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An approach initiated in [4] is shown to unify results about the existence of (i) Nash equilibria

in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions for

large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games.

A new, central notion of mixed externality is developed for this purpose.

1 Introduction

In [4] a new analysis of Cournot-Nash equilibrium distributions was given by characterizing these as
solutions of an associated variational inequality in terms of transition probabilities. In that paper
the use of some key results from Young measure theory made it possible to formulate a rather
powerful existence result for equilibrium distributions. This was shown to generalize equilibrium
results in [15, 17] (and also those of [15], as was shown recently [5]). Recall that Young measure
theory is basically a theory of narrow convergence for transition probabilities [2, 3, 7, 22, 23] which
extends the classical notion of narrow (or weak) convergence for probability measures.

In this paper the ideas of [4] will be expanded considerably, and it will be shown that a whole
class of Nash equilibrium results can be obtained in this way. In itself, it is not surprising that
Young measure theory should play an important role in equilibrium existence questions for game
theory. Rather, it seems surprising that the narrow topology for transition probabilities had not
been used before for such purposes. Indeed, if we think of a set of players T , then it is standard
to let each player t 2 T choose a probability measure, say �(t), on the set of all actions available
to him/her. Therefore, the combined e�ect of these choices of the players is to yield a transition
probability, viz. the mapping t 7! �(t). Since it is evident that Nash equilibrium questions for such
games can be cast into the form of some �xed point problem for the �'s, one is led naturally to
consider the topologization of the space of all transition probabilities, for which the narrow topology
turns out to be an ideal candidate. As could be expected, when the set T of players is �nite or
countably in�nite, use of the Young measure theory adds nothing of interest, for then its topology
is simply equivalent to the classical narrow topology for (products of) probability measures. It is
rather when T is uncountable that the Young measure topology adds new insights to the study of
Nash equilibria, and this the present paper will demonstrate.

To make suitable use of the Young measure topology, a key notion of mixed externality is for-
mulated here. For some of the equilibrium results considered such a mixed externality has a known
form. For other results, phrased in terms of pure Nash equilibria, the mixed externality is both new
and arti�cial. The basic pattern is then as follows: instead proving the existence of a pure Nash
equilibrium solution right away, the existence question is �rst resolved for a mixed version of the
problem. Once this has been done, it is easy to derive existence of a pure equilibrium solution from
it by means of well-known methods of puri�cation. In this way we obtain a new, powerful approach
which simultaneously addresses several existence questions for classical noncooperative games. Until
now, a coherent approach to these subjects was not available. Along the way, we shall also obtain
some real improvements of existing results in this area.
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The setup of this paper is as follows: First, notions and terminology are established concern-
ing the mixed externality notion for games in normal form. Then Theorem 2.1, the main theorem
for mixed Nash equilibrium pro�les, is stated, as is Proposition 2.1, the main supporting tool for
puri�cation. Next, these central results are then used to derive the existence (i) of a mixed Nash
equilibrium solution for a classical game (subsection 3.1), (ii) of a Cournot-Nash equilibrium dis-
tribution (subsection 3.2), and (iii) of pure Nash equilibria for continuum games in two essentially
di�erent situations (subsections 3.3, 3.4). As for (i), our Theorem 3.1.1 is rather classical. With
regard to (ii), Theorem 3.2.1 coincides with the main equilibrium distribution existence result of
[4]. In turn, the latter result is known to generalize the equilibrium distribution existence results
of Mas-Colell [17] and Khan-Rustichini [15] (as explained in [4]) and of Khan-Rustichini [16] (as
explained in [5]). Further, concerning (iii), Theorem 3.3.1 contains a generalization of a well-known
result of Schmeidler [21, Theorem 1]; our result also partly generalizes the extension of this result
given by Khan in [14, Theorem 5.1]. Finally, Theorem 3.4.1, a rather di�erent result, generalizes
Schmeidler's [21, Theorem 2] and the recent extension of his result by Rath [20].

2 Central notions and results

This section starts with an introduction of the mixed externality notion for games in normal form.
After this, the main equilibrium existence result is stated for a mixed version of the game (Theo-
rem 2.1). This is followed by Proposition 2.1, the main puri�cation tool.

