
CYCLOTOMIC POINTS ON CURVES

F. Beukers and C.J. Smyth

Abstract. We show that a plane algebraic curve f = 0 over the complex
numbers has on it either at most 22V (f) points whose coordinates are both roots
of unity, or in�nitely many such points. Here V (f) is the area of the Newton
polytope of f: We present an algorithm for �nding all these points.

1. Introduction. When does a curve f(x; y) = 0 with complex coe�cients
have cyclotomic points on it? By cyclotomic points we mean points (x; y) with x
and y both roots of unity. How do we estimate the number of cyclotomic points on
a given curve? How do we actually �nd all these points?

In Section 2 we present an algorithm for �nding the cyclotomic part of a poly-
nomial in one variable. We do this �rst for polynomials with rational coe�cients,
and then show how the algorithm can be extended to polynomials with complex
coe�cients. In Section 3 we give an algorithm for �nding all the cyclotomic points
on a curve. This algorithm uses the algorithm of Section 2. Again, we �rst present
an algorithm for curves with rational coe�cients, and show how it can be extended
to curves over more general �elds. In Section 4 we state and prove our main result,
giving an upper bound of 22V (f) for the number of cyclotomic points on the curve,
when this number is �nite. Here V (f) is the area of the Newton polytope of f: In
Section 5 we give some examples and applications of our results. Finally, in Section
6 we give a sharp version of our main result.

2. Finding the cyclotomic part of a one-variable polynomial. As a
warm-up for the problem of �nding cyclotomic points on curves, let us �rst look
at the one-variable version of the problem: given a polynomial f(x) of degree d;
with rational coe�cients, �nd all roots of unity ! which are zeroes of f: This is of
course equivalent to �nding the factor of f consisting of the product of all distinct
irreducible cyclotomic polynomial factors of f; which we shall call the cyclotomic
part of f: One way of �nding the cyclotomic part of f is simply to use trial division
of f by cyclotomic polynomials of degree up to that of f: Our approach here is
somewhat di�erent, and gives a more e�cient algorithm. It is based on the following
simple properties of roots of unity.

Lemma 1. (i) If g(x) 2 C [x]; g(0) 6= 0; is a polynomial with the property that
for every zero � of g; at least one of ��2 is also a zero, then all zeroes of g are
roots of unity.

(ii) If ! is a root of unity, then it is conjugate to exactly one of �!; !2 and �!2:
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Conversely, if � 6= 0 and either �2 or ��2 is conjugate to �; then � is a root of
unity.

Recall that two algebraic numbers are conjugate if they are zeroes of the same
irreducible polynomial with integer coe�cients. The obvious example � =

p
2

shows that � and �� can be conjugate without � being a root of unity.
The �rst part of (ii) was stated without proof in [Sm], where it was used to �nd

the cyclotomic factors of a family of polynomials. The converse part of (ii) is a
special case of a result of Dobrowolski[D], Lemma 2(i).

To prove (i), suppose that � is any zero of g: Then so is one of ��2; and hence
so is one of ��4; one of ��8; and so on. As g has only �nitely many zeroes, two of
these powers must be equal. As � 6= 0; this shows that � is a root of unity.

The second part of the lemma follows from the observation that ! is conjugate
to !` for 8>><

>>:
` = 2k + 1; !` = �! for ! a 4kth root of unity

` = k + 2; !` = �!2 for ! a 2kth root of unity, k odd

` = 2; !` = !2 for ! a kth root of unity, k odd

For the �nal part of (ii): if � and one of��2 are conjugate, with minimal polynomial
g; then g(�) = g(��2) = 0; which implies that g(x) divides g(x2): Hence for any

conjugate �0 of �; g(��02) = 0; so that we can apply (i).

We claim that, for f 2 Q[x]; the following recursive algorithm �nds Cf; the
(square{free) cyclotomic part of f; which is

(Cf)(x) =
Y

f(�)=0
� root of 1

(x� �):

An algorithm for �nding the cyclotomic part of a polynomial, using essentially
the same ideas, was given earlier by Bradford and Davenport [BD]. First of all, we
can clearly assume that f is monic and not divisible by x: De�ne Gf by

(Gf)(x) = gcd((f(x); f(x2)f(�x2)):

Then we claim that Cf is given recursively in pseudocode by
Function C
Input f, Output Cf
Local f; f2; g; h
if Gf = f then h := f
else

f2(x) := gcd(f(x); f(�x))
g(x) := f2(

p
x)

h(x) := (CGf)(x) � (Cg)(x2)
fi

Return(h= gcd(h; h0))
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end

Proof of termination and correctness of the algorithm.

We work by induction on the degree of f . When f is constant we have Gf = f ,
hence the output is a constant, which is correct.

Assume now that f has positive degree and suppose the algorithm works for
all polynomials of lower degree. First note that if Gf = f then f has only roots
of unity as zeroes by Lemma 1(i). In that case we also have f = Cf and thus f
is the correct output. Let us now assume that Gf has strictly lower degree than
f . Suppose that � is a cyclotomic zero of f . Then, by Lemma 1(ii), � is zero of
at least one of f2(x) = gcd(f(x); f(�x)) or (Gf)(x). Hence (Cf)(x) has the same
zero set as (CGf)(x)(Cf2)(x). The latter may contain zeroes of higher multiplicity.
Note that f2(x) is a polynomial in x2, say f2(x) = g(x2): So �nding the common
cyclotomic zeroes of f(x) and f(�x) comes down to �nding the cyclotomic zeroes
of g. Hence (Cf)(x) also has the same zero set as h = (CGf)(x)(Cg)(x2); giving
(Cf)(x) = h= gcd(h; h0): Since, by assumption, the degrees of Gf and g are strictly
smaller than the degree of f , our induction hypothesis guarantees that algorithm
C works on Gf and g. Hence we can compute Cf .

