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1 Introduction

The model we will study in this paper is a non-parametric regression model on the unit interval
[0, 1] with equidistant deterministic grid design. The unknown regression function is assumed
to belong to some Holder class with the smoothness parameter 3 >1. Furthermore the
regression function is observed in a Gaussian noise (precise definitions are given in SECTION
2).

Ibragimov and Hasminskii [7] have studied a similar kind of model. They considered a
more general grid, namely a stochastic grid design, and the class of functions they took was
the class of periodic functions on the interval [0,2x]. Stone [12] obtained optimal rates of
convergence where the regression function was assumed to belong to some Hoélder class of
functions. The same kind of model, but with the emphasis on getting the exact constants
were studied in Korostelev [8] (for #in ]1,1] ) and in Donoho [2] (for § >1 ). In both articles
the optimal rates where obtained with kernel methods.

Our goal in this article is to obtain optimal rates by using wavelet estimators. Recently
wavelet estimators were studied in the context of density estimation (cf. Picard and Kerky-
acharian [11]) and in estimation the diffusion coefficient of a diffusion process (cf. Genon-
Catalot, Laredo and Picard [5]). In Donoho and Johnstone [3] a non-linear wavelet estimator
was used for estimating functions with jumps.

Regression has some specific problems, the treatment of the neighbourhoods of the end-
points being one of them. For example in Miiller (see [10]) this problem has been solved by
taking special kernels at the neighbourhoods of the boundary. We will give another way of
treating this problem by defining the estimator in the neighbourhoods of the endpoints as a
Taylor-polynomial up to the order corresponding to the smoothness of the regression function
(see SECTION 4).

The lower bound for the rate of convergence will be derived in SECTION 5.2 by a technic
which uses the ideas close to the Hajeks derivation of the local asymptotic minimax lower
bounds, as generalised in Ibragimov and Hasminskii [6] for the multivariate case ( cf. also
Korostelev [8]). In SECTION 5.1 we will prove that a wavelet estimator modified in the
neighbourhoods of the endpoints achieves this lower bound. For the convenience of the reader
we will give a summary of the theory of wavelets (in SECTION 3).

The author would like to use this opportunity to thank B. Ya. Levit for his stimulating
ideas and frequent useful discussions.
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2 Definitions and the model

We study the non-parametric regression problem with deterministic regular grid design on

the interval [0, 1]. Let 4y, ..., ¥y, be observations from the following model:

yi=f(5)+&

i=1,...,n (2.1)

52' ~ N(Ov 02)
where

eFP={f: su M) =) (y)|—|— sup |f(x)| < L 2.2

/ p = p )
z,y€l0,1] |z <yl z€[0,1]

for some L >0, L < f=m+a,0<a<1and m =[] (herela] is notation for the biggest
integer smaller than a). In the sequel || - || will be a shorthand notation for sup,¢fo17]f(2)]
and |- [l for sup,cq |f(x)].

We want to study optimal rate wavelets-based estimates of the unknown regression func-
tion f in the uniform norm. The notion of optimality we use below is that of Stone [12]:

Definition 2.1

e a) &, is a lower rate of convergence if there exists a positive Cloy such that

lim inf sup P{||fn & f|| > Clow®rn} =1 (2.3)
n—00 fn fej__ﬁ

where the infimum is taken over all estimators f, of f.

o b) ®,, is an achievable rate of convergence if there exists a sequence { f,,},~, of estima-
tors and a positive constant C\pp such that -

lim sup PA{||f, ©f|| > Cupp®rn} =0 (2.4)
n—oo f€-7:’6

The sequence f, satisfying (2.4) will be called ®,,-rate consistent.

o ¢) &, is called an optimal rate of convergence if it is both a lower and an achievable
rate of convergence.

When &, is the optimal rate of convergence and a sequence of estimators {f,} satisfies
(2.4), the estimators f,, n > 1, are said to be asymptotically optimal (cf. [12]).

