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Abstract

Let X =
Q1
i=1 Z`(i) be acted upon by the group � = �1i=1Z`(i) of

changes in �nitely many coordinates and � a G-measure on X which is
nonsingular for the �-action on X . We consider cocycles on (X;�; �)
taking values in the ax + b group. We give a structure theorem for
such cocycles, we de�ne the mean ratio set which is a closed subgroup
of the ax+ b group and we exhibit for each closed subgroup a cocycle
whose mean ratio set is the given subgroup.

1 Introduction

The notion of essential range of real-valued cocycle was de�ned by Krieger
[K] as a subset of [�1;1]. He showed that its intersection with (�1;1) is
a closed subgroup of the real line and that cohomologous cocycles have the
same essential range. Parthasarathy and Schmidt [PS] extended this result
to cocycles with values in locally compact abelian groups. The notion of es-
sential range has been extended to cocycles with values in general nonabelian
locally compact groups, but it is no longer cohomology invariant (see [S1]).
In the case of a multiplicative cocycle with values in R+, the essential range
is also called the ratio set.

In this article, we examine closely the example of cocycles with values in
one of the simplest nonabelian groups, the ax+ b group. One motivation for
this is to study the ways an additive and a multiplicative cocycle can interact.
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In the next section, we produce a new type of essential range called the mean
ratio set (MRS). In the case of a real-valued cocycle and a measure-preserving
action our de�nition exactly coincides with the essential range. This closed
subset of [0;1]� [�1;1] whilst not cohomology invariant, is close to being
so. In fact, if the transfer function is integrable, mean ratio sets are conjugate
in the ax+ b group by its integral { hence if the integral is the identity (1,0),
the mean ratio set is preserved. Furthermore ifW1 andW2 are cohomologous
with integrable transfer function, then there is a constant transfer function
under which W2 is conjugate to W3 where MRS(W1) =MRS(W3):

An essential step in the proof, not without independent interest, is a
structure theorem for ax + b-valued cocycles which generalizes theorems of
Golodets [G] and Parthasarathy and Schmidt [PS].

The �nal section of the paper gives a classi�cation of the closed subgroups
of the ax + b-group. As a result we are able to classify the ax + b-valued
cocycle in an L1-cohomology invariant way.

This theory is the �rst step in a new approach to the study of nonabelian
cocycles over X (c.f. [Z]). We believe that it will lead to a new treatment of
recurrence and skew products.

2 The Structure of ax+ b-valued cocycles

Let X =
Q1
i=1Xi with Xi = Z̀(i) for some integer `(i) where Zl(i) denotes the

integers modulo `(i): Let B be the �-algebra generated by the cylinder sets.
Let � be the group of �nite coordinate changes, that is

� = f
 2 X : 
i = 0 for all but �nitely many coordinates ig

� acts on X by coordinatewise addition, i.e., (
x)i = 
i + xi: For k � 0; let
�k = f
 2 � : 
i = 0 for all i > kg:

Motivation 2.1. Before commencing our discussion of the ax + b-valued
case, let us brie
y recall from [PS] the real-valued case with a �-invariant
measure �. Each R-valued cocycleW on X for the action of � can be written
as

W (
; x) =
1X
n=1

f�n(
x)� �n(x)g

where each �n is �n-invariant.
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LetW k(
0; x) =
1
j�kj

P

2�k

W (
0; 
x):We say that r belongs to themean

ratio set of W; MRS�(W ) if for every � > 0 and for every set A of positive
measure there is for each k0 2 N, a set of positive measure B � A and 
0 2 �
so that k � k0 implies���W k(
0; x)� r

��� < � for all x 2 B:

It is readily seen that r 2MRS�(W ) if and only if r 2
T1
k=0 ess.range(W

k):
This de�nition tries to capture the fact that the average value ofW is close

to r: However, it turns out that we have achieved nothing new. A su�cient
condition for r to belong to MRS(W ) is that for each � > 0, for each k,
and for each �k-invariant set A of positive measure there exists 
0 2 �k and
a �k-invariant set B of positive measure so that jW (
0; x)� rj < � on B.
Using this, one readily sees

Proposition 2.1 For an additive real-valued cocycle W and a �-invariant
measure � one has

MRS�(W ) = ess:range (W ):

Proof: The proof is left to the reader. 2

The aim of this section is to extend the above structure theorem and
de�nition to cocycles with values in the ax+ b group.

First, we recall some de�nition and notation concerning multiplicative
cocycles [BD].