We note that this `cyclotomic part' algorithm can be easily extended to �nd
the cyclotomic part of a polynomial f(x) whose coe�cients are algebraic, lying in
some number �eld K: To do this, simply compute gcd(f(x); CNf(x)); where N
is the norm NK(x)=Q (x): Finally, we can extend the algorithm to any f 2 C [x]:
Suppose that not all coe�cients of f are algebraic, with its coe�cients lying in
some extension �eld F of the algebraic numbers Q: Scaling f so that f(0) = 1; we
can �nd an automorphism � 2 Gal(F=Q) so that f� 6= f for the image f� of f
under �: As f�(0) = 1; gcd(f; f�) has lower degree than f; while having the same
cyclotomic zeroes. Thus we can reduce the degree of our polynomial until all its
coe�cients are algebraic.

3. Finding cyclotomic points on curves.

3.1 De�nitions.

We now address the problem of �nding cyclotomic points on the curve f(x; y) =
0: We simply call these the cyclotomic points of f . We can allow f to be in
C [x; x�1 ; y; y�1]; so that it is a Laurent polynomial. For f(x; y) =

P
i;j aijx

iyj

we de�ne the support of f; to be supp(f) = f(i; j) 2Z2 j aij 6= 0g: Let N (f) be the
convex hull of supp(f); called the Newton polytope of f; with area V (f): The set
of di�erences fj � j 0 j j; j0 2 Z2g generates a sublattice L(f) of Z2; the exponent
lattice of f: For f not equivalent to a constant, this lattice is a rank 1 or rank 2
Z-module. If the lattice is the whole of Z2; L(f) is said to be full. We de�ne the
extension �eld of Q generated by all ratios aij=ai0j0 of non-zero coe�cients of f to
be the coe�cient �eld of f .

We say that two Laurent polynomials are equivalent if their ratio is a non-zero
scalar multiple of a monomial xayb: Two equivalent Laurent polynomials clearly
have the same cyclotomic points, and the same coe�cient �eld. This allows us to
assume that f is a (true) polynomial, and also that at least one of its coe�cients
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is rational. Note that its coe�cient �eld is then simply the extension �eld of Q
generated by its coe�cients.

We let !n denote a primitive nth root of unity.
We now consider how to �nd the cyclotomic points of f for various di�erent

classes of f:

3.2 L(f) of rank 1:
In this case it is clear that f is equivalent to a Laurent polynomial of the form

c(xky`); where k; ` 2Zand c is a polynomial in one variable. If f has a cyclotomic
point (x; y); then c must have a zero ! which is a root of unity. We can use
the algorithm of Section 2 to �nd the cyclotomic part of c; and so �nd all such
zeroes !: Thus to �nd all cyclotomic points on the curve, we only have to solve the
equations xky` = ! for every zero ! of c: If (k; `) = 1; then from kk1 + ``1 = 1
we obtain the general solution (x; y) = (!k1 t`; !`1t�k); where t is any root of
unity. If g = (k; `) > 1 we can consider c(xk=gy`=g); and we are reduced to the
relatively prime case. Thus in this case we have no cyclotomic points of f if c has
no cyclotomic part, and in�nitely many such points otherwise.

3.3 L(f) full of rank 2 : General form of the algorithm.
Our strategy for �nding the cyclotomic points of f when L(f) is full of rank 2

is the following. We �rst identify a �nite set ffig of polynomials with the property
that each cyclotomic point on f is also on some fi; and such that no fi has a
common component with f:

We then claim that the following algorithm will �nd all the cyclotomic points of
f:

1. For each i compute the y-resultant of f and fi; and form the product R(x)
of these resultants. Calculate CR(x) using the algorithm of Section 2.

2. For each zero ! of CR(x); �nd zeroes !0 of the cyclotomic part of f(!; y);
using the algorithm for a polynomial having coe�cients in the relevant �eld, as
described in Section 2. Then the points (!; !0) are the cyclotomic points of f:

Now, as is well known, the y-resultant of two polynomials like f and fi can be
expressed in the form hifi + h�i f for some hi; h

�
i 2 C [x; y]: Thus the zeroes of its

cyclotomic part includes the x-coordinates of all cyclotomic points on both curves.
If all the fi have the stated properties, this resultant will be a polynomial in x only,
and so the algorithm will �nd every one of the �nite number of cyclotomic points.

We now separate the proof into two main cases, depending on whether or not
the coe�cient �eld of f is a sub�eld of the maximal abelian extension Qab of Q:
However for ease of exposition we look �rst at the case where the coe�cient �eld of
f is rational. We assume throughout this section that f is a polynomial, irreducible
over its coe�cient �eld. If it is reducible, factorise it over that �eld and apply the
algorithm separately to each irreducible factor. It may be that some of these factors
have their lattices of rank 1; in which case 3.2 above should be applied.

