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Abstract

In applications of inversion methods to real data, nonlinear inverse prob-

lems are often simpli�ed to more easily solvable linearized inverse problems.

By doing so one introduces an error made by the linearization. Nonlinear in-

verse methods are more accurate because the methods that are used are more

correct from a physical point of view. However, if data are used that have a

statistical error, nonlinear inversion methods lead to a bias in the retrieved

model parameters, caused the by nonlinear propagation of errors. If the bias

in the estimated model parameters is larger than the linearization error, a

linearized inverse problem leads to better estimation of the model parameter.

In this paper the error-propagation is investigated for inversion methods that

account the nonlinearity quadratically.

1 Introduction

Inverse problems are widely used in many �elds of science to relate measured data to

physically relevant model parameters. In applications of inversion methods to real

data, inverse problems are often simpli�ed to more easily solvable linearized inverse

problems. However, by doing so an error in the simpli�ed model is introduced due

to the incorrect theory that is used.

In this paper we focus on the situation that the data that are used are contami-

nated with a statistical error described by a certain density function. If the density

function of the data is Gaussian, then in the situation of a linearized inversion

method, the density function of the estimated model parameter is also Gaussian. In

1



this situation the mean of the distribution of the model estimator equals the mode

of the distribution of the model estimator. However, due to the physical incorrect

theory that is used, nonlinear e�ects are neglected and a linearization error in the

estimated model parameter is introduced. We remark that if a nonlinear inversion

method is linearized, the linearization is carried out implicitly around a reference

model. The quality of the prior information (reference model) is therefore a measure

for the linearization error.

In situations where a nonlinear inversion method is used, such a linearization

error is obviously absent. However, due to the nonlinear relation between the data

and the model parameter, a data set with a Gaussian error law in general is mapped

onto a estimator of the model having a non-symmetric density function. This leads

to the situation that the mean and the mode of the estimated model parameter are

not equal, and a noise-bias in the model estimator is introduced [1].

An experimentalist often has the choice between using a linearized inversion

method or using a nonlinear inversion method. If the linearization error due to the

incorrect theory that is used is larger than the noise-bias introduced by nonlinear

error propagation, then the nonlinear inversion method leads to better estimation of

the model parameter. However, if the noise-bias due to nonlinear error propagation

is larger then the linearization error, using a linearized inversion method leads to

better estimation of the model parameter. This may appear to be a surprising result.

Which situation arises is dependent on the degree of nonlinearity and the variance of

the data errors and implicitly the quality of the prior information. In this paper it is

assumed that all the data are uncorrelated and have equal variance. This situation
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can always be realized by a linear transformation of the data, if the covariance is

known.

This paper has the following structure: in Section 2 we focus on the mathemat-

ical principles concerning the various statistical properties in the estimated model

parameters. In Section 3, we focus on a geophysical example in order to discuss the

principles of Section 2. We distinguish two special situations. In the �rst case we

consider one data-point that is mapped on one model parameter. In the second case

we consider a large number of data that are mapped on one model parameter.

2 The direct and inverse problem

Suppose a direct problem Gi relates a model function m to a set of discrete data di:

di = Gi(m); d
0
i = Gi(m0): (1)

In equation (1), the hypothetical data d
0
i corresponds to a reference model m0.

De�ning a new set of data by di � di � d
0
i , we assume that the relation between

the data di and the model m = m�m0 can be expanded in a regular perturbation

series (see Appendix A):

di = Gi(m)�Gi(m0) = G
(1)
i (m) +G

(2)
i (m2) + � � � : (2)

The objects Gi(m) are de�ned in Appendix A by equation (A-1) and equation (A-

2). In the following we refer to the data di as the error free data, and to m as the

error free model parameter. We consider an inverse problem with a �nite number

of error free data di that depend on discrete error free model parameters mj (if
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the model space is continuous, we assume for simplicity that the model estimator

is restricted to a sub-space spanned by a �nite number of basis functions. In that

case a �nite set of model parameters mj results, see Appendix A). We will consider

weakly nonlinear problems where in the case of error free data, up to second order,

the forward problem (2) can be described by a regular perturbation series [2]:

di = G
(1)
ij mj +G

(2)
ijkmjmk + h.o.t. (3)

