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Equivariant Cohomology and Stationary Phase

J.J. DUISTERMAAT

Preface

This is the text of a survey lecture given at the conference on \Symplectic

Geometry and its Applications", Keio University, Yokohama, July 21, 1993. I

have been stimulated by many people, but I would like to thank especially L.

Je�rey for her helpful explanations to me of [17].

1. Equivariant Cohomology

Equivariant cohomology is a structure which is attached to a smooth action

of a Lie group G on a smooth manifoldM . It can be de�ned as the cohomology

of EG �G M , in which EG ! BG is the universal principal G-bundle; BG is

the classifying space of the group G.

Although this explains several aspects of equivariant cohomology, cf. Atiyah

and Bott [1], for our purposes it is more convenient to use the model of H.

Cartan, introduced in [5], [6]. It is a variation of de Rham cohomology, in which

the algebra 
(M ) of smooth di�erential forms on M is replaced by the algebra

A := (S(g�)
 
(M ))G(1.1)

of G-equivariant polynomial mappings

! : g 3 X 7! !(X) 2 
(M );(1.2)

from the Lie algebra g of G to 
(M ). (It will be convenient to allow complex

valued di�erential forms, so all algebras are over C.) The equivariance of !

means that

!(Ad g(X)) = (g�M )�1(!(X)); g 2 G; X 2 g:(1.3)

1991 Mathematics Subject Classi�cation. 57R91, 58F05.
Key words and phrases. equivariant cohomology, Hamiltonian group action, reduced phace

space, localization of integrals.

c0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.J. DUISTERMAAT

Here Ad stands for the adjoint action of G on its Lie algebra g and g�M denotes

pullback of di�erential forms by means of the action gM :M !M on M of the

element g 2 G.

In 
(M ) one has the derivations d and i(v), of exterior di�erentiation and

contraction with a vector�eld v in M , respectively. These are related to the Lie

derivative by means of the homotopy formula

L(v) :=
d

dt t=0
(etv)� = d � i(v) + i(v) � d :(1.4)

Here etv denotes the ow in M after time t with velocity �eld equal to v.

If, for each X 2 g, the vector�eld XM denotes the in�nitesimal action of X

in M , then the equivariant exterior di�erentiation D is de�ned by:

(D!)(X) := d(!(X)) � i(XM )(!(X)); X 2 g; ! : g! 
(M ):(1.5)

Clearly D : A ! A, and one also gets that D �D = 0. For the latter one uses

that A consists of equivariant mappings : g! 
(M ), which implies, substituting

g = exp(tX) in (1.3) and di�erentiating with respect to t at t = 0, that

0 = L(XM )(!(X)) = (d � i(XM ) + i(XM ) � d)(!(X));(1.6)

cf. (1.4). The quotient

H�G(M ) := kerD = imD(1.7)

is called the equivariant cohomology of the G-action on M . It can be shown

that if G is compact, which we assume from now on, then H�G(M ) is canonically

isomorphic to the topological equivariant cohomology, cf. [1].

In order to explain the grading in H�G(M ), let Ak; l denote the space of elements

of A which are homogeneous polynomialmappings of degree k, from g to 
k(M ).

If ! 2 Ak; l, then

X 7! d(!(X)) 2 Ak; l+1(1.8)

and

X 7! i(XM )(!(X)) 2 Ak+1; l�1:(1.9)

So we get Dp : Ap ! Ap+1, if we de�ne

Ap :=
M

k; lj2k+l=p

Ak; l(1.10)

as the space of equivariant forms of degree p. We get

H�G(M ) =
M
p�0

Hp
G(M );(1.11)

in which

Hp
G(M ) := ker Dp = imDp�1(1.12)
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is the cohomology in degree p. In Section 3 we will see another reason why it is

natural to give the indeterminate X degree two.

If G = R=Z is the circle, then g = R and we can write, for ! 2 A:

!(X) =
X
j�0

Xj!j;(1.13)

in which the !j 2 
(M )G form a sequence of G-invariant di�erential forms on

M . The sum is �nite: if ! 2 Ap, then !j 2 
p�2j(M )G, which is equal to zero

if p� 2j < 0 or p� 2j > dimM . The equivariant exterior derivative is given by

(D!)j = d!j � i(v)!j�1;(1.14)

in which the vector�eld v = 1M is the in�nitesimal action of 1 2 R = g onM . So

the computation of the equivariant cohomology involves sequences of equations

in 
(M )G.

A similar remark holds true for torus actions, using a multi-index notation in

(1.13). For nonabelian Lie algebras g, the choice of the basis is not so obvious.

