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Abstract

Let QP be the law of the n-step random walk on Z¢ obtained by weighting simple
random walk with a factor e™? for every self-intersection (Domb-Joyce model of ‘soft
polymers’). Tt was proved by Greven and den Hollander (1993) that in d = 1 and for
every 3 € (0,00) there exist 6*(8) € (0,1) and puj € {p € N : |p|ls = 1, ¢ > 0} such
that under the law Q° as n — oo:

(7) 60*(5) is the limit empirical speed of the random walk;

(i¢) ps is the limit empirical distribution of the local times.

A representation was given for 0*(8) and p In terms of a largest eigenvalue problem for
a certain family of N x N matrices. In the present paper we use this representation to
prove the following scaling result as 3 | 0:

i) pb @) — b

(i) B3 u3([-6731) =5 77 ().

The limits b* € (0,00) and n* € {n € LY(RT) : ||n||zx = 1,7 > 0} are identified in terms
of a Sturm-Liouville problem, which turns out to have several interesting properties.

The techniques that are used in the proof are functional analytic and revolve around
the notion of epi-convergence of functionals on L?(R*). Our scaling result shows that
the speed of soft polymers in d = 1 is not right differentiable at § = 0, which precludes
expansion techniques that have been used successfully in d > 5 (Hara and Slade (1992a,b)).
In simulations the scaling limit is seen for 3 < 1072,
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0 Introduction and main results

0.1 Model and motivation

A polymer is a long chain of molecules with two characteristic properties: (i) an irregular
shape (due to entanglement); (ii) a certain stiffness (due to sterical hindrance). One way
of describing such a polymer is the following model, which is based on a random walk with
self-repellence.

Let (Si)z’>0 be simple random walk on z° (d > 1), starting at the origin. Let P, be its
law on n—stei paths and let Ep_be expectation w.r.t. P,. Define a new law Q7 on n-step
paths by setting

Zif((si)?:o) = ZigeXP [@’ﬁ ,izo 1{5; = Sj}], (0.1)

i#J

where Z7 is the normalizing constant

7P = Epn(exp [<:>ﬁ Z 1{5; = Sj}]) (0.2)
1,7=0
i
and 8 € [0,00] is a parameter. The law Q7 is called the n-polymer measure with strength of
repellence 3 1.

Eqs.(0.1-2) define what is called the Domb-Joyce model of ‘soft polymers’, where the
weight factor gives a penalty e for every self-intersection. The limiting cases § = 0 and
3 = oo correspond to simple random walk resp. self-avoiding random walk. For a recent guide
to the literature on this model the reader is referred to Madras and Slade (1993) Section 10.1.

It is generally believed that for 5 € (0, 00] the mean square displacement behaves like

Eqpl|Sal?] ~ Dn* (n — o), (0.3)

where D = D(f3,d) > 0 is some amplitude and v = v(d) is a critical exponent. The latter is
believed to be independent of 3 and to assume the values 2

vV :1 d:1
=3 d=2
4
=0.588... d=3 (0-4)
=1 d> 4.

Note that v = 1 is the exponent for simple random walk (8 = 0) in any d > 1 (with D = 1).
Apparently, the repellence changes the qualitative behavior when d < 3 but not when d > 4 3.
The fact that v is the same for all 5 € (0, o] says that soft polymers are in the same univer-
sality class as self-avoiding walk.

!Note that if 2 > 0 then (Qﬁ)nzo is not a consistent family, i.e., Q2 is not the projection on n-step paths
of the law of some process evolving in time (like Pn).

2The value in d = 3 is well below max{dj’_—2, %}, the so-called Flory value (Madras and Slade (1993) Section
2.2).

®Actually, d = 4 is a critical dimension where it is believed that EQ§[|S"|2] ~ Dn(logn)

1 ..
4, contalning a

logarithmic correction to (0.3-4).



Sofar a rigorous proof of (0.3-4) has only been given for d > 5 (Hara and Slade (1992a,b)
4) and for d = 1 (Greven and den Hollander (1993)). In the latter work there is also a recipe
for evaluating the amplitute D(3,1) as a function of 3, which we next describe.

0.2 Speed and local times in d =1

Define the random variables

1
0, = —|S, .
~|S%| (0.5)

1

|Rn| l’ERn

where
R, = ( min 5;, max Si) N7z
0<i<n 0<i<n
l(z) = #{0<i<n:S5 =z} (0.7)

In words, 6,, is the empirical speed and p,, is the empirical distribution of local times after
n steps. Theorems 1-3 below are taken from Greven and den Hollander (1993) and are the
starting point of the present paper.

Theorem 1 For every € (0,00) there exists *(3) € (0,1) such that
nh_{gO Qg(wn <07(5)] < 6) =1 for every ¢ >0, (0.8)
with 3 — 0*(B) analytic, limg|o 0*(3) = 0 and limp_, 6*(3) =1 5.
Theorem 2 For every 3 € (0,00) there exists pfy € {p € I'(N) = ||ullp = 1,0 > 0} such that
Jim Qﬁ(Hun Sugllp < 6) =1 for every >0, (0.9)
with 8 — p analytic, limp)o pj; = 0 and limp_oc pj; = 61 pointwise.

The limits 6*(3) and g7 in Theorems 1 and 2 can be found in terms of the following largest
eigenvalue problem. Let A, 3 (r € R, 3 > 0) be the matrix

A plig) = T PG G € N), (0.10)

where P is the Markov matrix

Plij) = ( i+j a2 ) (l)iﬂ"l- (0.11)

11 2

*The proof in Hara and Slade (1992a,b) is for B = oco. However, the technique that is used (the so-called
‘lace expansion’) easily implies the same result for all § € (0, 0o]. Brydges and Spencer (1985) earlier used the
same technique to prove (0.3-4) for d > 5 and g8 sufficiently small.

°Note that (0.5) and (0.8) imply (0.3) with »(1) =1 and D(3,1) = [8*(3)]>.



Let (A\(r,3),7,5) be the unique solution of the largest eigenvalue problem ©

A, g7 = AT (A > 0,7 € IA(N))

I7]];z = 1,7 > 0.

(0.12)

Theorem 3 Fiz 3 € (0,00). Let r*(3) € (0,00) be the unique solution of

(0.13)

(0.14)

k) = [ sl Ansli i)pl)], gy (€N,

A(r, B) = 1.
Then
1 0
(7)) [EA(T’@]HT*@
1,7EN
it 1=k

The representation in Theorem 3 is not easy to manipulate, which is why precise analytical
estimates of 8*(5) and p are hard to get. For instance, the intuitively appealing conjecture
that § — 6*(f) is increasing still remains open (see Greven and den Hollander (1993)).
However, it is easy to get numerical estimates (see section 0.3). Moreover, we shall see that
(0.13-14) provide a good starting point for carrying out a scaling analysis as 5 | 0 (see sections

0.4-5), which is the main topic of the present paper.

0.3 Numerical estimates of r*(3) and 0*(3)

Table 1 below lists some numerical estimates of 7*(/3) and 6*(3) obtained from (0.13-14), based
on a 300 x 300 truncation of A, g defined in (0.10). We have used a standard iteration method
to estimate the largest eigenvalue and corresponding eigenvector for a range of r, 3-values.

g B=5r7(3)
2 1.696
0.5 1.730
102 2.011
1073 2.098
10—4 2.144
107° 2.168
10-6 2.179

B56%(3)

0.793

1.055

1.10938
1.10930
1.10886
1.10910
1.10924

Table 1

There is ample evidence for the asymptotic behavior r*(3) ~ a*ﬁ§ and 6*(f3) ~ b*ﬁ% (5]0),
with estimates a* = 2.19 £+ 0.01 and 6™ = 1.109 4+ 0.001.

6A, 5 1 B(N) — P(N) is positive, self-adjoint and compact for all » € R, 3 > 0. Both (r,8) — A(r, 8)
and (r, ) — 7,5 are analytic. Moreover, r — A(r, §) is strictly increasing and log-convex, A(0,() < 1 and
A(o0, 8) = oo for every # > 0 (see Greven and den Hollander (1993)).



The value of 8*(/3) has been computed by making use of the identity

0*%@) = D_keN kﬂ%(k)
(0.15)

(Greven and den Hollander (1993)). Since 7, s is easier to estimate than = A(r, 3), the relation
in (0.15) allows for better accuracy than (0.14).
0.4 Main results

The goal of this paper is to turn the numerical observations in section 0.3 into a mathematical
statement. Our results are formulated in Theorems 4-7 below.

1. Our main scaling theorem reads:

Theorem 4 There exist a*,b* € (0,00) and n* € {n € LY(RT) : |n||;2 = 1,7 > 0} such that
as 10

Br(B) -
B (9) G (0.16)
Bsps([6731) =5 ().

2. The limits a*,b* and n* in Theorem 4 can be identified in terms of the following Sturm-
Liouville problem. For a € R, let £* be the differential operator defined by

(L%)(u) = (2au ©4u?)z(u) + 2’ (u) + uz"(u) (z € C=(RY)). (0.17)
In section 5 we shall show that the largest eigenvalue problem

Lo =pz (pe R,z e L2(RT)nC>(RT))
() lz|lpe = 1,2 >0 (0.18)
(i) fo {u?[e(u)]? + ul'(u)*}du < oo

has a unique solution (2%, p(a)) with the following properties:

(i) a — p(a)is analytic, strictly increasing and strictly convex on R
(it)  p(0) <0, limgjeo p(a) = 0o and lim,|_o p(a) = &00 (0.19)
(1i1) @ — x® is analytic as a map from R to L%(RT).

The main part of our analysis to prove Theorem 4 will revolve around the following theorem,
which is proved in sections 2-5:

Theorem 5 Fizxa €R. As 3]0

(0.20)

We shall show in section 6 that (0.20) identifies the limits in Theorem 4 as follows:



Theorem 6 «*,b* and n* are given by

a* is the unique solution of p(a) =0

g =pla”) (0.21)
(1) = 5[ (5)]%

3. The analysis in section 5 of the Sturm-Liouville problem will lead to the following additional
properties:

Theorem 7 (z) u— x% (u) is analytic and strictly decreasing on R = [0, 00).