3.4 L(f) full of rank 2; f with rational coe�cients.



CYCLOTOMIC POINTS ON CURVES 5

We must �nd a set of polynomials fi with the properties stated. To do this, let
(x; y) be a cyclotomic point of f: Then there is a root of unity ! such that both x and
y are powers of !; say x = !a and y = !b:We can, by replacing ! by a power of itself,
assume that gcd(a; b) = 1: Thus f(!a; !b) = 0 and so, by Lemma 1, also at least one
of f(!a;�!b); f(�!a; !b); f(�!a;�!b); f(!2a; !2b); f(!2a;�!2b); f(�!2a; !2b) or
f(�!2a;�!2b) is also zero. Note that we are also using the fact that a and b are
not both even. Thus our cyclotomic point (x; y) of f also lies on at least one of
the seven other curves fi = 0(i = 1; � � � ; 7); where f1(x; y) = f(x;�y); f2(x; y) =
f(�x; y); f3(x; y) = f(�x;�y); f4(x; y) = f(x2; y2); and fi(x; y) = fi�4(x

2; y2) for
i = 5; 6; 7:

It remains only to check that f does not divide any of the fi: Now, it is easy
to see that, if f jf1; then f is equivalent to a polynomial in Q[x; x�1; y2; y�2]; in
which case L(f) would not be full. Similarly, if f jf2; then f is equivalent to a
polynomial in Q[x2; x�2; y; y�1]; while if f jf3; f is equivalent to a polynomial in
Q[xy; 1=xy; x=y; y=x]; so that, again, L(f) would not be full. Also note that if any
of f1; f2; f3 were to divide any other one of f1; f2; f3; the same contradiction would
apply.

Next, suppose f jf4: Then, as f4(x; y) 2 Q[x2; y2]; we have that each of f1; f2
and f3 also divide f4: Hence ff1f2f3jf4; clearly impossible by degree considerations
(say, in x) . Exactly the same argument applies to f5; f6 and f7: This completes
the proof that the fi have the required properties, and so our algorithm works for
f with rational coe�cients.

3.5 L(f) full of rank 2; f with coe�cients in Qab:
We now de�ne the fi in the case of f having coe�cients lying in a cyclotomic

�eld Q(!N): We take f irreducible over Qab; with constant term 1: We choose N
to be minimal in the following strong sense. For any roots of unity !0 and !00;
f(!0x; !00y) has the same number of cyclotomic points as f: So, take N to be the
smallest integer such that, for some roots of unity !0 and !00; f(!0x; !00y) has all its
coe�cients in K = Q(!N): We then replace f by this polynomial. When we have
found the cyclotomic points on this new f; it is easy to go back and �nd those on
the original f:

We need to separate the two cases of N odd and N a multiple of 4:
Case I: N odd. Take � to be an automorphism of K taking !N to !2N : We keep

f1; f2; f3 as in 3.4, but replace the polynomials f4; f5; f6; f7 of 3.4 by f
�
4 ; f

�
5 ; f

�
6 ; f

�
7 :

(Of course this has no e�ect if K = Q:) We then claim that any cyclotomic point
of f also lies on one of these new fi = 0 for i = 1; � � � ; 7: Take a cyclotomic
point P = (!rm; !

s
m) of f; with gcd(r; s) = 1: If 4 - m then we can extend � to

an automorphism of K(!m); which takes !m to one of �!2m: Hence P also lies
on one of f4; f5; f6 or f7: On the other hand, if 4jm; we put 4k = lcm(m;N):

Then the automorphism, � say, of K(!m) = Q(!4k) mapping !4k 7! !2k+14k takes

!m 7! !2k+1m = �!m and !N 7! !2k+1N = !N : Thus P also lies on one of f1; f2 or
f3:

For this case, it follows that we can take f1; � � � ; f7 to be the set of fi: The
argument of the previous paragraph carries over to show that none of them has a
common component with f:

Case II: 4jN: We take the point P as in Case I, again put 4k = lcm(m;N);



6 F. BEUKERS AND C.J. SMYTH

and use the same automorphism �: Then � takes !m 7! !2km !m = �!m and !N 7!
!2kN !N = �!N : We now consider separately the four possibilities for these signs.
Firstly, they cannot both be + signs, from the de�nition of k:

If

�(!m) = !m �(!N) = �!N
then P also lies on f� : Note that f� 6= f; by the minimality of N; so that they have
a proper intersection.

If

�(!m) = �!m �(!N ) = !N

then P lies on one of f1; f2 or f3: , As L(f) is full, each has proper intersection
with f; as we saw in 3.4.

