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Two generalizations of Koml�os' theorem for functions and multifunctions with values in

a Banach space are presented. The �rst generalization is partly new and the second one

is a Koml�os-type result of a completely new nature. It requires the Radon-Nikodym

property for the Banach space and its dual. In both cases our approach relies on

using Koml�os' theorem by means of a diagonal extraction argument, as introduced in

[5, 6, 7]. Two quite general lower closure-type results, which follow immediately from

our main results, are shown to generalize or substantially extend a number of results in

the literature.

1 Introduction

It is well-known that weak lower semicontinuity and lower closure results for integral func-
tionals over a �nite measure space (
;A; �) can be obtained from relative compactness
results for K-convergence [5, 6, 7]. In themselves, such relative compactness results can be
used to develop new relative compactness results, e.g. for narrow convergence of Young mea-
sures [9] or to re�ne classical results for relative weak compactness in L1-spaces. As a �ne
example of the latter we mention the recent work of Saadoune [44], where the well-known
characterization of relative weak L1-compactness of Diestel, Ruess and Schachermayer [28]
is generalized. Recall that a sequence of functions or multifunctions (Fn), Fn : 
 ! Y , is

said to K-converge to another function or multifunction F0 : 
! Y (written as Fn
K
! F0)

if for every subsequence (Fnj) of (Fn) there exists a null set N such that for every ! 2 
nN

lim
m!1

1

m

mX
j=1

Fnj (!) = F0(!): (1:1)

In other words, K-convergence (which is itself a nontopological notion) constitutes almost
everywhere pointwise convergence of arithmetic averages (i.e., Cesaro-convergence) over
any subsequence. Here the image space Y of the functions or multifunctions is a convex
cone in the sense of e.g. [30] (i.e., (Y;+) is an abelian semigroup satisfying the usual laws
of multiplication with nonnegative scalars), equipped with a topology. Concretely, this
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paper uses for Y either a separable Banach space X or a subset of its hyperspace 2X . As
initiated in [5, 6, 7], relative compactness results for such K-convergence can be obtained by
exploiting a deep and fundamental theorem of J. Koml�os [40] for real-valued functions. In
turn, this produces a powerful abstract version of Koml�os' theorem, which is characterized
by a convex version of tightness and the presence of a class of a�ne continuous integrands
with a point-separating property (see [6, 7] and Appendix A).

This paper presents essentially two generalizations of Koml�os' theorem for functions
and multifunctions taking values in a separable Banach space X . The �rst generalization,
Theorem 2.1, subsumes the two separate main results Theorems A, B of [5] (see Corol-
lary 2.2). A result similar to Theorem 2.1(a) can already be found in [6, Theorem 2.2], and,
actually, Theorem 2.1(a) follows from the abstract version of Koml�os' theorem in [6, 7].
This is demonstrated in Appendix A to this paper by proving what is actually an extension
of Theorem 2.1(a). Our Theorem 2.1(b) is new, and we suspect that its proof contains
elements that may be useful in other, related arguments as well.

Theorem 2.5, the second principal generalization of Koml�os' theorem given in this pa-
per, is completely new. It depends on the Banach space X and its dual X� having the
Radon-Nikodym property, and our proof depends on the Radon-Nikodym theorem for mul-
timeasures. On the other hand, it is interesting to note that essential parts of the reasoning
followed in proving Theorem 2.1 are also used (e.g., part 1 in section 3 serves in the proof
of both theorems).

As mentioned in the �rst paragraph, there are natural by-products of these principal
results in the form of lower closure-type results. In section 5 these results, Theorems 5.1
and 5.2 have been derived. In section 6 it is shown that together (or in conjunction with
Appendix A) they generalize a number of results in the literature, and sometimes quite
substantially. These include the Fatou-type lemmas in [18], which formed for us the starting
point of the present paper.

The remainder of this introduction is used to establish some notation: Let k � k stand
for the norm on the separable Banach space X ; the associated dual space is denoted by X�

and the usual duality between X and X� by < �; � >. Respectively by s and w we shall
indicate the strong and the weak topology on X . A subset of X is said to be w-ball-compact
if it has a w-compact intersection with every closed ball. Recall that the sequential weak
Kuratowski limes superior w-Ls Cn of a sequence (Cn) of subsets of X is de�ned as the set
of all w-limits of subsequences (xnj ), with xnj 2 Cnj for all indices nj . Further, let Pwkc(X)
be the collection of all nonempty w-compact convex subsets of X . For any C in Pwkc(X)
we set

s(x� j C) := sup
x2C

< x; x� >; kCk := sup
x2C

kxk;

to de�ne for the set C respectively its support function s(� j C) and radius kCk. On Pwkc(X)
we use the following topology: a sequence or generalized sequence (Cn) converges scalarly
(alias weakly [26]) to C0 in Pwkc(X) if

lim
n!1

s(x� j Cn) = s(x� j C0) for every x
� 2 X�: (1:2)

A function F : 
 ! Pwkc(X), also called a multifunction, is said to be E�ros measurable
(or measurable for short) if the set f! 2 
 : F (!) \ U 6= ;g belongs to A for any s-open
subset U of X . As we shall see later, the E�ros measurability of a multifunction taking
values in Pwkc(X) is equivalent to its being scalarly measurable. By L1Pwkc(X) we denote

the set of all measurable multifunctions F : 
 ! Pwkc(X) such that
R

 kF (!)k�(d!) <

2



+1 (the integrand kF (�)k is measurable by [19, III.9]). Obviously, the singleton-valued
multifunctions in L1Pwkc(X) can be identi�ed with elements of the space L1X of all Bochner-
integrable functions from 
 into X . Finally, recall that for a set A 2 A the integral of a
multifunction F : 
! 2X over A is the set given byZ

A

F d� := f
Z
A

f d� : f 2 L1X ; f(!) 2 F (!) a.e.g:

As such, this general de�nition still allows the set in question to be empty; however, it is
well-known [39, Theorem 3.6(ii)] that for F 2 L1Pwkc(X) the set

R
A F d� is nonempty and

belongs to Pwkc(X) for every A 2 A.