Notation 2.1 In [BD], we considered a family of measurable functions
fGkg satisfying the conditions of compatibility and normalization, that is,
for any k � n and any 
 2 �k � �n

Gk(
x)

Gk(x)
=

Gn(
x)

Gn(x)
(C1)

and
1

j�kj

X

2�k

Gk(
x) = 1:

A nonsingular probability measure � on X was de�ned to be a G�measure
if there is a compatible normalized family fGkg

d� � 


d�
(x) =

Gk(
x)

Gk(x)
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� a.e. x 2 X, and 
 2 �k.
In the case where there is a unique G�measure �, it is automatically

ergodic, and we say that � is uniquely ergodic. In [BD] proposition 3, we
showed that � is uniquely ergodic if and only if for every continuous function
f on X, the sequence

1

j�nj

X

2�n

Gn(
x)f(
x)

converges uniformly to a constant.
Given a compatible family fGkg and a family of measurable functions

f�kg on X such that for all 
 2 �k; we have �k(
x) = �k(x): De�ne

Wk(
; x) =
k�1X
n=0

�
Gk(
x)

Gn(
x)
�n(
x)�

Gk(x)

Gn(x)
�n(x)

�
;

where G0(x) = 1: Then,Wk is well-de�ned, measurable and equals for 
 2 �k

Wk(
; x) =
1X
n=0

�
Gk(
x)

Gn(
x)
�n(
x)�

Gk(x)

Gn(x)
�n(x)

�
:

Furthermore, Wk is an additive cocyle on X for the �k action, in the sense
that, for 
1; 
2 2 �k we have

Wk(
1
2; x) =Wk(
1; x) +Wk(
2; 
1x):

Moreover, the family fWkg satis�es the following compatibility condition

Wk(
; x)

Gk(x)
=

Wn(
; x)

Gn(x)
; for all 
 2 �k � �n: (C2):

Equivalently,
Wk+1(
; x)

gk+1(x)
=Wk(
; x); for all 
 2 �k: (C3);

with gk+1(x) =
Gk+1(x)

Gk(x)
:

Let A denote the ax+ b group, that is the underlying space is R+�Rand
group operation de�ned by: (a; b)(c; x) = (ac; ax+ b): The identity is (1; 0)
and (a; b)�1 = (a�1;�a�1b):

4



Lemma 2.1 Suppose fGkg is a compatible family, and fWkg a family of
compatible additive cocycles. De�ne � : � �X ! A by

�(
; x) =
�
Gk(
x)

Gk(x)
;
Wk(
; x)

Gk(x)

�

whenever 
 2 �k and x 2 X: Then � is an ax+ b valued cocycle on X for
the � action.

Proof: � is well-de�ned by the compatibility conditions, that is if 
 2 �k �
�n; then �

Gk(
x)

Gk(x)
;
Wk(
; x)

Gk(x)

�
=
�
Gn(
x)

Gn(x)
;
Wn(
; x)

Gn(x)

�
:

Also, one can easily verify using the multiplication in A that

�(
1
2; x) = �(
1; x)�(
2; 
1x):

Notation: For k � 1 let Xk = fx 2 X : x1 = x2 = ::: = xk = 0g
and �k = � \ Xk: For x 2 X, let x(n) = (x1; :::; xn; 0; 0; :::) and x(n) =
(0; :::; 0; xn+1; xn+2; :::); where x(0) = 0 and x(0) = x: Then, x(n) 2 �n and
x = x(n)x

(n): Also, if fGkg satis�es condition (C1), then for each k; gk+1(x) =
Gk+1(x)
Gk(x)

is �k invariant (see [BD]).

Lemma 2.2 Given any ax+ b valued cocycle � on X for the � action, then
there exists a compatible family of measurable functions fGkg and a compat-
ible family of cocycles fWkg such that

�(
; x) =
�
Gk(
x)

Gk(x)
;
Wk(
; x)

Gk(x)

�

whenever 
 2 �k and x 2 X:

Proof: Let �(
; x) =
�
�1(
; x); �2(
; x)

�
: From the cocycle identity for � one

gets that �1 is a multiplicativeR+ valued cocycle, and �2 a �1 cocycle, in the
sense that �2(
1
2; x) = �2(
1; x)+�1(
1; x)�2(
2; 
1x): Set G0(x) = 1 and for

k � 1; let Gk(x) = �1

�
x(k); x

(k)
�
; then for 
 2 �k; we have

Gk(
x)
Gk(x)

= �1(
; x):

Also, for any m � k and 
 2 �k;
Gm(
x)
Gm(x)

= Gk(
x)
Gk(x)