Let (T; T ; �) be a �nite measure space of players; it is convenient to suppose �(T ) = 1. Let S
be a metric space of actions. Each player t has to restrict her/his actions to a certain subset of S,
denoted by St. Each set St is supposed to belong to the Borel �-algebra B(S), i.e., the �-algebra
generated by all open subsets of S. The set of all probability measures on (S;B(S)) is denoted
by M+

1 (S). On some occasions we shall also write �(t) := St, so as to emphasize the fact that
� : t 7! St forms a multifunction. We shall consider transition probabilities (alias Young measures)
� : T ! M+

1 (S), such that for �-a.e. t one has �(t)(St) = 1. Such transition probabilities will
be called mixed (action) pro�les, and the set of all of these is denoted by R. See [18, III.2] for
general measure-theoretical details on transition probabilities; here we just recall that a function
� : T !M+

1 (S) is called a transition probability if t 7! �(t)(B) is T -measurable for every �xed set
B 2 B(S). The pro�le � expresses that each player t has chosen �(t) 2 M+

1 (S) for her/his mixed
action; moreover, apart from some null set of players, each player t has chosen �(t) in such a way
so as to result in an action in the proper subset St. A special subset of R is made up by the pure
action pro�les; namely, a pro�le � 2 R is said to be pure if it corresponds to a measurable function
from T into S such that for all t

�(t) = �f (t) := Dirac probability at f(t).

It is clear that in this case the de�nition of R forces f to belong to the set S� of all measurable a.e.
selections of the multifunction � : t 7! St. Let Pt : R ! [�1;+1) be player t's payo� function;
Pt(�) measures t's personal bene�t if the mixed pro�le � 2 R is somehow realized.

Naturally, for every player t it is important to distinguish the "internal" part �(t) of � 2 R, over
which t has total control, from any other part, called "external" for contrast, over which player t
may have at most partial inuence. In fact, for the notion of a Nash equilibrium (see below) this
distinction is vital. A canonical way to distinguish is obtained by requiring the following internal-
external form for the payo� function Pt: there are supposed to exist (i) a space Y , (ii) a function
Ut : St � Y ! [�1;+1), and (iii) a mapping et : R! Y such that Pt decomposes as follows:

Pt(�) =

Z
St

Ut(x; et(�))�(t)(dx); t 2 T:

Our basic assumptions, to be encountered later, will ensure that the above integral expression is
meaningful. For technical reasons (see section 4) we assume that the space Y is common to all
players; this sometimes requires reformulating a little. In several applications, et does not really
depend on the player variable t; in such a case we shall simply write e : R ! Y , etc. The space Y
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will be called the space of pro�le statistics of the game. We shall call Ut the utility function and et
the mixed externality of player t. As a particular consequence of the internal-external form, we have
for a pure pro�le �f 2 R that

Pt(�f ) = Ut(f(t); et(�f )); t 2 T:

The above internal-external form of the payo�s can be found in some important instances:

Example 2.1 Take T := I := f1; 2; : : :ng as the index set for a game with n players; take T := 2I

and �(fig) = 1=n for each i 2 I (the precise nature of � is not very relevant, as long as the empty
set is the only null set). Let Si denote the set of actions available to player i. Rather than taking
the set-theoretical sum (and, later, the topological sum) of the Si's, we suppose without loss that all
Si are subsets (measurable by later assumptions) of a common set S. A mixed action pro�le � can
be considered as an n-vector (�1; �2; : : : ; �n) of probability measures �i 2M+

1 (Si) � M+
1 (S), simply

by setting �i := �(i). Let Vi : S
n ! [�1;+1] be player i's ordinary (i.e., unmixed) payo� function

for the normal form game. Then the expected payo� for player i under the mixed action pro�le
(�1; �2; : : : ; �n) is

Pi(�) =

Z
Si

[

Z
S�i

Vi(xi; x
�i)��i(dx�i)]�i(dxi);

where S�i := �j 6=iSj , �
�i := �j 6=i�j (product measure), etc. Since ��i is a probability measure on

S�i, it can also be regarded as a probability measure on the larger set Sn�1. So the the internal-
external form obtains if we set Y := M+

1 (S
n�1) (the set of all probability measures on Sn�1),

Ui(xi; y) :=
R
Sn�1 Vi(xi; x�i)y(dx�i) and

ei(�) := ��i:

(This is slightly less straightforward than might have been expected, because of our intention to keep
the space Y common to all players.) A game with countably in�nitely many players can, of course,
be treated in essentially the same way.