In equation (3) and in the following the Einstein summation convention is used which

implies that summation is implied over all repeated indices. The abbreviation h.o.t.

in equation (3) stands for higher order terms. In a real experiment the data di are

measured, and one wants to retrieve the model parameter mj. In this study it is

assumed that the estimated error free model parameters m̂i can be expressed as a

regular perturbation series in the data di:

mi = a
(1)
ij dj + a

(2)
ijkdjdk + h.o.t. (� m̂i + h.o.t.) : (4)

The inverse problem is solved if the coe�cients a
(1)
ij and a

(2)
ijk are known. In Appendix

B we derive the coe�cients a(1)ij and a
(2)
ijk using a least-squares technique.

Once the coe�cients a(1)ij and a
(2)
ijk are known, the error made by linearizing the

inverse problem can easily be calculated. If the inverse problem is linearized, but

if the measured data di are generated by a nonlinear direct problem we �nd (see

Appendix B) that the estimated model parameters m̂L
i are given by:

m̂L
i = a

(1)
ij dj: (5)

In equation (5), the data dj are generated by equation (3). The linearized model esti-

mator m̂L
i should be compared with the model parameter inferred from the nonlinear
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estimation de�ned by equation (4). The error �m̂L
i made by incorrectly assuming

that the inverse problem is linearized, is up to second order equal to:

�m̂L
i = m̂i � m̂L

i = a
(2)
ijkdjdk: (6)

This quantity will be referred to as the linearization error. The linearization error

is a systematic error made by incorrectly assuming that the inverse problem is

linear. We want to remark that due to the fact that the data have a random

error, the linearization error is also contaminated with a random error. Since we

are interested in the systematic part of the linearization error we treat it as a non-

stochastic variable. In the following, quantities contaminated with a random error

are underlined. In this paper it is assumed that all the data di are uncorrelated and

have an equal variance �2
d. If the data di have a variance �2

d and are uncorrelated,

then the variance �2
m̂i

of a model estimator m̂i can be approximately calculated from

the variance in the data:

�2
m̂i

=
NX
j=1

 
@m̂i

@dj
�d

!2

: (7)

From equation (7) and equation (4) it follows that:

�2
m̂i

=
NX
q=1

�n
a
(1)
iq + a

(2)
iqkdk + a

(2)
ijqdj

o
�d
�2
: (8)

This implies that to lowest order the variance in the model parameter estimator is

given by:

�2
m̂i

=
NX
q=1

�
a
(1)
iq �d

�2
: (9)

Lastly, we calculate the noise-bias in the estimated model parameter. Suppose

that the data di are contaminated with a random error �
i
which has no noise-bias
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(h�
i
i = 0). Then the di�erence �m̂i between the contaminated model and the model

obtained from error-free data is given by:

�m̂i = a
(1)
ij �j + a

(2)
ijkfdj�k + �

j
dkg+ a

(2)
ijk�j�k: (10)

Taking the value of this expression, and taking into account that the data covariance

matrix Cij is given by h�
i
�
j
i, then we �nd using h�

i
i = 0 that:

h�m̂ii = a
(2)
ijkCjk: (11)

If the data are uncorrelated and have equal variance �2
d (Cij = �ij�

2
d), this reduces

to:

h�m̂ii = a
(2)
ijj�

2
d: (12)

This implies that even when the data errors are free of a noise-bias (h�
i
i = 0), the

nonlinearity leads to a noise-bias in the model estimators.

For practical applications of inverse problems it is interesting to know the ratio

of the noise-bias in the estimated model parameters and the linearization error. If

the noise-bias in a model estimator is larger than the linearization error, a linearized

inverse problem leads paradoxically to better estimation of the model parameter.

From equation (6) and equation (12), it follows that the ratio of the noise-bias and

the linearization error is equal to:

h�m̂ii
�m̂L

i

=
a
(2)
ijj�

2
d

a
(2)
ijkdjdk

: (13)

From equation (13) it can be concluded that the ratio of the noise-bias and the

linearization error is roughly proportional to �2
d=kdk2. This implies that the signal

to noise ratio (S/N) is an indication for the ratio of the linearization error and the
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noise-bias. If we refer in the following to the S=N ratio, we mean the ratio of the

rms value of the data S �
qP

i d
2
i , and the noise N which is equal to �d. From

equation (13) it follows that we can use as a rule of thumb, that the noise-bias is

larger than the linearization error if S=N < 1. In the next section, we verify equation

(13) explicitly in a geophysical example in the case of one single model parameter.