One also has that the monomialsXj !j need not be equivariant, so do not always

belong to A.

2. Localization in the Orbit Space

ReplacingM by G-invariant open subsets U , we get a sheaf of algebras A(U ).

The G-invariant open subsets of M correspond to the open subsets of the orbit

space M=G, so the A(U ) can be viewed as a sheaf over M=G. It is a �ne

sheaf, because of the existence of partitions of unity by means of G-invariant

functions, obtained from arbitrary partitions of unity by averaging these over G.

Using Mayer-Vietoris sequences as in Bott and Tu [4, Ch. II], one can think of

the equivariant cohomology of M as being built up out of the local equivariant

cohomology groups H�G(U ).

Each x 2 M has a G-invariant open neighborhood Ux and a G-equivariant

retraction of Ux to the orbit G � x ' G=Gx through x. This leads to

H�G(Ux) ' H�G(G=Gx) ' S(g�x)
Gx ;(2.1)

the ring of AdGx-invariant polynomials on gx. Here

Gx := fg 2 G j gM (x) = xg(2.2)

is the stabilizer of x in G and

gx = fX 2 g j XM (x) = 0g(2.3)

is its Lie algebra.

Formula (2.1) shows that the local cohomology is not trivial (as for the de

Rham cohomology) if gx 6= 0. It is even in�nite-dimensional over C; it is a

polynomial algebra of rank equal to the rank of gx. This rank is equal to the
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dimension of a maximal abelian subalgebra of gx, or of the orbit space of the

adjoint action of Gx in gx.

This is most spectacular if x is a �xed point for the group action, in which

case (2.1) is obvious and we get that the equivariant cohomology is equal to the

ring

I := S(g�)G(2.4)

of AdG-invariant polynomials on g. Note that A and H�G(M ) are algebras over I,

because multiplication with f 2 I is a linear mapping : A! A, which commutes

with the algebra structure in A and also with d and i(XM ), hence with D.

3. Locally Free Actions

The other extreme occurs if the action is locally free, which means that gx = 0

for all x 2M . In this case the quotient space is a manifold of dimension equal to

dim(M )�dim(G) with mild singularities, which locally are those of quotients of a

manifold by a �nite group action. The concept of such a manifoldwas introduced

by Satake [22] under the name of V -manifold, but nowadays the name orbifold

also has become popular. The point of [22] is that on such a manifold the de

Rham theory goes through, practically without any change. One has for instance

Poincar�e duality de�ned by integration over the manifold, if the V -manifold is

oriented. Note that if the action is free, that is Gx = f1g for all x 2 M , then

M=G is a smooth manifold and � : M ! M=G is a smooth �bration, known

in the literature as a principal �ber bundle. Because of the many interesting

examples, it is worthwile however to allow locally free actions which are not free.

Now gx = 0 yields in view of (2.1) that the local cohomology is trivial, and

we get that

H�G(M )
�
 �
��

H�(M=G):(3.1)

In other words: If the action is locally free, then the equivariant cohomology of

M is canonically isomorphic to the de Rham cohomology of the quotient space

M=G.

More precisely, if � : M ! M=G denotes the projection � : x 7! G � x,

which assigns to each x 2 M the G-orbit through x, then the pullback �� by �

is an isomorphism from 
(M=G) onto the subspace 
(M )basic of the so-called

basic di�erential forms in M . These are de�ned as the � 2 
(M ) which are

G-invariant and satisfy i(XM )� = 0 for all X 2 g. As a constant map from

g to 
(M ), such a � belongs to A, and D� = 0 if and only if d � = 0. The

isomorphism (3.1) now means that if ! 2 A and D! = 0, then there exists � 2 A

and � 2 
(M )basic, such that

!(X) = � + (D �)(X); X 2 g:(3.2)
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We have already observed before that A and H�G(M ) are modules over the

ring I of Ad-invariant polynomials : g ! C. If the action is locally free, then

each f 2 I corresponds via (3.1) to a cohomology class cf in Heven(M=G), these

cohomology classes of M=G are called the characteristic classes of the �bration

M ! M=G. In this way the cohomology of M=G, which is �nite-dimensional

over C ifM is compact, can be viewed as a module over the ring of characteristic

classes.

In [6, p. 63] an explicit construction of � and � is indicated, using a connection

form �. That is, a g-valued one form in M , which is G-equivariant and which

reproduces X when applied to XM . In formula:

� 2 (g
 
1(M ))G; i(XM )� � X; X 2 g:(3.3)

Connection forms exist if (and only if) the action is locally free. They can be

constructed �rst in tubular neighborhoods of orbits and then pieced together by

means of G-invariant partitions of unity.

