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The cage model for polymer reptation� proposed by Evans and Edwards�

and its recent extension to model DNA electrophoresis� are studied by

numerically exact computation of the drift velocities for polymers with a

length L of up to �� monomers� In agreement with De Gennes� reptation

arguments� we �nd that asymptotically for large polymers the di�usion

coe�cient D decreases quadratically with polymer length	 for the cage

model� the proportionality coe�cient is DL� 
 �������� Additionally we

�nd that the leading correction term for �nite polymer lengths scales as

N����� where N 
 L � � is the number of bonds� If an electric �eld

is applied with strength E� the polymer drift velocity v scales initially

as v � E�L� and then changes into a regime where v � E�� as in the

Duke�Rubinstein model� We �nd con�rmation for the existence of a third

regime� still in the physically relevant range of �eld strengths� where the

drift velocity decreases exponentially�

�� INTRODUCTION

In the rapidly�growing �elds of molecular genetics and genetic engineering� gel

electrophoresis is a technique of great importance� One reason is that it enables

e�cient separation of polymer strands by length� In DNA electrophoresis� strands

of DNA with a variety of lengths are injected into a gel composed of agarose and

a bu�er solution� Since DNA is acidic� it becomes negatively charged� Next� an

electric �eld is applied which causes the DNA to migrate in one direction� Since

shorter strands travel faster than longer ones� the initial mixture of strands will be�

come separated� allowing the measurement of the relative concentrations of strands
�
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of di�erent lengths� or the isolation of strands with a particular length� Given the

great practical importance of DNA electrophoresis� there is much interest in gaining

an understanding of precisely what the mechanisms of gel electrophoresis are and

how the migration rate depends on strand length� applied electric �eld� and the

properties of the agarose gel�

It is known that in the gel� agarose forms long strands which cross�link and impede

movement of the polymer transverse to its length� its movement is dominated by

a mechanism which De Gennes 	
� has dubbed reptation� movement of a polymer

along its own length by di�usion of stored length�

A commonly used lattice model to simulate the dynamics of reptation is the

so�called repton model�� introduced by Rubinstein in 
��� 	��� Rubinstein al�

ready conjectured that the di�usion coe�cient D as a function of polymer length

L for long polymers is given by DL� � 
�� �with large �nite�size e�ects�� this

conjecture was further corroborated by van Leeuwen and Kooiman 	�� �� ��� and

�nally proven by Pr�ahofer and Spohn 	��� The repton model has been extended to

study electrophoresis by Duke 	�� �� ��� and the resulting model � known as the

Duke�Rubinstein model � has been studied numerically and analytically by several

groups 	
�� 

� 
�� 
�� 
�� and compared to experiments 	
���

The main �ndings of these studies are that the property DL� � 
�� �with large

�nite�size e�ects� in combination with the �uctuation�dissipation theorem results

in a drift velocity v � E�L for small electric �eld strength E� and that for some

value of E � 
�L this regime crosses over in a regime where the drift velocity

ceases to be length�dependent and is given by v � E�� the so�called band collapse�

Furthermore� it was found a property of the model in the limit of large E� that the

drift velocity decays exponentially� v � e���L�E�� or v � e���L�E�� for even and

odd L respectively 	
���

Before the introduction of the repton model� Evans and Edwards had introduced

the so�called cage model� to simulate the dynamics of reptation 	
��� Also in

this model� DL� approaches a constant in the limit of large chains 	
��� which in

combination with the �uctuation�dissipation theorem leads to v � E�L for small

electric �eld strengths� This model has recently been extended to electrophoresis

and studied with Monte Carlo simulations 	
��� Besides the expected �uctuation�

dissipation regime� these simulations also featured the band�collapse regime where

v � E�� these are the two regimes that were identi�ed for the Duke�Rubinstein

model� Additionally� a third regime was reported where v decreases with increasing

