r), and then test for the number of stable relations. The above theorem
presents an alternative. Instead of choosing first, our testing is done in case ¢ = 2 of
balanced trends and the influence of the various parts of the drift becomes clear by
examining the factor o/, ®;. This yields the appropriate function since it takes into
account the appropriate amount of influence for the different parts of the drift. In this
way a drift or trend term can be included in our models which is maybe needed according
to economic theory, but whose presence is not immediately clear from the data. This
testing procedure is especially suited in case one is not interested in the trends of the
series itself but merely in the trends in the cointegrating relations, since one cannot be
sure of the statistical or even economical significance of the trend in the series itself.

The special asymptotic behaviour of the parameters of the drift term, which is as-
sumed in the above testing procedure, does not blur the interpretation of the resulting
model. If the model is used for analysis of economic data, the full model is used.

The main drawback is here that the asymptotic distributions are dependent on the
parameters ®5 and «; and thus cannot be tabulated. The asymptotic distributions can
however be simulated relatively fast as will become clear from the linear drift example
in the next subsection.

The above result also states that the asymptotic distribution of the trace test is
continuous in the parameters of the model. This is the main prerequisite for the bootstrap
technique to hold. With the bootstrap, the test statistic is calculated and the model is
estimated. Then the estimated residuals are reordered randomly and with the estimated
model a new series is produced, a bootstrap series. From many of these bootstrap series,
the test statistics are calculated which form a simulation of the actual distribution of the
test statistic, under an estimated model. For more on the bootstrap we refer to Efron
and Tibshirani (1993).

2.6. A Model with a Linear Drift
We illustrate our findings with a process where the deterministic drift is a linear function,
i.e. ®D; = pg + pit. This process is also investigated in Johansen (1994) and Perron and
Campbell (1993).
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The unrestricted process with a linear drift with r cointegrating relations is denoted as
H,(r), conform statndard notation for a process with a linear drift. From its Granger rep-
resentation it is seen that such a process exhibits a quadratic trend in the non-differenced
series and a linear trend in the cointegrating relations. Alternatively, the restricted pro-
cess Hj(r) is defined as the same model with the additional restriction that o', p1 = 0.
This process still has the linear trend in the cointegrating relations but the quadratic
trend from the unrestricted process has disappeared. Johansen (1995) gives a likelihood
ratio test for testing between these two alternatives. With our approach this test is
avoided. If, for example, the divergence of some macroeconomic factors of two countries
is investigated, the trends in those series are not our main interest. Of more interest
is the possible existence of a cointegrating relation, which would show that the factors
move apart linearily in time, rather than stay at a fixed distance.

To specify the asymptotic distributions, the functional F' from Theorem 3 in the
three asymptotic regime cases for the model with a linear drift is given below. Denote
B, = %OH B;(y)dy, the mean of the ith entry of a p-dimensional standard Brownian motion,
such that B;(u) corrected for a linear drift becomes

1 1
Bij(1,u)(u) = Bi(u) — 4B; — m\ yBi(y)dy ) — Hm\ yB;(y)dy — 6B; ) u.
0 0

In the dominating trend case (case i = 1), the quadratic part of the trend needs seperate
treatment from the rest. The asymptotic distribution of the trace test statistic testing
H(r) in the general VAR model is now given by (11) with for F' the definition

Fi(u) = Byj1,uy(u), i=1,...,p—r—1
1

E,_, =u®—u— Pyl

pel) =u? —u—
Observe that this is the same result as in Johansen (1994). Next, in case of the balanced
trend asymptotics (case i = 2), the functional F' is

1 .
.NUS.AQV = ms_ﬁfﬁvm@v + QP@NAQM —u-—- Wv“ i=1,...,p—r
Here, both a; and @5 need to be estimated before this limit distribution can be used for
testing. This gives no problems since maximum likelihood estimators can be constructed
for both as is demonstrated in section 3. Finally, The case of vanishing trends (case
i = 3) gives for F'

mﬂ_&mgsvnm&_ﬁwqﬁvﬂﬁvu i=1,...,p—r.

