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Abstract

This is an expository article about the series

f(x) =
1X
n=1

1

n
2 sin(n2x);

which according to Weierstrass was presented by Riemann as an example of a continuous
function without a derivative. An explanation is given of in�nitely many selfsimilarities
of the graph, from which the known results about the di�erentiability properties of f(x)
are obtained as a consequence.
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1 Introduction

According to Weierstrass [22], in a talk to the Royal Academy of Sciences in Berlin on 18
July 1872, Riemann introduced the function

f(x) =
1X
n=1

1
n2� sin(n2�x) (1:1)

in order to warn that continuous functions need not have a derivative. (The scaling with �
will simplify later formulas.) Not succeeding in verifying that f(x) is nowhere di�erentiable,
Weierstrass proved this property instead for the series

P
n�0 a�n sin(bn�x), with suitably

chosen positive numbers a and b. This appeared �rst in print in Du Bois-Reymond [5].
According to Butzer and Stark [2], there are no other known sources which con�rm Riemann's
role in the story.

Hardy [7, pp. 322-323] proved that \Riemann's" function f(x) is not di�erentiable in any
irrational point x and also not di�erentiable in a large class of rational x. With a completely
elementary but long proof, Gerver [6] succeeded in 1970 in showing that at every rational
point r = p

q with p and q both odd, f(x) is di�erentiable, and has derivative equal to �1
2 at

r. Furthermore he showed that at all other rational points the function is not di�erentiable.
Other, shorter proofs were given by Smith [20], Que�elec [18], Mohr [16], Itatsu [11], Luther
[15] and Holschneider and Tchamitchian [9]. For previous reviews on Riemann's function, see
Neuenschwander [17] and Segal [19]; the literature list of [2] contains many further references.
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Already for many years, a picture of the graph of f(x), made by A.J. de Meijer, adorns the
cover of the notes of the �rst semester analysis course in Utrecht. In it, the aforementioned
di�erentiability properties at the rational points with not too large denominators can be
distinguished quite clearly. However, another striking feature which immediately attracts the
attention, is the repetition of similar patterns in decreasing sizes. See Figure 1.1 below. In
local enlargements near the rational points these repeated patterns are even more impressive,
cf. Figures 4.2 and 4.4. (The pictures, made by means of a dot matrix printer, just show the
values of the functions for a large but �nite number of values of x. As a result, points in the
graph may be missing where the function is very steep.)

�0:127 < x < 2:127

�0:845 < y < 0:845

Figure 1.1: y =
P1

n=1
1

n2� sin(n
2�x)

In the following discussion, it is convenient to work with the complex valued series

�(x) :=
1X
n=1

1
in2�

en
2�ix: (1:2)

Note that �(x) = f(x)� ig(x), where g(x) is the corresponding cosine series, de�ned by

g(x) =
1X
n=1

1
n2� cos(n2�x): (1:3)

See Figures 1.2, 1.3.
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�0:127 < x < 2:127

�0:845 < y < 0:845

Figure 1.2: y =
P1

n=1
1

n2� cos(n2�x)

�0:637 < x < 0:637

�0:477 < y < 0:477

Figure 1.3: x = g(t), y = f(t)

My starting point in attempting to understand the pictures was to apply the Poisson
summation formula to �(x). This was inspired by Smith [20], who used the Poisson summation
formula, although he did not apply it to the function �(x) itself. What I got was a formula
which showed that �(x) is similar to �(�1x ), modulo a di�erentiable remainder term.

Combined with the periodicity of �(x) with period 2, the formula explains the observed
selfsimilarities in the singularities of the graph of f . In fact, the eye is very sensitive to small
hooks and pays much less attention to larger scale smooth perturbations. Figure 4.1 shows
how much duller the remainder term is compared to the function f(x) itself. As a free bonus,
the di�erentiability properties of f(x) at the rational points could be read o� immediately
from the formula.
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It then dawned on me that this selfsimilarity formula was just an integrated version of
the well-known transformation formula

�(x) = �(
�1
x
) � e�i4 � x� 1

2 ; Im x > 0: (1:4)

for the classical theta function
�(x) :=

X
n2Z

en
2�ix: (1:5)

This series converges locally uniformly to a complex analytic function on the complex upper
half plane

H := fx 2 C j Im x > 0g: (1:6)

Similarly, (1.2) de�nes a complex analytic function on H, with derivative equal to

�0(x) = 1
2 (�(x)� 1); x 2 H: (1:7)

Note that the theta function has no continuous limit at the real axis, the boundary of
H, in contrast with its primitive. The limit of the theta function is a distribution, which
can be identi�ed with x 7! Trace (e�ix�), where � denotes the Laplacian of the circle, cf.
Duistermaat and Guillemin [4, pp. 45,46]. Unlike �(x), this distribution is di�cult to visualize.

The functional equation (1.4) had been found for x = it, t > 0 by Gauss (1808) and
Cauchy (1817), whereas Poisson (1823) showed that it is a special case of a general summation
formula. See Burkhardt [1, nr. 107, pp. 1339-1342]. According to Cauchy [3, p.157], Poisson
also remarked that the formula holds for other complex x. Using the asymptotic expansion
for x = 2

q + i�, � # 0, Cauchy then used (1.4) in order to give a simple proof of the famous
identity

q�1X
k=0

e2�i
k2

q = c � q 1
2 (1:8)

for Gauss sums. Here c = 1 if q 2 4Z+ 1 and c = i if q 2 4Z� 1. A formula with 2
q replaced

by p
q can be read o� from (3.4).
The next idea is to combine the identity (1.4) with the periodicity �(x+ 2) = �(x). The

mappings �2 : x 7! x+ 2 and � : x 7! �1
x generate a subgroup �� of the group � of fractional

linear transformations


 : x 7! ax+b
cx+d ; a; b; c; d2 Z; ad� bc = 1: (1:9)

� and �� are called the modular group and the theta modular group, respectively. Combining
(1.4) with the periodicity, we obtain for each 
 2 �� a transformation formula of the form

�(x) = �(
(x)) � e�i4 m � q� 1
2 (x� r)�

1
2 : (1:10)

Here r = p
q is the rational number at which 
 has a pole and m is an integer which only

depends on r.
Integrating (1.10) from r to x 2 H and then moving x to the real axis, (1.7) now leads to

a selfsimilarity of �(x) under the transformation 
, for every 
 2 �� . Again, the selfsimilarity
is only modulo di�erentiable functions, see Theorem 4.2 for the detailed statement. The
translation into corresponding similarities for f(x) and g(x) is straightforward. An expansion
with arbitrarily many terms is given in Proposition 4.6.
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At the same time, the selfsimilarity formula can be read as an asymptotic expansion of
�(x) as x ! r, from which it follows that �(x) is not di�erentiable at r, and actually has
a singularity of square root type at one side or at both sides of r. The pole points of the

 2 �� turn out to be the rational numbers r = p

q for which not both p and q are odd. The
singularities of the functions f(x) and g(x) at these points are classi�ed in Table 4.4.

The rational numbers s = p
q for which both p and q are odd can be obtained from the ones

of the type even=odd by means of a translation over 1. With the notation tn(x) := en
2�ix=n2�i,

we have

�(1 + x) =
X

n even
tn(x)�

X
n odd

tn(x) = 2
X

n even
tn(x)�

X
n2Z

tn(x) =
1
2�(4x)� �(x): (1:11)

In combination with the previous description of the singularity of �(x) and �(4x) at the points
even=odd, this yields that �(x) is di�erentiable at x = s, with derivative equal to �1

2 . See
Proposition 4.5.

Approximating an irrational real number � by means of continued fractions r, and using
the uniformity of the asymptotics at the rational points r, we recover the result of Hardy [7,

p. 323] that f(x) and g(x) are not of order o(jx � �j 34 ) as x ! �. See Proposition 5.2. This
implies that f(x) and g(x) are not di�erentiable at any irrational point. In the other direction
we verify that, at almost all irrational numbers, the H�older exponent is arbitrarily close to 3

4 .
Our proofs are similar to the arguments which Hardy and Littlewood [8] used for their

asymptotics of the real and imaginary part of the theta function �(x), as x 2 H approaches
an irrational real number. See [8, p. 233]. Using the Poisson formula for harmonic functions,
Hardy [7, Lemma 2.11] expressed the real and imaginary part of �(x) in terms of f(x) and

g(x), respectively. He then argues that o(jx� �j 34 ) behaviour of f(x) or g(x) would lead to
conclusions about the asymptotics of �(x) as x ! � which are incompatible with the results
of [8]. Our proof avoids the detour via the asymptotics of �(x), at the cost of redoing some
of the arguments concerning the approximation with continued fractions. I actually enjoyed
this, although I am not an expert in number theory at all.