Finally if

�(!m) = �!m �(!N) = �!N
then P lies on one of f�1 ; f

�
2 or f�3 : Suppose that for instance f and f� (�x; y)

have a common component, so that f�(�x; y) = f(x; y): Then we would have
f(!Nx; y)

� = f� (�!Nx; y) = f(!Nx; y); so that f(!Nx; y) 2 Q(!2N)[x; x�1; y; y�1];
contradicting the minimality of N: The same argument applies to f� (x;�y) and to
f� (�x;�y):

Thus for Case II P lies on one of the seven curves f1; f2; f3; f
� ; f�1 ; f

�
2 and f�3 ;

which we take to be our set ffig: Note that the de�nition of these curves depends
only on N; not on m: Since, by assumption, f has at least one rational coe�cient,
none of f� ; f�1 ; f

�
2 or f�3 has a common component with f:

3.6 L(f) full of rank 2; f with coe�cients in C :

Take f to be absolutely irreducible, with constant term 1; and f having coe�cient
�eld, L say, not a sub�eld of Qab: Choose an automorphism � 2 Gal(L=Qab) which
does not �x f: Then since all roots of unity belong to Qab; f and f� have the same
cyclotomic points. Further, f and f� have no common component. Thus in this
case we can take the set of fi to be the single polynomial f�:

3.7 L(f) of rank 2; but not full.
Suppose that L(f) has a basis (a; c); (b; d) with index I = jad � bcj in Z2: Put

u = xayc; v = xbyd; so that f is equivalent to f�(u; v) for some Laurent polynomial

f� with f� full. For convenience de�ne an SL2(Z)-action of A =

�
a b
c d

�
on

monomials xiyj by (xiyj)A = xai+bjyci+dj ; and so on pairs of monomials by this
action on each coordinate. Then we can write the relations connecting x; y with

u; v as
�
x
y

�A
=
�
u
v

�
: Now, putting A into Smith Normal Form ([N], p. 26) yields two

matrices U and W in SL2(Z) with WAU = D say, where D = diag(d1; d2); and d1
and d2 are positive integers with d1jd2: Also d1d2 = I: Hence

�
x

y

�W�1D

=

�
u

v

�U
=

�
u�

v�

�
(*)
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say. Now, as L(f�) is full, we can �nd all cyclotomic points (u; v) of f�: Then,
letting u1; u2 be all possible primitive d1th, d2th roots of u�; v�; respectively, each
cyclotomic point (u; v) of f� gives I points

�
x

y

�
=

�
u1
u2

�W

of f: Hence the cyclotomic points of f can be obtained from those of f�: Also, we
see that f has I times as many cyclotomic points as f�:

4. Sharp and almost-sharp bounds for the number of cyclotomic points

on a curve.

4.1 The main Theorem.
We now obtain good upper bounds on the number of cyclotomic points of f:

De�ne f to be reciprocal if it is equivalent to �f(x�1; y�1); where � denotes complex
conjugation.

Theorem. Let f 2 C [x; x�1 ; y; y�1]; having Newton polytope of area V (f):
Then f has either at most 22V (f) cyclotomic points, or in�nitely many. In the
latter case f has a factor xiyj � ! for some root of unity ! and some integers i; j
not both 0:

If all of the absolutely irreducible factors of f are non-reciprocal, then f has at
most 4V (f) cyclotomic points.

If none of the coe�cient �elds of the absolutely irreducible factors of f is a
sub�eld of Qab; then f has at most 2V (f) cyclotomic points.

Finally, the constant 22 above cannot be replaced by any constant smaller than
16: The constants 4 and 2 are best possible.

A result of Liardet [Li] tells us that if a plane curve over C has in�nite inter-
section with the division group of a �nitely generated multiplicative group, then
the curve has an irreducible component which is the translate of a subtorus. Our
result contains an alternative proof of the special case when the �nitely generated
group is the trivial group. This was in fact �rst proved by Ihara, Serre and Tate,
independently (see [La]). Quantitative (though large) bounds on the number of
such points, when this number is �nite, follow from a general result of Schmidt [Sc]
on the number of maximal torsion cosets on a variety. Our theorem gives an almost
sharp quantative upper bound in the curve case. A far more general conjecture
of Lang, proved in 1995 by McQuillan [M], incorporating conjectures of Mordell
and Manin{Mumford, describes the intersections of a semi-abelian variety A over
C with the division group of a �nitely generated subgroup of A: See Hindry and
Silverman [HS], especially p.439, for a very readable, up-to-date account of results
in this area.

4.2 Lemmas for the proof.
For the proof of the theorem, we need the following two lemmas. The �rst one

is a particularly important ingredient in our proof.
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Recall that for two convex sets S1; S2 in Rn; their Minkowski sum S1 + S2 is
de�ned to be fx1 + x2 j x1 2 S1; x2 2 S2g: Also, let V be the n-volume function.

Lemma 2. If the curves f = 0 and g = 0 have no common component, then the
number of points of C �2 common to both curves is at most

V (N (f) +N (g))� V (f)� V (g):

In particular, if in addition the polynomial g has the same support as f(xk; yk)
for some positive integer k; then the number of such points is at most 2kV (f):

Proof. The �rst statement of the lemma is a based on a slight strengthening,
due to Fulton [F] p. 122, of a result of D. N. Bernstein, A.G. Kouchnirenko,
and A.G. Khovanskii which, in the two variable case, gives an upper bound for
the number of points of C �2 on two plane algebraic curves f = 0; g = 0 without
common component. More precisely, they give a bound 2V (f; g) for the sum of the
intersection numbers of the points on both curves. Here V (f; g) is the mixed volume
ofN (f) and N (g):The theory of mixed volumes is discussed in [E], p.82, but for our
purposes we can just use the fact that 2V (f; g) = V (N (f)+N (g))� V (f)�V (g):
(A very accessible account of this kind of result is given in [St].)