Example 2.2 Consider T = [0; 1] as the set of players, equipped with the Borel or Lebesgue �-
algebra T and the Lebesgue measure �. Let S be a separable Banach space E; suppose that for every
t the set �(t) := St � E is closed and convex. Suppose also that there exists an integrable function
� : [0; 1]! R such that kxk � �(t) for all x 2 St (here kxk denotes the norm on E). By de�nition,
each � in R is a transition probability from � : [0; 1]!M+

1 (E) such that �(t)(St) = 1 for �-a.e. t.
By the integrable boundedness condition it follows that

Z
T

[

Z
St

kxk�(t)(dx)]�(dt) �

Z
T

� d� < +1:

So in the �rst place we conclude that
R
St
kxk�(t)(dx) < +1 for a.e. t. By [23, I.4.29] this guarantees

for a.e. t the existence of the barycenter

bar �(t) :=

Z
St

x �(t)(dx)

of the probability measure �(t), and by [23, I.6.3] this point lies in the closed convex subset St of E.
On the exceptional null set involved here, we set bar �(t) := 0. It is easy to see that t 7! bar �(t),

thus de�ned, is integrable. Therefore, a mixed externality mapping e from R into Y := L1
�[0; 1] is

well-de�ned by
e(�) := �(bar �);

where � : L1E[0; 1]! L1
E [0; 1] is precisely de�ned by �(f) := ff 0 2 L1E [0; 1] : f

0(t) = f(t) for a.e. tg
(observe that �(bar �) is independent of the way in which we rede�ned bar � on the exceptional null
set above). Recall that L1E [0; 1] is the space of all Bochner-integrable functions from [0; 1] into E
[23, I.4.29], that L1

E [0; 1] is exactly de�ned as the space of all equivalence classes with respect to
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the equivalence relation f = f 0 a.e. on the latter space, and that L1
�[0; 1] is de�ned by L1

�[0; 1] :=
�(S� \ L

1
E[0; 1]). The reader's attention is called to the following notational rule, which is obeyed

throughout: prequotient spaces are denoted by script L's, and quotient spaces by straight L's. So
as to have internal-external form with respect to the above speci�cation of e, the payo� Pt must be
as follows:

Pt(�) =

Z
St

Ut(x; �(bar �))�(t)(dx):

In particular, for pure pro�les �f this entails

P (�f ) = Ut(f(t); �(f));

and this coincides with the form of the payo� postulated in Schmeidler's article [21].

Example 2.3 In Example 2.2 one can, by way of alternative, also consider the following mixed
externality mappings e: For r �xed Lebesgue-measurable subsets T1; T2; : : : ; Tr of [0; 1] de�ne

e(�) := (

Z
Ti

bar �(t)�(dt))ri=1;

and set Y := Er. For pure pro�les �f this gives

Pt(�f ) = Ut(f(t); (

Z
Ti

f d�)ri=1);

which is the form considered in Rath's article [20]. More generally, one could consider r measurable
functions g1; g2; : : : ; gr : D ! R and set

e(�) := (

Z
T

[

Z
St

gi(t; x)�(t)(dx)]�(dt))
r
i=1:

Nonstandard examples of the internal-external form can also be given:

Example 2.4 Consider in Example 2.2 the situation where half of the players, say for t 2 [0; 12 ],
act in complete isolation from all their opponents. In this case one can model et(�) to be a constant
(say identically equal to 1) for all t 2 [0; 12 ], and keep et(�) := �(bar�) for t 2 (12 ; 1]. Of course,
the point 1 should now be added to the space of pro�le statistics: Y := L1

�
[0; 1][f+1g (topological

sum).

Our main concern will be with the following classical equilibrium notion, which is due to Nash;
for the games with payo�s in the above internal-external form it runs as follows:

De�nition 2.1 A mixed pro�le �� 2 R is said to be a mixed Nash equilibrium pro�le if

��(t)(arg maxx2StUt(x; et(��))) = 1 for �-a.e. t in T.

The fact that a null set of players is allowed to escape the above requirement might be less
desirable for certain models; however, we stress that the present analysis is strictly tied to the
de�nition as given above. We shall now prepare our main Nash equilibrium existence result by
listing the assumptions that must be satis�ed.

Assumption 2.1 Y is a Suslin metric space.

Assumption 2.2 S is a Suslin metric space.

Recall here that a metric space is Suslin if it is the continuous image of a Polish (i.e., complete
separable and metric) space [9, III].

Assumption 2.3 St is nonempty and compact in S for every t 2 T .
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Assumption 2.4 Ut : St � Y ! [�1;+1) is upper semicontinuous on St � Y for every t 2 T .

Together with the previous assumption, this guarantees that Ut(�; et(�)) is bounded from above on
St by a constant; therefore, the integral in the internal-external form representation of Pt(�) is
well-de�ned.

Assumption 2.5 D := f(t; x) 2 T � S : x 2 Stg is T � B(S)-measurable.

Observe that, together with Assumptions 2.2 and 2.3, this guarantees the nonemptiness of R: By
the von Neuman-Aumann measurable selection theorem [8] there exists at least one measurable a.e.
selection f of � (i.e., f 2 S�); correspondingly, �f then belongs to R.

