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1 Introduction

The model we will study in this paper is a non-parametric regression model on the unit interval
[0; 1] with equidistant deterministic grid design. The unknown regression function is assumed
to belong to some H�older class with the smoothness parameter � > 1

2 . Furthermore the
regression function is observed in a Gaussian noise (precise de�nitions are given in SECTION
2).

Ibragimov and Hasminskii [7] have studied a similar kind of model. They considered a
more general grid, namely a stochastic grid design, and the class of functions they took was
the class of periodic functions on the interval [0; 2�]. Stone [12] obtained optimal rates of
convergence where the regression function was assumed to belong to some H�older class of
functions. The same kind of model, but with the emphasis on getting the exact constants
were studied in Korostelev [8] (for � in ] 12 ; 1] ) and in Donoho [2] (for � > 1

2 ). In both articles
the optimal rates where obtained with kernel methods.

Our goal in this article is to obtain optimal rates by using wavelet estimators. Recently
wavelet estimators were studied in the context of density estimation (cf. Picard and Kerky-
acharian [11]) and in estimation the di�usion coe�cient of a di�usion process (cf. Genon-
Catalot, Laredo and Picard [5]). In Donoho and Johnstone [3] a non-linear wavelet estimator
was used for estimating functions with jumps.

Regression has some speci�c problems, the treatment of the neighbourhoods of the end-
points being one of them. For example in M�uller (see [10]) this problem has been solved by
taking special kernels at the neighbourhoods of the boundary. We will give another way of
treating this problem by de�ning the estimator in the neighbourhoods of the endpoints as a
Taylor-polynomial up to the order corresponding to the smoothness of the regression function
(see SECTION 4).

The lower bound for the rate of convergence will be derived in SECTION 5.2 by a technic
which uses the ideas close to the Hajeks derivation of the local asymptotic minimax lower
bounds, as generalised in Ibragimov and Hasminskii [6] for the multivariate case ( cf. also
Korostelev [8]). In SECTION 5.1 we will prove that a wavelet estimator modi�ed in the
neighbourhoods of the endpoints achieves this lower bound. For the convenience of the reader
we will give a summary of the theory of wavelets (in SECTION 3).

The author would like to use this opportunity to thank B. Ya. Levit for his stimulating
ideas and frequent useful discussions.
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2 De�nitions and the model

We study the non-parametric regression problem with deterministic regular grid design on
the interval [0; 1]. Let y1; : : : ; yn be observations from the following model:

8><
>:
yi = f( i

n
) + �i

i = 1; : : : ; n
�i � N (0; �2)

(2.1)

where

f 2 F� =

(
f : sup

x;y2[0;1]

jfm(x)� fm(y)j
jx� yj� + sup

x2[0;1]
jf(x)j � L

)
; (2.2)

for some L > 0, 1
2 < � = m + �; 0 < � � 1 and m = [�] (here [a] is notation for the biggest

integer smaller than a). In the sequel k � k will be a shorthand notation for supx2[0;1] jf(x)j
and k � k1 for supx2R jf(x)j.

We want to study optimal rate wavelets-based estimates of the unknown regression func-
tion f in the uniform norm. The notion of optimality we use below is that of Stone [12]:

De�nition 2.1

� a) �n is a lower rate of convergence if there exists a positive Clow such that

lim
n!1

inf
fn

sup
f2F�

P fkfn � fk � Clow�ng = 1 (2.3)

where the in�mum is taken over all estimators fn of f .

� b) �n is an achievable rate of convergence if there exists a sequence ffngn�1 of estima-
tors and a positive constant Cupp such that

lim
n!1

sup
f2F�

P fkfn � fk � Cupp�ng = 0 (2.4)

The sequence fn satisfying (2.4) will be called �n-rate consistent.

� c) �n is called an optimal rate of convergence if it is both a lower and an achievable
rate of convergence.

When �n is the optimal rate of convergence and a sequence of estimators ffng satis�es
(2.4), the estimators fn; n � 1, are said to be asymptotically optimal (cf. [12] ).

The lower rates of convergence for simular models have been obtained by Stone [12] and
Ibragimov & Khasminskii [7] . More recently Korostelev [8] found the exact optimal constants
for � between 1

2 and 1. This result has been extended by Donoho [2] for � > 1. In SECTION
5 we generalize the method by Korostelev to give a new and more elementary proof of the
following result (cf. Stone [12] , Ibragimov & Khasminskii [7] ) :

Theorem 2.2 �n =

�
log n

n

� �
2�+1

is a lower rate of convergence.
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Remark. Note that the optimal rate in Lp-norm, 1 < p <1, is di�erent from the L1-norm,

namely n
� �

2�+1 p.
Theorem 2.2 can be applied to the following class of risk functions:

R(fn; f) = E
h
��1n kfn � fk

i�
� > 0; (2.5)

in the following way:

Corollary 2.3 lim
n!1

inf
fn

sup
f2F�

R(fn; f) > 0:

A wavelet type estimator achieving the optimal rate �n will be described in SECTION 4.
SECTION 3 presents a short summary of wavelet theory to be used later.

