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Abstract. We use a Bayesian version of the Cramér-Rao lower bound due to van Trees
to give an elementary proof that the limiting distibution of any regular estimator cannot
have a variance less than the classical information bound, under minimal regularity con-
ditions. We also show how minimax convergence rates can be derived in various non- and
semi-parametric problems from the van Trees inequality. Finally we develop multivariate
versions of the inequality and give applications.

Résumé. Nous utilisons une version Bayesienne de l’inégalité de Cramér-Rao due à van
Trees pour établir que la loi limite d’un estimateur regulier ne peut pas avoir une variance
moindre que la borne d’information classique, sous les conditions de régularité minimale.
Nous démontrons aussi qu’avec l’inégalité de van Trees on peut établir la vitesse de con-
vergence minimax dans plusieurs problèmes non- et sémi-paramétriques. Finalement, nous
dévelopons les versions multivarieés de cet inégalité en nous en donnons des applications.

Key words: parameter estimation, non-parametric estimation, semi-parametric models,
quaratic risk, lower bounds.

1. Introduction

Basic statistics textbooks like to present the Cramér-Rao lower bound together with an
informal description of large sample distributional properties of maximum likelihood esti-
mators as demonstrating some kind of asymptotic optimality of the MLE. This approach
is very unconvincing on several counts. Firstly, the Cramér-Rao bound only says some-
thing nice about unbiased estimators whereas most estimators in practice are biased, and
the arguments for prefering unbiased estimators are rather weak. Also, traditionally the
Cramér-Rao bound makes a number of regularity conditions which are difficult to check
and the result only compares estimators satisfying these conditions (though see Borovkov,
1984, for a more satisfactory version). Finally, the fact that a limiting variance may
not coincide with the variance of a limiting distribution produces another unpleasant gap
between the bound and the limit theory (many interesting estimators even have infinite
variance).
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Of course the beautiful theory of Hájek and Le Cam (local asymptotic minimax theo-
rem, the convolution theorem for regular estimators) solves all these problems in a mathe-
matical sense. However the techniques used are very sophisticated and the notions involved
are very delicate.

On the other hand, there is a theory of ‘Best Asymptotically Normal’ estimators due
to Rao (1963) and others, but this is very restrictive in its applications and somewhat
neglected nowadays.

Here we show that a simple variation on the Cramér-Rao theme due to van Trees
(1968) provides the key-stone of a short and elementary proof that the variance of the
limiting distribution of uniformly convergent-in-distribution estimators exceeds or equals
the Cramér-Rao information bound. ‘Uniformity’ of some kind is of course needed to
rule out super-efficiency (actually just Hájek regularity will do). The further regularity
conditions involved are minimal.

We also give some other applications of van Trees’ inequality, demonstrating its power
and versatility, in particular as a tool for obtaining optimal convergence rates in non-
regular (and non-parametric) problems, and for obtaining global bounds for estimating
infinite dimensional parameters. In fact this is just the tip of the iceberg. The bound can
also be used to investigate asymptotic admissibility and second order optimality (Levit
and Oudshoorn, 1992; Schipper, 1992) and we believe it will find many other applications.

Previous applications of the van Trees inequality have been given by Bobrovsky,
Mayer-Wolf and Zakai (1987) and Brown and Gajek (1990). A stronger type of inequality
is given by Klaassen (1989); the right hand side of his (5.21) is the lower bound coming
from the van Trees inequality.

2. van Trees’ inequality.

Let (X ,F ,Pθ : θ ∈ Θ) be a dominated family of distributions on some sample space
X ; denote the dominating measure by µ. Take the parameter space Θ to be a closed
interval on the real line. Let f(x|θ) denote the density of Pθ with respect to µ. Let
π be some probability distribution on Θ with a density λ(θ) with respect to Lebesgue
measure. Suppose that λ and f(x|·) are both absolutely continuous (µ-almost surely), and
that λ converges to zero at the endpoints of the interval Θ. A prime will denote a partial
derivative with respect to θ.

Let θ̂ = θ̂(X) denote any estimator of θ, X ∼ Pθ. We write Eθ for expectation with
respect to θ. When θθθ is drawn from the distribution π, and conditional on θθθ = θ, X from
Pθ, we write E for expectation with respect to the ensuing joint distribution of X and θθθ.

Apart from the absolute continuity of f as function of θ, our last assumption is just
the usual

Eθ (log f(X|θ) )′ = 0. (1)

Define further
I(θ) = Eθ (log f(X|θ))′ 2,

I(λ) = E (log λ(θθθ))′ 2,

the Fisher information for θ and for a location parameter in λ respectively. We also often
write I(π) for the latter quantity. A well known result of Hájek is that (1) follows from
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continuity of I(θ); in fact (1) holds almost everywhere if
√
I(θ) is just locally integrable

in θ, which is enough for our purposes. For full details on both these results, also in the
multivariate case, see Borovkov (1984, §16 and §20); see also Borovkov and Sakhanenko,
1980). For our asymptotic bound in the next section we will need that I(θ) is continuous
in θ.

Now ∫
(f(x|θ)λ(θ))′dθ =

[
f(x|θ)λ(θ)

]
= 0

by the convergence of λ to zero at the endpoints of Θ, while by partial integration and the
same fact again

∫
θ(f(x|θ)λ(θ))′dθ =

[
θf(x|θ)λ(θ)

]
−
∫
f(x|θ)λ(θ)dθ = −

∫
f(x|θ)π(dθ). (2)

Using both these equalities,

∫ ∫
(θ̂(x) − θ)(f(x|θ)λ(θ))′dθµ(dx) =

∫ ∫
f(x|θ)π(dθ)µ(dx) = 1.