E� but still in the physical range E � 
� The identi�cation of this regime might

possibly shed more light on the hitherto not well understood phenomenon of band

inversion 	���� where longer polymers travel faster than shorter ones�

This article presents numerically exact computations on the cage model� extended

for electrophoresis as in Ref� 	
��� As in most models� numerically exact results can

only be obtained for relatively small systems �here� for polymers up to a length of

L � 
��� but they do not have the inherently large statistical errors of Monte Carlo

results� Thus� they allow for a di�erent class of analysis techniques� for instance

those exploiting numerical di�erentiation� The combination of numerically exact

results for short chains with the Monte Carlo results for larger chains reported

in Refs� 	
�� 
�� provides a more complete picture of the model� and allows us to

explore the nature of the third regime mentioned above �see section ���
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The calculations done in this work� with a chain length of up to L � 
�� are

computationally challenging� and could only be obtained by the exploitation of

symmetries in the model� combined with the application of parallel processing�

The state vector of the cage model for electrophoresis has �L�� components� and

the original transition matrix which represents the transition probabilities between

polymer con�gurations is of size �L�� � �L�� �see section ��� We show that many

components of the steady state vector are equal� because the con�gurations they

belong to are equivalent� By using those equivalences� the original transition matrix

could be reduced signi�cantly �see section ��� The parallel implementation of the

computation is done by spreading the nonzeros of the sparse transition matrix over

the processors� Interprocessor communication is reduced by exploiting the speci�c

sparsity structure of the matrix �see section ��� The combined e�ect of the decrease

in matrix size and the application of parallel processing accelerates the computation

by more than a factor of a million� allowing us to reach larger values of L� in this

paper we present numerically exact values for the drift velocities and the di�usion

coe�cients for polymers up to length L � 
� �see section ��� We also present

computation times and parallel e�ciency results for up to �� processors of a Cray

T�E computer �see section ��� The conclusions are summarized in section ��

�� CAGE MODEL FOR REPTATION

The cage model� introduced by Evans and Edwards 	
��� describes a polymer that

moves through a gel� The polymer is modeled as a chain of monomers�� connected

by bonds� Two monomers connected by a bond must reside in adjacent sites of a cu�

bic lattice� No other excluded volume interactions are enforced� so each lattice site

may contain many monomers� Figure 
 shows an impression of the model� The con�

�guration of a cage polymer is easiest de�ned by the set of directions of all the bonds�

The bond representations shown in Figure � are �y �x �y �y �y �y �y�x �x �y �x and

�y �x �x �x�y �y �x �y �x �x �x� A part of a con�guration consisting of a monomer

with two opposite bonds is called a kink� In the left part of Figure �� the con�gu�

rations feature kinks at monomers � and �� and in the right part at �� �� and 
��

The gel is modeled by the edges of a cubic lattice� translated by a vector ��� �
�
� �

�
��

relative to the lattice on which the polymer resides� The dynamics of a cage polymer

consists of those single monomer moves for which the polymer does not cut gel

strands� This leaves two classes of allowed moves� �i� a kink is randomly replaced

by a kink in one of the six possible directions� �ii� a bond at an end monomer is

randomly replaced by a bond in one of the six possible directions� Every other

single monomer move is forbidden because it would cause the polymer to cross a

gel strand� The time increment associated with an attempted move is �t � ��L����

such that each move is tried� on average� once per unit of time� The di�usion

coe�cient can be computed from the displacement of the center of mass�

The cage model has been extended to include the e�ects of an electric �eld on the

motion of �charged� polymers 	
��� The possible transitions are the same� but the

rates are di�erent� The electric �eld is �E � �E�E�E�� such that replacing a kink

by one of the three forward pointing kinks �along the electric �eld� occurs with rate

eqE � and by one of the three backward pointing kinks �against the electric �eld�

occurs with rate e�qE � where q is the dimensionless charge of the moved monomer�
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FIG� �� An impression of the cage model for reptation� The polymer consists of a sequence
of monomers� connected by unit�length bonds�
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FIG� �� The cage model� The dotted lines denote the gel strands in the x�y plane� and
the large grey dots are the gel strands in the z direction� The space between the gel strands
represents the pores of the gel� The polymer is modeled as a chain of monomers� two adjacent
monomers reside in nearest neighbor pores� We denote bonds that are going right� left� up� down�
out of the paper and into the paper by �x� �x� �y� �y� �z� and �z respectively� The two example
con�gurations were chosen to be planar� for clarity� The electric �eld vector points diagonally out
of the paper�
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In the remainder of this paper� we will assume that q � 
� The time increment

associated with an attempted move is �t �
�
�L�eE � e�E�

�
���

The set of all probabilities of the �L�� possible con�gurations can be represented

by a �L���dimensional vector �a� The dynamics of the model is then speci�ed by a

sparse �L�� � �L�� matrix T � The transition matrix T has
�
��L��� � �� � 


�
�L��

nonzero elements� each polymer has L� � inner monomers that can move if their

bonds are in opposite directions� and two end monomers that can always move� a

monomer that can move goes either to one of �ve new positions or the polymer stays

unaltered� The steady state vector �asteady is computed from T as the eigenvector

with eigenvalue 
� and the drift velocity of the polymer along one of the principal

axes is

v �
�

�

X

i

ai
�
bie

E � fie
�E
�
� �
�

where bi is the number of kinks and endpoints of polymer con�guration i pointing

backward �which can move forward with a probability eE�� and fi the number of

kinks and endpoints pointing forward� The factor of ��� appears because moves

occur along each of the three principal axes� and because each kink move increases

or decreases the sum of the coordinates of a con�guration by two�

�� EXPLOITING SYMMETRIES OF THE MODEL

In the model that we study here� the electric �eld is chosen in the �
� 
� 
� di�

rection� and consequently polymer con�gurations that are related through rotation

around the direction �
� 
� 
� are equivalent� i�e�� their probability is the same� irre�

spective of the �eld strength� Moreover� in many cases it is possible to rotate part

of the polymer around this direction while preserving this equivalence� If polymer

con�gurations are grouped into classes containing only equivalent polymers� it is

su�cient to determine the probability for one representative per class rather than

for all polymer con�gurations� since by de�nition the probabilities are equal within

a class�

Rather than working in the state space of all polymer con�gurations� we work in

the state space of all equivalence classes� Since equivalence classes can easily contain

thousands of con�gurations� the state space is thus reduced by several orders of

magnitude� and a tremendous speed�up is obtained� Next� we will discuss how

physical quantities such as the velocity can be computed within this reduced state

space of equivalence classes� and how to identify whether two polymer con�gurations

are equivalent�

Suppose that equivalence class i contains ni polymer con�gurations� each with

b�i backward pointing kinks and end monomers� f �i forward pointing kinks and end

monomers� and that the probability for each of the con�gurations within class i is

given by a�i� The average drift velocity is then given by

v �
�

�

X

i

nia
�
i

�
b�ie

E � f �ie
�E
�
� ���

To identify which polymer con�gurations are equivalent� we construct a repre�

sentation that puts equivalent con�gurations in the same class� We call part of a
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FIG� �� Kink representations for the two examples from Figure �� The arcs show which
parts can be removed by repeatedly removing kinks� The kink representations are also given as
a binary value� the slashes separate the removable parts of length ��� 	� 
� �� �� and the bond
directions� A bit � at position r for part length l means that the part between monomers r and
r � l can be removed�

con�guration between two monomers removable� if all monomers in between them

can be removed by repeatedly removing kinks� A kink is removed by deleting the

central monomer� the two bonds connected to it� and merging the two monomers

adjacent to the central monomer� In the left part of Figure �� monomers � and �

are merged when the kink at monomer � is removed� If two polymers have the same

sequence of forward and backward bonds� and the same set of removable pairs of

monomers� then their probabilities are the same� The construction of such a repre�

sentation is illustrated in Figure �� Furthermore� the forward�backward symmetry

was removed by also computing the kink representation starting at the other end

of the polymer� and then using only the one with the lower binary value� The kink