As an illustration of the testing procedure from 2.5 several trace test distributions
for testing H, 1 in H), are simulated. It can be shown that in case i = 1 the trace test
distribution is a x?(1) distribution. The limit distribution in case i = 2 of balanced
trends is simulated for various values of o/, @2, which is one-dimensional in this case.
The Brownian motion is approximated by a random walk with 7' = 400 entries and
the cumulative distribution is based on 6000 simulation experiments. The computing
time for these simulation of the six distributions was approximately 30 minutes on a
computer with a Pentium 60MHz processor. The simulated distribution functions are
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Figure 1. Asymptotic distribution functions for the trace test of Hp_1 in H, for various
asymptotic behaviours of the linear trend. From top to bottom: the dominating case, four
balanced cases with o/, ®» = 2, 1, 0.5, 0.25 respectively, and the vanishing case.

shown in Figure 1. From this figure the distributions are seen to move upward to the
dominating distribution when @, is raised and to converge downward to the distribution
of the vanishing case when ®, approaches zero, conform the theorem. There are con-
siderable differences between the graphed distribution functions, especially around the
95% confidence bound, which indicates that the influence of the linear trend is clearly
important in the testing procedure.

The testing methodology suggested above implies that the testing is done in the
balanced case of i = 2 and the distribution simulated. Automatically the correct influence
of the trend part is reflected in the asymptotic distribution. This simulated distribution
will converge to the distribution for the dominating case if the linear part is pre-eminent
in the dataset. The same holds for the vanishing case if there is no statistical evidence
of a linear trend in the data.

Here, the dominating distribution equals the asymptotic distribution for testing Ha(p—
1) in H2(p) and the distribution for the vanishing case is the asymptotic distribution for
testing Hy(p—1) in H¥(p). Both distributions are tabulated in Osterwald-Lenum (1992)
and a comparison is in Table 1.
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12 Siersma, Franses, Gill

Table 1. A comparison between the asymptotic distributions for the trace test simulated above
and those simulated in Osterwald-Lenum (1992).

50% 80% 90% 95% 97.5% 99%
dominating trend  0.49 1.62 2.711 3.89 5.04 6.51
Osterwald-Lenum  0.44  1.66 2.69 3.76 4.96 6.65

vanishing trend 4.58 7.61 9.49 11.35 12.95 14.84
Osterwald-Lenum  5.55 8.65 10.49 12.25 14.21 16.26

2.7. Concluding Remarks

In this article the method of cointegration testing developed by Johansen (1988) is gen-
eralized in a way that trends are dealt with more carefully. An unorthodox asymptotic
approach amounts to a theoretical setting in which the asymptotic distribution of the
trace test can be analysed for the large class of all left continuous drift functions. To focus
on the statistical uncertainty of the trend, three cases of asymptotic behaviour for the
trend are distinguished. For these cases a general theorem which states the asymptotic
distributions in each case for the trace test with general drift terms is presented.

The key result however is a convergence theorem that links the three asymptotic
trend regimes. The dominating and vanishing cases are (in the special cases of a linear
and quadratic trend) identified with known cases in literature. The interesting case
is a balanced case, where the asymptotic certainty of the trend is incorporated in the
asymptotic distribution itself. The convergence theorem now accounts for continuity in
the drift parameters of the asymptotic distribution of the trace test, i.e. when there
is a trend in the process, the balanced distribution will converge to the dominating
distribution, etc.

This theoretical excercise amounts to an alternative testing procedure for the trace
test. By using the balanced asymptotic distribution, the cointegration analist does not
have to choose on forehand between the two cases of trend or no trend, as is now the
case. Sometimes one is not interested in the trend in the process and by using this flexible
trend distribution one abandons hypotheses concerning trends.

A short simulation analysis of the asymptotic distributions for various asymptotic
regimes for a model with linear drift shows that different specifications of the trend can
lead to widely varying confidence bounds for the trace test. Therefore it is important to
deal with the trend hypotheses more carefully as our proposed method does.

This new testing procedure needs some further remarks. The general nature and
the inclusion of estimated parameters in the flexible trend asympotic distribution makes
it impossible to tabulate confidence bounds, not even in special cases. Therefore the
users have to simulate the distribution themselves for each analysis. This can be a time
consuming and complex task. Further research has to be done to make fast computation
of confidence bounds possible and to make this procedure accessible to applied analists.
Furthermore, the convergence theorem gives an important prerequisite for the bootstrap
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Cointegration Analysis in the presence of Flexible Trends 13

method to hold. Further investigation of the bootstrap in cointegration can benefit from
the above results.