Cauchy-Schwarz now gives

∫ ∫
(θ̂(x) − θ)2f(x|θ)π(dθ)µ(dx) ·

∫ ∫
(log(f(x|θ)λ(θ))′2f(x|θ)π(dθ)µ(dx) ≥ 1.

But by our assumption (1) the ‘information’ part of this expression, i.e., the second term
in the product on the left hand side, reduces just to

∫
I(θ)π(dθ) +I(λ). Dividing out and

abbreviating the notation gives the final inequality (van Trees, 1968 ; p. 72)

E(θ̂(X) − θθθ)2 ≥ 1

EI(θθθ) + I(λ)
. (3)

We emphasize that the only assumptions made here were (1) and the regularity conditions
in the first paragraph of the Section.

A more general inequality for estimating an absolutely continuous function ψ of θ is
easily obtained in exactly the same way. Replacing θ by ψ(θ), the equality (2) becomes

∫
ψ(θ)(f(x|θ)λ(θ))′dθ =

[
ψ(θ)f(x|θ)λ(θ)

]
−
∫
ψ′(θ)f(x|θ)λ(θ)dθ

= −
∫
ψ′(θ)f(x|θ)π(dθ).

Replacing now also θ̂(x) by ψ̂(x) in the subsequent development gives

E(ψ̂(X) − ψ(θθθ))2 ≥ (Eψ′(θθθ))2

EI(θθθ) + I(λ)
. (4)
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Example. Estimation of θα from a sample from the N (θ, 1) distribution. Let X1, . . . ,Xn

be a random sample from the N (θ, 1) distribution, define ψ(θ) = θα, where θ ≥ 0 and
0 < α < 1. We show that the optimal rate of convergence for estimators of ψ is only
n−α/2 when θ can be arbitrarily close to zero. We apply (4) with X1, . . . ,Xn replacing X.
The information for θ based on n independent and identically distributed observations is
n times the information for one observation. By (4), for an arbitrary estimator ψn,

sup
θ

Eθ(ψn − ψ(θ))2 ≥ E(ψn − ψ(θθθ))2 ≥ (α
∫
θα−1λ(θ)dθ)2

n+ I(λ)
, (5)

where λ is a prior density on a closed bounded interval of [0,∞), satisfying the conditions
stated above. Setting λ(θ) = a−1λ0(a−1θ) and denoting

A =
(∫

uα−1λ0(u)du
)2

we obtain from (5)

sup
θ

Eθ(ψn − ψ(θ))2 ≥ Aa2(α−1)α2

n+ I(λ0)a−2
.

Choosing a = (I(λ0)α/((1 − α)n))1/2 so that for large n the prior λ concentrates more
and more mass close to 0, we obtain

sup
θ

Eθ(ψn − ψ(θ))2 ≥ (1− α)1−αα2+αA

nαI(λ0)1−α .

This inequality shows that no estimator can have a convergence rate (uniformly) better
than n−α/2. Fortunately a natural choice for ψn, |Xn|α where Xn is the sample mean,
achieves this bound. This follows by applying the cr-inequality (see Loève (1963), p. 155):

∣∣|Xn|α − |θ|α
∣∣ ≤ |Xn − θ|α, 0 < α < 1,

from which follows

sup
θ

Eθ
(
|Xn|α − |θ|α

)2 ≤ E|Xn − θ|2α =
2αΓ(α+ 1

2 )√
πnα

by straightforward calculation.
Despite our lower bound on the (maximal) mean square error, the estimator ψn ac-

tually converges in distribution at the faster (usual) rate of n−1/2, provided we keep away
from θ = 0. This case is covered by our asymptotic results in the next section. tu
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3. An asymptotic Cramér-Rao bound.

Suppose in the previous section, Pθ is replaced by its n-fold product, and X by X(n), n
i.i.d. copies of X. The information for θ then gets multiplied by n. Let π1 be a fixed
distribution on [−1, 1] with absolutely continuous density, zero at the end-points. Let θ0

be a fixed point in the interior of Θ and let π = π(H,n) be the rescaling of π1 to the

interval A = [θ0−n−
1
2H, θ0 +n−

1
2H] for given H > 0. The information for π(H,n) is that

for π1 times n/H2. If θ̂(n) is any estimator for θ based on X(n), the inequality (3) becomes

E(θ̂(n) − θθθ)2 ≥ 1

nEπ(H,n)I(θθθ) + nI(π1)/H2

or

E

(√
n(θ̂(n) − θθθ)

)2

≥ 1

Eπ(H,n)I(θθθ) + I(π1)/H2
. (6)

We assume that I(θ) is continuous at θ0. Then letting first n→∞ and then H →∞ the
right hand side converges to 1/I(θ0), the usual asymptotic information bound.

Now suppose
√
n(θ̂(n)−θ) converges in distribution, as n→∞, uniformly in θ; suppose

the limiting distribution is also continuous in θ at θ0. Then
√
n(θ̂(n) − θn) converges in

distribution under Pθn , to a fixed distribution Z say, for all sequences θn of the form

θ0 + n−
1
2h, h ∈ (−H,H). (Alternatively one can just make this, weaker, assumption of

Hájek regularity). This is the limiting distribution of
√
n(θ̂(n) − θ0) under Pθ0 , in which

we are interested.
Truncate θ̂(n) to the interval A. This is the same as truncating

√
n(θ̂(n) − θn) to the

interval [−H − h,H − h]. The resulting random variable converges in distribution under
Pθn to Z truncated to the same interval, call this Zh,H . Since both are bounded, the mean
square converges too. Moreover, we have EZ2

h,H ≤ EZ2. Applying (6) to the truncated
estimator and letting n→∞, together this gives

EZ2 ≥
∫ H

−H
EZ2

h,HπH(dh) ≥ 1

I(θ0) + I(π1)/H2

where πH is the rescaling of π1 to the interval [−H,H]. Now let H → ∞, and we obtain

EZ2 ≥ 1/I(θ0); in words, the mean square of the limiting distribution of
√
n(θ̂(n) − θ0) is

at least 1/I(θ0). (More general version of this elementary result is known as the Hájek’s
convolution theorem; see Hájek (1970). For a different approach see Klaassen (1989 ;
Theorem 4.1) ).