2 Main results

In this section we state our main results; sections 3 and 4 are devoted to the proofs. Our
�rst principal result is an extension of Koml�os' theorem in the spirit of [5, 6, 7], but with
pointwise ball-compactness conditions in what can be seen as a multivalued elaboration of
Remark 2.3 in [8]. A generalization of part (a) of this theorem will be derived from [6, 7]
in Appendix A.

Theorem 2.1 Let (Fn) be a sequence in L1Pwkc(X) satisfying the following hypotheses:

(i) supn
R

 kFn(!)k�(d!)< +1,

(ii) cl co [n Fn(!) is w-ball-compact a.e.
Then there exist a subsequence (Fn0) of (Fn) and F� 2 L

1
Pwkc(X) satisfying

(a) Fn0
K
! F�,

(b) F�(!) � cl co w-Ls Fn0(!) a.e.

In the single-valued case Theorem 2.1 takes the following form, in which it subsumes
the two main results of [5]. 1

Corollary 2.2 Let (fn) be a sequence of Bochner-integrable functions in L1X satisfying the
following hypotheses:

(i) supn
R

 kfn(!)k�(d!)< +1,

(ii) cl co ffn(!) : n 2 Ng is w-ball-compact a.e.
Then there exist a subsequence (fn0) of (fn) and f� 2 L

1
X satisfying

(a) fn0
K
! f�,

(b) f�(!) � cl co w-Ls fn0(!) a.e.

Remark 2.3 If one systematically replaces the w-topology by the s-topology, that is, one
replaces Pwkc(X) by Pskc(X) (the set of all nonempty s-compact convex subsets of X) and
one replaces w-ball-compactness in (ii) by s-ball-compactness, then the conclusions (a) and
(b) can be improved as follows:

(�) Fn0
Kh! F�,

(�) F�(!) � cl co s-Ls Fn0(!) a.e.,

1It is enough to observe that w-compactness always implies w-ball-compactness, and that w-closedness
implies w-ball-compactness in case X is a re
exive Banach space.
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where Fn0
Kh! F� means now K-convergence as in (1.1) when Y := Pskc(X) is equipped with

the Hausdor� metric h; i.e., for every subsequence (Fn0
j
) of (Fn0) there exists a null set N

such that for every ! 2 
nN

lim
m!1

h(
1

m

mX
j=1

Fn0j (!); F�(!)) = 0:

This observation follows by adapting the proof of Theorem 2.1 given below, in particular by
replacing part (a) of Lemma 3.2 by its part (b).

Remark 2.4 Both in Theorem 2.1 and in Remark 2.3 the convexity condition for the values
of the multifunctions can be lifted. 2 In Theorem 2.1 this is evident by elementary properties
of support functions and Krein's theorem. As for Remark 2.3, the removal of convexity is
made possible by applying [2, Lemma, p. 307] or [37, Lemma 2].

We now state our second principal result, a Koml�os-type theorem of a completely new
kind, characterized by the fact that X and its dual X� now have the Radon-Nikodym
property (RNP). Recall that X is said to have the RNP (with respect to (
;A; �)) if each
�-absolutely continuous vector measure � : A ! X with bounded variation has a density
f 2 L1X with respect to �, i.e.,

�(A) =

Z
A

f d� for all A 2 A:

Actually, following [17, 18] it can be observed that in this paper the full force of the RNP
for X is not really needed: it is enough to require the above density property only for those
� which satisfy

�(A) � cl co [n

Z
A

Fn d� for all A 2 A.

Theorem 2.5 Suppose that both the Banach space X and its dual X� have the RNP. Let
(Fn) be a sequence in L1Pwkc(X) satisfying the following hypotheses:

(i) supn
R

 kFn(!)k�(d!)< +1,

(ii0) cl co [n
R
A Fn d� is w-compact for every A 2 A,

Then there exist a subsequence (Fn0) of (Fn) and F� 2 L
1
Pwkc(X) satisfying

(a) Fn0
K
! F�,

(b0) F�(!) � \mcl co [n0�m Fn0(!) a.e.

Theorem 2.5 replaces the pointwise ball-compactness conditions (ii) by the w-compactness
conditions (ii0) for integrals, which is of an essentially di�erent, more macroscopic nature.
But it imposes additional RNP-conditions on X and its dual. For singleton-valued multi-
functions we immediately have the following corollary, which is also new:

Corollary 2.6 Suppose that both the Banach space X and its dual X� have the RNP. Let
(fn) be a sequence in L1X satisfying the following hypotheses:

(i) supn
R

 kfn(!)k�(d!)< +1,

(ii0) cl co f
R
A fn d� : n 2 Ng is w-compact for every A 2 A.

Then there exist a subsequence (fn0) of (fn) and f� 2 L
1
X satisfying

(a) fn0
K
! f�,

(b0) f�(!) 2 \mcl co ffn0(!) : n
0 � mg a.e.

2We thank G. Krupa (Utrecht) for calling this point to our attention.
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Remark 2.7 Evidently, (b0) is a little weaker than (b); see [14, p. 2.17] for examples,
due to M. Valadier, which illustrate this, both in �nite and in�nite dimensions (see also
Lemma 3.3 for a special situation where (b) and (b0) are equivalent).

Remark 2.8 For a separable Banach space X it is well-known, by a theorem of Stegall (see
[29, p. 195]), that X� has the RNP if and only if X� is separable for the dual norm.