Assumption 2.6 Ut(x; �) is continuous on Y for every t 2 T , x 2 St.

Assumption 2.7 (t; x) 7! Ut(x; y) : D ! [�1;+1) is D-measurable for every y 2 Y .

Here D stands for the �-algebra on D, formed by all T � B(S)-measurable subsets of D.

Assumption 2.8 For every t 2 T and � 2 R the mapping t 7! et(�) is T -measurable.

Assumption 2.9 For every t 2 T the mixed externality mapping et : R ! Y is continuous for the
narrow topology.

Recall from [2, 3] that, given Assumptions 2.3 and 2.5), the narrow topology (alias weak or Young
measure topology) on R is de�ned as the coarsest topology for which the integral functionals � 7!R
T
[
R
St
g(t; x)�(t)(dx)]�(dt) are lower semicontinuous, for all D-measurable g : D ! (�1;+1] such

that g is integrably bounded from below (i.e., infx2St g(t; x) � �(t), for some � 2 L1R(T )) and g(t; �)
is lower semicontinuous on St for every t 2 T .

Theorem 2.1 (mixed Nash equilibrium existence result) If Assumptions 2.1{2.9 hold, then
there exists a mixed Nash equilibrium pro�le.

Section 4 is devoted to the proof of Theorem 2.1, which follows essentially the approach of
[4]. The usefulness of this existence result will become apparent in the next section, sometimes
in conjunction with the following su�cient condition for the existence of a pure Nash equilibrium
pro�le.

Proposition 2.1 (su�cient conditions for puri�cation) Suppose that Assumptions 2.1{2.9 hold.
Let �� be the mixed Nash equilibrium pro�le (guaranteed to exist by Theorem 2.1). Suppose that a
pure pro�le �f� 2 R satis�es

et(�f� ) = et(��) for �-a.e. t

and that either 1

Z
T

[

Z
St

arctanUt(x; et(��))��(t)(dx)]�(dt) =

Z
T

arctanUt(f�(t); et(��))�(dt) (2:1)

or, equivalently,

Ut(f�(t); et(��)) =

Z
St

Ut(x; et(��))��(t)(dx) for �-a.e. t: (2:2)

Then �f� is a pure Nash equilibrium pro�le, i.e.,

f�(t) 2 arg maxx2StUt(x; et(�f� ) for �-a.e. t in T .

1The arctangent is used here to ensure boundedness { whence integrability { of the integrands; this avoids making

unnecessary additional assumptions.
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Proof. First, let us establish that the function u : t 7! maxx2St g�(t; x) is measurable with
respect to the �-completion T� of the �-algebra T . Here g�(t; x) := Ut(x; et(��)) is D-measurable
on D by the assumptions (the composition of measurable functions is measurable). Now set ~g � g�
on D and ~g � �1 on (T � S)nD. By Assumption 2.5 and the above, ~g is T � B(S)-measurable.
Evidently, we have u(t) = maxx2S ~g(t; x), so T�-measurability of u follows by [8, III.39], in view of
Assumption 2.2. By a well-known property of the completion [9, II.15], the above fact also implies
that there exists a T -measurable function v : T ! R such that v(t) = u(t) for �-a.e. t in T .

Since �� is mixed Nash, it must be that for �-almost all t the probability measure ��(t) is carried
by the set arg maxx2StUt(x; et(��)). Hence, taking arctangents it is clear that

Z
T

[

Z
St

arctanUt(x; et(��))��(t)(dx)]�(dt) =

Z
T

arctan v(t)�(dt): (2:3)

By the hypotheses for f�, this gives

Z
T

arctanUt(f�(t); et(�f�))�(dt) =

Z
T

arctan v(t)�(dt);

and since Ut(f�(t); et(�f� )) � v(t) a.e., this implies that Ut(f�(t); et(�f�)) = v(t) a.e. This proves
that �f� is a Nash equilibrium pro�le.

Finally, note that the equivalence of (2.1) and (2.2) follows immediately from (2.3) and the
de�nition of the maximum functions u and v. Q.E.D.

3 Applications

We shall now consider essentially four di�erent applications of Theorem 2.1. The �rst application
addresses the rather classical situation considered in Example 2.1. The second one works with
Mas-Colell's notion of a Cournot-Nash equilibrium distribution [17]. The third application places
additional convexity and quasiconcavity conditions on the basic ingredients of the game, in a setting
for continuum games which is somewhat more general than the one used by Schmeidler [21] (see
Example 2.2). The fourth application, formulated for continuum games in the same setup, is based
on the requirement that Y , the space of pro�le statistics, is �nite-dimensional and the measure � is
nonatomic.

3.1 Classical n-person games

In this subsection we consider the situation of Example 2.1.