When writing this article, I wondered why the selfsimilarity formula was not used by
everybody who studied f(x): it was lying just around the corner, with the so well known
automorphic (= selfsimilar) properties of the theta function. Then I saw in the article of
Butzer and Stark [2] that Christo�el, in a letter to Prym dated 18 June, 1865, actually did
have the formula. It is the one for 
 : x 7! �1

x which I got by applying the Poisson summation
formula to f(x). If only Christo�el would have recognized his \second transformation" as a
selfsimilarity, he might have found the whole story. Via [2] I also found the article of Itatsu
[11], in which the asymptotics at the rational points is obtained in the same way as here.

After having seen the selfsimilarity of f(x), many readers will have reacted with: \Ah, a
fractal." This concept has been popularized by Mandelbrot, who writes in the Introduction
of [14]: \Fractal geometry is a new branch born belatedly from the crisis in mathematics that
started when du Bois-Reymond 1875 �rst reported on a continuous nondi�erentiable function
constructed by Weierstrass." But no selfsimilarity is mentioned in the comments on f(x) in
[14, Section 39]. As for the role of the computer, of course in the old days computer pictures
were not available to put one on the track. On the other hand, the mathematical analysis
de�nitely is the more essential part of the story. Without it, one may look at the pictures
with equal fascination, but with less understanding.

In the rest of the paper we give the results and proofs in much more detail. In order to
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make the presentation reasonably self-contained, we have included proofs of some of the well-
known basic facts which we use. After reviewing the Poisson summation formula in Section 2,
we present the selfsimilarity of the theta function in Section 3, together with a determination
of the group �� and the exponents m. This leads in Section 4 to the selfsimilarity modulo
di�erentiable functions of �(x), together with the asymptotic description of �(x) near the
rational points. The irrational points are treated in Section 5; certainly there remain some
interesting open questions here. We take a look at �xed points of 
 2 �� in Section 6.

I would like to thank J.A.C. Kolk, F. Beukers, R.W. Bruggeman, D. Zagier, and F. van
der Blij for stimulating and helpful discussions.

2 The Poisson Summation Formula

In the following proposition we will remain safely with our functions in the Schwartz space
S(R) of the in�nitely di�erentiable complex valued functions  (x) on R, such that, for all

nonnegative integers a and b, the function x 7! xa � db

dxb
 (x) is bounded on R.

Proposition 2.1 For each  2 S(R), let

(F )(�) :=
Z 1

�1
e�in� (n) dn

denote its Fourier transform. Then
X
n2Z

 (n) =
X
m2Z

(F )(2�m):

Proof The function
�(x) :=

X
n2Z

 (x+ n)

of x is smooth (C1) and periodic, with period equal to 1. Its Fourier expansion, evaluated
at x = 0, therefore is equal to

X
n2Z

 (n) = �(0) =
X
m2Z

Z 1

0
e�2�imy�(y) dy

=
X
m2Z

Z 1

0
e�2�imy

X
n2Z

 (y + n) dy =
X
m2Z

X
n2Z

Z n+1

n
e�2�im(y�n) (y) dy

=
X
m2Z

X
n2Z

Z n+1

n
e�2�imy (y) dy =

X
m2Z

Z 1

�1
e�2�imy (y) dy =

X
m2Z

(F )(2�m):

2

Alternatively the Poisson summation formula can be phrased as an identity
X
n2Z

�n = F(
X
m2Z

�2�m)

between tempered distributions, elements of the dual space of S(R). Here �a = �a(x) =
�(x� a) denotes the Dirac delta function translated to a, or the unit mass at a.
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The Poisson summation formula can be extended by continuity to Lebesgue integrable
continuous functions  on R for which there exists a sequence  j 2 S(R) such that  j jZ
and (F j)j2�Z converge to  jZ and (F )j2�Z, respectively. The required convergence here is
with respect to the sumnorm. It is this version which I �rst applied to \Riemann's function"
(1.1), before using the explanation via the theta function.

3 The Selfsimilarity of the Theta Function

In the sequel we will use the convention that

xa = jxja eai argx if x 6= 0; a 2 R; (3:1)

where we choose 0 � arg x � � if Im x � 0. With this convention, we have:

Lemma 3.1 The theta function �(x) :=
P

n2Z exp(n2�ix), de�ned for x 2 H, satis�es the
functional relation

�(x) = �(
�1
x
) � e�i4 � x� 1

2

and the periodicity relation �(x + 2) = �(x).

Proof For each x 2 H, the term  x(n) := exp(n2�ix), when considered as a function of
n 2 R, belongs to the Schwartz space S(R). The substitution of variables

n 7! e
�i
4 (�x)�

1
2n +

�

2�x

in the complex line integral

(F x)(�) =
Z 1

�1
e�in�+n

2�ix dn

yields that

(F x)(�) = e
�i
4 (�x)�

1
2 �
Z 1

�1
e�n

2
dn � e�i �2

4�x = e
�i
4 x�

1
2 � e�i �2

4�x :

Note that this substitution of variables involves a turn of the path of integration over an
angle �

4 � argx
2 in the complex plane. Substituting � = 2�m and summing over m 2 Z, and

applying Proposition 2.1 to  =  x, we obtain (1.4). 2

By induction we get a formula for the transformation of the theta function under each
element of the theta modular group �� . That is, for each 
 2 �� there exists an analytic
function �
 on the upper half plane H, such that

�(x) = �(
(x)) � �
(x); x 2 H; 
 2 �� : (3:2)

We will need an explicit description of �� and the multiplier system 
 7! �
 , 
 2 �� .
A fractional linear transformation, with arbitrary complex coe�cients a; b; c; d 2 C such

that ad � bc 6= 0, can be viewed as the restriction to C of the action of the corresponding

2� 2- matrix
� a b

c d

�
on the complex projective plane C [ f1g, the space of 1-dimensional
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linear subspaces of C2. Here x 2 C and 1 correspond to the lines in C2 through (x; 1) and
(1; 0), respectively.

Note that the mapping which assigns the fractional linear transformation 
 to the matrix� a b

c d

�
2 SL(2;Z) is a group homomorphism, with kernel equal to f�Ig. Therefore it is no

restriction to adopt the convention that c > 0 if c 6= 0 and a = d = 1 if c = 0.
If c 6= 0, then 
 has a pole at

r = p
q ; with p := �d; q := c: (3:3)

That is, r = r
 is the point x such that 
(x) = 1, which makes it natural to de�ne r = 1
if c = 0. Note that the determinant condition ad � bc = 1 implies that p and q have no
common factor, so the rational number r = p

q is written in the usual reduced form. Also,

r
 = r
0 if and only if � := 
0 � 
�1 maps 1 to itself. This means that the matrix of � is
upper triangular. Because it is integral and has determinant equal to 1, � is a translation.
Because the element � : x 7! �1

x of �� interchanges 0 and 1, the set of pole points 
�1(1),

 2 �� , is equal to the ��-orbit of 0.

Lemma 3.2 The ��-orbit of 0 consists of 1, together with the rational numbers r = p
q with

p even and q odd, or p odd and q even. The remaining rational numbers r = p
q with p and q

both odd constitute the ��-orbit of 1.
A fractional linear transformation belongs to �� if and only if it is de�ned by a matrix of

the form
� odd even

even odd

�
or
� even odd

odd even

�
. The quotient space �=�� has three elements. �� is

not a normal subgroup of �.

Proof Write B for the set of rational numbers p
q with p and q both odd, and A := (Q [

f1g)nB. It is clear that �2 and � leave B invariant, so B is invariant under �� and the same
is true for its complement A. Furthermore, 1 2 B and 0 2 A, hence �� � 1 � B and �� � 0 � A.
We have the desired equalities if we can prove that every rational number is in the ��-orbit
of 1 or 0.