The lower rates of convergence for simular models have been obtained by Stone [12] and
Ibragimov & Khasminskii [7]. More recently Korostelev [8] found the exact optimal constants
for 3 between L and 1. This result has been extended by Donoho [2] for 5 > 1. In SECTION
5 we generalize the method by Korostelev to give a new and more elementary proof of the

following result (cf. Stone [12], Ibragimov & Khasminskii [7]):

log n

Theorem 2.2 ¢, = (
n

251
) is a lower rate of convergence.



Remark. Note that the optimal rate in LP-norm, 1 < p < oo, is different from the L°°-norm,

)
namely n~ 2F+17,
Theorem 2.2 can be applied to the following class of risk functions:

R(fu, /) =B [0 fn & 7ll] a >0, (2.5)

in the following way:

Corollary 2.3 lim inf sup R(f.,f)> 0.
n—oo f, fej__ﬁ

A wavelet type estimator achieving the optimal rate ®,, will be described in SECTION 4.
SECTION 3 presents a short summary of wavelet theory to be used later.

3 Wavelets: a summary

The easiest access to the theory of wavelets is provided by the notion of multiresolution
analysis (see Meyer [9]):

Definition 3.1 A multiresolution analysis (MRA) is a sequence of subspaces (Vj)jez of
L%(R) with the following conditions:

(i) ...CViCcVoCViC...

(1i) JQZV]:{O}; ]EUZ—V]:P(R)
(iti) f()EV; & f(2)EVip1 VjEZ
(i) f(-)eVo= f(-+k)eVo VkeZ

(v) There exists a function ¢, called a scaling function, such that {¢o(- <k),k € Z} forms
an orthonormal basis of V.

It is possible to assume that ¢ is of class C” and compactly supported on [0,2N <1] (in
that case it is proved that there exists a constant v such that the length of the support is of
order v - 7). If ¢ has regularity r then the corresponding MRA is said to have regularity r.
From (iii), (iv) and (v) it easily follows that {‘Pj,k =23 p(27 - &k); ke Z} is an orthonormal
basis of V. ¢ is usually called the mother wavelet.

Furthermore it can be proved that for the multiresolution analysis, the orthogonal com-
plements W;, defined as V;1; = W; @ V;, have the same kind of properties as the V;’s. Thus
there exists a function 1, the father wavelet, such that @ € C”, @ is compactly supported
and Wy is spanned by the collection {¢(-<k); k € Z}. Then the collection of functions
{%}k = 2%¢(2j ~k); g,k € Z} is an orthonormal basis of L%(R).

From now on we will assume that a mother wavelet ¢ has been chosen such that r >
max(1, 3). The Daubechies wavelets provide well known examples of such functions (cf. [1]).
Following notations will be used in the sequel, for f € L?(R):



o P;f(z)= Projection of fon V, = kzz cikpik(T)
€
where ¢, = Rf FW)piny) dy
o D;f(z)= Projection of fon W; = kzz d; k()
€
where d;;, = I{ F)ve(y) dy.

Since ¢ and 1) are compactly supported the above sum comprises, for each z, only finite
number of terms (though depending on N).

According to the definition and properties of the MRA a function f € L?(R) can be
decomposed for any j as follows:

F@) = ciwoin(e)+ D> dyptoyp(z) = Pif(x)+ > Dy f(x) (3.1)
k 7> keZ J'>

with convergence in L?(R). Moreover for f in F¥ (see (2.2)) we have:

Proposition 3.2 [f (Vj)jez s @ MRA of regularity r > [ then the following implication
holds:

feFP= Pofel™ and ||D;fl|lee < Cp277°
where C, is a constant (to be determined explicitely in the proof).

Proof. The proofis a slight modification of the similar result of Meyer, proved in [9] for the
so called Zygmund class of functions. The two classes differ only for the integer values of 3
(see Meyer p. 53).