3. STATISTICAL ANALYSIS

This section gives a survey of the statistical analysis of the ECM-form models for I(1)
series and the derivation of the likelihood-ratio tests for the number of cointegrating
relations. The analysis given below leans heavily upon the one in Johansen (1995),
chapter 6. Little effort is made to give the complete derivations of the estimators. It
is mainly used as a vehicle for the analysis in the next section and to point out the
techniques used.

To be able to give maximum likelihood estimators for the parameters in the error
correction model (2), we assume that the errors €; are independent normally distributed
with zero mean and covariance matrix 2. Following the notation in Johansen (1995), we
define Ng = DN? N: = »vm‘w\f Nw@ = AD

i1, AX{ 1, Di) and ¥ being the matrix of parameters corresponding to Za,
such that the model now has the form

NEHQQ\N:LH:EqunTm? uHH“...VHJ AHWV

Estimation in the above formula is not straightforward since the parameter matrix of
Zy4 is assumed of reduced rank, say r < p. The log likelihood function, apart from a
constant, now is

—2log L(¥, «, 3,2) = T'log || + (19)
T
+ MUAN?» —aff Zyy — U Zo) QU N Zoy — aff Z1y — ¥ Zoy)
=1

For given a and [ the estimator for ¥ is easily found by examining the first order
conditions. We have

U(a, B) = MoaMs,' — aff Mys My (20)

where the M;; for 7,5 = 0,1,2 are the product moment matrices 71 MUWHH Zit Q\.ﬁ. De-
note by Ry: and Ri; the residuals of the regression of AX; respectively X;_; on the
deterministic terms and the lagged differences Z5;. These are found to be

Rot = Zot — Moo Myy' Zo, (21)
and
Ryt = Z1y — Mys My 7o, (22)

By inserting the estimator (20) for ¥ and the above residuals in (19), the concentrated
or profile likelihood function becomes

—2log L(a, 3,Q) = T'log || + (23)

T
+ Muﬁwﬁ —af' Ri)'Q (Rot — a8 Ruy)

t=1
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14 Siersma, Franses, Gill

This is the same likelihood as we would obtain when investigating the regression of Ry,
on Ry¢, only now with a parameter matrix a3’ of incomplete rank. The technique now
used to obtain maximum likelihood estimators for the remaining parameters is known as
reduced rank regression of Ro; on Ry;. This is extensively treated in Anderson (1951).
Consider the moments

T
Sy =T7"> RuRj i,j=0,1 (24)
t=1

The estimators of @ and 2 are obtained by an ordinary regression of Ro; on ' Ry¢. Since
both series are stationary, the usual theory can be applied. We have the maximum
likelihood estimators

a(B) = S B(B'S1B) " (25)
OAEHMSI%SEQMEELQ%S Am@

For the estimator for # we investigate again the likelihood function concentrated on 3.
Since the last term in (23) maximizes for 2! a matrix of zeros, we have apart from a
constant factor that

LT = |0(B)| =
= [S00|l8'(S11 — S10S40 So1)I/18' S118 (27)

Maximizing the likelihood function is now done by maximizing the above expression.
From a classical result on eigenvalues and eigenvectors this is done by solving the eigen-
value problem

|pS11 — (S11 — S10S50"S01)| = 0
which for A =1 — p changes into
IAS11 — S10S55 So1| =0 (28)

Hereby we find p eigenvalues A; and their corresponding eigenvectors v;. The § that
minimizes (27) now is a p X r matrix where the 7 eigenvectors corresponding to the r
largest eigenvalues enter as columns, i.e. m = (v(1),---,V(y)). Note that the estimator
is normalized such that m\rm: m = I, the identity matrix. The eigenvectors diagonalize

,wE,wﬁmm,wE = &mm@? ..., Ar) such that for the maximized likelihood function we find,
by inserting 3 in (27), that

Lt = 1800l JT(1 = A0) (29)
=1

Note that the estimator for 3 is normalized by 3'S118 = I to make the estimator identi-
fied. Linear combinations of the cointegrating vectors will make again a perfectly good
cointegrating vector. It is better to say that the cointegrating space is estimated, a basis

given by f.
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Cointegration Analysis in the presence of Flexible Trends 15

From the maximum likelihood estimation it is easy to construct likelihood ratio test
statistics for testing several model assumptions. The most important test we shall con-
sider is the likelihood ratio test on the number of cointegrating relations. From (29) we
find that the likelihood ratio test statistic for testing the hypothesis of r or less cointe-
grating relations H, in the general hypothesis of p or less cointegrating relations H, in a
certain model is

P
—2log Q(H,|H,) = =T > log(1 - X;) (30)
1=r+1

This statistic is called the trace test statistic. However, this statistic is not asymptotically
chi-square distributed, since the variables are not stationary. The asymptotic distribution
is of the multivariate Dickey-Fuller type and is given in theorem 3 in section 2. From this
theorem it is seen that this distribution depends on p—r, the model for the deterministic
part and the factor o/, ®. The asymptotic distribution of the trace test statistic and its
dependence on the deterministic term is derived in the next section.