For this purpose, we begin with the observation that by a translation �2k = (�2)
k 2 ��

over an even number 2k, we can bring any rational number in the interval ]� 1; 1]. Now let
x = p

q , with p and q integers without common factors, q > 0 and �1 < x � 1. If x 6= 0 and
x 6= 1 then 0 < jpj < q. There is an l 2 Z such that y := �2l � �(x) 2] � 1; 1]. Now y is in
the ��-orbit of x and the denominator of y, which is equal to jpj, is strictly smaller than the
denominator q of x. Putting y in the role of x we can continue the process. This has to break
o� after at most q steps. To break o� means that we have arrived at y = 0 or y = 1. It may
be noted that this procedure is a continued fraction expansion with only even integers, which
on the other hand are allowed to be negative. These do not have the convergence properties
as the ones in Lemma 5.1.

For the description of �� , write ~� for the group of 
 2 � with a matrix
� a b

c d

�
, which

modulo 2 is of the form
� 1 0

0 1

�
or
� 0 1

1 0

�
. Clearly �� � ~�. If 
 2 ~� has the matrix

� a b

c d

�
,

then 
�1(1) = �d
c 2 A = �� �0 = �� �1, so there exists a � 2 �� such that 
�1(1) = ��1(1).

Writing � := � � 
�1, we have �(1) = 1, or � is a translation over an integer b, with matrix� 1 b

0 1

�
. Because � 2 ~�, b is even, which implies that � 2 �� . Because also � 2 �� , the

conclusion is that 
 2 �� .
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The homomorphism which reduces the matrix of 
 2 � modulo 2 has as its kernel the
group of 
's for which the matrix is odd on the diagonal and even on the antidiagonal, which
is a subgroup of �� . This reduction maps � onto the group G of invertible 2�2- matrices over

Z=2Z, which has 6 elements, and �� onto the subgroup H consisting of
� 1 0
0 1

�
and

� 0 1
1 0

�
.

This proves that �=�� ' G=H has three elements. The last statement in the lemma results
from the fact that H is not a normal subgroup of G. 2

Lemma 3.3 The multiplier �
 depends only on the pole point r = r
. If r = p
q , p and q

integers without common factors and q > 0, then

�
(x) = e
�i
4 m � q� 1

2 � (x� r)� 1
2 = e

�i
4 � 1q

q�1X
k=0

e
�i p

q
k2 � (x� r)� 1

2 : (3:4)

Here the integers
m = m(r) 2 Z=8Z

in the exponent are determined recursively by

m(1) = 0; m(0) = 1; (3.5)

m(r+ 2) = m(r); (3.6)

m(�1r ) = m(r)� sign r : (3.7)

Proof If 
; � 2 �� , then �(x) = �(
(x)) � �
(x) = �(�(
(x)) � ��(
(x)) � �
(x), which leads to
the composition rule ���
(x) = ��(
(x)) ��
(x). This is similar to the chain rule (� �
)0(x) =
�0(
(x)) � 
0(x) for the derivative. If 
 has the coe�cients a; b; c; d, then


0(x) = (cx+ d)�2 = q�2 (x� r)�2 if r = r
 =
p
q ; q > 0: (3:8)

For 
 = � : x 7! �1
x , this is equal to ��
(x)4. So we get by induction that �
(x) =

e
�i
4 m
 � 
0(x) 14 , for a suitable function 
 7! m
 : �� ! Z=8Z. Here (3.8) suggests to use the

convention that �2� < arg
0(x) < 0 for x 2 H, so that 
0(x)
1
4 = q�

1
2 (x � r)�

1
2 remains

compatible with (3.1). We have proved the �rst identity in (3.4).
For the second identity in (3.4), we follow the proof of Cauchy [3, pp. 157-159] of (1.8).

We start with the asymptotic expansion

�(r + i�) � 1

q
p
�

q�1X
k=0

e
�i p

q
k2 as � # 0:

This can be derived by substituting n = lq + k in (1.5) and viewing the sum over l 2 Z as
a Riemann sum for the integral of e�x2 . On the other hand, because 
(r+ i�) � iC=� for a
positive constant C, we get that �(
(r + i�)) converges to 1, so 
(r + i�) is asymptotically
equal to the middle term in (3.4).

We now turn to the proof of (3.7). Because


0(x)
1
4 = j
0(x)j 14 � exp(�i4 arg
0(x)

� );
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the composition rule for the m
 reads

m��
 = m� +m
 +
1
� [arg �

0(
0(x)) + arg 
0(x)� arg (� � 
)0(x)]:

If we apply this to 
 = �, r� =
p
q with q > 0, then the substitution of x = i�, � # 0 yields

that
�0(
(x)) = (q � �1x � p)�2 = ( iq� � p)�2

has argument close to �� and 
 0(x) = (i�)�2 has argument equal to ��. Finally the argument
of

(� � 
)0(x) = �0(
(x)) � 
0(x) = (�q � i�p)�2 = (q + i�p)�2

converges to 0 if p > 0 and to �2� if p < 0, keeping the point under the power sign in H.
Because m� = 1, it follows that m��� = m� � sign(r�). The proof of the lemma is completed
by noting that

r��� = (� � �)�1(1) = ��1(r�) = �1
r�
:

2

The recursion to which is alluded in the lemma, is the procedure which is described in
the proof of Lemma 3.2, to get a pole point to 0 by a succession of translations over even
numbers and re
ections x 7! �1

x . This leads to a very e�ective algorithm for the computation
of the m(pq ).

It follows from (3.7) that an increase of m by one corresponds to a passage A1 ! A2 !
A3 ! A4 ! A1, where

A1 := fpq j p 2 2Z; q 2 4Z+ 1; q > 0g;
A2 := fpq j p 2 4Z+ 1; q 2 2Z; q > 0g;
A3 := fpq j p 2 2Z; q 2 4Z+ 3 = 4Z� 1; q > 0g;
A4 := fpq j p 2 4Z+ 3; q 2 2Z; q > 0g:

That is,
m(pq ) � k mod 4 if p

q 2 Ak : (3:9)

This determines the multipliers up to a sign.
The signs however follow a quite subtle pattern, which can be described in terms of the

Jacobi symbols ( nm) = �1. These are de�ned for integers n and m such that m is positive and
odd, n 6= 0 and gcd(n;m) = 1, as follows.

( nm) =
vY

u=1

( n
pu
) if m =

vY
u=1

pu; pu > 2; pu is prime: (3:10)

This includes the convention that ( nm) = 1 if m = 1. For p a prime > 2, n a nonzero integer,
(np ) is called a Legendre symbol and is de�ned by

(np ) = 1 if n is a square modulo p; (np ) = �1 otherwise: (3:11)
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The Jacobi symbols have the following basic properties (3.12)-(3.16).

(n+mm ) = ( nm); (3.12)

(n�n
0

m ) = ( nm) � (n
0

m ); (3.13)

(�1m ) = (�1)m�1
2 ; (3.14)

( 2
m) = (�1)m

2�1
8 ; (3.15)

( nm) � (mn ) = (�1)n�12 �m�1
2 : (3.16)

All these equations hold as far as the Jacobi symbols were de�ned. For example, the quadratic
reciprocity law (3.16) holds if n and m both are positive odd integers without common factors.
See [13, Part I, Chap. 6].

So, in contrast with our m(pq )'s, the Jacobi symbols are de�ned in terms of the prime
factor decompositions of p and q, and for the prime factors in terms of quadratic residues. I
found the following description of the multipliers in Knopp [12, p. 51].