Alternatively, the error in the linearized model estimators can be compared to the

error in the nonlinear model estimators by computing the mean squared error, being

equal to the noise-bias squared plus the variance [3]. The fact that the variances of

the linearized and nonlinear density functions are equal (to leading order), the mean

squared error does not have to be discussed in this paper and it is su�cient to limit

oneself to the noise-bias only. Therefore, our conclusions on noise-bias carry over

to conclusions on the mean squared error. It representatively indicates how far on

average is the point estimate away from the truth. If a con�dence interval around

a point estimator would be given, this would be an interval with a length roughly

proportional to the root of the mean squared error.

The ratio of the noise-bias in the model estimator obtained using a nonlinear

inversion method and the dispersion of the estimated model parameter is given by:

h�m̂ii
�m̂i

=
a
(2)
ijj�

2
drP

q

�
a
(1)
iq �d

�2 : (14)

From equation (14), it is concluded that if the inverse problem is nearly linear

(a
(2)
ijk � 0), the noise-bias in the estimated model parameter is smaller than the

variance �m̂i
of the estimated model parameters. More generally, the ratio (14)

depends on the nonlinearity over the con�dence interval being equal to �d. From
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equation (14), it can be concluded that if the nonlinearity is strong over the range

of the variation of d, a linearized inversion method leads to better estimation of the

model parameters. Lastly, the ratio of the linearization error and the dispersion is

given by:

�m̂L
i

�m̂i

=
a
(2)
jkldkdlrP

q

�
a
(1)
iq �dq

�2 : (15)

In the following section we will illustrate this for a geophysical example in the simple

case of only one model parameter.

3 A geophysical example

In this section we give a simpli�ed numerical illustration of nonlinear error propa-

gation. We do not intend to give an example of a realistic experiment, but we want

to illustrate the principles of the previous section. It is shown in ref. [4] that in a

medium having a constant velocity gradient:

c(z) = c0 + 
z; (16)

the position of a ray traveling through this medium is given by a circle segment. In

equation (16) the velocity �eld c(z) has a constant velocity gradient 
 and a velocity

c0 at z = 0. Furthermore, it is shown in ref. [4] that the traveltime T of a wavefront

traveling along the ray is given by:

cosh[
(T � T0)] =
(xr � x0)2 + (zr +

c0


)2 +

c2
0


2

2 c0


(zr +

c0


)

: (17)

In equation (17) the position of the receiver is represented by the coordinates xr

and zr, the position of the source is given by x0, z0 = 0. The reference time T0 gives
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the time that the ray leaves the source in (x0; z0 = 0).

In the numerical experiments that follow we consider a very simple earth model

in which the trend of the P-velocity is based upon the iasp91 model [5]. Above and

below a depth of 660 km a constant velocity gradient (16) is assumed. At a depth of

660 km a discontinuity is present. The jump of the velocity across this discontinuity

is in fact the model parameter that we want to resolve. In Figure 1, an example

of six velocity models for �ve di�erent values of the discontinuity, increasing from

a discontinuity that is equal to zero to a maximum discontinuity that is equal to 2

km=sec is given.

For the velocity models of Figure 1, the rays and the traveltimes in both the

media above and below the discontinuity are circle segments. If the distance between

the source and the receiver is smaller than 3000 km, all the rays turn above the 660

km discontinuity. If the source receiver distance is larger, then the rays penetrate

below the discontinuity. If a ray crosses the discontinuity, the boundary conditions

are given by Snell's law. In Figure 2 an example of the rays is given for 100 di�erent

velocity models. The distance between the source and the receiver is 4000 km.