(ii) u — usta® (u) is unimodal with a minimum at v = a*.
(1ii)
x 4
Jim w2 log 2® (u) = &3 (0.22)
(iv)
1 oo x
= 2/0 e (w)]?du. (0.23)

Theorems 4-7 are proved in sections 2-6. Section 1 contains preparations.

Our result §*(3) ~ b*ﬁ% implies that the speed is not right-differentiable at 3 = 0. Thus
the limit of weak repellence cannot be treated by perturbation type arguments (i.e., by doing
an expansion of (0.1-2) for small 3).

0.5 Numerical estimates of «*, b* and n*

Let y*? be the unique power series solution of L% = py with y*?(0) = 1. We shall see in
section 5 that this power series has infinite radius of convergence and has coefficients which
satisfy a simple recurrence relation (see (5.23) below). Moreover, we shall see that:

(i) p(a) is simple

(17) Su = {p € R: y*” € L*(R")} is a countable set which has p(a) as a maximum
(i17) p ¢ Sy 1 limy—oo y ’p( )=t

(w)pESa,p#p()' P(u) < 0 for some u > 0

(v) y = 2, the monotone solution of (0.18).

Properties (i) <(v) give us a way to estimate a* and z* . Namely, put p = 0 and consider
y*Y, the unique power series solution of L% = 0 (¢ € R). Since a* is the unique value of a
for which y*% € L?(RT) and y*° > 0, we can vary a and tune into «* by looking at the tail
behavior and the sign of y»°. It turns out that this method is very sensitive indeed and that
a® can be estimated by ¢® = 2.1894+0.001. For a outside this interval it was found that either
y*9(u) < 0 for some u € [0, 3], or u — y*°(u) not monotone on u € [0, 3].

[Figure 1]

Flgure 1 compares z% with the numerical estimates in section 0. 3 The solid hne is
u — y»Ou)/||y® 0HL2 for @ = 2.189. The dots are the values of 3~ 67'* o [uB™ U for

B =10"* and [uf~ } =1,...,64. The agreement is excellent. (For g = 10 5 and 3 = 1076
all dots were found to lie on the solid line within printing precision.)



Pick a = 2.189. Since y*° is an approximation of z%", we can estimate bi* by the integral
2 Jo7 u[y™®(u)]?du (recall (0.23)). However, we have only computed y*°(u) for u € [0, 3] and
it turns out that this is not enough to get a good estimate of b* up to the third decimal. A
better way is to use (0.15) and estimate

1 2 ot a0/ nL 1
o 233 Z ily*0(iB3)]* & 3%. (0.24)
1eEN
This gives b* = 1.109 £+ 0.001.

0.6 The Edwards model

Westwater (1984) studies Brownian motion on R with self-repellence, i.e., the Edwards model
where (0.1) is replaced by

g
dvy,

d,M—T((Wt)OStST) = L exp [<:>g /OT ds /OT dt 6(W <:>Wt)] (0.25)

= 7
Here p7 is the Wiener measure on Brownian motion paths (Wt)OStSTv 6 the Dirac-function,
g € [0,00) the repellence parameter and 77 the normalizing constant. T We give two

properties showing that the Edwards model arises as the weak interaction limit of the Domb-
Joyce model.

Property 1 For every g € [0,00)

QI ? ((n_%S[m])ogtg € ) = l/f((Wt)ogtg € ) asn — oo. (0.26)

Proof. See Brydges and Slade (1994) Theorem 1.3. The double sum in (0.1) equals <{(n+1)+
S, C2(2) (recall (0.7)), of which the first term may be absorbed into the normalizing constant
7P in (0.2). The key point is that n"% S, (2(x) under the law P, converges to [q(3(z)dz
under the law gy (recall footnote 7). This immediately implies (0.26). The analogous for
T # 1 is obvious. O

Westwater (1984) proves the following result which is analogous to Theorems 1 and 3:

For every g € [0, 00)

. 1 o
Tlgnoo 1/%(|T|WT| <0"(g)] < 6) = 1 for every € > 0, (0.27)
where
6(9) = [EE(Q,A)L:O (0.28)
dA
with E(g, \) the smallest eigenvalue in L2(R1) of the operator £9* given by
; 1 > 1
A N -2 -1 -2Y,, -1
(,Cg y)(v) = [gv + Av S5V (W + i )v ]y(v) (0.29)

(i)dv_% with A(Z)d the 2-dimensional Laplace

(The term between round brackets equals U%AT .,

operator. )

"The double integral in (0.25) should be read as f[R l%«(x)dx, where ZT(x) = fOT dt §(Wy — z) is the density

of the occupation time measure w.r.t. Lebesgue measure.



Property 2 For every g € [0,00)

(0.30)
[5800] = b0t
ﬁE(gvA) A=0 =b g2,
with a*,b* the same constants as in Theorems 4 and 6.
Proof. Take the eigenvalue problem
(£229)(v) = E(g. My(o). (0.31)
Substitute into (0.31) the following change of variables:
i1 1 9
y(v) =o2a(39707)
(0.32)

Then, after a small computation, we obtain the Sturm-Liouville problem in (0.17-18)

(,C“x)(u) = pz(u), (0.33)

with ,
a = g_iE(g, /\)
(0.34)
po=gTA
Think of (0.34) as a parametrization of the curve ¢ — p(a) in terms of A. Recalling the
definition of ¢*,b* in (0.21), we now get from (0.33-0.34) that

pla®) =0 & a* = g77 E(g.0) (0.35)

and

= gt (0) (0.36)

= g%b*7
where p — a(p) is the inverse function of @ — p(a). O

Properties 1 and 2 show that Theorems 4 and 6 connect up nicely with the Edwards
model.



We close this section with a heuristic explanation of the power % in our result 6*(3) ~
b*ﬁ% (5] 0). First, by Brownian scaling

1
E 3OV = FE4 (W) (0.37)
1
Since, according to (0.27),
. _ 1
0(0)) = Jim B, (W), (0.38)
it follows that ) L
0"(g) = g=6"(1). (0.39)
Next, according to Theorem 1,
* 2 . 1 2
[67(9))" = lim — Eqgg(55)- (0.40)

Moreover, by Property 1 we know that for ¢, 7T fixed

gT%(Wf) (n — o0). (0.41)

1
—E %(Sg) ~E
n QZ(W)

Now, if we assume that (0.41) continues to hold for ¢ fixed and T = n, then by using (0.40-41)
resp. (0.37-38) we arrive at

(0.42)

~ 09 (T =n— o).

The above argument has uniformity problems because (0.39) and (0.42) would imply

6*(g) = 9%0*(1) for all g. However, this cannot be true because 8*(g) < 1 for all g. Never-
theless, it explains the power % without using the explicit solution.

1 Preparations

In this section we formulate the functional analytic framework in which we are going to
approach our scaling theorem. Section 1.1 shows that our key result, Theorem 5 in section
0.4, is equivalent to convergence of a variational problem involving a certain functional Fj
to a variational problem involving some limit functional F* (Lemma 1 and Proposition 1
below). Section 1.2 shows that this convergence holds when F§ epi-converges to F* and
certain compactness properties are satisfied (Proposition 2 below). In this section we also
formulate the main steps that have to be checked in order to prove these facts (Proposition 3
below). In section 1.3 we collect some properties of the matrix P, defined in (0.11), that will
be needed in the proofs.



1.1 A variational representation
Rayleigh’s formula for the pair (A(r, 3), 7, ) defined in (0.12) reads

(l) ’\(Tvﬁ) = maXyel2(N),y20,<yvAhﬁy>l2
||1/||l2 <1

(1.1)

(it) 7,3 is the unique maximizer.

In anticipation of the scaling suggested by Table 1, we pick r = aﬁ§ (a € R) and rewrite (1.1)
in the following form. Define the functional /7 : L*RT) — R as

@) =57 [ [Tdvatatoa g (s [0s ) s el (12)
Lemma 1 Forall 5 >0
(1) ﬁ_%[/\(aﬁg,ﬁ) <:>1] = MaX, 1 2g+) 230, Fg(x)

llzll 2 =1

2
a3 g

([ﬁ_%}) is the unique mazimizer.

(ii) por

ab% 5
Proof. (i) Fix 8 > 0. For z € L*([R") define
L i
#(i)=p"¢ L x(u)du (i € N). (1.4)
(i-1)p7

Then the first term in (1.2) equals ﬁ_%@, A o ﬁi>l2. Hence using (1.1)(i) we may write

ﬂ_%[/\(aﬁg,ﬁ) <:>1] = max max  Fg(x). (1.5)
y€I2(N),y>0, 26 L2 (RT),2>0,
lollz <1 lzll 2=1,8=y

Note that, by Cauchy-Schwarz, we have ||Z]||z < ||z|/;2 and so the restrictions ||y|lz <

Lzl = 1,2 = y in (1.5) are compatible. Interchange the two maxima in (1.5) to get
the claim. ) L
(ii) Use that ||Z||2 = ||z||z2 iff 2(u) = f752(2) for w € ((i ©1)57,i57]. a

In sections 2-5 we shall prove:
Proposition 1 As 5] 0
()

. a
(1) MaX, 1o (gt) a0 Fﬁ(x) — MaX,c;2gt) .m0,

llzll2=1 llzll 2 =1 (1.6)

(i1)  unique mazimizer Lh.s. — unique mazimizer r.h.s.,

where the limit functional F* : L*(RT) — R is given by

Foz) = / {(20u ©au?)[a ()] S ule’ (W) }du, (1.7)
0
with the understanding that F*(x) = ©oo if the integral is not defined.

Note that F*(z) = (z,L%)2 for all # where both sides are finite, with £% as defined in
(0.17).

Lemma 1 and Proposition 1 imply Theorem 5. To prove Proposition 1, we shall need the
notion of epi-convergence, which we next explain.

10



1.2 Epi-convergence

Let (X, 7) be a metrizable topological space and let Y C X be dense in X. Let
Gg: X —=R (>0)

G:X —R. (1.8)

Definition 1 The family (Gg)gso is said to be epi-convergent to G on Y, written
eslimGg =G onY, 1.9
lim G (1.9)

if the following properties hold:

(1) Vag =Tz inY :limsupg o Gp(zp) < G(z)
(it) Jxg —T zin Y :liminfg)oGplzg) > G(z).