: Now, for 
 2 �k set

Wk(
; x) = Gk(x)�2(
; x): Using the fact that �2 is a �1 cocycle one can
easily verify that fWkg is a family of cocycles satisfying condition (C2).
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Lemma 2.3 Let fWkg be a compatible family. For k � 0 de�ne

�k(x) =
Wk+1(x(k+1); x

(k+1))

gk+1(x)
�Wk(x(k); x

(k)):

Then �k is �k invariant. Also, for every 
 2 �k and x 2 X we have

Wk(
; x) =
k�1X
n=0

�
Gk(
x)

Gn(
x)
�n(
x)�

Gk(x)

Gn(x)
�n(x)

�
: (�)

Proof: Let 
 2 �k: Then,

�k(
x) =
Wk+1(
x(k+1); x

(k+1))

gk+1(x)
�Wk(
x(k); x

(k))

=
Wk+1(
; x)

gk+1(x)
+
Wk+1(
x(k+1); x(k+1))

gk+1(x)
�Wk(
; x)�Wk(x(k); x

(k))

=
Wk+1(x(k+1); x

(k+1))

gk+1(x)
�Wk(x(k); x

(k))

= �k(x):

To verify (*) notice that both sides satisfy the cocycle identity, hence it is
enough to prove only the case 
 is x(k) and x is x(k): Then, x = x(k)x

(k) and
for any n < k we have (x(k))(n) = 0 and (x(k))(n) = x(k): The left hand side
of (*) has then the form Wk(x(k); x

(k)): Now, the right hand side of (*) is

k�1X
n=0

�
Gk(x)

Gn(x)
�n(x)�

Gk(x(k))

Gn(x(k))
�n(x

(k))
�

=
k�1X
n=0

�
gn+1(x):::gk(x)

Wn+1(x(n+1); x
(n+1))

gn+1(x)
� gn+1(x):::gk(x)Wn(x(n); x

(n))
�

=
k�2X
n=0

�
gn+2(x):::gk(x)Wn+1(x(n+1); x

(n+1))� gn+1(x):::gk(x)Wn(x(n); x
(n))

�

+Wk(x(k); x
(k))� gk(x)Wk�1(x(k�1); x

(k�1))

= gk(x)Wk�1(x(k�1); x
(k�1)) +Wk(x(k); x

(k))� gk(x)Wk�1(x(k�1); x
(k�1))

= Wk(x(k); x
(k)):

Theorem 2.1 There is a one-to-one correspondence between ax+ b valued
cocycles on X for the � action and compatible families fGkg satisfying con-
dition (C1) and f�kg with each �k a �k invariant function.
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3 The mean ratio set

De�nition 3.1 Let W be an additive cocyle on X for the � action. De�ne

W k(
0; x) =
1

j�kj

X

2�k

W (
0; 
x):

For k � 1; let Bk denote the tail �- algebra generated by all cylinders of the
form

Q1
i=1Ei where Ei = Xi = Zl(i) for all i < k: If � is G measure on X and

f a measurable function, we denote by E�(f jBk) the conditional expectation
of f given the sub-�-algebra Bk:

Lemma 3.1 Let � be a G measure on X; then

(i) W k is a cocycle on X for the � action,

(ii) For all 
0 2 �k; W k(
0; x) = 0;

(iii) If n � k; we have E�

�
W (
0;x)
Gn(x)

jBk

�
= Gk(x)

Gn(x)
W k(
0; x):

Proof: (i) Clear since the sum of cocycles is a cocycle.
(ii) Follows from the cocycle identity; for 
0 2 �k we have

W k(
0; x) =
1

j�kj

X

2�k

W (
0; 
x)

=
1

j�kj

X

2�k

W (
0
; x)�W (
; x) = 0:

(iii) From [BD] one has

E�

�
W (
0; x)

Gn(x)
jBk

�
=

1

j�kj

X

2�k

W (
0; 
x)

Gn(
x)
Gk(
x)

=
1

j�kj

X

2�k

W (
0; 
x)
Gk(x)

Gn(x)

=
Gk(x)

Gn(x)
W k(
0; x):
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Remarks 3.1

(a) In each variableW k is independent of the �rst k coordinates, in the sense
that, if 
0 2 �k; then for any 
 2 � and x 2 X we have W k(

0; x) =
W k(
; x) = W k(
; 
0x):

(b) IfW is a cocyle for the �n action, then for 
0 2 �n we de�neW k(
0; x) =
1
j�kj

P

2�k

W (
0; 
x) if k < n; and 0 otherwise.

(c) In [BD1] we de�ned, for a quasi-invariant measure � on X, �m =
1

j�mj

P

2�m � � 
, and noted that this is precisely � conditioned on Bm.