We can improve this bound on the mean square error of the asymptotic distribution to
the same bound on the variance of the asymptotic distribution. If the limiting distribution
of
√
n(θ̂(n) − θ) has mean a(θ), simply apply the above to the new ‘estimator’ θ̂(n) −

n−
1
2 a(θ0). Its asymptotic distribution under Pθn has mean zero but the same variance as

before.
Obviously we can also obtain analogous results for estimating a function of θ.
In the next section we will derive genuine multidimensional versions of the van Trees

inequalities (3) and (4). For the moment notice that one can obtain a multidimensional
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version of the just obtained asymptotic bound by considering certain one-dimensional
submodels, satisfying (by assumption) the regularity conditions given above. Suppose θ is
now a (column) vector and the matrix I(θ) exists and is non-singular. Write I0 = I(θ0).
Apply the preceding to estimation of the linear combination c>θ in the one-dimensional
submodel θ = θ0 + η(c>I−1

0 c)−1I−1
0 c where η is a real parameter. The information for

η = c>(θ − θ0) at η = 0 is (c>I−1
0 c)−1. The resulting bound c>I−1

0 c, holding for all c, on

the variance of the asymptotic distribution of c>
√
n(θ̂(n) − θ0), implies the bound I−1

0 on

the covariance matrix of the asymptotic distribution of
√
n(θ̂(n) − θ0).

4. Multivariate extensions.

Curiously there are many ways to extend the van Trees inequality to higher dimensional
parameters (cf. van Trees ( 1968, p. 84) ; Bobrovsky, Mayer-Wolf and Zakai (1987)).
Here we present a very general version involving arbitrary choices of certain matrix weight
functions. The inequality allows several interesting special cases.

We consider immediately the case of estimating a possibly vector valued function ψ
of a vector parameter θ, respectively p and s dimensional. Suppose also from the start
that we have n independent and identically distributed observations Xi from a common
distribution Pθ with density f(x, θ) with respect to some measure µ (all on an arbitrary
measure space X ). Suppose θ ∈ Θ ⊆ IRs. Write X for a generic observation Xi.

We choose next a prior density (with respect to Lebesgue measure) λ(θ), a symmetric
p × p matrix function B(θ), and a p × s matrix function C(θ). We need a number of
regularity conditions on f , λ, B and C.

We will say that a real function g(θ), θ ∈ Θ, is nice if, for each j, it is absolutely
continuous in θj for almost all values of the other components of θ and its partial derivatives
∂g/∂θj are measurable in θ. We will treat θ and ψ as column vectors; partial derivatives
with respect to the components of θ are set out in rows so ∂ψ/∂θ is a p × s matrix. The
symbol > denotes transpose of a matrix. The operation ‘diag’ of a square matrix replaces
its off-diagonal elements by zeros.

Assumptions:
1) f is nice in θ for almost all x and its partial derivatives with respect to θ are measurable

in x, θ.
2) The Fisher information matrix

I(θ) = Eθ

((∂ log f(X, θ)

∂θ

)> ∂ log f(X, θ)

∂θ

)

exists and diag(I(θ))1/2 is locally integrable in θ.
3) The components of ψ and C are nice.
4) B is positive definite; suppose B(θ) = A(θ)>A(θ) for a p× p matrix A(θ).
5) λ is nice; Θ is compact with boundary which is piecewise C1-smooth; λ is positive on

the interior of Θ and zero on its boundary.
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Assumptions 1) and 2) imply (Borovkov, 1984, Borovkov and Sakhanenko, 1980) that the
expected score vector is zero for almost all θ:

Eθ
∂ log f(X, θ)

∂θ
= 0.

Theorem 1. (multivariate van Trees inequality). Under conditions 1)–5), for any esti-
mator ψn

R(ψn, λ) =

∫

Θ

Eθ(ψn − ψ(θ))>B(θ)−1(ψn − ψ(θ))λ(θ)dθ

≥

(∫
Θ

trace
(
C(θ)(∂ψ/∂θ)>

)
λ(θ)dθ

)2

n
∫

Θ
trace

(
B(θ)>C(θ)I(θ)C(θ)>

)
λ(θ)dθ + Ĩ(λ)

(7)

where

Ĩ(λ) =

∫

Θ

(∑

i,j,k,l

Bij(θ)
∂

∂θk

(
Cik(θ)λ(θ)

) ∂

∂θl

(
Cjl(θ)λ(θ)

)) 1

λ(θ)
dθ. (8)

Proof. For random p-vectors X, Y , we define the scalar product

〈X,Y 〉 = EX>Y.

This makes the space of square-integrable random vectors a Hilbert space and we have the
Cauchy-Schwarz inequality

〈X,Y 〉2 ≤ 〈X,X〉〈Y, Y 〉.
Since B = A>A for non-singular A we can also apply this to U = (A−1)>X and V = AY
getting

(EX>Y )2 = (EU>V )2 ≤ (EU>U)(EV >V ) = (EX>B−1X)(EY >BY ). (9)

Essentially without loss of generality we prove the required result in the case n = 1 (after
that simply apply it to the joint density of the n observations, by which I(θ) becomes
nI(θ) thanks to the fact that the expected score is zero).

