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Summary. If the payo�s of a game are a�ne, then they are additively coupled. In this
situation both the Weierstrass theorem and the Bauer maximum principle can be used
to produce existence results for a Nash equilibrium, since each player is faced with an in-
dividual, independent optimization problem. We consider two instances in the literature
where these simple observations immediately lead to substantial generalizations.

1 Nash equilibria for additively coupled payo�s

Let � := f(Si; �i)gmi=1 denote a game in normal form with m players; Si, a topological space, is
the strategy set and �i : S ! R the payo� of player i 2 I := f1; � � � ;mg. A strategy vector
�s := (�s1; � � � ; �sm) in S := �m

j=1Sj is called a Nash equilibrium for � if for each i 2 I

�i(�s) � �i(�s
�i; si) for all si 2 Si: (1)

Here (�s�i; si) is the usual notation for the strategy vector whose j-th component is �sj for j 6= i and
si for j = i; corresponding notation for product sets is S�i := �j 6=iSj , etc.

Although the existence problem for Nash equilibria is in general quite nontrivial, a much simpler
problem is encountered when the payo�s are additively coupled in the following sense: for each i 2 I
there are component functions �i;j : Sj ! R, j 2 I, such that �i decomposes as follows:

�i(s1; � � � ; sm) =
mX
j=1

�i;j(sj): (2)

The following proposition is a trivial consequence of (1) and (2):

Proposition 1.1 Let the payo�s of � be additively coupled as in (2). Then (�s1; � � � ; �sm) 2 S is a
Nash equilibrium in the sense of (1) if and only if for each i 2 I

�i;i(�si) = sup
si2Si

�i;i(si):

The following two existence results are an immediate consequence of combining Proposition 1.1
with the Weierstrass theorem and the Bauer maximum principle respectively. Observe that these
games need only have payo�s that are semicontinuous in one variable. Games with discontinuous
payo�s have been a subject of increasing interest in the recent past; e.g., cf. [3, 6].

Corollary 1.2 Let the payo�s of � be additively coupled as in (2) and let each Si, i 2 I, be equipped
with a topology. If for each i 2 I

Si is compact,

�i;i is upper semicontinuous,

then there exists a Nash equilibrium for �.

Proof. By the Weierstrass theorem the maximumof �i;i over Si is attained for each i 2 I. Apply
Proposition 1.1. Q.E.D.

Corollary 1.3 Let the payo�s of � be additively coupled as in (2) and let each Si, i 2 I, be a subset
of a Hausdor� locally convex topological vector space. If for each i 2 I

Si is compact and convex,

�i;i is upper semicontinuous and convex on Si,

then there exists a Nash equilibrium (�s1; � � � ; �sm) 2 S for � such that for each i 2 I

�si is an extreme point of Si.
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Proof. By the Bauer maximum principle [5, Theorem 25.9] the maximum of �i;i over Si is
attained at some extreme point of Si for each i 2 I. Apply Proposition 1.1. Q.E.D.

The next existence result is essentially contained in Corollary 1.3; it forms a solution to a question
posed to the author by N. Yannelis. Compared to Corollary 1.3, the only new aspect which is o�ered
is the realization that additive coupledness is an inherent aspect of a�nity. While this is trivial in
�nite dimensions, this aspect seems to have been overlooked in some in�nite-dimensional situations
in the literature.

Corollary 1.4 Let each Si, i 2 I, be a subset of a Hausdor� locally convex topological vector space.
If for each i 2 I

Si is compact and convex,

�i is a�ne on S = �m
j=1Sj ,

�i(s
�i; �) is upper semicontinuous on Si for each s�i 2 S�i,

then there exists a Nash equilibrium (�s1; � � � ; �sm) 2 S for � such that for each i 2 I

�si is an extreme point of Si.

Proof. It is enough to demonstrate that the situation of Corollary 1.3 obtains. Let ~s =
(~s1; � � � ; ~sm) be an arbitrary �xed element of S. Fix i 2 I; we show that �i is additively coupled as
in (2) by de�ning functions �i;j : Sj ! R as follows:

�i;j(sj) := �i(~s
�j ; sj) �

m � 1

m
�i(~s):

Indeed, a�nity of �i gives

mX
j=1

1

m
�i;j(sj) = �i(

m � 1

m
~s +

1

m
s) �

m � 1

m
�i(~s) =

1

m
�i(s);

which directly implies (2). The remaining conditions of Corollary 1.3 are easily seen to be implied
by the above de�nition of the �i;j's. Q.E.D.

2 Applications

Two applications of Corollary 1.4 will be discussed brie
y. The �rst of these extends a pure strategy
equilibrium existence result of Yannelis and Rustichini [15, Theorem 5.2]. The second application
extends a Nash equilibrium existence result in original controls of Parthasarathy and Raghavan [12,
Theorem 2] for a di�erential game with relaxed control functions.