Define D(z,y) = > ¥(xek)ib(y<k). This kernel has the property that it is perpendicular
to all polynomials up to degree 3 (i.e. [ D(z,y)yYdy = 0 for |y| < 3 ). As we have taken a
MRA of regularity at least 3, |D(z,y)| < Ci(1+ |z <y|)~!, for [ € N (see Meyer [9]). Let
D(;y be the kernel such that gy—r:lD(m) = D(z,y). For D, the same bound as for D(z,y)
holds. Taking this into account one can deduce:

1Dl = sup| [ 2 D@2 ()]

zeR

= s | [P D@D @ ) dy
r€

= sup | [ DGy @570 dy
r€

< sup 2L [ Do)l Iyl dy
zeR

= 2778¢,,

where the constant Cp, = Cp(L, @, m) equals L || [ |D (- y)] |y & [ dyl|oo- O

In the sequel we also need the following Bernstein’s type inequality:

Proposition 3.3 (Meyer [9] p. 47) If (V});ez is a MRA of regularity r > 3 and f € FP
then there exist constants Cy and Cy such that for m = [§]:

127" Dflloo < DN ™ Nloo < Co2™|D; flos (3.2)



4 The Estimator and main Theorems

First we replace f by a function f such that for arbitrary, but fixed ¢ > 0:

i)
i) fel*R)
i)

iii) suppf C [&e, 1+ ¢

iv) fe F([eecl+d)

Let ij be the projection of f on V; where j, which we will define shortly, depends on n. As
was mentioned in the previous SECTION we choose a sufliciently smooth wavelet ¢ which is
compactly supported with support [0,2N < 1]. N depends on the smoothness of ¢.

For the projection P; f, evaluated in x, where z is in the interval [277(2N 1), 1 €277 (2N &
1)], we only need a finite number of ¢; 5, namely those for k£ runs from 0 to 27 &2N + 1.
Thus for the corresponding coeflicients we have:

i = [ eisle)ie) ds
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The obvious idea is now to estimate f by estimating the projection ij. For this projection
we have to estimate the corresponding coefficients ¢; ;. Let us abbreviate 277(2N <1) by h.
A natural estimator ¢;j for c;j is the following sum:

Thus the estimator of f for x € [h,1<h] is

x) = Z 99]‘7k($)é]‘7k, T € [h, 1 <:)>h] (4.2)
keZ

It remains to define the estimator for z € [0,h] U [1 <:>h 1]. Therefore we propose to
extrapolate f% based on the values (f¥)(h) and (£*)D(1 < h) (for I = 0,...,m) by a
Taylor polynomial of degree m, corresponding to the smoothness of f. Note that (fﬁb")(l)
equals 27(+3) dokeZ ©W(2/h ©k)é;x. The precise definition of the proposed estimator is:

f:(fxw(h)(“”;f“ 2 € [0,4]
V(z) = Z Pk k( )6]7 z € [h,1&h] (4.3)

14

z(fW) (1 eh)E=0h 4 e (1 eh, 1]



Note that h here plays the role comparable to that of the bandwidth for the Kernel-type
estimators. Therefore we call it, with some abuse of terminology, henceworth bandwidth. Let

b <1og n) AT (4.4)

n

or equivalently j = [Zlog(2N < 1) &2logh] ([a] is a shorthand notation for the smallest
integer larger or equal to a). Now we can state the main Theorem:

_b5
Theorem 4.1 The estimator fY defined through (4.1), (4.2), (4.3) and (4.4) is (k’%) 2541

rate consistent.

In SECTION 2 we have defined a risk function. Generalizing the proof of Theorem 4.1
one can show the following:

Theorem 4.2 lim sup R(fY,f)< o
n—oo f€-7:’6

The proofs will be furnished in SECTION 5. Also an explicit upper bound for the asymp-
totic risk will be given.

5 Proofs

5.1 proof of Theorem 2.2

First we reduce the non-parametric problem to a parametric problem by choosing a special

parametric subfamily of F”. Second we derive the sample distribution and describe sufficient

statistics of the sample. Third we bound the minimax risk from below by the Bayes risk.
Suppose that K : R — R is a kernel with the following properties:

1 K(0)=1
2 K(u)=0 for |u| >1
3 K eFF

We have to introduce some definitions and notations: Let h, the bandwidth, equals

()1 th()(logn) ﬁj

n

where h, will be defined later ( |a] is a notation for the largest integer smaller than or equal
to a).
Define a grid on the interval [0, 1] as follows:

v;=(2je1)h j=1,...0=|4].