As before the proof goes by Cauchy-Schwarz, in the form (9), and integration by parts.
Take for X and Y

X = ψn − ψ(θ),

Yi =
s∑

j=1

∂

∂θj

(
Cij(θ)f(θ)λ(θ)

) 1

f(θ)λ(θ)
,

where f(θ) = f(·, θ) is the likelihood for θ. In (9) we find

EX>B−1X = R(ψn, λ),
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and, using integration by parts,

EX>Y =

∫

X

∫

Θ

∑

i

(ψn(x) − ψ(θ))i

s∑

k=1

∂

∂θk

(
Cik(θ)f(x, θ)λ(θ)

)
dθ µ(dx)

=

∫

Θ

∫

X

∑

ik

∂ψi(θ)

∂θk
Cik(θ)f(x, θ)λ(θ)µ(dx)dθ

=

∫

Θ

trace

(
C(θ)

(∂ψ
∂θ

)>
)
λ(θ)dθ.

Finally

EY >BY = E
∑

ijkl

Bij

Cikλ
∂f

∂θk
+ f

∂(Cikλ)

∂θk
fλ

Cjlλ
∂f

∂θl
+ f

∂(Cjlλ)

∂θl
fλ

= E
∑

ijkl

Bij

(
Cik

∂

∂θk
log f +

1

λ

∂

∂θk
(Cikλ)

)(
Cjl

∂

∂θl
log f +

1

λ

∂

∂θl
(Cjlλ)

)

=

∫

Θ

trace
(
B(θ)>C(θ)I(θ)C(θ)>

)
λ(θ)dθ + Ĩ(λ)

using ‘expected score is zero’ to get rid of the cross products. tu
Various natural choices of B and C lead to versions of (7) useful for different purposes.

The simplest choice, when p = s so that ψ has the same dimension as θ, is to take both
matrix functions equal to the identity. Using | · | to stand for the Euclidean norm of vectors
and writing divψ =

∑
i ∂ψi/∂θi = trace ∂ψ/∂θ, we obtain

∫

Θ

Eθ|ψn − ψ(θ)|2λ(θ)dθ ≥

(∫
divψ(θ)λ(θ)dθ

)2

n
∫

trace I(θ)λ(θ)dθ + traceI(λ)
(10)

where I(λ) is the matrix information for λ. We call (10) an L2-norm type inequality. The
one-dimensional case with ψ the identity is our first version of the van Trees inequality.

In some respects more natural, and also available when p 6= s, is still to take B the
identity but to choose

C(θ) =
∂ψ

∂θ
I(θ)−1,

I(θ) supposed invertible. Define also

Jψ(θ) =
∂ψ

∂θ
I(θ)−1 ∂ψ

∂θ

>
,
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the inverse of which one could call the information for ψ. We now find from (7)

∫

Θ

Eθ|ψn − ψ(θ)|2λ(θ)dθ ≥

(∫
traceJψ(θ)λ(θ)dθ

)2

n
∫

traceJψ(θ)λ(θ)dθ + Ĩ(λ)

≥ 1

n

∫
traceJψ(θ)λ(θ)dθ − 1

n2
Ĩ(λ)

(11)

where

Ĩ(λ) =

∫ ∑

ikl

1

λ(θ)

(
∂

∂θk
Cik(θ)λ(θ)

)(
∂

∂θl
Cil(θ)λ(θ)

)
dθ. (12)

For s = 1 this contains the so called Borovkov-Sakhanenko inequality; see Borovkov and
Sakhanenko (1980), Theorem 3. We call (11) the natural multivariate van Trees inequality.

Apart from the identity an alternative natural choice for B is the inverse information
for ψ itself, B(θ) = Jψ(θ). Generalising the choice of C for our natural inequality (11),
i.e.,

C(θ) = B(θ)−1 ∂ψ

∂θ
I(θ)−1,

we find the normalized risk inequality

∫
Eθ
(

(ψn − ψ(θ))>Jψ(θ)−1(ψn − ψ(θ)
)
λ(θ)dθ ≥ p2

np+ Ĩ(λ)
≥ p

n
− Ĩ(λ)

n2
(13)

where Ĩ(λ) is as in (12).
Finally, the weighted quadratic risk inequality is obtained when B(θ) = diag(Jψ(θ))

and C(θ) = B(θ)−1(∂ψ/∂θ)I(θ)−1 , resulting in

∫
Eθ

p∑

i=1

(
ψni − ψi(θ)

)2

(Jψ)ii
λ(θ)dθ ≥ p2

np+ Ĩ(λ)
≥ p

n
− Ĩ(λ)

n2
, (14)

where Ĩ(λ) is given by (12) for the present choice of B and C.
Inequality (10) is sufficent for first and second order, local investigations; see Section

6 and Schipper (1992). Inequalities (11)–(14) can be used for first and second order global
considerations; see, e.g., Levit and Oudshoorn (1992).
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5. Semiparametric models: rates of convergence

First we consider some non- or semi-parametric problems where the optimal rate of conver-
gence is not the square root of n but something smaller. In each case we use the univariate
van Trees inequality to derive an asymptotic lower bound to the maximum mean square
error of an estimator over a small neighbourhood of the parameter. The proof works by
guessing a most difficult parametric submodel for estimating the functional of interest. The
procedure sometimes suggests ad hoc estimators which achieve the lower bound, thereby
demonstrating its optimality (at least as far as the rate is concerned). The proof can also
be adapted to give a lower bound to the variance of the asymptotic distribution of a uni-
formly convergent-in-distribution estimator, just as in the regular parametric case studied
in the previous example.

The examples studied here have been considered by Bakker (1988), Weits (1992),
and Groeneboom and Wellner (1992), using other methods. They compare the constants
appearing in their lower bounds to those obtainable by the estimators under consideration.

The first example, ‘completely censored data’, occurs in biostatistical applications
(carcinogenicity experiments) in which one is interested in the distribution of the time of
a certain event. At another random ‘observation time’ one can see whether or not the
event has already occurred (e.g., animal sacrifice to determine whether or not a tumour is
already present).