representation gives a unique number to each symmetry class� We have not found

a rigorous proof yet� but we have checked explicitly up to L � � that all polymers

with the same kink representation indeed have the same probability�

The reduced state space is constructed by computing the kink representation for

each polymer con�guration and removing the duplicates �in our implementation�

by using hashing�� During this phase some additional information is stored about

each kink representation� each bond representation that introduces a new kink

representation is stored along with the kink representation� and the total number

of bond representations for each kink representation is recorded� Table 
 shows the

reduction of the con�guration space obtained by removing the symmetries� The

kink representations are enumerated by sorting them based on their binary value�

with the rightmost bit the least signi�cant� This ordering has the property that in

most cases moves cause only small changes in binary values� e�g� replacing a kink

�x �x by �y �y swaps two bond�direction bits� replacing �x �x by �y �y even keeps

them the same� the removable�parts bits can be a�ected as well� but this becomes

less likely for increasing part length�

The stored bond representations� one per kink representation� are used to gener�

ate the transition matrix for the reduced state space� Each column j of this matrix

is computed by generating all the moves of the corresponding bond representation�
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TABLE �

The number of kink representations for polymer lengths L � �����

the reduction factor of the state space� the number of nonzero

elements for the matrix in the kink representation�

and the reduction factor of the number of

nonzero elements�

kink repre� reduction nonzero reduction

L sentations factor elements factor

� � � �� ��

� � �� �� ��

� �� �� ��� ��

� �� �� ��� ���

� ��� ��� � ��� ���

� � ��� ��� �� ��� ���

� � ��� ��� �� ��� ���

�� �� ��� ��� ��� ��� � ���

�� �� ��� � ��� ��� ��� � ���

�� ��� ��� � ��� � ��� ��� � ���

�� ��� ��� � ��� � ��� ��� � ���

�� � ��� ��� � ��� �� ��� ��� �� ���

�� � ��� ��� �� ��� �� ��� ��� �� ���

computing the kink representations for each of the possibilities� If the polymer is

moved along the applied �eld� �t � eE is added to the transition matrix element T �ij �

where j and i denote the kink representations before and after the move respec�

tively� or �t � e�E � if it is moved against the electric �eld� The diagonal element T �ii
is such that the sum of each column is exactly one� Thus� Tij is the probability

to move from kink representation j to i� The reduction of the number of nonzero

matrix elements is also shown in Table 
�

Our choice of time increment guarantees that
P

j ��i Tij � 
� so that all matrix

elements are between � and 
� inclusive� The steady state vector is equal to the

eigenvector of this matrix belonging to the largest eigenvalue� which by de�nition

equals unity� Repeatedly multiplying a starting vector by the transition matrix

leaves only this eigenvector� This iterative method is well known as the power

method� We can compute the same eigenvector by applying the power method to a

slightly modi�ed matrix� T � � I���T �I�� which has eigenvalues ��i � 
����i�
��

where the �i are the eigenvalues of T � The matrix T � has the same eigenvectors as

T � We used � � �� which is optimal for long polymers and only slightly suboptimal

for shorter polymers� This modi�cation spreads the eigenvalues over the interval

��
�
�� thereby accelerating the convergence�

�� PARALLEL PROCESSING APPROACH

The reduced transition matrix for L � 
� contains about 
�� elements� so both

computational cost �
� T�ops for �� ��� iterations�� and memory requirements �
��

Gbyte� are too high for regular workstations or PCs� We used the parallel program�

ming library BSPlib 	�
� to obtain our results on a Cray T�E supercomputer� using

