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1 Introduction

Practically all computations of the value of � before 1600 were done using Archimedes'
method. As is well-known, this method consists of approximation of the circle with diameter
1 by inscribed and circumscribed regular polygons. Denote the circumference of the inscribed
and circumscribed regular N -gon by PN and QN respectively. Then PN < � < QN and

lim
N!1

PN = lim
N!1

QN = �

A little trigonometry shows us that

QN = N tan
�

N
; PN = N sin

�

N
(1)

from which the duplication formulae

Q2N =
2PNQN

PN +QN
; P2N =

p
PNQ2N (2)

follow readily. As is well-known, Archimedes, started with the values Q6 = 2
p
3 and P6 = 3

and calculated Q12; P12; Q24; : : : ; Q96; P96 consecutively using the duplication formulae (2).
See [A]. We also know that Ludolph van Ceulen, around 1600, continued this procedure until
he obtained 35 decimal places of �. To get an idea of the accuracy of the approximation QN

to � we use the Taylor series expansion of tan x. We get,

QN = N

�
�

N
+

1

3

� �
N

�3
+

2

15

� �
N

�5
+ � � �

�

= � +
1

3

�3

N2
+

2

15

�5

N4
+ � � �

In other words, QN � � has order of magnitude O( 1
N2 ). More precisely, QN � � is equal

to �3

3N2
up to order O( 1

N4
). Similarly, PN � � equals � �3

6N2
up to order O( 1

N4
). From these

two facts it follows immediately that 1
3(QN � �) + 2

3(PN � �) = 1
3QN + 2

3PN � � has order
O( 1

N4 ). So we see that 1
3QN + 2

3PN gives an approximation of � having approximately twice
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as many correct digits as PN or QN . This was discovered by the Dutch natural scientist
Willibrord Snellius in 1621, about ten years after Van Ceulen's death. In fact, Snellius was
Van Ceulen's successor at the University of Leiden. Snellius used geometrical observations
to �nd his approximations. Only very much later Christiaan Huygens delivered a complete
proof of the correctness of these observations.
The conclusion is that Van Ceulen could have stopped halfway through his calculations,
compute 1

3QN + 2
3PN for the value of N then reached, and obtain 35 decimal places of �.

Such a speedup of calculation makes one wonder if Snellius' discovery can be generalised in
its turn. It is the purpose of this article to give a number of such generalisations. In our
considerations we assume that we carry out a number of steps of the Archimedean algorithm,
followed by addition of a few terms of one of the series expansions in this article. During the
Archimedean steps we assume that we keep track of the latest values of PN ; QN as well as
PN=N;QN=N .
Suppose we wish to compute � to L decimal places. As a time unit we may take the time to
perform one operation (addition, multiplication, division) of two L-digit numbers. Then the
Archimedean algorithms gives us the answer with L-digit precision in O(L) steps. However, if
we combine the Archimedean steps with the Snellius' type acceleration we require only O(

p
L)

steps. We have not made any e�ort to make this very precise, since modern day methods are
far better suited for the high precision calculation of �.
Of course the possiblity of improvements, like the ones discussed in this paper, has been
considered by many others, professional mathematicians and amateurs alike. See for example
[Ph]. Unfortunately it is hard to get a good overview concerning publications on this subject.
So we do not claim any originality in the results here. We simply consider it an amusing aside
to �-folklore.
By the way, the second author of this article has tried to make an estimate of the time required
for Van Ceulen's calculations by doing a few sample calculations on 35-digit numbers. It does
not seem to be as bad as people usually think.

2 Accelerations based on arctan

The �rst improvement is obtained by using the arctangent series. From QN = N tan �
N

it
follows immediately that

�

QN
=

arctan(QN=N)

QN=N
:

Using the well-known Taylor series for arctan we obtain

Theorem 2.1

�

QN

= 1 � 1

3

�
QN

N

�2

+
1

5

�
QN

N

�4

� 1

7

�
QN

N

�6

+ � � �

So, by subtracting QN � 13
�
QN
N

�2
from QN Van Ceulen could have doubled the precision of his

calculations in one stroke. By adding the next term the precision could have been tripled.
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There is a nice variation on the above formula which does not use PN=N or QN=N , but only
the value tN = QN�PN

2QN
. To explain this we need a few facts on hypergeometric functions.

Let a; b; c be real numbers and c 6= 0;�1;�2; : : :. Then the Gauss' hypergeometric function
with parameters a; b; c is de�ned by the power series

FGauss(a; b; c; z) =
1X
k=0

(a)k(b)k
(c)kk!

zk:

Here, (x)k is the so-called Pochhammer symbol de�ned by (x)k = x(x+1) � � � (x+k�1). The
series converges for all complex z with jzj < 1. There is an extensive and beautiful theory
around such functions, which we cannot dwell upon here. Instead we simply like to state one
of the many transformation formulas between hypergeometric series,

FGauss

�
1

2
a;
1

2
a+

1

2
;
1

2
a+

1

2
b+

1

2
;
4t2 � 4t

(1 � 2t)2

�
= (1 � 2t)a FGauss

�
a; b;

1

2
a+

1

2
b+

1

2
; t

�
(3)

This formula is basically due to Kummer and can be found in [AS,p 561]. As a result of this
formula we �nd the following application which is useful for us.