So, let X1 . . . ,Xn be i.i.d. with unknown d.f. F and let Y1, . . . , Yn be independent of
the Xi’s and i.i.d. with density g. The data consists of the pairs Zi = (∆i1, Yi), i = 1, . . . , n,
where

∆i1 = 1{Xi ≤ Yi};
define also

∆i2 = 1−∆i1 = 1{Xi > Yi}.
The target functional of F to be estimated is

ψ(F ) = F (x0),

x0 fixed. We consider g also fixed; whether it is known or not is irrevelant. Let Tn =
Tn(Z1, . . . , Zn) denote an estimator of F (x0). We make the following two

Assumptions:

1) F ∈ F =

{
F : 0 < F (x0) < 1 and ∃ γ1(F ), γ2(F ), γ3(F ) > 0 such that

γ1(F ) <
F (x1)− F (x2)

x1 − x2
< γ2(F )

for all x0 − γ3(F ) < x1 < x2 < x0 + γ3(F )

}
.

2) g(x0) > 0, g is continuous at x0.
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On F we introduce a topology T generated by the neighbourhoods

Vεδ(F ) =
{
G ∈ F : ‖G− F‖(x0−ε,x0+ε) < δ

}

where

‖F‖C = sup
x∈C
|F (x)|+ sup

x1,x2∈C

|F (x1) − F (x2)|
|x1 − x2|

Theorem 2. Let F0 ∈ F and V = Vεδ(F0) be fixed. Then there exists C(V ) > 0 and
n0 <∞ such that:

rn(V ) = inf
Tn

sup
F∈V

EF (Tn − F (x0))2 ≥ c(V )

n2/3
, n ≥ n0

where the infimum is taken over all possible estimators Tn.

Proof. Let ψ satisfy:
ψ(x) = 0, |x| ≥ 1

ψ(0) = 1

‖ψ‖(−1,1) ≤ 1.

Choose B > 0 fixed and let, for given h > 0, {Fc(·)} denote the family

Fc(x) = F0(x) + cψ

(
x − x0

h

)
, |c| < Bh. (15)

B can be chosen so that for small enough h,

{Fc : |c| < Bh} ⊆ V ⊆ F ; (16)

and of course we have
Fc(x0) = F0(x0) + c.

For use in the proof of Theorem 3 below, note that if moreover B < γ1(F0) then γ1(Fc) is
uniformly bounded away from zero (in c and h, for sufficiently small h).

Let ν be counting measure on {0, 1} and let fc(δ1, δ2, y) be the density of (∆i1,,∆i2, Yi)
with respect to ν × ν× Lebesgue measure;

fc(δ1, δ2, y) = Fc(y)δ1 (1− Fc(y))
δ2 g(y)

for δ2 = 1− δ1 ∈ {0, 1}; zero otherwise. The score l′c is given by

l′c =
∂ log fc
∂c

=
δ1ψ

(
y−x0

h

)

Fc(y)
− δ2ψ

(
y−x0

h

)

1− Fc(y)
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and the conditional information given Yi is

E(l′2c |Yi = y) =
ψ2( y−x0

h )

Fc(y)
+
ψ2( y−x0

h )

1− Fc(y)

=
ψ2( y−x0

h )

Fc(y)(1 − Fc(y))

=
ψ2( y−x0

h )

F0(y)(1 − F0(y))
(1 + o(1)) as h→ 0, uniformly in y.

The unconditional information is therefore

I(c) = El′2c = (1 + o(1))

∫ x0+h

x0−h

ψ2
(
y−x0

h

)

F0(y) (1− F0(y))
g(y) dy

=
g(x0)

F0(x0) (1− F0(x0))
·
∫ 1

−1

ψ2(t) dt · h · (1 + o(1))

= Ah (1 + o(1)) ,

say, using assumptions 1) and 2).
Let λ0 be a prior density on (−1, 1) satisfying the conditions of the van Trees inequality

and let

I0 =

∫ 1

−1

λ′0(c)2

λ0(c)
dc,

λ(c) =
1

Bh
λ0

( c

Bh

)
.

Then
rn(V ) ≥ inf

Tn
sup
|c|<Bh

EFc (Tn − Fc(x0))
2

= inf
Tn

sup
|c|<Bh

EFc ((Tn − F0(x0)) − c)2

≥ inf
T ′n

∫ Bh

−Bh
EFc(T

′
n − c)2λ(c) dc

≥
(
n

∫ Bh

−Bh
I(c)λ(c) dc+

∫ Bh

−Bh

λ′(c)2

λ(c)
dc

)−1

by van Trees’ inequality

=
(
nAh (1 + o(1)) + I0/(B

2h2)
)−1

= n−2/3
(
A + I0/B

2
)−1

(1 + o(1))

if we take h = n−1/3. tu

The rate n−1/3 is known to be achieved in this problem by the non-parametric max-
imum likelihood estimator (NPMLE) of F ; see Groeneboom and Wellner (1992). They
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make slightly stronger assumptions than ours, but on the other hand derive the limiting
distribution of the NPMLE. The lower bound is given in Groeneboom (1987) using a dif-
ferent approach. The problem is very similar to that of estimating a density, known to be
monotone, for which the rate n−1/3 also applies; see Groeneboom (1985).

A simple ad hoc estimator of F (x0) achieving this rate is given by the following
modification of a histogram estimator; in fact a histogram with appropriate bin-width is
also an optimal rate density estimator under weak smoothness conditions.