Example 2.9 In the presence of (i) and the following condition: for every x� 2 X�

(s(x� j Fn(�))) is uniformly integrable over 
;

hypothesis (ii) implies the validity of (ii0). This can be easily proven by means of Young
measures, for instance, since (i)-(ii) constitute a tightness condition for the corresponding
relaxations of any sequence of selectors. Conversely, hypothesis (ii0) does not necessarily
imply (ii), as the following examples show. For 
 := [0; 1] with Lebesgue measure and
X := `1 we de�ne fn(!) := 1An(!)en. Here (An) is a sequence of independent subsets of
[0; 1] with Lebesgue measure �(An) ! 0 and

P1
n=1 �(An) = +1 (e.g., see [11, Example

4.14] for a concrete instance). By the second Borel-Cantelli theorem we have that for
almost every ! the sequence (fn(!)) contains an in�nite number of e0ns, which implies that
it cannot be compact for �(`1; `1). Therefore, (ii) does not hold. On the other hand, (ii0)
certainly holds, because k

R
A fn d�k = �(A \ An) ! 0 for every A 2 A. The previous

example is not entirely convincing, because its dual space X� = `1 does not have the RNP.
However, the following modi�cation addresses this shortcoming. Let X := J, the space
de�ned in Example 1.4.2 of [41], with canonical basis (en). Let (An) be as above, and de�ne
fn(!) := 1An(!)

Pn
m=1 em. Neither (

Pn
m=1 em) nor any of its subsequences converges weakly

[41], so the above argument can be repeated. This time, both X and X� have the RNP. 3

Remark 2.10 Notice that in the presence of (i), hypothesis (ii0) is equivalent to
(ii00) cl co [n

R
A Fn d� is w-ball-compact for every A 2 A,

which resembles hypothesis (ii) a little more.

Remark 2.11 Hypothesis (ii0) is equivalent to the following two conditions:
(ii000) the set cl co [n

R

 Fn d� is w-compact,

(ii0000) there exists a sequence (fn) in L
1
X such that fn is a selector of Fn for each n and

such that C(A) := cl co f
R
A fn d� : n 2 Ng is w-compact for every A 2 A.

It is evident that (ii0) implies (ii000){(ii0000). For the converse, note that for any A in A
the set

R
A Fn d� +

R

nA fn d� is contained in

R

 Fn d�. Hence, cl co

R
A Fn d� is contained

in cl co
R

 Fn d�� C(
nA); the latter set is w-compact by (ii000){(ii0000), so (ii0) follows.

Remark 2.12 Unlike Theorem 2.1, Theorem 2.5 does not have a variant when the s-
topology systematically replaces the w-topology (cf. Remark 2.3). This is due to the fact
that in this case the Radon-Nikodym theorem for multimeasures (which will play a crucial
role in the proof of Theorem 2.5) only provides the existence of a derivative multifunction
with w-compact values; see Example 1 in [22].

3We thank G. Godefroy, H. Klei and G. Pisier (Paris) for providing us with this information.
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3 Proofs of the main results

We shall denote by � the Mackey topology on the dual space X�. Since X is supposed
separable, the unit ball of X� has a countable, � -dense subset D with D = �D; also, the
set H spanned by all rational linear combinations of vectors in D is � -dense in X� [19,
III.32]. For any C 2 Pwkc(X) one has

C = \x�2Hfx 2 X :< x; x� >� s(x� j C)g; (3:1)

by an application of [19, III.34]. On the space Pwkc(X) we also consider the H-scalar
convergence topology. This is the topology of pointwise convergence of support functions
on H , obtained by requiring (1.2) to hold only for all x� 2 H ; evidently the H-scalar
convergence topology is metrizable. For scalar convergence of sequences, the following
consequences of (1.2) are immediate but useful:

kC0k � lim inf
n

kCnk; cl co Ls Cn � C0 � \pcl co [n�p Cn; (3:2)

where it can be remarked that the �rst inclusion becomes an identity in case [nCn is
relatively w-compact (by an obvious modi�cation of [26, Proposition 3.3]). For future use
it is also important to note that equality (3.1) continues to hold for any closed convex and
merely bounded subset C, provided that X� is separable for the dual norm topology; in
this case the separable dense subset H is the obvious one.

The set of all Bochner-integrable X-valued functions on (
;A; �) is denoted by L1X . For
any multifunction F 2 L1Pwkc(X) we denote

kFk1 :=
Z


kFkd�:

It is well-known [38, Theorem 2.2] that for E�ros measurable F : 
 ! 2X , having closed
values, the following identity holds:

s(x� j
Z
A

F d�) =
Z
A

s(x� j F )d�; x� 2 X�; A 2 A; (3:3)

provided that
R

 F d� is nonempty (as is always the case when F 2 L1Pwkc(X)).

The following celebrated theorem, due to Koml�os [40], will play a key role in the proofs
of Theorems 2.1 and 2.5. A fairly short proof can be found in [20].

Theorem 3.1 Suppose that (�n) is a sequence in L1
R

such that

sup
n

Z


j�nj d� < +1:

Then there exist �� 2 L1
R

and a subsequence (�n0) of (�n) such that for every further
subsequence (�n0j) of (�n0) there is a null set N with

lim
m!1

1

m

mX
j=1

�n0
j
(!) = ��(!) for all ! 2 
nN:

The next three lemmas will be used to prove Theorem 2.1. The �rst one is a Blaschke
type compactness criterion for scalar convergence; it is Lemma 5.1 of [35] and can be seen
as a consequence of e.g. [21, Theorem 3.1]. The second one is recalled from [33, Proposition
3.10]. For the sake of completeness, the proofs of both lemmas are given in section 4.
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Lemma 3.2 a. For every K in Pwkc(X), the subset K := fC 2 Pwkc(X) : C � Kg of
Pwkc(X) is metrizable and compact for the scalar convergence topology.

b. For every K in Pskc(X), the subset K := fC 2 Pskc(X) : C � Kg of Pskc(X) is
compact for the Hausdor� metric h.

Lemma 3.3 Suppose (Cn) is a sequence of subsets of X such that there exists K 2 Pwkc(X)
for which

[n Cn � K: (3:4)

Then
cl co (w-Ls Cn) = \kcl co ([n�kCn)

and
s(x� j cl co (w-Ls Cn)) = lim sup

n!1
s(x� j Cn) for every x

� 2 X�:

The third lemma is the well-known biting lemma, which goes back to V.F. Gaposhkin
[31], and has been rediscovered by several authors (e.g., [13]).