For the second part, we have N (g) = kN (f); so that

V (N (f) +N (g))� V (f)� V (g) = ((1 + k)2 � 1� k2)V (f) = 2kV (f):

Lemma 3. (i) If B1; � � � ;Bk are convex bodies in Rn; then

V (B1 + � � �+ Bk) > V (B1) + � � �+ V (Bk):
(ii) If g = g1g2 � � �gk; where g and the gi are in C [x; y]; then

N (g) = N (g1) + � � �+N (gk):

Proof. (i) By the Brunn-Minkowski inequality ([E], p.97), we have that

V (�B1 + (1� �)B2)
1
n

is a convex function of �; 0 6 � 6 1: Putting � = 1=2 and taking the nth power
gives the result for k = 2; from which the general case follows immediately. (In fact
this proof gives a stronger result, namely (i) with V replaced by V 1=n throughout,
but we do not need this for our purposes.)

(ii) It is enough to do the case k = 2: This follows from the fact that if g = g1g2
then each extreme point of N (g) is a sum of an extreme point of N (g1) and an
extreme point of N (g2):

Note that, from Lemma 3(ii), the term V (N (f) +N (g)) in Lemma 2 is simply
V (fg):
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We now prove the theorem. We separate the proof into various cases.

4.3 L(f) of rank 1:
Here V (f) = 0 and, from 3.2, f has either no cyclotomic points, or it has a factor

of the form xiyj � !; and in�nitely many cyclotomic points. Hence the theorem is
true in this case.

4.4 L(f) full, of rank 2; f with coe�cients in Qab; irreducible over Qab:
In this case we know from 3.4 that in Case I (N odd) any cyclotomic point of f

lies on one of the seven fi given there. We can therefore apply Lemma 2, with f
de�ning our curve, and g = fi; noting that for i = 1; 2; 3; fi has the same support
as f; while for i = 4; 5; 6; 7; fi has the same support as f(x2; y2): Hence we have

V (f; fi) =

(
2V (f) for i = 1; 2; 3

4V (f) for i = 4; 5; 6; 7

Summing these bounds over all i; we have that the number of cyclotomic points on
f cannot exceed (3� 2 + 4� 4)V (f) = 22V (f):

For Case II P lies on one of the seven curves f1; f2; f3; f
� ; f�1 ; f

�
2 and f�3 : Note

that the de�nition of these curves depends only only on N; not on m: Also, each of
these curves has the same support as f: Hence from Lemma 2 we see that f has at
most 14V (f) cyclotomic points in this case.

4.5 L(f) non-full.
We saw in Section 3.7 that the number of cyclotomic points of f is I times the

number on the curve de�ned by a certain polynomial f� having a full lattice. Since
we now know that our theorem holds for f�; and noting that V (f) = IV (f�); we
see that the proof in 4.4 applies with L(f) nonfull as well.

4.6 f with complex coe�cients, absolutely irreducible and non-reciprocal.
If (x; y) is a cyclotomic point, then its complex conjugate (�x; �y) = (x�1; y�1)

is a cyclotomic point of fy; where fy(x; y) = �f(x�1; y�1): Since f and fy are
inequivalent, they can have no common component. Now the Newton polytope of
fy is a 180� rotation of that of f: Thus the Minkowski sum N (f)+N (fy) is what is
called the di�erence body of N (f); namely the set fx1�x2 j x1; x2 2 N (f)g: It was
proved by Rademacher [R] that for any convex body S in the plane, its di�erence
body has area 6 6V (S); with equality i� S is a triangle. [In n dimensions the
corresponding bound is

�
2n
n

�
V (S); with equality i� S is an n-simplex. See Rogers

and Shephard [RS] for a surprisingly simple proof of this general upper bound.]
Thus as V (f) = V (fy); we have 2V (f; fy) 6 (6� 1� 1)V (f) = 4V (f); and so, by
Lemma 2, f has at most 4V (f) cyclotomic points.

4.7 f with complex coe�cients, absolutely irreducible, and coe�cient �eld not in
Qab:

Take f� as in 3.6. Then f and f� have the same cyclotomic points. Also, as
f 6= f� ; and f� has the same support as f; we have from Lemma 2 that f has at
most 2V (f) cyclotomic points.
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4.8 f reducible.
We can now show that the irreducibility restrictions in 4.4, 4.6 and 4.7 can be

removed. For instance, for 4.4, write f = f1 � � �fk as a product of factors irreducible
over Qab: If all of these factors have rank 2 lattices, then we have from 4.3 and
Lemma 3(i), (ii) that the number of cyclotomic points on f is at most

22(V (f1) + � � �+ V (fk)) 6 22V (N (f1) + � � �+N (fk)) = 22V (f):

If any of the factors have lattices of rank 1; then from 4.2 they have either no
cyclotomic points or in�nitely many, so the result stated in the theorem is again
true. The same argument applies for 4.6 and 4.7.

The results of the theorem concerning the constants follow from the examples in
the next section.

4.9 Remarks.
1. In the proof we showed that if the minimal N (in the sense de�ned above)

such that the coe�cient �eld of f is Q(!N) where N is divisible by 4; then f has
at most 14V (f) cyclotomic points.