By definition of the bandwidth, An is an integer smaller than n, therefore the above grid is
a subset of the sample points. The parametric family, depending on the vector parameter
c=(c1,...,cy),is defined as follows :

J T X
fola) = Zh%ﬂ(( - J) o] < 1.
7=1




Note that fe(z;) = hP¢;.
Of course we have to check whether f. indeed belongs to F”. Therefore we introduce for
z,y € [0,1] arbitrary, j* such that |z <a;«| < h and j' the same but with y instead of z.

By construction of K and the grid there is a § such that |§ <2 ;«| < h and K(m) (f’_z]*) =
K(m) (%) With these tools we can deduce:

otersetn] = [ (50 (£52) a0 (252

o - (m T T - (m Y=y
= h (c]*lx( )< h] )@C]‘/IX( )< A ]))‘

o ~(m) [T ST ~(m Yo
hcﬁ(fw( hf)mw( h))‘

o reyl”
Lh®ejel|—

IN

< Lz sy|”.

Therefore our subfamily Fe = {fe : |c;| < 1} belongs to F¥.

Now we can bound the supremum over the whole class of Holder continous functions
by the supremum over the above defined subclass. For an arbitrary sequence of estimators
{fa},—, for an arbitrary but fixed ¢ > 0 and any constant C' we have:

d -
A = sup Py (<I>n1an<:>fH>C(1<:>€))
fers

> sup Py (@00 max [fu(a) @ f(a)] > € (160)

> sup Pro (071 mas (o) & (e > O (120
feFe 71=1,....J

= sup Py <4max |7, ©ci| > C (1 <€) h;f’)
ce[-1,1]7 7=1,....J

where we set 7; = fn(xj)h_ﬁ. If we now choose C' = Clow = hf then we have for A:

A> sup Py <4max |7; ;] > (1 @6)) ) (5.1)
ce[-1,1]/ j=1,..,J

Let A; be the set defined as follows:
Aj={i| |z ewl <h}.
It can be seen that for ¢ € A; the sample can be rewritten as follows:
) i d
yi = fe(5)+ & = ;hK (552) + &6 & cjoi; + &,

thus for each 7 the observation y; bears information about just one of the coefficients ¢; where
J = j(i). The joint density of the sample is therefore the following:

n 2 n
-1 (¥ =504 d
p(y,e)=1]] ( 27“7) exp {—( = i) } = T eo2(vi ©cjaij)




where y = (y1,...,¥4,) and ¢ = (¢1,...,¢5).

By straightforward calculations one can prove that the statistics T = (71,...,T ) where:
2;4 Y
1€
T, =
J Z Oé
1EA;

are independent, normally distributed with expectatlons c¢; and variances o /ZzeA a . As

(nh)~! Yica, K? ( ) = [ K*(u)du(l+o0(1)) L p(l+o0(1))it follows immediately that
the Fisher Information I; of T7},is independent of j and equals

wlog n h26+1
o2

(L+o(1)).

1
Choosing now h, = (( 202”) *#+1 we have for each j:

@26+1)n
2logn
11 (14 0(1)), (5.2)

The statistics 7; are sufficient for the parameter ¢ of the family p(y,c). Moreover, T} is
sufficient for ¢; (j = 1,...,J),i.e. p(y,c) can be written as g (y)[[; p;(T},¢;)-

Using (5.1) we can continue by bounding the minimax risk by the Bayes risk. The Bayes
risk is calculated w.r.t the uniform prior on [1,1]”:

Ij=1=

A > S}lp (1 <:>Pfc{ max |T; &c¢;] <1 <:>€})
c kA 7
> 277 / (1 <Py { 4II11aXJ|T]‘ el <1 <:>€}) de
J=1
[_lvl]J
= 127/ / Pfc{ max |7 <] < 1<:>€} de
[_171]
2

1 <:>m(a§( 2_‘]/ Pfc{ max | |T; &c¢;] <1 <:>€} de

[-1,1)7

= 1<:>maX2J/ EchI|T]<:>c]|<1<:>€)d
RSO

1

= 1<:>maXH//I (Ir; ©ci| <1 se) -1 (T; &) de; dT;