The above notation is compatible with this.

Clearly the mean ratio sets of � and �m coincide. Thus, by Proposition
(2.1), for each m, the ratio sets of � and of �m coincide.

De�nition 3.2 Let � be a nonsingular G measure on X and � an ax + b
valued cocycle for the � action which has the form

�(
; x) =
�
Gk(
x)

Gk(x)
;
Wk(
; x)

Gk(x)

�

whenever 
 2 �k and x 2 X: As before let A denote the ax + b group. An
element (r; s) 2 A is said to belong to the mean ratio set of �; denoted by
r�(�); if for every � > 0 there exists m0 � 1 such that for every A 2 B with
�(A) > 0 and for every m > m0; there exists a measurable subset B � A
with �(B) > 0 and there exist n � 1 and 
0 2 �n such that the following hold

(i) 
0B � A;

(ii) For every x 2 B;

����Gn(
0x)Gn(x)
� r

���� < �;

(iii) For every x 2 B;

����Gm(x)
Gn(x)

Wm
n (
0; x)� s

���� < �:

Proposition 3.1 The mean ratio set r�(�) is a closed subgroup of A:

Proof: Let (r1; s1); (r2; s2) 2 r�(�):Wewant to show (r1r2; s1+r1s2) 2 r�(�):
Let � > 0; there existsm0

0 � 1 such that if A 2 B with �(A) > 0 and m > m0;
there exists B � A with �(B) > 0 and there exist a positive integer n1 � m
and 
1 2 �n1 such that
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(i) 
1B � A; and for every x 2 B;

����Gn1 (
1x)Gn1 (x)
� r1

���� < �; and

����Gm(x)

Gn1(x)
Wm

n1
(
1; x)� s1

���� < �:

Further, since �(
1B) > 0 we can �nd C � 
1B with �(C) > 0; and an
integer n2 � m and 
2 2 �n2 such that

(ii) 
2C � �1B; and for every x 2 C;

����Gn2(
2x)

Gn2(x)
� r2

���� < �;

and

���� Gm(x)
Gn2 (x)

Wm
n2
(
2; x)� s2

���� < �:

Let n = n1+n2 and D = 
�11 C � B: Then, �(D) > 0 and 
2
1D � A: Now,
for any x 2 D we have����Gn(
2
1x)

Gn(x)
� r1r2

���� =

����Gn(
2
1x)

Gn(
1x)

Gn(
1x)

Gn(x)
� r1r2

����
=

����Gn2(
2
1x)

Gn2(
1x)

Gn1 (
1x)

Gn1(x)
� r1r2

����
� (r1 + �)�+ r2� = (r1 + r2)�+ �2

and ����Gm(x)

Gn(x)
Wm

n (
2
1; x)� (s1 + r1s2)
����

=
����Gm(x)

Gn1(x)
Wm

n1
(
1; x) +

Gn1 (
1x)

Gn1(x)

Gm(x)

Gn2 (
1x)
Wm

n2
(
2; 
1x)� (s1 + r1s2)

����
�

����Gm(x)

Gn1(x)
Wm

n1
(
1; x)� s1

����+ Gn1(
1x)

Gn1 (x)

���� Gm(x)

Gn2(
1x)
Wm

n2
(
2; 
1x)� s2

����
+ s2

����Gm(x)

Gn1(x)
� r1

����
< (r1 + s2 + 1)�+ �2:

This shows (r1r2; s1 + r1s2) 2 r�(�): Now, let (r; s) 2 r�(�): We want to
show that (r�1;�r�1s) 2 r�(�): Let � > 0: For any measurable set A with
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�(A) > 0 and any integer m choose a real number N(m) > 0 such that
the set Am = fx 2 A : jGm(x) � N(m)j < �g has positive measure. Since
(r; s) 2 r�(�); there existsm0 > 1 such that for m > m0 we can �nd B � Am;
an integer n � m and 
 2 �n such that

(iii) 
B � Am; and for every x 2 B;

����Gn(
x)Gn(x)
� r

���� < �; and

����Gm(x)

Gn(x)
Wm

n (
; x)� s

���� < �:

Let C = 
B � Am; then 
�1C = B � Am: For x 2 C, since 
�1x 2 B

we have

���� Gn(x)
Gn(
�1x)

� r

���� < �; which implies that

����Gn(
�1x)Gn(x)
� r�1

���� < �

r(r��)2 : By

the cocycle identity we have Wm
n (
; 
�1x) = �Wm

n (
�1; x) and for x 2 C;���� Gm(x)
Gm(
�1(x)