The importance of the notion of epi-convergence is contained in the following proposition:

(1.10)

Proposition 2 Suppose that
(1) e&limgpGg=GonY
(2) VB >0:Gg is continuous on X and has a unique mazimizer g € X
(3) 3K C Y such that
(i) K s T-relatively compact in X
(i7) G has a unique mazimizer © € K
(17¢) Iwp)ps0 C K such that x5 <75 —" 0 and Ggzz) ©Gs(Zg) — 0 as 8 | 0.
Then as 3|0

sup G(z) — sup G(z) (1.11)
zeX z€X
g —7 % (1.12)
Proof. See Attouch (1984) Theorem 1.10 and Proposition 1.14. o

Remark: Epi-convergence differs from pointwise convergence: limg o Gg(z) = G(z) for all
xz €Y. Namely, (1.10)(i),(ii) are weaker in the sense that they require only inequalities, but
stronger in the sense that they involve limits in neighborhoods rather than single points. Epi-
convergence is a unilateral notion. We have chosen the direction that is suitable for suprema
rather than infima.

Fix a € R. We are going to apply Proposition 2 with the following choices:

X = {eel*RY):z>0|z||p:=1)} (1.13)
Y = XnCYRY)
T = topology induced by || - |12
K = Ki={zeY  :Fz)>«C}
Gg = Ij
G = F°

with F§ and F'* defined in (1.2) and (1.7) and with C' large enough so that K¢ # (. Our
main result is:

Proposition 3 Assumptions (1)-(3) in Proposition 2 hold for the choice in (1.13).

We prove Assumption (1) in section 2, (3)(i),(ii) in section 5 and (3)(iii) in section 3. We
already know (2) to be true because of Lemma 1(ii).
Proposition 3 proves Proposition 1 in section 1.1.

11



1.3 Properties of P

We list a few identities and estimates for the matrix P, defined in (0.11), that will be needed
later on.

Lemma 2 For everyt> 1,k >0

(i+kel)!
(1 <1)!

Z(i+j+k<:>2)

(1o !P(i,j): 2k (1.14)

i>1

Proof. Elementary. Use that the summands in the Lh.s. can be rewritten as P(i + k, )

times the r.h.s. Then use that 3°,5; P(i +k,j) = 1. 0
Lemma 3 (¢) Fori,j — oo such that i <j = o((i —|—])§)
P(i.j) = { e exp [@(iﬁj)Z]}[H o+ ). (1.15)
’ 2m(i+J) 2(i +7)
(71) There exist 0 < ¢ < ¢g < 00 such that
(i <j)? . (i <)) -
exp | eg——| < P(i,j) <exp| &cg— orallv,7 > 1. 1.16
p[ 2(@+J)]_ (h3)< p[ 1(2+J)]f ’ (1.16)
Proof. Via Stirling’s formula. See also Révész (1990) Theorem 2.8. o

Lemma 2 allows us to compute the following moments, which we shall need in section 2:

Yt + i)' P, ) = 2i (n=1)
442 4 21 (n=2)
8% + 12i? + 61 (n=3)
166* + 48:% 4+ 7212 + 320 (n = 4)

(1.17)

Lemma 3(i) is a Gaussian approximation of P, while Lemma 3(ii) shows that P(¢,7) is small
away from the diagonal.

Lemma 4 For alli,j > 0 with (¢,7)# (0,0)

PU+1,j)+Pi,j+1)e2P(i+1,j+1)=0 (1.18)
with the convention P(1,0)= P(0,7)=0.
Proof. Elementary. a

Lemma 4 will be needed in sections 2 and 3 to obtain monotonicity properties and estimates

of 7 2 | the eigenvector of A » .
aB3,g aB3,g

12



2 (F§)s>0 is epi-convergent to I

In this section we prove Assumption (1) in Proposition 2 for the choice in (1.13).

This section is technically somewhat involved, as it consists of a chain of estimates and
inequalities that are needed to handle the epi-convergence. The proofis contained in Lemmas
5-8 below. Throughout sections 2 and 3 we fix a € R and we write the abbreviations Fjg = FF,

MB) = MafB7,8), 75 =

F=Ids=42p Tugt
We begin by spli:cting Fg, F into two parts, nam7ely (recall (1.2) and (1.7))
Fy = Fl+ P2
(2.1)
Fo=Fy
with , ) )
Fi(z) = p73 [ du 37 dv 2*(u)[Ag < P)([uB 5], [0875])
(2.2)
2 oo oo _1 _1
Fi(z) = 5675 5% du g7 do [o(u) se(o)]PAs([us™], [0575])
and
Fiz) = [ du (2au &4u?) 2*(u)
(2.3)
F2(z) =<5 du u[a'(u)]?
Lemma 5 Vg —2° ¢ in X :lim supg o F(zg) < F'(2).
Proof. Abbreviate ,
csli,j) = aBi(i+j&1) (i +je1) (2.4)

which is the exponent appearing in Ag(i,j), i.e., Ag = e“# P (see (0.10)). We note that eg
has the following properties:

L

(i) eg(i,j) < 0fori>ap~2,j>1

2.5
(i) €5l ) < Ta2B% for i) > 1. (25)
Hence, for small enough 8 and large enough N
2 o0
Fi(ap) <573 (Y du 5 do 22 (u)
(2.6)

xfea(Tus=41,T06751) + 2 (Tus=H1, [0=51) }P([up~H1, Tos41)

(use that et <l14+t+t2fort< landt < 0). The integral over v can be transformed into
the following sum:

853" {eslinj)+ ed(i ) FP(i§) with i = [up™5]. (2.7)

i>1

Using (1.17), we can carry out the summation. Namely,
Y is1ep(l, )P, §) = apfs(2i) < B(4i% + 240)

S o1 €46, )P(i,§) = 245 (4i 4 20) <2037 (8 + 124 + 61)
+32(164% + 48: + 72i% + 324).
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Since 7 = [uﬁ_%w < (N+ 1)ﬁ_§7, the contribution to (2.6) of the second sum can be estimated
above by

N
BE(6a*(N 4+ 1)% + 168(N + 1)4)/ du x3(u) = O(B7), (2.9)
0
where we use that ||zg||;2 = 1. The error term is uniform in 25 for fixed N. Hence we get
_1
i) < 67F Y du 23w
2 _1 - L
<{afs(2[up=51) ©H(4[up™ 512 + 2[uf=5]) } + O(B7) (2.10)
= [ du 22(u)(2au &4u?) + O(57).
Now let 3 | 0. Then we obtain, recalling that zg .y x,
limsupg o F(zs) < limsupgg fON du 23 (u)(2au <4u?)
(2.11)
= fON du 22 (u)(2au &4u?).
Finally, let N — oo and note that the r.h.s. of (2.11) converges to F'(z). a
Lemma 6 Vo € X : liminfgo Fy(z) > F'(x).
Proof. Estimate

Bz 57 [T au [ o dwes([us . [os )P 057H) (212)

(use that e’ > 1 +1¢ for all t). The integral over v is 7 times the first sum computed in (2.8)
with ¢ = [uﬁ_éﬂ Hence

Fi(z) > 075 57 du 22(u)
2 1 1 1
x{aBs(2uf™5) & p(4(uf5 + 1) +2(uf™5 +1))} (2.13)
= [ du 2(u)(2au <4u?) + O(37).
Now let 3 | 0. Then the claim follows. a
Lemma 7 Vaog —"" 2 in X with 2 € Y : lim supg o Fj(2p) < F2(2).

Proof. The proof is in Steps 1-3 below.
STEP 1 For every ¢ >0 and N, M finite

Fileg) < 51+ 0(9 / du/ dw | {xﬁ( w) Srp(ut wit)}] Nau(w),  (2.14)

ro|>—n

where No,, is the Gaussian with mean zero and variance 2u.
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Proof. Pick ¢ > 0 and N, M finite. Then
1 2 5 u—I—Mﬁ6 1 1
Filag) < e eV / du [y dv st as()P([us= [0575). (215
where we use that Ag = e®# P with eQ(Mﬁ_%ﬂ, [Uﬁ_%—‘) > ©ON2B7 on the integration area
(see (2.4)). Put w = ﬁ_é_(v <u). Then by Lemma 3(i)

F2 < 1,-2 —9N2ﬁ% Nd M d 1 1i49
5(zp) < epf70e Jo du [Zy dw B [ap(u) Sap(u+ wiE)]

X{\/2r2uﬁ 3 eXP } 1+0(ﬁ%))

where the error term is uniform on the integration area. Collecting all the powers of 3, we
get the claim. a

(2.16)

To investigate the limit of the integral in (2.14) as 8 | 0, we proceed with a technical fact
contained in Steps 2 and 3 below. Let T} be the translation operator defined by Thzs() =
wg(- + h)

STEP 2 Forevery 0 < a <b<

lim inf /ab {%[Thxﬁ saglw)} > /ab [/ ()] du. (2.17)

h—0,310

Proof. Since (2.17) is trivial when the liminf is infinite, we may assume that the liminf
is finite, say L. Pick any subsequence h,, 3, along which the liminf is reached, and put
Yn = ﬁ[Th,ﬂUﬁn &ap,]. Then, because [|yullr2np < L+ 1 < oo for n large enough, it
follows from the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15) that there exists a
subsequence (y,, ) and a y € L*[a,b] such that

Yn, — y weakly in L*[a,b] (k— o0). (2.18)

Thus, for any ¢ € Cl(a,b) = {¢ € Cl(a,b): supp(d) C (a,b)}
/ Yo (8 du—>/ W)du (k= o). (2.19)
Next, the Lh.s. of (2.19) can be rewritten as
S ym(wd(u)du = [7 [Ty, s, S, )(u)¢(u)du

bthnlin,
= T g () T, 6 & 6)(u)du (2.20)

= [ 2, (0)E[Toh, ¢ ©¢l(u)du + o(1) (n — o0).