1 -1

= 1< max 2_JH / L(|7(1;) ©c;| < 1e¢)p-1(T; ;) dl;de;,

75=7;(1y)

J
= 1<:>(max2 1/ dT( I |T<:>c|§1<:>€)cp[_1(T<:>c)dc))



It is not difficult to realise that the function 7*, defined by:

e T < &¢
=X T |T|<e ,
€ T>¢

is the Bayes estimator of ¢;. Therefore we have derived the following inequality for A:
0 1 J
A > 1@(2—1 / dT/I(|T* el < 1) (T <) dc)

—o0 -1

(cf. Korostelev [8]).
Now we continue bounding A from below as follows:

1 J
A > 1s 1@2‘1/dT/I(|T* el > 1) er-1(T <c) dc)
-1
€ J
2
> lef1e27? / dr / er-1(1T &c)de
-5 1—eL|T—c|<1-5
1-£ J
= le|lse / e (§)dé| . (5.3)
1—¢
Using the inequality:
- exp {@lxz} < (2%)_% 7exp {<:>ly2} dy < L exp {<:>1—x2} (5.4)
V2 (x4 1) : - : T V27 :

xr

for & > 0 (see Feller [4]), we can deduce for the integral in expression (5.3):

/2901—1(£)d£ > (27)73 (QXP{@%MW)?} @eXp{%Ium/Q)?})

- VI(l&e) +1 VI(1 &¢/2)
logn 2 logn 2
exp | ©7a5(1 Se) exp § &2 (1 &e/2)
= (n)t ( l{ogfﬁ“ oot — AT,
2 (Lo +1 2571 (1 €€¢/2)
—(1-0)2 —(1—=¢/2)?
351 35+
= 207 | o— o (1+0(1))
2t (Lee) +1 2571 (1 =€¢/2)
_e?
> 1in 21 (logn)_%
_U= -1
> 1n~ 25+ (logn)”2
for n > n, (¢). By definition we have for .J:
1
1 T2+ 1
J = |55 ~ const ( Og") T g (5.5)
n



Therefore we can conclude the proof by the following;:

_a-9 4
A > 1<:><1<:>%n 25+1(10gn)_%)

1

€ _4-9 L\
> 1l (1 <:>§n_ 2541 (log n)_5)
€ _(1=9 1 1
> l&exp {<:>§n 2541 (logn) ™2 - n2AH1 }
€ _< 1
= 1l&exp {<:>§n2/3+1 (log n)_i}
— 1 as n — 00.
1
Remark that the constant Cloy, as was mentioned in definition 2.1(a), equals (M(%j_l)) s

5.2 Proof of Corollary 2.3

Proof. For Y, = &, !(|f, < f]| and f, an arbitrary sequence of estimators {f,,} <, of f we
have: -

R(fu f) = EpY7
= /ay“_le(Yn > y)dy

0
C4low

> / ay” TP p(Yn > y) dy
0
> Pf (Yn > C(low) (Clow)a-

This holds uniformly over f in F?, which immediately gives the corollary (by applying The-
orem 2.2). ]

5.3 proof of Theorem 4.1

The quantity sup,epoq7|/fy (2) < f(2)| will be bounded from above by bounding seperately
Zn(2) 4 ¥ (z)©EfY(z), a variance term, and b, () 4 Ef¥(z) < f(z), a bias term which is
deterministic. Furthermore, as we defined our estimator differently on the neighbourhoods of

the edges, we split the interval as follows: [0,1] = [0, h]U [h, 1 <h] U [l <h,1]. Precisely for
any ('

IN

P{ sup |y (2) < f(x)] > C‘I’n}

P{ sup |Zn(z)| > C &, & sup |bn(x)|}
z€[0,1]

z€[0,A] z€[0,A]

+ P{ sup |Zp(z)| > C ¢, & sup  |by(2)] }
z€[h,1-h] z€[h,1-h]

+ P{ sup | Zn(z)| > C ¢, & sup |bn(x)|}
z€[1—h,1] z€[1—h,1]

First we deal with the bias term and after that we complete the proof by deriving an upper
bound for the variance term.