Let
ξi = 1{Yi ∈ (x0 − h, x0 + h)},
ηi = 1{Yi ∈ (x0 − h, x0 + h),Xi ≤ Yi},

Fn(x0) =

∑n
i=1 ηi∑n
i=1 ξi

where h = hn > 0,
hn → 0 and nh2+δ

n →∞
as n → ∞ for some δ > 0. We show that under our assumptions 1) and 2), uniformly on
any neighbourhood Vεδ(F0) with F0 ∈ F ,

EF (Fn(x0) − F (x0))2 ≤
(F (x0)(1 − F (x0))

2g(x0)hn
+ (γ2(F )h)2

)
(1 + o(1))

as n→∞. From this, choosing h � n−1/3 results in the optimal rate

EF (Fn(x0)− F (x0)) � n−2/3.

To demonstrate this, let
α = EF ξ1 = EF ξ

2
1

β = EF η1 = EF η
2
1.

One obtains then

α =

∫ x0+h

x0−h
g(y)dy = 2g(x0)h(1 + o(1)),

β =

∫ x0+h

x0−h
F (y)g(y)dy = (F (x0) + γ)α,

say, where for sufficiently large n (and hence small enough h) we have α > 0 and

|γ| ≤ γ2(F )h.

All these arguments carry through uniformly on the given neighbourhood Vεδ. Denoting
further

ξn =
1

αn

n∑

i=1

(ξi − α)

ηn =
1

αn

n∑

i=1

(ηi − β)
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a simple calculation gives

Fn(x0) − F (x0) =
ηn − F (x0)ξn + γ

1 + ξn
.

Let ρ = ρn = (nh2)−1/4 and define the event A = An = {|ξn| < ρn}. Thus ρn → 0,
and by Hoeffding’s inequality (see, e.g., Pollard, 1984, p. 192)

P(Acn) ≤ 2 exp

(
−nα

2ρ2

2

)
= O

(
(nh2)−(1+δ)/δ

)
= o
(
(nh)−1

)

for n→∞, by our assumptions on hn and ρn. Notice also that

EF |(ηn − F (x0)ξn)γ|1Acn ≤ 2α−1|γ|P(Acn) = o
(
(nh)−1

)
.

Therefore for n→∞

EF (Fn(x0)− F (x0))2 = EF (Fn(x0) − F (x0))21An + o((nh)−1)

= (EF (ηn − F (x0)ξn)21An + γ2)(1 +O(ρn)) + o((nh)−1)

≤ (EF (ηn − F (x0)ξn)2 + γ2)(1 + o(1)) + o((nh)−1)

≤ (n−1α−2EF (η1 − F (x0)ξ1)2 + γ2)(1 + o(1)) + o((nh−1))

= (n−1α−2EF (η2
1 − 2F (x0)η1ξ1 + F (x0)2ξ2

1) + γ2)(1 + o(1)) + o((nh)−1)

= (n−1α−1(F (x0)(1 − F (x0)) + (1− 2F (x0))γ) + γ2))(1 + o(1)) + o((nh−1))

=
(F (x0)(1 − F (x0))

2g(x0)nh
+ γ2

)
(1 + o(1))

which is the required result.
This estimator does have two disadvantages compared to the NPMLE: one must make

an arbitrary choice of the constant in the bin-width; and the estimator of F (x0) is not a
monotone function of x0 .

Our next example is a modification of the first one: now there are two ‘observation
times’ instead of one. Most of the information for estimating F (x0) comes from those
observations for which the two observation times are close to each other and on each side
of x0, and when the event of interest occurs between these two times. This leads to a
different (higher) optimal rate of convergence provided the joint density of the observation
times is positive at (x0, x0).

Let X1, ..,Xn be i.i.d. with d.f. F as in Example 1; let ψ(F ), F and T be as in that
example. Let (Yi1, Yi2), i = 1, . . . , n, be i.i.d. pairs independent of the Xi’s with joint
density g and with Yi1 < Yi2. The data consists of Z1, . . . , Zn with

Zi = (∆i1,∆i2, Yi1, Yi2),
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where
∆i1 = 1{Xi ≤ Yi1},
∆i2 = 1{Yi1 < Xi ≤ Yi2},

define also
∆i3 = 1{Yi2 < Xi}.

Assumption 2) is replaced by:

2′) g(y1, y2) is positive and continuous at (x0, x0); its marginals g1 and g2 are also positive
and continous at x0.

Theorem 3. For all V = Vεδ(F0) there exists c(V ) > 0 and n0 such that

rn(V ) = inf
Tn

sup
F∈V

EF (Tn − F (x0))2 ≥ c(V )

(n log n)2/3
, n ≥ n0.

Proof. We define the family {Fc(·) : |c| < Bh} as in (15)–(16). B is taken so that the pos-
itive constants γ1(Fc), γ2(Fc) and γ3(Fc) can be chosen uniformly in c for sufficiently small
h, as we mentioned in the proof of theorem 2. The joint density of (∆i1,∆i2,∆i3, Yi1, Yi2)
is now

fc = Fc(y1)δ1 (Fc(y2) − Fc(y1))
δ2 (1− Fc(y2))

δ3 g(y1, y2)

and the score is

l′c =
δ1ψ

(
y1−x0

h

)

Fc(y1)
+
δ2
(
ψ
(
y2−x0

h

)
− ψ

(
y1−x0

h

))

Fc(y2)− Fc(y1)
− δ3ψ

(
y2−x0

h

)

1− Fc(y2)
.

The conditional information for c given (Yi1, Yi2) = (y1, y2) is

ψ2
(
y1−x0

h

)

Fc(y1)
+

(
ψ
(
y2−x0

h

)
− ψ

(
y1−x0

h

))2

Fc(y2) − Fc(y1)
+
ψ2
(
y2−x0

h

)

1− Fc(y2)
.

The unconditional information I(c) can be correspondingly split into three terms, I(c) =
I1(c) + I2(c) + I3(c).