3 Wavelets: a summary

The easiest access to the theory of wavelets is provided by the notion of multiresolution
analysis (see Meyer [9]):

De�nition 3.1 A multiresolution analysis (MRA) is a sequence of subspaces (Vj)j2Z of

L2(R) with the following conditions:

(i) : : : � V�1 � V0 � V1 � : : :

(ii)
T
j2Z

Vj = f0g ; S
j2Z

Vj = L2(R)

(iii) f(�) 2 Vj , f(2�) 2 Vj+1 8j 2 Z

(iv) f(�) 2 V0 ) f(�+ k) 2 V0 8k 2 Z

(v) There exists a function ', called a scaling function, such that f'(� � k); k 2 Zg forms
an orthonormal basis of V0.

It is possible to assume that ' is of class Cr and compactly supported on [0; 2N � 1] (in
that case it is proved that there exists a constant 
 such that the length of the support is of
order 
 � r). If ' has regularity r then the corresponding MRA is said to have regularity r.

From (iii), (iv) and (v) it easily follows that
n
'j;k = 2

j
2'(2j � �k); k 2 Z

o
is an orthonormal

basis of Vj . ' is usually called the mother wavelet.
Furthermore it can be proved that for the multiresolution analysis, the orthogonal com-

plements Wj , de�ned as Vj+1 = Wj

L
Vj, have the same kind of properties as the Vj 's. Thus

there exists a function  , the father wavelet, such that  2 Cr,  is compactly supported
and W0 is spanned by the collection f (� � k); k 2 Zg. Then the collection of functionsn
 j;k = 2

j
2 (2j � �k); j; k 2 Z

o
is an orthonormal basis of L2(R).

From now on we will assume that a mother wavelet ' has been chosen such that r �
max(1; �). The Daubechies wavelets provide well known examples of such functions (cf. [1]).
Following notations will be used in the sequel, for f 2 L2(R):
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� Pjf(x) = Projection of f on Vj =
P
k2Z

cj;k'j;k(x)

where cj;k =
R
R

f(y)'j;k(y) dy

� Djf(x) = Projection of f on Wj =
P
k2Z

dj;k j;k(x)

where dj;k =
R
R

f(y) j;k(y) dy.

Since ' and  are compactly supported the above sum comprises, for each x, only �nite
number of terms (though depending on N).

According to the de�nition and properties of the MRA a function f 2 L2(R) can be
decomposed for any j as follows:

f(x) =
X
k

cj;k'j;k(x) +
X
j0�j

X
k2Z

dj0;k j0;k(x) = Pjf(x) +
X
j0�j

Dj0f(x) (3.1)

with convergence in L2(R). Moreover for f in F� (see (2.2)) we have:

Proposition 3.2 If (Vj)j2Z is a MRA of regularity r � � then the following implication
holds:

f 2 F� ) P0f 2 L1 and kDjfk1 � Cp2
�j�

where Cp is a constant (to be determined explicitely in the proof).

Proof. The proof is a slight modi�cation of the similar result of Meyer, proved in [9] for the
so called Zygmund class of functions. The two classes di�er only for the integer values of �
(see Meyer p. 53).

De�ne D(x; y) =
P

k  (x�k) (y�k). This kernel has the property that it is perpendicular
to all polynomials up to degree � (i.e.

R
D(x; y)y
 dy = 0 for j
j � � ). As we have taken a

MRA of regularity at least � , jD(x; y)j � Cl(1 + jx � yj)�l, for l 2 N (see Meyer [9]). Let
D(m) be the kernel such that @m

@ym
D(m) = D(x; y). For D(m) the same bound as for D(x; y)

holds. Taking this into account one can deduce:

kDjfk1 = sup
x2R

����
Z
2jD(2jx; 2jy)f(y) dy

����
= sup

x2R

����
Z
2jD(2jx; 2jy)(f(y)� f(x)) dy

����
= sup

x2R

����
Z
D(x; y)(f(2�jy)� f(2�jx)) dy

����
� sup

x2R
2�j�L

Z
jD(m)(x; y)j jy� xj� dy

= 2�j�Cp;

where the constant Cp = Cp(L; �;m) equals L k R jD(m)(�; y)j jy� � j� dyk1. 2

In the sequel we also need the following Bernstein's type inequality:

Proposition 3.3 (Meyer [9] p. 47) If (Vj)j2Z is a MRA of regularity r � � and f 2 F�

then there exist constants C1 and C2 such that for m = [�]:

C12
jmkDjfk1 � k(Djf)

(m)k1 � C22
jmkDjfk1 (3.2)
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4 The Estimator and main Theorems

First we replace f by a function f such that for arbitrary, but �xed � > 0:

i) f = f on [0; 1]

ii) f 2 L2(R)

iii) suppf � [��; 1 + �]

iv) f 2 F�([��; 1 + �])

Let Pjf be the projection of f on Vj where j, which we will de�ne shortly, depends on n. As
was mentioned in the previous SECTION we choose a su�ciently smooth wavelet ' which is
compactly supported with support [0; 2N � 1]. N depends on the smoothness of '.