The last equality holds because ||z, ||2®+) = 1 and |h1—n[T_hn¢<:>¢]| < max,er+ | (u)] < .
Let n — oo and note that by the latter property

1
h_[T—hn¢ &¢] — ¢’ pointwise and weakly in L*[a, b]. (2.21)

15



Together with 25, —"" 2, (2.21) implies that the last integral in (2.20) tends to ff z(u)[ed (u)]du =
ff o' (u)p(u)du (recall from (1.13) that 2 € Y C CY(R{)). Since C'l(a,b) is dense in L?[a,b]
in the weak topology, we thus have from (2.19)

y =2 a.e. on[a,b]. (2.22)

The claim now follows by combining (2.18) and (2.22), and noting that || - || 2[4 is lower
semicontinuous in the weak topology: L = limg—co [|Yn, lz2[a] = 19llr2[a ) = 12| 2[0yy- O

STEP 3 For every € > 0 and N finite, every f : Rt — RT bounded and continuous, and
every w € R

o N 1 1 2 N , 9
hlrgfglf/E du f(u)[ﬂ—%{xﬁ(u) <:>xﬁ(u—|—wﬁ6)}] Z/E du f(u)wz'(u)]”. (2.23)

Proof. Pick any sequence (f,) of functions on Rt such that

(7/) fn(u) = fn,k for Cn,k—1 <u< Cn,k (k = 17 NG00 = €6, Cppn = N)

(1) fu< [ (2.24)

(i7i) f, 1 f in sup-norm on [e, N] as n — oc.

Then, by (i) and (ii),

Lhs. (2.23) > liminfso [~ du fn(u)[j%{xﬁ(u) srgut wpt))]

Cnk—1

2
> 5o fapliminfgg 78 du [ﬁi%{xg(u) Srglu+ wﬁ%)}] (2.25)

> Yoy fag S du [wa! (w)]?

= [N du fu(w)w'(w)],

where in the third inequality we use (2.17) with A = wﬁ% and @ = ¢, 5-1,0 = ¢ (K =
1,...,n). Now let n — oo and use (iii) together with Fatou to get the claim in (2.23). o

Using (2.23) we can now finish the proof of Lemma 7. Indeed, continuing with (2.14), we
get
limsupgo F5(2p) < <% M ydw [N du Ny (w)[wa'(u)]”
(2.26)
= &t [N du [o'(w)? [Y; dw w? Nyu(w).

Finally, let M — oo and note that [*° dw w?Ny,(w) = 2u. Then let N — oo and € | 0 to
get the claim in Lemma 7. O

Lemma 8 Va € Y such that ;7 w*z*(u)du < oo :liminfg)o Fj(z) > F*().

Proof. The double integral defining Fg(w) is split into three parts, which we estimate sepa-
rately in Steps 1-3 below.
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STEP 1

tweos5™t [Tau [Tavr o e ss()PAs([usHL s ) = 0. (220)

Proof. First consider the part where u > 3¢, v > 0. By (2.5)(ii) and Lemma 3(ii)

SE675 [0 du [ dv [a(w) (o) Ag([up™3]. [0575])

> ebgier st [y [55-4 dv la(w) (o) P([up=51, [0875])

o Lpmt s FOe g
-I-fﬁ_% du " dv [2(u) x(v)]?e R ey } (2.28)

1
= @%g—%e%a%{f;i% dufr
2

%dv [2(u) @x(v)]QP([Uﬁ_%L W“%W)

where ¢y is the constant in Lemma 3(ii). To get the error term we have used that (u &
v)?/(u+v) > %(u<v) on the integration area. The double integral in the r.h.s. of (2.28) can
be bounded above by

Jmg dufy do [o(u) ()P P(Tup=51, [0575])

15——
2[00y du (o) 77y do P([up=57, [0575]) (2.29)

Hence
rhs. (2.28) > o1+ 03 %)]ﬁ—-fl L1 du 2?(u)
> a1+ 0(37)] f;_% du u?a?(u) (2.30)
= o(1).
By symmetry, the same estimate holds for the part with « > 0,v > ﬁ_é_ a
STEP 2

1&%@% / du/ 0Ty bt ) S0P Aa([us ], [o57H]) = 0

(2.31)
Proof. By (2.5)(ii) and Lemma 3(ii), the integral in the L.h.s. of (2.31) can be bounded below
by
1 U—v 2
elg=Tes®® st (b ® du 6" 5 v Lo sy [2(0) o (v)]e —e 78 ()
1 L
> eppdebet et T T g o () + 220 (232
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where ¢ is the constant in Lemma 3(ii). o
STEP 3

limintpio k6= 7 du 70 av 1 (o) ¢ a(0)2A5([ugF]. [o5=31)

{Ju—v|<B71}
= liminf g0 F3()

> F%(z).
(2.33)

Proof. By (2.5)(ii) and the mean value theorem we have

R ar T ars (o) (o)A ([upH], [057H))

{Ju—v|<77}

[(u &) (£4)] P([up™5]. [0875])

1
2 <:%ﬁ_§e%“253 Joodu [57 dv 1

{lu—v|<877)
(2.34)
for some &,, between u and v. Let, as in (2.34),
Io(u) = % /°° dv 1 o (uwsv)2P([up~], Top~H7) (2.35)
g 0 {lu—v]<377) ’ ' '
Then, because z € C1(RY), it follows that
1 1, %
rhs. (2.34) = ekt / du Ty(u)[z'(€.)) (2.36)
for some &, € [u @ﬁi,u—l— ﬁ21_4] NRT.
Next, using (1.17) we can estimate
2 1 1
Ip(u) <575 J§% dv (weo P([up™ ], Tos™37)
= 55 Lo P[5 1.0 H{ (ub75) & (uB™3)(2) 1) + (* & + 1)}
(2.37)

= p5{(up=5 )2 & (up™7)(2[uB 3] + 1) + ([up=51% + 3[u~5] + 1)}

W=

< 2u+

|t

Bz,

Combining (2.34) and (2.36-37) with the estimates obtained in Steps 1 and 2, we now have

F2(2) = Lh.s. (2.34) 4 o(1) > &(1 + O(57)) /Oo du (u+ 16—3ﬁ%)[x’(5u)]2 +o(1).  (2.38)

0

Next, pick 6 > 0 and define

2 = sup  wu[z'(w)]? (k> 1). (2.39)
(k=1)6<u<ks
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Since &, € [u @ﬁi,u + ﬁ21_4] NRY, it follows that for 3 small enough
Jo* du (w+ A0 (6]
(1 46) [ du Eufa'(&)) + 26 [ du /(&)

(2.40)
< (14 68) Ty (02 + 265 max{z], 20, }) + 26 fy du sup,osla’(v)]?
< (14 6)(1+4671357) Tysy 625 + 282 sup ,cosla'(0)]7.
Now let 3 | 0 followed by é | 0. Because z € C''(R{), we have
lim 3" 05 = / e (0)]? du = <F2(z) (2.41)
k> 0
lim sup [2'(v)]*? = [2/(04))* < (2.42)
610 v<28
and so
hrglionf r.h.s. (2.38) > (). (2.43)
a

Lemmas 5-8 show that Fg epi-converges to F' on Y. To see why, recall (2.1) and note that
if [ u?2?(u)du = oo, then F(z) < F'(z) = &oo. This proves Assumption (1) in Proposition
2 as was claimed in Proposition 3.

3 An approximate maximizer of Fj

Again we fix ¢ € R and suppress it from the notation. Like section 2, this section is technically
somewhat involved, as it consists of a chain of estimates and inequalities that are needed to
handle the approximation.

Define the scaled form of the eigenvector 75 of Ag as

Ts(u) = 4~ 67'5( i) for (4 <:>1)ﬁ3 <u<if? (i>1). (3.1)
By Lemma 1, 75 is the unique maximizer of F3. However, 75 is a step function and therefore
F(75) is not defined, i.e., 75 ¢ K = {& € X : F(x) > &C} (recall (1.13)). Thus, to apply
Proposition 2, we must find an approximation of 73 that lies in K and approximates Fs(75)
(i.e., we must prove Assumption 3(iii) in Proposition 2).
Proposition 4 3(73) C K such that as 3 | 0
(ll) 0< Fg(i’g) @Fg(f’g) — 0.

The proof of Proposition 4 is contained in Lemmas 9-13 below. We shall see that it suffices
to pick for 73 the following linear and renormed interpolation of 7:

75 = 7al17sll 72

—_

{Tﬁ + (up~ ¥ &i)(mp(e) ©Ta(i <:>1))} for (l@l)ﬂ% <u< zﬁ% (i >
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(put 75(0) = 75(1)).
We begin with two lemmas showing what is needed about 75 in order to prove Proposition
4. Abbreviate A7g(2) = 75(¢) ©1(i ©1) (1 > 1).

Lemma 9 (¢) |73 ©7sllz2 < ||ATs|lz + TE(O).
. _ _ _1 _
(i) 0 < Fp(7p) & Fs(75) < MBS 7| ArgllR[1 < 5 IlATs1E + 575(0)] 7

Proof. (i) From (3.1) and (3.3) we compute

L 1
175 & 7sllZ2 gHATﬁH?z (3.4)

6

2
12

1
I7slliz <{7a, Arshee + Sl AT - (3.5)

Using the relation (73, A7g)pe = §]|A7s]|% < 573(0), together with (3.4-5) and ||75]|2 = 1, we
get
175 & 7slle < 175 & 7pllz2 + (175 <75l 2

1 1
= (zlAmsl2)z + L5l ATslE + 575(0)]2 <1 (3.6)

< (5)7As0e + HIATI1E + §73(0)

1
< (1)} + DlIAT]e + 12(0)

where we use that ||A7sle < 2,75(0) < 1.

(7¢) From the definition of Fs in (1.2) we get, after substitution of (3.1) and (3.3),

Fy(7s) = B75 (75, Aga)e <675 ||75l|%

(3.7)
~ _1 1.
Fy(ts) =073 ((15 ©5A75), As(1s ©5A73))e &7 7|75
It follows from (3.7) that
Fs(75) & Fp(7p) :Fﬁ(%ﬁ)@mFﬁ(%ﬁ)
(3.8)

_1
= 5t { D @ATIE @ 3ams, Asars)e},

where in the second equality we use the symmetry of Ag and the relations Agrg = A(f)73
and (3.5). Finally, observe that [(A7g, AgA7g)pe| < (|ATg|, Ag|ATs|)e < A(B)||ATs]|% to get
the claim. a

Lemma 10

F(75) > 2v/5lal(8 Siny 272(0) 2 [1 @ 1| Arsl% + Lr2(0)] 4

+{205§ Sis1 273 + FTF Tisy iATE(i)}[l SellATsll + 375(0)] 7"
(3.9)
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Proof. According to (2.1) and (2.3)

Fo) = [ du {auetid) 23w suliyl}. (3.10)
0
Use (3.3) to obtain the estimates

S5 du w?#3(u) < 57 Yy i max{r3(i), 2(i & 1)}
(3.11)

S5 du ul#h(w)]? < 877 i iATEG).