If � is a connection form in M , then the corresponding curvature form in M

is de�ned by


 := d � � [�; �] 2 (g
 
2(M ))G:(3.4)

Here [�; �] 2 (g 

2(M ))G is de�ned by

[�; �]x(v; w) = [�x(v); �x(w)]; v; w 2 TxM:(3.5)

The curvature form in M has the property that, for each f 2 I, f(
) is a closed

basic form, of even degree. So f(
) = �� for a uniquely determined closed

from  in M=G. The corresponding class [] 2 Heven(M=G) is equal to the

characteristic class cf , so in particular it does not depend on the choice of �.

The form  is called the characteristic form in M=G, de�ned by � and f .

The relation X $ 
 explains why the indeterminate X has been given degree

two; this is the choice which makes (3.1) into an isomorphism of graded rings.

For torus actions, the situation is considerably simpler. We then have


 := d � = ��R(3.6)

for a closed g-valued two-form R in M=G, called the curvature form in M=G. It

de�nes the Chern class c := [R] 2 g 
H2(M ), and we have cf = f(c).

In the case of the circle G = R=Z, g = R, !(X) =
P
Xj!j, the form � in

(3.3) is given explicitly by:

� =
X
j�0

(d �)j ^ !j �
X
j�0

� ^ (d �)j ^ i(v)!j :(3.7)

If ! = f 2 I, then � = f(
), con�rming the description of the characteristic

classes, which we gave above.

Combining (3.1) with the observation that the equivariant cohomology of a

point is isomorphic to the ring of Ad-invariant polynomials on the Lie algebra,
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one can now also explain the second identity in (2.1). Indeed, if H is a closed

Lie subgroup of G, then we can use the left-right action of G�H on G and write

H�G(G=H)
�
�! H�G�H (G)

�
 � H�H(point):(3.8)

4. Integration

From now on, we assume that M is compact and oriented and that the G-

action preserves the orientation. If ! 2 A, then the integral

(

Z
!)(X) :=

Z
M

!(X)[dimM ]; X 2 g(4.1)

de�nies an AdG-invariant function on g, so
R
! 2 S(g�)G. Here we have written

!(X) =
dimMX
k=0

!(X)[k] ; !(X)[k] 2 
k(M ):(4.2)

Note that ! = D� implies that that

!(X)[dimM ] = d(�(X))[dimM ];(4.3)

because

(i(XM )�(X))[dimM ] = i(XM )(�(X)[dimM+1]) = 0:(4.4)

So Stokes' theorem yields that
R
! = 0 if ! 2 imD, which means that integration

yields a map Z
: H�G(M )! I = S(g�)G:(4.5)

Because the ring I has no zero divisors, the map
R
can only be nonzero if

the rank of H�G(M ) is equal to the rank of g. That is, it is necessary for having

(
R
!)(X) 6= 0 for some ! 2 A satisfying D! = 0, that there exist x 2 M at

which

rank gx = rank g:(4.6)

See [1, x3] for more about the rank of the module H�G(M ). The localization ofR
! at the points where (4.6) holds is expressed in a more explicit way in the

localization formula (4.13) of Berline-Vergne [3] and Atiyah-Bott [1]. For its

formulation, we need some information about the action of a torus T � G near

its �xed points in M .

If X 2 g, then the zeroset

Z = ZX := fx 2 M j XM (x) = 0g(4.7)

of XM in M is equal to the �xed point set

MT := fx 2M j tM (x) = x for all t 2 Tg(4.8)
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of the torus

T = TX := closure in G of fexp(�X) j � 2 Rg:(4.9)

We write t for the Lie algebra of T . For generic X, T is a maximal torus in G

and t is a maximal abelian subalgebra of g.

Using Bochner's local linearization theorem of actions of compact Lie groups

near �xed points, one obtains that each connected component F is a smooth

compact submanifold of MT , and there are only �nitely many F 's. For each

x 2 F , the normal space TxM=Tx F splits into two-dimensional T -invariant

planes Pj, on which the in�nitesimal action of Y 2 t is equal to �j(Y ) times the

standard in�nitesimal rotation of a quarter turn. Here

�j 2 t
�; �j(ker exp\t) � 2�Z(4.10)

are (the real versions of) the weights of the torus action.