Testing for the amount of cointegrating relations is done as follows. We start with a
test for the Hy in H,. If we cannot reject Hy, the amount of cointegrating relations is
estimated by # = 0. If Hy is rejected, we test H; in H, and again, if we cannot reject
H,, 7 is taken 1. If we can, we test Hy in H,, etc. This way we have an estimator for
r that is known to converge to the true value in the sense of Johansen (1995). Another
likelihood ratio test that is often performed is the test of H, in H,4q1 forr =0,...,p—1.
The test statistic belonging to this test is called the mazimum eigenvalue test statisic
and is given by

~

—2log Q(Hr|Hy11) = —T'log(1l — Arq1) (31)

An estimator for the amount of cointegrating relations by this test is given by the same
procedure as with the trace test. Its asymptotic distribution is only a slight variation of
the asymptotic distribution of the trace test. We focus on the trace test, however, since
the derivations are the same with both tests.

4. ASYMPTOTIC DISTRIBUTION OF THE TRACE TEST

In section 2 the asymptotic distributions of the rank test for the various asymptotic
regimes for the drift term was given without proof. In this section an outline of the proof
of theorem 3 and 4 based on the analysis of Johansen (1995) is given, but now with a
different asymptotic approach. The parts of the proof is described at large with a focus
on the differences between our approach and the one described in (Johansen 1995). For
a closer examination of the more basic components one is referred to Johansen (1995).

4.1. Asymptotic behaviour of X

Time series can be viewed as functions in D0, 1]?, the space of p-dimensional functions om
the unit interval that are right continuous and have left limits. we write the observation
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16 Siersma, Franses, Gill

time points ¢ as the integer part of Tw for t = 1,...,T and u € [0,1], i.e. ¢t = [Tu].
Viewed as functions of u, time series processes are elements of D[0,1]P?. Applied to the
VAR-model for series with cointegration, the above time axis adjustment gives

[T'u] [T'u]
Xir=C)Y & +C®Y Di+C(L)ery + C(L)®D 7y + Ps, Xo (32)
i=1 i=1
where €;,t =1,...,T are assumed independent and identically (not necessarily normal)

distributed with zero mean and variance Q'. The two stochastic parts here are

X7* (u) = C(L)erry)  and
[T

Xpm(u)=C) &
=1

that are respectively stationary and I(1) and we want to find weak limits as T — oo
for both. The following will use some results concerning weak convergence of D|0, 1]
functions. For a rigid treatment of those results one is referred to van der Vaart and
Wellner (1996).

For X5** (u) the function C'(L) is a polynomial in L with exponentially fast decreasing
coeflicients. For such processes lekxﬂs, (u) converges in probability, and hence weakly,
to zero. The other stochastic part X3 (v) has a Brownian motion on [0,1] as its
weak limit. This is proved by a result concerning the weak convergence of sums of
i.i.d. variables, known as Donsker’s invariance principle. This principle states that for a
sequence €; of p-dimensional i.i.d. variables with mean zero and variance Q holds that
for u € [0,1] when 7' — oo

T2 € % W(u) (33)
i=1

for a Brownian motion W(u) with variance Q. From investigating both parts, The
1

stochastic part of the series premultiplied by 72 is found to converge in distribution.