10



Lemma 5.1 Under the conditions of Theorem 4.1 there exists a constant Cpias = Chias(3, L, N)
such that uniformly over FP:

B
1
sup [bu(2)] < Chias ( Ogn) o
z€[0,1] n

Proof. Again, as just above we split the interval and first we examine the bias on the interval
[h,1<h]. Remember that fY is an estimator of the projection P; f of f on V; (see SECTION
2). Recall that Proposition 3.2 states that for Holder spaces FB the difference ij & f tends
to zero at the rate 277079 where s is the smoothness of the choosen scaling function ¢.
As 2799 equals @,(2N < 1)~7 the difference has precisely the rate we want it to have. The
question remains what is the rate of the supnorm of the difference between the expected value
of the estimator and the projection. Note that in our case ¢;j is not an unbaised estimator
for the coefficient ¢; 1 (because E¢; ; is a sum and ¢, is an integral, contrary to the situation
in the density estimation, cf. [11] ). It will turn out that we’ll have to know how good the
sum L5700 (L) f () approximates ¢ = I3 oinf(z)da
After these heuristics, we proceed with the following calculations:

sup |Eff¥(z) e f(z) < sup  |EfYV(2) e P;if(z ‘—I—ZHD/fH

z€[h,1—h] w€lh,1-h] >3
v 20C, .
< swp [BAN(@) @B T(@)|+ 55 m2

z€[h,1-h]

where (7, is the constant which arised in Proposition 3.2. Therefore it remains to examine
|EfY < P; f||. This term equals:

[27«]

Yoo el ( Z%, (£) () ﬁ/%, )‘

k=[20z—2N+1]|

sup
z€[h,1—h]

which is smaller than:

[27«]

sup > leikle

e€[h1=h] g 25— 2N41]

Z@QJ, % % <:>/99]7

Let us denote by A the following difference:

—Z‘PJ, % i <:>/99]7

Recall that j = j(n) was defined implicitely through (4.4). For A we can derive the following
appropriate upper bound:

Lemma 5.2 Fork = {0,1,...,2/ ©2N + 1} and 3 > L

Al <2507t (2N <)) 1F]] + o (1)) n — oc.

11



Proof. The proof only involves straightforward calculations with a Taylor expansion:
A] = |/2J5c,9 (20 k) fla)do on™ 3250 (2 2-4) £ ()]
=1
|27 n(k+2N—1)]

=|Z /2

1=|2"7kn] 1_1

SIS

(¢ (22 k) f(2) ©p (272-5) F(£)) daf

:

[277n(k+2N-1)| =

:|Z /2

Wl

(¢ (20 k) (Jo) & f () + 276 (26 k) f(2) (z o2)) do

=279kn] 21
where £ €]i=L, i,
. _J L the Holder constant for o =p )
Let ¢ = min(1, #) and C, = { Y for o —1 then:
(29 n(k+2N —1)] o
IS 22\!9@\!/0 o 6217 de + 28|41 / o & £lde

=|277kn|

4 C
_ -7 IS 4 —(o+1) 32
(N w1)27n (28l 4 2 a2 )

= 2007 (2N D¢ |lIf] + 0 (1)
O

Remark that due to the last equation we have to require that § exceeds 1. Using (5.6) and
Lemma 5.2 we get:

oup | [EfY () @ BT )| < 2N ey llel28n ™ (22 Ifl+0(1) 0 — oo
re

which is negligable compared to  sup |P;f(z) & f(x )‘
z€lh,1—h
It remains to evaluate the risk at the neighbourhoods of the edges. Due to symmetry it

is sufficient to look at the case z € [0, h]. We need the following Lemma:

Lemma 5.3 sup ‘(PJT) (m)(2) =(P;f) (m)(y)‘ < Lph*
,y€[0,A]
where the constant Lp equals L + %
Proof. Using equation (3.1) we have:
(DT (@) (5D ()| = )& Y (DD (@) + 3 (D™ (y) & (D™ (y)]
’>J i'zg
< D™ (@) (D™ W+ 130N (y) & 3 (D)™

i'zg i'z3

12



Remark first that due to Proposition 3.3 and 3.2 we are allowed to differentiate each term

in the summation above. Second, remark that f(m) is Holder continuous. If we again apply
Proposition 3.3 and Proposition 3.2 we obtain:

sup [(P ) (w) &(P )™ (y)] < Lh* 420,y 27Dy |
z,y€[0,h] iy
< Lh® 420, 27
3125
2—ja+102
1 &2~