Theorem 3.4 If 
 2 �� has its pole at r = p
q with q > 0, gcd(p; q) = 1, then

�(x) = �(
(x)) � e�i4 q � (�pq ) � q�
1
2 (x� r)� 1

2 if q is odd;

�(x) = �(
(x)) � e�i4 (p+1) � ( q
jpj) � q�

1
2 (x� r)�

1
2 if p is odd:

Proof Let us temporarily write � := e
�i
4 . From (3.7) and the remark after Lemma 3.3, it

follows that
�(pq ) := �

m( p
q
)�q = �

m(�q�s
jpj

)+s�q
= �1; s := sign p; (3:17)

if q is positive odd and p is even. The equations (3.6) for odd q are equivalent to

�(p+2qq ) = �(pq ) if q is odd; q > 0: (3:18)

The other cases of (3.6) are equivalent to

Ifq + 2p > 0; then: �(pq ) = �( p
q+2p)() p=2 is even: (3.19)

Ifq + 2p < 0; then: �(pq ) = �( �p
�q�2p)() (p� q + 1)=2 is even: (3.20)

By repeated translations of p
q and �q

p over even numbers, we arrive at q = 1, for which

�(p) = 1. The relation with the Jacobi symbols follows from the fact that if we replace �(pq )

by (�pq ), then we get the same properties (3.18)-(3.20), and (�pq ) = 1 if q = 1. The conclusion

therefore is that �(pq ) = (�pq ) if p is even and q > 0 is odd.
Indeed, the property (3.18) for the Jacobi symbols follows from (3.12). For the proof of

the properties (3.19), (3.20) for the Jacobi symbols, we write, for m positive odd and n 6= 0:

n = 2k� s; � positive and odd; s = sign n:

Using (3.13), (3.15), (3.14) and (3.16), this yields

( nm) = (�1)m
2�1
8

k+m�1
2

1�s
2

+ ��1
2

m�1
2 � (m� ):
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Using the same equation with m replaced by m + 2n, and the fact that (3.18) implies that
(m� ) = (m+2n

� ), the properties (3.19), (3.20), with �(pq ) replaced by (�pq ), can be deduced. 2

Using (3.15) once more, the results can also be summarized as follows:

Table 3.5 If p; q 2 Z, q > 0, gcd(p; q) = 1, not both p and q odd, then m = m(pq ) 2 Z=8Z is
given by:

If q 2 4Z+ 1 then: m � 1 if (
p=2
q ) = 1; m � 5 if (

p=2
q ) = �1:

If q 2 4Z+ 3 then: m � 3 if (p=2q ) = 1; m � 7 if (p=2q ) = �1:
If p 2 4Z+ 1 then: m � 2 if ( q=2jpj ) = 1; m � 6 if ( q=2jpj ) = �1:
If p 2 4Z+ 3 then: m � 0 if ( q=2jpj ) = 1; m � 4 if ( q=2jpj ) = �1:

4 The Primitive of Theta

We now turn to the study of the function

�(x) :=
1X
n=1

1
in2�e

n2�ix;

introduced before in (1.2). Because of the uniform convergence of the series, this de�nes a
continuous function of x 2 R. Actually one has the following uniform H�older estimate, which
even holds on the closure of the upper half plane.

Lemma 4.1 There exists a constant C such that

j�(x)� �(y)j � Cjx� yj 12
holds for all x; y 2 R.

Proof Write �(x) = AN (x) + BN (x), with

AN(x) :=
NX
n=1

1
in2�

en
2�ix; BN (x) :=

1X
n=N+1

1
in2�

en
2�ix:

Then d
dx

1
in2�

en
2�ix = en

2�ix has absolute value � 1, so jAN(x)�AN (y)j � N jx� yj. On the
other hand,

jBN (x)j �
1X

n=N+1

1
n2� � 1

N� :

Combining these estimates, we get

j�(x)� �(y)j � N jx� yj+ 2
N� :

The minimum of the right hand side as a function of N 2 R is attained for N = ( 2
jx�yj� )

1
2 ,

and is equal to 2 ( 2� jx�yj)
1
2 . Replacing the optimal N 2 R by a positive integer at a bounded

distance, we get the desired estimate. 2

We now turn to selfsimilarity of �(x) modulo di�erentiable functions which was announced
in the introduction.

12



Theorem 4.2 Let 
 2 �� have its pole at r = p
q , with p; q 2 Z, q > 0, gcd(p; q) = 1. Write

m = m(r). Then the function �(x) satis�es

�(x) = �(r) + e
�i
4 m � q� 1

2 � (x� r)
1
2 � 1

2(x� r) + e
�i
4 m � q 3

2 � (x� r) 32 � �(
(x)) +  (x) (4:1)

for x 2 R. Here the function  (x) =  r(x) depends only on the pole point r. It is di�eren-
tiable,  (r) = 0 and the derivative is given by

 0(x) = �3
2e

�i
4 m � q 3

2 � (x� r) 12 � �(
(x)):

Proof The fact that in (1.2) the sum is over the positive integers, whereas in the de�nition
(1.5) the convention is to sum over all integers, makes that �(x) is not quite equal to the
derivative of �(x), but satis�es the equation (1.7) instead. Substituting (3.2), we get

�0(x) = 1
2 (�(x)� 1) = 1

2�(
(x)) � �
(x)� 1
2 = �0(
(x)) � �
(x) + 1

2�
(x)� 1
2 :

Integrating this from � to x in the upper half plane H and performing a partial integration,
we can rewrite this as

�(y)/y=xy=� = �(
(y)) � �
(y)
0(y)

.y=x

y=�
� R x� �(
(y)) � d

dy
�
(y)

0(y) dy

+1
2

R x
� �
(y) dy� 1

2(x� �): (4.2)

Substitution of (3.4) and (3.8) yields that

�
(x)


0(x)
= e

�i
4 m � q 3

2 � (x� r)
3
2

and the primitive of �
 is a multiple of (x � r)
1
2 . This implies that (4.2) has a continuous

limit if we let the variables �; y; x become real. With the choice of � = r, (4.2) then becomes
(4.1), with

 (x) = �3
2e

�i
4 m � q 3

2 �
Z x

r
(y � r)

1
2 � �(
(y)) dy: (4:3)

That  (x) only depends on r follows from the fact that if 
; ~
 2 �� have the same pole point,
then ~
 = � � 
 for a translation � over an even integer. Hence � � ~
 = � � � � 
 = � � 
. 2

For each nonnegative integer k and real number � with 0 < � < 1, we write Ck;�(R)
for the space of functions on R which are k times di�erentiable and for which the k-th order
derivative h sati�es locally uniform H�older estimates

jh(x)� h(y)j � Cjx� yj�

with H�older exponent �. Then � 2 C0; 1
2 (R) and  r 2 C1; 1

2 (R).
From (4.1) we immediately read o� the asymptotic behaviour of �(x) at the points r
,


 2 �� :
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Lemma 4.3 If, in the notation of Theorem 4.2, we write

�r(x) := �(r) + e
�i
4 m � q� 1

2 � (x� r)
1
2 � 1

2 (x� r) (4:4)

for the leading terms of the asymptotic expansion of �(x) at x = r = r
, then

j�(x)� �r(x)j � �
3 q

3
2 � jx� rj 32 :

Proof Use that

� j�(x)j �
1X
n=1

1
n2 =

�2

6 : (4:5)

The identity on the right is well-known. A proof can be given by observing that the left and
right hand side of X

n2Z

1
(z�n)2 = ( �

sin(�z) )
2 = 2�2

1�cos2�z (4:6)

are meromorphic functions of z, with the same poles and asymptotic behaviour as z ! 1.
So the di�erence is entire and vanishes at 1, and therefore vanishes identically in view of
Liouville's theorem. The constant term of the left hand side of (4.6) is equal to 2

P
n�1 n�2

and that of the right hand side is equal to �2=3. 2

Recall from Lemma 3.2 that the r = r
 , 
 2 �� , are precisely the rational numbers p
q such

that p; q 2 Z, q > 0, gcd(p; q) = 1 and not both p and q odd. The conclusion is that �(x) has
singularities of square root nature at each of these rational points, which lie dense on the real
axis. The \strength factor" q�

1
2 in front of (x� r) 12 in (4.4) makes that the singularity is the

most pronounced for the \simple"rational numbers, the ones with a small denominator.
For the singularities of f(x) and g(x) we have to take the real and imaginary part of 4.4.

Also note that, according to the convention in (3.1):

(x� r) 12 = i � jx� rj 12 if x < r:

If p is even and q is odd, then m = m(r) is odd and we �nd square root type behaviour for

f(x) at both sides of r, with a factor �(2q)� 1
2 in front. On the other hand, if p is odd and q

is even, then m is even and the real part of either e
�i
4 m or its multiple by i is equal to zero.

It follows that at one side of r, f(x) has a derivative equal to �1
2 . At the other side of r,

f(x) has square root type behaviour, with a factor �q� 1
2 in front. For g(x) we get the same

conclusions, but with derivative �1
2 replaced by derivative equal to 0. The conclusions show

that the H�older exponent 1
2 for f(x) and g(x) cannot be improved.