Assumption 3.1.1 Si is a nonempty compact metric space for every i 2 I.

Assumption 3.1.2 Vi is upper semicontinuous and bounded above on �jSj for every i 2 I.

Assumption 3.1.3 Vi(xi; �) is bounded and continuous on �j 6=iSi for every xi 2 Si and i 2 I.

Theorem 3.1.1 Suppose that Assumptions 3.1.1{3.1.3 hold. Then there exists an n-vector �� :=
(��1; ��2; : : : ; ��n), consisting of probability measures ��i 2M+

1 (Si), such that for each i 2 I

Pi(��) � Pi(�i � ��i� ) for every �i 2M+
1 (Si):

Proof. As in Example 2.1, rather than taking S to be the topological sum of the Si's (which is
now obviously compact and metrizable by Assumption 3.1.1), we suppose without loss of generality
that all Si's are subsets of a compact metric space S. We apply Theorem 2.1 to Y := M+

1 (S
n�1),

equipped with the classical weak topology. As in Example 2.1, we set

Ui(xi; y) :=

Z
S�i

Vi(xi; x
�i) y(dx�i):
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Assumption 2.1 holds by compactness and metrizability of M+
1 (S

n�1) for the classical weak topol-
ogy [9, III.60]. Assumption 2.2 is evidently ful�lled. Also, Assumption 2.3 is contained in As-
sumption 3.1.1. The measurability assumptions hold trivially. Further, Assumption 2.4 holds by
Assumption 3.1.2 and and well-known facts about weak convergence (combine [9, III.48] and [6,
Theorem 3.2]). Also, Assumption 2.6 holds by de�nition of the de�nition of weak convergence, in
view of the continuity hypothesis for the Vi. Assumption 2.8 holds trivially. Finally, in this case the
narrow topology on R coincides with the product topology, obtained when M+

1 (S) (whence each
subspace M+

1 (Si), i 2 I) is equipped with the classical weak topology. Therefore, Assumption 2.9 is
evidently valid. The Nash equilibrium pro�le �� 2 R, guaranteed by Theorem 2.1, gives the desired
��i := ��(i) for each i. Since ei(��) = �j 6=i��i for each i 2 I, the obvious identity

sup
xi2Si

Ui(xi; ei(��)) = sup
�i2M

+

1
(Si)

Z
�jSj

Vi d(�i � ��i� )

immediately implies the desired result. Q.E.D.

Observe that in standard textbooks on game theory Assumptions 3.1.2{3.1.3 are replaced by
the somewhat more stringent continuity condition for the functions Vi, i 2 I; e.g., cf. [11, Theorem
4.1.1].

3.2 Large anonymous games

Again, let M+
1 (S) stand for the space of of probability measures on S, equipped with the classical

narrow (or weak) topology. Recall that this is the coarsest topology for which the functionals
� 7!

R
S
c d� are continuous for all bounded continuous c : S ! R. For any � 2 R, � 
 � jS denotes

the marginal on S of the product probability �
 � on D [18, III.2]. That is,

� 
 � jS (B) :=

Z
T

�(t)(B)�(dt); B 2 B(S):

We shall now use the mixed externality e : � 7! �
 � jS . Observe how this has the e�ect of mixing
the individual probability measures �(t), t 2 T , which means that in a certain sense the players
inuence their opponents only anonymously.

Theorem 3.2.1 (equilibrium distribution existence result) Suppose that Assumptions 2.2{
2.7 hold for Y := M+

1 (S). Then there exists a �� 2 R such that

��(t)(arg maxx2StUt(x; �
 �� jS)) = 1 for a.e. t:

Proof. By [9, III.60] it follows from Assumption 2.2 that Y =M+
1 (S) is metrizable and Suslin for

the classical narrow topology. Evidently, all that has to be done is to check Assumption 2.9. This
amounts to verifying that for any continuous bounded c : S ! R the functional � 7!

R
S
cd(�
� jS) is

continuous fromR, equipped with the Young measure (alias narrow) topology, to M+
1 (S), equipped

with the classical narrow topology. Since
Z
S

c d(�
 � jS) =

Z
T

[

Z
St

c(x)�(t)(dx)]�(dt);

using g(t; x) := c(x) in the de�nition of narrow convergence on R shows that said functional is lower
semicontinuous. In the same way, upper semicontinuity follows from substituting g(t; x) := �c(x)
in that same de�nition. Q.E.D.