Because of the rigidity in (4.10), the weights do not depend on the choice of

the point x in the connected manifold F . Also, writing the quarter turn in the

plane Pj as multiplication with i, Pj can be viewed as a complex line bundle

over F , with a curvature form in 
2(F ) attached to a connection in Pj. If �j
occurs with multiplicity, then we get a complex vector bundle over F and the

Chern form has to be replaced by a curvature matrix. (One may also use the

\splitting principle" as in [4, x21], in order to reduce the computations to the

case of complex line bundles.) In this way the normal bundle N(F ) of F in M

may be provided with the structure of a Hermitian complex vector bundle, the

in�nitesimal action of X on the frame bundle FN(F ) of N(X) will be denoted

by LX.

The equivariant Euler form of the normal bundle of F is now de�ned as

"(X) := detC[
i

2�
(LX � 
)] 2 
even(F ):(4.11)

Here 
 denotes the curvature form in FN(F ), de�ned by a connection form in the

bundle FN(F )! F . Because the complex determinant is a conjugacy-invariant

polynomial, the characteristic form (4.11) is well-de�ned.

If �j(X) 6= 0 for all j, then this is an invertible element in the commutative

algebra 
even(F ), with inverse given by

1

"(X)
=
Y
j

2�

i�j(X)
� detC[

X
l�0

((LX)�1
)l]:(4.12)

Note that the terms in the right hand side can only be nonzero if 2l � dimF .

In particular the sum is �nite. If F = fxg is an isolated point, or more generally

if the normal bundle of F is trivial, then 1="(X) is just equal to the scalarQ
j(2�=i�j(X)).
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With these notations, the localization formula now reads:

(

Z
!)(X) =

X
F

Z
F

(i�F !(X)="(X))[dim F ]:(4.13)

On F the orientation is chosen such that it is compatible with the orientations

of M and N(F ). Note that the condition (4.6) just means that gx contains

a maximal abelian subalgebra t of g, so x 2 MT . It is also remarkable that

the polynomial (
R
!)(X) is equal to a sum of rational functions of X, which in

general may have quite high order poles. The vanishing of the sum over F of

the coe�cients of these poles is just one example of the many magic identities

which follow from the localization formula.

The proof indicated in [3] uses Stokes' formula in the complement of a small

tubular neighborhood of MT . For the curvature computations, see [10, Sec. 2],

which can be turned into a proof of (4.13), if the factor (�1)k eJX �n�k=(n� k)!

is replaced by !k, if !(X) =
P

kX
k !k. Note that it is su�cient to prove (4.13)

for circle actions, because the rays through the integral lattice ker exp\t form a

dense subset of t.

The proof of Berline, Getzler and Vergne in [2, Ch. 7] is based on an idea,

which potentially has much wider applications. In a general form, due to Witten

[23], it is the observation that

Z
M

es D�(X) !(X) =

Z
M

!(X)(4.14)

for all s 2 C, if !; � 2 A, D! = 0 and � is of odd degree. (This makes D�(X) of

even degree, so that its exponential, as a power series, is unambiguously de�ned.)

Indeed, because

d

ds
es D� ! = D� es D� ! = D(� es D� !);(4.15)

its integral over M is equal to zero, which shows that the left hand side in (4.14)

is constant as a function of s. Note that the non-polynomial part of s 7! es D�(X)

is given by the exponential function s 7! e�s ', in which

' = i(XM )�(X)[1]:(4.16)

Now we use a G-invariant Riemannian structure � on M and choose

�(X) := �(XM ; �) 2 (g
� 
 
1(M ))G:(4.17)

Then ' = �(XM ; XM ), and e�s' gets a Gaussian concentration at the zeroset

ZX = MT of XM . The right hand side in (4.13) now is equal to the constant

term in the asymptotic expansion of (4.14) as s 2 R, s ! +1. This is easy

to prove in the case of isolated �xed points. For the details of the proof in the

general case, see [2, pp. 219-223].
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5. Hamiltonian Actions

Now assume thatM carries a symplectic form �. That is, � 2 
2(M ), d� = 0,

and, for each x 2M , �x is a nondegenerate antisymmetric bilinear form on TxM .