� 1

���� < 2�
N(m)��

so that

����Gm(x)

Gn(x)
Wm

n (
�1; x) + r�1s

����
=

���� Gm(x)

Gm(
�1x)

Gn(
�1x)

Gn(x)

Gm(
�1x)

Gn(
�1x)
Wm

n (
; 
�1x)� r�1s

����
�

Gm(x)

Gm(
�1x)

Gn(
�1x)

Gn(x)

����Gm(
�1x)

Gn(
�1x)
Wm

n (
; 
�1x)� s

����
+

s

r

���� Gm(x)

Gm(
�1(x)
� 1

����+ s
Gm(x)

Gm(
�1(x)

����Gn(
�1x)

Gn(x)
� r

����
<

2�

N(m)� �
+
s

r

2�

N(m)� �
+
�
1 +

2�

N(m)� �

�
s�

This proves that (r�1;�r�1s) 2 r�(�): The proof that r�(�) is closed is
straightforward since on A we have the product topology.

De�nition 3.3 Two ax+b valued cocycles � and � are cohomologous if there
exist measurable functions � and � such that

�(
; x) = (�(x); �(x))� (
; x)(�(
x); �(
x))�1:

We call the function (�; �) a transfer function for � and �:
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Lemma 3.2 For 
 2 �n; let �(
; x) =
�
Gn(
x)
Gn(x)

; Wn(
;x)
Gn(x)

�
and � (
; x) =�

Fn(
x)
Fn(x)

; Vn(
;x)
Fn(x)

�
: If � and � are cohomologous, then

Gn(
x)

Gn(x)
=

�(x)

�(
x)

Fn(
x)

Fn(x)

and
Wn(
; x)

Gn(x)
= �(x)

Vn(
; x)

Fn(x)
+ �(x)�

Gn(
x)

Gn(x)
�(
x):

Let � and � be two cohomologous ax + b valued cocycles each having the
form as given in Lemma 3.2, and with transfer function (�; �): Assume that
the families fGng and fFng de�ning � and � respectively are normalized.
Set

F o
n(x) =

�(x)Gn(x)
1

j�nj

P

02�n �(
0x)Gn(
0x)

and for 
 2 �n

V o
n (
; x) =

F o
n(x)

Fn(x)
Vn(
; x) =

�(x)Gn(x)

Fn(x)

Vn(
; x)
1

j�nj

P

02�n �(
0x)Gn(
0x)

:

Lemma 3.3 (i) For each positive integer n; the functions �Gn
Fn

; �Gn
F on

and F on
Fn

are �n invariant.

(ii) For each m < n and 
0 2 �n we have

F o
m(x)

F o
n(x)

V om
n (
0; x) =

F o
m(x)

Fm(x)

Fm(x)

Fn(x)
V m
n (
0; x):

Lemma 3.4 If � is � integrable, then de�ning a measure � on X by

�(A) =
1R

X �(x)d�(x)

Z
A
�(x)d�(x);

we have that F o is a normalized compatible family, � is an F o measure and
for 
 2 �n

� (
; x) =
�
F o
n(
x)

F o
n(x)

;
V o
n (
; x)

F o
n(x)

�
:
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Theorem 3.1 Let � and � be cohomologous ax + b valued cocycles having
the form given in de�nition 3.3 and with transfer function (�; �). Suppose
that � is a uniquely ergodic G measure and �, � are � integrable. De�ne � as
given in lemma 3.4, then (

R
X �d�;

R
X �d�)r�(�)(

R
X �d�;

R
X �d�)�1 = r�(� ):

In particular, if
R
X �d� = 1 and

R
X �d� = 0; then r�(�) = r�(� ):

Proof: Without loss of generality we assume that
R
�d� = 1; otherwise we

normalize. Let (r; s) 2 r�(�) and let � > 0 be given. There exists a positive
integer N1 such that for all m > N1;���� 1

j�mj

X

2�m

�(
x)Gm(
x)� 1
���� < �

and ���� 1

j�mj

X

2�m

�(
x)Gm(
x)�
Z
X
�(x)d�(x)

���� < �;

uniformly in x: Let �0 = �

jM��j(r+�)(1+j
R
X
�d�j)

; and m > N1 be su�ciently

large. If �(A) > 0; then �(A) > 0: Choose su�ciently large real numbersM1

and M2 such that Ao = fx 2 A : jGm(x)�M1j < �0 and j�(x) �M2j < �0g
has positive measure. There exist B � Ao; n � m and 
0 2 �n such that