Consider now the asymptotics of the series itself. In the directions of the cointegrating
relations the series is stationary around the deterministic drift. The asymptotic behaviour
in the non-stationary directions 3, is not so straightforeward. In the case of a dominating
trend where ®; 7 = ®;, the classic case, write 7 = C'®;. Now 7 are all the directions
where the sum of the drift is present and these need to be isolated in the dominating
case. In general 7 is not of full rank m, the amount of deterministic factors, but of a
lower rank m*. Choose thus 7 = 77} with 7* : p x m* and 75 : m x m* matrices and
define d*(u) = 7jd(u). Let in the following 7 be 7*, the directions where the integrated
drift is present, and d(u) be d*(u), how the various drifts enter in each direction. It may
seem hypothetical to consider 7’s that are of incomplete rank, but they will appear quite
often. Take for example a 2-dimensional series modelled by an error correction model
with two deterministic factors (m = 2). If there is one cointegrating relation, we have
since span(7) C span(8,) that 7, being a p x 2 matrix, has rank 1.

1By C(L)e[ry) is actually meant (C(L)e.)p.], i-e. first transforming the series ¢ by the polynomial in
the lag operator C(L) and then transforming ¢ = [T'u]; in the same way for C(L)® D,
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Cointegration Analysis in the presence of Flexible Trends 17

Now choose v, a px (p—r—m*) matrix, orthogonal to both 7 and 3 such that (3, 7,v)
span all of RP. Define also the normalisation ¢ = ¢(c’c) ™! for any e. For the process X;
we have the following convergence result:

Theorem 5. Let the @ﬂenmmm Nw@ and ®; 7 for i = 1,2,3 be defined as in definition 1.
And define By 1 = Sﬂufmi and B; 7 = 1 fori=2,3. Then as T — oo and u € [0,1]

1 1) w 5 CW (u)
T4 X7 2 B0V + 8 [ ) (35)
H‘mequy w8, CW(u) (36)

Proor Fori=1,2,3 we have from (32) that

(T] [Tu]
mﬁvﬁ_ =C MU € + Qgs T MU R % A Xm_ﬂ@_ + @ﬁﬂ&é

7)) + Ps, Xo

The trend-stationary part C(L)(e[py + @i, 7d(5)) 4+ Ps, Xo vanishes in the limit in all
three cases U% stationarity of C(L vm_ﬂ& and the fact that d(u) is finite on u € [0, 1]. Let
St(u) —3 meﬁ €; and Ir(u) s ﬂw@_ d(4). By plugging in definition 1 we find
the mo:os::m.

[Tu] [Tu]
T 25'(C MU € + Cd, MU d(1)) =5'CSr(u) (37)

_E _E )

"(c MU € + Cdy MU d(+)) =7 CT ™% 8p(u) + Ir(u) (38)
_E _E

" (C MU €+ Cd, MU d(+)) = B.C(St(u) + ®2I7(u)) (39)
GJS GJS )

"(C MU €+ C®3 MU d(+)) = BLO(Sr(u) + 3T I (u)) (40)

where we use that ¥’C®; = 't = 0 and that 77 = I, the identity matrix. Applying
Donsker’s invariance principle to St(u) and lemma 2 to Ir(w) finishes the proof. ad

From this theorem, the effects of the different trend assumptions are clearly visible.
In the first case we need a division of the space spanned by the columns of 8, and a
higher order of T' to make the trend-part converge. In both the other cases we do not
need a division, but the influence of a trend disappears in the third case of vanishing
trends.

© Royal Economic Society 1998



18 Siersma, Franses, Gill

4.2. Asymptotic behaviour of Ry,

The asymptotics of the residual processes (21) and (22) are the key part of the analysis,
since it is here that the deterministic part enters the asymptotic distribution. The two
processes Ro; and R, are the residuals obtained by regressing AX,; respectively X; 1
on the deterministic drift D, and the lagged differences AX;_1,
<oy AXy_ k41, see Section 3. The asymptotics of Ry are clear, since the series is station-
ary. The weak convergence of Ri;, however, is important for the understanding of the
several asymptotic distributions of the rank tests.

The residuals of a regression of a random variable Y; on another Z; for t =1,...,T
are given by plugging in the least squares estimator

T T

vi- (220t 2 2

t=0 t=0

or
Y: — SyzS, 7

where Sy 7z and Sz denote the two product moment matrices. These residuals are called
Y; corrected for Z; and denoted Yy 7. As in section 2 define D; = d(4) and assume that
Yiry * Y(u) for some Y (u) € D[0,1]. d(7) — d(u), when d is left continuous. Since
this is also enough to make d integrable, we consider only left continuous functions d.
The product moment matrices behave like

T 1 1
Ty d(2)d (2) = \ A(Z)d (T )d \ d(u)d (u)du
t=0 0 0
and
T 1 1
1S Vi () = [ Yirgd (50 = [ Y (@)d @i
t=0 0 0

so that by application of the continuous mapping theorem, the weak limit in D[0,1] of
Y; corrected for the deterministic D; is found to be

Y (u) - \ Y (o) (ur) \ dy)d (y)dy)~"d(u).