For all the rays that are plotted in Figure 2, the traveltimes can be calculated

using equation (17). In Figure 3 the traveltimes curves are given for source-receiver

distances between 2000 km and 9000 km as a function of the discontinuity. We

see from Figure 3 that for source-receiver distances between 4000 and 7000 km

the traveltime curve is a nonlinear function of the model parameter. For source

receiver distances larger than 3000 km, the relation between the traveltimes and the

discontinuity is nonlinear.
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In the experiments that follow, the measured traveltimes are the data. The

single model parameter is the velocity jump across the discontinuity. In the most

simple illustration of nonlinear error propagation only one data-point and one model

parameter are involved. Suppose a traveltime is measured for only one single source-

receiver distance, then, if the relation between the traveltime and the discontinuity

is bijective, the corresponding discontinuity can be estimated using the traveltime

curves of Figure 3. In the following the error-propagation is discussed in the case of

one data-point and one model parameter.

3.1 Case 1: One model parameter and one data-point

If only one single data-point and only one single model parameter is present, equation

(3) reduces to:

d = G(1)m+G(2)m2 + h.o.t. (18)

where G(1) and G(2) are constants. Similarly the corresponding error free inverse

problem (4) reduces to:

m = a(1)d + a(2)d2 + h.o.t. (� m̂+ h.o.t.) : (19)

The inverse problem (19) is solved if the coe�cients a(1) and a(2) are known. The

coe�cients (B-8) in Appendix B simplify in this case to:

a(1) =
1

G(1)
: (20)

Similarly, the coe�cient a(2) can be derived from equation (B-9) in Appendix B;

a(2) = � G(2)

fG(1)g3 : (21)
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Following Section 2 the expression for the linearization error (6) reduces to:

�m̂L = m̂L � m̂ = a(2)d2 = � G(2)

fG(1)g3d
2: (22)

From Section 2 and equation (19) it can be concluded that the linearization error is

large compared to the linear model update (a(1)d) if a(2)d2 � a(1)d. We can calculate

the variance in the model estimator by simplifying the formula of Section 2. The

dispersion of the estimated model parameter is equal to:

�m̂ =
1

jG(1)j�d: (23)

Lastly, following Section 2 we �nd that the noise-bias in the model which is repre-

sented by equation (12) reduces to:

h�m̂i = a(2)�2
d = � G(2)

fG(1)g3�
2
d: (24)

From equation (13), we get the simple result for the ratio of the noise-bias and the

linearization error:

h�m̂i
�m̂L

= �
�
�d
d

�2

: (25)

From equation (25), it follows that the linearization error is much smaller than the

noise-bias in the estimated model parameter if �d � kdk. It is remarkable that

this result does not depend on the coe�cients G(1) and G(2) that characterize the

direct and inverse problem but only the of the noise N � �d and the signal S � d.

Equation (25) implies that if the linearization is carried out closely around the true

model (d � d� d0 ! 0), the linearization error is relatively small with compared to

the noise-bias. In the following numerical example we illustrate this principle.
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In Figure 4 the full curve represents the nonlinear traveltime curve at a source

receiver distance of 4000 km. The broken curve represents the linearization of the

relation between the discontinuity and the the traveltime around 1:4 km=sec. We

construct the density function of the data numerically using a random number gen-

erator that generates an ensemble of data consistent with the properties of the data

density function. The density function of the data set is assumed to be Gaussian

with variance �d. It was shown for I.S.C. traveltimes that the density function can

be approximated well by a Gaussian density function [6]. The histogram of the

density function of the model parameter estimator is constructed by mapping every

randomly generated traveltime on its corresponding value of the discontinuity.

We distinguish two situations. In the �rst situation, we choose �d > kdk. From

equation (25), it follows that in this case the noise-bias is larger than the linearization

error, which implies that a linearized inversion method leads to the best estimation

of the model parameters. This situation is realized for a density function of the

data having an expectation value at t = 432:5 sec and a variance �d = 0:5 sec. The

full curve in Figure 5 represents the density function of the model estimator if a

nonlinear inversion method is used. It is observed from the full curve in Figure 5

that the density function of the estimated model parameter is non-symmetric due

to the nonlinearity in the traveltime curve that is used. The mean of the nonlin-

ear density function in Figure 5 is equal to 1:01 km/sec (this is indicated by the

thick solid vertical line), whereas the true model value is equal to 1.1 km/sec (the

thin solid vertical line). This under-estimation is partly due to the long tail of the

density function of the model estimator introduced by the 
attening of the nonlin-
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ear traveltime curve in Figure 4. The distance between the thick and the vertical

solid lines corresponds to the noise-bias h�m̂i. If the noise-bias is computed using

equation (24), we �nd that h�m̂i is equal to �1:73 km/sec. This is in disagreement

with Figure 5 because of the fact that the data variance is large with respect to

the scale of the nonlinearity in traveltime curve in Figure 4 and because of the non-

bijective mapping between the data and the model parameter. The broken curve

in Figure 5 represents the density function of the model parameter if the relation

between the data set and the model-parameter is linearized around m̂ = 1:4 km/sec.

