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Abstract

We consider solutions of weakly unstable PDE on an unbounded
spatial domain. It has been shown earlier by the �rst author [J.
Nonlinear Sci. Vol. 3 ] that the set of modulated solutions (called
"Ginzburg-Landau manifold") is attracting. We seek to understand
"how big" is the domain of attraction. Starting with general initial
conditions of order "� for the Fourier-transformed version of the given
PDE we �nd that on the time-scale T

"� ; � � 2 (that is long in the
terms of the original "physical" time t, but shorter than the natural
time for the Ginzburg-Landau) the corresponding solutions evolve to
the scaling of the clustered modes-distribution peaked at the integer
multiples of the critical wave number, with the amplitudes sensitively
dependent on � such that for � arbitrary close to zero after the time
T
"� ; � � 2 solutions get on the Ginzburg-Landau manifold.

1 Introduction

In many physical situations (such as the Taylor-Couette problem of 
ow be-
tween concentric rotating cylinders, the B�enard experiment on a layer of 
uid
heated from below and the Poiseuille 
ow between parallel walls driven by
a pressure gradient) [2], [17], [18] one observes that by changing a control
parameter R (Reynolds-number, Taylor's-number, Rayleigh's-number) a ba-
sic state looses stability (R > Rcr) and get some periodic structure. The
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famous Ginzburg-Landau (or amplitude, envelope) equation describes the
evolution of patterns in these kind of situations through instabilities and bi-
furcations [6]. The equation is obtained as a result of formal approximating
procedure. In mathematical sense the equation is a "universal" approximate
equation for large classes of non-linear PDE's of evolution type (see for ex-
ample [5]). The equation looks as follows:

@A1

@�
= (�+ � j A1 j2)A1 � 


@2A1

@�2
(1.1)

with A(�; � ) : R � R+ ! C, � is real and �, 
 are (in general) complex.
All coe�cients can be computed explicitly in any particular problem under
consideration.

It will be of importance for our considerations to note that the space-like
variable � and the time-like variable � are slow variables (as compared to the
"physical" variables of the original problem). In particular

� = "2 t; � = "x (1.2)

where " is a small parameter (R � Rcr = �"2) and t is the original time
variable.

We study solutions 	(x; t) of the class of nonlinear evolution PDE's given
by

@	

@t
= L	+N(	); (1.3)

with x 2 (�1;1), t � 0. L is a real linear di�erential operator in x,
with constant coe�cients containing some control parameter R. N(	) are
quadratic nonlinear terms. They are of the structure

N(	) = 2�P (	2) (1.4)

where P is again a linear di�erential operator in x, with constant coe�cients.
This choice of the nonlinear terms avoid some non-essential complications.
A generalization of N(	) is given in our section 7.

Next we introduce the symbols �(k;R), �(k;R) of the operators L and
N , through the formulas

L � e�ikx = e�ikx �(k;R) P � e�ikx = e�ikx �(k;R): (1.5)
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In order to make the analysis transparent we consider the case that � and �
are real. However, we emphasize that this is not a restriction for the results.
Extension to the complex case is an easy exercise.

L is assumed to be of higher order than P , so that �(k;R)=�(k;R) tends
to zero for j k j! 1 . L and P are further arbitrary. A neutral stability
curve �(k;R) = 0 is sketched in �g. 1. But only the local behavior near the
critical wave length k = kc is important, where the neutral stability curve is
assumed to be parabola-like.

Outside the neutral stability curve liner problem shows stability and in-
stability - inside. We will consider the slightly supercritical situation.

R > Rc; R �Rc = � "2 (1.6)

with " a small parameter. For simplicity of notation we suppress further
the explicit dependence of � and � on R. The basic requirement is that for
R = Rc + � "2 the function �(k) has the graph as given in �g. 2.
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(a) Neutral stability curve.
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(b) For values of R O("2) above the criti-
cal value Rc ,an O(")-band of wave num-
bers becomes unstable.

The e�ect of nonlinearity is analogous to bifurcation, where a single iso-
lated mode becomes unstable. However in our case a continuous band of
modes become unstable. In [7], [6], [5], [12] it is shown that this kind of

3



e�ects can be described by the amplitude equation (1.1). Equation (1.1) is
a result of a formal substitution of

	 = 	b + "A1e
ikcx + "2A0 + "2A2e

2ikcx + c:c:+ ::: (1.7)

in to the original problem. Where Aj is the function of the slow variables:
Aj("x; "2t) and 	b is a basic solution of the problem (we can take 	b = 0) 1.

Recently a lot of work was done to prove the validity of the approxima-
tion. For certain speci�c problems of 
uid dynamics a theory was devel-
oped by Collet and Eckman [3], Ioose, Mielke and Demay [11], Ioose and
Mielke [10] and Schneider [13], [15], [14]. Another approach was introduced
by van Harten [9] and followed by Bollerman [1]. Instead of working with the
original PDE as given in (1.3) it will be more convenient to study its Fourier
transformed version:

@ 

@t
= �(k)  + �(k)  �  (1.8)

where  (k; t) is the Fourier transform of 	(x; t) and "?" denotes the con-
volution  �  :=

R1
�1  (k0; t)  (k � k0; t) dk0. The initial value problem

for (1.3) is thus transformed into

 (k; t) = e�(k)t
�
 0(k) + �(k)

Z t

0
e��(k)t

0

 �  dt0
�

(1.9)

where  0(k) is the Fourier-transform of the initial conditions 	(x; 0). The
equation (1.9) will be the main object of our analysis.

Let us introduce a scaling of the Fourier-components

 = �k(") ~ ; ~ = O(1) (1.10)

with �k(") sketched in �gure 1 and called by [9] a "clustered mode-distribution":
the Fourier-components are of the order "jn�1j in (L1 norm) in intervals
j k�n kc j= O(") and tail o� very rapidly to very small orders of magnitude
outside these intervals. This clustered mode-distribution was �rst introduced
in [4]. The distribution is invariant under convolution.