As a consequence of the above result, the probability measure p� 2M+
1 (D), given by p� := �
��,

satis�es
p�(f(t; x) 2 D : x 2 arg maxx2StUt(x; p� jS)g) = 1 and p� jT= �:

Therefore, p� is a Cournot-Nash equilibrium distribution in the sense of [17, 15, 4]. Theorem 3.2.1
constitutes the main result of [4]. As shown there and in [5], it generalizes existence results for
equilibrium distributions in [17, 15, 16].
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3.3 Continuum games with convexity

As in Example 2.2, we suppose in this subsection that the space of actions S is a separable Banach
space (E; k�k). This Banach space is equipped with a locally convex topology ! which is not stronger
than the norm topology and not weaker than the weak topology. Unless the contrary is explicitly
mentioned, topological references to S := E are understood to be with respect to !. Observe already
that (E;!) is a Suslin space, since (E; k � k) is Polish.

Assumption 3.3.1 �(t) := St � E is convex for a.e. t.

Assumption 3.3.2 There exists an integrable function � from T into R such that

sup
x2St

kxk � �(t) for a.e. t:

Assumption 3.3.3 U (t; �; y) is quasi-concave for every y 2 L1
�[0; 1] for a.e. t.

Clearly, Assumption 3.3.1 causes the set S� of measurable a.e. selectors of � to be equal to the set
L1�[0; 1] of all integrable a.e. selectors of �.

Theorem 3.3.1 (continuous game equilibrium existence result) Suppose that Assumptions 2.3{
2.7 and Assumptions 3.3.1{3.3.3 hold. Then there exists f� 2 L1�[0; 1] such that for a.e. t

Ut(f�(t); �(f�)) � Ut(x; �(f�)) for all x 2 St:

Proof. First, note that the Banach space L1
E [0; 1] is separable for the L1-norm; therefore, it is

a Polish space. So for the relative weak topology �(L1
E [0; 1]; L

1
E�[E]([0; 1])) the space Y := L1

�[0; 1]
(which is certainly closed and convex) is Suslin. So Assumption 2.1 is valid; Assumption 2.2 was
already seen to hold. Recall here [12, IV] that L1E� [E]([0; 1]), the set of all (equivalence classes
of) scalarly measurable and essentially bounded functions b : [0; 1]! E� is the topological dual of
L1
E [0; 1]. Here E

� is the topological dual of (E; k � k). Also, by the de�nition of e in Example 2.2 it
follows easily that Assumption 2.8 holds. Finally, to ensure validity of Assumption 2.9, it is enough
to establish that � 7! �(bar �) is continuous fromR, equipped with the narrow topology, into L1

�[0; 1]
(still equipped with the relative weak topology). Let b 2 L1E� [E]([0; 1]) be arbitrary. De�ne two
normal integrands g and g0, both integrably bounded from below, by setting g(t; x) :=< x; b(t) >
and g0(t; x) := � < x; b(t) > on D. Then the de�nition of the narrow topology on R implies that
� 7!

R
[0;1][

R
S
< x; b(t) > �(t)(dx)]�(dt) is narrowly continuous, which is to say that � 7!

R
[0;1] <

bar �; b > d� is narrowly continuous. So Assumption 2.9 holds. Theorem 2.1 may be applied, and
this gives existence of a mixed Nash equilbrium pro�le ��. We �nish by applying Proposition 2.1:
Let f� := bar ��; then the �rst condition of the proposition holds trivially. It remains to show
that its third condition (being equivalent to the second one) holds: By Assumptions 2.4 and 3.3.3
the set arg maxx2StUt(x; e(��)) is closed and convex. By Theorem 2.1, ��(t) is carried by this set.
Therefore, f�(t), the barycenter of ��(t), also belongs to it for a.e. t. Q.E.D.

Theorem 3.3.1 generalizes a well-known theorem of Schmeidler [21, Theorem 1] completely and
its extension by Khan [14, Theorem 7.1] partly in the following sense: Khan supposes U (t; �; �)
to be continuous on St � L1

�, which is certainly more than Assumptions 2.4{2.6 ask for. Also,
Khan requires all St to lie in one �xed weakly compact subset of E, which is much heavier than
Assumption 3.3.2 (a fair portion of [14, section 7] is spent on attempts to improve on this). On
the other hand, although the above result can almost automatically be extended to a setup where
an abstract measure space (T; T ; �) replaces ([0; 1]; T ; �) (indeed, Theorem 2.1 naturally deals with
this situation), the Suslin Assumption 2.1 for Y := L1

�(T ) forces certain restrictions on the measure
space (T; T ; �). For instance, if T were countably generated, then L1

E(T ) is a Polish space for the
L1-norm topology, so L1

�(T ) becomes Suslin for the weak topology. Even though this restriction
might seem fairly weak, it should be observed that [14] requires nothing of this kind.
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3.4 Continuum games with nonatomicity

In this subsection S is once more supposed to be a metrizable Suslin space. However, we now need
to assume that the probability space (T; T ; �) is nonatomic. Except for the fact that this probability
space now replaces [0; 1], our present model will be as in Example 2.3 in all other respects.