The mode of the density function obtained from the linearized inversion is equal to

m̂ = 1:13 km/sec. The distance between the dashed and the thin vertical solid lines

corresponds to the linearization error �m̂L.

In this experiment, it is illustrated that if �d > kdk, the noise-bias in the esti-

mated model parameter is larger than the linearization error. As a result of this,

one should conclude that if �d > kdk, a linearized inversion method leads to better

estimation of the model parameters. This observation is in accordance with equa-

tion (25), in which it is shown that the ratio of the noise-bias and the linearization

error depends only on the signal to noise ratio.

The second case that we distinguish is �d < kdk. It follows from formula (25),

that if �d < kdk, the noise-bias is smaller than the linearization error. Consequently,

a nonlinear inversion method leads to better estimation of the model parameters.

In Figure 6 the experiments that are carried out for �d = 0:5 sec, are repeated for

�d = 0:1 sec. The full curve represents the density function of the model estimator

in case of a nonlinear inversion. The density function of the model estimator is
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nearly Gaussian because the nonlinearity of the traveltime curve is small over the

range of the variation of d. The mean of the nonlinear density function estimates

a discontinuity of 1:09 km/sec, whereas the true value of the discontinuity is 1:1

km/sec. If the noise-bias is computed using equation (24), we �nd that h�m̂i is

equal to 0:07 km/sec. This is in agreement with Figure 6 because of the fact that

the data variance is small with respect to the scale of the nonlinearity in traveltime

curve in Figure 4.

The broken curve in Figure 6 represents the density function of the model para-

meter which is the result of the linearized inversion method. The mean of the density

function obtained after a linearized inversion is equal to 1:13 km/sec. This implies

that if �d < kdk, using a nonlinear inversion method leads to better estimation of

the model parameter. Note also that an error analysis based on a linearized inver-

sion theory would give a false impression of the accuracy of the inversion because

the true model parameter (the thin vertical line), lies completely in the tail of the

density function computed with a linearized theory (the dashed density function).

The numerical experiments that are presented above indicate that in the special

case of one model parameter and one data-point a one-step linearized inversion

method leads to the best estimation of the model parameter if �d > kdk and a

nonlinear inversion method leads to the best estimation of the model parameter if

�d < kdk. This implies that if the linearization is carried out closely around the true

model parameter (good quality prior information), a linearized inversion method

leads to best estimation of the model parameter. In the following subsection, we

repeat these experiments in the case of N data and one single model parameter.
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It is shown that using more data can lead to a smaller noise-bias in the estimated

model parameters.

3.2 Case 2: One model parameter and N data

In the case of one single model parameter and N data, the direct problem (3), takes

the following form:

di = G
(1)
i m+G

(2)
i m2 + h.o.t. (26)

The inverse problem that corresponds with equation (4) is given by:

m = a
(1)
i di + a

(2)
ij didj + h.o.t. (� m̂+ h.o.t.) : (27)

The inverse problem (27) is solved if both the coe�cients a(1)i and a
(2)
ij are known.

Due to the Gaussian error-law the least-squares solution of the coe�cients a(1)i and

a
(2)
ij is computed. From equation (B-8) in Appendix B, it follows that the least-

squares solution of the coe�cients a(1)i is equal to:

a
(1)
j =

G
(1)
jP

i(G
(1)
i )2

: (28)

In a similar fashion it can be derived from equation (B-9) in Appendix B, that the

coe�cients a(2)ij are equal to:

a
(2)
iv =

2G(2)
i a(1)v � 3

P
qfG(1)

q G(2)
q ga(1)i a(1)v

fPpG
(1)
p g2

: (29)

From equation (5) it follows that if it is incorrectly assumed that the inverse problem

is linear while the direct problem is nonlinear, a linearization error which is equal

to:

�m̂L = m̂L � m̂ = a
(2)
ij didj: (30)
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is introduced.