By the same calculations as in Theorem 2,

I1(c) + I3(c) =

(
g1(x0)

F0(x0)
+

g2(x0)

1− F0(x0)

)
·
∫ 1

−1

ψ2(t) dt · h · (1 + o(1))

Now I2(c) is an integral over the set

{
(y1, y2) : y1 < y2, min

(
|y1 − x0|, |y2 − x0|

)
≤ h

}

We further split the integral I2(c) as

I2(c) = J1 + J2 + J3 + J4 + J5,
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according to

(∫ x0−δ

−∞
dy1 +

∫ x0−h

x0−δ
dy1

)∫ x0+h

x0−h
dy2+

+

∫ x0+h

x0−h
dy1

(∫ x0+h

y1

dy2 +

∫ x0+δ

x0+h

dy2 +

∫ ∞

x0+δ

dy2

)
.

Here, δ → 0 as h → 0, in such a way that δ| log h| → ∞ (so h → 0 much faster than δ);
the interesting terms will come from J2 and J4.

Figure 1. I2(c) = J1 + J2 + J3 + J4 + J5.
From the assumptions on F , g and {Fc} (using the fact that γ1(Fc) is bounded away
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from zero uniformly in c and h, for small enough h)

J1 + J5 ≤
const

δ − h

∫ x0+h

x0−h
(g1(t) + g2(t)) dt = O

(
h

δ − h

)

J3 ≤ const

∫ x0+h

x0−h

∫ x0+h

y1

(
y1−y2

h

)2

y2 − y1
g(y1, y2)dy2dy1 = O(h)

J2 + J4 =

∫ x0+h

x0−h

∫ x0−h

x0−δ

ψ2
(
y2−x0

h

)

Fc(y2)− Fc(y1)
g(y1, y2) dy1dy2

+

∫ x0+h

x0−h

∫ x0+δ

x0+h

ψ2
(
y1−x0

h

)

Fc(y2)− Fc(y1)
g(y1, y2) dy2dy1

≤ const. (1 + o(1)) g(x0, x0)

(∫ x0+h

x0−h

∫ x0−h

x0−δ

ψ2
(
y2−x0

h

)

y2 − y1
dy1dy2

+

∫ x0+h

x0−h

∫ x0+δ

x0+h

ψ2
(
y1−x0

h

)

y2 − y1
dy2dy1

)

= const.g(x0, x0) (1 + o(1))

∫ 1

−1

ψ2(t)h log(
th+ δ

th+ h
) dt

= const.g(x0, x0)h | log h|
∫ 1

−1

ψ2(t) dt (1 + o(1))

= A1 h | log h |(1 + o(1)), say.

Now van Trees’ inequality, just as in Theorem 2, gives

rn(V ) ≥
(
nA1h| log h|(1 + o(1)) +

I0

B2h2

)−1

=

(
A1

3
+
I0

B2

)
(n log n)−2/3(1 + o(1))

if we take h = (n log n)−
1
3 . tu

This optimal rate has been found by Bakker (1988) and is shown in Groeneboom and
Wellner (1992) also to be achieved by the NPMLE. A reasonably simple ad hoc estimator
achieving this rate has been constructed by L. Birgé, in fact a kind of weighted histogram
estimator. The NPMLE itself can only be computed by an iterative procedure, unlike in
the first example where a simple calculation is available.
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6. Semiparametric models: asymptotic global bounds

We now use the multivariate van Trees inequality to derive asymptotic bounds for an
infinite dimensional estimator in a semiparametric model, i.e., we consider the estimator
in its entirity instead of at a single point. For simplicity we consider the simple and
familiar example of estimating an unknown distribution function based on a random sample
from the distribution itself. We show that the ordinary empirical distribution function
achieves a local asymptotic minimax lower bound for the integrated mean square error
of an arbitrary estimator. Such results have been established earlier by Levit (1978) and
Millar (1979), using the theory of Local Asymptotic Normality. The approach here, based
on the elementary inequalities obtained above, can also be applied to more elaborate
examples. The difficulty will be rather to show that certain estimators achieve the bounds
than to obtain the bounds themselves.

Truncation arguments as in Section 3 can be used to turn the results into bounds on
the integrated risk of an asymptotic distribution of an estimator sequence, under uniformity
and continuity conditions (or under Hájek regularity).

Let X1, . . . , Xn be independent vector observations in IRs with unknown distribution
function F ; write X for a generic observation. Let Fn denote an arbitrary estimator of F .
We study the integrated mean square error

Rn(Fn, F ) = nEF

∫

IRs

(
Fn(x) − F (x)

)2
µ(dx)

where µ is a fixed finite measure on IRs.
For x and y in IR

s we denote by x∧y the vector containing the coordinatewise minima
of the components of x and y, while χ(x) is the indicator function of the closed positive
orthant in IRs:

(x ∧ y)i = xi ∧ yi,
χ(x) = 1{xi ≥ 0 ∀i} .

Let F̂n(x) = 1
n

∑
χ(x −Xi) be the empirical distribution function. We have

Rn(F̂n, F ) =

∫
F (x)(1 − F (x))µ(dx) = R0(F ), (17)

say.
We do not necessarily assume that F is completely unkown. However the class of

possible F must be rich enough if R0(F ) is to figure as a lower bound for Rn(Fn, F ). In
order to specify exactly what is a rich enough class, introduce a complete orthonormal
system of functions {φi(x)} in L2

µ(IRs). Define functions gi by

gi(y) =

∫
χ(x − y)φi(x)µ(dx). (18)

Let F be a set of distribution functions on IRs endowed with the topology T induced
by total variation distance. The following assumption is now essential (Levit, 1978, Millar,
1979): we say that F is rich enough if for each F0 ∈ F and any k = 1, 2, . . . there exists
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a sequence of functions gij(y), i = 1, . . . , k, j = 1, . . ., and neighbourhoods Cj of zero in

IRk, such that

lim
j→∞

∫ (
gij(y) − gi(y)

)2
dF0(y) = 0, i = 1, . . . , k, (19)

and for each j = 1, 2, . . . the family of distributions Fj = {Fc : c ∈ Cj} on IRs defined by

dFc
dF0

(y) = exp
( k∑

i=1

cigij(y) − b(c)
)

(20)

belongs to F .
Now we can state our main result:

Theorem 4. If F is rich enough, then

lim
V ↓{F0}

lim
n→∞

inf
Fn

sup
F∈V

Rn(Fn, F ) = R0(F0) (21)

where the infimum is taken over all possible estimators Fn and V ↓ {F0} denotes the limit
in the net of shrinking neighbourhoods (with respect to the variation distance) of F0.