This implies that dimM = 2m for some integer m. We assume that the action

of G on M is Hamiltonian, which means that there exists

� 2 (g� 

0(M ))G;(5.1)

such that, for each X 2 g, the vector �eld XM is equal to the Hamiltonian

vector�eld in M de�ned by the function �(X):

i(XM )� = � d(�(X)); X 2 g:(5.2)

This can be summarized in the statement that D �̂ = 0, if �̂ 2 A is de�ned by

�̂(X) := � � �(X); X 2 g:(5.3)

An immediate consequence is that, for each equivariantly closed form !, the

form

�(X) := e�i�̂(X)!(X)(5.4)

is also equivariantly closed. So the localization formula (4.13) can be applied to

write its integral over M as a sum of contributions from the connected compo-

nents F of ZX , the zeroset of XM :

I(X) :=

Z
(e�i�̂!)(X) =

Z
M

ei�(X)
X
k

(�i�)k

k!
!(X)[2(m�k)]

=
X
F

eihX; �(F )i rF (X);(5.5)

in which

rF (X) :=

Z
F

i�F (e
�i�!(X))="(X):(5.6)

Note that ZX is equal to the set of critical points of the function �(X). This

also implies that �(X) is constant on each connected component F of ZX , its

value on F has been denoted by hX; �(F )i in (5.5).

The integral on the left hand side of (5.5) is an oscillatory integral with phase

function equal to �(X). The terms (5.6) coincide with the leading terms of the

asymptotic expansion of (5:5) for X ! 1, given by the method of stationary

phase. One says that in this case the method of stationary phase is exact. This

was observed for !(X) � 1 in [9]. However, in the next sections we will discuss

how the generalization to arbitrary equivariantly closed forms ! can be used in

the study of the ring structure of the cohomology of the reduced phase space.

Another observation is that ZX , being equal to the set of critical points of

�(X), is always nonvoid. Actually, using the �(X) as Morse functions, Ginzburg
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[11] proved the very strong statement that integration overM de�nes a Poincar�e

duality for H�G(M ), in the sense that

[!] 7! ([�] 7!

Z
! �) : H�G(M )! HomI(H

�
G(M ); I)(5.7)

is an isomorphism of I-modules. Recall that I stands for the ring of AdG-

invariant polynomials on g. This is in extreme contrast with the case that the

G-action is locally free, because then
R
M
!(X) � 0 for every equivariantly closed

form !.

6. The Reduced Phase Space

Writing

�(x) : X 7! �(X)(x) 2 g�; x 2M;(6.1)

� can also be seen as an equivariant mapping from M to g�, this is called the

momentum mapping of the Hamiltonian action of G onM . We now assume that

0 2 g� is a regular value of the momentum mapping � : M ! g�. This implies

that the level set ��1(0) is a smooth compact submanifold ofM , of codimension

equal to dimg. It is G-invariant and G acts locally freely on ��1(0), so the orbit

space

M0 := ��1(0)=G(6.2)

is an orbifold.

We will write �0 for the projection x 7! G � x from ��1(0) to M0, and i0 for

the identity from ��1(0) to M . Then

ker(Tx �0) = Tx(G � x) = ker(i�0 �x);(6.3)

and it follows that the unique two-form �0 in M0, determined by

i�0 � = ��0�0;(6.4)

is a symplectic form on M0. The symplectic orbifold (M0; �0) is called the

Marsden-Weinstein reduced phase space, at the level 0. This name is inspired by

classical mechanics. However, a wealth of examples occur in complex algebraic

geometry, where M is a complex projective variety and M0 'M==GC is Mum-

ford's geometric quotient by action of the complexi�cation GC of G, which is a

reductive complex algebraic group. See Ness [21, x2]. Also moduli spaces can

sometimes be identi�ed with reduced phase spaces.

Using the gradient ow of the function x 7!k�(x)k2 onM , Kirwan [19] proved

the fundamental theorem that the �rst arrow in

H�G(M ) �!
i�
0

H�G(�
�1(0))

�
 �
��
0

H�(M0)(6.5)

is surjective.
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The surjectivity of Kirwan's homomorphism

�0 := (��0)
�1 � i�0 : H

�
G(M )! H�(M0)(6.6)

raises the hope that the cohomology H�(M0) of the reduced phase space M0

may be computed from the equivariant cohomology H�G(M ) of M . (Not from

the ordinary cohomology H�(M ) of M , which in examples can be much simpler

than H�(M0).) In special cases, Kirwan [19] computed the Betti numbers ofM0

in this way.

7. Integration over the Reduced Phase Space

However, also the ring structure of H�(M0) often is very interesting, because

the product corresponds to intersection of cycles. For any equivariantly closed

form ! in M , write

I0(!) :=

Z
M0

�0(!);(7.1)

for the integral over the reduced phase space of �0(!). Combining the facts that

�0 is a ring homomorphism and surjective with Poincar�e duality in M0, we get

ker �0 = f! 2 H�G(M ) j I0(! �) = 0 for all � 2 H�G(M )g:(7.2)

So the ring

H�(M0) ' H�G(M )= ker�0(7.3)

can be described if the relation

I0(! �) = 0; !; � 2 H�G(M );(7.4)

is known.