2.1 Application to a Bayesian game [15]

The following model is considered by Yannelis and Rustichini [15]. Let (
; T ; P ) be a probability
space. Consider m sub-�-algebras S1; � � � ;Sm of T ; here Si represents the way in which player i 2 I
observes the uncertain state of the world as modelled by the probability space. Upon learning about
the state of the world, players can take actions in a separable Banach space (Y; k � k), the action
space. The actions of each player i 2 I are restricted by means of a given multifunctionXi : 
! 2Y

that is supposed to be Si-measurable, i = 1; � � � ;m. Namely, the strategy set Si for player i 2 I

consists of all Si-measurable functions xi : 
! Y such that

xi(!) 2 Xi(!) for P -a.e. ! in 
:

We shall write X(!) := �m
i=1Xi(!). The expected payo� for player i 2 I is

pi(x1; � � � ;xm) :=

Z



ui(!;x1(!); � � � ;xm(!))P (d!);
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assuming that the integral exists. Here ui : 
�Y m ! R is the utility function of player i, supposed
to be \mi=1Si � B(Y m)-measurable, with B(Y m) = (B(Y ))m denoting the Borel �-algebra on Y m.

Theorem 2.1 Suppose that for each i 2 I and for a.e. ! 2 


Xi(!) is nonempty, �(Y; Y �)-compact and convex;

ui(!; �) is a�ne on X(!);

ui(!; x
�i; �) is �(Y; Y �)-upper semicontinuous on Xi(!) for every x

�i 2 �j 6=iXj(!):

Suppose also that for each i 2 I there exist integrable �i,  i : 
! R+ with

sup
xi2Xi(!)

kxik � �i(!) for a.e. ! 2 
;

sup
x2X(!)

jui(!; x)j �  i(!) for a.e. ! 2 
:

Then there exists a Nash equilibrium (~x1; � � � ; ~xm) for the game f(Si; pi)g
m
i=1 such that for each i 2 I

~xi(!) is an extreme point of Xi(!) for a.e. ! 2 
.

This substantially generalizes Theorem 5.2 of [15], where additional conditions were imposed: there
(
; T ; P ) is complete and nonatomic and Y is �nite-dimensional.

Below we prove Theorem 2.1 by a straightforward application of Corollary 1.4. In view of the
generality a�orded by that corollary, the actual model of [15] could now also be expanded. However,
we shall leave this aspect unexplored.

Let L1Y be the vector space L1Y (
; T ; P ) of all Bochner integrable (equivalence classes of) func-
tions x : 
! Y . For each i 2 I let Si be the corresponding quotient of Si in L1Y . By the integrable
boundedness condition for the multifunctions Xi and the inclusion Si � T , the sets S1; � � � ; Sm are
contained in L1Y . By [10, IV] we know that the dual space of L1Y is (identi�able with) the space
M of all (equivalence classes) of scalarly measurable functions z : 
 ! Y � which are essentially
bounded (here Y � denotes the dual of Y ). The duality between L1Y and M is given by

� x; z �:=

Z



< x(!); z(!) > P (d!):

By equipping L1Y with the weak topology �(L1Y ;M ), it is made into a Hausdor� locally convex
topological vector space.

The following lemmas show that, with the above topology, Corollary 1.4 can be brought to bear
in the proof of Theorem 2.1:

Lemma 2.2 The hypotheses of Theorem 2.1 imply for each i 2 I the following:

(i) Si is nonempty, �(L1Y ;M )-compact and convex,

(ii) pi is a�ne on S = �m
j=1Sj ,

(iii) pi(x�i; �) is (�(L1Y ;M ))-upper semicontinuous on Si for each x�i 2 S�i.

Proof. i. Nonemptiness of Si follows directly by the von Neuman-Aumann measurable selection
theorem [4, III.22], in view of the given measurability and other properties of the multifunctionsXi.
Weak compactness follows by a well-known result of Diestel [7] (see also [14]). Convexity is trivial.

ii. Trivial by linearity of the integral.
iii. Because pi(x

�i; �) is a�ne, its upper semicontinuity in the topology �(L1Y ;M ) is equivalent to
upper semicontinuity in the L1Y -norm (Mazur's theorem). Such semicontinuity follows immediately
by Fatou's lemma and a well-known corollary of Egorov's theorem [11, II.4.3]. QED
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Lemma 2.3 For each i 2 I the set of extreme points of Si consists precisely of all equivalence
classes of functions xi in Si such that

xi(!) is an extreme point of Xi(!) for a.e. ! 2 
. (3)

Proof. We reiterate well-known measurable selection arguments involving extreme points [4,
pp. 109-110]: First, observe that when xi 2 Si has a representant xi with (3), then xi is trivially
extreme in Si. Conversely, suppose that xi 2 Si is such that it has a a representant xi 2 Si which
does not satisfy (3). Then there exists a set A 2 T , P (A) > 0, such that for every ! 2 A the set
�(!) is nonempty, where

�(!) := f(y; y0) 2 Xi(!)
2n� :

1

2
(y + y0) = xi(!)g:

Here � := f(y; y0) 2 Y 2 : y 6= y0g. By elementary arguments [4, Lemma IV.10] it follows that the
graph of � is T �B(Y 2)-measurable. So by the von Neuman-Aumann measurable selection theorem
[4, III.22] it follows from the above that there exists a T -measurable mapping (x;x0) : A ! Y 2

such that (x(!);x0(!)) 2 �(!) for a.e. !. Extend x and x0 to all of 
 by setting them equal to xi
both on the exceptional null set involved in the previous statement and on 
nA. Then it is easy to
verify that x, x0 both belong to Si, that xi =

1
2(x + x0), and that x and x0 are essentially di�erent

elements of Si. Therefore, xi is not an extreme element of Si. QED

Proof of Theorem 2.1. Lemma 2.2 allows us to apply Corollary 1.4. This gives the existence of
(�x1; � � � ; �xm) 2 S which is a Nash equilibrium for the game f(Si; pi)gmi=1 and satis�es

�xi is an extreme point of Si, i 2 I:

Let �xi be any representant of the equivalence class �xi, i 2 I. Since the values of the payo�s (which
we treated with some abuse of notation) are una�ected by this return to the original prequotient
setting, (�x1; � � � ; �xm) is a Nash equilibrium for the game f(Si; pi)gmi=1 and satis�es for a.e. ! 2 


�xi(!) is an extreme point of Xi(!), i 2 I

by Lemma 2.3. Q.E.D.

2.2 Application to a di�erential game [12]

In this section we brie
y sketch an application of Corollary 1.4 to a di�erential game considered by
Parthasarathy and Raghavan in [12], which involves two players. The extension to m players would
be immediate, and there exist several other possibilities to generalize; however, we shall remain
within the model used in [12].

The two players are allowed to use relaxed control functions (i.e., mixing of the control action is
allowed { see [13] and [2] for the general background). For such games well-known counterexamples
[13, IX.2] are known to essentially restrict considerations to payo�s that are additively coupled in
the relaxed controls. This explains why Parthasarathy and Raghavan only study payo�s of the kind

Pi(�1; �2) := �i(y�1;�2 ) +

Z 1

0

[

Z
U1

Fi(t; u1)�1(t)(du1)]dt+

Z 1

0

[

Z
U2

Gi(t; u2)�2(t)(du2)]dt; i = 1; 2;

where [0; 1] is the time interval, Fi and Gi are continuous functions, Ui is the space of control points
for player i, �i is a continuous linear functional on the set C[0; 1] of all continuous functions on [0; 1]
and y�1;�2 is the solution of a di�erential equation (equation (4) in [12]) that is semilinear and has
an additively coupled right-hand side. Since the �i's are linear, it follows that P1 and P2 are both
a�ne functions. Thus, it is not surprising that Corollary 1.4 turns out to apply to their model. The
extreme point properties in Corollary 1.4 imply here that the resulting Nash equilibrium is in original
(i.e., nonmixed) control functions, which is in agreement with [12, Theorem 2] (e.g., cf. [1]). The mild
conditions of Corollary 1.4 also present the possibility to relax some of the conditions immediately;
for instance, the continuity conditions for Fi and Gi can be substantially reduced: Fi(t; u1) needs
only to be upper semicontinuous in u1, integrably bounded above and jointly measurable in (t; u1);
a similar observation applies to Gi, i = 1; 2.
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3 Additional observations

A slightly more involved variant of Corollary 1.4 is as follows:

Proposition 3.1 Let each Si, i 2 I, be a subset of a Hausdor� locally convex topological vector
space. If for each i 2 I

Si is compact and convex,

�i is concave on S = �m
j=1Sj ,

�i(�; si) is a�ne on S�i for every si 2 Si;

�i(s
�i; �) is upper semicontinuous on Si for each s�i 2 S�i,

then there exists a Nash equilibrium for �.

Here the additional extreme point condition of Corollary 1.4 disappears for obvious reasons (e.g.,
consider the situation m = 1). The above result forms a natural transpose of a well-konwn version of
Glicksberg's Nash equilibrium existence result [9] by switching the roles of (i) upper semicontinuity
and (quasi)concavity, (ii) continuity and a�nity.

Proof of Proposition 3.1. De�ne the aggregate function q : S � S ! R as follows. For s0 :=
(s01; � � � ; s

0
m), s := (s1; � � � ; sm), set

q(s0; s) :=
mX
i=1

[�i(s
0)� �i(s

0�i; si)]:

Then we can easily see that for every s0; s 2 S, q(�; s) is concave, q(s0; �) is lower semicontinuous and
q(s0; s0) = 0. Therefore, by Ky Fan's inequality [8, Theorem 5] there exists �s 2 S such that

q(s0; �s) � 0 for all s0 2 S:

By substitution of s0 := (�s�j ; sj), j 2 I, one sees that �s constitutes a Nash equilibrium. QED

Acknowledgment. I wish to thank Nicholas Yannelis for posing a question which led me to writing
this note in its present form.
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