For the projection Pjf , evaluated in x, where x is in the interval [2�j(2N�1); 1�2�j(2N�
1)], we only need a �nite number of 'j;k, namely those for k runs from 0 to 2j � 2N + 1.
Thus for the corresponding coe�cients we have:

cj;k =

Z
R

'j;k(x)f(x) dx

=

1Z
0

'j;k(x)f(x) dx

=

1Z
0

'j;k(x)f(x) dx:

The obvious idea is now to estimate f by estimating the projection Pjf . For this projection
we have to estimate the corresponding coe�cients cj;k. Let us abbreviate 2

�j(2N � 1) by h.
A natural estimator ĉj;k for cj;k is the following sum:

ĉj;k =
1

n

nX
i=1

'j;k ( in ) yi: (4.1)

Thus the estimator of f for x 2 [h; 1� h] is:

fwn (x) =
X
k2Z

'j;k(x)ĉj;k; x 2 [h; 1� h]: (4.2)

It remains to de�ne the estimator for x 2 [0; h] [ [1 � h; 1]. Therefore we propose to
extrapolate fwn based on the values (fwn )

(l)(h) and (fwn )
(l)(1 � h) (for l = 0; : : : ; m) by a

Taylor polynomial of degree m, corresponding to the smoothness of f . Note that (fwn )
(l)

equals 2j(l+
1
2 )
P

k2Z'
(l)(2jh � k)ĉj;k: The precise de�nition of the proposed estimator is:

fwn (x) =

8>>>>><
>>>>>:

mP
l=0

(fwn )
(l)(h) (x�h)

l

l ! x 2 [0; h]P
k2Z

'j;k(x)ĉj;k x 2 [h; 1� h]

mP
l=0

(fwn )
(l)(1� h) (x�(1�h))

l

l ! x 2 [1� h; 1]

(4.3)
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Note that h here plays the role comparable to that of the bandwidth for the Kernel-type
estimators. Therefore we call it, with some abuse of terminology, henceworth bandwidth. Let

h =

�
log n

n

� 1
2�+1

(4.4)

or equivalently j = d 2log(2N � 1) � 2log he (dae is a shorthand notation for the smallest
integer larger or equal to a). Now we can state the main Theorem:

Theorem 4.1 The estimator fwn de�ned through (4.1), (4.2), (4.3) and (4.4) is
�
logn
n

� �
2�+1 -

rate consistent.

In SECTION 2 we have de�ned a risk function. Generalizing the proof of Theorem 4.1
one can show the following:

Theorem 4.2 lim
n!1

sup
f2F�

R(fwn ; f) <1

The proofs will be furnished in SECTION 5. Also an explicit upper bound for the asymp-
totic risk will be given.

5 Proofs

5.1 proof of Theorem 2.2

First we reduce the non-parametric problem to a parametric problem by choosing a special
parametric subfamily of F�. Second we derive the sample distribution and describe su�cient
statistics of the sample. Third we bound the minimax risk from below by the Bayes risk.

Suppose that K : R! R is a kernel with the following properties:

1 K(0) = 1

2 K(u) = 0 for juj � 1

3 K 2 F�

We have to introduce some de�nitions and notations: Let h, the bandwidth, equals

(n)�1 bnho
�
logn

n

� 1
2�+1 c

where ho will be de�ned later ( bac is a notation for the largest integer smaller than or equal
to a).

De�ne a grid on the interval [0; 1] as follows:

xj = (2j � 1)h j = 1; : : : ; J = b 1
2h
c:

By de�nition of the bandwidth, hn is an integer smaller than n, therefore the above grid is
a subset of the sample points. The parametric family, depending on the vector parameter
c = (c1; : : : ; cJ), is de�ned as follows :

fc(x) =
JX

j=1

h�cjK

�
x� xj
h

�
jcjj � 1:

6



Note that fc(xj) = h�cj .
Of course we have to check whether fc indeed belongs to F�. Therefore we introduce for

x; y 2 [0; 1] arbitrary, j� such that jx � xj� j � h and j0 the same but with y instead of x.