Since [y~ du uf'g(u) < (J57 du u?73 ( )) I75l12, we get the claim because F(75) = ||T/3||

Fp(7s). O

Lemmas 9 and 10 set the stage for the proof of Proposition 4. Namely, we now see that
it suffices to prove the following estimates:

Lemma 11 There exist Cy,C5, Cs,Cy such that for 3 small enough

B Y1t Tﬁ( i) < C1ﬁ__
i)y >1 ZATB( ) < CQﬁS
i) 75(0) < C333 log 3

iv) ||Arsllh < C4ﬁ3 log 1 3

(
E (3.12)
(

Indeed, Lemmas 11(iii-iv) and 9(i-ii) imply (3.2), while Lemmas 11(i-ii) and Lemma 10 imply
that F(7g) > «C for 8 small enough and C' sufficiently large, which guarantees that 75 €
K = Ko,

In the proof of Lemma 11 we shall make use of the following two additional lemmas, the
proof of which is deferred to section 4:

1

Lemma 12 V3 > 0: A7g(i) = 73(i) ©73(i ©1) <0 for all i > §57%.

w

Lemma 13 )
limsupg o573 [MB) ©1]

< ja
liminfao8 7 [A(B) 1] > La?a2 (a>1) (3.13)
losl a2 (a<1).
Proof of Lemma 11(i).
STEP 1 For every € > 0 small enough there exists Cs such that
Z Prii) < CsB™F for B small enough. (3.14)
i<ep %
Proof. We start with the trivial inequality
—ng &15()As(i,5) > 0. (3.15)
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The Lh.s. of (3.15) can be written out and estimated from above as follows:
(L& AB)]+ Ty i (D[As(i3) & P )
<O +E_ 3 725, [ 1] PG, j) (3.16)

1<ef 2

SHeAXBN+E_ 1 2D E [ealid) + €206, )] P, 5).

1<ef™

For the two inequalities we refer to (2.4-5) (use that e/ <14¢+1¢ for t < 1 and ¢ <0). The
sum over j has been evaluated in (2.8). Using that ¢ < Gﬁ_%, we get

r.h.s. (3.16) _
1 . oL 1,01 .
SHeA@)+ T,y {20050 w1 s 168 bashist ). G17)
Combining (3.15-17) we arrive at the following inequality:
1, a2 9 9/
(4 ©168¢? ©6a37)35 Zigeﬁ—% *r5(4)
(3.18)
L 1 Yy
<HTELSMBI+ 20873 im0,
Now, ﬁ_%[l < A(P)] < Cg by Lemma 13. Moreover, by Cauchy-Schwarz
1
S i< (Y 220)" (3.19)
i<ep % i<ep=3
Hence the claim in (3.14) follows for € such that 168¢% < 4. 0
STEP 2 For every € > 0 small enough there exists Cr such that
Z 75(i) < C:B3% for B small enough. (3.20)

1
i>e7 2
Proof. Rewrite (3.15) as (recall also (3.16))
S RHY [teer@pi ) <[LexB)]+ Y i Z[eezs(m) 1] P(i, 7). (3.21)
i>eﬁ_% i 1<ef™ 2

Since eg(i,7) < —a2ﬁ3 for i,j > 1 and eg(i,j) < <:% 2 for i > Gﬁ ,7 > 1 (see (2.4-5)), we
get

1
(1ee3%) 3 73(i) < CoB7 + (3777 &1), (3.22)

i>eﬁ_%
This implies the claim in (3.20). o

STEP 3 For every € > 0 there exists Cs such that

E iQTE(i) < Cgﬁ_% for 3 small enough. (3.23)
1
1>e372
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Proof. Pick i > ¢372 and 6 > 0 arbitrary. Then, using (2.4) and Lemma 3(ii), we see that

there exists C'(6) > 0 such that
T5(1) = 5iz 2 Apli 5)7s(4)

= X, POV P, )ms(4)

IN

e X, Pl )ms(d)

IN

(14 6)e™2" Xisasyi Plis)7a(j) + O(e7C0)),
Using (3.24) we get

Yy T S (148)e7 Y

i>eff 2 i>efl”

IN

e T [ e0)i] 2 r3([(1 6)i]) + o(1)

i>ef7 2

IA
=
+
&
™
|
r|“>—\
]

750 + o(1)

IN

(S T L LR RO

X s 1-syi () P §)a(7) + o 1)

(3.24)

(3.25)

The second and the third inequality use Lemma 12, the fourth uses (3.20) with € replaced by

(1<é)e. Now pick 6 so small that (i—)% < e Then we obtain
(1ee i) S 272() < e 7707877 4 o(1).
i>efl” 2
This proves the claim in (3.23).

Steps 1-3 complete the proof of Lemma 11(i).

Proof of Lemma 11(ii).
STEP 4 Forall 3

1

E iAT2 (i+1)=—=
e

> AB)

Proof. Write out
SATHi+ 1) = Xilrs(i+ 1) (i)

=2 ilr3(i+ 1) + m3(0)] & gy s 2i76() Ap(i + 1. 7)7s())-

Now substitute the relation (see (0.10-11))
Apli+ 1.j) = eHLIP(i4 1, 5)

_ eeﬁ(¢+171)%P(i,j)
_ eeﬁ(iﬁ—l,j)—@ﬁ(ivj)%Aﬁ(l}j)-

23

Z (i+je)l setplithi)—esld ’])]Tﬁ( 1)Ag(i, j)Ta(7).
21
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This gives
SLATH(i4 1) = ks (3.27) 4+ 2 alm5(i 4 1) + 75(0)]

c . . . 3.30
oty D+ 3 S 1)Ta(0) Aa(i, )l (3.30)
Both sums in the r.h.s. are equal to )2;(2i <1)75(4) and therefore cancel out. 0
STEP 5 For 3 small enough
1 L -
G S (i 4 j o)1 ees D=y As(i, j)ra(j) < Coff5. (3.31)
i1
Proof. By (2.4) we have eg(i+ 1, j) <es(i,j) = a3 &B(2i 4 25 <1). Hence
Lh.s. (3.31) < 5(z7 Xijoa(i +J & 1)les(i, ) eepli +1,4)]ma(0) Ap(i, 5)75(5)
< 55285, + 3 Vmali) Aalis )ma() (3.32)
<8B3 *r5(0)
(use that ' > 141 for all ¢). In the third inequality we use the symmetry of Ag and the fact
that [|Ag|lz = A(#). The claim now follows from Lemma 11(i). 0
Steps 4-5 complete the proof of Lemma 11(ii). O
Proof of Lemma 11(iii).
STEP 6 |
75(0) < Cloﬁ% log 3 for 3 small enough. (3.33)
Proof. By Cauchy-Schwarz, we have for every N
0) = 7s(N) S DX, Ary(i) "

1 . L

< Ta(N) + (i 12 (0L iAT5(0))z.

Pick N = [ﬁ_%} Lemma 11(i) gives Tﬁ([ﬁ_%—‘) < (C137. Together with Lemma 11(ii) and
-1

the estimate ZEI 1 % < log %, the claim follows. a

Step 6 completes the proof of Lemma 11(iii). O

Proof of Lemma 11(iv).

STEP 7 Forall 3

i1 Arg(i +1) = %Z RE [1 @eeﬁ(i_l7j)_el3(ivj)]rﬁ(i)Aﬁ(i7j)Tﬁ(]’)
(4,5)#(1,1) (3.35)

er3(D[1 e xf45(1,1)].
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Proof. By Lemma 4 we have the following relation:
Ag(i, )) o Ag(i o1,5) = Ag(i,j 1) @ Ag(i,§) + 2451, )[1 @eri=td=es b)) (3.36)
(note that eg(i 1,7) = eg(t,7<1)). Hence

YiATi(i+ 1) = Ylrs(i 4 1) ee(d)]?

THL) + 2 g ma()7a(1) S 7p(i = 1)]

|
\]

B+ 55 Xiza 2 ma(D)[Ap(i, ) & Ap(i &1, )] (5) (3.37)
=31+ 555 Cis2 X T5()[As(i, ] 1) = As(i; J)Ime(7)
307 Lize il ees(i=La)=eab)rg () Ag(i, §)m5(5).

The third term in the last expression is twice the sum in the r.h.s. of (3.35) except for the
part with ¢ = 1,5 > 2. The second term can be rewritten by carrying out the sum over z,
namely (use that A(7,0) =0)

J=1t Syl Yira ma(1)Ap(i, 1)75(1)
= e2r3(1) + 5575 (1) As(1, 1)
(3.38)
§220 5 Cisa el As(i, & 1) & As(i, §)]7s(5)
= 275(j)ms(J & 1) ©73(5)] & xGa(DIAs(L, 5 1) & As(L, )Ima()-

Thus, after carrying out the sum over j, we see that (3.37) becomes

> Arg(i +1) = <:>Zj Arg(j +1)
+2{r.h.s. (3:35) & 3 ysall =0 Nrs(1) Ap(L, j)7()

(D[ & 5341, )] }

+55m 2 A(1,1) S35 T sy (D[ As(1, 5 £1) & As(1, )]7s(7).

(3.39)
Now, by (3.36) for i = 1,
1 e s 0NN A4 (1, ) = H{As(1, 1) SAs(L ]+ As(Lf).  (3.40)
Hence (3.39) simplifies to
SUATHI4 1) = e AT+ 1)+ 2 ks, (3.35)
(3.41)
2720 & 52720 A6(1.1) & 55 Tymn m5(D AL )70) }-
But the term between braces is zero. a
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STEP 8 For 3 small enough
1
r.h.s. (3.35) < C11 8% log 5 (3.42)

Proof. The first term in (3.35) is easy to bound. Indeed, we have eg(i <1,j) <eg(t,j) =
@aﬁ% + B(2¢ + 25 <3) and hence we get

19 term in (3.35) < 3&5 5 ., aBTra(i)As(i,)mels)
()AL (3.43)

< 2a3%
(in the first inequality use that e’ > 1 +¢ for all ¢). For the second term in (3.35), use that

P(1,1) = £ and ep(1,1) = af}t < p. Together with A(5) > 1 &Cef7 (see below (3.18)) we
get

2™ term in (3.35) < 275(1)C6ﬁ% for # small enough. (3.44)
Finally, use Step 6 to get the claim (recall that 73(0) = 75(1) in (3.3)). o
Steps 7-8 complete the proof of Lemma 11(iv). O

Lemma 11 completes the proof of Proposition 4. Lemmas 12 and 13 will be proved in section 4.

Proposition 4 shows that Assumption 3(iii) in Proposition 2 holds. We shall prove As-
sumptions 3(i),(ii) in section 5.
4 Proof of Lemmas 12 and 13

4.1 Proof of Lemma 12

Let (e;)i>1 be the canonical base of *(N). Let s = (s(i));>1 be any sequence of numbers in

0,00) and let t = (#(?));>1 be given by t(1) = 1,t(z2) = =l g(k) (i > 2). Define
2 k=1

By ={zelP(N):z>0,z(i+1) < s(i)z(4)}

BY ={e=3;¢;fj:¢; >0,¢; # 0 finitely often} (4.1)
where f; € [(N) is defined by 4
fi= Z]:t(i)ei- (4.2)
1=1
Lemma 14 (i) B, is a closed convex cone.
(ii) By is the closure of BY.
Proof. Elementary. a

Recall footnote 6. Since, for every 3 > 0, Ag is a continuous operator on [#(N), we have
from Lemma 14(ii) that

AgBs C B, & Agf; € By forall j > 1. (4.3)
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Since, for every 3 > 0, Agis symmetric and has a spectral gap, we also know that /\(ﬁ)_”Agx P
(x,76) 1273 (n — 00) for any x € [*(N). Pick any = € B, with « # 0 to get that

AgBs C B, = 173 € B,. (4.4)
Below we shall prove the following:
Lemma 15 If s satisfies
o 1
is(t) + ]ﬁ N o
v P > BT =PRI for il i > 1,5 > 0, (4.5)
1+ 7
then Agf; € By for all 7 > 1.

Lemma 15 combined with (4.3-4) shows that

75 € N B,. (4.6)
{s: s satisfies (4.5)}

The r.h.s. of (4.5)is < 1 when i 4 j > %ﬁ_% One therefore easily sees that the following
choice of s satisfies (4.5):

. C o apgl
s(i1) =1 B for Z > gﬁ_i (4.7)
= Np7s fori < 5677, N large enough.
This proves Lemma 12.
Proof of Lemma 15. We must show that for all 2,5 > 1
0 < s(O)(Apfi)(i) & (Apfi)(i+ 1)
4 (4.8)
= Yooy [0 450, bUR) & As(i + Lk Dtk & 1] & As(i + 1,5)1)
(recall from Lemma 4 that Ag(¢+ 1,0) = 0 by convention). In order to do so, define
J
Pi(j) = Z [s(i)Ag(i, E)t(k)<Ag(t+ 1, k<1)t(k <:>1)] S2A50+ 1, 5)1(4)- (4.9)
k=1
The following lemma gives a sufficient criterion for #;(j) > 0, which implies (4.8):
Lemma 16 If
1
s(1)Ap(i,J+ 1) + @Aﬁ(i +1,7) 245+ 1,5+ 1) >0 foralli > 1,7 >0,  (4.10)
then . . . . . .
(i) 7 — i(J) is nondecreasing for all i > 1 (4.11)

(i) (1) > 0 for all i > 1.

27



Proof. (i) Write out

Gili + 1) ei(d) = s(D)Ap(i, g+ DG+ 1)+ Apli+ 1,5)1(7) €245 + 1,7+ 1)i(G + 1)

=t(j + 1)[s(i)A5(i,j +1) + sgj)Aﬁ(i +1,7) 2450+ 1,5+ 1)] > 0.
(4.12)
(ii) Similarly, by (4.10) with j = 0 (since ¢(1) = 1 and Ag(:+1,0) = 0)
(1) = s(i)Ag(i,1) 2451 + 1,1) > 0. (4.13)
a

To complete the proof of Lemma 15, it remains to rewrite (4.10) in the form of (4.5).
Abbreviate f(i) = exp [aﬁgi & 3i%]. Then we have Ag(i,5) = f(i+j<1)P(i,5). Use Lemma
4 to write

Lh.s. (4.10) = f(i+7)[s(0)P(e,7+ 1)+ ﬁP(i +Lle2fi+ij<)PE+1,7+ 1)

=P, j+ D)) fi+j) & fi+7+1)]
P+ L) i+ ) S f(i+ 5+ D).

(4.14)
Next use that P(z,j+1)/P(i+1,j)=t/j. Then (4.10) is seen to be equivalent to
(i) + j—
7 T fli+))
a
4.2 Proof of Lemma 13
To prove the upper bound in (3.13), use (2.5)(ii) to get
MB) = 2y (1) Aplis 7)7s())
= 524 7a(0)e 2P, j)ma())
(4.16)

I
[}
NI
2
[V}
™
ol

225 o) P(4, 5)75(7)

W=

ei?’B

IN

b

where the last inequality follows from || P|[;z < 1. This immediately gives the claim.
To prove the lower bound in (3.13), use (1.3)(i) to get that for any « € L*([R") with
lellz2 =1

BTINB) 1] > Fh(a). (4.17)
Pick for z 5 ,
2o (u) = (m)%—i‘? (o> 0). (4.18)
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Now, we know from Lemmas 5-8 that

lim Fg(z,) = F*(z,). 4.19
im F5(27) = F* () (4.19)

Hence liminfg)o ﬁ_%[/\(ﬁ) &1] > F*(z,). Compute

Fi(a,) = f5° {(20u @40 e, ()] Sulel (w)]? }du

1 2
= (#)2 Jo7 (2au &4u? @%)e_ﬁdu (4.20)
1
:(§)2aa<:>402<:> L.
4 (2m)2¢0
Pick o = o(a) = - to get the claim. ]

O[]

(87)

5 Analysis of the limit variational problem
Recall the notation in (1.13)

X ={seIl*R"):z>0,]z|p=1}
Y =XnCYRY) (5.1)
K =K¢={xeY: :F(z)>«&l}.

In this section we analyze the limit variational problem appearing in (1.6), i.e.,

sup F*(x). (5.2)
rzeX

In section 5.1 we show that @ — F®(x) is upper semicontinuous and K¢ is relatively compact
in X (in the L%-topology). This implies that F* achieves a maximum in K2 = {z € X :
F*(x) > eC} (# 0 for C large enough). In section 5.2 we show that all maxima of F* in X
are solutions of the Sturm-Liouville problem

L% = pz (p € R,z € X NCP(RT)), (5.3)

where £% is defined in (0.17). In section 5.3 we analyze (5.3) and show that it has a unique
solution 2* satisfying F*(2%) > oo and z® > 0, with corresponding eigenvalue p(a). This
identifies 2* as the unique maximizer of (5.2) and p(a) as the maximum. We also study
a — z* and a — p(a) to prove the claims that were made in (0.19).

5.1 Existence of a maximizer of /* in K&

It will be expedient to transform F?, L% K% as follows. Define (recall (1.7))

Fo(a) = eF"(2)+ (% + )],

= Jo {a(w)z(w)]? + p(w)[z'(w)]*}du
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with
plu) =u
g(v) =Qu&ta) + 1.

(5.5)

F is the “energy” functional corresponding to the Sturm-Liouville differential operator Lo

defined by (recall (0.17))

(Lo2)(u) = &(L%)(u) + (4 + Da(u)

= g(u)z(u) <p(uw)a’(u)].

Define (recall (1.13))
AO = AC—(%-H)
={zeY :F'(z)<C}.

Lemma 17 For every a € R

(i) I;é # 0 for C large enough

(ii) K& is relatively compact in L*(RT) for all C € R
(iii) & — F*(z) is lower semicontinuous on X .

Proof. Standard.

(i) Trivial.

(ii) We check the conditions in Dunford and Schwartz (1964) Theorem IV.8.20.
(a) K& is bounded in L2(RT).

(b) By Cauchy-Schwarz

Jot(@(ut o) Sa(u)Pdu = [5o(f 2" (1)dt)?
< o7 du [log (u + v) <log u] f;‘"’v dt t[z'(1))?

= Jo~ dt ' OPI(1 0) 1>,

where » »
I(t,v) = (t+v)log (1 + ;) + (t ©v)log(1 <:>;)
Since ¢ — I(t,v) is decreasing and I(v,v) = 2vlog 2, it follows that

lifg (z(u+ v) &z(u))?du = 0 uniformly for z € K&.
v10 Jo

(c) From p(u) > 0 and lim,_.. ¢(u) = oo follows

lim 2?(u)du = 0 uniformly for z € K.
N—oo JN

Conditions (a)-(c) imply that K¢ is relatively compact.
(iii) Define )
Ve ={zc L*(R%): F*(2) < o0}.
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On V?* define the inner product

()ve = [ ettt + (e (wy()du. (5.13)
Then (V*,(-,-)va) is a Hilbert space, ||z||yva > ||z||;2 and

Fz) = (z,2)ye = ||2]|}a. (5.14)
Thus we must prove that liminf,,_., [|2,|[ve > ||z||ye for any 2, =2 2.

Let I = liminf,,_ [|2n]|ve. The case L = oo being trivial, assume L < oo. Then, by
the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15), there exists a subsequence (z, )
and a y € V® such that L = limy_., ||z, ||ve and z,, — y weakly in V* (k — o0). Hence
L > ||y|lve by Fatou. But, by (ii), weak convergence in V* implies strong convergence in
L*(RT). Hence x,, 1 y. Together with x, —L% 2 this implies ¥ = 2 and hence the claim
follows.