1Let us note that all Aj for j 6= �1 are slaved to the critical modes (in other words,
they can be expressed in terms of A�1 through algebraic convolution equations).
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Figure 1: The wave spectrum of a solution has a special structure "clus-
tered mode-distribution" peaked at the integer multiples of the critical wave
number with the width of the peaks of order "

To make Ginzburg-Landau formalism rigorous we have to have two prop-
erties satis�ed: attractivity and approximation property, which can be es-
sentially described as follows.

Approximation property (based on the results of [9]): Let the Fourier-
transformed version of the GL-equation (1.1) has an unique solution for
� � �0. for some �0 > 0 And let  GL be scaled according to the "clustered
mode-distribution" (i.e. given by Fourier-transform of (1.7)). Then there
exist a solution  of (1.8) with the same initial conditions  GLjt=0 =  t=0

and a constant C independent of " such that supt� �0
"2
jj �  GLjj � C"2.

This property was formulated in di�erent forms for particular problems
with respect to the norms of the suitable Banach spaces in [3], [13], [15], [14].
To make this property well grounded one needs an

Attractivity property (based on the [8]) Consider in (1.9) initial data
	0(k) scaled as follows

 0(k) = ~�k(") ~ 
0(k); ~ 0(k) = O(1) (1.11)

~�k(") = max[f(k; kc); "] (1.12)

where f(k; kc) is of order unity for jk�kcj = O(") and becomes rapidly small
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outside this interval. Then on time scales given by

0 < t <
~T

"�
; � 2 (0; 2); ~T = O(1) (1.13)

the corresponding solutions  (k; t) settle to the scaling of the clustered mode-
distribution of �g. 3.

For Kuramoto-Shivashinsky equation analogical result was proved in [16].
We note that the time-scales given in (1.13) are long in terms of the original
\physical" time t, but are short as compared to the GL time-scale (1.2).
Hence, the attractivity property states that from initial conditions scaled
by (1.11), (1.12) the solutions of the Fourier - transformed (1.9) collapse to
the clustered mode distribution before they start to evolve on the Ginzburg-
Landau time scale.

Combining these two results one gets the proper justi�cation of using the
Ginzburg-Landau formalism.

The main purpose of this paper is to study the largeness of the domain of
attraction. Starting with general initial conditions (we work with functions
which Fourier transform is in L1 \ L1) of order "� for (1.9) we proceed as
follows.
1st step: We rescale on "� our equation and show that after the time

~T
"�1

;
�1 � � uncritical modes decay to order O("�) 2 and in kc a peak of order one
with width "

�1
2 appears.

2nd step: We extend the time-scale till
~T

"�2
; �2 � 2� and get the formation

of the peaks in 0 and 2kc as a result of the modes interaction.
Then we show that for any � � 1 after �nite number of steps one can reach
the required extension of the time-scale till

~T
"�

; � � 2. After this we are
ready to get our

Main result : For any �, � � 1 "Ginzburg-Landau manifold" [8] (i.e.
set of functions of the form (1.7)) is an attractor for the solutions with initial
conditions of order "� .

The method we use is very natural. In essence we follow a line of reasoning
of [8], including the "boot-straps strategy" introduced there. But to get the

2Symbols O(1), o(1) will be used in L1{norm if another norm was not speci�ed.
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result we have to go through some rather technical but essentially interesting
complications.

Remarks and comments. Due to the fact that in the proof we don't
restrict ourself by the limitation on the sigh of the real part of Landau con-
stant (Re[�]) it is not possible to handle a wider class of initial conditions
(for example spatial periodical initial conditions: "�eikcx + "�e2ikcx + c:c:).
In this paper the initial conditions don't have the order-one peak near kc
as it was done in [8]. It is possible to show for example that if one starts
with initial conditions of order "� which have order one peak with width also
"� then it is not possible to extend the time more than

~T
"�

; � � 2� and
corresponding distribution after this time will be peaked with the "right"
amplitudes but with width 1=

p
t.

2 A priori estimates

Our starting point is the equation (1.9) rewritten for the function �(k; t) =
"�� (k; t), i.e.

�(k; t) = e�(k)t
�
�0(k) + "� �(k)

Z t

0
e��(k)t

0

� � � dt0
�

(2.1)

�(k; 0) = �0(k) = O(1)
We assume that �(k; t) is from L1(�1;1) and decays su�ciently fast for
j k j! 1 so that

k�kL1 :=
Z 1

�1
j �(k; t) j dk <1 (2.2)

If this is the case then the following estimate holds:

j � � � j� Sup
k
j �(k; t) j � k�kL1 (2.3)

Next we introduce the norms

X(�) := Sup
0�t�T

k�kL1 ; Y (�) := Sup
0�t�T

fSup
k
j �(k; t) jg (2.4)

where T is a parameter to be chosen later on. From (2.1) it follows that, for
t 2 [0; T ],

j � j� e�(k)t j �0 j + "� F (k; t)X(�) Y (�) (2.5)
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with

F (k; t) =
j �(k) j
�(k)

h
e�(k)t � 1

i
(2.6)

We intend to derive inequalities for X(�), Y (�) and eventually prove that
these norms remain bounded for " # 0 on time-interval of order ~T="�1 which
are large (for " # 0) but are short as compared to the intrinsic time-scale
of the Ginzburg-Landau equation given by � = t="2. For that purpose one
needs estimates of the function F (k; t) in the supremum- and the L1-norm
(with respect to k). Using the results of Appendix 2 one �nds from (2.5) the
following set of inequalities:

Y (�) � e�(kc)TSup
k
j �0 j + �1("; T ) X(�) Y (�) (2.7)

X(�) � e�(kc)Tk�0kL1 + �2("; T ) X(�) Y (�) (2.8)

with

�1("; T ) = "�(�0 T +O("2T 2)) (2.9)

�2("; T ) = "�(�0 T +O(1) +O("2T 2)) (2.10)

where �0 is a constant.