Assumption 3.4.1 The probability space (T; T ; �) is nonatomic.

Assumption 3.4.2 The functions g1; : : : ; gr : D ! R are D-measurable, integrably bounded and
such that gi(t; �) is continuous on St for each t, i = 1; : : : ; r.

Theorem 3.4.1 (nonatomic game equilibrium result) Suppose that Assumptions 2.2{2.7 and
3.4.1{3.4.2 hold. Then there exists f� 2 S� such that

f�(t) 2 arg maxx2StUt(x; d(f�)) for a.e. t,

where

d(f) := (

Z
T

gi(t; f(t))�(dt))
r
i=1; f 2 S�:

This result will be proven by means of Lemma III of [2]; remarks on this possibility can be found in
[4, p. 353]. Here we recall this lemma in slightly simpli�ed form:

Lemma 3.4.1 ([2, Lemma III]) Suppose that Assumptions 2.2{2.3 and 3.4.1 hold. Let g1; : : : ; gn :
T �S ! (�1;+1] be T �B(S)-measurable, integrably bounded from below and such gi(t; �) is lower
semicontinuous on S for each t, i = 1; : : : ; n. Then for every � 2 R there exists f 2 S� such that

Z
T

gi(t; f(t))�(dt) �

Z
T

[

Z
St

gi(t; s)�(t)(ds)]�(dt); i = 1; : : : ; n:

Compared to [2, Lemma III], we have already substituted h(t; s) := 0 if (t; s) 2 D and h(t; s) := +1
if (s; t) 2 (T � S)nD. Then h belongs to the class H(T ;S) of [2] (by Assumptions 2.3{2.5), and
for any � 2 R the �niteness condition

R
T
[
R
S
h(t; s)�(t)(ds)]�(dt) = 0 < +1 is automatic. Such

�niteness then causes [2, Lemma III] to give a function f which belongs to S�, in agreement with
what was stated in the lemma above.

Proof of Theorem 3.4.1. Clearly, Assumptions 2.1{2.7 are ful�lled. Let us de�ne

e(�) := (

Z
T

[

Z
St

gi(t; x)�(t)(dx)]�(dt))
r
i=1:

Then it follows that Assumptions 2.8{2.9 are also valid [apply the de�nition of narrow convergence
to both � 7!

R
T
[
R
S
gi(t; x)�(t)(dx)]�(dt) and � 7! �

R
T
[
R
S
gi(t; x)�(t)(dx)]�(dt)]. So by Theorem 2.1

there exists a mixed Nash equilibrium pro�le �� 2 R. Now we can apply Lemma 3.4.1 to the
collection g1; : : : ; gr;�g1; : : : ;�gr; `1; `2. Here the integrands `1, `2 : D ! (�1;+1] ae de�ned by

`j(t; x) := (�1)j�1 arctanUt(x; �d(��)):

for j = 1; 2 (by Assumptions 2.5{2.7 they may be included). Application of Lemma 3.4.1 gives the
existence of a function f� 2 S� such that e(��) = e(�f� ) = d(f�) and

Z
T

[

Z
S

`j(t; x)��(t)(dx)]�(dt) �

Z
T

`j(t; f�(t))�(dt)

for j = 1; 2. This implies

Z
T

[

Z
St

arctanUt(x; e(��))��(t)(dx)]�(dt) =

Z
T

arctanUt(f�(t); e(��))�(dt):
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By e(��) = e(�f� ), this is precisely (2.1). By Proposition 2.1 it therefore follows that �f� is a Nash
equilibrium pro�le. From this the stated result follows directly. Q.E.D.

Theorem 3.4.1, as contained in the remarks on [4, p. 353] and worked out above, substantially
generalizes the main result of Rath's recent paper [20, Theorem 2, Remarks 6{8]. The latter also
requires Assumption 3.3.2 to hold. If we also adopt Assumption 3.3.2, then Rath's result follows by
substituting S = Rr and gi(t; x) := xi (i-th coordinate). In fact, from combining subsections 3.2-3.3
it is evident that Rath's result remains valid for S := E (our separable Banach space of section 3.3)
if we set

d(f) := (

Z
T

< f(t); s�i > �(dt))ri=1;

where s�1; : : : ; s
�
r are r elements from the dual space E�. Observe that this corresponds to having

for the mixed externality

e(�) := (

Z
T

[

Z
S

< x; s�i > �(t)(dx)]�(dt))ri=1:

Of course, the Assumptions 2.3{2.7 and also 3.3.2 (but not the earlier Assumptions 3.3.1 and 3.3.3)
must still hold. For yet another obvious but relevant way to purify in quite general situations the
reader is referred to [4, p. 353].