Lemma 3.4 (biting lemma) Suppose (�n) is a sequence in L1
R

such that

sup
n

Z


j�njd� < +1:

Then there exists a nonincreasing sequence (Bp) in A such that �(\1p=1Bp) = 0 and for
every p

(�n) is uniformly integrable over 
nBp.

Proof of Theorem 2.1. Part 1. 4 Using Koml�os' theorem (Theorem 3.1) and the
diagonal method, we obtain the existence of a subsequence (Fn0) of (Fn) and of functions
�x� , x� 2 H , and  in L1

R
such that

�x�(!) = lim
m!1

1

m

mX
n0=1

s(x� j Fn0(!)) (3:5)

and

 (!) = lim
m!1

1

m

mX
n0=1

kFn0(!)k (3:6)

for every x� 2 H and every ! outside some null set N1. By the same result, this also holds
for every further subsequence of (Fn0). (Note already that then the limit functions �x� ,
x� 2 H , and  do not change, but that in general the null set N1 will have to be replaced
by another null set.) We de�ne the partial sums Gm : 
! Pwkc(X) by

Gm(!) :=
1

m

mX
n0=1

Fn0(!) (3:7)

for all m 2 N. Relationship (3.6) implies that for every ! 62 N1

kGm(!)k �  (!) + 1 for m large enough (say m � m!): (3:8)

4This part of the proof will also serve in the proof of Theorem 2.5.
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Part 2. We apply the previous part 1. Denote G(!) := cl co [n Fn(!); by hypothesis
(ii) this set is w-ball-compact whenever ! is outside some null set N0. Hence, for any
! 62 N := N0 [ N1 and for every m � m! the set Gm(!) is contained in the w-compact
set K(!) := G(!) \ fx 2 X : kxk �  (!) + 1g. Thus, Lemma 3.2 gives the existence of a
subsequence (Gmi

(!)) of (Gm(!)) (possibly depending upon !), which converges scalarly
to some limit set F�(!) in Pwkc(X). But because of (3.1) and (3.5) it is easily seen that
F�(!) acts as the unique cluster point of (Gm(!)), which therefore converges to it. Thus,
we obtain that for all ! 62 N

lim
m
s(x� j Gm(!)) = s(x� j F�(!)) for all x

� 2 X�: (3:9)

On N we set F�(!) identically equal to some �xed singleton (say). Evidently, this implies
the measurability of s(x� j F�(�)) for every x

� 2 X�. E�ros measurability of F� then follows
easily from

d(x; F�(!)) = sup
x�2X�;kx�k��1

[< x; x� > �s(x� j F�(!))] = sup
x�2D

[< x; x� > �s(x� j F�(!))];

where the �rst identity is well-known and the second one follows by � -denseness of D in
the unit ball of X� and � -continuity of the support function (by F�(!) 2 Pwkc(X)). Also,
it follows from (3.9), by (3.2) and the classical Fatou lemma, that

kF�k1 �
Z


lim inf

m
kGmkd� � lim inf

m
kGmk1:

Here the limes inferior on the right is �nite by hypothesis (i); hence, we conclude that F�
belongs to L1Pwkc(X). By part 1 it follows that the above argument can be repeated for the

partial sums Hm := 1
m

Pm
j=1 Fn0j corresponding to any subsequence (Fn0

j
) of (Fn0). This

gives the existence of a null set N 0 of 
 and a multifunction F�� 2 L
1
Pwkc(X) such that for

all ! 62 N 0

lim
m
s(x� j Hm(!)) = s(x� j F��(!)) for all x

� 2 X�: (3:10)

From (3.5), (3.9) and (3.10) we conclude that for all ! 62 N [N 0

s(x� j F�(!)) = s(x� j F��(!)) = �x�(!) for all x
� 2 H:

Therefore, F�� = F� a.e., so (a) has been proven. We comment that, apart from the use of
Koml�os' theorem, the above technique is quite standard (e.g., see [35, Lemma 5.1]).

Part 3. Next, we prove (b). We begin by observing that the multifunction w-Ls Fn0 is
measurable by [33, Theorem 4.4]. Suppose one did not have (b). Then there would exist
x� 2 D and a nonnull set A such that

s(x�jF�(!)) > s(x�jw-Ls Fn0(!))

for all ! 2 A. For each n0 there exists a measurable (and integrable) selector of Fn0 such
that s(x�jFn0(!)) =< fn0(!); x

� > a.e. Without loss of generality we may suppose that the
nonnull set A is such that on A the three sequences (s(x�jFn0(�))), (kfn0k) and (< fn0 ; x

� >)
are uniformly integrable (apply the biting lemma three times: after three su�ciently small
bites there is still a nonnull set left). Then (fn0), restricted to A, is a uniformly integrable
subset of L1X(A) which is Rw-tight in the sense of [1]. Therefore, Theorem 6 of [1] implies
that a subsequence (fn00) of (fn0) converges weakly to some f� 2 L1X(A). Further, by
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[1, Theorem 8] f�(!) 2 cl co w-Ls fn00(!) a.e. in A (see Appendix B). On the one hand,
elementary properties of K-convergence [7] imply

lim
n00

Z
A

s(x�jFn00)d� =
Z
A

s(x�jF�)d�:

On the other hand, the stated properties of f� imply

lim
n00

Z
A

s(x�jFn0) = lim
n00

Z
A

< fn00 ; x
� >=

Z
A

< f�; x
� >�

Z
A

s(x�jw-Ls Fn0) <
Z
A

s(x�jF�):

This gives a contradiction. Q.E.D.

We remark that the proof of part (b) can also be given by well-known results on Young
measures. These results actually generalize the cited theorems from [1]; e.g., see Theo-
rem 6.2 and Remark 6.5 in [9]. Here it should be observed [9, Remark 6.6(a)] that L1-
boundedness and Rw-tightness as in [1] imply tightness in the sense of [3, 6]. We also
remark that for the partial sums (Gm) appearing in the proof of Theorem 2.1 the identity
F�(!) = cl co Gm(!) holds a.e.; this follows from the remark after (3.2).