Using Table 3.5, we can summarize the eight possible cases in Table 4.4 below. In the
diagrams, square root type behaviour is represented by a vertical curved arc, up or down
according to the sign in front of the square root. A �nite derivative at one side is represented
by a straight line segment with the corresponding slope. The oriented curve x ! �(x) in
the complex plane has no well-de�ned velocity, but it approaches �(x) in�nitely fast from a
well-de�ned direction as x! r. The diagram for �(x) depicts these directions. For a proper
understanding of the relations between the diagrams, note that �(x) = f(x)� ig(x).
Table 4.4 The types of singularities which occur are:
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m mod 8 r = p
q Ex. f(x) �(x) g(x)

1 p 2 2Z; q 2 4Z+ 1; (p=2q ) = 1 0
�
�
f+g

g�f
@R��

��g�f�f�g

2 q 2 2Z; p 2 4Z+ 1; ( q=2jpj ) = 1 1
2 �HHg�f

-6
�

�g

�f

3 p 2 2Z; q 2 4Z+ 3; (p=2q ) = 1 2
3 ��g�f�f�g

��
@I

�
��f�g

f�g

4 q 2 2Z; p 2 4Z+ 3; ( q=2jpj ) = �1 3
4 �

HH
�f�g

�
6

�
f

�g

5 p 2 2Z; q 2 4Z+ 1; (p=2q ) = �1 4
5

�
��f�g

f�g

@I�	

��
f�gf+g

6 q 2 2Z; p 2 4Z+ 1; ( q=2jpj ) = �1 �3
4

�
HH�g

f

?
�

�
g f

7 p 2 2Z; q 2 4Z+ 3; (p=2q ) = �1 �2
3

��
f�gf+g �	

@R �
�
f+g

g�f

0 q 2 2Z; p 2 4Z+ 3; ( q=2jpj ) = 1 �1
2

�
HH f
g

-?
��f g

We now take a look at the remainder term  r(x) in the equation (4.1).

�0:127 < x < 2:127

�0:845 < y < 0:845

Figure 4.1: y = Re  0(x)

Using (4.4), we can rewrite (4.1) in the form

�(x) = �r(x) + �(
(x)) � e�i4 m � q 3
2 � (x� r)

3
2 +  r(x);
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where  r(x) 2 C1; 1
2 ((R). It follows from Proposition 4.6 below, with l = 2, that

 r(x) = O(jx� rj 52 ) as x! r:

So in addition to being smoother, the remainder term is also asymptotically of smaller order
as x! r. Figure 4.1 depicts the real part of  r(x) for r = 0, 
 : x 7! �1

x .
The selfsimilarity modulo di�erentiable functions under the action of the fractional linear

transformations 
 2 �� is quite spectacular: if x converges to r = r
 , then 
(x) converges
to in�nity. Due to the periodicity of �, there is an in�nite repetition of the same pattern
of singularities, and 
 transforms this to a sequence of repeated patterns which converges
to r, at a distances from r of the form a constant times 1

n for the n-th pattern. The slow
convergence of 1

n towards 0 as n ! 1 makes that in the pictures very many repetitions of
the patterns are visible.

Because �(
(x)) is multiplied with a constant times jx � rj 32 , the pattern is of the same
order of magnitude as the estimate in Lemma 4.3 for the remainder term. In this sense Lemma
4.3 is optimal.

For f(x) and g(x) we get that near r we have to add a pattern which is proportional to

jx� rj 32 times �f , �g, or �f � g, depending on the value of m and on the side of r. We have
indicated this in Table 4.4 by writing the corresponding letters at the various branches of the
diagrams.

Figure 4.2 is an enlargement near x = 1
2 of the graph of f(x). On the right of x = 1

2 we
see an in�nite repetition of the graph of the function g(x), see Figure 1.2

0:498 < x < 0:563

0:349 < y < 0:398

Figure 4.2: y = f(x) near x = 1
2

In order to facilitate the recognition of the patterns at the points with square root be-
haviour at both sides, we also provided a picture of the graph of f(x) + g(x) in Figure 4.3.
This one occurs to the right of x = 0.
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�0:127 < x < 2:127

�0:845 < y < 0:845

Figure 4.3: y = f(x) + g(x)

Note that �f(x) + g(x) is obtained by the re
ection x 7! �x. For the behaviour at the
other rational points we have:

Proposition 4.5 The behaviour of �(x) for x near 1 can be read o� from

�(1 + x) = �i
12 � 1

2x+ e
�i
4 � x 3

2 � [4�(�14x )� �(�1x )] + �(x); (4:7)

where �(x) 2 C1; 12 (R) is given by �(0) = 0 and

�0(x) = �3
2 e

�i
4 � x 1

2 � [2�(�14x )� �(�1x )]:

At each point s = p
q with p and q both odd, q > 0, gcd(p; q) = 1, we have

j�(y)� [�(s)� 1
2(y � s)]j � 5�

3 q
3
2 � jy � sj 32 for all y 2 R: (4:8)

In particular, �(y) is di�erentiable at y = s, with derivative equal to �1
2 .

Proof The assumptions for s imply that r := s � 1 = p�q
q = u

q , with u = p� q even, q > 0
odd and gcd(u; q) = 1. Also, 4r = v

q , with v = 4u even and gcd(v; q) = 1. Finally, using
Theorem 3.4 and (3.13), (3.15), we see that m := m(r) = m(4r).

Let us write �(x) = �r(x) + Rr(x), with �r(x) as in (4.4). Then 1
2�4r(4x) � �r(x) =

1
2�(4r) � �(r) � 1

2 (x � r), where the essential feature is the cancellation of the square root
terms. Now (1.11) yields

�(x+ 1) = 1
2 �(4x)� �(x) = 1

2 �(4r)� �(r)� 1
2 (x� r) + 1

2R4r(4x)�Rr(x):

For r = 0, we have r = 4r = r
 , with 
 : x! �1
x . Reading Rr and R4r o� from (4.1), we get

(4.7). On the other hand, writing x+ 1 = y, y � s = x� r, the estimate in Lemma 4.3 leads
to

j12R4r(4x)�Rr(x)j � �
3 � q

3
2 � (12 j4x� 4rj 32 + jx� rj 32 j � 5�

3 q
3
2 jy � sj 32 :

2
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0:96 < x < 1:04

�0:03 < y < 0:03

Figure 4.4: f(x) near x = 1

�0:127 < x < 2:127

�0:845 < y < 0:845

Figure 4.5: y = 3
8 [4f(x) + 4g(x)� f(4x)� g(4x)]

At the rational points s = p
q with p and q both odd, the functions f(x) and g(x) are

di�erentiable, but superimposed on the linear approximation we �nd an in�nitely repeating
pattern of singularities converging to s, of order of magnitude jx�sj 32 . At s = 1 the singularity

18



pattern has the shape of k(�14x ), where k(x) := 4f(x) + 4g(x)� f(4x) � g(4x). See Figures

4.4 and 4.5. As for the remainder term  (x), we have that �(x) = O(jxj 52 ) as x! 0.
We conclude this section with the observation that the partial integration, which was used

in the proof of Theorem 4.2, can be iterated. This results in an expansion of �(x) in terms

of functions of class Ck; 12 (R), k = 1; 2; : : : :
For this, we will make use of the functions �k(x) de�ned by

�k(x) =
1X
n=1

1
(n2�i)k

en
2�ix; (4:9)

for positive integral k. These are complex analytic functions on the upper half plane, and

d�k
dx

(x) = �k�1(x);
dk�1�k
dxk�1

(x) = �1(x) = �(x): (4:10)

It follows that �k(x) has a continuous extension on the closure of the complex upper half

plane, to a function of class Ck; 1
2 . Finally,

sup
x
j�k(x)j = j�k(0)j = ��k

1X
n=1

n�2k = ��k �(2k); (4:11)

where �(s) =
P1

n=1 n
�s is Riemann's zeta function.

As a side remark, Hardy [7] and later authors investigated the di�erentiability properties
of �k(x) also for nonintegral real values of k, k >

1
2 . One could also use the interpretation

�k(x) = (
d

dx
)1�k �(x);

where the \fractional integration" ( d
dx)

1�k is a pseudodi�erential operator of order 1�k. This
is a singular integral operator, of which the action on singularities is of a local nature. Also,
it has good continuity properties with respect to H�older norms. See Taylor [21, Ch. II, x2
and Ch. XI, Thm. 2.5].