Proof. Since Rn(F̂n, F ) = R0(F ) and this quantity is continuous in the variation distance
topology, R0(F0) is certainly an upper bound to the left hand side of (21). We must show
that the later also cannot be less than R0(F0). Suppose R0(F0) > 0 since otherwise the
result is trivial. Now, let us define

φi(F ) =

∫
F (x)φi(x)µ(dx) =

∫
gi(y)dF (y),

and for a given estimator Fn we let

φni =

∫
Fn(x)φi(x)µ(dx), and φn = (φn1, φn2, . . .).

Note that by Parseval’s identity

Rn(Fn, F ) = EF n
∞∑

i=1

(
φni − φi(F )

)2
.

The reader may also verify that for given F0 and k, j, the family of distributions Fc,
c ∈ Cj ⊆ IRk is continuous in c with respect to the topology T .

Now let V be any neighbourhood of F = F0, and for any given k, j let Cj be a

neighbourhood of 0 ∈ IRk such that Fc ∈ V for all c ∈ Cj . Choose a prior density λ(c)
with C, the support of λ, contained in Cj, together satisfying the assumptions of the
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multivariate van Trees inequality. Then by the L2 norm version (10) of the van Trees
inequality

r(V ) = lim
n

inf
Fn

sup
F∈V

Rn(Fn, F ) ≥ lim
n

inf
Fn

sup
c∈Cj

Rn(Fn, Fc)

≥ lim
n

inf
Fn

∫

C

Rn(Fn, Fc)λ(c)dc

≥ lim
n

inf
Fn

∫

C

EFcn
k∑

i=1

(
φni − φi(Fc)

)2
λ(c)dc

≥ lim
n

n

(
∫
C

∑k
i=1

∂φi(Fc)
∂ci

λ(c)dc

)2

n
∫
C

∑k
i=1 VarFcgij(X)λ(c)dc + Ĩ(λ)

=

(
∫
C

∑k
i=1

∂φi(Fc)
∂ci

λ(c)dc

)2

∫
C

∑k
i=1 VarFcgij(X)λ(c)dc

,

(22)

provided the denominator of the final term is non-zero. We have used here the fact from
exponential family theory that the b(c) in (20) satisfy the relations

∂b

∂ci
(c) = EFcgij(X), i = 1, . . . , k.

Observe next that the functions gi(y) in (18) are uniformly bounded (by (µ(IRs))1/2),
and

∂φi(Fc)

∂ci
=

∫
gi(y)

(
gij(y) − EFcgij(X)

)
dFc

= CovFc
(
gi(X), gij (X)

)

and hence according to (19)–(20)

lim
j→∞

lim
c→0

∂φi(Fc)

∂ci
= VarF0gi(X),

lim
j→∞

lim
c→0

VarFcgij(X) = VarF0gi(X).

Thus letting C ↓ {0} in (22) and then j →∞ we find

r(V ) ≥
k∑

i=1

VarF0gi(X)
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and, since k is arbitrary, using again Parseval’s identity

r(V ) ≥
∞∑

i=1

VarF0gi(X) =

∫ ∞∑

i=1

gi(y)2dF0(y) −
∞∑

i=1

(∫
gi(y)dF0(y)

)2

=

∫ ∫
χ2(x − y)dµ(x)dF0(y) −

∞∑

i=1

φi(F0)2

=

∫
F0(x)dµ(x) −

∫
F0(x)2dµ(x) = R0(F0),

concluding the proof of the theorem. tu
The approach we have just given works, without any changes being needed at all,

for well-behaved semiparametric models. Suppose for instance we still want to estimate
a distribution function, now not the distribution of the data but an infinite dimensional
parameter of its distribution. Considering integrated mean square error, the problem is
converted into estimating a sequence of real functionals of F and then by truncation into
estimating just a finite number of real functionals. We next consider the finite dimensional
submodel whose score functions are exactly the optimal influence functions for these func-
tionals (the projections into the tangent space of the gradients of the functionals). As in
our calculations above, the denominator in the final line of (22) is the same, when squared,
as the numerator, giving as lower bound the sum of the lower bounds for each functional
separately. This lower bound corresponds to the integrated mean square error of the opti-
mal limiting distribution found in the convolution or local asymptotic minimax theorems.
Indeed, denoting the projected or canonical gradients by gi(x), i = 1, . . . , k, the general

theory says that provided F is rich enough
∑k

i=1 VarF0gi(X) is the required lower bound
for estimating the finite number of functionals with respect to sum of squared error losses.

One could apply this to the usual random censorship model. Weits (1991) shows that
n times the mean square error of the Kaplan-Meier estimator is equal to the mean square
error of its limiting distribution, up to an error of order 1/n, provided one stays away
from the right tail of the distribution of the data; this limiting distribution is known to be
optimal in the sense just mentioned. Therefore the estimator has asymptotically optimal
integrated mean square error with respect to measures µ with support strictly inside the
support of the observations. It would be nice to extend this to a result on the whole line
under appropriate integrability conditions. We believe Weits’ striking results on second
order properties of the Kaplan-Meier estimator could possibly have been obtained more
easily by exploiting the van Trees inequality.
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