To prove Theorem 2.5, we need a version of the Radon-Nikodym theorem for multivalued
measures taking values in Pwkc(X). Recall that a map M from A into Pwkc(X) is called
additive if

M(A [B) =M(A) +M(B);

whenever A;B 2 A are disjoint sets. If in addition the function s(x� j M(�)) is a �nite
measure for every x� 2 X�, then M is said to be a weak multimeasure (or multimeasure for
short); this notion was introduced by Cost�e and Pallu de La Barri�ere in [24, 25]. Interest-
ingly, by a result of Cost�e [23, p. III.4] this de�nition of a multivalued measure with values
in Pwkc(X) is equivalent to the following one: for every sequence (An) of pairwise disjoint
sets in A one has

lim
m!1

h(M([nAn);
mX
n=1

M(An)) = 0;

where h stands for the Hausdor� distance on Pwkc(X). The multimeasure M is said to
be �-absolutely continuous if �(A) = 0 implies M(A) = f0g for every A 2 A. The total
variation VM of M is given by

VM(
) := sup
pX
i=1

kM(Ai)k;

the supremum being taken over all �nite measurable partitions fA1; A2; : : : ; Apg of 
. If
VM(
) is �nite, the multimeasureM is said to be of bounded variation. The following result,
due to Cost�e [22, Th�eor�eme 3] or [23, Th�eor�eme 8, p. III.31], is a multivalued analogue of
the classical Radon-Nikodym theorem:

Theorem 3.5 Suppose that X and X� both have the RNP. Let M be a weak multimeasure
of bounded variation with values in Pwkc(X). If M is �-absolutely continuous, there exists
a multifunction � 2 L1Pwkc(X), (a version of) the Radon-Nikodym derivative of M with
respect to �, such that

M(A) =
Z
A

� d� for every A 2 A:

9



Actually, in [22, 23] the measure space (
;A; �) is assumed to be complete. However, by
reasoning as in [38, Remark, p 163] this condition is seen to be removable. Klei has given
a very interesting generalization of the above theorem [39, Theorem 5.3]; his result also
demonstrates the basic necessity of the RNP for both X and X�.

In the absence of (ii), Lemma 3.3 can no longer be used, and an additional tool is
required to obtain the pointwise inclusion in (b0):

Lemma 3.6 Let (Cn) be a sequence in Pwkc(X). Then

\pcl co ([m�p
1

m

mX
n=1

Cn) � \pcl co [n�p Cn:

Proof of Theorem 2.5. By Remark 2.8 we can take H to be a countable, strongly dense
subset of X�, closed for taking rational linear combinations. Let (Fn0) be as obtained in
part 1 of the proof of Theorem 2.1. By (3.6) the sets Gm(!), m 2 N, of (3.7) are of course
(pointwise) uniformly bounded; hence (s(� j Gm(!))) is equicontinuous on X

� (recall that
the strong topology is used on X� in the current proof). Hence, it follows from (3.5) that

�x�(!) := lim
m!1

1

m

mX
n0=1

s(x� j Fn0(!)) exists ; (3:11)

not only for x� 2 H , but for all x� 2 X�. As is clear from (3.8), ��(!) is Lipschitz-continuous
onX� with Lipschitz-constant  (!)+1 for every ! 62 N1. By (3.11) the function  A, de�ned
on X� by  A(x

�) :=
R
A �x� d�, is subadditive on X

� and it satis�es

 A(x
�) � s(x� j K(A)) for all x� 2 X�, (3:12)

where K(A) := cl co [n
R
A Fn d� is w-compact by hypothesis (ii0). Hence, by classical

properties of sublinear functions,  A is � -continuous on X�. Therefore, it is also w�-lower
semicontinuous, which by Theorem II.16 of [19] implies the existence of a nonempty closed
convex subset M(A) of X such that

 A(�) = s(� jM(A)): (3:13)

By (3.12) it follows that M(A) is contained in the w-compact set K(A), so M(A) itself is
also w-compact. We now show that M : A ! Pwkc(X) has the following properties:

(P1) M is additive,
(P2) M is absolutely continuous with respect to �,
(P3) M has bounded variation.
(P4) s(x� jM(�)) is �-additive for every x� 2 X�,

As for (P1), note that this property follows from

s(x� jM(A [B)) =
Z
A
�x� d�+

Z
B
�x� d� = s(x� jM(A) +M(B))

for every x� 2 H by the de�nition of �x� and (3.13). So by (3.1) it follows thatM(A[B) =
M(A) +M(B). Also, (P2) follows easily, for if A 2 A satis�es �(A) = 0, then  A(x

�) = 0
for all x� 2 H . To prove (P3) we observe that for all x� 2 D

s(x� jM(A)) =
Z
A

�x� d� �
Z
A

 d� (3:14)
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by (3.5)-(3.6). Therefore, as in the case of scalar-valued measures [29, p. 101],

kM(A)k = sup
x�2D

s(x� jM(A)) �
Z
A

 d�:

Of course, this implies VM(
) �
R

  d� < +1, which proves (P3). By sublinearity of

support functions, (3.14) gives

js(x� jM(A))j �
Z
A

 d�

for all x� 2 D (by D = �D). Hence, the total variation Vx� of the additive set function
s(x� jM(�)) satis�es Vx�(A) �

R
A  d� for all A 2 A. Thus, (P4) follows.