By construction of K and the grid there is a ~y such that j~y � xj� j � h and K(m)
�

~y�xj�

h

�
=

K(m)
�
y�xj0

h

�
. With these tools we can deduce:

���f (m)(x)� f (m)(y)
��� =

������
JX

j=1

h�cj

�
K(m)

�
x� xj
h

�
� K(m)

�
y � xj
h

��������
=

����h�
�
cj�K

(m)
�
x� xj�

h

�
� cj0 K

(m)
�
y � xj0

h

������
=

����h�cj�
�
K(m)

�
x� xj�

h

�
� K(m)

�
~y � xj�

h

������
� Lh�jcj� j

����x� ~y

h

�����
� L jx� yj� :

Therefore our subfamily Fc = ffc : jcjj � 1g belongs to F�.
Now we can bound the supremum over the whole class of H�older continous functions

by the supremum over the above de�ned subclass. For an arbitrary sequence of estimators
ffng1n=1, for an arbitrary but �xed � > 0 and any constant C we have:

�
d
= sup

f2F�

Pf

�
��1n kfn � fk > C (1� �)

�

� sup
f2F�

Pf

�
��1n max

j=1;:::;J
jfn(xj)� f(xj)j > C (1� �)

�

� sup
f2Fc

Pfc

�
��1n max

j=1;:::;J
jfn(xj)� f(xj)j > C (1� �)

�

= sup
c2[�1;1]J

Pfc

�
max

j=1;:::;J
j�j � cj j > C (1� �) h��o

�

where we set �j = fn(xj)h�� . If we now choose C = Clow = h�o then we have for �:

� � sup
c2[�1;1]J

Pfc

�
max

j=1;:::;J
j�j � cj j > (1� �)

�
: (5.1)

Let Aj be the set de�ned as follows:

Aj = fi j j i
n
� xj j � hg :

It can be seen that for i 2 Aj the sample can be rewritten as follows:

yi = fc ( in) + �i = cjh
�K

�
i
n�xj
h

�
+ �i

d
= cj�ij + �i;

thus for each i the observation yi bears information about just one of the coe�cients cj where
j = j(i). The joint density of the sample is therefore the following:

p (y; c) =
nY
i=1

�p
2��

��1
exp

(
� (yi � cj�ij)

2

2�2

)
d
=

nY
i=1

'�2(yi � cj�ij)
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where y = (y1; : : : ; yn) and c = (c1; : : : ; cJ).
By straightforward calculations one can prove that the statistics T = (T1; : : : ; TJ) where:

Tj =

P
i2Aj

�ijyiP
i2Aj

�2ij

are independent, normally distributed with expectations cj and variances �2=
P

i2Aj
�2ij . As

(nh)�1
P

i2Aj
K2

�
i
n
�xj
h

�
=
R
K2(u) du (1 + o (1))

d
= � (1 + o (1)) it follows immediately that

the Fisher Information Ij of Tj ,is independent of j and equals

� logn h2�+1
o

�2
(1 + o (1)) :

Choosing now ho =
�

2�2

(2�+1)�

� 1
2�+1 we have for each j:

Ij = I =
2 logn

2� + 1
(1 + o(1)) ; (5.2)

The statistics Tj are su�cient for the parameter c of the family p (y; c). Moreover, Tj is
su�cient for cj (j = 1; : : : ; J), i.e. p (y; c) can be written as g (y)

Q
j pj(Tj ; cj).

Using (5.1) we can continue by bounding the minimax risk by the Bayes risk. The Bayes
risk is calculated w.r.t the uniform prior on [�1; 1]J :

� � sup
fc

�
1�Pfc

�
max

j=1;:::;J
j�j � cj j � 1� �

��

� 2�J
Z

[�1;1]J

�
1� Pfc

�
max

j=1;:::;J
j�j � cj j � 1� �

��
dc

= 1� 2�J
Z

[�1;1]J

Pfc

�
max

j=1;:::;J
j�j � cj j � 1� �

�
dc

� 1�max
�( �)

2�J
Z

[�1;1]J

Pfc

�
max

j=1;:::;J
j�j � cj j � 1� �

�
dc

= 1�max
�( �)

2�J
Z

[�1;1]J

Efc

JY
j=1

I (j�j � cj j � 1� �) dc

= 1�max
�j(�)

JY
j=1

1Z
�1

1Z
�1

I (j�j � cJ j � 1� �)'I�1 (Tj � cj) dcj dTj

= 1� max
�j=�j(Tj)

2�J
JY

j=1

Z
[�1;1]J

I (j�j(Tj)� cjj � 1� �)'I�1(Tj � cj) dTj dcj;

= 1�
0
@max

�(T )
2�1

1Z
�1

dT

0
@ 1Z
�1

I (j� � cj � 1� �)'I�1(T � c) dc

1
A
1
A
J
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It is not di�cult to realise that the function ��, de�ned by:

�� =

8><
>:
�� T � ��
T jT j � �
� T � �

;

is the Bayes estimator of cj . Therefore we have derived the following inequality for �:

� � 1�
0
@2�1

1Z
�1

dT

1Z
�1

I (j�� � cj � 1� �)'I�1(T � c) dc

1
A
J

:

(cf. Korostelev [8]).
Now we continue bounding � from below as follows:

� � 1�
0
@1� 2�1

Z
dT

1Z
�1

I (j�� � cj > 1� �)'I�1(T � c) dc

1
A
J

� 1�
0
B@1� 2�1

�
2Z

� �
2

dT

Z
1���jT�cj�1� �

2

'I�1(T � c) dc

1
CA
J

= 1�
0
B@1� �

1� �
2Z

1��

'I�1(�) d�

1
CA
J

: (5.3)

Using the inequality:

1p
2� (x+ 1)

exp
n
� 1

2x
2
o
� (2�)�

1
2

1Z
x

exp
n
� 1

2y
2
o
dy � 1p

2�x
exp

n
� 1

2x
2
o

(5.4)

for x > 0 (see Feller [4]), we can deduce for the integral in expression (5.3):

1� �
2Z

1��

'I�1(�) d� � (2�)�
1
2

 
exp

�� 1
2I(1� �)2

	
p
I (1� �) + 1

� exp
�� 1

2I(1� �=2)2
	

p
I (1� �=2)

!