(L N 2C5(2N 1)~ ) e

IN

Lh% +

1&2-¢

which concludes the proof of Lemma 5.3. a

Due to this Lemma we have:

S I
sup ‘EfW <:)>P f( )‘ = sup Z(E( X)(l)(h) <:>>(]3]?)(1)(h))(xli'h)
2€[0,h] z€[0,h] |;—=p !
h m
+ ((P]f)(m)(f) (P F)m)( )) %‘
< S [RUI0 S0y + gt
m h 2N -1 hﬁ
_ Z:l_ Z 21(+3) 0 (331—ky (Béjjy &) F Ly

IN

SoRN @12t 0] (s A + (1) + 21
=0 )

m 1 hﬁ
= Y@ O N S DI+ o (1) + —Lp
:0 |

B
= —L 1 .
p— p(l+0(1)) as n— o

This enables us to conclude for = € [0, h] as follows:

sup [EfY(a) & f(a)] < sup [EfY(2) @(BT)(@)|+ sup [(FT)() & f(2)

z€[0,A] z€[0,A] z€[0,A]

IA
T~
B
=
_|_
QS
=
_|_

Finally one obtains for the bias:

2Lp 3C,2° _
b(z) < ®, 1 PT (9N &1)F 5.7
gj:&l (z)] < (m (1+o ())+25@1( &1) ) (5.7)
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where (', was the constant which arise in Proposition 3.2, Thus

2Lp 30,28
1
T wenevay oW

Chias = (5.8)
and this completes the proof of Lemma 5.3. a

To proceed further with the proof of Theorem 4.1 we need an upper bound for the large
deviations of a Gaussian process in supnorm. We will state and prove a more concise upper
bound which will be found useful in the proof of Theorem 4.2:

log n

n

AT
Lemma 5.4 With h = ( ) and ®,, = h® we have:

(a) Aq(u) 4 P{ sup |Z,(x)] > uq)n}
z€[h,1—h]
log n\ "7 22N-1))%|j¢ll o u?logn F—
( n ) uy/m logn exp{ 8a2]|¢||?(2N &1)3 (1—|—O(2n ))
(b) Ag(u) = P{ sup |Zp(z)| > ud, }
z€[0,A]

(2N & 1) malleOfl ¢ (11)*u*logn
<
= Z[ uy/Togn P T2 PD|P2N < 1))

and a similar bound holds for x € [1 <h,1].

Proof. Let A; = {1,...,|h7!| &1} and A, = [ph, min((p + 1)h,1 < h)] for p € A;. Then

> -
2[|¢l|(2N = 1)

we have:
Ay(u) < Z P{sup |f(z) Ef (2)] > uq)n}
pEA; T€Ap
272

= Z P < sup Z ©;.k( thjk &I >ud,

pEA; T€Ap k=|292—2N+1]

(p+1)(2N—1) ) )

< ) P > Z%, £)&| > u®27 5ol

PEA; k=(p—1)(2N—-1) i=1

(p+1)(2N-1) _J
®,,2

SZZP{ f(2)&] > 5 } (5.9)

peAJ k:(p—l)(2N—1)

In our model the ’s are assumed to be normally distributed. Therefore the variables v, j, =
Ly @ik (£)& are normally distributed with mean zero and variance

2

2299], ) :%(14‘0(2;)) n — 0o. (5.10)
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The last equality can be proved by applying similar kind of calculations as in the proof of
Lemma 5.2, based on the fact that [ ¢* = 1. By using (5.10) and the following inequality:

o0

/(2%)_% exp {@%yz} dy <

xr

1
olg? 5.11
" _QFGXP{ 236} ( )

_i
(cf. Feller ([4], p. 175), for z = W% we obtain the appropriate upperbound for the

J
u®,272
tail probability of v, k, P} [Vni| > 7 3t
lell 2 (2N 1)

(2(2N & 1) |lo] u2logn o
uy/m logn eXp{ 802\]@“2(2]\7@1)3}(1—'_0(2" ) (5.12)

Finally we complete the proof of (a) by substituting (5.12) in (5.9). Furthermore choosing

2 2 3
u? > Scr”wyﬁ# one finds that Aq(u) — 0, as n — oc.