We can calculate the dispersion of the model estimator similarly as in Section 2.

We �nd that the dispersion of the estimated model parameter is given by:

�m̂ =

vuuut NX
j=1

�
a
(1)
j �dj

�2 �
vuuut NX

j=1

�
a
(1)
j �d

�2
: (31)

Lastly, equation (12) for the noise-bias in the estimated model parameter reduces

to:

h�m̂i = a
(2)
ij �di � a

(2)
ii �

2
d: (32)

From equation (30) and equation (32), it follows that the ratio of the noise-bias and

the linearization error is given by:

h�m̂i
�m̂L

=
a
(2)
ii �

2
d

a
(2)
rs drds

: (33)

It is observed from equation (33) that the ratio of the noise-bias and the linearization

still depends on signal to noise ratio S=N , but in contrast to equation (25), equation

(33) also depends on the on the coe�cients a(2)ij . This implies that depending on the

coe�cients a(2)ij , the sum
PN

i=1 a
(2)
ii �

2
d in the numerator of equation (33) or the sum

PN
r;s=1 a

(2)
rs drds in the denominator of equation (33) may vanish.

From the expressions for the noise-bias (32), the dispersion (31) and the lin-

earization error (30), one can conclude that, due to the summation over the data di

or the variance �2
d, using more data can lead to a smaller variance and noise-bias,

but not to smaller linearization error. This can be shown explicitly if the direct

problem (26) has identical data-kernels i.e.: the same measurement is carried out

repeatedly (G(1)
i = G(1) and G

(2)
i = G(2)). It can easily be checked that in this
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situation the coe�cients a
(1)
i and a

(2)
ij are equal to:

a
(1)
i =

1

N

1

G(1)
; a

(2)
ij =

�1
N2

G(2)

fG(1)g3 ; (34)

hence the dispersion of the model estimator �m̂ is equal to:

�m̂ =
1p
N

�d

G(1)
: (35)

From equation (35), it follows that in case of a direct problem having identical data

kernels, the variance �m̂ of the model estimator becomes smaller if more data are

added to the data set. In this special case, the noise-bias of the model estimator is

equal to:

h�m̂i = � 1

N

G(2)

fG(1)g3�
2
d: (36)

Therefore, we can conclude from equation (36) that if the number of data is in-

creased, the noise-bias in the estimated model parameter becomes smaller and that

the noise-bias decreases faster with the number of measurements than the standard

error. Finally, using equation (34) the linearization error is equal to:

�m̂L =
NX

i;j=1

a
(2)
ij didj = � G(2)

fG(1)g3d
2: (37)

Note that the linearization error is independent on the number of measurements.

From equation (35) and (36), it can be concluded in the special case of equal data

kernels, more data leads to a smaller variance and a smaller noise-bias of the model

estimator. Ultimately, for large values of N, the linearization error will be larger

than both the variance and the noise-bias. This implies that in that situation a

nonlinear inversion is needed.
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The principle that using more data must lead to a potentially better estimation

of the model parameter is shown in an example in which no equal data kernels

are present. In Figure 7, the density function of the model parameter estimator

is presented, if traveltime curves at distances of 2000, 3000 , ..., 9000 km are used

(Figure 3). The model parameter is estimated by minimization of the norm
P

i kdi�

d̂i(m)k2, where the data d̂i(m) are given by equation (26). The data that are used

are uncorrelated and have an equal variance �d = 0:5 sec. The mean of retrieved

density function estimates a discontinuity of 1:09 km/sec, whereas the true value

of the discontinuity is equal to 1:1 km/sec. If Figure 7 is compared to Figure 4, it

is concluded that using more data leads to a more accurate model estimation with

a smaller noise-bias and variance. The reason for this result lies in the fact that

measurement errors are averaged and the
p
N -law applies.