Remarks: In order to establish the L1-estimate (2.10) a technical condi-
tion on the decay of j �(k) j =�(k) as j k j! 1 is used.

We now turn to the analysis of the set of inequalities (2.7), (2.8), with
�1, �2 given by (2.9), (2.10). Clearly, if one considers time-scales de�ned by

T =
~T

"�
; � 2 (0; �) (2.11)

with ~T arbitrary numbers, then

�1("; T ) = o(1); �2("; T ) = o(1): (2.12)
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We introduce the abbreviations

A1 := e�(kc)T Sup j �0 j ; A2 := e�(kc)Tk�0kL1 (2.13)

and rewrite (2.7) as follows

[1 � �1 X(�)] Y (�) � A1: (2.14)

With the aid of this inequality Y (�) can be eliminated from (2.8) and one
�nds

f(X) := �1X
2 � [1 + �1A2 � �2A1] X +A2 � 0 (2.15)

where we have further abbreviated X(�) := X.

Let X1;X2 denote the two zeros of f(X), given explicitly by

X1;2 =
1

2�1

�
(1 + �1A2 � �2A1) �

q
(1 + �1A2 � �2A1)2 � 4�1A1

�
(2.16)

On the time-scales (2.11), using (2.12), X1;2 simpli�es to the following result

X1 = A2 + o(1) ; X2 =
1

�1
(1 + o(1)) (2.17)

The graph of f(x) is sketched in �g. 4. Condition (2.15) implies that either
X < X1 or X > X2. At initial time T = 0 one has X = A2 = O(1) and
hence X < X1. The norm X(�) depends continuously on T and therefore
cannot jump to the branch X > X2. Hence, for all T restricted by (2.11) we
have X < X1. Using (2.14) one gets a similar result for the norm Y (�). We
remove now the abbreviations and write out in full the results:

Lemma 2.1 On time intervals 0 � t � ~T
"�
, � 2 (0; �), the following a priori

estimates hold.

X(�) := Sup
t
k�kL1 � k�0kL1 exp f�(kc)

~T

"�
g+ o(1) (2.18)

Y (�) := Sup
t
fSup

k
(�)g � Sup

k
j �0 j exp f�(kc)

~T

"�
g+ o(1)

(2.19)
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We �nally note that �(kc) = O("2) so that the exponential functions can
be replaced by 1 + o(1).

Now from (2.5), (2.6) and Lemma 2.1 we have

j � j� e�(k)t j �0 j + "�
j �(k) j
�(k)

h
e�(k)t � 1

i
Sup j �0 j �k�0kL1 + o(1)

(2.20)

The estimate is valid on time-scales given by (2.11).

f

X X1 2 X

Figure 2: For all T restricted by (2.11) we have X < X1.

3 Analysis and new estimates of the convo-

lution integral.

From now on we assume that we have progressed in time till t1 = ~T="�1, �1 =
�; and we consider the initial value problem for (2.1) with initial conditions
�(k; 0) = �(k; t1) We introduce the new initial scaling

�(k; t) = �
(1)
k (")'(k; t) ; �

(1)
�k = �

(1)
k (3.1)

�
(1)
k (") = Max[f�1(k; kc); "

� ]; for k � 0 (3.2)

f�(k; k0) :=
"�

(k � k0)2 + "�
(3.3)
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The function f�(k; k0) mimics a distribution of orders of magnitude which is
of order unity for jk � k0j = O("�=2), and becomes rapidly smaller outside
such intervals. In fact

f�(k; k0) = O("��2p) ; for jk � k0j = O("p); p < �=2 (3.4)

Which corresponds to the distribution given by (2.22) We are given now that
at the initial time t = 0, '(k; 0) = O(1) for each value of k 2 (�1;1).
After the scaling (3.1) we get

� � � =
Z 1

�1
�k0�k�k0'(k

0)'(k � k0)dk0 (3.5)

where, for the simplicity of notations the dependence of ' on t has temporally
been suppressed.

The analysis of � � � is a bit technical, but the ideas are very simple:
on small intervals of the k0-axis �k, and/or �k�k0 are of order unity. One
separates out these intervals (taking them of order "(���)=2 so that the decay
of �k0�k�k0 to order "� is incorporated). The contribution of each of these
small intervals can be bounded by [supk j'j]2 multiplied by an explicitly given
integral. On the remainder of the k0-axis �k0 � �k�k0 = "2� and the integral of
j'(k0)j � j'(k�k0)j can be bounded by the product of supk j'j and k'kL1 . We
shall demonstrate in this way the following result:

Lemma 3.1 For k � 0,

j� � �j � c"�=2 Max[f�(k; 0); f�(k; 2kc); "
�](sup

k
j'j)2 + "2�k'kL1 sup

k
j'j

where c is a constant independent of ".

For simplicity we drop index 1 from �1 in the lemma. For the proof of the
lemma 3.1 see Appendix A.1.

Introducing the result of Lemma 3.1 in (2.1) and performing the integra-
tion with respect to t0 produces the basic inequality

j�j � e�(k)tj�0j+ "�F (k; t) f"2�X(')

+ c"
�1
2 Max[f�1(k; 0); f�1(k; 2kc); "

�)]Y (')
o
Y (')

with F (k; t) de�ned in (2.6). We intend to derive inequalities for X(')
and Y (') and eventually prove that these norms remain bounded on time-
intervals t � ~T="�2 . The analysis will necessarily be somewhat technical, but
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in essence is again very simple. The results are collected in Lemma 3.2, at
the end of this section.