�� processors� Within the Bulk Synchronous Parallel �BSP� computing model 	����
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computations and interprocessor communications are separated by global synchro�

nizations� BSPlib supports two types of communication� Direct Remote Memory

Access �DRMA� and Bulk Synchronous Message Passing �BSMP�� The DRMA op�

eration put copies data into the memory space of a remote process at the next

synchronization� and get retrieves data from a remote process at the next syn�

chronization� The BSMP operation send sends a packet to a queue on a remote

processor� which� after the next synchronization� can be accessed there with the

move operation� In total� the BSP library has �� primitives� We use the most

e�cient primitive� put� This can be done because the matrix remains constant

during all the iterations� so that it becomes worthwhile to analyze the communi�

cation pattern beforehand and store a list of memory addresses to be used as the

target of puts�

In our problem� for L � 
�� we cannot a�ord to store the complete matrix

on a single processor� so we need to distribute it over a number of processors�

The traditional way to do this is to distribute blocks of rows of the matrix over

the processors �even though for dense matrices and certain sparse matrices it has

been shown that this is not the most e�cient way for communication 	����� In

principle� we use a more general� two�dimensional matrix distribution� which we

will tailor to our problem� The general computation of a matrix�vector product

�x� � A�x with communication is as follows� The matrix and vector are distributed

over the processors� the nonzero matrix elements Aij and the vector components

xi are each assigned to a processor� The matrix�vector product is given by x�i �P
j Aijxj� The �rst step is to communicate the components xj to the processors

with the corresponding Aij� Now� each processor q computes the partial row sums

siq �
P�

j Aijxj� where
P�

j denotes a summation that runs only over indices j

for which Aij has been assigned to processor q� The partial row sums are then

communicated to the processor containing x�i� and �nally they are accumulated

into the components x�i�

The matrix we have to deal with is sparse and we exploit this in our computations�

since we only handle nonzero elements Tij� In addition� the nonzero structure

shows �patches with many nonzero elements� We can exploit this to make our

communications faster� Consider a rectangular patch �i�e�� a contiguous submatrix��

A value xj must already be sent to the owner of the patch if one element Tij in

column j of the patch is nonzero� It is likely that most columns have at least one

nonzero� so that we might as well send all xj for that patch� This makes it possible

to send a contiguous subvector of �x� which is more e�cient than sending separate

components� this comes at the expense of a few unnecessary communications� The

trade�o� can be shifted by increasing or decreasing the patch size�

To �nd suitable patches� we �rst divide the state vector into contiguous subvec�

tors� We use a heuristic to partition the matrix into blocks of rows with approx�

imately the same number of nonzeros� If we use P processors� and we want each

processor to have K subvectors� we have to divide the vector into KP subvectors�

�The factor K is the overpartitioning factor�� This initial division tries to minimize

the computation time� Next� we adjust the divisions to reduce communication� a

suitable patch in the matrix corresponds to an input subvector of kink representa�

tions where only the last few bits di�er� and also to an output subvector with that

property� Therefore� we search for a pair of adjacent kink representations that has
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FIG� �� Reduced transition matrix for polymer length L  �� The size of the matrix is
��� �� and it has ��� nonzero elements� shown as black squares� To the left of each row is the
corresponding kink representation written as a binary number� with black circles denoting � and
open ones �� The horizontal lines on the left show the initial division of the reduced state vector
into eight contiguous parts� optimized to balance the number of nonzeros in the corresponding
matrix rows� The jumps of these lines indicate slight adjustments to make the division �t the
nonzero structure of the matrix� The resulting vector division induces a division of the rows
and columns of the matrix� and hence a partitioning into 
� submatrices� shown by the gray
checkerboard pattern� Complete submatrices are now assigned to the processors of a parallel
computer�

a di�erent bit as much as possible to the left� This is a suitable place to split� We

try to keep the distance from the starting point as small as possible�

As an example of the structure of the reduced transition matrices and the di�

vision into submatrices� we show the nonzero structure of the matrix for L � �

in Figure � and its corresponding communication matrix in Figure � �left�� The

communication matrix is built from the partitioned transition matrix� by consider�

ing each submatrix as a single element� It is a sparse matrix of much smaller size�

which determines the communication requirements� Our communication matrix for

L � 
� is given in Figure � �right��

�� RESULTS� DRIFT VELOCITIES AND DIFFUSION

COEFFICIENTS

Figure � shows the numerically exact values for the drift velocity of the cage

polymers up to length L � 
�� As expected� initially the drift velocity increases

linearly with �eld strength� and eventually it reaches a maximum drift velocity�

after which it decreases exponentially with �eld strength� Clearly visible in Monte