In view of (P1)-(P4), we may now invoke Theorem 3.5, the multivalued Radon-Nikodym
theorem. This yields the existence of a multifunction F� 2 L1Pwkc(X) which satis�es

M(A) =

Z
A

F� d� for all A 2 A. (3:15)

Moreover, F� is unique up to null sets. The proof of (a) is easily �nished by substituting
(3.3) in (3.14) and using the Lipschitz-continuity of ��(!) on X

� for ! 62 N1.
To prove (b0), note �rst that by Lemma 3.6 it is enough to prove that for every p

F�(!) � Lp(!) := cl co [m�p Gm(!) a.e. (3:16)

We observe that for every p 2 N and for a.e. ! 2 
 the set Lp(!) is bounded. Indeed,
one has kGm(�)k �

1
m

Pm
n0=1 kFn0(�)k, which, by (3.6), implies that there is a null set N1

such that for every ! 62 N1 and every p 2 N kLp(!)k � supm
1
m

Pm
n0=1 kFn0(!)k < +1.

On the other hand, (3.15) gives
R
A �x� d� =

R
A s(x

� j F�)d� for every A 2 A and x� 2 H .
Hence, for every ! outside a suitable null set N2, �x�(!) = s(x� j F�(!)) for all x� 2 H .
Fix ! 62 N1 [ N2; then (3.5) gives s(x� j F�(!)) = limm s(x

� j Gm(!)), which entails
s(x� j F�(!)) � s(x� j Lp(!)) for every p and x� 2 H . By boundedness of the Lp(!) this
gives F�(!) � Lp(!) for all p, in view of (3.1) and the separability of X�. This proves
(3.16), so the proof of Theorem 2.5 is �nished. Q.E.D.

4 Proofs of auxiliary results

Proof of Lemma 3.2. a. (See also the proof of Lemma 5.1 of [35].) It is obvious that K is
closed for scalar convergence; so let us show that it is also relatively compact. Just as was
done in the proof of Theorem 2.5, one shows that the collection fs(� j C) : C 2 Kg is � -
equicontinuous (see also (4.1) below). Consequently, on K, the scalar convergence topology
coincides with the metrizable H-scalar convergence topology. Thus, it remains to show that
an arbitrary sequence (Cn) in K has a convergent subsequence. By de�nition of K one has
for every n 2N and every x� 2 X� that

� s(�x� j K) � s(x� j Cn) � s(x� j K): (4:1)

By the diagonal method this gives the existence of a subsequence (Cn0) of (Cn) such that
the limit �(x�) := limn0!1 s(x� j Cn0) exists for every x

� 2 H . From (4.1) we deduce that
the sublinear function � satis�es

j�(x�)j � max[s(x� j K); s(�x� j K)] (4:2)
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for every x� 2 H . Hence, � is � -continuous on H ; therefore, it admits a � -continuous
extension to X�. This extension, denoted by ~�, still satis�es (4.2), but now for all x� 2 X�.
As in the proof of Theorem 2.5, by invoking [19, II.16] we can see that this yields the
existence of C� 2 Pwkc(X) such that ~�(x�) = s(x� j C�) for every x� 2 X�. In view of (4.1),
C� is a subset of K (observe that ~�(x�) � s(x� j K) for all x� 2 X�). It is now elementary
to conclude that the subsequence (Cn0) converges scalarly to C�.

b. Repeating similar arguments as in the proof of part a, but replacing the topology
� on X� by the topology �c of uniform convergence on s-compact subsets of X , we can
prove the existence of a subsequence (Cn0) such that �(x�) := limn0!1 s(x� j Cn0) for every
x� 2 H . Likewise, we obtain existence and �c-continuity of ~�, the extension of � to X�,
and this implies the existence of an s-compact subset C� of X such that ~� = s(� j C�).
By Ascoli's theorem, the �c-equicontinuity of (s(� j Cn0)) causes the D-scalar convergence
of (Cn0) to C� to coincide with uniform convergence of (s(� j Cn0)) to s(� j C�) on any
�c-compact subset of X

�. By the Banach-Dieudonn�e theorem [12, Th�eor�eme 1, p. IV.24]
the �c- and w

�-topologies coincide on the unit ball of X�. So it follows that (s(� j Cn0))
converges uniformly to s(� j C�) on the dual unit ball; thus, (Cn0) converges in the Hausdor�
metric to C�.

An alternative proof can be given, based upon the remark following Theorem II.4 in
[19]. Q.E.D.

Proof of Lemma 3.3. Let C be the right-hand side of the �rst identity that we have
to prove. From the de�nition of w-Ls Cn it is clear that C contains the left-hand side of
that same identity. It remains to prove the opposite inclusion. By de�nition of C it easily
follows that for any x� 2 X�

s(x� j C) � lim sup
n!1

s(x� j Cn): (4:3)

Further, it is possible to �nd a subsequence (Cnj) of (Cn) such that limj s(x
� j Cnj) =

lim supn s(x
� j Cn). Now, for any j, there exists xj 2 Cnj with < xj ; x

� >� s(x� j Cnj)�1=j;
then clearly limj < xj ; x

� >= lim supn s(x
� j Cn). By condition (3.4), the sequence (xj),

contained in K, has a subsequence which w-converges to some �x 2 K. Clearly, such �x
belongs to w-Ls Cn, so

lim sup
n!1

s(x� j Cn) =< �x; x� >� s(x� j cl co (w-Ls Cn)):

Hence, the desired inclusion is obtained, by the arbitrariness of x�. Finally, the second
identity to be proven is an obvious consequence of (4.3) and our last inequality. Q.E.D.

Lemma 4.1 Let (Cn) consist of w-compact and (Dn) of w-closed subsets of X. Assume
that (Cn) and (Dn) are both nonincreasing. Then \n(Cn +Dn) = \nCn + \nDn.

Proof. Evidently, the right-hand side is contained in the left side. The proof of the
converse inclusion is straightforward: let x be an element of the intersection on the left,
i.e., for every n there exist cn 2 Cn and dn 2 Dn with x = cn+ dn. Now by w-compactness
of C1 and the Eberlein-�Smulian theorem, a subsequence (cnj) of (cn) will converge to some
�c 2 X . Of course, then (dnj) converges to x� �c. It follows immediately from the monotone
inclusions that �c 2 \nCn and x� �c 2 \nDn. Q.E.D.