From (3.6) it follows in a straightforward way that

Y (') � e�(kc)TY ('0) + c"�f"2�Y (F1)X(') + "
�1
2 Y (F2)Y (')gY (')

(3.6)

X(') � e�(kc)TX('0) + c"�f"2�X(F1)X(') + "
�1
2 X(F2)Y (')gY (')

(3.7)

with

F1 = F (k; t)
1

Max(f�1(k; kc); "
�)

(3.8)

F2 = F (k; t)
Max(f�1(k; 0); f�1(k; 2kc); "

�)

Max(f�1(k; kc); "
�)

(3.9)

So the task is to bounded the Sup- and the L1-norms of the explicitly given
functions F1 and F2. The analysis is elementary, but somewhat delicate. It
is given in the Appendix A.2. The results are as follows:

Y (F1) = "��2 ~C1("
�2T ) ; Y (F2) = "�� ~C2("

�2T ) ; � = maxf�2 � �; �g
(3.10)

X(F1) = "��2+
�2��

3 Ĉ1("
�2T ); X(F2) = "��2+�+

�2��

3 Ĉ2("
�2T )

(3.11)

here ~C1; ~C2; Ĉ1 and Ĉ2 are approximately constant when "�2T = o(1); these
expressions remain bounded when "�2T = O(1) but is numerically small.
Overestimating all these constants by some constant C0 we obtain the fol-
lowing system of inequalities for � = �2 � �

Y � A1 + C0"
2���2 ["�X + "

�1
2 Y ]Y (3.12)

X � A2 + C0"
2���2+

�2��

3 ["�X + "
�1
2 Y ]Y (3.13)
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where we have used abbreviations (2.13) for A1 and A2. From (3.13) we
deduce

X � A2 + "
1
6 (10��4�2+3�1)C0Y

2

1� "
2
3
(4���2)C0Y

(3.14)

For " small this is permissible if �2 � 4�. From (3.12) X can now be elimi-
nated, and (regrouping the terms) we �nd the inequality:

G(Y ) � 0 (3.15)

G(Y ) := C0Y
2("

2
3 (4���2) + "2���2+

�1
2 )

+(�1 + "3���2C0A2 � "
2
3 (4���2)C0A1)Y +A1

The function G(Y ) has two zeros Y1:2, the smaller one is given by

Y1:2 = A1 +O("p) ; p > 0; �2 � 5

2
� (3.16)

Y1:2 are both real and positive. A plot of G(Y ) is the same as on �g. 2.1. So
we have got Y1 > A1. In order to interpret these results we look closer at the
de�nition of A1 and A2 in (2.13), and impose the following limitation on T :

T =
~T

"�2
; ~T = O(1); �2 = Min[

5

2
�; 2] (3.17)

On these time scales:

A1 = Sup j'0j[1 + o(1)]; A2 = k'0kL1 � [1 + o(1)] (3.18)

Now we can use the same argument as in the proof of the Lemma 2.1 and to
get the following result.

Lemma 3.2 We consider scaled Fourier-components �(k; t) = �1k(")'(k; t)
with �1k(") = Max[f�1(k; kc); "

� ], �1 = �, with T limited by

T =
~T

"�2
; ~T = O(1); �2 = Min[

5

2
�; 2]

Then the norms X('), Y (') are uniformly bounded, independent of ".
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4 The appearance of clustered modes-distribution

With the �a priori estimate of Lemma 3.2 our basic inequality (3.6) contains
a wealth of information on the Fourier-components �(k; t). We repeat this
result here for the convenience of further analysis:

j�j � e�(k)tj�0j+ "���2f�2(k; kc)f"2�X(')

+c"
�1
2 Max[f�1(k; 0); f�1(k; 2kc); "

� ]Y (')gY (')

where we have used the estimate A.2.5 for the function F (k; t) appearing
in (3.6).

We know that X(') and Y (') are bounded on the time-scales given by

0 � t � T; T =
~T

"�2
; �2 = Min(

5

2
�; 2); ~T = O(1): (4.1)

So we immediately deduce from (4.1):

Lemma 4.1 For all k such that jk�kcj � d; d = O(1) the in
uence of initial
conditions becomes exponentially small on time-scales (4.2 )

Next, again from (4.1), we �nd

Lemma 4.2 On time-scales (4.1) the Fourier-components �(k; t) reach the
magnitudes

� = �
(2)
k (")'(2); '(2) = O(1)

with �(2)k (") = Max ff�2(k; kc); "
�1
2 +�f�1(k; 0); "

�1
2 +�f�1(k; 2kc); "

2�+
�1
2 g.

We see that the clustered mode-distribution begins to appear. It is sketched
in �g. 4.1

Remarks. The restriction for � can be easily observed from the contribution
of second term in (4.1) near kc. Which demands from (2� � �1

2 � �2) to be
positive, i.e. �2 < 2� + �1

2
� 5

2
�. From the restrictions on the growth the

�rst linear term in (4.1) follows that � � 2.
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Figure 3: The appearance of the clustered mode distribution.

5 The "Bootstraps strategy"

It is clear now how repeating the same procedure in the third step we start
with the scaling

� = �
(2)
k (")'(2)(t; k); '(2)(0; k) = O(1) (5.1)

�
(2)
k (") = Max ff�2(k; kc); "

�1
2 +�f�1(k; 0); "

�1
2 +�f�1(k; 2kc); "

2�+
�1
2 g

(5.2)

(i.e. �jt=0 for the new problem is �j
t=

~T
"�2

, �2 = Min[5
2
�; 2]) and get analogous

result

Lemma 5.1 On time-scales

0 � t � T; T =
~T

"�3
; �3 = Min[

�1 + �2
2

+ 2�; 2]; ~T = O(1)

the Fourier-components �(k; t) reach the magnitudes

� = �
(3)
k (")'(3); '(3) = O(1)

�
(3)
k (") = Max [f2�3(k; kc); "

�2
2 +�f�2(k; 0); "

�2
2 +�f�2(k; 2kc); "

�1+�2
2 +2�f�1(k; 3kc);

"3�+
�1+�2

2 ]
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By this procedure in every step one gets extension of the time-scale and
improves the results on clustered modes. By induction one can show that
starting on the N-th step with initial conditions

�jt=0 = �j
t=

~T
"�N

= �
(N)
k (")�(N); �(N) = O(1)

we end up with the following

Lemma 5.2 On time-scales

0 � t � T; T =
~T

"�N+1
; �N+1 = Min[

�N�1 + �N
2

+ 2�; 2]; ~T = O(1)

the Fourier-components �(k; t) reach the magnitudes

� = �
(N+1)
k (")'(N+1); '(N+1) = O(1)

�
(N+1)
k (") = Max [fN�N+1

(k; kc); "
�N
2 +�f�N (k; 0); "

�N
2 +�f�N (k; 2kc);

NX
l=3

"
1
2

Pl�2

i=0
�N�i+(l�1)�fN�N�l+2

(k; lkc); "
1
2

PN�2

i=0
�N�i+N�]

See �g. 6.
Note that the case that � is arbitrary close to zero is the most interesting

1

kc 2kc (N � 2)kc

"
1

2

P
N�2

i=0
�N�i+(N�1)�

"
1

2

P
N�2

i=0
�N�i+N�

"�+
�N�1

2

�
(N)
k

(")

"
�N�1

2 "
�N
2 "

�N�1
2 "

�1
2

Figure 4: The results of the lemma 5.2.

for our purposes. So for �N+1 = Min[�N+�N�1

2 + 2�; 2] we choose the �rst
component. And now we want to show that for any � arbitrary close to zero
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there exist N1 such that �N1 equals 2. In this way we would reach the right

time-scale T � ~T
"�
; � � 2.

Let us �nd the explicit formula for �N which satis�es to the following
recurrent problem

�N+1 = 2� +
�N + �N�1

2
�1 = �

�2 = 2� +
�

2

It is easy exercise to show that

�N =
4�

3
N +

2�

9
((�1

2
)N � 1)

And it is obvious now that for any small 0 < � we can choose N1 � 3
4�

such that Min[�N+�N�1

2 + 2�; 2] = 2 and further we will be on the time-scale

t <
~T
"�
; � � 2.

6 The main result.

Let us overview what was done. We have begun with the initial conditions of
order unity for the scaled equation (2.1) and by Lemma (2.1) we have shown
that the uncritical modes decay and the �rst peak forms. But we have got
it on unsatisfactory short time-scale t � ~T

"�1
; �1 � �. To extend the time and

to get the rest of the peaks we started with the rougher scaling exploiting
the results of our �rst step. And recycling the analysis N1 times as we have
shown in the previous section we can get a time-extension till t � ~T

"2
. Let

us now formulate our main statement and then we will show how it can be
obtained from the point where we have stopped.

Theorem 6.1 Let the initial conditions for the Fourier-components �(k; t)
in equation (2.1) are of unity i.e.

�(k; 0) = �0(k) = O(1)

Consider the time-instant

t =
~T

"2
; ~T 2 R+

17



Then:
�(k; t) = ~�Nk (") ~'(k; t); ~' = O(1)

~�Nk (") = Maxf
NX
n=0

"j1�nj[f2(k; nkc)]
N ; "Ng

where N is an arbitrarily large integer.

Comments. We note that  (k; t) = "��(k; t). So we have got the mode-
distribution scaled on "�. However for � close to zero we are arbitrary close
to the GL manifold, introduced in [8], [9].

Full proof of the theorem follows by induction starting with initial conditions
�N1
k �(k; t). We don't have restrictions on the time any more and automati-
cally can get on every step the boundedness of the corresponding X and Y
norms. We leave out the explicit technical details which from now on should
be obvious.

7 More general quadratic nonlinearities and

weighted norms

We shall consider now more general problems of the structure

@	

@t
= L	+ (�1	) (�2	) (7.1)

where L is as before, while �1, �2 are linear di�erential operators in the space-
like variable x, with symbols �1(k), �2(k). Of course, one can also have �nite
sums of non-linearities of this structure, i.e.

mX
`=1

(�(`)1 	) (�(`)2 	): (7.2)

For simplicity of presentation we develop the reasoning for m = 1.
The complication introduced by the more general form 7.1 comes from

the fact that taking the Fourier-transform does not lead to the simple and
elegant equation (2.1). Instead one gets

�(k; t) = e�(k)t
�
�0 + "�

Z t

0
e��(k)t

0

\� � � dt0
�

(7.3)
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with

\� � � =
Z 1

�1
G(k0; k � k0) �(k0) �(k � k0) dk0 (7.4)

G(k0; k � k0) = �1(k
0) �2(k � k0) + �2(k

0) �1(k � k0) (7.5)

To avoid this complication Van Harten [9] advocates a reformulation in terms
of a vector function of which the components are derivatives of 	 with respect
to x up to a suitably chosen order.

We shall show that, at least for the purpose of our analysis, one can use
a simpler approach, in terms of weighted norms (to be de�ned shortly).

Let us �rst give some details on the behaviour of �1(k), �2(k) for j k j! 1.
These functions are polynomials, so we have

j �1(k) j� c j k jp1
j �2(k) j� c j k jp2 for k > 0 p1; p2 > 0 (7.6)

We introduce a weight-function g(k) by

g(k) = 1+ j k jp ; p = p1 + p2 (7.7)

In the Appendix A.3 we demonstrate that

Lemma 7.1 The function

�0(k) =
Z 1

�1

G(k0; k � k0)

g(k0) g(k � k0)
dk0 (7.8)

with G and g speci�ed through 7.5, 7.6, 7.7 is uniformly bounded for k 2
(�1;1).

The proof is an (amusing) exercise in elementary analysis but is not altogether
trivial, so it could not be left as an exercise for the reader.

We now assume that �(k; t) is a continuous function of k which decays
su�ciently fast for j k j! 1 so that

Sup
k
fg(k) j �(k; t) jg exists (7.9)
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This condition is not unnatural and corresponds grosso modo to the assump-
tion that 	 and its derivatives up to a certain order have Fourier-transforms
which decay for j k j! 1.

With this preparation we can follow the line of section 2. The �rst step
is

j\� � � j�j �0(k) j
(
Sup
k

[g(k)� j �(k; t) j]
)2

: (7.10)

Next introducing

Yg(�) := Sup
0�t�T

(
Sup
k

[g(k)� j �(k; t) j]
)

(7.11)

one gets

j � j� e�(k)t j �0 j + "� F 0(k; t) [Yg(�)]
2 (7.12)

F 0(k; t) =
j �0(k) j
�(k)

h
e�(k)t � 1

i
(7.13)

In order to derive an inequality for Yg(�) one must analyse

Sup
0�t�T

(
Sup
k

h
g(k) F 0(k; t)

i)
:

However, the function g(k) F 0(k; t) is of the same structure as F (k; t) of
section 2 so one can just use the results of Appendix 1. Hence:

Yg(�) � e�(kc)T Sup
h
g j �0 j

i
+ �1("; T ) [Yg(�)]

2 (7.14)

From here an a priori estimate for the weighted supremum norm follows
immediately, and the previous results can readily be reproduced.

7.1 Cubic Nonlinearity

Let us show how to deal with some di�culties concerning a cubic nonlinearity:
N(	) = P (	3). In the �rst step of the proof the same rescaling can be done.
Working with the inequality

j � j� e�(k)t j �0 j + "2� F (k; t)X2(�) Y (�) (7.15)
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instead of (2.5) one gets that after the time t1 = ~T="�1 with �1 = 2� one can

use the scaling (3.1) with �
(1)
k (") = Max[f�1(k; kc); "

2�]. Now in order to get
the result analogical to the statement of lemma 3.1 one has to estimate

� � � � � =
Z 1

�1
�k�k0'(k � k0)

Z 1

�1
�k0�k00�k00'(k

0 � k00)'(k00) dk00 dk0

(7.16)

Using analogical reasoning to the quadratic case one gets

j�j � e�(k)tj�0j+ "2�F (k; t)
n
"6�X2(') + "

�1
2 +4�X(')Y (')

+ c"�1 Max[f�1(k; kc); f�1(k; 3kc); "
2�)]Y 2(')gY (')

Skipping the details of the proof of the section 3, we end up with the state-
ment of lemma 3.2 valid till T =

~T
"�2
; ~T = O(1); �2 = Min[�1 + 2�; 2]

After N steps one can extend this result till �N+1 = Min[�N + 2�; 2] =
Min[2�(N + 1); 2] which is much faster than in the quadratic case. Finally
one will get the distribution given in �gure 5 on the time{scale given by
0 < t <

~T
"�
; � 2 (0; 2); ~T = O(1).

A Appendix

A.1 Proof of the lemma 3.1.

Let us introduce the following sub-intervals of the k0-axis:

I� = fk0jk0 = �kc +O("(���)=2)g (A.1.1)

J� = fk0jk � k0 = �kc +O("(���)=2)g (A.1.2)

In each of these intervals one of the order functions �k0, �k�k0 is of order unity.
However, we observe (and one can easily verify this) that:
When k 6= O("(���)=2) and k 6= �2kc + O("(���)=2) then I� and J� cannot
pairwise coincide and one of the factors in �k0�k�k0 is always O("�).

We commence our analysis with this restriction on the values of k. The
�rst step is the estimate

j� � �j � "�
Z
I++J�

�k0j'(k0)j � j'(k � k0)jdk0 + (A.1.3)
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Figure 5: The cluster mode-distribution in the case of cubic nonlinearity.

+"�
Z
J++J�

�k�k0j'(k0)j � j'(k � k0)jdk0+

+"2�
Z 1

�1
j'(k0)j � j'(k � k0)jdk0

Note that in the last integral we have \�lled in" the small subintervals re-
moved in the �rst four integrals, which is consistent with over-estimating
j� � �j. Next we use, in an obvious way.

j� � �j � "� [
Z
I++I�1

�k0dk
0 +

Z
J++J�

�k�k0dk
0][sup

k
j'j]2 +

(A.1.4)

+"2� sup
k
j'j �

Z 1

�1
j'jdk0

Each of the remaining integrals in A.1.4 is equal to the integral:

Z kc+c"
���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
dk0 = "�=2(� +O("�=2))

(A.1.5)
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This last result is easily obtained by explicit integration.
Next we consider the values of k such that k = O("(���)=2). Then I�

and J� coincide pairwise and (skipping a few steps entirely parallel to the
preceding analysis) one gets

j� � �j � 2
Z kc+c"

���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
� "�

(k � k0 + kc)2 + "�
dk0[sup

k
j'j]2
(A.1.6)

+"2� sup
k
['] � k'kL1 :

The remaining explicit integral we denote

I0 =
Z kc+c"

���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
"�

(k � k0 + kc)2 + "�
dk0

(A.1.7)

where c is some (order-one) constant. We introduce the transformation

k0 = kc +
1

2
k + k̂ (A.1.8)

and obtain

I0 =
Z � 1

2 k+c"
���
2

� 1
2k�c"