Carlo data 	
�� is a regime just before the maximum velocity where the drift ve�

locity increases quadratically with the �eld strength� in the numerically exact data

presented here� for relatively short chains� this regime is hardly visible� Only for

the largest chains that we can handle� this regime starts to become noticeable� ex�
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FIG� �� Communication matrix for L  � �left� and L  �� �right�� Note that the matrix
for L  � can be obtained by replacing each nonempty submatrix in Figure � by a single nonzero
element� The communicationmatrix for L  ��� of size �������� is distributed over �
 processors
in a row distribution�

amining the ratio of the drift velocities for L � 
� and L � 
�� we �nd a trend

towards unity just before the maximum velocity is reached�

It is clear from Figure �� that for longer polymers� the maximum velocity sets in

at lower electric �elds� for L � 
� the highest drift velocity is attained at E � ������

This trend was also observed in the Monte Carlo simulations� where for L � ����

this regime starts already at E � ����� Since the exponential decrease in the drift

velocity as a function of �eld strength sets in earlier for longer polymers� the newly

reported third regime does not provide an explanation for the phenomenon known

as band inversion�� where under certain conditions� longer polymers move faster

than shorter ones �see Ref� 	�����

The di�usion coe�cient is computed from the drift velocities using the Nernst�

Einstein relation v � qLED� which holds for vanishing E� We used the velocity

found at E � 
��� to compute the di�usion coe�cient �see Table ���

It is known that asymptotically for large polymers the di�usion coe�cient be�

haves as D � L��� but with large �nite�size corrections for usual polymer lengths�

The nature of these �nite�size corrections is the second important topic of this work�

As the polymers are modeled as a random walk of N � L�
 steps� �nite�size correc�

tions of the order N���� are expected� Let us call d�N � � D � �N �
�� � DL�� and

d� � �DL��L��� we expect that for large but �nite polymers d�N � � d��aN�x�

The parameters a and x can be found from this equation by di�erentiation� �d
�N �

�axN�x�� � �
�

�
d�N � 
�� d�N � 
�

�
� A least�squares �t of the derivative of the

new data against N for N � �!
� gives a � �������� and x � ���
����� strongly

suggesting �nite�size corrections with an exponent �
� � This shows an advantage of
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FIG� �� The graphs show the computed drift velocities of the cage polymers as a function
of electric �eld strength E� For E � �� the relative error is less than ������ all other points
have a relative error less than ����� The graphs for lengths �� �� and � are v�  ��eE � e�E��
v�  eE � e�E � and v�  ��e�E � e��E����	 � ���e�E � e��E�� respectively� for L � �� the
computed points are connected by straight lines�

TABLE �

Di	usion coe
cients for cage polymers up to length L � ��� All values

have a relative error of less than ������ except for L � ���

which has relative error ����� It is expected for large

L� that the di	usion coe
cient is D � L�� ����

L D L�D

� ����� ��� ��� �� ����� ��� ��� ��

� ����� ��� ��� ��� ����� ��� ��� ��

� ����� ��� ��� ��� ����� ��� ��� ��

� ����� ��� ��� ��� ����� ��� ��� ��

� ����� ��� ��� ��� ����� ��� ��� ��

� ����� ��� ��� ��� ����� ��� ��� ��

� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

�� ����� ��� ��� ��� � ����� ��� ��� ��

the numerically exact computations over Monte Carlo simulations in that we can

compute the derivative of the data reliably�

We used our new di�usion coe�cients� combined with data from Barkema and

Krenzlin� and data from Van Heukelum and Beljaars� to �nd the length dependence

of the di�usion coe�cient� A least�squares �t with d�N � � a�bN�����cN�� gives
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TABLE �

BSP cost� time� e
ciency� and speedup for one matrix�vector multiplication�

L P BSP cost time ms� e�ciency speedup

�� � ������ � �����g ��l �� � ��� ��� ���

�� �� ������� � ������g ��l �� � �� ��� ����

�� �� ������� � ������g ��l ��� � �� ��� ����

�� �� ������� � �������g ��l ��� ���� ��� ����

d�N � � ��
����� � �������N���� � ������N��� and a least�squares �t with d�N � �

�a� � b�N���� � c�N����� gives d�N � � �������� � �������N���� � �����N������

Both of these expansions converge� within the error margins� to the same value

for large N � The �rst expansion converges to ��
������ and the second expansion

converges to 
�������� � ��
������ Combining these results� we conclude that for

large L the di�usion coe�cient is D � ��
�����L��� Our di�usion coe�cient agrees

with that of Barkema and Krenzlin 	
��� but they found a di�erent �nite�size scaling�

DN� � ��
�� � 
��N�����

�� RESULTS� COMPUTATION TIME AND EFFICIENCY

Our computations were performed on a Cray T�E computer� The peak perfor�

mance of a single node of the Cray T�E is ��� M�op�s for computations� The

bsp probe benchmark shows a performance of �� M�op�s per node 	�
�� The peak

interprocessor bandwidth is ��� Mbyte�s �bi�directional�� The bsp probe bench�

mark shows a sustained bi�directional performance of �� Mbyte�s per processor

when all �� processors communicate at the same time� This is equivalent to a

BSP parameter g � ���� where g is the cost in �op time units of one ���bit word

leaving or entering a processor� The measured global synchronization time for ��

processors is �� 	s� which is equivalent to l � ���� �op time units�

Table � presents the execution time of one iteration of the algorithm in two forms�

the BSP cost a�bg�cl counts the �ops and the communications and thus gives the

time on an arbitrary computer with BSP parameters g and l� whereas the time in

ms gives the measured time on this particular architecture� split into computation

and communication time� �The total measured synchronization time is negligible��

The BSP cost can be used to predict the run time of our algorithm on di�erent

architectures� Table � also gives the e�ciency and speedup relative to a sequential

program�

Peak computation performance is often only reached for dense matrix�matrix

multiplication� the performance for sparse matrix�vector multiplication is always

much lower� Comparing the �op count and the measured computation time for the

largest problem L � 
�� we see that we achieve about 
��� M�op�s� Comparing the

communication count with the measured communication time� we obtain a g�value

of ��
 	s� �or g � ��� �op units� see above�� This means that we attain the maximum

sustainable communication speed� This is due to the design of our algorithm� which

communicates contiguous subvectors� instead of single components� Furthermore�

the results show that our choice to optimize mainly the computation �by choosing a

row distribution� is justi�ed for this architecture� the communication time is always

less than a third of the total time� For a di�erent machine� with a higher value of
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g� more emphasis must be placed on optimizing the communication� leading to a

two�dimensional distribution�

Each iteration of our computation contains one matrix�vector multiplication� The

number of iterations needed for convergence depends on the length of the polymer�

and on the applied electric �eld� The iteration was stopped when either the accuracy

was better than 
���	� or the number of iterations exceeded 
�� ���� In the latter

case� the accuracy was computed at termination� Typically� for L � 
� and a low

electric �eld strength� �� ��� iterations are needed� Only computed values with

accuracy 
��
 or better are shown in Figure �� For L � 
�� we compared the

output for the parallel program with that of the sequential program and found the

di�erence to be within rounding errors� The total speedup for L � 
�� compared

to a naive implementation �for which one would need ���� Tbyte of memory�� is a

factor 
�� � 
��� a factor of � � � by increasing the time step� a factor of 
� ��� by

using a reduced state space� and another factor ���� by using a parallel program

on �� processors�

	� CONCLUSIONS

In numerically exact computations on the cage model� extended for the study of

DNA electrophoresis� we exploited symmetries of the model and applied parallel

processing� This has resulted in a computational speedup factor of over a million�

Regarding the cage model� we conclude that the polymer di�usion coe�cient D

scales asymptotically for large polymers as DL� � ��
������ in qualitative agree�

ment with De Gennes reptation arguments� and in quantitative agreement with

earlier recent simulation reports 	
��� The �nite�size corrections are found to be a

combination of N���� �which asymptotically is the dominant correction� and N���

and probably higher�order corrections� this is in disagreement with earlier reports

	

� 
�� where the leading corrections were reported to be N����� but in agree�

ment with recent density matrix renormalisation group computations by Carlon et

al� 	����

As a function of increasing electric �eld strength E� the drift velocity �rst in�

creases linearly as v � E�L� then �for longer polymers� it increases quadratically

as v � E� 	
��� to reach its maximum value at some value of E which decreases

with polymer length L� a further increase in �eld strength makes the drift velocity

decline exponentially� The fact that this maximum velocity occurs at a decreasing

�eld strength � for polymers with length L � 
� already at E � ����� � indicates

that� in the range of electric �eld strengths where the model is supposed to be

realistic �E � 
�� there is a third regime besides the two mentioned before� This

third regime� however� cannot explain the phenomenon known as band inversion��

ACKNOWLEDGMENT

We would like to thank the Netherlands Computer Facilities foundation and the

High Performance Applied Computing center at Delft University of Technology for

providing access to a Cray T�E�




� A� VAN HEUKELUM� G� T� BARKEMA� R� H� BISSELING

REFERENCES

�� P� G� de Gennes� J� Chem� Phys� ��� ��� �������

�� M� Rubinstein� Phys� Rev� Lett� ��� ���
 ���	���

�� J� M� J� van Leeuwen and A� Kooiman� Physica A �	�� �� �������

�� A� Kooiman and J� M� J� van Leeuwen� Physica A ���� �
� �������

�� A� Kooiman and J� M� J� van Leeuwen� J� Chem� Phys� ��� ���� �������


� M� Pr�ahofer and H� Spohn� Physica A ���� ��� ����
��

�� T� A� J� Duke� Phys� Rev� Lett� ��� �	�� ���	���

	� T� A� J� Duke� J� Chem� Phys� ��� ���� �������

�� T� A� J� Duke� J� Chem� Phys� ��� ���� �������

��� B� Widom� J� L� Viovy� and A� D� Defontaines� J� Phys� I France �� ���� �������

��� G� T� Barkema� J� F� Marko� and B� Widom� Phys� Rev� E ��� ���� �������

��� T� A� J� Duke� A� N� Semenov� and J� L� Viovy� Phys� Rev� Lett� ��� ��
� �������

��� G� T� Barkema and M� E� J� Newman� Physica A ���� �� �������

��� M� E� J� Newman and G� T� Barkema� Phys� Rev� E ��� ��
	 �������

��� G� T� Barkema� C� Caron and J� F� Marko� Biopolymers �	� 

� ����
��

�
� A� Kolomeiski� Cornell Ph�D� Thesis ����	��

��� K� E� Evans and S� F� Edwards� J� Chem� Soc� Faraday Trans� � 

� �	�� ���	���

�	� G� T� Barkema and H� M� Krenzlin� J� Chem� Phys� ���� 
�	
 ����	��

��� A� van Heukelum and H� R� W� Beljaars� J� Chem� Phys� ���� ���� �������

��� J� Noolandi� J� Rousseau� G� W� Slater� C� Turmel� and M� Lalande� Phys� Rev� Lett� �	� ���	
���	���

��� J� M� D� Hill� B� McColl� D� C� Stefanescu� M� W� Goudreau� K� Lang� S� B� Rao� T� Suel� T�
Tsantilas� and R� H� Bisseling� Parallel Computing ��� ���� ����	��

��� L� G� Valiant� Comm� of the ACM ��� ��� �������

��� R� H� Bisseling and W� F� McColl� Proc� IFIP ��th World Computer Congress� Vol� I� North�
Holland� ��� �������

��� E� Carlon� A� Drzewi�nski and J� M� J� van Leeuwen� cond�mat���������


