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Abstract

Let Q�
n be the law of the n-step random walk on Zd obtained by weighting simple

random walk with a factor e�� for every self-intersection (Domb-Joyce model of `soft
polymers'). It was proved by Greven and den Hollander (1993) that in d = 1 and for
every � 2 (0;1) there exist ��(�) 2 (0; 1) and ��� 2 f� 2 l1(N) : k�kl1 = 1; � > 0g such

that under the law Q�
n as n !1:

(i) ��(�) is the limit empirical speed of the random walk;
(ii) ��� is the limit empirical distribution of the local times.
A representation was given for ��(�) and ��� in terms of a largest eigenvalue problem for
a certain family of N � N matrices. In the present paper we use this representation to
prove the following scaling result as � # 0:
(i) ��

1

3 ��(�) ! b�;

(ii) ��
1

3 ���(d��
�

1

3 e) !L1

��(�).

The limits b� 2 (0;1) and �� 2 f� 2 L1(R+) : k�kL1 = 1; � > 0g are identi�ed in terms
of a Sturm-Liouville problem, which turns out to have several interesting properties.

The techniques that are used in the proof are functional analytic and revolve around
the notion of epi-convergence of functionals on L2(R+). Our scaling result shows that
the speed of soft polymers in d = 1 is not right di�erentiable at � = 0, which precludes
expansion techniques that have been used successfully in d � 5 (Hara and Slade (1992a,b)).
In simulations the scaling limit is seen for � � 10�2.
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0 Introduction and main results

0.1 Model and motivation

A polymer is a long chain of molecules with two characteristic properties: (i) an irregular
shape (due to entanglement); (ii) a certain sti�ness (due to sterical hindrance). One way
of describing such a polymer is the following model, which is based on a random walk with
self-repellence.

Let (Si)i�0 be simple random walk on Zd (d � 1), starting at the origin. Let Pn be its

law on n-step paths and let EPn be expectation w.r.t. Pn. De�ne a new law Q�
n on n-step

paths by setting
dQ�

n

dPn
((Si)ni=0) =

1

Z�
n

exp [� �
nX

i;j=0
i6=j

1fSi = Sjg]; (0:1)

where Z�
n is the normalizing constant

Z�
n = EPn( exp [� �

nX
i;j=0
i6=j

1fSi = Sjg]) (0:2)

and � 2 [0;1] is a parameter. The law Q�
n is called the n-polymer measure with strength of

repellence � 1.
Eqs.(0.1-2) de�ne what is called the Domb-Joyce model of `soft polymers', where the

weight factor gives a penalty e�� for every self-intersection. The limiting cases � = 0 and
� =1 correspond to simple random walk resp. self-avoiding random walk. For a recent guide
to the literature on this model the reader is referred to Madras and Slade (1993) Section 10.1.

It is generally believed that for � 2 (0;1] the mean square displacement behaves like

E
Q
�
n
[jSnj2] � Dn2� (n!1); (0:3)

where D = D(�; d) > 0 is some amplitude and � = �(d) is a critical exponent. The latter is
believed to be independent of � and to assume the values 2

� = 1 d = 1
= 3

4 d = 2
= 0:588 : : : d = 3
= 1

2 d � 4:

(0:4)

Note that � = 1
2 is the exponent for simple random walk (� = 0) in any d � 1 (with D = 1).

Apparently, the repellence changes the qualitative behavior when d � 3 but not when d � 4 3.
The fact that � is the same for all � 2 (0;1] says that soft polymers are in the same univer-
sality class as self-avoiding walk.

1Note that if � > 0 then (Q�
n)n�0 is not a consistent family, i.e., Q�

n is not the projection on n-step paths
of the law of some process evolving in time (like Pn).

2The value in d = 3 is well below maxf 3
d+2 ;

1
2g, the so-called Flory value (Madras and Slade (1993) Section

2.2).
3Actually, d = 4 is a critical dimension where it is believed that E

Q
�
n
[jSnj2] � Dn(log n)

1

4 , containing a

logarithmic correction to (0.3-4).
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Sofar a rigorous proof of (0.3-4) has only been given for d � 5 (Hara and Slade (1992a,b)
4) and for d = 1 (Greven and den Hollander (1993)). In the latter work there is also a recipe
for evaluating the amplitute D(�; 1) as a function of �, which we next describe.

0.2 Speed and local times in d = 1

De�ne the random variables

�n =
1

n
jSnj (0.5)

�n =
1

jRnj
X
x2Rn

�`n(x); (0.6)

where

Rn = ( min
0�i�n

Si; max
0�i�n

Si) \ Z
`n(x) = #f0 � i < n : Si = xg: (0.7)

In words, �n is the empirical speed and �n is the empirical distribution of local times after
n steps. Theorems 1-3 below are taken from Greven and den Hollander (1993) and are the
starting point of the present paper.

Theorem 1 For every � 2 (0;1) there exists ��(�) 2 (0; 1) such that

lim
n!1

Q�
n(j�n � ��(�)j � �) = 1 for every � > 0; (0:8)

with � ! ��(�) analytic, lim�#0 �
�(�) = 0 and lim�!1 ��(�) = 1 5.

Theorem 2 For every � 2 (0;1) there exists ��� 2 f� 2 l1(N) : k�kl1 = 1; � > 0g such that

lim
n!1

Q�
n(k�n � ���kl1 � �) = 1 for every � > 0; (0:9)

with � ! ��� analytic, lim�#0 �
�
� = 0 and lim�!1 ��� = �1 pointwise.

The limits ��(�) and ��� in Theorems 1 and 2 can be found in terms of the following largest
eigenvalue problem. Let Ar;� (r 2 R; � > 0) be the matrix

Ar;�(i; j) = er(i+j�1)��(i+j�1)2P (i; j) (i; j 2 N); (0:10)

where P is the Markov matrix

P (i; j) =

 
i+ j � 2
i� 1

!
(1
2
)
i+j�1

: (0:11)

4The proof in Hara and Slade (1992a,b) is for � = 1. However, the technique that is used (the so-called
`lace expansion') easily implies the same result for all � 2 (0;1]. Brydges and Spencer (1985) earlier used the
same technique to prove (0.3-4) for d � 5 and � su�ciently small.

5Note that (0.5) and (0.8) imply (0.3) with �(1) = 1 and D(�;1) = [��(�)]2.
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Let (�(r; �); �r;�) be the unique solution of the largest eigenvalue problem 6

Ar;�� = �� (� > 0; � 2 l2(N))

k�kl2 = 1; � > 0:
(0:12)

Theorem 3 Fix � 2 (0;1). Let r�(�) 2 (0;1) be the unique solution of

�(r; �) = 1: (0:13)

Then

1

��(�)
= [ @

@r
�(r; �)]

r=r�(�)
(0.14)

���(k) = [
X
i;j2N

i+j�1=k

�r;�(i)Ar;�(i; j)�r;�(j)]r=r�(�) (k 2 N):

The representation in Theorem 3 is not easy to manipulate, which is why precise analytical
estimates of ��(�) and ��� are hard to get. For instance, the intuitively appealing conjecture
that � ! ��(�) is increasing still remains open (see Greven and den Hollander (1993)).
However, it is easy to get numerical estimates (see section 0.3). Moreover, we shall see that
(0.13-14) provide a good starting point for carrying out a scaling analysis as � # 0 (see sections
0.4-5), which is the main topic of the present paper.

0.3 Numerical estimates of r�(�) and ��(�)

Table 1 below lists some numerical estimates of r�(�) and ��(�) obtained from (0.13-14), based
on a 300�300 truncation of Ar;� de�ned in (0.10). We have used a standard iteration method
to estimate the largest eigenvalue and corresponding eigenvector for a range of r; �-values.

� ��
2
3 r�(�) ��

1
3 ��(�)

2 1:696 0:793
0:5 1:730 1:055
10�2 2:011 1:10938
10�3 2:098 1:10930
10�4 2:144 1:10886
10�5 2:168 1:10910
10�6 2:179 1:10924

Table 1

There is ample evidence for the asymptotic behavior r�(�) � a��
2
3 and ��(�) � b��

1
3 (� # 0),

with estimates a� = 2:19� 0:01 and b� = 1:109� 0:001:

6Ar;� : l2(N) 7�! l2(N) is positive, self-adjoint and compact for all r 2 R; � > 0. Both (r; �) ! �(r; �)
and (r; �) ! �r;� are analytic. Moreover, r ! �(r; �) is strictly increasing and log-convex, �(0; �) < 1 and
�(1; �) =1 for every � > 0 (see Greven and den Hollander (1993)).
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The value of ��(�) has been computed by making use of the identity

1
��(�)

=
P

k2N k�
�
�(k)

= 2[Pi2N i�
2
r�(�);�(i)]� 1

(0:15)

(Greven and den Hollander (1993)). Since �r;� is easier to estimate than @
@r
�(r; �), the relation

in (0.15) allows for better accuracy than (0.14).

0.4 Main results

The goal of this paper is to turn the numerical observations in section 0.3 into a mathematical
statement. Our results are formulated in Theorems 4-7 below.

1. Our main scaling theorem reads:

Theorem 4 There exist a�; b� 2 (0;1) and �� 2 f� 2 L1(R+) : k�kL1 = 1; � > 0g such that
as � # 0

��
2
3 r�(�) ! a�

��
1
3 ��(�) ! b�

��
1
3���(d���

1
3 e) !L1 ��(�):

(0:16)

2. The limits a�; b� and �� in Theorem 4 can be identi�ed in terms of the following Sturm-
Liouville problem. For a 2 R, let La be the di�erential operator de�ned by

(Lax)(u) = (2au� 4u2)x(u) + x0(u) + ux00(u) (x 2 C1(R+)): (0:17)

In section 5 we shall show that the largest eigenvalue problem

Lax = �x (� 2 R; x 2 L2(R+)\ C1(R+))
(i) kxkL2 = 1; x > 0
(ii)

R1
0 fu2[x(u)]2+ u[x0(u)]2gdu <1

(0:18)

has a unique solution (xa; �(a)) with the following properties:

(i) a! �(a) is analytic, strictly increasing and strictly convex on R
(ii) �(0) < 0; lima"1 �(a) =1 and lima#�1 �(a) = �1
(iii) a! xa is analytic as a map from R to L2(R+):

(0:19)

The main part of our analysis to prove Theorem 4 will revolve around the following theorem,
which is proved in sections 2-5:

Theorem 5 Fix a 2 R. As � # 0

��
1
3 [�(a�

2
3 ; �)� 1] ! �(a)

��
1
6 �

a�
2
3 ;�

(d��� 1
3 e) !L2 xa(�):

(0:20)

We shall show in section 6 that (0.20) identi�es the limits in Theorem 4 as follows:

5



Theorem 6 a�; b� and �� are given by

a� is the unique solution of �(a) = 0
1
b�

= �0(a�)
��(�) = 1

2 [x
a�(12 �)]2:

(0:21)

3. The analysis in section 5 of the Sturm-Liouville problem will lead to the following additional
properties:

Theorem 7 (i) u! xa
�
(u) is analytic and strictly decreasing on R+

0 = [0;1).
(ii) u! u d

du
xa

�
(u) is unimodal with a minimum at u = 1

2a
�.

(iii)

lim
u!1

u�
3
2 log xa

�
(u) = �4

3
: (0:22)

(iv)
1

b�
= 2

Z 1

0
u[xa

�
(u)]2du: (0:23)

Theorems 4-7 are proved in sections 2-6. Section 1 contains preparations.
Our result ��(�) � b��

1
3 implies that the speed is not right-di�erentiable at � = 0. Thus

the limit of weak repellence cannot be treated by perturbation type arguments (i.e., by doing
an expansion of (0.1-2) for small �).

0.5 Numerical estimates of a�; b� and ��

Let ya;� be the unique power series solution of Lay = �y with ya;�(0) = 1. We shall see in
section 5 that this power series has in�nite radius of convergence and has coe�cients which
satisfy a simple recurrence relation (see (5.23) below). Moreover, we shall see that:

(i) �(a) is simple
(ii) Sa = f� 2 R : ya;� 2 L2(R+)g is a countable set which has �(a) as a maximum
(iii) � =2 Sa : limu!1 ya;�(u) = �1
(iv) � 2 Sa; � 6= �(a) : ya;�(u) < 0 for some u > 0
(v) ya;�(a) = xa, the monotone solution of (0.18).

Properties (i)� (v) give us a way to estimate a� and xa
�
. Namely, put � = 0 and consider

ya;0, the unique power series solution of Lay = 0 (a 2 R). Since a� is the unique value of a
for which ya;0 2 L2(R+) and ya;0 � 0, we can vary a and tune into a� by looking at the tail
behavior and the sign of ya;0. It turns out that this method is very sensitive indeed and that
a� can be estimated by a� = 2:189�0:001. For a outside this interval it was found that either
ya;0(u) < 0 for some u 2 [0; 3], or u! ya;0(u) not monotone on u 2 [0; 3].

[Figure 1]

Figure 1 compares xa
�
with the numerical estimates in section 0.3. The solid line is

u ! ya;0(u)=kya;0kL2 for a = 2:189. The dots are the values of ��
1
6 �r�(�);�(du��

1
3 e) for

� = 10�4 and du�� 1
3 e = 1; : : : ; 64. The agreement is excellent. (For � = 10�5 and � = 10�6

all dots were found to lie on the solid line within printing precision.)
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Pick a = 2:189. Since ya;0 is an approximation of xa
�
, we can estimate 1

b�
by the integral

2
R1
0 u[ya;0(u)]2du (recall (0.23)). However, we have only computed ya;0(u) for u 2 [0; 3] and

it turns out that this is not enough to get a good estimate of b� up to the third decimal. A
better way is to use (0.15) and estimate

1

b�
� 2�

2
3

X
i2N

i[ya;0(i�
1
3 )]2 � �

1
3 : (0:24)

This gives b� = 1:109� 0:001.

0.6 The Edwards model

Westwater (1984) studies Brownian motion on R with self-repellence, i.e., the Edwards model
where (0.1) is replaced by

d�gT
d�T

((Wt)0�t�T) =
1

Zg
T

exp [� g
Z T

0
ds

Z T

0
dt �(Ws �Wt)]: (0:25)

Here �T is the Wiener measure on Brownian motion paths (Wt)0�t�T , � the Dirac-function,
g 2 [0;1) the repellence parameter and Z

g
T the normalizing constant. 7 We give two

properties showing that the Edwards model arises as the weak interaction limit of the Domb-
Joyce model.

Property 1 For every g 2 [0;1)

Qgn
� 3
2

n ((n� 1
2Sdtne)0�t�1 2 �) ) �g1((Wt)0�t�1 2 �) as n!1: (0:26)

Proof. See Brydges and Slade (1994) Theorem 1.3. The double sum in (0.1) equals �(n+1)+P
x `

2
n(x) (recall (0.7)), of which the �rst term may be absorbed into the normalizing constant

Z�
n in (0.2). The key point is that n�

3
2
P

x `
2
n(x) under the law Pn converges to

R
R
^̀2
1(x)dx

under the law �1 (recall footnote 7). This immediately implies (0.26). The analogous for
T 6= 1 is obvious. 2

Westwater (1984) proves the following result which is analogous to Theorems 1 and 3:

For every g 2 [0;1)

lim
T!1

�gT(j
1

T
jWT j � �̂�(g)j � �) = 1 for every � > 0; (0:27)

where

�̂�(g) = [ @
@�
E(g; �)]

�=0
(0:28)

with E(g; �) the smallest eigenvalue in L2(R+) of the operator L̂g;� given by

(L̂g;�y)(v) = [gv2+ �v�2 � 1

2
v�1(

d2

dv2
+

1

4
v�2)v�1]y(v): (0:29)

(The term between round brackets equals v
1
2�

(2)
radv

� 1
2 with �

(2)
rad the 2-dimensional Laplace

operator.)

7The double integral in (0.25) should be read as
R
R
^̀2
T (x)dx, where ^̀

T (x) =
R T
0
dt �(Wt � x) is the density

of the occupation time measure w.r.t. Lebesgue measure.
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Property 2 For every g 2 [0;1)

E(g; 0) = a�g
2
3

[ @
@�
E(g; �)]

�=0
= b�g

1
3 ;

(0:30)

with a�; b� the same constants as in Theorems 4 and 6.

Proof. Take the eigenvalue problem

(L̂g;�y)(v) = E(g; �)y(v): (0:31)

Substitute into (0.31) the following change of variables:

y(v) = v
1
2x(12g

1
3 v2)

u = 1
2g

1
3 v2:

(0:32)

Then, after a small computation, we obtain the Sturm-Liouville problem in (0.17-18)

(Lax)(u) = �x(u); (0:33)

with
a = g�

2
3E(g; �)

� = g�
1
3�:

(0:34)

Think of (0.34) as a parametrization of the curve a ! �(a) in terms of �. Recalling the
de�nition of a�; b� in (0.21), we now get from (0.33-0.34) that

�(a�) = 0, a� = g�
2
3E(g; 0) (0:35)

and

[ @
@�
E(g; �)]

�=0
= g�

1
3 [ @

@�
E(g; �g

1
3 )]

�=0

= g�
1
3 [ @

@�
(a(�)g 2

3)]
�=0

= g
1
3a0(0)

= g
1
3 1
�0(a�)

= g
1
3 b�;

(0:36)

where �! a(�) is the inverse function of a! �(a). 2

Properties 1 and 2 show that Theorems 4 and 6 connect up nicely with the Edwards
model.
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We close this section with a heuristic explanation of the power 1
3 in our result ��(�) �

b��
1
3 (� # 0). First, by Brownian scaling

E
�
gT

3
2

1

(W 2
1 ) =

1

T
E�

g
T
(W 2

T ): (0:37)

Since, according to (0.27),

[�̂�(g)]2 = lim
T!1

1

T 2
E�

g
T
(W 2

T ); (0:38)

it follows that
�̂�(g) = g

1
3 �̂�(1): (0:39)

Next, according to Theorem 1,

[��(g)]2 = lim
n!1

1

n2
EQ

g
n
(S2

n): (0:40)

Moreover, by Property 1 we know that for g; T �xed

1

n
E
Q
g(Tn )

3
2

n

(S2
n) � E

�
gT

3
2

1

(W 2
1 ) (n!1): (0:41)

Now, if we assume that (0.41) continues to hold for g �xed and T = n, then by using (0.40-41)
resp. (0.37-38) we arrive at

[��(g)]2 � 1
n2
EQ

g
n
(S2

n)

� E
�
gT

3
2

1

(W 2
1 )

= 1
T 2E�

g

T
(W 2

T )

� [�̂�(g)]2 (T = n!1):

(0:42)

The above argument has uniformity problems because (0.39) and (0.42) would imply

��(g) = g
1
3 ��(1) for all g. However, this cannot be true because ��(g) � 1 for all g. Never-

theless, it explains the power 1
3 without using the explicit solution.

1 Preparations

In this section we formulate the functional analytic framework in which we are going to
approach our scaling theorem. Section 1.1 shows that our key result, Theorem 5 in section
0.4, is equivalent to convergence of a variational problem involving a certain functional F a

�

to a variational problem involving some limit functional F a (Lemma 1 and Proposition 1
below). Section 1.2 shows that this convergence holds when F a

� epi-converges to F a and
certain compactness properties are satis�ed (Proposition 2 below). In this section we also
formulate the main steps that have to be checked in order to prove these facts (Proposition 3
below). In section 1.3 we collect some properties of the matrix P , de�ned in (0.11), that will
be needed in the proofs.
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1.1 A variational representation

Rayleigh's formula for the pair (�(r; �); �r;�) de�ned in (0.12) reads

(i) �(r; �) = max
y2l2(N);y�0;

kyk
l2�1

hy; Ar;�yil2

(ii) �r;� is the unique maximizer.

(1:1)

In anticipation of the scaling suggested by Table 1, we pick r = a�
2
3 (a 2 R) and rewrite (1.1)

in the following form. De�ne the functional F a
� : L2(R+)! R as

F a
� (x) = ��

2
3

Z 1

0
du

Z 1

0
dv x(u)x(v)A

a�
2
3 ;�
(du�� 1

3 e; dv�� 1
3 e)� ��

1
3 kxk2L2 : (1:2)

Lemma 1 For all � > 0

(i) ��
1
3 [�(a�

2
3 ; �)� 1] = max

x2L2(R+);x�0;

kxkL2=1

F a
� (x)

(ii) ��
1
6 �

a�
2
3 ;�

(d��� 1
3 e) is the unique maximizer.

(1:3)

Proof. (i) Fix � > 0. For x 2 L2(R+) de�ne

x̂(i) = ��
1
6

Z i�
1
3

(i�1)�
1
3

x(u)du (i 2 N): (1:4)

Then the �rst term in (1.2) equals ��
1
3 hx̂; A

a�
2
3 ;�
x̂il2 . Hence using (1.1)(i) we may write

��
1
3 [�(a�

2
3 ; �)� 1] = max

y2l2(N);y�0;

kykl2�1

max
x2L2(R+);x�0;

kxkL2=1;x̂=y

F a
� (x): (1:5)

Note that, by Cauchy-Schwarz, we have kx̂kl2 � kxkL2 and so the restrictions kykl2 �
1; kxkL2 = 1; x̂ = y in (1.5) are compatible. Interchange the two maxima in (1.5) to get
the claim.
(ii) Use that kx̂kl2 = kxkL2 i� x(u) = ��

1
6 x̂(i) for u 2 ((i� 1)�

1
3 ; i�

1
3 ]. 2

In sections 2-5 we shall prove:

Proposition 1 As � # 0
(i) max

x2L2(R+);x�0;

kxkL2=1

F a
� (x)! max

x2L2(R+);x�0;

kxkL2=1

F a(x)

(ii) unique maximizer l.h.s. !L2 unique maximizer r.h.s.;

(1:6)

where the limit functional F a : L2(R+)! R is given by

F a(x) =

Z 1

0
f(2au� 4u2)[x(u)]2� u[x0(u)]2gdu; (1:7)

with the understanding that F a(x) = �1 if the integral is not de�ned.

Note that F a(x) = hx;LaxiL2 for all x where both sides are �nite, with La as de�ned in
(0.17).

Lemma 1 and Proposition 1 imply Theorem 5. To prove Proposition 1, we shall need the
notion of epi-convergence, which we next explain.
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1.2 Epi-convergence

Let (X; �) be a metrizable topological space and let Y � X be dense in X . Let

G� : X ! R (� > 0)
G : X ! R:

(1:8)

De�nition 1 The family (G�)�>0 is said to be epi-convergent to G on Y , written

e� lim
�#0

G� = G on Y; (1:9)

if the following properties hold:

(i) 8x� !� x in Y : lim sup�#0G�(x�) � G(x)
(ii) 9x� !� x in Y : lim inf�#0G�(x�) � G(x):

(1:10)

The importance of the notion of epi-convergence is contained in the following proposition:

Proposition 2 Suppose that
(1) e � lim�#0G� = G on Y

(2) 8� > 0 : G� is continuous on X and has a unique maximizer �x� 2 X
(3) 9K � Y such that

(i) K is � -relatively compact in X
(ii) G has a unique maximizer �x 2 K
(iii) 9(x�)�>0 � K such that x� � �x� !� 0 and G�(x�)� G�(�x�)! 0 as � # 0:

Then as � # 0
sup
x2X

G�(x)! sup
x2X

G(x) (1:11)

�x� !� �x: (1:12)

Proof. See Attouch (1984) Theorem 1.10 and Proposition 1.14. 2

Remark: Epi-convergence di�ers from pointwise convergence: lim�#0G�(x) = G(x) for all
x 2 Y . Namely, (1.10)(i),(ii) are weaker in the sense that they require only inequalities, but
stronger in the sense that they involve limits in neighborhoods rather than single points. Epi-
convergence is a unilateral notion. We have chosen the direction that is suitable for suprema
rather than in�ma.

Fix a 2 R. We are going to apply Proposition 2 with the following choices:

X = fx 2 L2(R+) : x � 0; kxkL2 = 1g (1.13)

Y = X \ C1(R+
0 )

� = topology induced by k � kL2
K = Ka

C = fx 2 Y : F a(x) � �Cg
G� = F a

�

G = F a

with F a
� and F a de�ned in (1.2) and (1.7) and with C large enough so that Ka

C 6= ;. Our
main result is:

Proposition 3 Assumptions (1)-(3) in Proposition 2 hold for the choice in (1.13).

We prove Assumption (1) in section 2, (3)(i),(ii) in section 5 and (3)(iii) in section 3. We
already know (2) to be true because of Lemma 1(ii).

Proposition 3 proves Proposition 1 in section 1.1.
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1.3 Properties of P

We list a few identities and estimates for the matrix P , de�ned in (0.11), that will be needed
later on.

Lemma 2 For every i � 1; k � 0

X
j�1

(i+ j + k � 2)!

(i+ j � 2)!
P (i; j) = 2k

(i+ k � 1)!

(i� 1)!
: (1:14)

Proof. Elementary. Use that the summands in the l.h.s. can be rewritten as P (i + k; j)
times the r.h.s. Then use that

P
j�1 P (i+ k; j) = 1. 2

Lemma 3 (i) For i; j !1 such that i� j = o((i+ j)
2
3 )

P (i; j) = f 1p
2�(i+ j)

exp [� (i� j)2
2(i+ j)

]g[1 + O((i+ j)�
1
3 )]: (1:15)

(ii) There exist 0 < c1 < c2 <1 such that

exp [� c2 (i� j)
2

(i+ j)
] � P (i; j) � exp [� c1

(i� j)2

(i+ j)
] for all i; j � 1: (1:16)

Proof. Via Stirling's formula. See also R�ev�esz (1990) Theorem 2.8. 2

Lemma 2 allows us to compute the following moments, which we shall need in section 2:

P
j�1(i+ j � 1)nP (i; j) = 2i (n = 1)

4i2 + 2i (n = 2)
8i3 + 12i2 + 6i (n = 3)
16i4 + 48i3 + 72i2 + 32i (n = 4):

(1:17)

Lemma 3(i) is a Gaussian approximation of P , while Lemma 3(ii) shows that P (i; j) is small
away from the diagonal.

Lemma 4 For all i; j � 0 with (i; j) 6= (0; 0)

P (i+ 1; j) + P (i; j + 1)� 2P (i+ 1; j + 1) = 0 (1:18)

with the convention P (i; 0) = P (0; j) = 0.

Proof. Elementary. 2

Lemma 4 will be needed in sections 2 and 3 to obtain monotonicity properties and estimates
of �

a�
2
3 ;�

, the eigenvector of A
a�

2
3 ;�
:

12



2 (F a
� )�>0 is epi-convergent to F

a

In this section we prove Assumption (1) in Proposition 2 for the choice in (1.13).
This section is technically somewhat involved, as it consists of a chain of estimates and

inequalities that are needed to handle the epi-convergence. The proof is contained in Lemmas
5-8 below. Throughout sections 2 and 3 we �x a 2 R and we write the abbreviations F� = F a

� ,

F = F a; A� = A
a�

2
3 ;�
; �(�) = �(a�

2
3 ; �), �� = �

a�
2
3 ;�

.

We begin by splitting F�; F into two parts, namely (recall (1.2) and (1.7))

F� = F 1
� + F 2

�

F = F 1 + F 2
(2:1)

with
F 1
� (x) = ��

2
3
R1
0 du

R1
0 dv x2(u)[A� � P ](du�� 1

3 e; dv�� 1
3 e)

F 2
� (x) = �1

2�
� 2

3
R1
0 du

R1
0 dv [x(u)� x(v)]2A�(du�� 1

3 e; dv�� 1
3 e)

(2:2)

and
F 1(x) =

R1
0 du (2au� 4u2) x2(u)

F 2(x) = � R10 du u[x0(u)]2:
(2:3)

Lemma 5 8x� !L2 x in X : lim sup�#0 F
1
� (x�) � F 1(x):

Proof. Abbreviate
e�(i; j) = a�

2
3 (i+ j � 1)� �(i+ j � 1)2; (2:4)

which is the exponent appearing in A�(i; j), i.e., A� = ee�P (see (0.10)). We note that e�
has the following properties:

(i) e�(i; j)� 0 for i � a��
1
3 ; j � 1

(ii) e�(i; j)� 1
4a

2�
1
3 for i; j � 1:

(2:5)

Hence, for small enough � and large enough N

F 1
� (x�) � ��

2
3
RN
0 du

R1
0 dv x2�(u)

�fe�(du�� 1
3 e; dv�� 1

3 e) + e2�(du��
1
3 e; dv�� 1

3 e)gP(du�� 1
3 e; dv�� 1

3 e)
(2:6)

(use that et � 1 + t + t2 for t � 1 and t � 0). The integral over v can be transformed into
the following sum:

�
1
3

X
j�1

fe�(i; j) + e2�(i; j)gP (i; j) with i = du�� 1
3 e: (2:7)

Using (1.17), we can carry out the summation. Namely,P
j�1 e�(i; j)P (i; j) = a�

2
3 (2i)� �(4i2 + 2i)

P
j�1 e

2
�(i; j)P (i; j) = a2�

4
3 (4i2 + 2i)� 2a�

5
3 (8i3 + 12i2+ 6i)

+�2(16i4+ 48i3 + 72i2 + 32i):

(2:8)
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Since i = du�� 1
3 e � (N+1)��

1
3 , the contribution to (2.6) of the second sum can be estimated

above by

�
1
3 (6a2(N + 1)2 + 168(N + 1)4)

Z N

0
du x2�(u) = O(� 1

3 ); (2:9)

where we use that kx�kL2 = 1. The error term is uniform in x� for �xed N . Hence we get

F 1
� (x�) � ��

1
3
RN
0 du x2�(u)

�fa� 2
3 (2du�� 1

3 e)� �(4du�� 1
3 e2 + 2du�� 1

3 e)g+ O(� 1
3 )

=
RN
0 du x2�(u)(2au� 4u2) + O(� 1

3 ):

(2:10)

Now let � # 0. Then we obtain, recalling that x� !L2 x,

lim sup�#0F
1
� (x�) � lim sup�#0

RN
0 du x2�(u)(2au� 4u2)

=
RN
0 du x2(u)(2au� 4u2):

(2:11)

Finally, let N !1 and note that the r.h.s. of (2.11) converges to F 1(x). 2

Lemma 6 8x 2 X : lim inf�#0 F
1
� (x) � F 1(x).

Proof. Estimate

F 1
� (x) � ��

2
3

Z 1

0
du

Z 1

0
dv x2(u)e�(du��

1
3 e; dv�� 1

3 e)P(du�� 1
3 e; dv�� 1

3 e) (2:12)

(use that et � 1+ t for all t). The integral over v is �
1
3 times the �rst sum computed in (2.8)

with i = du�� 1
3 e. Hence

F 1
� (x) � ��

1
3
R1
0 du x2(u)

�fa� 2
3 (2u��

1
3 )� �(4(u��

1
3 + 1)2 + 2(u��

1
3 + 1))g

=
R1
0 du x2(u)(2au� 4u2) +O(� 1

3 ):

(2:13)

Now let � # 0. Then the claim follows. 2

Lemma 7 8x� !L2 x in X with x 2 Y : lim sup�#0F
2
� (x�) � F 2(x).

Proof. The proof is in Steps 1-3 below.

STEP 1 For every � > 0 and N;M �nite

F 2
� (x�) � �1

2
(1 + O(� 1

9 ))

Z N

�
du

Z M

�M
dw [ 1

�
1
6

fx�(u)� x�(u+ w�
1
6 )g]

2
N2u(w); (2:14)

where N2u is the Gaussian with mean zero and variance 2u.
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Proof. Pick � > 0 and N;M �nite. Then

F 2
� (x�) � �1

2
��

2
3 e�9N2�

1
3

Z N

�
du

Z u+M�
1
6

u�M�
1
6

dv [x�(u)� x�(v)]2P(du��
1
3 e; dv�� 1

3 e); (2:15)

where we use that A� = ee�P with e�(du�� 1
3 e; dv�� 1

3 e) � �9N2�
1
3 on the integration area

(see (2.4)). Put w = ��
1
6 (v � u). Then by Lemma 3(i)

F 2
� (x�) � �1

2�
� 2

3 e�9N2�
1
3
RN
� du

RM
�M dw �

1
6 [x�(u)� x�(u+ w�

1
6 )]2

�f 1q
2�2u��

1
3

exp [�w2

4u ]g(1 + o(�
1
9 ));

(2:16)

where the error term is uniform on the integration area. Collecting all the powers of �, we
get the claim. 2

To investigate the limit of the integral in (2.14) as � # 0, we proceed with a technical fact
contained in Steps 2 and 3 below. Let Th be the translation operator de�ned by Thx�(�) =
x�(�+ h).

STEP 2 For every 0 < a < b <1

lim inf
h!0;�#0

Z b

a

f 1
h
[Thx� � x�](u)g

2 �
Z b

a

[x0(u)]2 du: (2:17)

Proof. Since (2.17) is trivial when the liminf is in�nite, we may assume that the liminf
is �nite, say L. Pick any subsequence hn; �n along which the liminf is reached, and put
yn = 1

hn
[Thnx�n � x�n ]. Then, because kynkL2[a;b] � L + 1 < 1 for n large enough, it

follows from the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15) that there exists a
subsequence (ynk ) and a y 2 L2[a; b] such that

ynk ! y weakly in L2[a; b] (k!1): (2:18)

Thus, for any � 2 C1
c (a; b) = f� 2 C1(a; b) : supp(�) � (a; b)g

Z b

a

ynk (u)�(u)du!
Z b

a

y(u)�(u)du (k! 1): (2:19)

Next, the l.h.s. of (2.19) can be rewritten as

R b
a ynk (u)�(u)du =

R b
a

1
hn
[Thnx�n � x�n ](u)�(u)du

=
R b+hn1fhn>0g

a+hn1fhn<0g
x�n(u)

1
hn
[T�hn�� �](u)du

=
R b
a x�n(u)

1
hn
[T�hn�� �](u)du+ o(1) (n!1):

(2:20)

The last equality holds because kx�nkL2(R+) = 1 and j 1
hn
[T�hn���]j � maxu2R+ j�0(u)j <1:

Let n!1 and note that by the latter property

1

hn
[T�hn�� �]! ��0 pointwise and weakly in L2[a; b]: (2:21)
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Together with x�n !L2 x, (2.21) implies that the last integral in (2.20) tends to
R b
a x(u)[��0(u)]du =R b

a x0(u)�(u)du (recall from (1.13) that x 2 Y � C1(R+
0 )). Since C

1
c (a; b) is dense in L

2[a; b]
in the weak topology, we thus have from (2.19)

y = x0 a:e: on [a; b]: (2:22)

The claim now follows by combining (2.18) and (2.22), and noting that k � kL2[a;b] is lower
semicontinuous in the weak topology: L = limk!1 kynkkL2[a;b] � kykL2[a;b] = kx0kL2[a;b]. 2

STEP 3 For every � > 0 and N �nite, every f : R+ ! R
+ bounded and continuous, and

every w 2 R

lim inf
�#0

Z N

�

du f(u)[ 1

�
1
6

fx�(u)� x�(u+ w�
1
6 )g]

2
�
Z N

�

du f(u)[wx0(u)]2: (2:23)

Proof. Pick any sequence (fn) of functions on R+ such that

(i) fn(u) = fn;k for cn;k�1 < u � cn;k (k = 1; : : : ; n; cn;0 = �; cn;n = N)
(ii) fn � f
(iii) fn " f in sup-norm on [�; N ] as n!1:

(2:24)

Then, by (i) and (ii),

l:h:s: (2:23) � lim inf�#0
RN
� du fn(u)[ 1

�
1
6
fx�(u)� x�(u+ w�

1
6 )g]

2

�Pn
k=1 fn;k lim inf�#0

R cn;k
cn;k�1

du [ 1

�
1
6
fx�(u)� x�(u+ w�

1
6 )g]

2

�Pn
k=1 fn;k

R cn;k
cn;k�1

du [wx0(u)]2

=
RN
� du fn(u)[wx

0(u)]2;

(2:25)

where in the third inequality we use (2.17) with h = w�
1
6 and a = cn;k�1; b = cn;k (k =

1; : : : ; n). Now let n!1 and use (iii) together with Fatou to get the claim in (2.23). 2

Using (2.23) we can now �nish the proof of Lemma 7. Indeed, continuing with (2.14), we
get

lim sup�#0F
2
� (x�) � �1

2

RM
�M dw

RN
� du N2u(w)[wx

0(u)]2

= �1
2

RN
� du [x0(u)]2

RM
�M dw w2N2u(w):

(2:26)

Finally, let M ! 1 and note that
R1
�1 dw w2N2u(w) = 2u. Then let N ! 1 and � # 0 to

get the claim in Lemma 7. 2

Lemma 8 8x 2 Y such that
R1
0 u2x2(u)du <1 : lim inf�#0 F 2

� (x) � F 2(x).

Proof. The double integral de�ning F 2
� (x) is split into three parts, which we estimate sepa-

rately in Steps 1-3 below.
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STEP 1

lim
�#0

�1

2
��

2
3

Z 1

0
du

Z 1

0
dv 1

fu>��
1
6 or v>�

� 1
6 g
[x(u)�x(v)]2A�(du�� 1

3 e; dv�� 1
3 e) = 0: (2:27)

Proof. First consider the part where u > ��
1
6 ; v � 0. By (2.5)(ii) and Lemma 3(ii)

�1
2�

� 2
3
R1
�
�1
6
du
R1
0 dv [x(u)� x(v)]2A�(du�� 1

3 e; dv�� 1
3 e)

� �1
2�

� 2
3 e

1
4a

2�
1
3f
R1
�
� 1
6
du
R1
1
2�

�1
6
dv [x(u)� x(v)]2P(du�� 1

3 e; dv�� 1
3 e)

+
R1
�
� 1
6
du
R 1

2�
�1
6

0 dv [x(u)� x(v)]2e�c1�
�1
3 (u�v)2

(u+v) g

= �1
2�

� 2
3 e

1
4a

2�
1
3f
R1
�
� 1
6
du
R1
1
2�

�1
6
dv [x(u)� x(v)]2P(du�� 1

3 e; dv�� 1
3 e)

+O(e� 1
12 c1�

�1
2 )g;

(2:28)

where c1 is the constant in Lemma 3(ii). To get the error term we have used that (u �
v)2=(u+ v) � 1

3(u� v) on the integration area. The double integral in the r.h.s. of (2.28) can
be bounded above byR1

1
2
�
� 1
6
du
R1
1
2
�
�1
6
dv [x(u)� x(v)]2P(du�� 1

3 e; dv�� 1
3 e)

� 2
R1
1
2
�
�1
6
du x2(u)

R1
1
2
�
� 1
6
dv P(du�� 1

3 e; dv�� 1
3 e)

� 2�
1
3
R1
1
2
�
� 1
6
du x2(u):

(2:29)

Hence
r:h:s: (2:28) � �[1 +O(� 1

3 )]��
1
3
R1
1
2
�
�1
6
du x2(u)

� �4[1 + O(� 1
3 )]
R1
1
2�

�1
6
du u2x2(u)

= o(1):

(2:30)

By symmetry, the same estimate holds for the part with u � 0; v > ��
1
6 . 2

STEP 2

lim
�#0

�1

2
��

2
3

Z 1

0
du

Z 1

0
dv 1

fu;v���
1
6 ;ju�vj>�

1
24 g

[x(u)� x(v)]2A�(du�� 1
3 e; dv�� 1

3 e) = 0:

(2:31)

Proof. By (2.5)(ii) and Lemma 3(ii), the integral in the l.h.s. of (2.31) can be bounded below
by

�1
2�

� 2
3 e

1
4 a

2�
1
3 R ��1

6

0 du
R �� 1

6

0 dv 1
fju�vj>�

1
24 g

[x(u)� x(v)]2e
�c1�

� 1
3 (u�v)2

(u+v)

� �1
2�

� 2
3 e

1
4a

2�
1
3 e�

1
2 c1�

� 1
12 R ��1

6

0 du
R ��1

6

0 dv [x2(u) + x2(v)]

= O(e� 1
4 c1�

� 1
12 );

(2:32)
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where c1 is the constant in Lemma 3(ii). 2

STEP 3

lim inf�#0�1
2�

� 2
3
R ��1

6

0 du
R �� 1

6

0 dv 1
fju�vj��

1
24 g

[x(u)� x(v)]2A�(du�� 1
3 e; dv�� 1

3 e)

= lim inf�#0 F
2
� (x)

� F 2(x):
(2:33)

Proof. By (2.5)(ii) and the mean value theorem we have

�1
2�

� 2
3
R ��1

6

0 du
R ��1

6

0 dv 1
fju�vj��

1
24 g

[x(u)� x(v)]2A�(du�� 1
3 e; dv�� 1

3 e)

� �1
2�

� 2
3 e

1
4a

2�
1
3 R1

0 du
R1
0 dv 1

fju�vj��
1
24 g

[(u� v)x0(�uv)]
2P(du�� 1

3 e; dv�� 1
3 e)
(2:34)

for some �uv between u and v. Let, as in (2.34),

I�(u) = ��
2
3

Z 1

0
dv 1

fju�vj��
1
24 g

(u� v)2P(du�� 1
3 e; dv�� 1

3 e): (2:35)

Then, because x 2 C1(R+
0 ), it follows that

r:h:s: (2:34) = �1

2
e
1
4a

2�
1
3

Z 1

0
du I�(u)[x

0(�u)]
2

(2:36)

for some �u 2 [u� � 1
24 ; u+ �

1
24 ] \ R+

0 .
Next, using (1.17) we can estimate

I�(u) � ��
2
3
R1
0 dv (u� v)2P(du�� 1

3 e; dv�� 1
3 e)

= �
1
3
P

j�1 P(du��
1
3 e; j)f(u�� 1

3 )2 � (u��
1
3 )(2j � 1) + (j2 � j + 1

3)g

= �
1
3f(u��

1
3 )2 � (u��

1
3 )(2du�� 1

3 e + 1) + (du�� 1
3 e2 + 3du�� 1

3 e+ 1
3)g

� 2u+ 13
3 �

1
3 :

(2:37)

Combining (2.34) and (2.36-37) with the estimates obtained in Steps 1 and 2, we now have

F 2
� (x) = l:h:s: (2:34) + o(1) � �(1 +O(� 1

3 ))

Z 1

0
du (u+

13

6
�

1
3 )[x0(�u)]

2 + o(1): (2:38)

Next, pick � > 0 and de�ne

z�k = sup
(k�1)�<u�k�

u[x0(u)]2 (k � 1): (2:39)

18



Since �u 2 [u� � 1
24 ; u+ �

1
24 ] \ R+

0 , it follows that for � small enoughR1
0 du (u+ 13

6 �
1
3 )[x0(�u)]

2

� (1 + �)
R1
� du �u[x

0(�u)]
2 + 2�

R �
0 du [x0(�u)]

2

� (1 + �)
P

k�1(�z
�
k + 2�

1
24 maxfz�k; z�k+1g) + 2�

R �
0 du supv�2�[x

0(v)]2

� (1 + �)(1 + 4��1�
1
24 )
P

k�1 �z
�
k + 2�2 supv�2�[x

0(v)]2:

(2:40)

Now let � # 0 followed by � # 0. Because x 2 C1(R+
0 ), we have

lim
�#0

X
k�1

�z�k =
Z 1

0
u[x0(u)]2 du = �F 2(x) (2.41)

lim
�#0

sup
v�2�

[x0(v)]2 = [x0(0+)]2 <1 (2.42)

and so
lim inf
�#0

r:h:s: (2:38) � F 2(x): (2:43)

2

Lemmas 5-8 show that F� epi-converges to F on Y . To see why, recall (2.1) and note that
if
R1
0 u2x2(u)du =1, then F (x) � F 1(x) = �1. This proves Assumption (1) in Proposition

2 as was claimed in Proposition 3.

3 An approximate maximizer of F a
�

Again we �x a 2 R and suppress it from the notation. Like section 2, this section is technically
somewhat involved, as it consists of a chain of estimates and inequalities that are needed to
handle the approximation.

De�ne the scaled form of the eigenvector �� of A� as

���(u) = ��
1
6 ��(i) for (i� 1)�

1
3 < u � i�

1
3 (i � 1): (3:1)

By Lemma 1, ��� is the unique maximizer of F� . However, ��� is a step function and therefore
F (���) is not de�ned, i.e., ��� =2 K = fx 2 X : F (x) � �Cg (recall (1.13)). Thus, to apply
Proposition 2, we must �nd an approximation of ��� that lies in K and approximates F�(���)
(i.e., we must prove Assumption 3(iii) in Proposition 2).

Proposition 4 9(~��) � K such that as � # 0
(i) k��� � ~��kL2 ! 0
(ii) 0 � F�(���)� F�(~��)! 0:

(3:2)

The proof of Proposition 4 is contained in Lemmas 9-13 below. We shall see that it su�ces
to pick for ~�� the following linear and renormed interpolation of ���:

~�� = �̂�k�̂�k�1
L2

�̂�(u) = ��
1
6f��(i) + (u��

1
3 � i)(��(i)� ��(i� 1))g for (i� 1)�

1
3 < u � i�

1
3 (i � 1):

(3:3)
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(put ��(0) = ��(1)).
We begin with two lemmas showing what is needed about �� in order to prove Proposition

4. Abbreviate ���(i) = ��(i)� ��(i� 1) (i � 1).

Lemma 9 (i) k��� � ~��kL2 � k���kl2 + �2�(0):

(ii) 0 � F�(���)� F�(~��) � �(�)��
1
3 k���k2l2 [1� 1

6k���k2l2 + 1
2�

2
�(0)]

�1:

Proof. (i) From (3.1) and (3.3) we compute

k��� � �̂�k2L2 =
1

3
k���k2l2 (3.4)

k�̂�k2L2 = k��k2l2 � h��;���il2 +
1

3
k���k2l2 : (3.5)

Using the relation h��;���il2 = 1
2k���k2l2 � 1

2�
2
�(0), together with (3.4-5) and k��kl2 = 1, we

get
k��� � ~��kL2 � k��� � �̂�kL2 + k�̂� � ~��kL2

= k��� � �̂�kL2 + jk�̂�kL2 � 1j

= (13k���k2l2)
1
2 + j[1� 1

6k���k2l2 + 1
2�

2
�(0)]

1
2 � 1j

� (13)
1
2 k���kl2 + 1

6k���k2l2 + 1
2�

2
�(0)

� ((13)
1
2 + 1

3)k���kl2 + 1
2�

2
�(0)

(3:6)

where we use that k���kl2 � 2; �2�(0) � 1.
(ii) From the de�nition of F� in (1.2) we get, after substitution of (3.1) and (3.3),

F�(���) = ��
1
3 h��; A���il2 � ��

1
3 k��k2l2

F�(�̂�) = ��
1
3 h(�� � 1

2���); A�(�� � 1
2���)il2 � ��

1
3 k�̂�k2L2 :

(3:7)

It follows from (3.7) that

F�(���)� F�(~��) = F�(���)� 1
k�̂�k

2
L2
F�(�̂�)

= ��
1
3 1
k�̂�k

2
L2
f1

3�(�)k���k2l2 � 1
4h���; A����il2g;

(3:8)

where in the second equality we use the symmetry of A� and the relations A��� = �(�)��
and (3.5). Finally, observe that jh���; A����il2 j � hj���j; A�j���jil2 � �(�)k���k2l2 to get
the claim. 2

Lemma 10

F (~��) � �2p5jaj(� 2
3
P

i�1 i
2�2�(i))

1
2 [1� 1

6k���k2l2 + 1
2�

2
�(0)]

� 1
2

+f20� 2
3
P

i�1 i
2�2�(i) + ��

1
3
P

i�1 i��
2
�(i)g[1� 1

6k���k2l2 + 1
2�

2
�(0)]

�1:

(3:9)
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Proof. According to (2.1) and (2.3)

F (�̂�) =

Z 1

0
du f(2au� 4u2) �̂2�(u)� u[�̂ 0�(u)]

2g: (3:10)

Use (3.3) to obtain the estimates

R1
0 du u2�̂2�(u) � �

2
3
P

i�1 i
2maxf�2�(i); �2�(i� 1)g

R1
0 du u[�̂ 0�(u)]

2 � ��
1
3
P

i�1 i��
2
�(i):

(3:11)

Since
R1
0 du u�̂2�(u) � (

R1
0 du u2�̂2�(u))

1
2 k�̂�kL2 , we get the claim because F (~��) = 1

k�̂�k
2
L2

F�(�̂�). 2

Lemmas 9 and 10 set the stage for the proof of Proposition 4. Namely, we now see that
it su�ces to prove the following estimates:

Lemma 11 There exist C1; C2; C3; C4 such that for � small enough

(i)
P

i�1 i
2�2�(i) � C1�

� 2
3

(ii)
P

i�1 i��
2
�(i) � C2�

1
3

(iii) �2�(0) � C3�
1
3 log 1

�

(iv) k���k2l2 � C4�
2
3 log 1

�
:

(3:12)

Indeed, Lemmas 11(iii-iv) and 9(i-ii) imply (3.2), while Lemmas 11(i-ii) and Lemma 10 imply
that F (~��) � �C for � small enough and C su�ciently large, which guarantees that ~�� 2
K = Ka

C .
In the proof of Lemma 11 we shall make use of the following two additional lemmas, the

proof of which is deferred to section 4:

Lemma 12 8� > 0 : ���(i) = ��(i)� ��(i� 1) � 0 for all i � a
2�

� 1
3 .

Lemma 13
lim sup�#0 �

� 1
3 [�(�)� 1] � 1

4a
2

lim inf�#0 �
� 1

3 [�(�)� 1] � 1
2�a

2 � 2
a

(a > 1)
1
�
a� 1

2� � 2 (a � 1):

(3:13)

Proof of Lemma 11(i).

STEP 1 For every � > 0 small enough there exists C5 such that

X
i����

1
2

i2�2�(i) � C5�
� 2

3 for � small enough. (3:14)

Proof. We start with the trivial inequality

1

2

X
i;j

[��(i)� ��(j)]2A�(i; j)� 0: (3:15)
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The l.h.s. of (3.15) can be written out and estimated from above as follows:

[1� �(�)] +
P

i;j �
2
�(i)[A�(i; j)� P (i; j)]

� [1� �(�)] +P
i����

1
2
�2�(i)

P
j [ee�(i;j) � 1]P (i; j)

� [1� �(�)] +P
i����

1
2
�2�(i)

P
j [e�(i; j)+ e2�(i; j)]P (i; j):

(3:16)

For the two inequalities we refer to (2.4-5) (use that et � 1+ t+ t2 for t� 1 and t � 0). The

sum over j has been evaluated in (2.8). Using that i � ���
1
2 , we get

r:h:s: (3:16)

� [1� �(�)] + �
1
3
P

i����
1
2
�2�(i)f2a(i�

1
3 )� (4� 168�2 � 6a�

1
3 )(i�

1
3 )2g: (3:17)

Combining (3.15-17) we arrive at the following inequality:

(4� 168�2 � 6a�
1
3 )�

2
3
P

i����
1
2
i2�2�(i)

� ��
1
3 [1� �(�)] + 2a�

1
3
P

i����
1
2
i�2�(i):

(3:18)

Now, ��
1
3 [1� �(�)] � C6 by Lemma 13. Moreover, by Cauchy-Schwarz

X
i����

1
2

i�2�(i) � (
X

i����
1
2

i2�2�(i))
1
2
: (3:19)

Hence the claim in (3.14) follows for � such that 168�2 < 4. 2

STEP 2 For every � > 0 small enough there exists C7 such thatX
i>��

� 1
2

�2�(i) � C7�
1
3 for � small enough: (3:20)

Proof. Rewrite (3.15) as (recall also (3.16))X
i>��

� 1
2

�2�(i)
X
j

[1� ee� (i;j)]P (i; j)� [1� �(�)] +
X

i����
1
2

�2�(i)
X
j

[ee�(i;j) � 1]P (i; j): (3:21)

Since e�(i; j) � 1
4a

2�
1
3 for i; j � 1 and e�(i; j) � �1

2�
2 for i > ���

1
2 ; j � 1 (see (2.4-5)), we

get

(1� e� 1
2
�2)

X
i>��

� 1
2

�2�(i) � C6�
1
3 + (e

1
4
a2�

1
3 � 1): (3:22)

This implies the claim in (3.20). 2

STEP 3 For every � > 0 there exists C8 such thatX
i>��

� 1
2

i2�2�(i) � C8�
� 2

3 for � small enough. (3:23)
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Proof. Pick i > ���
1
2 and � > 0 arbitrary. Then, using (2.4) and Lemma 3(ii), we see that

there exists C(�) > 0 such that

��(i) = 1
�(�)

P
j A�(i; j)��(j)

= 1
�(�)

P
j e

e�(i;j)P (i; j)��(j)

� 1
�(�)e

� 1
2 �

2P
j P (i; j)��(j)

� (1 + �)e�
1
2 �

2P
j>(1��)i P (i; j)��(j) + O(e�iC(�)):

(3:24)

Using (3.24) we getP
i>��

� 1
2
i2�2�(i) � (1 + �)e�

1
2 �

2P
i>��

� 1
2
i2
P

j>(1��)i ��(i)P (i; j)��(j) + o(1)

� (1+�)
(1��)2 e

� 1
2 �

2P
i>��

� 1
2
d(1� �)ie2�2�(d(1� �)ie) + o(1)

� (1+�)
(1��)3 e

� 1
2 �

2P
i>(1��)���

1
2
i2�2�(i) + o(1)

� (1+�)
(1��)3 e

� 1
2 �

2fP
i>��

� 1
2
i2�2�(i) + �2��1C7�

1
3g+ o(1):

(3:25)

The second and the third inequality use Lemma 12, the fourth uses (3.20) with � replaced by

(1� �)�. Now pick � so small that (1+�)
(1��)3

< e
1
4 �

2
. Then we obtain

(1� e�
1
4 �

2
)
X

i>��
� 1
2

i2�2�(i) � e�
1
4 �

2
�2C7�

� 2
3 + o(1): (3:26)

This proves the claim in (3.23). 2

Steps 1-3 complete the proof of Lemma 11(i). 2

Proof of Lemma 11(ii).

STEP 4 For all �X
i�1

i��2�(i+ 1) =
1

�(�)

X
i;j�1

(i+ j � 1)[1� ee�(i+1;j)�e� (i;j)]��(i)A�(i; j)��(j): (3:27)

Proof. Write outP
i i��

2
�(i+ 1) =

P
i i[��(i+ 1)� ��(i)]

2

=
P

i i[�
2
�(i+ 1) + �2�(i)]� 1

�(�)

P
i;j 2i��(i)A�(i+ 1; j)��(j):

(3:28)

Now substitute the relation (see (0.10-11))

A�(i+ 1; j) = ee�(i+1;j)P (i+ 1; j)

= ee�(i+1;j) i+j�1
2i P (i; j)

= ee�(i+1;j)�e�(i;j) i+j�1
2i A�(i; j):

(3:29)

23



This gives P
i i��

2
�(i+ 1) = r:h:s: (3:27)+

P
i i[�

2
�(i+ 1) + �2�(i)]

� 1
�(�)

P
i;j(i+ j � 1)��(i)A�(i; j)��(j):

(3:30)

Both sums in the r.h.s. are equal to
P

i(2i� 1)�2�(i) and therefore cancel out. 2

STEP 5 For � small enough

1

�(�)

X
i;j�1

(i+ j � 1)[1� ee�(i+1;j)�e�(i;j)]��(i)A�(i; j)��(j) � C9�
1
3 : (3:31)

Proof. By (2.4) we have e�(i+ 1; j)� e�(i; j) = a�
2
3 � �(2i+ 2j � 1). Hence

l:h:s: (3:31) � 1
�(�)

P
i;j�1(i+ j � 1)[e�(i; j)� e�(i+ 1; j)]��(i)A�(i; j)��(j)

� 1
�(�)2�

P
i;j(i+ j)2��(i)A�(i; j)��(j)

� 8�
P

i i
2�2�(i)

(3:32)

(use that et � 1+ t for all t). In the third inequality we use the symmetry of A� and the fact
that kA�kl2 = �(�). The claim now follows from Lemma 11(i). 2

Steps 4-5 complete the proof of Lemma 11(ii). 2

Proof of Lemma 11(iii).

STEP 6

�2�(0) � C10�
1
3 log

1

�
for � small enough: (3:33)

Proof. By Cauchy-Schwarz, we have for every N

��(0) = ��(N)�PN
i=1���(i)

� ��(N) + (
PN

i=1
1
i
)
1
2 (
PN

i=1 i��
2
�(i))

1
2 :

(3:34)

Pick N = d�� 1
2 e. Lemma 11(i) gives ��(d�� 1

2 e) � C1�
1
3 . Together with Lemma 11(ii) and

the estimate
Pd��

1
2 e

i=1
1
i
� log 1

�
, the claim follows. 2

Step 6 completes the proof of Lemma 11(iii). 2

Proof of Lemma 11(iv).

STEP 7 For all �

P
i�1��

2
�(i+ 1) = 2

�(�)

P
i;j

(i;j)6=(1;1)
[1� ee�(i�1;j)�e�(i;j)]��(i)A�(i; j)��(j)

��2�(1)[1� 2
�(�)A�(1; 1)]:

(3:35)
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Proof. By Lemma 4 we have the following relation:

A�(i; j)� A�(i� 1; j) = A�(i; j � 1)�A�(i; j)+ 2A�(i; j)[1� ee�(i�1;j)�e�(i;j)] (3:36)

(note that e�(i� 1; j) = e�(i; j � 1)). Hence

P
i��

2
�(i+ 1) =

P
i[��(i+ 1)� ��(i)]

2

= �2�(1) + 2
P

i�2 ��(i)[��(i)� ��(i� 1)]

= �2�(1) +
2

�(�)

P
i�2

P
j ��(i)[A�(i; j)�A�(i� 1; j)]��(j)

= �2�(1) +
2

�(�)

P
i�2

P
j ��(i)[A�(i; j � 1)� A�(i; j)]��(j)

+ 4
�(�)

P
i�2

P
j [1� ee�(i�1;j)�e� (i;j)]��(i)A�(i; j)��(j):

(3:37)

The third term in the last expression is twice the sum in the r.h.s. of (3.35) except for the
part with i = 1; j � 2. The second term can be rewritten by carrying out the sum over i,
namely (use that A(i; 0) = 0)

j = 1 : � 2
�(�)

P
i�2 ��(i)A�(i; 1)��(1)

= �2�2�(1) + 2
�(�)�

2
�(1)A�(1; 1)

j � 2 : 2
�(�)

P
i�2 ��(i)[A�(i; j � 1)�A�(i; j)]��(j)

= 2��(j)[��(j � 1)� ��(j)]� 2
�(�)��(1)[A�(1; j � 1)� A�(1; j)]��(j):

(3:38)

Thus, after carrying out the sum over j, we see that (3.37) becomes

P
i��

2
�(i+ 1) = �Pj ��

2
�(j + 1)

+2fr:h:s: (3:35)� 2
�(�)

P
j�2[1� ee�(0;j)�e�(1;j)]��(1)A�(1; j)��(j)

+�2�(1)[1� 2
�(�)A�(1; 1)]g

+ 2
�(�)�

2
�(1)A�(1; 1)� 2

�(�)

P
j�2 ��(1)[A�(1; j � 1)� A�(1; j)]��(j):

(3:39)
Now, by (3.36) for i = 1,

2[1� ee�(0;j)�e�(1;j)]A�(1; j) = �[A�(1; j � 1)� A�(1; j)] +A�(1; j): (3:40)

Hence (3.39) simpli�es to

P
i��

2
�(i+ 1) = �Pj ��

2
�(j + 1) + 2 r:h:s: (3:35)

+f2�2�(1)� 2
�(�)�

2
�(1)A�(1; 1)� 2

�(�)

P
j�2 ��(1)A�(1; j)��(j)g:

(3:41)

But the term between braces is zero. 2
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STEP 8 For � small enough

r:h:s: (3:35) � C11�
2
3 log

1

�
: (3:42)

Proof. The �rst term in (3.35) is easy to bound. Indeed, we have e�(i � 1; j)� e�(i; j) =

�a� 2
3 + �(2i+ 2j � 3) and hence we get

1st term in (3.35) � 2
�(�)

P
i;j

(i;j) 6=(1;1)
a�

2
3 ��(i)A�(i; j)��(j)

� 2a�
2
3

(3:43)

(in the �rst inequality use that et � 1 + t for all t). For the second term in (3.35), use that

P (1; 1) = 1
2 and e�(1; 1) = a�

2
3 � �. Together with �(�) � 1 � C6�

1
3 (see below (3.18)) we

get

2nd term in (3.35) � 2�2�(1)C6�
1
3 for � small enough. (3:44)

Finally, use Step 6 to get the claim (recall that ��(0) = ��(1) in (3.3)). 2

Steps 7-8 complete the proof of Lemma 11(iv). 2

Lemma 11 completes the proof of Proposition 4. Lemmas 12 and 13 will be proved in section 4.

Proposition 4 shows that Assumption 3(iii) in Proposition 2 holds. We shall prove As-
sumptions 3(i),(ii) in section 5.

4 Proof of Lemmas 12 and 13

4.1 Proof of Lemma 12

Let (ei)i�1 be the canonical base of l2(N). Let s = (s(i))i�1 be any sequence of numbers in
(0;1) and let t = (t(i))i�1 be given by t(1) = 1; t(i) =

Qi�1
k=1 s(k) (i � 2). De�ne

Bs = fx 2 l2(N) : x � 0; x(i+ 1) � s(i)x(i)g
B0
s = fx =P

j cjfj : cj � 0; cj 6= 0 �nitely ofteng (4:1)

where fj 2 l2(N) is de�ned by

fj =
jX

i=1

t(i)ei: (4:2)

Lemma 14 (i) Bs is a closed convex cone.
(ii) Bs is the closure of B0

s .

Proof. Elementary. 2

Recall footnote 6. Since, for every � > 0, A� is a continuous operator on l2(N), we have
from Lemma 14(ii) that

A�Bs � Bs , A�fj 2 Bs for all j � 1: (4:3)

26



Since, for every � > 0,A� is symmetric and has a spectral gap, we also know that �(�)�nAn
�x!l2

hx; ��il2�� (n!1) for any x 2 l2(N). Pick any x 2 Bs with x 6= 0 to get that

A�Bs � Bs ) �� 2 Bs: (4:4)

Below we shall prove the following:

Lemma 15 If s satis�es

is(i) + j
1

s(j)

i+ j
� ea�

2
3��(2i+2j+1) for all i � 1; j � 0; (4:5)

then A�fj 2 Bs for all j � 1.

Lemma 15 combined with (4.3-4) shows that

�� 2
\

fs: s satisfies (4:5)g

Bs: (4:6)

The r.h.s. of (4.5) is � 1 when i + j � a
2�

� 1
3 . One therefore easily sees that the following

choice of s satis�es (4.5):

s(i) = 1 for i > a
2�

� 1
3

= N��
1
3 for i � a

2�
� 1

3 ; N large enough.
(4:7)

This proves Lemma 12.

Proof of Lemma 15. We must show that for all i; j � 1

0 � s(i)(A�fj)(i)� (A�fj)(i+ 1)

=
Pj

k=1 [s(i)A�(i; k)t(k)�A�(i+ 1; k� 1)t(k� 1)]� A�(i+ 1; j)t(j)

(4:8)

(recall from Lemma 4 that A�(i+ 1; 0) = 0 by convention). In order to do so, de�ne

 i(j) =
jX

k=1

[s(i)A�(i; k)t(k)�A�(i+ 1; k� 1)t(k � 1)]� 2A�(i+ 1; j)t(j): (4:9)

The following lemma gives a su�cient criterion for  i(j) � 0, which implies (4.8):

Lemma 16 If

s(i)A�(i; j + 1) +
1

s(j)
A�(i+ 1; j)� 2A�(i+ 1; j + 1) � 0 for all i � 1; j � 0; (4:10)

then
(i) j !  i(j) is nondecreasing for all i � 1
(ii)  i(1) � 0 for all i � 1:

(4:11)
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Proof. (i) Write out

 i(j + 1)�  i(j) = s(i)A�(i; j + 1)t(j + 1) +A�(i+ 1; j)t(j)� 2A�(i+ 1; j + 1)t(j + 1)

= t(j + 1)[s(i)A�(i; j + 1) + 1
s(j)A�(i+ 1; j)� 2A�(i+ 1; j + 1)] � 0:

(4:12)
(ii) Similarly, by (4.10) with j = 0 (since t(1) = 1 and A�(i+ 1; 0) = 0)

 i(1) = s(i)A�(i; 1)� 2A�(i+ 1; 1) � 0: (4:13)

2

To complete the proof of Lemma 15, it remains to rewrite (4.10) in the form of (4.5).

Abbreviate f(i) = exp [a�
2
3 i� �i2]. Then we have A�(i; j) = f(i+ j � 1)P (i; j). Use Lemma

4 to write

l:h:s: (4:10) = f(i+ j)[s(i)P (i; j+ 1) + 1
s(j)P (i+ 1; j)]� 2f(i+ j � 1)P (i+ 1; j + 1)

= P (i; j + 1)[s(i)f(i+ j)� f(i+ j + 1)]
+P (i+ 1; j)[ 1

s(j)f(i+ j)� f(i+ j + 1)]:

(4:14)
Next use that P (i; j + 1)=P (i+ 1; j) = i=j. Then (4.10) is seen to be equivalent to

is(i) + j
1

s(j)

i+ j
� f(i+ j + 1)

f(i+ j)
: (4:15)

2

4.2 Proof of Lemma 13

To prove the upper bound in (3.13), use (2.5)(ii) to get

�(�) =
P

i;j ��(i)A�(i; j)��(j)

=
P

i;j ��(i)e
e�(i;j)P (i; j)��(j)

� e
1
4a

2�
1
3 P

i;j ��(i)P (i; j)��(j)

� e
1
4a

2�
1
3 ;

(4:16)

where the last inequality follows from kPkl2 � 1. This immediately gives the claim.
To prove the lower bound in (3.13), use (1.3)(i) to get that for any x 2 L2(R+) with

kxkL2 = 1

��
1
3 [�(�)� 1] � F a

� (x): (4:17)

Pick for x

x�(u) = (
2

��2
)
1
4 e�

u2

4�2 (� > 0): (4:18)
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Now, we know from Lemmas 5-8 that

lim
�#0

F a
� (x�) = F a(x�): (4:19)

Hence lim inf�#0 �
� 1

3 [�(�)� 1] � F a(x�). Compute

F a(x�) =
R1
0 f(2au� 4u2)[x�(u)]

2� u[x0�(u)]
2gdu

= ( 2
��2
)
1
2
R1
0 (2au� 4u2 � u3

4�4
)e�

u2

2�2 du

= ( 8
�
)
1
2a� � 4�2 � 1

(2�)
1
2 �
:

(4:20)

Pick � = �(a) = a_1

(8�)
1
2
to get the claim. 2

5 Analysis of the limit variational problem

Recall the notation in (1.13)

X = fx 2 L2(R+) : x � 0; kxkL2 = 1g
Y = X \ C1(R+

0 )
K = Ka

C = fx 2 Y : F a(x) � �Cg:
(5:1)

In this section we analyze the limit variational problem appearing in (1.6), i.e.,

sup
x2X

F a(x): (5:2)

In section 5.1 we show that x! F a(x) is upper semicontinuous and Ka
C is relatively compact

in X (in the L2-topology). This implies that F a achieves a maximum in Ka
C = fx 2 X :

F a(x) � �Cg (6= ; for C large enough). In section 5.2 we show that all maxima of F a in X
are solutions of the Sturm-Liouville problem

Lax = �x (� 2 R; x 2 X \ C1(R+)); (5:3)

where La is de�ned in (0.17). In section 5.3 we analyze (5.3) and show that it has a unique
solution xa satisfying F a(xa) > �1 and xa > 0, with corresponding eigenvalue �(a). This
identi�es xa as the unique maximizer of (5.2) and �(a) as the maximum. We also study
a! xa and a! �(a) to prove the claims that were made in (0.19).

5.1 Existence of a maximizer of F a in Ka
C

It will be expedient to transform F a;La; Ka
C as follows. De�ne (recall (1.7))

F̂ a(x) = �F a(x) + (a
2

4 + 1)kxk2
L2

=
R1
0 fq(u)[x(u)]2+ p(u)[x0(u)]2gdu

(5:4)
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with
p(u) = u
q(u) = (2u� 1

2a)
2 + 1:

(5:5)

F̂ a is the \energy" functional corresponding to the Sturm-Liouville di�erential operator L̂a
de�ned by (recall (0.17))

(L̂ax)(u) = �(Lax)(u) + (a
2

4 + 1)x(u)

= q(u)x(u)� [p(u)x0(u)]0:

(5:6)

De�ne (recall (1.13))

K̂a
C = Ka

C�(a
2

4 +1)

= fx 2 Y : F̂ a(x) � Cg:
(5:7)

Lemma 17 For every a 2 R
(i) K̂a

C 6= ; for C large enough
(ii) K̂a

C is relatively compact in L2(R+) for all C 2 R
(iii) x! F̂ a(x) is lower semicontinuous on X.

Proof. Standard.
(i) Trivial.
(ii) We check the conditions in Dunford and Schwartz (1964) Theorem IV.8.20.
(a) K̂a

C is bounded in L2(R+).
(b) By Cauchy-Schwarz

R1
0 (x(u+ v)� x(u))2du =

R1
0 (
R u+v
u x0(t)dt)2

� R10 du [log (u+ v)� log u]
R u+v
u dt t[x0(t)]2

=
R1
0 dt t[x0(t)]2I(t; v)1ft�vg;

(5:8)

where
I(t; v) = (t+ v) log (1 +

v

t
) + (t� v) log (1� v

t
): (5:9)

Since t! I(t; v) is decreasing and I(v; v) = 2v log 2, it follows that

lim
v#0

Z 1

0
(x(u+ v)� x(u))2du = 0 uniformly for x 2 K̂a

C : (5:10)

(c) From p(u) � 0 and limu!1 q(u) =1 follows

lim
N!1

Z 1

N

x2(u)du = 0 uniformly for x 2 K̂a
C : (5:11)

Conditions (a)-(c) imply that K̂a
C is relatively compact.

(iii) De�ne
V a = fx 2 L2(R+) : F̂ a(x) <1g: (5:12)
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On V a de�ne the inner product

hx; yiV a =
Z 1

0
fq(u)x(u)y(u)+ p(u)x0(u)y0(u)gdu: (5:13)

Then (V a; h�; �iVa) is a Hilbert space, kxkV a � kxkL2 and
F̂ a(x) = hx; xiV a = kxk2V a : (5:14)

Thus we must prove that lim infn!1 kxnkV a � kxkV a for any xn !L2 x.
Let L = lim infn!1 kxnkV a. The case L = 1 being trivial, assume L < 1. Then, by

the Banach-Alaoglu theorem (Rudin (1991) Theorem 3.15), there exists a subsequence (xnk)
and a y 2 V a such that L = limk!1 kxnkkV a and xnk ! y weakly in V a (k ! 1). Hence
L � kykV a by Fatou. But, by (ii), weak convergence in V a implies strong convergence in
L2(R+). Hence xnk !L2 y. Together with xn !L2 x this implies y = x and hence the claim
follows.

Incidentally, note from (5.4-5) that V a does not depend on a because it is nothing other
than the collection of x 2 L2(R+) for which

R1
0 fu2[x(u)]2+u[x0(u)]2gdu <1 (recall (0.18)). 2

Lemma 17 implies that F̂ a achieves a minimum in K̂a
C (for C large enough).

5.2 Characterization of the minimizer(s) of F̂ a

Lemma 18 Any minimizer �x of F̂ a in X is a solution of L̂ax = �x for � = �̂(a) 2 R, the
minimal eigenvalue of L̂a in V a.

Proof. Standard.
De�ne �̂(a) by

�̂(a) = min
x2X

F̂ a(x): (5:15)

Let �x 2 V a be any minimizer. Then for any h 2 L2(R+) and � > 0

F̂ a(�x+ �h) � �̂(a)k�x+ �hk2L2 : (5:16)

Writing out both sides of (5.16) and using that F̂ a(�x) = �̂(a), we obtain (see (5.13-14))

2�h�x; hiV a + �2khk2V a � �̂(a)f2�h�x; hiL2 + �2khk2L2g: (5:17)

Let � # 0 to obtain
h�x; hiV a � �̂(a)h�x; hiL2 for all h 2 V a: (5:18)

Replace h by �h to get the reverse inequality. Thus

h�x; hiV a = �̂(a)h�x; hiL2 for all h 2 V a: (5:19)

Now note that we have from (5.6) and (5.13) after partial integration

h�x; hiV a = h�x; L̂ahiL2 for all h 2 C2
c (R

+) (5:20)

It follows from (5.19-20) and the symmetry of L̂a that �x is a weak solution of L̂ax = �̂(a)x.
This in turn implies that �x is a strong solution.

To see that �̂(a) is the minimal eigenvalue of L̂a in V a, note that if L̂ax = �x, then by
(5.6), (5.13-14) and integration by parts

F̂ a(x) = hx; xiV a = hx; L̂axiL2 = �kxkL2 = �: (5:21)

2
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5.3 Analysis of the Sturm-Liouville problem

Lemmas 17-18 show that F a has a maximizer in Ka
C and that each maximizer is a solution

of Lax = �x for � = �(a), the maximal eigenvalue of La in V a (recall (5.4-7)).

Lemma 19 (i) All solutions of Lax = �x are of the form

xa;�(u) = fa;�(u) + ga;�(u) logu; (5:22)

where fa;� and ga;� are power series with in�nite radius of convergence.
(ii) F a(xa;�) = �1 if ga;� 6� 0.

Proof. (i) Formally substitute fa;�(u) =
P

n�0 fnu
n and ga;�(u) =

P
n�0 gnu

n. Then the
coe�cients are found to satisfy the recurrence relations

gn = 1
n2
(�gn�1 � 2agn�2 + 4gn�3) (n � 1)

fn = 1
n2
(�fn�1 � 2afn�2 + 4fn�3 � 2ngn) (n � 1)

(5:23)

(with f�1 = f�2 = g�1 = g�2 = 0). Note that ga;� is a solution of (5.3) and that fa;� depends
on ga;�. By induction on n, (5.23) is easily shown to give the following bounds:

jfnj � Kn
1 (n!)

� 2
3 (n � 1)

jgnj � Kn
2 (n!)

� 2
3 (n � 1)

(5:24)

with K1; K2 large enough (depending on �; a and f0; g0). This implies that the formal solution
exists everywhere.
(ii) Trivial, since d

du
xa;�(u) � g0u

�1 (u # 0) with g0 6= 0 implies F a(xa;�) = �1, while g0 = 0
implies that gn � 0. 2

At this stage we know from Lemma 19 that all maximizers of F a are of the form xa;�(u) =
fa;�(u) and, in particular, are analytic on R+

0 .
Our next step is to �nd the asymptotic behavior of the solutions of (5.3) as u!1. This

will be needed to get uniqueness of the maximizer.

Lemma 20 Lax = �x has two independent solutions xa;�� and xa;�+ satisfying

lim
u!1

u�
3
2 log xa;�� (u) = �4

3
: (5:25)

Proof. We use Coddington and Levinson (1955) Theorem 2.1 page 143-144. De�ne

w1(u) = x(u2)
w2(u) = u�2w01(u):

(5:26)

Then (5.3) can be written as
w0(u) = u�rB(u)w(u); (5:27)

where r = 2 and

w(u) =

 
w1(u)
w2(u)

!

B(u) =

 
0 1

16� 8a
u2

+ 4�
u4

� 3
u3

!
:

(5:28)
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Note that B(u) =
P

n�0 u
�nBn (B0 6= 0) is a convergent power series in u�1, with B0 having

eigenvalues �1;2 = �4. Therefore (5.27) has a formal solution of the form

w(u) = P (u)uReQ(u); (5:29)

where P (u) =
P1

n=0 u
�nPn (detP0 6= 0) is a formal power series in u�1, R is a complex

diagonal matrix and Q = ur+1

r+1 Q0 + : : :+ uQr is a matrix polynomial with Qi diagonal and
Q0 = diagf�1; �2g. From the proof of the theorem it follows that P;Q;R can be chosen to
be real because B; �1;2 are real. On p.151 of Coddington and Levinson (1955) there is the
further remark that for every formal solution there exists an actual solution with the same
asymptotics. 2

We see from Lemma 20 that xa;�+ =2 L2(R+) and so (5.3) has a unique solution in L2(R+)
up to multiplicative constants.

Lemma 21 De�ne
Sa = f� 2 R : fa;� 2 L2(R+); fa;�(0) = 1g: (5:30)

Then
(i) Sa is countable, bounded from above and has a maximum
(ii) �(a) = max Sa is geometrically simple
(iii) fa;�(a) > 0
(iv) 8� 2 Sa; � < max Sa : fa;� changes sign in R+.

Proof. Standard Sturm-Liouville theory.
(i),(ii) By Lemma 17(ii), V a is compactly imbedded in L2(R+) (compare (5.7) and (5.12)).
Therefore the eigenfunctions of La in V a form an orthogonal basis of V a. Since V a is sep-
arable, this in turns implies that Sa is countable. We know from Lemmas 19-20 that La
has a unique eigenvector in V a with eigenvalue �(a), i.e., �(a) is geometrically simple. Since
�(a) = maxx2V a F a(x) = maxSa by Lemma 18, we also know that Sa is bounded from above
and has a maximum.
(iii) From (1.7) one sees that F a(jfa;�(a)j) = F a(fa;�(a)). Therefore it follows from the unique-
ness of the maximizer that fa;� = jfa;�j � 0. Let u0 = inffu > 0 : fa;�(a)(u) = 0g > 0. If

u0 < 1, then we must have d
du
fa;�(a)(u0) = 0 and d2

du2
fa;�(a)(u0) > 0. However, this contra-

dicts (Lafa;�(a))(u) = �(a)fa;�(a)(u) at the point u = u0 (see (0.17)).
(iv) This follows from (iii) and the fact that the eigenfunctions of La in V a form an orthogonal
basis. 2

Lemmas 17-18 and 21 show that Assumptions 3(i), (ii) in proposition 2 hold.

5.4 Dependence on a

The maximal eigenvalue and eigenvector of (0.17-18) are

�(a) = max Sa
xa = fa;�(a)

kfa;�(a)kL2
:

(5:31)

We can now prove the following properties:

33



Lemma 22 (i) a! �(a) and a! xa are analytic
(ii) a! �(a) is strictly increasing and strictly convex on R
(iii) �(0) < 0, lima"1 �(a) =1 and lima#�1 �(a) = �1.

Proof. (i) We give the proof by applying Crandall and Rabinowitz (1973) Lemma 1.3 in the
following setting. Pick a 2 R and consider the Hilbert space (V; h�; �iV ) with V = V 0. Then,
from (5.5-6) and (5.13),

hxa; yiV a = hLaxa; yiL2 = �(a)hxa; yiL2

hxa; yiV a = hxa; yiV � 2ab(xa; y) + a2

4 hxa; yiL2;
(5:32)

where b : V � V ! R is the bilinear form de�ned by

b(x; y) =

Z 1

0
ux(u)y(u)du: (5:33)

For every x 2 V the functional y ! b(x; y) is continuous and linear. Hence it follows from
the Riesz representation theorem (Rudin (1987) Theorem 6.19) that there exists a unique
linear operator B : V ! V such that

b(x; y) = hBx; yiV for all x; y 2 V: (5:34)

B is symmetric because b is. B is bounded because

kBxk2V = b(x;Bx)

� ( R10 u2x2(u)du)
1
2 kBxkL2

� 1
2kxkV kBxkL2

� 1
2kxkV kBxkV

(5:35)

(see (5.5) and (5.13)), so that kBxkV � 1
2kxkV . To see that B is compact, let (xn) be a

bounded sequence in V . Then, by Lemma 17(ii), there exists a subsequence (xnk) and an

x 2 V such that xnk !L2 x (k!1). Hence, as in (5.35),

kBxnk �Bxk2V = b(xnk � x;B(xnk � x))

� kxnk � xkL2 12kB(xnk � x)kV

� kxnk � xkL2 14kxnk � xkV

! 0 (k !1):

(5:36)

In the same manner we can prove that there exists a unique linear, symmetric and compact
operator C : V ! V such that

hx; yiL2 = hCx; yiV for all x; y 2 V: (5:37)
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Now rewrite (5.32) as follows

h[Id� 2aB � (�(a)� a2

4
)C]xa; yiV = 0 for all y 2 V: (5:38)

Hence, (V; h�; �iV ) being a Hilbert space, we have

xa is a C-eigenfunction of Id� 2aB

with (largest) eigenvalue �(a)� a2

4 :
(5:39)

Next note that a ! Id� 2aB is analytic in the operator norm. Therefore, to get the claim
from Crandall and Rabinowitz (1973) Lemma 1.3, it su�ces to check that �(a) � a2

4 is a
C-simple eigenvalue of Id� 2aB, i.e.,
(a) dim(N(Aa)) = codim(R(Aa)) = 1
(b) Cxa =2 R(Aa),

where Aa = Id� 2aB � (�(a)� a2

4 )C and N(Aa); R(Aa) denote the null space resp. range of
Aa.

We have dim(N(Aa)) = 1 because of Lemma 21(ii). Moreover, because 2aB+(�(a)� a2

4 )C
is compact we have dim(N(Aa)) = codim(R(Aa)) (Rudin (1991) Theorem 4.25). This proves
(a). To prove (b), �rst use that Aa is symmetric and bounded to get that N(Aa) = R(Aa)?

(the orthogonal complement of R(Aa)) and R(Aa) = R(Aa) (Rudin (1991) Theorems 4.12
and 4.23). Since R(Aa) = R(Aa)??, it follows thatN(Aa)? = R(Aa). Hence (b) is equivalent
to hCxa; xaiV 6= 0. But hCxa; xaiV = hxa; xaiL2 = 1 by (5.37).
(ii) Because

�(a) = sup
x2X

F a(x) (5:40)

with unique maximizer x = fa;�(a), we immediately see from (1.7) that

�(a+ �)� �(a)
�

�
Z 1

0
2u[fa;�(a)(u)]2du > 0 (5:41)

(pick kfa;�(a)kL2 = 1). This demonstrates that �0(a) is everywhere strictly positive. Moreover,
since a ! F a(x) is linear for every x we have from (5.40) that a ! �(a) is convex. Because
of analyticity, it follows that either a! �(a) is strictly convex or �(a) = C1a+C2. However,
the latter is impossible because of Lemma 13.
(iii) Trivial. Let �! �1 in (5.41) or else see (1.7). 2

6 Proof of Theorems 4-7

We can now collect the results from sections 2-5 and give the proofs of our theorems in section
0.4.

Proof of Theorem 5. Combine Propositions 1-3 with (1.13). The proof of Proposition
3 was given in Lemma 1 and in sections 2, 3 and 5. 2

Proof of Theorems 4 and 6.

1. r�(�) � a��
2
3 .
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According to (0.13), r�(�) is de�ned as the unique solution of

�(r; �) = 1: (6:1)

From (0.20) we know that for every a 2 R

��
1
3 [�(a�

2
3 ; �)� 1]! �(a): (6:2)

Let a� > 0 be the solution of �(a) = 0 (see Lemma 22). Now, because r! �(r; �) is increasing
(as is obvious from (0.10)), we have for every � > 0

�(r; �) � 1 + �
1
3�(a� + �) + o(�

1
3 ) for r � (a� + �)�

2
3

�(r; �) � 1 + �
1
3�(a� � �) + o(�

1
3 ) for r � (a� � �)� 2

3 :
(6:3)

Since �(a�� �) < 0 < �(a�+ �) for every � > 0 (see Lemma 22(ii)), (6.1) combined with (6.3)
implies

(a� � �)� 2
3 � r�(�) � (a� + �)�

2
3 for � small enough. (6:4)

Let � # 0 to get the claim.

2. ��(�) � b��
1
3 .

According to (0.14), ��(�) is de�ned as

1

��(�)
= [ @

@r
�(r; �)]

r=r�(�)
: (6:5)

De�ne

�(r; �) =

@

@r
�(r; �)

�(r; �)
=

@

@r
log�(r; �): (6:6)

Because r ! �(r; �) is increasing and log-convex (see footnote 6), we have that for all h; � > 0
and a 2 R

�(a�
2
3 ; �) � 1

h�
2
3
[ log�((a+ h)�

2
3 ; �)� log �(a�

2
3 ; �)]

�(a�
2
3 ; �) � 1

h�
2
3
[ log�(a� 2

3 ; �)� log�((a� h)�
2
3 ; �)]:

(6:7)

Together with (6.2) this gives

lim sup�#0 �
1
3 �(a�

2
3 ; �) � �(a+ h)� �(a)

h

lim inf�#0 �
1
3 �(a�

2
3 ; �) � �(a)� �(a� h)

h :
(6:8)

Let h # 0 to get (use Lemma 22)

lim
�#0

�
1
3 �(a�

2
3 ; �) = �0(a): (6:9)

Next, because r! �(r; �) is increasing we have, via (6.4), for � small enough

�(r�(�); �) � �((a� + �)�
2
3 ; �) = ��

1
3�0(a� + �) + o(��

1
3 )

�(r�(�); �) � �((a� � �)� 2
3 ; �) = ��

1
3�0(a� � �) + o(��

1
3 ):

(6:10)
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Since (recall that �(r�(�); �) = 1)

1

��(�)
= �(r�(�); �); (6:11)

it follows that

�0(a� � �) � 1

��
1
3 ��(�)

� �0(a� + �) for � small enough. (6:12)

Let � # 0 to get the claim with 1
b�

= �0(a).

3. ��
1
6 �r�(�);�(d���

1
3 e) !L2 xa

�
(�).

Put a�(�) = ��
2
3 r�(�). Then, similarly as in Lemma 1,

��
1
6 �r�(�);�(d���

1
3 e) is the unique maximizer of F

a�(�)
� ; (6:13)

where the parameter a is replaced by a�(�).

Lemma 23 Assumptions (1)-(3) in Proposition 2 hold for the following choice replacing
(1.13):

K = Ka�

C (C su�ciently large) (6.14)

G� = F
a�(�)
�

G = F a� :

Proof. The point is that lim�#0 a
�(�) = a�. It is trivial to check that all estimates in sections

2 and 3 remain valid when the �xed parameter a is replaced by a + o(1) (� # 0). See, in
particular, the proofs of Lemmas 5, 6, 11-13. 2

The claim in 3 now follows from Proposition 2.

4. ��
1
3���(d���

1
3 e)!L1 1

2 [x
a�(12 �)]2:

The proof is in Steps 1-2 below.
Abbreviate A� = Ar�(�);� and �� = �r�(�);�. According to (0.14)

���(k) =
X
i;j

i+j�1=k

��(i)A�(i; j)��(j): (6:15)

STEP 1 There exists c such thatZ 1

N

j�� 1
3���(du��

1
3 e)� 1

2
[xa

�
(
1

2
u)]2jdu � cN�2 for � small enough. (6:16)
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Proof. Estimate (recall that �(r�(�); �) = 1)R1
N ��

1
3���(du��

1
3 e)du =

P
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� 1
3
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� 1
3
��(i)A�(i; j)��(j)

� 2
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3
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i�1 i
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� 8C1N
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(6:17)

The last inequality is Lemma 11(i). Furthermore,Z 1

N

1

2
[xa

�
(
1

2
u)]2du � 4N�2

Z 1

N

u2[xa
�
(
1

2
u)]2du: (6:18)

Since xa
� 2 Ka�

C , the integral in the r.h.s. is �nite and so the claim follows. 2

STEP 2 lim�#0
RN
0 j�� 1

3���(du��
1
3 e)� 1

2 [x
a�(12u)]

2jdu = 0 for every �xed N .

Proof. Use the triangle inequality to split the integal into three parts:Z N

0
j�� 1

3���(du��
1
3 e)� 1

2
[xa

�
(
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2
u)]2jdu � I1;N� + I2;N� + I3;N� (6:19)
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1
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P
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2jdu:

(6:20)

Here ��� is the scaled form of �� given by the same relation as (3.1).

For I1;N� use Cauchy-Schwarz and (2.5)(ii) to estimate
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(6:21)

De�ne �xa
�

� by �xa
�

� (u) = xa
�
(i�

1
3 ) for (i� 1)�

1
3 � u � i�

1
3 (i � 1), in analogy with (3.1). Then

(6.21) becomes
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1
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�

� kL2[0;N ] k �x�a
�kL2[0;N ]: (6:22)
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Now let � # 0 and use that ��� !L2 xa
�
and �x�a

� !L2 xa
�
to get lim sup�#0 I

1;N
� = 0. The

same argument gives that lim sup�#0 I
2;N
� = 0.

To estimate I3;N� , we use the mean value theorem to expand xa
�
(i�

1
3 ) and xa

�
(j�

1
3 ) around

1
2u. Namely
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1
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�
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(6:23)

with �; � between 1
2u and i�

1
3 resp. j�

1
3 . Next note that xa

�
(u); j d

du
xa

�
(u)j �M <1 for all

u 2 R+. Hence
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(6:24)

Next we insert A� = ee�P and use that (recall (2.4) and (0.11))

je�(i; j)j � (jaj+N)N�
1
3 for i; j � N��

1
3 (6:25)

X
i;j

i+j�1=k

P (i; j) =
1

2
(k � 1) (6.26)

X
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i+j�1=k
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2
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1

2
(
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4
k + 1) (k � 1) (6.27)

Then (6.24) yields
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where

z�(u) = �
2
3

X
i;j: i+j�1=du��

1
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(i� 1

2
u��

1
3 )2P (i; j) = O(� 1

3 ): (6:29)

Let � # 0 to get lim sup�#0 I
3;N
� = 0. 2

Steps 1-2 prove the claim in 4.
Results 1-4 complete the proof of Theorems 4 and 6. 2

Proof of Theorem 7. The asymptotic behavior of xa
�
in (iii) was proved in Lemma 20

(pick a = a� and � = 0). To prove (i) and (ii), we recall that xa
�
solves (see (0.17))

0 = (La�x)(u) = (2a�u � 4u2)x(u) + [ux0]0(u) (6:30)

and has a power series representation (see (5.23))
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�
(u) =
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n�0 xnu

n

xn = 1
n2
(�2a�xn�2 + 4xn�3) (n � 1)

x�1 = x�2 = 0:

(6:31)
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We observe that u ! 2a�u � 4u2 changes sign from positive to negative at u = 1
2a

�. Since

xa
�
(u) > 0 for all u � 0, it follows from (6.30) that u ! u d

du
xa

�
(u) is unimodal with a

minimum at u = 1
2a

�. It is clear that u d
du
xa

�
(u)! 0 as u # 0. By the unimodality we must

have that u d
du
xa

�
(u)! c as u!1. However, cmust be 0 otherwise
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0 u[ d

du
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�
(u)]2du =1,

which is impossible since F a�(xa
�
) = �(a�) = 0 > �1 (see (1.7)). Thus we conclude that

u d
du
xa

�
(u) < 0 for all u > 0, which implies that u! xa

�
(u) is strictly decreasing.

To prove (iv), use (0.15) to write
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(6:32)

As � # 0 the l.h.s. tends to 1
b�
. Thus we must show that the r.h.s. tends to

R1
0 2u[xa

�
(u)]2du.

To prove this claim, �rst note that
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(6:33)

where we use Lemma 11(i). Similarly
R1
N 2u[xa

�
(u)]2du � 2

N

R1
N u2[xa

�
(u)]2du = o(N�1) as

N !1. Next, recall 3 in the proof of Theorems 4 and 6 to see that

lim
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6 �r�(�);�(du��
1
3 e)g2du =
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(u)]2du for all N: (6:34)

Let N !1 to get the claim. 2
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