4 Conclusions

In this paper the error propagation for weakly nonlinear inverse problems is dis-

cussed. In applications of inversion methods to real data, nonlinear inversion meth-

ods often are simpli�ed to more easily solvable linearized inversion methods. If the

data set is contaminated with a statistical error having a Gaussian density function,

a linearized inverse problem, leads to a model estimator that is also contaminated

with a statistical error having a Gaussian density function. However due to the

physical incorrect theory that is used, a linearization error is introduced. On the

other hand if a nonlinear inversion method is used, the applied theory is more cor-
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rect from physical point of view, but as a result of the nonlinear propagation of

errors, the density function of the model parameter estimator is non-Gaussian. This

implies that the mean and the mode are no longer equal. As a result a noise-bias in

the estimated model parameter is introduced. It depends on the choice of the model

estimator whether a linearized inversion method or a nonlinear inversion method

leads to the best estimation of the model parameters. If the model parameter is

estimated by the mean, a nonlinear inversion method leads to the best result if the

noise-bias is smaller than the linearization error and conversely, a linearized inver-

sion method leads to the best result if the noise-bias is larger than the linearization

error.

For the simple case of only one model parameter and one data-point it is con-

cluded from Section 3 that it depends completely on the ratio �d=d whether the

linearization error is larger than the noise-bias. If �d > kdk, the noise-bias is larger

than the linearization error, hence a linearized inversion method paradoxically leads

to the best estimation of the model parameters. Conversely, if �d < kdk, the lin-

earization error is larger than the noise-bias and a nonlinear inversion method leads

to the best estimation of the model parameter. We remark that since the data d

depend on the initial guess of the model parameter, that if a linearization is carried

out around the true model parameter, a linearized inversion method always leads to

the best estimation of the model parameter.

It is shown in section 3 that using more data to estimate the model parameter

can lead to a more accurate estimation of the model parameter. This is made explicit

in the case of equal data kernels.

19



Acknowledgments

This research was supported by the Netherlands Organization for Scienti�c Research

through the Pioneer project PGS 76-144. This is the Geodynamics Research Insti-

tute (Utrecht University) publication 96.024

20



Appendix A

The direct problem having discrete data

We consider the situation that the model function f is related to a set of discrete

data di. This relation may be linear or it may be nonlinear. If one has N discrete

data, then the data are the values of N , generally nonlinear continuous functionals

of the unknown model function f . Following ref. [2], we assume that the relation

between the discrete data di and the model function f can be expressed in a regular

perturbation series:

di =
Z
F

(1)
i (x1)f(x1)dx1 +

Z
F

(2)
i (x1; x2)f(x1)f(x2)dx1dx2 + � � � i = 1; 2 � � �N:

(A-1)

Expressions for the kernels F (1)
i (x1) and F

(2)
i (x1; x2) can be obtained from ref. [2].

We search for solutions of the function f in a sub-space spanned by a �nite set of

basis functions �i(x) (i = 1; � � �M):

f(x) =
MX
j=1

mj�j(x): (A-2)

If we substitute equation (A-2) is equation (A-1) we �nd:

di =
MX
j=1

Z
F

(1)
i (x1)�j(x1)mjdx1

+
MX
j=1

MX
k=1

Z Z
F

(2)
i (x1; x2)�j(x1)�k(x2)mjmkdx1dx2 + � � � : (A-3)

If we identify:

G
(1)
ij =

Z
F

(1)
i (x1)�j(x1)dx1; (A-4)

G
(2)
ijk =

Z Z
F

(2)
i (x1; x2)�j(x1)�k(x2)dx1dx2; (A-5)
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then equation (A-3) takes the following form:

di =
MX
j=1

G
(1)
ij mj +

MX
j=1

MX
k=1

G
(2)
ijkmjmk + � � � : (A-6)

Equation (A-6) is the starting point of Section 5.2.
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Appendix B

The coe�cients a
(1)
ij and a

(2)
ijk for the least-squares solution

The inverse problem is solved if the coe�cients a
(1)
ij and a

(2)
ijk are known. In this

Appendix we formulate a perturbation method to derive these coe�cients using a

criterion based on a least-squares data �t. The least-squares solution of equation

(4) is the estimator m̂j that minimizes:

min
NX
i=1




di �G
(1)
ij m̂j �G

(2)
ijkm̂jm̂k + � � �




2 : (B-1)

This minimum is reached if the following gradient vector gq is equal to zero:

gq � @

@m̂q

X
i

�
di �G

(1)
ij m̂j �G

(2)
ijkm̂jm̂k � � �

�2
= 0: (B-2)