���
2

"�

(k̂ + 1
2k)

2 + "�
� "�

(k̂ � 1
2k)

2 + "�
dk̂

(A.1.9)

For each k = O(" ���

2 ) we can choose c such that the upper integration limit is
positive. For reasons which shall become clear shortly, we apply a somewhat
more conservative condition

�k + c"
���
2 > 0: (A.1.10)

Next the integral A.1.9 is reformulated so that the integration variable runs
over non-negative values only:

I0 = [
Z � 1

2k+c"
���
2

0
+
Z 1

2 k+c"
���
2

0
]

"�

(k̂ + 1
2
k)2 + "�

"�

(k̂ � 1
2
k)2 + "�

dk̂
(A.1.11)
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We can now introduce the obvious estimates

I0 � "�

(1
2
k)2 + "�

[
Z � 1

2k+c"
���
2

0
+
Z 1

2k+c"
���
2

0
]

"�

(k̂ � 1
2
k)2 + "�

dk̂
(A.1.12)

The �nal step is the transformation of variable

k̂ =
1

2
k + "� (A.1.13)

which produces

I0 � "�

(12k)
2 + "�

[
Z � k

"
+ c

"
1�

���
2

� 1
2
k
"

+
Z c

"
1�

���
2

� 1
2
k
"

]
d�

�2 + 1
(A.1.14)

By explicit integration one gets

I0 � "�

( 1
2k
)2 + "�

c"
�

2 (1 +O(" �
2 )) (A.1.15)

Hence

I0 � "
�
2 f(k; 0) � c(1 +O(" �

2 )) (A.1.16)

We consider �nally k = 2kc + O(" ���
2 ). Again there are intervals of the

k0-axis on which both �k0 and �k�k0 are of order unity. Proceeding as above
one now gets

j� � �j � 2
Z kc+c"

���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
� "�

(k � k0 � kc)2 + "�
dk0[sup

k
j'j]2
(A.1.17)

+"2� sup
k
['] � k'kL1 :

The integral

I1 =
Z kc+c"

���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
"�

(k � k0 � kc)2 + "�
dk0

(A.1.18)
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after the transformation

k = 2kc + ~k; ~k = O(" ���

2 ) (A.1.19)

will look as follows

I1 =
Z kc+c"

���
2

kc�c"
���
2

"�

(k0 � kc)2 + "�
"�

(~k � k0 + kc)2 + "�
dk0

(A.1.20)

which is identical with I0 , with k replaced by ~k. Further di�erence is that ~k
can take negative values, but with condition A.1.10 replaced by

�j~kj+ c"
���

2 > 0 (A.1.21)

one can just repeat the analysis and gets

I1 � "�

(12
~k)2 + "�

"
�
2 c(1 +O(" �

2 )) (A.1.22)

�nally

I1 � "
�
2 f(k; 2kc) � c(1 +O(" �

2 )) (A.1.23)

Which complete the proof of the lemma 3.1.

A.2 Coe�cients in the inequalities for norms

Our �rst object is the study of F (k; t) given by

F (k; t) :=
j�(k)j
�(k)

[e�(k)t � 1] (A.2.1)

Note that �(k) is a polynomial in k and has a positive maximum of the order
"2 at k = kc. In the vicinity of k = kc �(k) is monotonic for both k > kc and
k < kc. In fact, for jk � kcj small we have

�(k) = "2�0 � �1(k � kc)
2 + 0[(k � kc)

3]; �0; �1 > 0
(A.2.2)

By straightforward power series expansion one �nds

jF (k; t)j = j�(k)jt[1 + 0(�(k)t)] (A.2.3)

25



The error term is of the order "� when jk � kcj = O(") but becomes larger
outside that region. On the other hand, for (k � kc)2 >

�0
�1
"2 the function

�(k) is negative, so that one than has

jF (k; t)j � j�(k)j
��(k) (A.2.4)

The order of magnitude of F (k; t), over the whole domain of k, can be de-
scribed by

jF (k; t)j � 1

"�
C("�t)f�(k; kc) (A.2.5)

where C("�t) is bounded and of order unity when "�t is less or equal order
unity.

Next we consider

F1(k; t) :=
F (k; t)

Max[f�(k; kc); "� ]
(A.2.6)

Because of the denominator the situation is more complicated. As before we
�nd

for jk � kcj = O(" ���

2 ); jF1(k; t)j � c

"�
(A.2.7)

for jk � kcj = O("p); p � � � �

2
; jF1(k; t)j � c

"�+2p
(A.2.8)

In the above (and in the sequel) the symbol c denotes constants which (in a
sharp estimate) are of course not all the same. Our conclusion is that in the
supremum norm

Y (F1) � 1

"�
~C1("

�T ) (A.2.9)

~C1("
�T ) = �0"

�T + C0 (A.2.10)

In order to deduce useful estimates in the L1-norm we must be even more
careful. We must assume that j�(k)=�(k)j decays to zero for jkj ! 1 su�-
ciently fast so that the integral over the whole k-axis (excluding neighbour-
hood where �(k) = 0), exists. This condition is automatically satis�ed in the
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di�erential operators in the basic equation (1.3) have leading terms of even
order (in that case j�=�j � k�2 for jkj ! 1) Now to the estimates. The
di�culty lies in the fact that the intervals in A.2.7 and A.2.8 contribute to
the same order of magnitude, yet we must exploit the fact that the largest
contributions come from a jk � kcj = O(" ���

2 ) subinterval.
We divide the integration interval as follows

Z 1

0
jF1(k; t)jdk = [

Z kc�c"p

0
+
Z kc+c"p

kc�c"p
+
Z 1

kc+c"p
]jF1(k; t)jdk

(A.2.11)