Proposition 4.6 For every 
 2 �� and every nonnegative integer l, we have, with the nota-
tion of Theorem 4.2:

�(x) = �(r) + e
�i
4
m q�

1
2 (x� r) 12 � 1

2(x� r)

+e
�i
4 m � f

lX
k=1

ak (x� r)k+ 1
2 � �k(
(x)) + bl

Z x

r
(y � r)l�

1
2 � �l(
(y)) dyg;

where the constants are given by

ak := q2k�
1
2 (�1)k�1

k�1Y
j=1

(j + 1
2);

bl := �al � (l+ 1
2) = al+1=q

2:
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Proof For l = 1, this is just (4.1). The result now follows by induction on l, for which we
observe that (3.8) and a partial integration implies that

Z x

r
(y � r)l� 1

2 � �l(
(y)) dy

=

Z x

r
(y � r)l� 1

2 � d�l+1
dy

(
(y)) dy =

Z x

r
q2 (y � r)l+2�

1
2 � d

dy
�l+1(
(y)) dy

= q2 (y � r)l+1+ 1
2 � �l+1(
(y))�

Z x

r
q2 (l+ 1 + 1

2) (y � r)l+1�
1
2 � �l+1(
(y)) dy:

2

5 The Irrational Points

Let � be an irrational real number. The idea which �rst comes to mind in order to prove
that f(x) is not di�erentiable at � is to approximate � with rational numbers r which are not
quotients of odd integers, and use the square root type of singularities of f(x) at r in order
to conlude su�ciently wild behaviour of f(x) at �.

This program can be carried out, but in a somewhat subtle way. In the following expla-
nation, \constant" means independent of r = r
 = p

q and �. The square root term in (4.1)

is equal to a constant times q�
1
2 (x � r)

1
2 , whereas the remainder term can be estimated by

a constant times q
3
2 (x� r) 32 , which is equal to the previous one times q2(x� r). Because we

want to use this with jx� rj of the same order of magnitude as j�� rj, we need that r = p
q is

an approximation of � of an order at most 1
q2
. This, and a little bit more, is taken care of by

the following

Lemma 5.1 Let � 2 R be irrational and let rn = pn
qn

be the sequence of continued fraction
approximations of �. Here pn; qn 2 Z, qn > 0, gcd(pn; qn) = 1. Then we have, for every n:

jpn
qn
� �j < 1

qn2
(5:1)

and
pn�1; qn�1; pn; qn are not all odd. (5:2)

It follows that a subsequence of the continued fraction approximations belongs to the ��-orbit of
1, that is, are not of the form odd=odd. Finally, the even numbered rn increase monotonously
towards � and the odd numbered rn decrease monotonously towards �.

Proof For an introduction to continued fractions, see Hardy and Wright [10, Ch. X]. For the
convenience of the reader, we repeat here what we need.

In order to obtain the continued fraction of �, one starts with the integer a0 2]� � 1; �[,
or �0 := �� a0 2]0; 1[. Then, by induction on n � 1, one �nds positive integers an such that

�n =
1

�n�1
� an 2]0; 1[:

Reading these equations backward, we get

� = a0 + �0;
1
�0

= a1 + �1; : : : ;
1

�n�1
= an + �n:
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For any sequence of real numbers �n, with �n > 0 for n � 1, one de�nes the continued fraction
with partial quotients �0; �1; : : : ; �n as:

�n := [�0; �1; : : : ; �n] := �0 + 1=�1 + 1= : : :+ 1=�n:

With this notation, we have

� = [a0; a1; : : : ; an�1; an + �n]: (5:3)

Now the continued fraction approximations rn of � are de�ned by replacing the remainder �n
by 0:

rn := [a0; a1; : : : ; an�1; an]: (5:4)

It follows by induction on n that

�n+1 =
�n+1 �n+�n�1

�n+1 �n+�n�1
if �n =

�n
�n
:

For the induction step one observes that

�n+1 = [�0; �1; : : : ; �n�1; �n + 1=�n+1] =
(�n+1=�n+1) �n�1+�n�2

(�n+1=�n+1) �n�1+�n�2

= �n+1 (�n �n�1+�n�2)+�n�1

�n+1 (�n �n�1+�n�2)+�n�1
= �n+1 �n+�n�1

�n+1 �n+�n�1
:

This can be written as an identity Mn+1 =Mn �An+1 for the 2� 2-matrices

Mn :=
� �n �n�1
�n �n�1

�
; An :=

� �n 1
1 0

�
:

The process starts with p0 = �0, q0 = 1 and p1 = �1 �0 + 1, q1 = �1. That is, as if
M0 = A0. Because detAn = �1, it follows that detMn = (�1)n�1. In particular, if we take
�n = an 2 Z, pn = �n 2 Z, qn = �n 2 Z then

pn qn�1 � qn pn�1 = (�1)n�1; (5:5)

which in turn implies that gcd(pn; qn) = 1. So rn = pn
qn

is a representation of the n-th
continued fraction approximation of x in the desired form. If pn�1, qn�1, pn and qn are all
odd, then pn qn�1 and qn pn�1 are both even, which leads to a contradiction with (5.5). This
proves (5.2).

Writing � = (an+1 + �n+1) pn + pn�1, � = (an+1 + �n+1) qn + qn�1, we have � = �
� , and we

get from (5.5) that
jpnqn � �j = 1

qn � <
1

qn qn+1
< 1

qn2
: (5:6)

This proves (5.1). For the last statement, we read o� from (5.5) that

pn
qn
� pn�1

qn�1
= (�1)n�1

qn�1 qn
;

which implies that pn
qn

> pn�1

qn�1
if n is odd. Moreover, the absolute value of the left hand

side is monotonously decreasing as a function of n. So, if n is odd, pn�1

qn�1
< pn+1

qn+1
< pn

qn
and

pn+1

qn+1
< pn+2

qn+2
< pn

qn
. 2

We are now ready to prove:
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Proposition 5.2 There exist positive constants �, �, such that for every irrational number
� 2 R the following holds. Let rn(j) =

pn(j)
qn(j)

denote the j-th term in the continued fraction

approximation of � which is not of the form odd=odd, which is an in�nite sequence converging
to � as j !1. Then there is a sequence of points xj such that, for all j:

jxj � �j � � � jrn(j) � �j (5:7)

and, with the notation � = �=�
3
4 :

jf(xj)� f(�)j � � � qn(j)�
1
2 jrn(j) � �j

1
2 � � � jxj � �j 34 : (5:8)

The same result holds with f(x) replaced by g(x). In particular, neither f(x) nor g(x) is
di�erentiable at any irrational point.

Proof Let r = rn be a continued fraction approximation of �, of the form r = p
q = 
�1(1),


 2 �� . The idea is to apply Lemma 4.3 to a suitably chosen x.
If m = m(r) is even then we restrict ourselves to x > r if m = 2 modulo 4 and to x < r

if m = 0 modulo 4, respectively, in order to ensure that x lies on the \square root side" and
not on the di�erentiable side of r. If m is odd, then the real part of the square root term gets
a factor 1=

p
2 in front. We still have a free choice for the positive constant a in

jx� rj = a � jr� �j:
Using (5.1), we obtain now from Lemma 4.3:

jf(x)� f(r)j � q�
1
2 � jr � �j 12 a 1

2 � [ 1p
2
� 1

2a
1
2 q�

1
2 � �

3a]:

In order to get a positive factor in the right hand side, we require that

0 < a < 3p
2�
:

This yields

jf(x)� f(r)j � b q�
1
2 � jr� �j 12

if q is su�ciently large and the constant b is chosen such that

0 < b < a
1
2 � [ 1p

2
� �

3a]:

We now take r = rn(j); in Lemma 5.1 we have seen that these form a sequence converging

to �. Note that jf(r)� f(�)j and jf(x)� f(�)j are not both smaller than 1
2 jf(x)� f(r)j. So,

if we take xj = r or xj = x such that jf(xj) � f(�)j is maximal, we get (5.8), with � = b
2 .