4 Proof of Theorem 2.1

In this section Theorem 2.1 will be proven. The proof is virtually the same as that of [4, Theorem 1].
It is based on fundamental features of Young measure theory [2, 3, 22] and on Ky Fan's inequality.
The �rst result deals with compactness for the narrow topology on R. This can be found in [4,
Lemma 3]. It follows thanks to Assumptions 2.2, 2.3 and 2.7.

Lemma 4.1 R is a compact convex subset of a certain vector space.

The vector space is speci�ed in the proof of Proposition 4 in [4]. In analogy to [4, p. 350], let us
de�ne p : R�R ! R by

p(�; �) :=

Z
T

[

Z
St

arctanUt(x; et(�))�(t)(dx)]�(dt):

Here the double integral is well-de�ned by Assumptions 2.5, 2.6, 2.7 and 2.9 (use [8, III.14] and [18,
III.2]). Our next result could also have been proven by the same method as used to prove Lemma
5 in [4]; here we opt for a somewhat more transparent proof.

Lemma 4.2 i. p is upper semicontinuous on R�R. ii. p(�; �) is continuous on R for every � 2 R.

Proof. i. Let dY and dS stand for the metrics on Y and S; we may suppose dY � 1 (else
take min(1; dY (y; y0)) as a new metric, equivalent to the old one). Let ((��; ��)) be a generalized
sequence, converging in R�R to (�0; �0). De�ne g : T �S�Y ! (�1;+1] by setting g(t; x; y) :=
� arctanU (t; x; y) for (t; x) 2 D, y 2 Y , and by g(t; x; y) := +1 for (t; x) 62 D, y 2 Y . By
Assumptions 2.3{2.6, g is a normal integrand on T � (X�Y ), so by the approximation procedure of
[3, p. 268] (and thanks to Assumptions 2.1, 2.2) there is a nondecreasing sequence (gn) of T �B(S)-
measurable functions gn : T � S ! (�1;+1] such that for a.e. t, jgn(t; x; y) � gn(t; x0; y0)j �
ndS(x; x0) + ndY (y; y0) for all x; x0 2 S and all y; y0 2 Y (Lipschitz property). So to prove

lim inf
�

Z
T

[

Z
St

g(t; x; et(��))��(t)(dx)]�(dt) �

Z
T

[

Z
St

g(t; x; et(�0))�0(t)(dx)]�(dt)�(dt); (4:1)

it is enough to prove the same inequality with g replaced by gn for any n (indeed, an application of
the monotone convergence theorem then easily implies the above inequality). So �x n; note that

gn(t; x; et(��)) � gn(t; x; et(�0)) � ndY (et(��); et(�0));
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by the Lipschitz-property of gn. Integrating successively over ��(t) and � gives

Z
T

[

Z
St

gn(t; x; et(��))��(t)(dx)]�(dt) �

Z
T

[

Z
St

gn(t; x; et(�0))��(t)(dx)]�(dt)� ��

where �� := n
R
T
dY (et(��); et(�0))�(dt). By the dominated convergence theorem and Assump-

tion 2.9 it follows that �� ! 0. Applying [3, Theorem 2.2] now easily gives (4.1).
ii. Using Assumption 2.6, this follows immediately from [3, Theorem 2.2] by a simpler argument

than the one above. Q.E.D.

Lemma 4.3 For every �� 2 R the following are equivalent:
a. �� is a mixed Nash equilibrium pro�le.
b. p(��; ��) � p(��; �) for all � 2 R.

Proof. The proof runs precisely as the one for [4, Corollary 1]. It is based on using [4, Proposition
3] (essentially a measurable selection argument).

Proof of Theorem 2.1. By Lemmas 4.1-4.2 we can apply Ky Fan's inequality (for which no
Hausdor� conditions are needed [10, p. 501] { observe that the narrow topology is non-Hausdor�)
to the functional q : R�R! R, de�ned by

q(�; �) := p(�; �) � p(�; �);

just as was done in proving [1, Theorem 5]. Indeed, R is compact and convex (Lemma 4.1) and it
was already seen to be nonempty. By Lemma 4.2, q(�; �) is lower semicontinuous for every � 2 R.
Finally, q(�; �) is trivially a�ne. So by Ky Fan's inequality it follows that there exists �� 2 R
satisfying b in Lemma 4.3, whence a of Lemma 4.3. Q.E.D.
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