= (2�)�
1
2

0
@exp

n
� logn

2�+1(1� �)2
o

q
logn
2�+1 (1� �) + 1

�
exp

n
� logn

2�+1(1� �=2)2
o

q
logn
2�+1 (1� �=2)

1
A (1 + o (1))

= (2�)�
1
2

0
B@ n

�(1��)2

2�+1q
logn
2�+1 (1� �) + 1

� n
�(1��=2)2

2�+1q
logn
2�+1 (1� �=2)

1
CA (1 + o (1))

� 1
2 n

� (1��)2

2�+1 (logn)�
1
2

� 1
2 n

� (1��)
2�+1 (logn)�

1
2

for n > no (�) . By de�nition we have for J :

J = b 1
2hbc � const

�
logn

n

�� 1
2�+1

< n
1

2�+1 : (5.5)
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Therefore we can conclude the proof by the following:

� � 1�
�
1� �

2
n
�

(1��)
2�+1 (logn)�

1
2

�J

� 1�
�
1� �

2
n
�

(1��)
2�+1 (logn)�

1
2

�n 1
2�+1

� 1� exp

�
� �
2
n
� (1��)

2�+1 (logn)�
1
2 � n 1

2�+1

�

= 1� exp

�
� �
2
n

�
2�+1 (logn)�

1
2

�
! 1 as n!1:

Remark that the constant Clow, as was mentioned in de�nition 2.1(a), equals
�

2�2

�(2�+1)

� 1
2�+1 .

5.2 Proof of Corollary 2.3

Proof. For Yn = ��1n kfn � fk and fn an arbitrary sequence of estimators ffngn�1 of f we
have:

R(fn; f) = EfY
�
n

=

1Z
0

�y��1Pf(Yn > y) dy

�
ClowZ
0

�y��1Pf(Yn > y) dy

� Pf (Yn > Clow) (Clow)
�:

This holds uniformly over f in F�, which immediately gives the corollary (by applying The-
orem 2.2). 2

5.3 proof of Theorem 4.1

The quantity supx2[0;1] jfwn (x)� f(x)j will be bounded from above by bounding seperately

Zn(x)
d
= fwn (x)�Efwn (x), a variance term, and bn(x)

d
= Efwn (x)� f(x), a bias term which is

deterministic. Furthermore, as we de�ned our estimator di�erently on the neighbourhoods of
the edges, we split the interval as follows: [0; 1] = [0; h][ [h; 1� h] [ [1� h; 1]. Precisely for
any C:

P

(
sup

x2[0;1]
jfwn (x)� f(x)j > C �n

)
� P

(
sup

x2[0;h]
jZn(x)j > C �n � sup

x2[0;h]
jbn(x)j

)

+ P

(
sup

x2[h;1�h]
jZn(x)j > C �n � sup

x2[h;1�h]
jbn(x)j

)

+ P

(
sup

x2[1�h;1]
jZn(x)j > C �n � sup

x2[1�h;1]
jbn(x)j

)
:

First we deal with the bias term and after that we complete the proof by deriving an upper
bound for the variance term.
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Lemma 5.1 Under the conditions of Theorem 4.1 there exists a constant Cbias = Cbias(�; L;N)
such that uniformly over F�:

sup
x2[0;1]

jbn(x)j � Cbias

�
logn

n

� �
2�+1

:

Proof. Again, as just above we split the interval and �rst we examine the bias on the interval
[ h; 1�h]. Remember that fwn is an estimator of the projection Pjf of f on Vj (see SECTION
2). Recall that Proposition 3.2 states that for H�older spaces F� the di�erence Pjf � f tends
to zero at the rate 2�j(s^�) where s is the smoothness of the choosen scaling function '.
As 2�j� equals �n(2N � 1)�� the di�erence has precisely the rate we want it to have. The
question remains what is the rate of the supnorm of the di�erence between the expected value
of the estimator and the projection. Note that in our case ĉj;k is not an unbaised estimator
for the coe�cient cj;k (because Eĉj;k is a sum and cj;k is an integral, contrary to the situation
in the density estimation, cf. [11] ). It will turn out that we'll have to know how good the
sum 1

n

Pn
i=1 'j;k (

i
n
) f ( i

n
) approximates cj;k =

R 1
0 'j;kf(x) dx.