In order to get hold of this, Witten [23] showed that (4.14), this time with

�(X) = �(X) �(XM ; �);(7.5)

leads to a localization of I0(!) at the critical points of x 7!k�(x)k2. This has

been worked out by Wu [24] in the case of a circle action and for ! = e�̂ . The

result is a formula for the symplectic volume of the reduced phase space, in terms

of the �xed points of the circle action.

With a somewhat di�erent proof, Kalkman [18] obtained, also for circle ac-

tions but for any ! 2 HdimM�2
G (M ), the formulaZ

M0

�0(!) =
X

F j�(F )>0

Z
F

X i�F !(X)="(X):(7.6)

As an application, he computed the ring structure of H�(M0), for a circle action

onM = CPn. (In the sum on the right hand side of (7.6), the condition �(F ) > 0

for the �xed point components may also be replaced by �(F ) < 0, adding a minus

sign in front of the sum sign.)
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In Kalkman's Ph. D. thesis, (7.6) is proved by observing that ��1(0) is the

boundary of the domain where � > 0. Then Stokes' theorem is applied in the

complement in this domain of a small tubular neighborhood of the �xed point

set. A remarkable feature of this proof is that it works, with ��1(0) replaced by

@M , for an arbitrary (not necessarily Hamiltonian) circle action on any compact

oriented manifold with boundary @M .

The remainder of this section is an attempt to explain the results of Je�rey

and Kirwan [17]. It contains a generalization of (7.6) to Hamiltonian actions of

arbitrary compact Lie groups G. See formula (7.18) below.

The starting point of Je�rey and Kirwan is the g-Fourier transform

f(�) = (Fg I)(�) =

Z
g

[

Z
M

e�ihX; ���ie�i�!(X)]dX(7.7)

of the temperate function I(X) on g, which was introduced in (5.5). That is, f is

a temperate distribution in g�. Here dX is the Euclidean measure with respect

to an AdG-invariant inner product in g, which in the sequel will also be used in

order to identify g� with g. Its restriction to the maximal abelian subalgebra t

de�nes a Euclidean measure on t and an identi�cation of t� with t.

Let ' be a test function (smooth and with compact support) on g�. Using

the dual measure in g�, interchanging the order of integration and writing

!(X) =
X
j

Xj !j(7.8)

with a multi-index j, we getZ
g�
'(�) f(�) d� = (2�)n

X
j

Z
M

(Dj' � �) e�i� !j:(7.9)

Here n = dimg. In other words,

f = (2�)n
X
j;k

(�D)j��(
(�i�)k

k!
!
[2(m�k)]
j ):(7.10)

Here ��, the transposed of ��, denotes the pushforward of measures in M to

measures in g� by means of the momentummapping � :M ! g�. It follows that

the distribution f is supported by the image of the momentum mapping, a set

which is known to intersect t� in a convex polytope, ifM is connected. If ! = 1,

then f is equal to (2�)n (�i)m times the pushforward under � of the canonical

(Liouville) measure �m=m! of M . In particular, it is a measure. For general !

it can be a distribution of arbitrarily high order.

If V is a su�ciently small open neighborhood of 0 in g�, then there exists

a G-equivariant retraction � from ��1(V ) onto ��1(0) such that � � � is a

di�eomorphism from ��1(V ) onto ��1(0) � V , and moreover the symplectic

form is given by

� = ����0�0 + dh���; �i:(7.11)
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Here � is a connection form for the locally free G-action on ��1(0). This result

follows from the normal form of Hamiltonian group actions as obtained by Gotay

[12], Marle [20], and Guillemin and Sternberg [15, x41].

Now assume that supp(') � V . Using the normal form and the fact that in

��1(V ) we may replace !(X) by ����0�0(!), one obtains that h'; fi is equal to

a nonzero universal constant (which involves the volume of the �0-�ber) times
Z
M0

(

Z
g�

'(�) e�ih�;
i d�) e�i�0 �0(!):(7.12)

Here 
 is the curvature form in ��1(0) of �, and we take ' to be AdG-invariant

in order to obtain that the integral over � is a well-de�ned characteristic form in

M0 = ��1(0)=G.

It follows that f is equal to an AdG-invariant polynomial near the origin in g�.

For torus actions and ! = 1, this was actually the way in which it was proved in

[9], that the pushforward of the canonical density under the momentummapping

is a piecewise polynomial density in g�. By letting the support of ' shrink to

0, one obtains that the integral of e�i�0 �0(!) over M0 is equal to a nonzero

universal constant times f(0).