The estimate (5.7) holds with � = 1 + a and the second estimate in (5.8) follows from (5.7)
and (5.1). 2

One consequence is that if a subsequence of the rn in Proposition 5.2 satis�es jrn � �j =
O(qn��) for some � � 2, then

not f(x)� f(�) = o(jx� �j 12+ 1
2� ) for x! �: (5:9)

Here v(x) = o(w(x)) means that v(x)=w(x) converges to 0. In the following lemma we aim
at a converse of this.
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Lemma 5.3 Suppose that the continued fraction approximations rn = pn
qn

of the irrational
number � satisfy estimates of the form

jrn � �j � � qn
�� for all n; (5:10)

for some � � 2, � > 0. Then, with the notation

� := �(�) := 3
4 (1� �(�� 2));

we have
j�(x)� �(�)j = O(jx� �j�) as x! �:

Proof For each n � 2, we will estimate j�(x)� �(�)j by C � jx � �j�, for x in the segment
with endpoints rn�2 and rn. According to the last statement in Lemma 5.1, these segments
�ll up a full punctured neighborhood of �. The points rn�2, x, rn and � lie in this order,
increasing or decreasing, hence

jrn � �j � jx� �j � jrn�2 � �j and jx� rnj < jx� �j: (5:11)

In the remainder of the proof we will use the convention that the constant C may be di�erent
at di�erent places in the text, but at every instant depends only on � and �, and not on n.

Using Lemma 4.3 and (4.8), we get

j�(x)� �(�)j � j�(x)� �(rn)j+ j�(rn)� �(�)j
� C� [q�

1
2 jx� rnj

1
2 + jx� rnj+ q

3
2 jx� rnj

3
2 (5.12)

+q�
1
2 jrn � �j 12 + jrn � �j+ q

3
2 jrn � �j 32 ]:

It is su�cient to majorize each term in the right hand side of (5.12) by C � jx� �j� for some
� � �, because then it is O(jx� �j�) for x! �.

The second and �fth term sum to jx� �j. For the sixth term, (5.1) and (5.11) yield

q
3
2 jrn � �j

3
2 � jrn � �j�

3
4 jrn � �j 32 = jrn � �j

3
4 � jx� �j 34 :

For the fourth term, we use (5.10) and (5.11), in order to get

q�
1
2 jrn � �j 12 � C � jrn � �j 1

2� jrn � �j 12 = C � jx� �j 1
2�+

1
2 :

Similarly the �rst term is estimated by

q�
1
2 jx� rnj 12 � C � jrn � �j 1

2� jx� rnj 12 = C � jx� �j 12�+ 1
2 :

For the third term we start as with the sixth term:

q
3
2 jx� rnj

3
2 � C � jrn � �j�

3
4 jx� �j 32 : (5:13)

In order to proceed further, we need that jrn � �j is not too small compared to jx � �j. For
this, we use (5.6) together with (5.10), and get

jrn�1 � �j < (qn�1qn)�1 � C � jrn�1 � �j 1� jrn � �j 1� ;
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which in turn implies that

jrn�1 � �j � C � jrn � �j 1�=(1� 1
�
) = C � jrn � �j

1
��1 :

Combining this with the same estimate with n replaced by n � 1, we get

jx� �j � jrn�2 � �j � C � jrn � �j(��1)�2
:

Inserting this in (5.13), the result is that

q
3
2 jx� rnj

3
2 � C � jx� �j� 3

4 (��1)2 jx� �j 32 :

The proof is completed by observing that � � 2 implies that

�3
4 (�� 1)2 + 3

2 = � � 1
2� +

1
2 :

2

The following corollary shows that the estimate (5.9) is optimal if � = 2.

Corollary 5.4 If the partial quotients of the continued fraction of � form a bounded sequence,
then

�(x)� �(�) = O(jx� �j 34 ) as x! �:

Proof The condition just means that (5.10) holds with � = 2, cf. (5.6), so the conclusion
holds with � = �(2) = 3

4 . 2

For � > 2 there is a gap between the exponents in (5.9) and Lemma 5.3. For instance,
already for � = 1 + 2=

p
3 = 2:1547 : : :, we have �(�) = 1

2 , and Lemma 5.3 does not give
any improvement over the uniform estimate of Lemma 4.1. However, Lemma 5.3 is strong
enough to conclude that for most �, in measure theoretic sense, we have that �(x)��(�) can
be estimated by jx� �j� as x! �, for every � < 3

4 . In order to give a concise formulation of
the result, we denote the supremum of the H�older exponents at � by

�(�) := supf� > 0 j f(x)� f(�) = O(jx� �j�) as x! �g: (5:14)

Proposition 4.5 yields that �(s) = 1 if s is a quotient of two odd integers. The discussion
after Lemma 4.3 showed that �(r) = 1

2 for the other rational numbers r, whereas Lemma 4.1
and Proposition 5.2 imply that 1

2 � �(�) � 3
4 if � is irrational. Moreover, �(�) is closer to

1
2 , the faster � can be approximated by continued fractions r such that �(r) = 1

2 . The same
conclusions hold with f(x) replaced by g(x). The following corollary is a sort of correction
to the impression which is given by the prominent square root behaviour at rational numbers
with small denominators.

Corollary 5.5 For almost all x 2 R, we have �(x) = 3
4.
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Proof Because of the periodicity of �, we may work modulo 2. Let G be the set of � 2 R=2Z
which are irrational and somewhat slowly approximable by rational numbers, in the following
sense. For every � > 2 there exist an � > 0, such that

j�� p

q
j � � � q�� (5:15)

holds for all integers p and all positive integers q. Although this looks like a very severe
restriction, the fact is that almost every real number belongs to G, in the sense that the
complement F of G in R=2Z has zero measure. We repeat the classical argument.

Let us �rst �x the denominator q. The number of points p
q 2 R=2Z, with p 2 Z, is equal

to 2q. The set Fq;�;� of � 2 Il for which (5.15) fails for some p 2 Z is contained in the union
of the � � q��-neighborhoods of these p

q . Its measure is therefore estimated by

meas(Fq;�;�) � 2q � 2� q�� � 4 � � q1��:

The set F�;� of � such that (5.15) fails for some p; q 2 Z, q > 0, is equal to the union over all
q > 0 of the sets Fq;�;�. This yields

meas(F�;�) �
1X
q=1

4 � � q1�� = C(�) � �;

because the series �(s) =
P

n>0 n
�s converges if s > 1. The set F� of �, such that for every

� > 0 there exist p; q 2 Z, q > 0, for which (5.15) fails, is contained in each F�;�. So its
measure is majorized by C(�) � �. Because this holds for all � > 0, the conclusion is that
F� has zero measure. The set F is equal to the union of the F� over all � > 2. Because
F� is increasing with decreasing �, it is equal to the union of the countable sequence of sets
F�(j) where j 7! �(j) is a countable sequence which decreases to 2. Because the union of a
countable sequence of sets of zero measure has zero measure, the conclusion is that F has
zero measure.

If � 2 G, then there exists, for every � > 2, an � > 0 such that (5.10) holds. So it follows
from Lemma 5.3 that �(�) � �(�). Because this holds for every � > 2, and �(�) converges
to 3

4 as � # 2, it follows that �(�) � 3
4 . Proposition 5.2 gave the opposite inequality for every

irrational number �, so in fact �(�) = 3
4 for every � 2 G. Again using that the union of a

countable family of sets of zero measure has zero measure, we can pass from R=2Z to R. The
conclusion is that the set of x 2 R such that �(x) 6= 3

4 has zero measure. 2

6 At Fixed Points

Usually the explanation for repeating patterns which converge to a point � is that � is a
�xed point of a nontrivial element of the group which acts on the object; �� in our case.
The following lemma shows that for rational � this gives back the patterns which have been
observed before. We recall the notation �b for the translation x 7! x+ b over the integer b.

Lemma 6.1 If � 2 Q is not of the type odd=odd, then there exists a � 2 �� such that
�(�) = 1. For such �, the element 
 := ��1 � �2 � � 2 �� �xes �. Every element of �� which
�xes � is equal to an integral power of 
.
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If � 2 Q is of the type odd=odd, then there exists an � 2 � such that �(�) = 1 and the

matrix of � is of the type
� odd even

odd odd

�
. For such �, the element 
 := ��1 � �1 � � 2 �� �xes �.

Every element of �� which �xes � is equal to an integral power of 
.

Proof If � 2 Q then there exists a � 2 � such that �(�) = 1; write � := ��1 � �1 � �. Then
�(�) = ��1 � �1(1) = ��1(1) = �. If conversely � 2 �, �(�) = �, then � := � � � � ��1 satis�es
�(1) = � � �(�) = �(�) =1. In the discussion in front of Lemma 3.2 we have seen that this
implies that � is equal to a translation over an integer b. That is, � = �1

b, which in turn
implies that � = �b.

If � is not of the type odd=odd, then we can take � 2 �� and then 
 := �2 2 �� . Also,
� 2 �� , or b is even, which means that � is equal to an integral power of 
.