Proposition 2.2

FGauss

�
1

2
; 1;

3

2
;
4t2 � 4t

(1� 2t)2

�
= 1�

1X
k=1

(2)k
(3=2)k

tk

k
:

To see this, apply formula (3) with a = b = 1 to get

FGauss

�
1

2
; 1;

3

2
;
4t2 � 4t

(1 � 2t)2

�
= (1� 2t)FGauss

�
1; 1;

3

2
; t

�

= (1� 2t)
1X
k=0

k!

(3=2)k
tk

For any k � 1 the coe�cient of tk in the last product is of course equal to

k!

(3=2)k
� 2

(k � 1)!

(3=2)k�1
:

A straightforward calculation shows that this is equal to

(k + 1)!

(3=2)k

1

k
=

(2)k
(3=2)k

1

k
:

Our Proposition now follows immediately. qed

We note that the arctangent series is an example of a hypergeometric series. One easily checks
that
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arctan z

z
= FGauss

�
1

2
; 1;

3

2
;�z2

�

We like to substitute z = QN=N here. Now observe that tN = (QN�PN )=QN = 1
2
(1�cos �

N
).

Using this we �nd that

�
�
QN

N

�2

= �
�
sin �

N

cos �
N

�2

= 1 � 1

(cos �
N
)2

= 1 � 1

(1 � 2tN)2
=

4t2N � 4tN
(1 � 2tN)2

Using this observation and Proposition 2.2 we �nd

Theorem 2.3
�

QN
= 1�

1X
k=1

(2)k
(3=2)k

tkN
k
:

Note that if we take the �rst two terms of this series, we get

� � QN � 4

3
QNtN = QN � 2

3
(QN � PN ) =

1

3
QN +

2

3
PN ;

which is precisely Snellius' improvement. Finally we like to point out that tN = 2(P2N=2N)2.

3 Accelerations based on arcsin

Just as with the arctan series we can also play with the arcsin series, which reads

arcsin z

z
=

1X
k=0

(1=2)k
k!

z2k

2k + 1

= FGauss

�
1

2
;
1

2
;
3

2
; z2
�
:

As an immediate consequence it follows from �
PN

= arcsin(PN=N)
PN=N

that

Theorem 3.1
�

PN
=

1X
k=0

(1=2)k
k!

1

2k + 1

�
PN
N

�2k

:

There is a small variation based on the following Proposition.
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Proposition 3.2

(1� z2)1=2
arcsin z

z
= 1 +

1

2

1X
k=1

(k � 1)!

(3=2)k
z2k

This result follows from the another well-known formula in hypergeometric functions, which
reads

(1� z)a+b�cFGauss(a; b; c; z) = FGauss(c� a; c� b; c; z):

The formula can be found in [AS, p559]. Apply this with a = b = 1=2; c = 3=2 and z replaced
by z2 to get

(1� z2)�1=2
arcsin z

z
= FGauss(1; 1;

3

2
; z2):

Multiply on both sides by 1� z2 and notice that

(1� z2)FGauss(1; 1;
3

2
; z2) = (1� z2)

1X
k=0

k!

(3=2)k
z2k

= 1 +

1X
k=1

�
k!

(3=2)k
� (k � 1)!

(3=2)k�1

�
z2k

= 1 +
1

2

1X
k=1

(k � 1)!

(3=2)k
z2k

qed

We apply our Proposition with z = PN=N = sin �
N
. Notice that (1 � z2)1=2 = cos �

N
. Hence

the Proposition implies the following.

Theorem 3.3
�

QN
= 1 +

1

2

1X
k=1

(k � 1)!

(3=2)k

�
PN
N

�2k

:

Looking back we see that we expressed �
QN

as a power series in PN
N

and in QN
N
. We also

expressed �
PN

as a power series in PN
N
. Although there is certainly a power series for �

PN
in

terms of QN
N
, the shape of this series does not seem to be as simply as the other three.

4 Gain of the acceleration

In this section we indicate brie
y how much Archimedes' calculation can be speeded up using
our Taylor series. As we said before, we use the time taken for one operation on two L-digit
numbers as a unit of time. Suppose we wish to calculate � to L decimal places. We �rst carry
out

p
L steps of Archimedes' algorithm. This gives us

p
L � log10(4) correct decimal places.

To increase this precision by a factor
p
L we have to take O(

p
L) terms of any of the power

series given in the previous sections. So the total number of steps is again O(
p
L). As we
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already indicated in the introduction, modern methods like the Gauss-Salamin algorithm or
its speedup by the Borweins provide a much faster scheme of computation. The number of
steps required for the latter methods is O(log L).
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