The next step is that one would like to use the localization formula (5.5), in

order to write f(0) as the sum of contributions from the connected components

F of the �xed point set MT . Now (5.5) is an equation between functions on t,

so we begin by expressing f(0) in terms of the restriction of I to t. Let ' be an

AdG�-invariant smooth and compactly supported function in g� with integral

equal to one. (Later we shall see that we also could take a Gaussian.) Let

 (X) =

Z
g�
e�ihX; �i '(�) d�(7.13)

denote its g�-Fourier transform.  is an AdG-invariant entire function on the

complexi�cation of g, satisfying the Paley-Wiener estimates. Note also that

 (0) = 1. Then

f(0) = lim
�#0

��n
Z
g�
'(��1 �) (Fg I)(�) d�

= lim
�#0

Z
g

 (�X) I(X) dX = c lim
�#0

Z
t

 (�X) I(X)�(X) dX:(7.14)

Here c is a universal positive constant and the polynomial �(X) = �(�X) is

equal to the product of all the roots of the Lie algebra g with respect to the

maximal abelian subalgebra t; these roots are regarded as linear forms on t.

The problem which arises now, is that the poles of the rational functions

rF (X) which appear in (5.5) are not locally integrable, so we cannot substitute

(5.5) in (7.14) right away. However, using that the integrand in (7.14) is a rapidly

decreasing analytic function of X, we can apply Cauchy's integral theorem and

replace X by X+ iY in the integrand, for any Y 2 t. If Y lies in the complement
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~t of the zeroset of all the weights �j , for all j and all F , then we get that f(0) is

equal to a nonzero universal constant times the sum over all F of

Z
t

 (� (X + iY )) eihX+iY; �(F )i rF (X + iY )�(X + iY ) dX:(7.15)

Because of the Cauchy integral theorem, (7.15) does not change if Y is replaced

by any Z in the connected component CF;Y of Y in the complement ~tF of the

weight hyperplanes for the action on the normal bundle of F . Note that CF;Y
is an open polyhedral cone, determined by a choice of signs (the same as for

Y ) of the weights at F . Also, CF;Y does not depend on the choice of Y in the

connected component ^ of ~t. For this reason, we write CF;^ instead of CF;Y , this

is just the connected component of ~tF which contains ^. Conversely, ^ is equal

to the intersection of the chambers CF;^, where F ranges over the connected

components of MT . One might call CF = CF;^ an action chamber at F . The

choice of ^ corresponds to a choice F 7! CF of action chambers, such that the

intersection of the CF 's is nonvoid.

If hZ; �(F )i > 0, then the exponential decrease as t!1, which occurs if Z

is replaced by t Z, shows that the integral is equal to zero, unless F belongs to

F^ := fF j hZ; �(F )i � 0 for all Z 2 CF;^g:(7.16)

It will be argued below that (7.15) has an asymptotic expansion in integral

powers of � as � # 0; the constant term in this expansion will be called the residue

Res';^ of the meromorphic function

eihX; �(F )i �(X) rF (X)(7.17)

of X 2 t 
 C. With this notation, we arrive at the following version of the

formula of Je�rey and Kirwan [17, Th. 8.1]:

Z
M0

e�i�0 �0(!) = c
X
F2F^

Res';^
�
eihX; �(F )i �(X) rF (X)

�
:(7.18)

In order to further investigate the residues, we note that

X 7! rF (X + itY )(7.19)

converges for t # 0 in the space of temperate distributions on t, the limit will be

denoted by rF;^. Its t-Fourier transform Ft rF;^ is a temperate distribution in

t�.

In order to express (7.15) in terms of the distribution Ft rF;^, it is convenient

to write

�(X) = $(X)$(�X) = �$(X)2;(7.20)
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in which $(X) denotes the product of a choice of positive roots. We then have,

modulo nonzero universal factors:

$(X)

Z
g�

'(�) e�ihX; �i d� = $(X)

Z
g�

'(�)

Z
G0=T

e�ihX;Adg
� �i dg d�(7.21)

= $(X)

Z
t�
'(�)

Z
G0=T

e�ihX;Adg
� �i dg �(�) d� =

Z
t�
'(�) e�ihX; �i$(�) d�:

Here we have used the formulaZ
G0=T

e�ihX;Adg
� �i dg = const

X
s2W

e�ihX; s
��i

$(X)$(s��)
(7.22)

of Harish-Chandra [16, Corollary]. This can also be viewed as an application of

the method of exact stationary phase, cf. Guillemin and Prato [14, Lemma 2.4].