After these heuristics, we proceed with the following calculations:

sup
x2[h;1�h]

jEfwn (x)� f(x)j � sup
x2[h;1�h]

���Efwn (x)� Pjf(x)
���+ X

j0�j

kDj0fk

� sup
x2[h;1�h]

���Efwn (x)� Pjf(x)
���+ 2�Cp

2� � 1
2�j�

where Cp is the constant which arised in Proposition 3.2. Therefore it remains to examine
kEfwn � Pjfk. This term equals:

sup
x2[h;1�h]

������
b2jxcX

k=b2jx�2N+1c

'j;k(x) �
0
@ 1

n

nX
i=1

'j;k ( in) f (
i
n
)�

1Z
0

'j;k(x)f(x) dx

1
A
������

which is smaller than:

sup
x2[h;1�h]

b2jxcX
k=b2jx�2N+1c

j'j;k(x)j
������ 1n

nX
i=1

'j;k ( in) f (
i
n
)�

1Z
0

'j;k(x)f(x) dx

������ : (5.6)

Let us denote by � the following di�erence:

1
n

nX
i=1

'j;k ( in) f (
i
n
)�

1Z
0

'j;k(x)f(x) dx:

Recall that j = j(n) was de�ned implicitely through (4.4). For � we can derive the following
appropriate upper bound:

Lemma 5.2 For k =
�
0; 1; : : : ; 2j � 2N + 1

	
and � > 1

2 :

j�j � 2
j
2n�1

�
1
2(2N � 1)k'0k kfk+ o (1)

�
n!1:

11



Proof. The proof only involves straightforward calculations with a Taylor expansion:

j�j = j
Z
2
j
2'
�
2jx� k

�
f(x) dx� n�1

nX
i=1

2
j
2'
�
2j i

n
�k

�
f ( i

n
) j

= j
b2�jn(k+2N�1)cX

i=b2�jknc

i
nZ

i�1
n

2
j
2

�
'
�
2jx� k

�
f(x)� '

�
2j i

n
�k

�
f ( i

n
)
�
dxj

= j
b2�jn(k+2N�1)cX

i=b2�jknc

i
nZ

i�1
n

2
j
2

�
'
�
2jx� k

�
(f(x)� f ( i

n
)) + 2j'0

�
2j�i � k

�
f(x) (x� i

n
)
�
dx

where �i 2] i�1
n
; i
n
[:

Let � = min(1; �) and C� =

(
L the H�older constant for � = �

kf 0k for � = 1
then:

j�j �
b2�jn(k+2N�1)cX

i=b2�jknc

0
BB@2 j

2 k'k
i
nZ

i�1
n

C�jx� i
n
j� dx+ 23

j
2 k'0k1kfk

i
nZ

i�1
n

jx� i
n
jdx

1
CCA

= (2N � 1) 2�jn

�
2
j
2 k'k C�

� + 1
n�(�+1) + 23

j
2 k'0kkfk 1

2n
�2
�

= 2
j
2n�1

�
1
2
(2N � 1) k'0k1kfk+ o (1)

�
2

Remark that due to the last equation we have to require that � exceeds 1
2
. Using (5.6) and

Lemma 5.2 we get:

sup
x2[h;1�h]

���Efwn (x)� Pjf(x)
��� � (2N � 1) k'k 2 j

2n�1
�
2N�1

2 k'0k kfk+ o (1)
�

n!1

which is negligable compared to sup
x2[h;1�h]

���Pjf(x)� f(x)
���.

It remains to evaluate the risk at the neighbourhoods of the edges. Due to symmetry it
is su�cient to look at the case x 2 [0; h]. We need the following Lemma:

Lemma 5.3 sup
x;y2[ 0;h]

���(Pjf) (m)(x)� (Pjf)
(m)(y)

��� < LPh
�

where the constant LP equals L+ 2C2(2N�1)��

1�2�� .

Proof. Using equation (3.1) we have:

j(Pjf)(m)(x)� (Pjf)
(m)(y)j = j(f)(m)(x)�

X
j0�j

(Dj0f )
(m)(x) +

X
j0�j

(Dj0f)
(m)(y)� (f)(m)(y)j

� j(f)(m)(x)� (f)(m)(y)j+ j
X
j0�j

(Dj0f)
(m)(y)�

X
j0�j

(Dj0f )
(m)(x)j:

12



Remark �rst that due to Proposition 3.3 and 3.2 we are allowed to di�erentiate each term

in the summation above. Second, remark that f
(m)

is H�older continuous. If we again apply
Proposition 3.3 and Proposition 3.2 we obtain:

sup
x;y2[0;h]

j(Pjf)(m)(x)� (Pjf)
(m)(y)j � Lh� + 2C2

X
j0�j

2j
0mkDj0fk

� Lh� + 2C2

X
j0�j

2j
0�

� Lh� +
2�j�+1C2

1� 2��

=

 
L+

2C2(2N � 1)��

1� 2��

!
h�

which concludes the proof of Lemma 5.3. 2

Due to this Lemma we have:

sup
x2[0;h]

���Efwn (x)� Pjf(x)
��� = sup

x2[0;h]

�����
mX
l=0

�
E(fwn )

(l)(h)� (Pjf )
(l)(h)

� (x� h)l

l !