0B � Ao; and for every x 2 B we have
����Gn(
x)Gn(x)

� r

���� < �

(r+1)(jsj+1)
and����Gm(x)

Gn(x)
Wm

n (
0; x)� s

���� < �
(r+1)(jsj+1): Now,

Gm(x)

Gn(x)
Wm

n (
0; x) =
1

j�mj

X

2�m

�(
x)Gm(
x)

�
1

j�mj

X

2�m

�(

0x)Gm(
x)
Gn(

0x)

Gn(
x)

+
1

j�mj

X

2�m

Gm(
x)�(
x)

Fn(
x)
Vn(
0; 
x)

=
1

j�mj

X

2�m

�(
x)Gm(
x)

�
Gm(x)

Gm(
0x)

Gn(
0x)

Gn(x)

1

j�mj

X

2�m

�(

0x)Gm(

0x)

+
1

j�mj

X

2�m

�(
x)Gm(
x)
F o
m(x)

F o
n(x)

V om
n (
0; x):

12



Then,

����F
o
n(
0x)

F o
n(x)

� r

���� =
����Fn(
0x)Fn(x)

� r

����
�

Gn(
0x)

Gn(x)

�����(
0x)�(x)
� 1

����
+

����Gn(
0x)

Gn(x)
� r

����< 2�:

Also,

���� 1

j�mj

X

2�m

�(
x)Gm(
x)
F o
m(x)

F o
n(x)

V om
n (
0; x)� s� (1 � r)

Z
X
�d�

����
�

����Gm(x)

Gn(x)
Wm

n (
0; x)� r

����
+

���� 1

j�mj

X

2�m

�(
x)Gm(
x)�
Z
X
�d�

����
�

���� Gm(x)

Gm(
0x)

Gn(
0x)

Gn(x)

1

j�mj

X

2�m

�(

0x)Gm(

0x)� r
Z
X
�d�

����
< 7�:

Thus, ����F
o
m(x)

F o
n(x)

V om
n (
0; x)� s� (1� r)

Z
X
�d�

����< 8�:

This shows that (1;
R
X �d�)(r; s)(1;�

R
X �d�) 2 r�(� ): The other direction is

proved similarly. Hence, (1;
R
X �d�)r�(�)(1;�

R
X �d�) = r�(� ):

4 Classi�cation and examples

In this section, we classify the closed subgroups of the ax+ b group and use
the structure theorem from x2 to give examples of cocycles whose ratio sets
correspond to the various possibilities.

The following theorem is perhaps well-known to experts, but we have
not been able to �nd a convenient reference for it. We include a proof for
completeness.

13



Theorem 4.1 Let H be a closed subgroup of the ax+ b group A. Then H
is one of the following

(i) A itself

(ii) The identity feg

(iii) For each � 2 (0; 1); f(1; n�) : n 2 Zg

(iv) R= f(1; x) : x 2 Rg

(v) For each � 2 R+; � 6= 1; f(�n; x) : x 2 Rg

(vi) For each � 2 R; f(u; �(u� 1)) : u 2 R+g

(vii) For each � 2 R and for each � 2 R+; � 6= 1; f(�n; �(�n � 1)) : n 2 Zg

Proof: Let us realizeA as the group of matrices of the form
��

a b
0 1

�
: a > 0; b 2 R

�
:

Its Lie algebra is then
��

x y
0 0

�
: x; y 2 R

�
, with exponential map

exp
�
x y
0 0

�
=

0
B@
0
B@ ex y( e

x�1
x

)

0 1

1
CA
1
CA :

The component of the identity H0 of H is a connected closed subgroup of
A; hence we may identify three possibilities: H0 = A; H0 = feg; or H0 is
a one-dimensional subgroup. In the �rst case, H = A and we are in case

(i). In the third case, H0 = fexp t
�
x w
0 0

�
: t 2 Rg with (x;w) 6= (0; 0). If

x = 0; H0 = f(1; x) : x 2 Rg: One sees that H=H0 is a discrete subgroup
of R+ and we are either in case (iv) or (v). Otherwise, putting � = w

x
, we

have H0 = f(u; �(u � 1)) : u 2 R+g. We claim that H = H0. In fact, since
conjugation by (1; �) maps H0 into f(u; 0) : u 2 R+g, we may assume � = 0.
Any subgroup containing f(u; 0) : u 2 R+g and an element of the form (u0; s)
with s 6= 0 is quickly seen to be all of A: Thus H = H0 and we are in case
(vi).

