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Abstract

We consider the entropy of systems of random transformations,

where the transformations are chosen from a set of generators of a

Z
d action. We show that the classical de�nition gives unsatisfactory

entropy results in the higher-dimensional case, i.e. when d � 2. We

propose a de�nition of the entropy for random group actions which

agrees with the classical de�nition in the one-dimensional case, and

which gives satisfactory results in higher dimensions. This de�nition

is based on the �bre entropy of a certain skew product. We identify

the entropy by an explicit formula which makes it possible to compute

the entropy in certain cases.
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1 Random transformations and entropy

Let (X;B; �) be a probability space. In deterministic ergodic theory one

is usually concerned with the study of a single ergodic measure-preserving

transformation S on (X;B; �): For example, the concept of entropy, as was
de�ned by Kolomogorov and Sinai, plays an important role in the classi�-

cation of ergodic systems (see e.g. Walters (1982)).

In this paper we are concerned with the entropy of random transforma-

tions. In Section 2, we consider the case where the dynamics or the random

evolution of the system is generated by independent applications of transfor-

mations chosen at random according to some probability distribution. The

concept and properties of such random systems have already been de�ned

and studied (see Kifer (1986)). However, we show that the classical setup

gives unsatisfactory entropy results when the set of transformations consists

of generators of a higher-dimensional group. In this case, it is more natural

to compare the random system with the deterministic group action. In such

systems we do not think of picking transformations randomly one at a time,

but rather according to a stationary and ergodic distribution. In Section

3, we develop a notion of random entropy which is based on this idea, and

which gives satisfactory results in any dimension. In Section 4 we give an

explicit formula for the calculation of the entropy of random group actions.

In the remaining part of this section we recall the classical de�nitions and

results of random transformations, random entropy and random generators.

All these are found in Kifer (1986) but we include them for the convenience

of the reader.

Consider a probability space (X;B; �) and let F be a set of transfor-
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mations acting on X: The set F is assumed to possess a measure structure

such that the map from F�X to X de�ned by (f; x)! f(x) is measurable.

Let m be a probability measure on F : Introduce a new probability space

(
; �); where 
 = FN+

; � = mN
+

, where N+ denotes the positive integers.

The �-algebra on 
 is the product �-algebra. Thus, an element ! 2 
 is a

sequence of transformations ! = (f1; f2; : : :):We denote the shift in 
 by �:

(�!)i = fi+1, i = 1; 2; : : :

All quantities de�ned below will depend on m, but we won't make this de-

pendence explicit in the notation. Let P be the operator acting on bounded

functions of X as follows:

P (g)(x) =

Z
F
g(f(x))dm(f):

The adjoint operator P � gives a new measure P �� on X in the following

way: For any measurable subset G of X;

P ��(G) =

Z
X

Z
F
�G(f(x))dm(f)d�(x);

where �G denotes the indicator function of G:

De�nition 1.1: The measure � is said to be P �-invariant if P �� = �:

De�nition 1.2: The measure � is said to be m-invariant if �(f�1G) = �(G)

for m almost every f and for every measurable G � X:

We shall use the following notation:

(i) If � is a �nite partition of X; then H(�) = H�(�) denotes the entropy

of �; i.e. H�(�) = �PA2� �(A) log�(A):

(ii) For ! = (f1; f2; : : :) 2 
; we let if(!) = fi � fi�1 � � � � � f1 where

� denotes composition. Note that i = 0 corresponds to the identity

operator.
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Theorem 1.1: Suppose � is P �-invariant and let � be a �nite partition of

X: Then

h�(m; �) := lim
n!1

1

n

Z


H�(_n�1i=0 (

if(!))�1�)d�(!)

exists. If � is m-invariant, then

h�(m; �) = lim
n!1

1

n
H�(_n�1i=0 (

if(!))�1�)

� a.e.

De�nition 1.3: The random entropy of the system (X; �;F ;m) is de�ned

by

h�(m) = sup
�

h�(m; �)

where the supremum is taken over all �nite partitions of X:

Remark: The deterministic entropy h�(S) (or h�(S; �)) of a single measure

preserving transformation S can be viewed as a special case of the random

entropy de�ned above when � is concentrated on S.

De�nition 1.4: A �nite partition � of X is said to be a random generator

for (X; �;F ;m) if for � a.e. ! 2 
; _1i=0(if(!))�1� generates the �-algebra

B on X; up to sets of � measure zero.