For clarity in the formulas to follow we summarize the above by

Lemma 6. Define the functionals Ap(Y') and A(Y') for Y € DI[0,1] by

T T
Ap(Y) =) YA (£)(Q_d(#)d ()" (41)

t=0

AY) = \ Y (y)d (y)dy( \ d(y)d (y)dy) ™" (42)
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such that Ap(Y') is the least squares estimator of A in a linear model Yy = Ad(%) + vy.
Now Ap(Y) A(Y') and for a stochastic variable Y; with Yir, *» Y(u) for some
Y (u) € DI[0,1] the residuals Yy — Ap(Y)d(%) of a regression of Yy on the deterministic
drift d(%) have the property that for T — oo and u € [0,1]

[E

Viry — Ar(Vrg)d(5) 2 V(u) — A(Y)d(u) (43)

The process Ry is defined as the residual of a regression of X; 1 on the deterministic
drift and the lagged differences. Since we have three different cases of asymptotics, the
process mmw is defined for ¢ = 1, 2,3 as the residuals of a regression of Nﬁ@H on the drift
and the lagged differences, i.e. me plays the role of Ry; in case the parameters concerning
the drift are given by ®; 7. We have

Theorem 7. Let mmw for i = 1,2,3 be the residuals defined above. Let the functional
A(X) be defined as in (42). Then as T — oo and u € [0,1]

roipph w (T - AWOMw) g, 4
T Jo d(y)dy — A(f, d(y)dy)d(u) . .
By R, PQA%E:Q\D d(y)dy —
AV ()d() = 22A( [ dy)dy)d(w) (45)
0
= Ga(u)
T8y R, 2 8.0(W () — AW()dw) ) = Ga(w) (46)

ProOOF  Examine the case where there is only one lagged difference term present. First
all cases are treated similarly. Ry[7,) is the residual series of a regression of X;_; on D;
and AX;_;. Note that this is the same as first correcting both X;_; and AX;_; for the
drift D; and then correcting for each other. For the series Ry; we now have that

Riy = (X; — A7(X)Dy) = SxaipSiap(AX: — A7(AX)Dy) (47)
where
T
Sxaip =T 'Y (Xi = Ap(X)D;)(AX, — Ar(AX)Dy)’
t=0
and
T
Saap =T (AX, — Ap(AX)D,)(AX, — Ar(AX)D,)'
t=0

Note from the model equations that the process AX; — Ar(AX)D; is a stationary process
and (X — Ar(X)D;) is I(1). By the Law of Large numbers for ergodic processes we have
that Saa|p converges to a mean, i.e. MHD_G = O,(1). By a result on convergence
to stochastic integrals it can be found that Sxa|p converges to a certain stochastic
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integral and hence is also O,(1). This result can be found as result (B.20) in Johansen
(1995) and uses the techniques of Chan and Wei (1988). Since the stationary series
(AX; — Ar(AX)D;) premultiplied by T2 converges to zero in probability, the whole
last term in (47) vanishes when examining the weak limit of m\Twm:ﬂs. Inclusion of
more lagged differences gives the same results.

Returning to the three different cases, we see that

T mmqﬂkﬂ@m%_v =Ap(T> mm,ﬂum%_ )-

The required results follow by theorem 5 combined with lemma 6. a

It is important to note that the above theorem, however true, is not altogether useful
in all cases. In the case i = 1 of a dominating trend examine the case where for one of the
components, say d;(u), in d(u) holds that [’ di(y)dy = d;(u) for some other component
d;(uw) in d(u). From (44) we see that a zero entry appears in the vector process G1(u),
which is highly unwanted in the coming proofs. Here it is wrong to ignore the fact that
the process .NM: itself might exhibit a trend component %o: d;(u). By another choice of
B possible zeros can be removed from the limit process. There is no problem of this
kind in the cases i = 2 and 3 of balanced and vanishing trends.

In general, define d,(u) as the stacked components d;(u) in d(u) for which hold that
Jy di(y)dy € span(d;(u), j =1,...,m) and define dy(u) as the stacked components for
which this does not hold. In this way we can write d(u) = (d,(«), dy(u)) and correspond-
ingly &; = (®1,,®15). Now the following more useful result for the dominating trend
case 1 = 1 holds.