Finally, if � is of the type odd=odd, then the bottom row of the matrix of � is of the type
odd, odd. If the top row is of the type even, odd, then by adding the bottom row to it we
can change � into an element of � of the desired type, without altering the pole point �. If

the matrix of � is of the type
� odd even

odd odd

�
, then the matrix of 
 is of the type

� even odd
odd even

�
.

We conclude from Lemma 3.2 that 
 2 �� . 2

For any � 2 R, 
 : x 7! ax+b
cx+d 2 �� , the equation 
(�) = � is equivalent to

c � �2 + (d� a) � �� b = 0: (6:1)

With the notation t = a+d
2 2 Z, we can read o� � and 
0(�) = (c �+ d)�2 from

c �+ d = t �
p
t2 � 1: (6:2)

Because the matrix of a translation has trace equal to 2 and the trace is invariant under
conjugation, it follows from Lemma 6.1 that t = 1 if � 2 Q. Conversely t = 1 implies that
� = 1�d

c 2 Q. Also, 
 0(�) = 1 in this case, which implies that 
j(x) converges very slowly
to � as j ! �1. More precisely, Lemma 6.1 tells that there exist � 2 �, k 2 Z such that

j(x) = ��1(�(x) + j � k), so the convergence is of the order O(1j ) and the selfsimilarity at � is
identical to the one explained in front of Figure 4.2. A similar explanation can be given for
the selfsimilarities at the rational points of type odd=odd.

We now turn to the irrational �xed points of elements of �� . In the following classi�cation,
a quadratic surd is de�ned as an irrational solution � of an equation A�2+B �+C = 0, with
A;B;C 2 Z, A 6= 0. One says that the irrational number � has a periodic continued fraction
if there exist integers ! > 0 and j � 0 such that the partial quotients an of the continued
fraction of � satisfy an+! = an for all n � j.

Lemma 6.2 The following conditions (a)-(c) for the real number � are equivalent.

(a) � is �xed by some 
 2 �� such that 0 < 
0(�) < 1.

(b) � is a quadratic surd.

(c) The continued fraction of � is periodic.

All elements of �� which �x � are integral powers of one of these.
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Proof If (a) holds then it follows from the discussion after Lemma 6.1 that � is irrational,
so (b) follows from (6.1). For the implication (b) ) (c) we refer to Hardy and Wright [10,
Section 10.12, Theorem 177].

Now assume that the continued fraction of � is periodic. In terms of the matrices

Mn :=
� pn pn�1
qn qn�1

�
; An :=

� an 1
1 0

�
;

for which Mn = Mn�1 � An, see the proof of Lemma 5.1, this means that An+! = An for all
n � j. Hence Mn+! �Mn

�1 =Mn+!�1 �Mn�1�1, or

Mn+! �Mn
�1 = B :=Mj+!�1 �Mj�1�1 =Mj�1 �Aj � : : : �Aj+!�1 �Mj�1�1 for all n � j:

Or, Mn+! = B �Mn, which in turn implies that Mn+k! = Bk �Mn for all n � j; k > 0.
From this it follows that the line through the column vector

� pn+k!
qn+k!

�

converges for k ! 1 to an eigenspace of B. In view of the interpretation of the fractional
linear transformation � with matrix B as the action of B on the projective line, this means
that the limit �, for k! 1, of the pn+k!=qn+k! , is a �xed point of �.

If detB = �1, then one may pass to �2 2 �, of which � is a �xed point as well. Because
for every � 2 � we have that �, �2, or �3 belongs to �� , we get that some power 
 of �
belongs to �� . The proof of (c) ) (a) is complete if we can arrange that 
0(�) < 1, note that
always 
 0(�) > 0.


 is not equal to the identity, because if Bk = 1, k > 0, thenMn+k! =Mn, in contradiciton
with the convergence behaviour of the pn

qn
towards �. It follows from (6.2), � =2 Q, that


0(�) 6= 1. If 
0(�) > 1 then we replace 
 by 
�1, which �xes � as well, and has derivative at
� equal to 1=
0(�) < 1.

For the last statement we observe that if � =2 Q, then 1, � and �2 span a 2-dimensional
vector space over Q. This implies that if A�2 + B � + C = 0 and A0 �2 + B0 � + C0 = 0,
with A;B;C;A0; B0; C0 2 Z, A 6= 0, then there exists � 2 Q such that A0 = � A, B0 = � B,
C0 = � C. That is, all quadratic equations with integral coe�cients of which � is a solution,
have the same other solution �0. It follows that if A is the matrix of an element of �� which
�xes �, then

L := R�1 �A �R =
� � 0
0 �

�
; for R :=

� � �0

1 1

�
:

Here R is independent of A. Furthermore, detL = detA = 1, hence � = 1=�. Because A is
determined up to multiplication by �1, we may assume that � > 0.

The elements of �� which �x � form a group, so the � which we get form a multiplicative
subgroup � of R>0. On the other hand it follows from � + 1

� = trace(L) = trace(A) 2 Z

that � is a discrete subset of R>0. The proof is completed by the observation that a discrete
nontrivial subgroup � of R>0 consists of the integral powers of the smallest � 2 � such that
� > 1. Using the substitution of variables � = exp(x), this is equivalent to the more familiar
fact that a discrete nontrivial additive subgroup P of R is of the form P = Z � p, where p is
the smallest positive element of P . 2
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Now let � satisfy any of the equivalent conditions (a)-(c) in Lemma 6.2. Because the
sequence of partial fractions of a periodic continued fraction is bounded, we see from Corollary
5.4 that �(x)��(�) has exactly the order jx��j 34 as x! �. However, the �xed point property
shows this even more directly and in a stronger form, as we shall explain now.

Because 0 < 
0(�) < 1 we get, near �, that the iterates of 
 contract exponentially towards
� in the sense that


j(x)� � = O(j
0(�)jj) (6:3)

as j !1, locally uniformly for x near �. The equation (4.1) now leads to a selfsimilarity near
�, which however is very di�erent in nature from the one near the rational points, because
the patterns repeat themselves in a geometric progression towards �. This faster convergence
makes that in enlargements around these � one sees much fewer repeated patterns than near
the rational points. The selfsimilarity can be written in the form �(x) = �(x) ��(
(x))+�(x),
with � and � of class C1; 12 near �, and

�(x) = e
�i
4 m � q 3

2 (x� r) 32 :

Because 
0(�) = q�2 (�� r)�2, we see that j�(�)j = j
0(�)j� 3
4 . This implies that �(x)� �(�)

has exactly the order jx � �j 34 as x ! �. The factor e
�i
4 m makes that it may take several

iterates of 
 before we get a similarity of the real part f(x) of �(x). For instance, if m is odd,
then one gets the similarity, with a re
ection in the vertical direction, only after 4 iterates.

Actually, one needs very good eyes to see the selfsimilarities at the �xed points directly
in the graph of f(x). Taking m even means in view of (3.9) that c is even and d is odd. The
condition that 
 2 �� then forces that a is odd and b is even, cf. Lemma 3.2. If t is even then,
modulo 4, we have 1 = ad � bc = �d2 = �1, a contradiction. This leads to the conclusion
that 
 0(�) is closest to 1 if t = �3, in which case


 0(�) = 17� 12
p
2 = 1

17+12
p
2
� 1

33:97:

After a few enlargements with this factor, one needs so many terms in the series (1.1) in
order to get a decent relative accuracy, that, even with a fast computer, it becomes quite
time-consuming to get a sharp picture.

Figures 6.1 and 6.2 illustrate f(x) near x = � := 1 +
p
2, which is the �xed point � of


 : x 7! 5x+2
2x+1 where 
0(�) < 1. The pole point is r = �1

2 , so m = 0, cf. Table 4.4. Because of
the steepness of f(x), we have compressed the �rst picture in the vertical direction by a factor
of 3. The axes are x = � and y = f(�). The window is the outline of the next enlargement.

The x-size is multiplied by 
 0(�) = 17 � 12
p
2, the y-size by 
0(�)

3
4 . For the second picture

we have performed an additional compression in the vertical direction in order to get it in the
same frame as the �rst picture.
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jxj < 0:0477

jyj < 0:0358

Figure 6.1: y = 1
3 (f(�+ x)� f(�)), � = 1 +

p
2

jxj < 0:00141

jyj < 0:00105

Figure 6.2: y = 0:138 (f(�+ x)� f(�)), � = 1 +
p
2
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