+
�
(Pjf)

(m)(�)� (Pjf)
(m)(x)

� (x� h)m

m !

����
�

mX
l=0

���E(fwn )(l)(h)� (Pjf)
(l)(h)

��� hl
l !

+
h�

m !
LP

=
mX
l=0

hl

l !

�����
2N�1X
k=0

2j(l+
1
2 )'(l)

(2jh�k) (Eĉj;k � cj;k)

�����+ h�

m !
LP

�
mX
l=0

(2N � 1)2j(l+1)n�1
hl

l !
k'(l)k �2N�1

2 k'0kkfk+ o (1)
�
+
h�

m !
LP

=
mX
l=0

(2N�1)�l

l !hn k'(l)k �12 (2N � 1)k'0k kfk+ o (1)
�
+
h�

m !
LP

=
h�

m !
LP (1 + o (1)) as n!1:

This enables us to conclude for x 2 [0; h] as follows:

sup
x2[0;h]

jEfwn (x)� f(x)j � sup
x2[0;h]

���Efwn (x)� (Pjf)(x)
���+ sup

x2[0;h]

���(Pjf)(x)� f(x)
���

� h�

m !
LP (1 + o (1)) +

Cp2�

2� � 1
2�j�

= �n

 
LP

m !
(1 + o (1))+

Cp2
�

2� � 1
(2N � 1)��

!
:

Finally one obtains for the bias:

sup
x2[0;1]

jbn(x)j � �n

 
2LP

m !
(1 + o (1))+

3Cp2
�

2� � 1
(2N � 1)��

!
(5.7)
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where Cp was the constant which arise in Proposition 3.2, Thus

Cbias =
2LP

m !
+

3Cp2
�

(2� � 1)(2N � 1)�
+ o (1) (5.8)

and this completes the proof of Lemma 5.3. 2

To proceed further with the proof of Theorem 4.1 we need an upper bound for the large
deviations of a Gaussian process in supnorm. We will state and prove a more concise upper
bound which will be found useful in the proof of Theorem 4.2:

Lemma 5.4 With h =

�
logn

n

� 1
2�+1

and �n = h� we have:

(a) �1(u)
d
= P

(
sup

x2[h;1�h]
jZn(x)j > u�n

)

�
�
log n

n

�� 1
2�+1 (2(2N�1))

5
2 k'k�

u
p
� logn

exp

(
� u2 logn

8�2k'k2(2N � 1)3

)
�
�
1 + O

�
2jn�1

��

(b) �2(u)
d
= P

(
sup

x2[0;h]
jZn(x)j > u�n

)

�
mX
l=0

r
2

�

(2N � 1)
2i+3
2 m�k'(l)kk'k

l ! u
p
logn

exp

(
� (l !)2u2 log n

m2�2k'(l)k2(2N � 1)(2l+3)

)

and a similar bound holds for x 2 [1� h; 1].

Proof. Let Aj =
�
1; : : : ; bh�1c � 1

	
and �p = [ ph; min((p + 1)h; 1� h)] for p 2 Aj . Then

we have:

�1(u) �
X
p2Aj

P

(
sup
x2�p

jfwn (x)� Efwn (x)j > u�n

)

=
X
p2Aj

P

8<
: sup
x2�p

������
b2jxcX

k=b2jx�2N+1c

'j;k(x) 1n

nX
i=1

'j;k ( in) �i

������ > u�n

9=
;

�
X
p2Aj

P

8<
:

(p+1)(2N�1)X
k=(p�1)(2N�1)

1
n

�����
nX
i=1

'j;k ( in) �i

����� > u�n2
� j

2 k'k�1
9=
;

�
X
p2Aj

(p+1)(2N�1)X
k=(p�1)(2N�1)

P

8<
: 1

n

�����
nX
i=1

'j;k ( in) �i

����� > u�n2
� j

2

2 k'k(2N � 1)

9=
; : (5.9)

In our model the �i's are assumed to be normally distributed. Therefore the variables �n;k =
1
n

Pn
i=1 'j;k (

i
n
) �i are normally distributed with mean zero and variance

�2

n2

nX
i=1

'2
j;k (

i
n
) =

�2

n

 
1 +O

 
2j

n

!!
n!1: (5.10)
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The last equality can be proved by applying similar kind of calculations as in the proof of
Lemma 5.2, based on the fact that

R
'2 = 1. By using (5.10) and the following inequality:

1Z
x

(2�)�
1
2 exp

n
� 1

2y
2
o
dy � 1

x
p
2�

exp
n
� 1

2x
2
o

(5.11)

(cf. Feller ([4], p. 175), for x = u�n2
�
j
2

k'k2 (2N�1) we obtain the appropriate upperbound for the

tail probability of �n;k , P

8<
:j�n;kj > u�n2

� j
2

k'k 2 (2N � 1)