Incidentally, note from (5.4-5) that V* does not depend on a because it is nothing other
than the collection of # € L*(R™) for which [;°{u?[z(u)]*+u[2'(u)]*}du < oo (recall (0.18)). O

Lemma 17 implies that F achieves a minimum in E (for C' large enough).

5.2 Characterization of the minimizer(s) of
Lemma 18 Any minimizer z of F* in X is a solution of L%z = px for p = pla) € R, the
minimal eigenvalue of L% in V.

Proof. Standard.
Define p(a) by

pla) = gél% F(z). (5.15)
Let € V* be any minimizer. Then for any h € L?(R*) and € > 0
FO(z 4 €eh) > p(a)||z + €hl|2,. (5.16)
Writing out both sides of (5.16) and using that F*(Z) = j(a), we obtain (see (5.13-14))
2e(z, h)ve + [l > pla){26(z, B + (]2} (5.17)
Let ¢ | 0 to obtain
(%, hYyya > pla){Z, h)r2 for all h € V. (5.18)
Replace h by <h to get the reverse inequality. Thus
(%, hyya = pla){Z, h)r2 for all h € V. (5.19)

Now note that we have from (5.6) and (5.13) after partial integration
(Z,h)va = (&, LR) 2 for all h € CE(RY)

(
It follows from (5.19-20) and the symmetry of £ that Z is a weak solution of L% = jp(a)z.
This in turn implies that z is a strong solution.
To see that p(a) is the minimal eigenvalue of £ in V*, note that if £% = pz, then by
(5.6), (5.13-14) and integration by parts

F(2) = (e.ehva = (0, %) 12 = pllell 2 = p. (5.21)
Od
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5.3 Analysis of the Sturm-Liouville problem

Lemmas 17-18 show that F* has a maximizer in E and that each maximizer is a solution
of L%z = pa for p = p(a), the maximal eigenvalue of L% in V* (recall (5.4-7)).

Lemma 19 (i) All solutions of L% = px are of the form
P (u) = f4P(u) + ¢**(u)logu, (5.22)

where f“* and g*” are power series with infinite radius of convergence.
(it) F(x®P) = oo if g»P # 0.

Proof. (i) Formally substitute f*"(u) = 3,0 fou™ and ¢*"(u) = 3,50 gnu”. Then the
coefficients are found to satisfy the recurrence relations

9o = E(pga1 ©20g,2 + 4g,3) (n > 1)
(5.23)
fo =z (pfar €20 fn g +4f0 3 ©2ng,) (n > 1)

(with fo1 = f_oa = g_1 = g_2 = 0). Note that ¢** is a solution of (5.3) and that f** depends
on ¢“*. By induction on n, (5.23) is easily shown to give the following bounds:

[fal < K773 (0> 1)
2
3

lgn| < K2(n)™3 (n>1) (5.24)

with Ky, K7 large enough (depending on p, a and fy, go). This implies that the formal solution
exists everywhere.
(i) Trivial, since La®(u) ~ gou™" (u | 0) with go # 0 implies F*(2%*) = ©o0, while go = 0
implies that ¢, = 0. a
At this stage we know from Lemma 19 that all maximizers of F'* are of the form z**(u) =
f®*(u) and, in particular, are analytic on RY.

Our next step is to find the asymptotic behavior of the solutions of (5.3) as u — co. This
will be needed to get uniqueness of the maximizer.

Lemma 20 L%z = pa has two independent solutions x2° and x3” satisfying
. _2 a 4
lim ™z logay’(u) = ig' (5.25)

Proof. We use Coddington and Levinson (1955) Theorem 2.1 page 143-144. Define

wi(u) = x(u?)

wo(u) = u2wi(u). (5.26)
Then (5.3) can be written as
w'(u) = v B(u)w(u), (5.27)
where 7 = 2 and
o =)
. ) (5.28)
Blw) = ( 165+ o )
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Note that B(u) = 3,50 u "By, (Bo # 0) is a convergent power series in u~!, with By having
eigenvalues A 3 = +4. Therefore (5.27) has a formal solution of the form

w(u) = P(u)ue?®, (5.29)

where P(u) = >0° ju™"P, (det Py # 0) is a formal power series in ™!, R is a complex
diagonal matrix and ¢ = %Qo + ... 4+ uf), is a matrix polynomial with @); diagonal and
Qo = diag{\i,A2}. From the proof of the theorem it follows that P, @, R can be chosen to
be real because B, Ao are real. On p.151 of Coddington and Levinson (1955) there is the
further remark that for every formal solution there exists an actual solution with the same
asymptotics. a

We see from Lemma 20 that 25" ¢ L*(R*) and so (5.3) has a unique solution in L*(R™)
up to multiplicative constants.

Lemma 21 Define
S.={peR: for € IX(R), f7(0) = 1}. (5.30)

Then

(i) S, is countable, bounded from above and has a mazimum
(71) pa) = max S, is geometrically simple

(iii) for(@) >0

(iv) Vp € Suyp < max S, : [ changes sign in RY.

Proof. Standard Sturm-Liouville theory.

(i),(ii) By Lemma 17(ii), V* is compactly imbedded in L?(R*) (compare (5.7) and (5.12)).
Therefore the eigenfunctions of £% in V* form an orthogonal basis of V. Since V* is sep-
arable, this in turns implies that S, is countable. We know from Lemmas 19-20 that L£®
has a unique eigenvector in V'* with eigenvalue p(a), i.e., p(a) is geometrically simple. Since
p(a) = maxyeve F'*(2) = max S® by Lemma 18, we also know that S, is bounded from above
and has a maximum.

(i) From (1.7) one sees that F*(|f>r()|) = F( fo(4)). Therefore it follows from the unique-
ness of the maximizer that f*# = |f*?| > 0. Let ug = inf{u > 0: f*(@(y) =0} > 0. If
ug < 00, then we must have %f‘l’p(“)(uo) = 0 and %f‘l’p(“)(uo) > 0. However, this contra-
dicts (L2 f**)(u) = p(a) f>*(D(u) at the point u = ug (see (0.17)).

(iv) This follows from (iii) and the fact that the eigenfunctions of £* in V'* form an orthogonal
basis. O

Lemmas 17-18 and 21 show that Assumptions 3(i), (ii) in proposition 2 hold.

5.4 Dependence on «

The maximal eigenvalue and eigenvector of (0.17-18) are

pla) =max S,
S G (5.31)
R

We can now prove the following properties:
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Lemma 22 (i) a — p(a) and a — z® are analytic
(ii) a — p(a) is strictly increasing and strictly conver on R
(711) p(0) < 0, limyjeo p(a) = 00 and lim,|_ p(a) = &o0.

Proof. (i) We give the proof by applying Crandall and Rabinowitz (1973) Lemma 1.3 in the
following setting. Pick a € R and consider the Hilbert space (V,{-,-)v) with V = V°. Then,
from (5.5-6) and (5.13),

(@ y)ve = (L2 y) 12 = pla)(@®, y) 12
(5.32)

2

(% y)ve = (2% y)v ©2ab(z®, y) + (2, y) 12,

where b:V x V — R is the bilinear form defined by

b(z,y) = /OOO wz(w)y(u)du. (5.33)

For every o € V' the functional y — b(z, y) is continuous and linear. Hence it follows from
the Riesz representation theorem (Rudin (1987) Theorem 6.19) that there exists a unique
linear operator B : V — V such that

b(z,y) = (Bz,y)y forall z,y € V. (5.34)
B is symmetric because b is. B is bounded because

|Bz|[}; = b(x, Bx)

IN

1
(fo° u?a(u)du)? || Bz|| 2
(5.35)

< Ylellv 1Bz o

< sllzliviiBellv

(see (5.5) and (5.13)), so that ||Bz||y < %|lz[|v. To see that B is compact, let (z,) be a
bounded sequence in V. Then, by Lemma 17(ii), there exists a subsequence (z,,) and an
¢ €V such that 2,, —" 2 (k — o). Hence, as in (5.35),

|Bz,, < Bz} = bz, v, Bz, <))
< Nan, @l 51B(n, <o)y
(5.36)
< o, @ 2llrzzllon, <2lv
— 0 (k — o0).

In the same manner we can prove that there exists a unique linear, symmetric and compact
operator C': V' — V such that

<$7 y>L2 = <C$7 y>V for all T,y € V. (537)
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Now rewrite (5.32) as follows

2
<[Id S2aB <:>(,0(a) @%)C]x“,yﬁ/ =0forall y e V. (5.38)

Hence, (V,{(-,-)v) being a Hilbert space, we have

2% is a C-eigenfunction of I'd ©2aB

with (largest) eigenvalue p(a) @%_ (5.39)

Next note that @ — Id <2aB is analytic in the operator norm. Therefore, to get the claim
2
from Crandall and Rabinowitz (1973) Lemma 1.3, it suffices to check that p(a) & % is a

(C-simple eigenvalue of I'd &2aB, i.e.,

(a) dim(N(A%)) = codim(R(A")) =1

(b) Ca® ¢ R(A"),

where A* = Id <2aB <(p(a) @%)C and N(A?%), R(A%) denote the null space resp. range of
A%,

We have dim(N(A®")) = 1 because of Lemma 21(ii). Moreover, because 2aB—|—(p(a)<:>%)C
is compact we have dim(N(A®)) = codim(R(A%)) (Rudin (1991) Theorem 4.25). This proves
(a). To prove (b), first use that A% is symmetric and bounded to get that N(A%) = R(A%)+
(the orthogonal complement of R(A%)) and R(A%) = R(A%) (Rudin (1991) Theorems 4.12
and 4.23). Since R(A%) = R(A%)LL, it follows that N(A%)L = R(A%). Hence (b) is equivalent
to (Cz%, 2%y # 0. But (Cz%, 2%y = (2%, 2%) 2 = 1 by (5.37).

(ii) Because

~—r

pla) = sup F*(z) (5.40)
rzeX

with unique maximizer 2 = f**(*), we immediately see from (1.7) that
plat ) <pla) / 2u[ £ ()] 2du > 0 (5.41)

(pick || f**(®)]|;2 = 1). This demonstrates that p’(a)is everywhere strictly positive. Moreover,
since @ — F%(x) is linear for every 2 we have from (5.40) that @ — p(a) is convex. Because
of analyticity, it follows that either a — p(a) is strictly convex or p(a) = Cra + C3. However,
the latter is impossible because of Lemma 13.