Extension to theorem 7 Let mmv be defined as theorem 7 and A(X) as in (42). Define
T = C®yy and follow the same procedure as described above to theorem 5 when T is
of incomplete rank. Choose ~ orthogonal to T and define Bf p = Svﬂwwi. Then as
T — o0 and u € [0,1]

\wtﬁvﬁ {QAS\ASI\»AS\A.VEASV I*ﬁ
T Bl A [ dy(y)dy — A(L, d(y)dy)d(u) v =Gl 8)

In the following proofs this convergence result is used for the dominating case ¢ = 1.

4.8. The Asymptotic behaviour of the Moments

From the asymptotics of the process itself, the asymptotics of the moments in the eigen-
value problem (28) can be derived. This investigation is done much the same way as in
Johansen (1995), but now in a slightly more general context.

In order to facilitate understanding the theorems, let from here the asymptotic trend
behaviour be fixed, i.e. Ry; is mww for one of the three trend asymptotics, Br is wwﬂ or
B; 1 for i = 2,3, etc. Also, recall the definition of the moments S;; that appears in the
eigenvalue problem

T
Sy =T7"Y RuRj, i,j=0,1, (49)

t=1
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For these the following results hold.
Theorem 8. Define

Dub_c ®m IMSM%
b AQN&HU R i Ys0 g (50)

where ¢©? = cc' for all vectors c. For these conditional expectations we have the following
ezact relations

Moo = QMQG +Q AUHV
Bop = aXipp (52)

and hence the technical lemma 10.1 from Johansen (1995) holds. For T — oo we have

Soo B oo (53)
B'SupB B Tgs (54)
B'Sw B g (55)

ProoF  The two results (51) and (52) follow directly from the model equation (2)
by calculating the appropriate conditional expectations and the fact that AX,p and
B'Xi_qp are stationary with zero mean. Correct first for the deterministic part and
then for Zyp, the vector of stacked lagged differences corrected for deterministics, to
obtain the formula

-1
So0 = Saa|p = Saz|pSzzpSzaip

with
T
@,‘Dbib =71 MU DNM_UD;X«MUQ
t=1
T
Sazip=T7" Y AXypZh,
t=1
and

T
Szzp =T Zo|p Zay p-
=1

Since both AX;p and Zyp are stationary and ergodic, these product moments converge
in probability, according to the law of large numbers to their population values. Now

= B(AX;pAX{p|Zayp) = Zoo

which proves result (53). The other two are proved similarily. a
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In the above theorem the conditional second moment is used where in Johansen (1995)
the conditional variance is used. This is due to our more general approach whereas in
Johansen (1995) all proofs are for a process with a constant drift.

The three following results are central in the analysis of the aysmptotic distribution
of the rank test.

Theorem 9. When T — oo, we have the three results

T 'By.SiBr % \Hﬂsﬂig (56)

0
mmeHmHmmJAmHo|mHHQQ\V 2, ,\o QA\:\XR%AQVV\ Am.wv
BypSuB = 0,(1) (58)

PRrROOF  From definition (49) of S1; and theorem 7 it is easily seen that

T 1
T'BypS11Br =T'Y (T~ *BpRy)(T *BpRy) \ GG du
0

t=1

The second result cannot be proved by the continuous mapping theorem, since the
functional F'(z,y) — %OH z(u)(dy(w))’ is not continuous in general. The proof here involves
again the results on convergence to stochastic integrals (Johansen 1995). Since Ry —
af' Ry = €;, we have that

T
BySie=T1 MU BrRie

t=1

The proof is done by applying results (B.20) and (B.23) from Johansen (1995) to respec-
tively the stochastic part and the deterministic part in Ry;. The desired result is found
by summation of the two parts.