Turning to (b) we have:

P {i \(sz)“)(h) SE(h) ?—f > u }
" - u®,l!

< S r{jum i e Om]> T

Here 7\ ( ) 4 (R SE(f)U(h) is normally distributed with variance o?(h), where:
oA(h) < (N—1ysoh D GO 2o (5.13)

AQ(U)

IN

Again by using the inequality (5.11) one finds for any u > 0:
(1290w,
A < P
o(v) < ; { o(h)~ moy(h) Al
i 2moy(h) b ®2(11u)?
T lud, 7 202(h)m?

2l+3
= Nl T EUELN (112 ogn
- u l\/logn m2a2||eD||2(2N <1)2H+3) |

Therefore Ay(u) = 0(1)(n — o0), for any u > 0. 0

IN

To complete the proof of Theorem 4.1 we apply Lemma 5.4. Choose therefore O =

1
Chias + u (see (5.8)) with u = (%%‘1)3) * and we can establish:

P{ sup |fy(z) & f(z)] > Ch,, @ } < P{ sup |Zn(7)] > (Chpp ©Cbias) <I>n}

x€[0,1] z€[0,h]

+ P{ sup | Zn(2)] > (Capp € Chias) n}
z€[h,1—h]

+ P{ sup | Zn(2)| > (Chpp € Chias) n}
r€[1—h,1]

— 0 as n — 0o.
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5.4 Proof of Theorem 4.2
Proof. First let us denote ®, || f¥ < f|| by Y,V. For the risk of £} the following holds:

RUD < (Chp)* + | ey P > y) dy. (5.14)
upp

So it remains to proof that this integral converges to 0, uniformly over our class F¥ (see (2.2)
if n tends to oo. Remark the fact that:

P(an > y) S P(q);IHZnH > yﬁcbias)- (515)

Substituting y = Cypp + v for v > 0 in Lemma 5.4 we obtain for (5.15):

1
Ca (logn) T 2p+1

549) = (Cupp + v < Chias )V Iogn xp { 3(Cupp + v € Cbias) ~ log n}
3 Cs (1) 2
+ 0] exp 1 2Cs(D)(Cupp + v < Chias) 2 log n
; (Cupp + v écbias)\/@ { 5( )( PP b ) g }
Therefore it remains to study the following integral:
7 C (logn)_ﬁ
Cu a—1 o n a0 Cu a0 - 21
0/a (Comm 20 (Cupp + v = Chias)v/Togn xp { 3(Cupp + v € Chias) ~ log n}
3 Cs (1) 2
+ il ex <:>C { Cu + v <:>C ias log n
= (Cupp + v & Chias)V/Togn p { s(D(Cupp bias) - 10g })

(here Cy, Cg, C, and Cys are the constants which appeared in Lemma 5.4) and this integral
is smaller than:

1
) 00 logn \ ™ 28+1 o 21
e@mln(Cg, C(S(l)) (Cupp <:>Cbias)2 /a (Cupp . v)a_l Ca ( n ) exp { gt~ log n}
] (Cupp + v @Cbias)\/log n

- Co(D)
=0 (CuPP +o <:}C(‘t)ias)\/l()w

Our problem reduces now to showing that the following integral converges to 0 (uniformly
over the class 7”), by using the above obtained upper bound for P(®; | Z,|| > y < Chias) :

+ exp {@Cg(l)vzlogn})

[, ar P 1Zu] > y & Ciia) dy
bias

Using the fact that [ 2P le ™ dz < oo if p > 0 it can be shown, with straightforward
calculations, that the above integral converges to 0, uniformly over the class FZ. Thus we

can conclude that lim sup R(fY,f) < (Cy,,)" as n tends to co. o
n—o0 cFPB
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