Substituting (7.22) in (7.15), we get that (7.15) is equal to a nonzero universal

constant times

��n
Z
t�
'(��1 �)$(�)$(

@

@�
) (Ft rF;^)(� � �t(F )) d�:(7.23)

Here �t denotes the momentum mapping for the action of T , so �t(F ) 2 t� is

equal to the restriction of �(F ) 2 g� to t. Note that (7.23), for arbitrary ' and

� = 1, yields the F -contribution to the whole distribution f , not only to its value

at the origin in g�.

The distribution Ft rF;^ can be described in terms of the convolutions mF;^

of the haline measures mj , de�ned by

h'; mji =

Z 1

0

'(t �j;^) dt;(7.24)

where

�j;^ = signhY; �ji � �j; Y 2 CF;^:(7.25)

and the �j range over the weights of the T -action on the normal bundle of F . In

the convolution product, the factors mj may appear with higher multiplicities,

but each has to appear at least once. Such convolutions of haline measures were

introduced by Duo, Heckman and Vergne [8]. The support of each such mF;^

is equal to the cone spanned by the �j;^, which in turn is equal to the dual cone

�F;^ of CF;^. It follows from the fact that � has regular values, that the �j;^
span t�. This implies that �F;^ has a nonvoid interior and that the measure

mF;^ is determined by a locally integrable density, cf. Guillemin, Lerman and

Sternberg [13, Prop. 2.4]. Moreover, this density is piecewise polynomial, in the

following sense. Let �regF;^ denote the set of � 2 �F;^ which do not belong to a

cone spanned by less than dim t of the �j;^. The statement then is that mF;^ is

equal to a polynomial in each connected component of �regF;^, cf. [13, Th. 2.7].

The distribution Ft rF;^ now can be written as a �nite linear combination of

derivatives of the mF;^. It follows that the support of Ft rF;^ is contained in
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�F;^, and that Ft rF;^ is equal to a polynomial in each connected component of

�regF;^.

If ��t(F ) 2 �
reg
F;^, then we can write

Res';^
�
eihX; �(F )i �(X) rF (X)

�
= (�(D)Ft rF;^)(��t(F ));(7.26)

which is independent of the choice of the test function '. However, in general

the condition that ��t(F ) 2 �regF;^ need not hold, one can already �nd coun-

terexamples for two-dimensional torus actions on CP3.

In general, near ��t(F ) the distribution Ft rF;^ is a linear combination of

derivatives of piecewise polynomial densities. Substituting this in (7.23) and

transposing all derivatives to '(��1�)$(�) by means of partial integrations, we

see that (7.23) has an asymptotic expansion in integral powers of � as � # 0. The

coe�cients are equal to sums of integrals over cones ~� of products of polynomials

with derivatives of '. Here the ~� are the cones which near 0 are equal to

�t(F ) + �, in which � is a connected component of �regF;^. If ��t(F ) 2 �regF;^,

then ~� = t� and the derivatives of ' can be transposed to the polynomials by

means of partial integrations, but if ��t(F ) belongs to the boundary of � then

this procedure would lead to additional boundary terms.

In any case, this shows that the residue is always well-de�ned. It may depend

on the choice of ', although the sum over all F of the residues neither depends on

', nor on ^. The description of Ft rF;^ also shows that, instead of the compactly

supported smooth function ', we could have taken a Gaussian.

The formula (7.18) may be compared with the formula which Guillemin and

Prato [14] obtained for f , in the case that ! = 1, the T -�xed points are isolated

and their �t-images are not in the walls of the Weyl chambers in t�.

Finally, if � is replaced by � �, � > 0, then � gets replaced by � � and �0
by � �0. The local contributions at each F in (7.18) is a polynomial in �, cf.

(5.6) and (7.23). This leads to a formula for
R
M0

�0(!) as the sum over F of the

constant terms of the local contributions, viewed as polynomials in �.

One may also note that the topological equivariant cohomology can be de-

�ned over Z. If G acts (locally) freely on ��1(0), then �0 maps to the integral

(rational) cohomology of M0, so the explicit computation of the universal fac-

tor should con�rm that
R
M0

�0(!) is integral (rational) for integral equivariant

cohomology classes !.

Further explorations might tell how e�cient the formula really is for the com-

putation of the ring structure of the cohomology the reduced phase space. For

instance, a natural question is whether this can be used for the computation

of the cohomology ring of an arbitrary toric variety, which is a reduced phase

spaces for a torus action on a (noncompact) complex vector space. The result

may then be compared with the formula of Danilov [7, x10]. In [17], examples

have been worked out for the non-Abelian group G = SU(2).
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