Proof of Lemma 3.6. For every p 2 N

cl co [m�p (
1

m
C1 +

1

m

mX
n=2

Cn) � cl co [m�p
1

m
C1 + cl co [m�p

1

m

mX
n=2

Cn:
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The right-hand side is closed, because cl co [m�p
1
m
C1 is w-compact. Upon taking the

intersection over all p one thus obtains

\pcl co [m�p
1

m

mX
n=1

Cn � \p(cl co [m�p
1

m
C1 + cl co [m�p

1

m

mX
n=2

Cn):

By Lemma 4.1 this gives

\p cl co [m�p
1

m

mX
n=1

Cn � \pcl co [m�p
1

m
C1 + \pcl co [m�p

1

m

mX
n=2

Cn: (4:4)

It is easy to check that cl co [m�p
1
m
C1 is actually identical to co (f0g [ 1

p
C1) (note that

f0g [ 1
p
C1, being w-compact, has a convex hull that is also w-compact). Therefore, it

follows immediately that \pcl co [m�p
1
m
C1 is equal to f0g, in view of the boundedness of

C1. Substitution in (4.4) gives

\pcl co [m�p
1

m

mX
n=1

Cn � \pcl co [m�p
1

m

mX
n=2

Cn � \pcl co ([m�pcl co [mn=2 Cn);

which leads to

\pcl co [m�p
1

m

mX
n=1

Cn � \pcl co [n�2 Cn � cl co [n�2 Cn:

The proof is now easily completed by induction. Q.E.D.

5 Applications: lower closure results

This section gives immediate lower closure-type applications of Theorems 2.1 and 2.5.

Theorem 5.1 Let (Fn) be a sequence in L1Pwkc(X) satisfying the following hypotheses:

(i) supn
R

 kFn(!)k�(d!)< +1,

(ii) cl co [n Fn(!) is w-ball-compact a.e.
Also, let (vn) be a sequence of scalarly measurable functions vn : 
! X� such that
(iii) vn(!)

�
! v0(!) a.e.,

where � again denotes the Mackey topology on X�. Then the subsequence (Fn0) of (Fn) and
F� 2 L1Pwkc(X) of Theorem 2.1 satisfy, next to (a)-(b),

(c) lim infn0
R

 s(vn0(�) j Fn0(�))d� �

R

 s(v0(�) j F�(�))d�,

provided that min(0; s(vn0(�) j Fn0(�))) is uniformly integrable.

Theorem 5.2 Suppose that both the Banach space X and its dual X� (equipped with the
dual norm) have the RNP. Let (Fn) be a sequence in L1Pwkc(X) satisfying the following
hypotheses:

(i) supn
R

 kFn(!)k�(d!)< +1,

(ii0) cl co [n
R
A Fn d� is w-compact for every A 2 A.

Also, let (vn) be a sequence of strongly measurable functions vn : 
! X� such that
(iii0) kvn(!)� v0(!)k

�! 0 a.e.
Then the subsequence (Fn0) of (Fn) and F� 2 L1Pwkc(X) of Theorem 2.5 satisfy, next to

(a)-(b0),
(c) lim infn0

R

 s(vn0(�) j Fn0(�))d� �

R

 s(v0(�) j F�(�))d�,

provided that min(0; s(vn0(�) j Fn0(�))) is uniformly integrable.
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Proof of Theorem 5.1. Observe that in the proof of Theorem 2.1 the sequence (s(� j
Gm(!)) was a.e. equicontinuous for the � -topology thanks to the intervention of the compact
sets K(!). Now there exists a subsequence (Fn0

j
) of (Fn0) such that the left hand side of (c)

is equal to limn0
j

R

 s(vn0j (�) j Fn

0

j
(�))d�, and without loss of generality we may suppose that

this limit is �nite. By the equicontinuity observed above and the de�nition ofK-convergence
as in (a), we have

lim
m
s(vm(!) j Gm(!)) = s(v0(!) j F�(!)) a.e.

So by the Fatou-Vitali lemma and the uniform integrability hypothesis for the negative
parts (which obviously transfers to the negative parts of the s(vm j Gm)), we get

lim
n0
j

Z


s(vn0j j Fn0j )d� = lim

m

Z


s(vm j Gm)d� �

Z


s(v0 j F�);

which amounts to (c). Q.E.D.

The proof of Theorem 5.2 is completely similar and will be omitted (by pointwise uniform
boundedness of the Gm(!) and the strength of the dual norm topology we again have
equicontinuity).

6 Comparisons with other work

In this section we compare the results of this paper with those in the literature. Most of
the literature can only be compared with our Theorems 5.1 and 5.2, and throughout such
comparisons it is instructive to keep in mind that those lower closure type theorems are of
a less general nature than our principal Koml�os-type results of section 2.

1. Theorem 2.1 subsumes the two Koml�os-type Theorems A and B of [5]. Theorem 2.5
generalizes Theorem A of [5] (which has X separable and re
exive). It also implies the
Koml�os-type Th�eor�eme 3.2 of [15] (its condition (2), which amounts to our (ii), is not
needed { see also the remarks on p. 3.9). Two similar extensions of Koml�os' theorem were
also given in section 3 of [7]. However, [7, Theorem 3.2] is only correct under an additional
separability condition for the dual Banach space. 5

2. Th�eor�eme 2.8 of [16] follows from Theorem 5.2, if we combine it with the biting
Lemma 3.4. The remark following [16, Th�eor�eme 2.7] (but not that theorem itself) follows
from Theorem 5.2. Th�eor�eme 2.9 in [16] follows from the singleton-valued version of Theo-
rem A.1 by setting h(!; x) := �(!; x) + kxk, with � as in [16], and by invoking Lemma 3.4
again.

3. Theorem 5.1 generalizes [18, Th�eor�eme 4.2]. A similar comment applies to Th�eor�eme 3.4
of [16]. Here it is important to note that the RNP-conditions in [18] cause the sequential
and topological Kuratowski limes superior to coincide [33, Corollary 3.9(i)]. [Incidentally,
by the same comment we also conclude that Theorem 2.1 immediately implies an improve-
ment of [15, Th�eor�eme 3.5].] Theorem 5.2 applies as well to the context of Th�eor�eme 4.2
of [18], but it only generalizes partially: the �rst part of Th�eor�eme 4.2 follows directly, but
this time the second part seems a little stronger than our (b0).