2. The constant 22 in the theorem seems at �rst sight probably to be a construct
of the particular method of proof, and so unlikely to be best possible. This may
indeed be the case. However, it is interesting to note that there is another proof,
using cubes and cube roots of unity instead of squares and �1, which also gives
the constant 22! For this proof, we intersect f = 0 with the 9 curves de�ned by
the polynomials f(x3; y3) and f(!i3x; !

j
3y)(i; j = 0; 1; 2) with (i; j) 6= (0; 0): Now it

is easy to check that every root of unity ! is conjugate either to !3 or to !3! or
to !23!: Thus any cyclotomic point of f must also lie on one of these other curves,
and so, using Lemma 2, we obtain the upper bound (6 + 8� 2)V (f) = 22V (f) for
the total number of cyclotomic points of f:

3. We compare the bound 22V (f) of our theorem with what could be obtained
using Bezout's theorem. Suppose for instance that f 2 Q[x; y]; irreducible over Q;
and of degree d: Then from 3.4 f1; f2 and f3 each has degree d too, while f4; f5; f6
and f7 each has degree 2d: Hence, by Bezout, the number of projective points
(counted with multiplicity) of both f and fi is deg f: deg f1; which is d2(i = 1; 2; 3)
and 2d2(i = 4; 5; 6; 7); giving a total of at most 11d2 points. Now this is also what
we get from our theorem in the worst case that N (f) is as large as possible for a
polynomial of degree d; namely V (f) = 1

2d
2: Hence our result at worst gives the

same as Bezout, but often gives a signi�cant improvement.
4. The theorem may be extended to f de�ned over any �eld of characteristic 0:

This is simply because the coe�cient �eld of such an f is isomorphic to a sub�eld
of C :

5. Examples and applications.
Example 5.1 below shows that the constant 22 in 22V (f) in the theorem cannot

be reduced below 16. This remains true even if we restrict our attention to curves
whose degrees tend to in�nity, as the examples f(x`; y`) = 0 (f as in Example 5.1)
show. Of course these curves no longer have full lattices. In Section 6 below we give
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a strengthening of the theorem, for which this example is actually best possible.
However, the upper bound in this stronger theorem is, unlike the bound 22V (f);
not straightforward to calculate. The fact that this revised result is sharp does
however show, as its proof indicates, that it essential to consider the intersection of
f with all seven polynomials fi:

Example 5.2 shows that the constant 4 in 4V (f) is best possible in the non-
reciprocal case. For this case, the Bezout degree-type upper bound for the number
of cyclotomic points of f is 2d2; for f a polynomial of degree d: This is because
fy has degree at most 2d: Again, this example shows that the constant 2 in this
degree-type bound cannot be improved. Example 5.3 shows that the constant 2 for
curves with some non-cyclotomic coe�cients cannot be improved. The family of
curves in Example 5.4 shows that, even for curves with full lattices and arbitrarily
high degree the constant in the theorem must be at least 10:

In 5.5 and 5.6 we give two applications of our results.

5.1. A curve with the largest-known constant 16:
Take

f(x; y) = xy +
1

xy
+ x+

1

x
+ y +

1

y
+ 1:

Here f is reciprocal, and V (f) = 3; so the theorem tells us that there are at most
66 cyclotomic points of f: In fact, f has exactly 48 cyclotomic points, which we
classify according to which other curve fi = 0; de�ned in 3.4, that they also lie on.

On f(x;�y) = 0 : (!412; !12); (4 points)
On f(�x; y) = 0 : (!12; !412); (4 points)
On f(�x;�y) = 0 : (�!12; !12); (4 points)
On f(x2; y2) = 0 : (!7; !

2
7); (!

2
7 ; !7); (12 points)

On f(x2;�y2) = 0 : (�!330; !30); (8 points)
On f(�x2; y2) = 0 : (!30;�!330); (8 points)
On f(�x2;�y2) = 0 : (!30; !

11
30); (8 points).

To try to understand why this particular polynomial has so many cyclotomic

points, let Z6 be the cyclic subgroup of SL2(Z) generated by

�
0 �1
1 1

�
; and con-

sider its action, as de�ned in 3.7. As the orbit of x under Z6 is fx; y�1; x�1y�1; x�1; y; xyg;
having sum f(x; y)�1; we see that for any point (x; y) on f(x; y) = 0; every point in
the orbit of (x; y) under Z6 will also be on the curve. In fact, since f(x; y) = f(y; x);

the same is true for the group hZ6;

�
0 1
1 0

�
i of order 12: Thus, a single cyclotomic

point on this curve potentially gives an orbit of twelve cyclotomic points on the
curve. In fact, this is what happens: there are four orbits of twelve points each.

Given that f has so many cyclotomic points, one might expect its Mahler measure
(the geometric mean of jf j on jxj = jyj = 1) to be small. And indeed it is the two-
variable polynomial with integer coe�cients of smallest known Mahler measure
greater than 1 ([B]).

Note that the primes 2; 3; 5 and 7 all appear as divisors of the orders of the
coordinates of cyclotomic points on this curve. In fact, this must happen for any f
having more than 14V (f) cyclotomic points. For otherwise there would be a prime
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p 6 7 such that all cyclotomic points of f would also lie on f(xp; yp) = 0: Then by
Lemma 2 there could be at most 2pV (f) 6 14V (f) cyclotomic points on the curve.