The middle integral is bounded by Y (F1) times the interval length. So we
get

Z 1

0
jF1(k; t)jdk � Y (F1)2c"

p + [
Z kc�c"p

0
+
Z 1

kc+c"p
]jF1(k; t)jdk:

(A.2.12)

Using A.2.10 and A.2.12 it follows that

Z 1

0
jF1(k; t)jdk � 2c ~C1("

�T )"��+p + "���2pC:
(A.2.13)

Optimal choice of p is obtained by putting

�� + p = �� � 2p! p =
� � �

3
; (A.2.14)

so that the �nal result is:

X(F1) = "��+
���

3 Ĉ1("
�T ) (A.2.15)

We now turn to the analysis of

F2(k; t) := F (k; t)
cMax[f�(k; 0); f�(k; 2kc); "� ]

Max[f�(k; kc); "�] (A.2.16)

When k > c"
���

2 and jk � 2kcj > c"
���

2 , then

F2(k; t) = "�cF1(k; t) (A.2.17)
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On the other hand, for k = O(" ���

2 ) or jk� 2kcj = O(" ���

2 ) an easy estimate
shows that

jF2(k; t)j � c

"�
(A.2.18)

Therefore, using the results for F1, it follows that

Y (F2) =
1

"�
~C2("

�T ); � = max(�; � � �) (A.2.19)

Finally the L1-norm of F2. Near k = 0 and k = 2kc the contribution to the
integral is of order "

�

2�� , because integrals of f�(k; 0), f�(k; 2kc) are of order
"
�
2 . The contribution of the neighbourhood of k = kc is as established in the

analysis of F1. Therefore:

X(F2) = "���+
���

3 Ĉ2("
�T ) (A.2.20)

A.3 Proof of Lemma 8.1

In what follows the symbol c denotes constants (which of course are not all
the same). Furthermore, without loss of generality, we consider k > 0. We
study the integral

�0(k) =
Z 1

�1

j G(k0; k � k0) j
g(k0) g(k � k0)

dk0:

G(k0; k � k0) = �1(k
0) �2(k � k0) + �2(k

0) �1(k � k0)

For su�ciently large values of the argument, say k > k0,

�1(k) � c kp1 ; �2(k) � c kp2 (A.3.1)

p1 + p2 = p ; p1; p2 � 0 (A.3.2)

The function g(k) is de�ned by

g(k) = 1+ j k jp (A.3.3)
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We �rst consider the case p = 1, which can be computed explicitly, and to
which the method for p � 2 does not apply.

With

�1 = c1; �2 = c2 + c3k (A.3.4)

we get

G(k0; k � k0) = 2c1c2 + c3k (A.3.5)

To get rid of the absolute-value signs the integral is decomposed and after
some trivial transformations one gets

�0(k) = (2c1c2 + c3k)

(
2
Z 1

0

dk0

(1 + k0)(1 + k + k0)
+
Z k

0

dk0

(1 + k0)(1 + k � k0)

)
:

(A.3.6)

Explicit computation then produces

�0(k) =
4(2c1c2 + c3k)

k(2 + k)
`n
�

1

1 + k

�
(A.3.7)

Hence we even �nd that

�0(k)! 0 as k !1 (A.3.8)

Next the case p � 2. Again it's useful to decompose the integral, so we start
with

�0(k) = 2I1 + I2 (A.3.9)

I1 =
Z 1

0

"
�1(k0) �2(k + k0) + �2(k0) �1(k + k0)

g(k0) g(k + k0)

#
dk0

(A.3.10)

I2 =
Z k

0

"
�1(k0) �2(k � k0) + �2(k0)�1(k � k0)

g(k0)g(k � k0)

#
dk0

(A.3.11)
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We �rst consider I1. Take k > k0 and decompose further

I1 =
Z k0

0
[: : : ] dk0 +

Z 1

k0
[: : : ] dk0 (A.3.12)

Because of A.2.3 we get

I1 � c
Z k0

0

�1(k0)(k + k0)p1 + �2(k0)(k + k0)p2

[1 + (k0)p][1 + (k + k0)p]
dk0 (A.3.13)

+ c2
Z 1

k0

(k0)p1(k + k0)p2 + (k0)p2(k + k0)p1

[1 + (k0)p][1 + (k + k0)p]
dk0

One easily sees that the �rst integral can be estimated by a constant (which
depends on k0, but k0 is �xed). Taking this into account we overestimate the
second integral by writing

I1 � c+ c2
Z 1

k0

(k0 + k)p1(k + k0)p2 + (k0 + k)p2(k + k0)p1 + 2

[1 + (k0)p][1 + (k + k0)p]
dk0

(A.3.14)

Hence

I1 � c+ 2c2
Z 1

k0

dk0

[1 + (k0)p]
(A.3.15)

The remaining integral exists, because p � 2.

We now turn to I2. For k0 2 [0; k], j G(k0; k � k0) j has a maximum, which
cannot be larger than ckp. Hence

I2 � ckp
Z k

0

dk0

[1 + (k0)p][1 + (k � k0)p]
(A.3.16)

Again we decompose:

Z k

0
[: : : ] dk0 =

Z 1
2k

0
[: : : ] dk0 +

Z k

1
2k

[: : : ] dk0

(A.3.17)

This leads to the estimate

I2 � ckp
(

1

1 + (12k)
p

Z 1
2k

0

dk0

1 + (k0)p
+

1

1 + (12k)
p

Z k

1
2 k

dk0

1 + (k � k0)p

)
(A.3.18)
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Finally

I2 � ckp

1 + (1
2
k)p

Z 1

0

dk0

1 + (k0)p
(A.3.19)

which again is bounded. �
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