9=
;:

(2 (2N � 1))
3
2 k'�k

u
p
� logn

exp

(
� u2 logn

8 �2k'k2(2N � 1)3

)�
1 +O

�
2jn�1

��
(5.12)

Finally we complete the proof of (a) by substituting (5.12) in (5.9). Furthermore choosing

u2 � 8�2k'k2(2N�1)3

2�+1 one �nds that �1(u)! 0, as n!1.
Turning to (b) we have:

�2(u) � P

(
mX
l=0

���(fwn )(l)(h)� E(fwn )
(l)(h)

��� hl
l !
> u�n

)

�
mX
l=0

P

����(fwn )(l)(h)�E(fwn )
(l)(h)

��� > u�nl !

mhl

�
:

Here Z
(l)
n (h)

d
= (fwn )

(l)(h)� E(fwn )
(l)(h) is normally distributed with variance �2l (h), where:

�2l (h) � (2N�1)2l+3h�(2l+1)n�1k'(l)k2k'k2�2: (5.13)

Again by using the inequality (5.11) one �nds for any u > 0:

�2(u) �
mX
l=0

P

(
jZ(l)

n (h)j
�l(h)

>
u�nl !

m�l(h) hl

)

�
mX
l=0

r
2

�

m�l(h) h
l

l ! u�n

exp

(
� �2

n(l ! u)
2

2�2l (h)m
2

)

�
mX
l=0

r
2

�

(2N � 1)
2l+3
2 k'(l)kk'km�

u l !
p
logn

exp

(
� (l !)2u2 logn

m2�2k'(l)k2(2N � 1)(2l+3)

)
:

Therefore �2(u) = o (1)(n!1), for any u > 0. 2

To complete the proof of Theorem 4.1 we apply Lemma 5.4. Choose therefore Cw
upp =

Cbias + u (see (5.8)) with u =
�
8�2k'k2(2N�1)3

2�+1

� 1
2 and we can establish:

P

(
sup

x2[0;1]
jfwn (x)� f(x)j > Cw

upp�n

)
� P

(
sup

x2[0;h]
jZn(x)j > (Cw

upp � Cbias) �n

)

+ P

(
sup

x2[h;1�h]
jZn(x)j > (Cw

upp� Cbias) �n

)

+ P

(
sup

x2[1�h;1]
jZn(x)j > (Cw

upp� Cbias) �n

)

! 0 as n!1:
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5.4 Proof of Theorem 4.2

Proof. First let us denote ��1n kfwn � fk by Y w
n . For the risk of fwn the following holds:

R(fwn ; f) � (Cw
upp)

� +
Z 1

Cw
upp

�y��1P (Y w
n > y) dy: (5.14)

So it remains to proof that this integral converges to 0, uniformly over our class F� (see (2.2)
if n tends to 1. Remark the fact that:

P(Y w
n > y) � P(��1n kZnk > y � Cbias): (5.15)

Substituting y = Cupp + v for v > 0 in Lemma 5.4 we obtain for (5.15):

(5:15) �
C�

�
logn
n

�� 1
2�+1

(Cupp+ v � Cbias)
p
logn

exp
n
�C�(Cupp+ v � Cbias)

2 logn
o

+
mX
i=0

C
(l)

(Cupp+ v � Cbias)
p
logn

exp
n
�C�(l)(Cupp+ v � Cbias)

2 logn
o

Therefore it remains to study the following integral:

1Z
0

� (Cupp+ v)��1

0
BB@ C�

�
logn
n

�� 1
2�+1

(Cupp+ v � Cbias)
p
logn

exp
n
�C�(Cupp+ v � Cbias)

2 log n
o

+
mX
i=0

C
(l)

(Cupp+ v � Cbias)
p
logn

exp
n
�C�(l)(Cupp+ v � Cbias)

2 logn
o!

(here C�, C�, C
 and C� are the constants which appeared in Lemma 5.4) and this integral
is smaller than:

e�min(C�; C�(l)) (Cupp � Cbias)
2
1Z
0

� (Cupp + v)��1

0
BB@C�

�
logn
n

�� 1
2�+1 exp

��C�v
2 logn

	
(Cupp+ v � Cbias)

p
logn

+
mX
i=0

C
(l)

(Cupp+ v � Cbias)
p
logn

exp
n
�C�(l) v

2 logn
o!

Our problem reduces now to showing that the following integral converges to 0 (uniformly
over the class F�), by using the above obtained upper bound for P(��1n kZnk > y � Cbias) :Z 1

Cw
bias

�y��1P(��1n kZnk > y � Cbias) dy

Using the fact that
R1
0 xp�1e�x dx < 1 if p > 0 it can be shown, with straightforward

calculations, that the above integral converges to 0, uniformly over the class F�. Thus we
can conclude that lim

n!1
sup
f2F�

R(fwn ; f) � (Cw
upp)

� as n tends to 1. 2
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