4. Theorem 5.2 improves upon Th�eor�eme 3.4 of [16], which takes, as in the case of [18,
Th�eor�eme 4.2] discussed above, the sets in (ii) to be locally compact, not containing any

5The �rst author is indebted to S.I. Suslov (Novosibirsk), M. Talagrand (Paris), and S. Diaz (Sevilla),
who independently brought this omission to his attention.
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lines and which supposes the vn to take their values in the unit ball of X�. Here again the
comment involving [33, Corollary 3.9] should be kept in mind.

5. Th�eor�eme 3.5 of [16] presents us with an interesting open problem. In Remark 6.6(a)
of [9] it has been shown that the R-tightness notion of [1], also used in [16] and related pa-
pers, is for all practical purposes { it is invariably accompanied by uniform L1-boundedness
{ a tightness condition in the sense of [3]. Therefore, Th�eor�eme 3.5 of [16] follows from
well-known lower semicontinuity results for Young measures. However, we cannot use the
function h, constructed in [9, Remark 6.6(a)], in Theorem A.1 (applied to singleton-valued
multifunctions), because it lacks convexity. We suspect that the solution to this problem
lies in adapting ideas from [44].

6. Of course, several other, more traditional Fatou-type results can be found in the
literature, for ordinary functions as well as multifunctions. Recently, the present authors
gave comprehensive results of this type, including cases where the Fn have unbounded
values [10]. In such Fatou type lemmas the prime interest lies in obtaining inclusions for
the integrals of the multifunctions Fn. Roughly, such inclusions are of the type

w-Lsn

Z


Fn d� � cl

Z


F0 d�;

where F0(!) := w-Ls Fn(!). While this gives a greater precision per point (because point-
wise F0 is a subset of the \upper bound" for the multifunction F� { see Theorems 2.1(b)
and 2.5(b0)), precision about

R

 F0 d� is reduced by the presence of the additional closure

operator. Objects like our F� sometimes also �gure in the statements of such approximate
Fatou lemmas (e.g., see Theorems 2.1 and 2.2 of [4]), and as a rule they can at least be
found in the proofs of such results, although they do not involve K-convergence explicitly.

7. The above comments apply to approximate Fatou lemmas corresponding to situations
similar to the one addressed in Theorem 2.1. Whether a true approximate Fatou lemma is
also associated to Theorem 2.5 remains to be studied. As yet, we know of no such result,
but Theorem 2.5 could certainly be considered as a �rst step in this direction. The novel
method of proof employed here, which combines K-convergence methods with the Radon-
Nikodym theorem for multivalued measures, could well turn out to be signi�cant in this
regard.

A An Extension of Theorem 2.1(a)

As we mentioned before, Theorem 2.1(a) (and of course Corollary 2.2(a)) can also be
derived from the abstract Koml�os-type theorem in [7]. We now show this by actually
deriving the following extension of Theorem 2.1 from [7]. It can be seen as a multivalued
version of [8, Theorem 2.1,Remark 2.3], which itself implies Corollary 2.2. Its formulation
uses outer integration over 
 (indicated by

R �

), so as to avoid unnecessary measurability

considerations.

Theorem A.1 Let (Fn) be a sequence in L1Pwkc(X) satisfying the following hypothesis: there

exists a function h : 
�Pwkc(X)! [0;+1] such that
(�) supn

R �

 h(!; Fn(!))�(d!) < +1,

(��) h(!; �) is convex and inf-compact 6 on Pwkc(X) for almost every !,
(���) there exist � > 0 and � 2 L1

R
such that for almost every !

6I.e., for every � 2 R the set fC 2 Pwkc(X) : h(!;C) � �g is compact.
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kCk � �h(!;C) + �(!) for all C 2 Pwkc(X).
Then there exist a subsequence (Fn0) of (Fn) and F� 2 L

1
Pwkc(X) satisfying

(a) Fn0
K
! F�,

(b) F�(!) � cl co w-Ls Fn0(!) a.e.

This result implies Theorem 2.1, because under the hypotheses (i) and (ii) the function
h, given by

h(!;X) :=

(
kXk if X � cl co [n Fn(!),
+1 otherwise,

meets the conditions of Theorem A.1 by the de�nition of ball-compactness and by Lemma 3.2.
Proof of Theorem A.1. Part (a) of this result follows directly from [7, Theorem 2.1] by

setting its collection (aj) equal to the set of all X 7! s(x� j X), x� 2 D. Observe that this
family satis�es the conditions of that result, since the s(x� j �) are a�ne and continuous on
Pwkc(X) and also separate its points. Part (b) now follows as in the proof of Theorem 2.1(b).
Q.E.D.

B Addendum on sequential limits

Let X be a Hausdor� topological space (e.g., a Banach space with the weak topology). The
sequential closure of a subset Y of X is de�ned by

seq cl Y := fx 2 X : x = lim
n
yn; yn 2 Y g:

Let (xn) be a given sequence in X . In part 3 of the proof of Theorem 2.1 we need the
following reformulation of the sequential closure in terms of a concept used in [1]:

Ls (xn) = \1k=1seq cl Yk ; (B:1)

where Yk := fxn : n � kg. We prove this identity as follows: For any k 2 N, we let (xkn) be
the sequence given by xkn := xn+k , n 2 N. Then it is not di�cult to check that

seq cl Yk = Yk [ Lsn(x
k
n) = Yk [ Ls (xn)

for every k 2 N. Consequently, we have

\kseq cl Yk = (\kYk) [ Ls (xn):

The proof of (B.1) is �nished by noting that \kYk is actually the repetition set of (xn),
de�ned to consist of all x 2 X for which x = xn for in�nitely many indices n. This
repetition set already belongs to the left side of (B.1).
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