The gradient vector gq of equation (B-2) has components which are equal to:

gq = 2
X
i

�
di �G

(1)
ij m̂j �G

(2)
ijkm̂jm̂k

� �
G

(1)
iq +G

(2)
iqkm̂k +G

(2)
ijqm̂j

�
: (B-3)

Expanding expression (B-3) to order m̂2 we �nd that the gradient vector gq is zero

if the following relation is satis�ed:

diG
(1)
iq = G

(1)
ij G

(1)
iq m̂j +

�
G

(1)
ij G

(2)
iqk +G

(1)
ij G

(2)
ikq +G

(2)
ijkG

(1)
iq

�
m̂jm̂k�

�
G

(2)
iqk +G

(2)
ikq

�
m̂kdi: (B-4)

In order to determine the coe�cient a
(1)
ij and a

(2)
ijk, we insert the estimator (4) in

equation (B-4) and expand to second order in the data di: This leads to the following

perturbation series in di:

G
(1)
iq di =

n
G

(1)
ij G

(1)
iq

o
a
(1)
jr dr +

n
G

(1)
ij G

(1)
iq a

(2)
jrs +

�
G

(1)
ij G

(2)
iqk +G

(1)
ik G

(2)
ikq+
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G
(2)
ijkG

(1)
iq

�
a
(1)
jr a

(1)
ks �

�
G

(2)
rqj +G

(2)
rjq

�
a
(1)
js

o
drss +O(d3): (B-5)

This expression must hold for all data di, hence the coe�cients of the O(d) and

O(d2) contribution at both sides can be equalized: The O(d) contributions are:

diG
(1)
iq =

n
G

(1)
ij G

(1)
iq

o
a
(1)
jr dr: (B-6)

From this we can solve the linear term of the inverse problem easily. For notational

convenience we rewrite equation (B-6) in a matrix notation:

�
G(1)

�T
d =

n
G(1)

oT
G(1)a(1)d: (B-7)

We then see that immediately follows that the matrix a(1) whose entries are a
(1)
ij lead

to the standard linear least squares estimator [7, 8]:

a(1) =
�n

G(1)
oT

G(1)
�
�1 n

G(1)
oT

: (B-8)

We can �nd an expression for the tensor a
(2)
jrs in a similar fashion. If all the terms in

equation (B-5) of order d2 are collected we �nd for a
(2)
jrs:

a
(2)
jrs =

�
G

(1)
iq G

(1)
ij

�
�1 n

G
(2)
rqka

(1)
ks +G

(2)
rkqa

(1)
ks �G

(1)
lmG

(2)
lqka

(1)
mra

(1)
ks �

G
(1)
lmG

(2)
lkqa

(1)
mra

(1)
ks �G

(1)
lq G

(2)
lmka

(1)
mra

(1)
ks

o
: (B-9)

Once the coe�cients a
(1)
ij and a

(2)
ijk the least-squares solution of (4) is known.
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Captions for Figures

Figure 1: Example of the velocity models. Each model is indicated with a di�erent

line thickness.

Figure 2: Example of the rays at a source receiver distance of 4000 km within the

range of the model parameter.

Figure 3: The traveltime curves for source-receiver distances between 1000 km and

9000 km (thick solid curve) as a function of the discontinuity and the linearized

traveltime curves around a discontinuity of 0:5 km/sec (thin solid curve).

Figure 4: Traveltime curve for a source-receiver distance of 4000 km (full curve),

and the linearization around a discontinuity of 1:4 km/sec (broken curve).

Figure 5: Probability density function of the retrieved model if the distance be-

tween the source and the receiver is 4000 km for a data variance �d = 0:5 km/sec.

The P.D.F. for the nonlinear inversion is given by the full curve, the P.D.F. of the

linearized inversion is given by the broken curve (the vertical lines in the same line-

style indicate the mean of both curves). The thin vertical line indicates the true

model estimator.

Figure 6: Same as Figure 5, but for �d = 0:1 km/sec.
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Figure 7: Probability Density Function of the retrieved model parameter if the

nonlinear traveltime curves for source receiver distances of 2000; 3000; � � � ; 9000 km

are used. The data variance is �d = 0:5 km/sec.
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