For the last result note that

T
BrS1B8=T""> (ByRy) (6 Ru)

t=1

which, since B-Ry; is I(1) and f'Ry. is I(0), converges again to a stochastic integral
which gives the result. a
4.4. The Asymptotic Distribution of the Rank Test

The main ingredients for the proof of theorem 3 in Section 2.4 are stated in the previous
theorems 8 and 9. The structure of the proof in Johansen (1995) is kept in the following
outline of the proof of theorem 3.
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PrOOF  For i =1,2,3 in the general case of ®D; = ®; rd(+), the likelihood ratio
test statistic of testing H, in H, is given by

P
—2log Q(H,|H,) = =T Y log(1 - Xy), (59)
i=r+1
where the eigenvalues v>§+5 e w{ are the smallest solutions to the eigenvalue problem

(28)

Define Cr = ghfwmi with Br as in theorem 5. Since C7 is square and of full
rank for all T, the solutions of (28) are the same as the solutions of |C}.S(A)Cr| = 0. By
using previous results we find that

A g 0 MUQOMU\HMO 0
/ w _ 00 <06 —
CrSNCr| = A 0 i%@@\%v A 0 0
1
= |AZs5 — 50550 Zosl »\ GG'du
0

which shows that the eigenvalueproblem has p — r zero roots and r positive roots.
With similar arguments, also |(3, Br)'S(A)(8, Br)| = 0 has the same roots as (28).
We have that

(8, Br)'S(\)(8, Br))| Am\mgu chvm@v

BpS(\)B  BrS(A)Br
18"S(M)BI Bz (S(A) (60)
—S(NBIB'S(NBITB'S(N)) Br|

Now let 7' — oo and A — 0 such that p = T\ stays fixed. From earlier results we see
that the first term in (60) tends to

~Z50Z00 Sos + 0p(1) (61)

and hence this part has no roots for p. Another consequence of the convergence results
is that in the limit B7.S(A)3 converges to

~B1S10559 S + 0p(1) (62)
For the second term in (60), we arrive at
bﬂ\wwmim‘upmﬂ — mmeHOZMOHmH

where N equals a (¢/, Qa1 )~'a/, by application of lemma 10.1 from Johansen (1995).
The p — r smallest roots of (60) normalized by T' converge to the roots of

1 1 1
b\ GG'du — \ QES\V\Q;QPQQCLQP\ (dW)G'| =0 (63)
0 0 0

by theorem 9. The roots of this expression are invariant under linear transformations of
the processes G and o/, W. Now it can be shown that (63) can be expressed as

E\OHE&%|\OH wamv\\%amvﬁ =0 (64)
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where B is a standard Brownian motion in p — r dimensions and F' is defined as in the
theorem. How this is done in case i = 1 is shown in Johansen (1995). For the other two
cases define B = (o, Qa ;)" /2a/, W and transform G by (!, T'3.)(8 3.)"". From this
transformation it is clear that the ®, from (45) becomes o', @5 in the limit distribution
(13). Thus, the smallest p —r roots normalized by T' converge to the roots of (64). From
(59) we find the desired result

—2log QH(r)|H(p)) =T Y Ai+op(1) % > p;
1=r+1 1=1

=tr \M@E:& :” Eﬂ\iH \OHE&E\

4.5. The Convergence of the Asymptotic Regimes

A proof of the convergence result, theorem 4 from Section 2.5, concludes this technical
section.

PrOOF  From theorem 3, the proof of (16) easily follows. To prove (17) we split
again d(u) = (d.(u),dy(u)) for d,(u) the stacked d;(u) in d(u) for which holds that
%o: di(y)dy € span(d;(u), j =1,...,m) and dy(u) the rest. Split o/, &, = (835, P5H),
correspondingly. Then, define 7 = ®3; choose v orthogonal to 7 such that (7,7) is a

square nonsingular matrix. Note that we can write
F(u) = B + 85 [ du(u)dy — Asd(w)
0

since the part rxo: d,(y)dy vanishes by correcting for it. Define Cy = (¥, 7) where the nor-
malization is defined as ¢ = ¢(¢/c)™! for any c. Since C} is a nonsingular transformation
of RP™7, the trace test distribution does not change if we premultiply F' by C;. Since
7'®5 = I, the identity, we have

/ _ ¥ B(u) — Az1d(u)
CLF(u) = A 7 B(u) + %o@ dy(y)dy — Asod(u) v
Now, since by definition 7 — 0 for &3 — oo, we find that
A\M\m@:\v — \»ww&mﬁv v
%o dy(y)dy — Azzd(u)

To remove the factor 7 in the upper part of the right hand side, C] F(u) is again premul-
tiplied by a matrix Cs defined

Py — 00 = C1F(u) % A

()

which is nonsingular. The process CoC]F(u) converges weakly to the required distribu-
tion. a
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