5.2. A family of curves with the maximum number of cyclotomic points for
nonreciprocal curves.

Put
f(x; y) = 1 + x+ x2 + � � �+ xn + y + y2 + � � �+ ym:

We �nd below all points on the intersection of f = 0 and fy = 0: This shows that,
as f and fy have no common component, f has no reciprocal factors | presumably
it is not di�cult to show that it is actually irreducible, but we do not need that here
| and as V (f) = 1

2
mn; that, by the theorem, there are at most 2mn cyclotomic

points of f: And indeed, there are exactly 2mn points, as we now show.
Writing fy(x; y) = f(1=x; 1=y) as (1+x+ � � �+xn)=xn+(y+y2+ � � �+ym)=ym+1;

we can eliminate (1+ x+ � � �+ xn) from f and fy to obtain ym�1
y�1 (ym+1 � xn) = 0:

By symmetry, also xn�1
x�1

(xn+1 � ym) = 0: Now

(i) if ym = 1; y 6= 1 then from f = 0 we have xn+1 = 1; x 6= 1; giving n(m � 1)
points (!in+1; !

j
m); (i = 1; � � � ; n; j = 1; � � � ; m� 1):

(ii) If xn = 1; x 6= 1 we obtain by symmetry m(n � 1) points (!in; !
j
m+1); (i =

1; � � � ; n� 1; j = 1; � � � ; m):
(iii) Finally if ym+1 = xn and xn+1 = ym we have, on eliminating ym that

y = 1=x and so, from f = 0 that xn+m+1 = 1; x 6= 1: This gives n + m points
(!in+m+1; !

�i
n+m+1); (i = 1; � � � ; n+m):

Note that N (f) is triangular which, by Rademacher's result above, is necessary
in order that f has the maximum number 4V (f) of cyclotomic points. Note too
that L(f) is full, so that the constant 4 in the nonreciprocal part of the theorem
cannot be improved, even if we restrict our attention to curves with full lattices
whose degrees are bounded below by a number tending to in�nity.

5.3. A family of curves with the maximum number of cyclotomic points for curves
having not all coe�cients belonging to a cyclotomic �eld.

Let
f(x; y) = 1 + x+ x2 + � � �+ xn + �(1 + y + y2 + � � �+ ym);

where �3 � � � 1 = 0: As Q(�) has non-abelian Galois group, � 62 Qab: De�ne
automorphisms �1; �2 2 Gal(Qab=Q) mapping � to its other conjugates �1; �2: Then
any cyclotomic point (x; y) of f is also a cyclotomic point of f�1 and f�2 ; and so of
their average 1 + x+ � � �+ xn: Hence also 1 + y + y2 + � � �+ ym = 0; and so f has
nm = 2V (f) cyclotomic points (!in+1; !

j
m+1); (i = 1; � � � ; n; j = 1; � � � ; m):

A similar example, but with some transcendental coe�cients, could be obtained
by replacing � by �!

5.4. A family of curves with constant asymptotically at least 10.
Consider the curve

1 + y + y�1 +
nX

r=1

xr + x�r = 0:
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We shall give as many points (x; y), with x; y roots of unity, as possible. The trick
is to make a choice for y and then solve the remaining equation in roots of unity x.
We count the number of solutions.

(i) y = !3; !
�1
3 : The equation for x reads

(xn + � � �+ x)(1 + x�n�1) = 0

Any common zero of both factors has xn = 1 and xn+1 = �1. This is possible only
if n is even, in which case x = �1 is the double root. The number of x-values is 2n
or 2n� 1 if n is odd or even respectively.

(ii) y = �i: The equation for x reads

x2n + � � �+ x+ 1 = 0

Hence there are 2n values for x.

(iii) y = !6; !
�1
6 : The equation for x is

(xn + � � �+ x + 1)(1 + x�n) = 0

Any common factor of both factors has xn+1 = 1 and xn = �1. This is possible
only if n is odd, in which case x = �1 is the double root. The number of x-values
is 2n or 2n� 1 if n is even or odd respectively.

(iv) y = xn+1; x�n�1. The equation for x is

x2n+2 + � � �+ x+ 1 = 0

Hence x2n+3 = 1 and x 6= 1. This gives us 2n + 2 values x = e�2�ik=(2n+3)

for k = 1; � � � ; 2n+ 2. The corresponding value of y is e2�ik(n+1)=(2n+3) . This may
coincide with one of the previously found y if 2n+3 is divisible by 3 and k(n+1) � 0
(mod 2n=3 + 1). So, if n � 0 (mod 3) then we have only 2n new values for x, and
2n+ 2 values in the other cases.

(v) y = �xn;�1=xn. The equation for x is

x2n�2 + � � �+ x+ 1 = 0

Hence x2n�1 = 1 and x 6= 1. This gives us 2n � 2 values x = e2�ik=(2n�1) for
k = 1; � � � ; 2n � 2. The corresponding value of y is �e�2�ikn=(2n�1) . This may
coincide with one of the previously found y if 2n � 1 is divisible by 3 and kn � 0
(mod (2n� 1)=3). So, if n � 2 (mod 3) then we have only 2n� 4 new values for x,
and 2n� 2 values in the other cases.