Finally, let us consider the case when H0 = feg: We claim that H is
generated by a single element. Suppose �rst that every element of H is of

14



the form (1; x) with x 2 R: Then H is a discrete subgroup of R and we are
in case (ii) or (iii). Otherwise, H contains an element 
 = (u; y) with u > 1.
Conjugating as above by (1; y) we may assume that y = 0: Thus H contains
f(un; 0) : n 2 Zg:Suppose thatH contains also an element of the form (u0; y0)
with logu0 and log u rationally independent; we may suppose that u0 < 1: Let
v 2 R+ be arbitrary and choose sequences fnkg; fmkg so that unkumk

0 ! v

as k ! 1: Then (u; 0)nk(u0; y0)
mk = (unkumk

0 ;

 
1 � umk

0

1� u0

!
y0) 2 H for all

k. Letting k ! 1; we see that
�
v;

y0
1� u0

�
2 H for all v 2 R: This

contradicts our assumption that H0 = feg: We conclude that logu0 and
logu are rationally related, and so H contains both f(un; 0) : n 2 Zg and
f(1; ky0) : k 2 Zg. The set of all elements of H of the form (1; w) is then
a subgroup of R containing uny0 for all n 2 Z: This is necessarily the whole
of R except in the case y0 = 0: We have proved that H is conjugate to
f(un; 0) : n 2 Zg for some u and we are therefore in case (vii). 2

(4.2) Using Proposition 3.1 and Theorem 4.1 we now have a limited
number of mutually exclusive possibilities for our mean ratio set, as a closed
subset of [0;1] � [�1;1] whose intersection with A is a closed subgroup
of A:

Recall that the possible ratio sets for a cocycle with values in R+ are
f1g (type II), R+ (type III1), for 0 < � < 1; f�n : n 2 Zg (type III�) and
f0; 1;1g (type III0). For an additive cocycle, we have f0g (type II), R (type
III1), for 0 < � < 1; fm� : m 2 Zg (type III�) and f�1; 0;1g (type III0:)

In fact, the closed subgroups of A listed in Theorem 4.1 lead to mean
ratio sets of the form R1 � R2 where R1 � [0;1] and R2 � [�1;1] are of
the above type in all cases except types (vi) and (vii) with � 6= 0: On the
other hand, as observed in the proof of Theorem 4.1, (u; �(u�1)) is conjugate
to (u; 0) via (1; �): This leads to

De�nition 4.1 Let � be a G-measure and � an A-valued cocycle for the �
action. If the mean ratio set r�(�) has the form R1�R2 where R1 is of type
X for R+ and R2 is of type Y for R then we say that � is of type X � Y .
If r�(�) can be conjugated into a set of this form by an element of the form
(1; �) we say that � is of the type (X � Y )�:

The last possibility is realized only if X = III1 or III�, and Y = II or III0:
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Thus to say that � is of type II � III0 means that its mean ratio set is
f1g � f0; 1;1g, to say that � is of type (III�� III0)� means that its mean
ratio set is f(�n; �(�n � 1)) : n 2 Zg[ f�1;1g and to say that � is of type
(III1� II)� means that its mean ratio set is f(u; �(u� 1)) : u 2 Rg.

The possible types are then III1�III1; II�II; III0�II; II�III�(0 �
� � 1); III0 � III�(0 � � � 1); (III� � I)�; 0 < � � 1; � 2 R and
(III�� III0)�; (0 < � � 1); � 2 R.

Note that III� � III� is not possible with 0 < �; � < 1: We denote by

R(�) the ratio set of � with respect to the � action (see [KW], [S1], [S2],
[BDL]).

Theorem 4.2 Let fGng be a normalized compatible family for which there
exists a unique G�measure �. Let � 2 L1(X;�) and de�ne

Wn(
; x) = Gn(
x)�(
x)�Gn(x)�(x):

Then Wn is a compatible family of cocycles and

�(
; x) =

 
Gn(
x)

Gn(x)
;
Wn(
; x)

Gn(x)

!

de�nes an ax+ b-valued cocycle. Let � =
R
�d�:

(i) If R(�) = R+; that is � is of type III1, then

r�(�) = f(r; (r � 1)�) : r 2 R+g

so � is of type (III1� II)�.

(ii) If for some 0 < � < 1; R(�) = f�n : n 2 Zg, that is, � is of type III�,
then

r�(�) = f(�n; (�n � 1)�) : n 2 Zg;

that is � is of type (III�� II)�:

(iii) If � is of type III0, that is R(�) = f0; 1;1g and
R
X �d� = 0 then

r�(�) = f0; 1;1g� f�1; 0;1g, that is � is of type III0 � III0
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Proof. It is easily seen from the compatibility of the G's that theWn satisfy
condition (C3).

One calculates from the de�nition that

Gm(x)

Gn(x)
Wm

n (
0; x) =
1

j�mj

X

2�m

Gm(
x)

(
Gn(
0
x)

Gn(
x)
�(
0
x)� �(
x):

)

By unique ergodicity of � we have
1

j�mj

X

2�m

Gm(
x)�(
x)! � uniformly in

x as m!1: Now, for any r 2 R(�); any � > 0 and any A of X of positive �

measure, ifm0 is su�cienly large (so that j
1

j�mj

X

2�m

Gm(
x)�(
x)��j < � for

any m � m0 and any x ), then for any m � m0; there exist n > m; a 
0 2 �nm

and a subset B of A of positive measure so that 
0B � B; j
Gm(
0x)

Gm(x)
�1j < �;

and j
Gn(
0x)

Gn(x)
� rj < �: From this it follows that

j
Gm(x)

Gn(x)
Wm

n (
0; x)� (r � 1)�j

is dominated by a multiple of �; thus (r; (r � 1)�) 2 r�(�):
2

Theorem 4.2 does not allow us to construct cocycles whose ratio sets have
III1 in the second factor. The next theorem will allow this. Before giving the
theorem, let us construct our cocycles. For the rest of this paper we assume
that fGng and � satisfy the hypothesis of theorem 4.2.

Lemma 4.1 Suppose un is a function on X which depends only on the (n+
1)st coordinate. Set u0 = 0; and let

�n(x) = un(x)�
un+1(x)

gn+1(x)
for n = 0; 1; 2; 3; � � �

De�ne a compatible family of cocycles by

Wk(
; x) =
1X
n=0

 
Gk(
x)

Gn(
x)
�n(
x)�

Gk(x)

Gn(x)
�n(x)

!

for 
 2 �k:
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Then

Gm(x)

Gk(x)
Wm

k (
0; x) =

(
Gm(x)
Gk(x)

fuk(x)� uk(
0x)g if m � k
0 if m > k

:

Proof. This follows by an obvious telescoping sum argument. 2

The following Theorem is based on example 3.3 of [PS] which corresponds
to the case where � is invariant.

Theorem 4.3 Let G be a normalized compatible family, � a uniquely ergodic
G-measure of type T = fI, II, III�g: Let fskg be a sequence of rational
numbers in which each rational occurs in�nitely often.

Let

un(x) =
�
sn if xn = 0
0 otherwise,

and de�ne Wk as in Lemma 4.2. Then the resulting cocycle is of type T�
III1:

Proof. Let r 2 R�; let A be a set of positive measure and let � > 0: Choose
B � A; k > m and 
0 2 �mk so that 
0B � A;

�����d� � 
0d�
(x)� r

����� < �;

�����d�
k � 
0
d�k

(x)� r

����� < �

for all x 2 B:
This is possible by comment following Remarks 3.1.
Choose k1 � k so large that there exists 
 2 �k1 with �(B \ 
Xk1) >

(1��)�(
Xk1): (This is possible by Theorem 3.2 of [BDL]). The compatibility
condition (C2) shows that

Gm(x)

Gk(x)
Wm

k (
0; x) =
Gm(x)

Gk1(x)
Wm

k1
(
0; x)

whenever k1 > k:
Furthermore, by Lemma 4.1, the di�erence between the right hand side

and
Gm(x)

Gk1 (x)
uk1(x)� r

Gm(
0x)

Gk1 (
0x)
uk1(
0x)
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is dominated by a multiple of �: This expression equals

8><
>:
sk1p

m
k1
(x) if xk1 = 0 6= (
0)k1xk1

sk1(p
m
k1
(x)� rpmk1(
0x)) if xk1 = (
0)k1xk1 = 0

�rsk1p
m
k1
(
0x) if xk1 6= 0 = (
0)k1xk1

where pmk1(x) =
Gm(x)

Gk1 (x)
:

Now, since pmk1(x) is a continuous function, we may choose a set Sm
k1
�

Xk1+1; of positive measure, and a number qmk1 so that jp
m
k1
(x)� qmk1j < � for all

x 2 Sm
k1
: By the normalization condition, we may assume that qmk1 6= 0. Since

the sequence sk1q
m
k1
may be chosen to approximate an arbitrary real number,

we are done. 2

Remarks. It is an interesting issue to what extent one may generalise other
familiar constructions of ergodic theory from R-valued to A-valued cocycles.
Can one, for example, �nd a concrete realisation of some of the 
ows of For-
rest [F] in this setting? We shall address these issues in future publications.
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