(iii) Trivial. Let € — +oo in (5.41) or else see (1.7). o

6 Proof of Theorems 4-7

We can now collect the results from sections 2-5 and give the proofs of our theorems in section
0.4.

Proof of Theorem 5. Combine Propositions 1-3 with (1.13). The proof of Proposition
3 was given in Lemma 1 and in sections 2, 3 and 5. O

Proof of Theorems 4 and 6.
1. 7(f8) ~ a* B3
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According to (0.13), 7*(/) is defined as the unique solution of

A(r, ) = 1. (6.1)
From (0.20) we know that for every a € R
875 [MaBt, B) 1] = pla). (6:2)

Let a* > 0 be the solution of p(a) = 0 (see Lemma 22). Now, because r — A(r, ) is increasing
(as is obvious from (0.10)), we have for every ¢ > 0

Alr, B)
Alr, B)

Since p(a* <€) < 0 < p(a* + ¢) for every ¢ > 0 (see Lemma 22(ii)), (6.1) combined with (6.3)
implies

1+ 33 p(a* + €) + o( 3
1+ 35 p(a” <) + o3

) for r > (a* + €)p

) for r < (a* ©€)F5. (6:3)

[y XY TN
[N

>
<

v

(a" ©e)ps <r*(B) < (a* + €)ﬁ§ for 4 small enough. (6.4)

Let € ] 0 to get the claim.
2. 6°(3) ~ b*B7.

According to (0.14), §%(/3) is defined as

1 Jd
e 2] e (6.5)
Define
Jd
_A(Tvﬁ)
£(r, ) = % = %bg A(r, ). (6.6)

Because 1 — A(r, 3) is increasing and log-convex (see footnote 6), we have that for all 4,5 > 0
and a € R

IN

€apt. ) < ArllogA(a+ )it 5) slogAtas?, o)

2
3

2 2 2 (6'7)
st p) > Lflograst.5) slog (@ o)t 9)
Together with (6.2) this gives
limsupmoﬁéf(aﬁgaﬁ) < p(a—l—h}z “p(a) (6.8)
liminf g0 37 (%, 5) > L) EplaSh)
Let h | 0 to get (use Lemma 22)
lim F3€(a, 5) = p'(a). (6.9)
Next, because r — &(r, 3) is increasing we have, via (6.4), for § small enough
7 (9).0) < E((a"+)B5.5) = 575/ (a" + ) +o(575) (6.10)
§(r(B),8) = &(a” <€)7, 5) = 73/ (a" &€) + o(577).
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Since (recall that A(r*(5),5) = 1)

= &(r7(8), 8), (6.11)

it follows that )
T,
B30(53)

Let € | 0 to get the claim with £+ = p/(a).

plla* se) < < p'(a* + €) for § small enough. (6.12)

L 1 o
3. 57T a([-8771) =2 2*(-).
Put a*(f) = ﬁ_%r*(ﬁ) Then, similarly as in Lemma 1,
ﬁ_%TT*(ﬁ)ﬁ( [ﬁ_%}) is the unique maximizer of Fg*(ﬁ), (6.13)

where the parameter a is replaced by a*(53).

Lemma 23 Assumptions (1)-(3) in Proposition 2 hold for the following choice replacing
(1.13):

K = K& (C sufficiently large) (6.14)
Gﬁ — Fg*(ﬁ)
G = P

Proof. The point is that limg|oa*(f) = a*. It is trivial to check that all estimates in sections
2 and 3 remain valid when the fixed parameter a is replaced by a + o(1) (5 | 0). See, in
particular, the proofs of Lemmas 5, 6, 11-13. a

The claim in 3 now follows from Proposition 2.
_1 * _1 1 a*
4. B7Epp([875T) =5 gl (3]

The proof is in Steps 1-2 below.
Abbreviate Ag = A,(5) 5 and 75 = 7,(3) 3. According to (0.14)

pik) =" 7a()As(i, §)Ts())- (6.15)
iis=k
STEP 1 There exists ¢ such that

1 1

/Oo |ﬁ_%,ug([uﬁ_§ﬂ) & -[2¥ (zu))*|du < eN72 for § small enough. (6.16)
N 2 2
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Proof. Estimate (recall that A(r*(3),5) = 1)
IR0 S ([us™ . =5,y wi(k)

E>NB™3

- Z:i,j: i-|—j—1ZNﬁ—% Tﬁ(l)Aﬁ(lvj)Tﬁ(])

2% 1yt () (6.17)
2

2 . .
S8NT235 35y P 75(4)
< 801N_2.
The last inequality is Lemma 11(i). Furthermore,

]

1
N 2

[x“*(%u)]zdu < AN /NOO e (2u)du. (6.18)

Since 2% € Kgf, the integral in the r.h.s. is finite and so the claim follows. a
STEP 2 limgg fON |ﬁ_%,ug([uﬁ_gﬂ) &1a" (3u)]*|du = 0 for every fived N.

Proof. Use the triangle inequality to split the integal into three parts:

N 1 1o+ 1 1N | ;2N | 3N
|18 uarus ) ele Guitidu < 1 + 13V + 1 (6.19)
with
N 1 _al a*/: ol N
LY =BTE st 1T8(i87) et (18] Ag(i, )2 (557)
2,N 1 _ .51 Can | — .1 a*/ - 1
Y =BT, vt T A DIl 80) e (7)) (6.20)
3,N _ ¢N a* /. 1 PN a*/ - 1 a*
Y = VS s aspae by 2 (B0 )2 (557) & 4o (u))|du.

Here 75 is the scaled form of 74 given by the same relation as (3.1).
For Ié’N use Cauchy-Schwarz and (2.5)(ii) to estimate

[T

Y < ﬁ%(z , [fﬁ(iﬁ%)ﬁx“*(iﬁ%)]uﬁ(ivﬂ'))

it itj—1<NB~3 1
«(x Lo (B9 2A500,5))
igrivi—1<npEE Y Rt J
(6.21)

Define f%* by i%*(u) = w“*(zﬁ%) for (4 <:>1)ﬁ% <u< zﬁ%(z > 1), in analogy with (3.1). Then
(6.21) becomes

7]\7 1.2 1 _ % %
1™ < x| Ts e r20,m 15" ll220,3)- (6.22)
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Now let 3 | 0 and use that 7g —L% 29" and fﬁ“* —L% 22" o get lim supg|q Ié’N = 0. The
same argument gives that limsupg|, I;’N =0.
To estimate IE’N, we use the mean value theorem to expand x“*(zﬂ%) and x“*(]ﬁ%) around

%u. Namely

Y =0, e M 31{96 Lu) + (iﬁ%@lu)di o}

IS (6.23)
xAg(1,7) {w (u (ﬁ3<:> u@x }<:> % V2| du
with &, between %u and zﬁ% resp. ]ﬁ% Next note that 2% (u), |%w“*(u)| < M < oo for all
u € RT. Hence

JgN <M N> Ag(i,j) & Lldu

i, 1+j—1= fﬁ_%1

ol ol . (6.24)
P S sy LBT gul 4185 dul s ).
Next we insert Ag = e P and use that (recall (2.4) and (0.11))
lea(i.5)] < (lal + NN fori,j < N3~+ (6.25)
. 1
> P(i,j) = 5 (k> 1) (6.26)
i—l—ji—Jl:k
N TRV Ty 1.1
> @k P(LG) = S(Gk+1) (k> 1) (6.27)
z’+/—’]1:k
Then (6.24) yields
1 1
BN < MENL(HNINGT 1) poap2ed0 (N gy {(z5(u)F 4+ 2p(w)}  (6:28)
where |
2 . _1 . 1
zg(u) = 33 > (i <:>§uﬁ 5)2P(i,5) = O(37). (6.29)
it itj—1=[uf" 7]
. 3N
Let 5] 0 to get hmsupmofﬁ = 0. a
Steps 1-2 prove the claim in 4.
Results 1-4 complete the proof of Theorems 4 and 6. a

Proof of Theorem 7. The asymptotic behavior of 2" in (iii) was proved in Lemma 20
(pick @ = a* and p = 0). To prove (i) and (ii), we recall that 2%” solves (see (0.17))

0= (L£"2)(u) = (2¢*u o4u?)x(u) + [uz'] (u) (6.30)

and has a power series representation (see (5.23))

xa*(u) = ZnZO xnun
x, = 73—2(<:>2a*xn_2 +4z,-3) (n >1) (6.31)
r_1 = TT_9= 0.
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We observe that u — 2a*u <4u? changes sign from positive to negative at u = %a*. Since

2% (u) > 0 for all u > 0, it follows from (6.30) that u — u-t2°"(u) is unimodal with a
minimum at u = %a*. It is clear that u%x“*(u) — 0 as v | 0. By the unimodality we must
have that u-2%"(u) — ¢ as u — oo. However, ¢ must be 0 otherwise [5° u[-£2%" (u)]*du = oo,
which is impossible since F%"(2%") = p(a*) = 0 > <oo (see (1.7)). Thus we conclude that

uLL2%"(u) < 0 for all u > 0, which implies that u — 2% (u) is strictly decreasing.

To prove (iv), use (0.15) to write

e*ﬂfﬁ) = 35 Zi(%?l)ﬁ*(ﬁ)ﬂ(i) 1 (6.32)
= Jo© 20{B78 75 p([uB7 1)} du.

As 3] 0 the Lh.s. tends to . Thus we must show that the r.h.s. tends to [;° 2u[z® (u)]*du.
To prove this claim, first note that

I 20487 Ty p([uB TN 2du = 8581 (2 D)7 4 (D)

i>NB™3

2 i .
< FBTE gt P00 (6.33)

< %Cl for § sufficiently small

where we use Lemma 11(i). Similarly [y 2u[z® (u)]*du < %[5 w*[z* (u)]*du = o( N7!) as
N — o0o. Next, recall 3 in the proof of Theorems 4 and 6 to see that

N 1 1 N *
%%/ 2u{B7 e Tx (), 8( [uB™3])}du :/ 2u[z® (u)]*du for all N. (6.34)
0 0
Let N — oo to get the claim. a
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