Also, the two latter cases have no x-values in common, since the �rst consists
of (2n+ 3)-th roots unity and the second of (2n� 1)-th roots of unity. Note that
gcd(2n+ 3; 2n� 1) = 1.
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In total we �nd 10n� 3 values of x if n 6= 1 (mod 3) and 10n� 1 values if n � 1
(mod 3). To each x-value correspond two y-values. Hence we �nd 20n� 2 points if
n � 1 (mod 3) and 20n� 6 points otherwise.

Here are some additional solutions. When n � 1 (mod 6) we have x = !�16 ; y =
�1. We can check that these are really two extra solutions. When n � 4 (mod 6)
we have x = !�16 ; y = 1. Again, we can check that these are really two extra
solutions. In particular, when n � 1 (mod 6) we have at least 20n solutions. Since
V (f) = 2n we have at least 10V (f) solutions in this case.

5.5 Application to generalised Lie-symmetries.
In [BSW] the authors study generalised Lie-symmetries of certain partial evo-

lution equations. It turned out that some systems do allow for in�nitely many
symmetries if a particular diophantine equation in roots of unity has a solution.
The equations solved in [BSW] read

2x2y2 � x2y + x2 � xy3 � 2xy2 � xy + 2y2 � y3 + y4 = 0

and
x2y2 � x2y + x2 � xy � xy3 + y2 � y3 + y4 = 0:

Using the algorithm described in Section 3 we �nd that their solutions sets are

(x; y) = (1; 1); (1;�i); (�i;�1); (�i;�i); (!3; !23)(2 points)

and
(x; y) = (1; 1); (�1;�i); (!5; !25)(4 points); (!5; !45)(4 points)

respectively.

5.6. The zeroes of derivatives of Chebyshev polynomials.
Put f�(x; y) = xy + �(x+ y) + 1: Here � is a rational parameter, which we can

assume is positive. We also assume � 6= 1; so that f� is irreducible. We �nd that for
all such � there are the two cyclotomic points (1;�1) and (�1; 1): For � =2 f12 ; 2g;
these are the only two points. However, for � = 2 there is (!3; !

2
3) (two more

points), and for � = 1
2 there is (!3; !3):

We are interested in this family of curves because we can use them to prove the
following. For a natural number n; let Un(X) be the nth Chebyshev polynomial of
the second kind, de�ned by

Un(z + z�1) =
zn+1 � z�(n+1)

z � z�1
:

Proposition. The polynomial U 0
n(X) has no zeroes of the form 2 cos 2�q 6= 0

for any rational q:

This result is applied in [DS]. Curiously, as remarked there, this result is in
contrast to the situation for the Chebyshev polynomials Tn(X) of the �rst kind.
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For as T 0
n(X) = nUn�1(X); all zeroes of T 0

n(X) are of the form 2 cos 2�q for some
rational values of q.

To prove the proposition, note �rst that

zn�1(z2 � 1)3U 0
n(z + z�1) = n(z2n+4 � 1)� (n+ 2)(z2n+2 � z2):

When is the right-hand side zero for z a root of unity? Putting n+2
n = � > 1;

x = z2 and y = �z2n+2; we see that f�(x; y) = 0: Now the two points (1;�1) and
(�1; 1) on f� = 0 have z = �1 or z = �i: In the latter case X = z+z�1 = 0; which
is excluded in the proposition. (In fact, 0 is a root of U 0

n for n even.) One can check
directly that U 0

n(�2) 6= 0: It remains only to consider the case � = 2; n = 2: In this
case (x; y) = (z2;�z6) = (!3; !

2
3); which is impossible.

6. Improving the theorem.
Let f and g be in C [x; x�1 ; y; y�1]: The improvement of our theorem which

we now give is based on the the following simple remark. If the ideal [f; g] of
C [x; x�1 ; y; y�1] is equal to [f�; g�] for some f�; g� in C [x; x�1 ; y; y�1]; then by
Lemma 2 the number of cyclotomic points on f = 0 and g = 0 is at most 2V (f�; g�):
We therefore de�ne V �(f; g) to be the minimum of all V (f�; g�) with f�; g� in
C [x; x�1 ; y; y�1] and [f; g] = [f�; g�]: Then the �rst part of our theorem (the other
parts already being sharp) can be restated as follows, using the polynomials fi of
Section 3. To avoid complications, we state the result only for f with rational
coe�cients, and irreducible over Q:

Theorem*. Let f 2 Q[x; x�1; y; y�1] be irreducible over the rationals, with area

V (f) > 0: Then f has at most 2
P7

i=1 V
�(f; fi) cyclotomic points.

Because of the di�culty of computing the V �(f; fi); the bound in this theorem is
not as useful for practical purposes as the bound in the original theorem. However,
it is a sharp result, as we now use Example 5.1 to show. We compute the V �(f; fi)
for this example, with f(x; y) = xy + 1

xy + x+ 1
x + y + 1

y + 1: We have, after some

area computations, that
2V �(f; fi) 6 2V ((f + fi; f � fi) = 4 for i = 1; 2; 3
2V �(f; f4) 6 2V (f; f4) = 12
2V �(f; fi) 6 2V (f; fi � ffi�4) = 8 for i = 5; 6; 7:
Thus the improved theorem gives at most 48 cyclotomic points! Incidentally,

apart from showing that the result is sharp, it proves that the above three in-
equalities are actually equalities, so that we have in fact computed all the V �(f; fi)
exactly for this example.
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