
Bisseling� Rob H�

Sparse Matrix Computations on Bulk Synchronous Parallel Computers

The Bulk Synchronous Parallel �BSP� programming model is studied in the context of sparse matrix computations�
As a case study� a BSP algorithm is developed for sparse Cholesky factorisation�
�This paper appeared in� G� Alefeld� O� Mahrenholtz� and R� Mennicken �Eds��� Proceedings ICIAM���� Issue 	�
Numerical Analysis� Scienti
c Computing� Computer Science� Akademie Verlag� Berlin� 	���� pp�	��	����

�� Introduction

Sparse matrix computations are at the heart of many scienti
c computing applications� Much could be gained
if we were able to accelerate such computations by e�ciently using parallel computers� This is a di�cult task�
however� because these computations are mostly irregular� Therefore� sparse matrix computations can bene
t from
better parallel programmingmodels� but they also form a litmus test for any new model� sparse matrix computations
will separate the useful models from the useless ones�

The Bulk Synchronous Parallel �BSP� model was recently proposed by Valiant ��� It attempts to simulta�
neously achieve portability and e�ciency in parallel computations and thereby to enable general purpose parallel
computing ���� This goal is in sharp contrast with the current state of a�airs� which can be characterised by� a
parallel software industry that is virtually non�existent� parallel hardware vendors that disappear at an alarming
rate� promises of high performance computing that are ful
lled for only a few applications�

Recent developments indicate that the goal of general purpose parallel computing can be achieved� An im�
portant development is that shared memory primitives become available for parallel computers with distributed
memory� Examples of these are remote write ��put� or �store�� operations and remote read ��get� or �fetch�� opera�
tions� These are one�sided communication operations that only involve the initiating processor� and therefore they
are more e�cient and conceptually simpler than traditional message passing� which involves an active sender and an
active receiver� A set of independent one�sided communications must be followed by global synchronisation of the
processors to ensure memory integrity� The bulk�synchronisation required by one�sided communications is identical
to that of the BSP model� Therefore� we may view the BSP model as providing a theory for the use of one�sided
communications�

The aim of this paper is to show how the BSP model can be used in developing and analysing an algorithm
for parallel sparse Cholesky factorisation� The Cholesky factor L of a real symmetric positive de
nite matrix A is
de
ned as the lower triangular matrix that satis
es

A � LLT � �	�

We assume that A is sparse� and that A has been ordered to maintain sparsity during the factorisation� We also
assume that all structural information� such as the sparsity pattern of L and the corresponding elimination tree�
is available at the start of the computation� Therefore� we are only concerned with the numerical part of the
factorisation�

�� The BSP model

A BSP computer consists of a number of processors� each with its own memory� a communication network that
provides access to other processor�s memories� and a mechanism for global synchronisation� Reading from or writing
to memory is fast if the operation is local and it is slower if the memory location belongs to a di�erent processor�
There is no distinction in access time between di�erent non�local memories� This implies that the communication
network can be viewed as a black box� where the network topology is hidden in the interior� This property is essential
for achieving portability� Previous work ��� has shown that direct control over data distribution is crucial to achieving
e�ciency for sparse matrix computations on BSP computers with realistic system parameters� Therefore� we will
ignore the alternative approach based on memory hashing ���

A BSP algorithm consists of a number of supersteps� A superstep is either a number of computation steps
or an h�relation� both followed by a global synchronisation� An h�relation is a communication procedure where
each processor sends at most h data to other processors and receives at most h data� Note that two di�erent

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


communication patterns may have the same h� in that case� the cost function of the BSP model does not distinguish
between them� The cost function of the BSP model is the basis for complexity analysis of algorithms and for
performance prediction of implementations� There exist a few variants of the cost model� which di�er by at most a
small constant factor� The variant presented here was proposed in ���� Its main virtue is simplicity�

The cost of an h�relation� including the cost of synchronisation� is

Tcomm�h� � hg � l� ���

where g and l are machine dependent parameters and the cost unit is the time of a �oating point operation ��op��
This cost is charged because of the expected linear increase of communication time with h� The processor that
sends�receives the maximum number of elements determines h and hence the communication cost� Asymptotically�
for large h� the time of an h�relation is the product of the maximum number of elements sent into or received from
the communication network and the time g needed to send or receive one element� We can also view g as the ratio
between the global computation throughput and the global communication throughput� The linear cost function
includes a nonzero constant because initiating an h�relation incurs a 
xed cost� This 
xed cost includes� the cost of
global synchronisation� �part of� the cost of ensuring that all communicated data have arrived at their destination
�processors must do this before they can declare themselves ready for synchronisation�� and communication startup
costs� We lump all these costs into one parameter l� This parameter l is similar to but not identical with the
latency L of the original BSP model ��� We call l� by a slight abuse of language� the synchronisation cost of a
superstep� Approximate values for g and l of any particular machine can be obtained by benchmarking a range of
full h�relations �i�e�� h�relations where each processor sends and receives exactly h data�� with reals as data� This
method of benchmarking produces an upper bound on the cost of actual h�relations�

The cost of a computation superstep with an amount of work w� including the cost of synchronisation� is

Tcomp�w� � w � l� ���

The amount of work is de
ned as the maximum number of �ops performed by any processor in the superstep� The
value of l is taken to be the same as that of a communication superstep� despite the fact that the 
xed cost is
less� global synchronisation is still necessary� but the other associated costs disappear� The advantage of having one
parameter l is simplicity� the total synchronisation cost of an algorithm can be determined by simply counting the
supersteps�

The total cost of a BSP algorithm is an expression of the form a � bg � cl ���� A BSP computer can be
characterised by four parameters ���� the number of processors p� the single�processor speed s� the computa�
tion�communication throughput ratio g� and the synchronisation cost l� By analysing the complexity of an algorithm
and� independently� benchmarking a computer for its BSP performance� we can predict the execution time of an
implementation of the algorithm on that computer� Of course� the accuracy of the prediction depends on how the
BSP cost function re�ects reality� and this may di�er from machine to machine�

E�cient implementations of the BSP model are currently being developed� One such implementation is the
Oxford BSP library ���� This public�domain library is available for many architectures� including clusters of UNIX
workstations� shared memory multiprocessors such as the Silicon Graphics Challenge� and massively parallel com�
puters with distributed memory such as the Cray T�D� To give an impression of the wide range of BSP performance�
we recently benchmarked a cluster of 	� SUN ���� workstations using the Oxford BSP library as� p � 	�� s����	
M�op�s� g � ���� l � ���		� Miller ��� benchmarked a Cray T�D as� p � ���� s� 	� M�op�s� g � �� l � ����

�� Algorithm

To derive a parallel algorithm� it is necessary to start with a suitable sequential algorithm� We start with a
so�called submatrix Cholesky algorithm� since it exhibits more potential parallelism than other algorithms� Each
step of a sequential sparse Cholesky algorithm contains little work� since the number of nonzeros involved is small�
Several steps must be combined to achieve bulk in a computation and hence to obtain more potential parallelism�
One method of doing this is layered defoliation of the elimination tree �	�� �The nodes of this tree correspond to
the columns of L� a child in the tree must be computed before its parent�� The leaves of the tree are numbered

rst� they form the 
rst layer� The leaves are then deleted from the tree� and the new set of leaves forms the second
layer� and so on� The computations in one layer can be taken as one basic step of the sequential algorithm� Since
these computations are independent and involve a relatively large amount of work� they can be used to design BSP
supersteps�

Figure 	 presents a layered sequential algorithm� For each layer l� ml columns of L are computed and then
used to update the current matrix A� The current total number of columns computed is K� The algorithm expresses



Algorithm SEQ�CHOL� Input A� output A � L�
K �� ��
for l �� � to nlayer � 	 do
��� m �� ml�

for all k � K � k � K �m do akk ��
p
akk�

��� for all k � K � k � K �m do

for all i � K �m � i � n � aik �� � do aik �� aik�akk�
���� for all k � K � k � K �m do

for all j � K �m � j � n � ajk �� � do
for all i � j � i � n � aik �� � do aij �� aij � aikajk�

K �� K �m�

Figure 	� Layered sequential algorithm for sparse Cholesky factorisation

sparsity by statements of the form �aik �� ��� In an implementation� such testing is avoided by using a suitable
sparse datastructure� e�g� a collection of sparse column vectors� The statement labels correspond to supersteps of
the parallel algorithm�

The parallel algorithm� see Fig� �� is derived as follows� �It is a based on a previous algorithm for a square mesh
of processors �	��� First� we choose a data distribution� Assume a two�dimensional numbering P �s� t� of processors�
with � � s � M and � � t � N � where p � MN is the number of processors� A Cartesian distribution

aij ��� P ����i�� ���j�� ���

limits the amount of communication in most linear algebra computations� since it partitions rows and columns
among processor sets of limited size� the sets contain at most max�M�N � processors� This distribution scheme
is su�ciently general to allow optimisation for load balancing and communication reduction� The computation
supersteps are obtained by distributing the work according to the data distribution� This gives the computation
supersteps ���� ���� and ����� �Superstep ���� can be combined with superstep ��� of the next layer� to save one
superstep��

The communication supersteps are obtained by following a need�to�know principle� For example� in superstep
�	�� the pivot element akk is fetched by the processors that need it for divisions in superstep ���� This is expressed by
using the boolean variable col�emptys�k� which is true if the set of local column nonzeros faik j k � i � n � ���i� �
s � aik �� �g is empty� In a sparse computation� the information about communication requirements may be available
only at the sender� or only at the receiver� For this reason� the initiator may sometimes be the sender and sometimes
the receiver� For example� the receiver initiates in superstep �	�� This is an improvement over previous work �	�
where the pivot element is sent to all processors that might need it� i�e� to the processors P ��� t��
In superstep ���� parts of rows k and columns k are fetched� but only if both row and column are needed� this
improves on the indiscriminate broadcast of the previous algorithm �	�� Here� only the boolean information on the
emptiness of rows and columns must be broadcast� This is done in superstep ���� The row and column distribution
may be di�erent� in particular since this prevents diagonal load imbalance ������ �If �� � ��� processors P �s� s�
are overloaded� e�g� in superstep ����� In superstep ���� the columns k are transposed� to gather sets of nonzeros
according to the distribution function ��� instead of ���

The BSP model guides us in developing algorithms� but it also provides us with a tool for complexity analysis�
For example� we can roughly estimate the total cost of the Cholesky algorithm by

Tp � �nc�

p
�

�ncp
p
g �

�n

m
l� ���

where n is the matrix size� c the average number of nonzeros per column of L� m the average number of columns per
layer� Here� we haven taken M � N �

p
p� The cost estimate is based on the contributions of the most expensive

supersteps� ��� and ����� and on a count of the total number of supersteps�

�� Conclusion

A generic BSP algorithm has been presented which performs communication on the basis of the need�to�know� the
only values sent are nonzeros� and they are sent only to processors that need them� Suitable preprocessing can
produce a distribution that requires less communication during the subsequent factorisation� The algorithm can



Algorithm BSP�CHOL for processor P �s� t�
K �� ��
for l �� � to nlayer � 	 do
��� m �� ml �

for all k � K � k � K �m � ���k� � s � ���k� � t do akk ��
p
akk�

�	� for all k � K � k � K �m � ���k� � t do
if not col�emptys�k� then fetch akk from P ����k�� t��

��� for all k � K � k � K �m � ���k� � t do
for all i � K �m � i � n � ���i� � s � aik �� � do aik �� aik�akk�

��� for all k � K � k � K �m � ���k� � t do
for all i � K �m � i � n � ���i� � s � aik �� � do

store aik at P ����k�� ���i���
��� for all k � K � k � K �m � ���k� � t do store col�emptys�k� at P �s� ���

for all k � K � k � K �m � ���k� � s do store row�emptyt�k� at P ��� t��
��� for all k � K � k � K �m do

if not col�emptys�k� � not row�emptyt�k� then
fetch faik j k � i � n � ���i� � s � aik �� �g from P �s� ���k���
fetch faik j k � i � n � ���i� � t � aik �� �g from P ����k�� t��

���� for all k � K � k � K �m do

for all j � K �m � j � n � ���j� � t � ajk �� � do
for all i � j � i � n � ���i� � s � aik �� � do aij �� aij � aikajk�

K �� K �m�

Figure �� BSP algorithm for sparse Cholesky factorisation

fully bene
t from this� As a default distribution� we can use the function akk ��� P �k mod p� and then renumber
the processors to obtain two�dimensional processor identi
ers� The distribution of the matrix then determines the
distribution of the complete matrix� This method is expected to work well because it e�ectively randomises the
computations� Furthermore� the distribution function can be computed by a simple formula� which implies that
all processors can compute the location of any data� For irregular distributions� such information must be stored
in a table which may be distributed or replicated� Work on an implementation of the algorithm is in progress�
Experimental results will be published elsewhere�

Acknowledgements

I would like to thank Frank van der Stappen for numerous discussions on the BSP model� I thank Tom Cheatham� Amr Fahmy�
Satish Rao� Dan Stefanescu� Pilar de la Torre� and Leslie Valiant for their hospitality and for many interesting discussions
during my recent visit to the US� Furthermore� I acknowledge partial support of this work by the NCF�Cray Research University
Grants Program�

�� References

� Bisseling� R�H�� Doup� T�M�� Loyens� L�D�J�C�� A parallel Interior Point algorithm for linear programming on a
network of transputers� Ann� OR �� ������	 
����

� Bisseling� R�H�� McColl� W�F�� Scienti�c computing on bulk synchronous parallel architectures� preprint ��	 Dept�
Mathematics	 Utrecht University	 Dec� �����

� McColl� W�F�� General purpose parallel computing� in� Gibbons	 A�	 Spirakis	 P� �eds��� Lectures on Parallel Compu�
tation� Cambridge University Press	 Cambridge ����	 ��������

� Miller� R�� A library for bulk synchronous parallel programming� in� General Purpose Parallel Computing� British
Computer Society Parallel Processing Specialist Group ����	 ��������


 Miller� R�� Reed� J�� The Oxford BSP library users� guide	 version ���� Oxford Parallel	 Oxford �����
 Rothberg� E�� Schreiber� R�� Improved load distribution in parallel sparse Cholesky factorisation� in� Supercom�
puting ���� IEEE Computer Society �����

� Valiant� L�� A bridging model for parallel computation� Comm� ACM �� ������	 ��������

Addresses� Rob H� Bisseling� Mathematics Department� Utrecht University� P�O� Box ���	��
���� TA Utrecht� The Netherlands� E�mail� Rob�Bisseling�math�ruu�nl�
WWW� http���www�math�ruu�nl�people�bisseling