Theorem 1.2:

(i) If � is a random generator for (X; �;F ;m), then

h�(m) = h�(m; �):

(ii) If �1 � �2 � � � � is an increasing sequence of �nite partitions generating

the �-algebra B on X (i.e. _1i=1�i generates B up to sets of measure

zero), then
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h�(m) = lim
n!1

h�(m; �n):

The random entropy de�ned above can be related to the �bre entropy

of a skew product as follows. Consider

T : 
�X ! 
�X

de�ned by T (!; x) = (�!; f1x), where ! = (f1; f2; : : :). One can now show

that when � is P �-invariant,

h���(T ) = h�(�) + h�(m):

The �rst term in the right hand side is the entropy obtained by observing

which transformations are chosen. The second term is the entropy obtained

by the action of these random transformations. This point of view will be

used later to generalise random entropy to higher dimensions.

2 Randomly chosen generators of group actions

First we consider the one-dimensional case. The underlying space X is

equipped with a measure �. Let S denote an invertible �-invariant transfor-

mation. The space 
 := FN+

= fS�1; SgN+

is given the product measure

� which assigns probability p to S and probability q = 1� p to S�1: Note

that � is m-invariant since � is S-invariant. Thus for any �nite partition �

of X; we have that � a.e.

h�(m; �) = lim
n!1

1

n
H�(_n�1i=0 (

if(!))�1�):
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Lemma 2.1: For any �nite partition � of X , we have

h�(m; �) = jp� qjh�(S; �):

Proof: For ! 2 
; de�ne

Xi(!) =

8><
>:

1 if !i = S;

�1 if !i = S�1:

Let U0(!) = 0 and for n � 1; let Un(!) =
Pn

i=1Xi(!): For n � 0; let Kn(!)

be the set of distinct values of U0; U1; : : : ; Un; and let Rn(!) = jKn(!)j be the
cardinality of Kn(!); that is, Rn(!) is the range of U0(!); U1(!) : : : ; Un(!):

Note that Kn(!) is a subset of f�n;�(n � 1); : : : ; (n � 1); ng consisting

of Rn(!) consecutive integers. It is well known (see Spitzer (1976)) that

limn!1
Rn(!)
n

= jp � qj � a.e., say for ! 2 A where �(A) = 1: Moreover,

since � is m-invariant, for any �nite partition � of 
 and any ! 2 A, we have

h�(m; �) = lim
n!1

1

n
H�(_n�1i=0 (

i(f(!))�1�))

= lim
n!1

Rn(!)

n

1

Rn(!)
H�(_Rn(!)�1i=0 S�i�)

= jp� qjh�(S; �):

2

Theorem 2.1: Suppose that h�(S) < 1. Then the random entropy of

(X; �;F ;m) is given by

h�(m) = jp� qjh�(S):
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Proof: Since the deterministic entropy h�(S) < 1 one can �nd, using

Krieger's theorem (Krieger (1970)), a �nite partition � such that h�(S) =

limn!1 h�(S; �n) where �n = _ni=�nS�i�. Thus from Lemma 2.1 and Theo-

rem 1.2 (ii) we see that

h�(m) = lim
n!1

h�(m; �n)

= lim
n!1

jp� qjh�(S; �n)
= jp� qjh�(S):

2

Next we show that Krieger's theorem is no longer true in the current

setting. This is more than anything due to the fact that we consider only

one-sided random choices of transformation. In the next section we shall

work with the two-sided version.

Theorem 2.2: Let (X; �) be a probability space and suppose that S : X !
X is invertible, � invariant and satis�es h�(S) > 0. Let F := fS; S�1g with

measure m which assigns probability p to S and q = 1� p to S�1. If p 6= q,

then (X; �;F ;m) has no random generator.

Proof: If � is a random generator, then for � a.e. !, _1i=0(if(!))�1� gener-
ates B: Assume with no loss of generality that p > q. Then the set

A = f! 2 
 : min
n
Un(!) = 0g

has positive � measure, with Un(!) as de�ned in the proof of Lemma 2.1.

Let ! 2 A be such that _1i=0(if(!))�1� generates B, and set M = maxfn :

Un(!) = 0g: Then for any n �M , we have
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_ni=0(if(!))�1� � _nj=0S�j�:

Since the sequence _ni=0(if(!))�1)� generates B; it follows that f_nj=0S�j�g
also generates B. This shows that � is a one-sided generator for S and so

S must have zero entropy (see Walters (1982), Corollary 4.18.1), which is a

contradiction since h�(S) > 0: 2

The situation in the higher-dimensional case is quite di�erent. To explain

this we specialise to the case where X = f0; 1gZ2, � is product measure

and F = fS�1; S; T�1; Tg, where S and T denote the left- and downwards

shifts respectively. We show that the random entropy is either 0 or +1
depending on whetherm is symmetric or not. (We say thatm is symmetric if

m(S) = m(S�1) and m(T ) = m(T�1), otherwisem is called nonsymmetric.)

This is the unsatisfactory fact referred to in the �rst section.

Theorem 2.3: If m is symmetric, then h�(m) = 0:

Proof: For any ! 2 
 = FN+

, de�ne

Xi(!) =

8>>>>>>><
>>>>>>>:

(1; 0) if !i = S;

(�1; 0) if !i = S�1;

(0; 1) if !i = T;

(0;�1) if !i = T�1:

Let U0(!) = (0; 0) and for n � 1, let Un(!) =
Pn

i=0Xi(!): For n � 0;

let Kn(!) be the set of distinct values of U0(!); U1(!); : : : ; Un(!) and let

Rn(!) = jKn(!)j: For i = 0; 1; set Pi = fx 2 X : x0;0 = ig and let

� = fP0; P1g. Since m is symmetric, the random walk fUn : n � 0g is

recurrent, so that limn!1
Rn(!)
n

= 0 and [1n=0Kn(!) = Z2 � a.e., say on
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a set A of � measure one (see Spitzer (1976)). The latter implies that �

is a random generator for (X; �;F ;m): Moreover, since both S and T are

measure preserving with respect to �; it follows that � is m-invariant. Thus,

if ! 2 A we have

h�(m) = h�(m; �) = lim
n!1

1

n
H�(_n�1i=0 (

if(!))�1�)

= lim
n!1

Rn(!)

n

1

Rn(!)
H�(_(i;j)2Kn(!)S�iT�j�)

= lim
n!1

Rn(!)

n
h�(S; T ) = 0;

where h�(S; T ) denotes the entropy of the deterministic Z
2 action generated

by S and T . (Note that h�(S; T ) < 1 because of the product structure of

�.) 2

Theorem 2.4: If m is nonsymmetric, then h�(m) = +1:

Before proving this, we remark that the result is not surprising: If m

is nonsymmetric, the two-dimensional random walk has essentially a one-

dimensional range.

Proof of Theorem 2.4: Consider the partition � as de�ned in the proof

of Theorem 2.3. For k � 1; let

�k = _ki=�k _kj=�k S�iT�j�:

Thus, �k is the partition that speci�es coordinates xi;j for �k � i; j � k;

note that �k is a generating sequence for B2: For ! 2 
; de�ne Xi(!); Ui(!);

Kn(!) and Rn(!) as in the proof of Theorem 2.3. Let Rk
n(!) be the number

of new boxes speci�ed by _n�1i=0 (
if(!))�1�k. Since m is nonsymmetric we

can assume without loss of generality that the random walk Un has a drift
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to the right. For n large enough, we have Rk
n(!) � �n: Thus, for ! 2 A and

n large enough

1

n
H�(_n�1i=0 (

if(!))�1�k) � 1

n
Rk
n(!)H�(�k)

� 1

n
�nH�(�k):

From this it follows that for all k,

h�(m; �k) � �H�(�k);

which tends to in�nity when k !1. Therefore,

h�(m) = lim
k!1

h�(m; �k) = +1:

2

3 Entropy formalism for random group actions

Let us reconsider the one-dimensional case once more, doing things two-

sided from now on (this is just for convenience and not important). We

let 
 = FZ where F = fS; S�1g, and identify an element of 
 with the

sequence of powers of S. Each combination of ! = (: : : ; !�1; !0; !1; : : :) and

an integer n 2 Z gives rise to a transformation Sf(n;!), where

f(n; !) =

8>>>><
>>>>:

Pn�1
i=0 !i; n > 0;

0; n = 0;

�Pn
i=1 !�i; n < 0;

which is clearly a cocycle for the Z-action given by S. This idea will now

be generalised to higher dimensions.
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Let A be a �nite set containing at least two elements, and consider a

Z2 action  on X = AZ
2

generated by two commuting and invertible �

measure-preserving transformations S and T . It is perhaps more natural

to de�ne a notion of randomness in such a way that the resulting system

can be compared with the deterministic group action  on X . We shall

restrict ourselves to the two-dimensional case, but the reader should note

that generalisation to higher dimensions causes no di�culty.

Let Z2 be the graph whose vertices are the integer points (k; l), and

which has edges between vertices that are distance one apart. We denote

the edge set of this graph by E2. We want each vertex (k; l) to be associated

with a transformation of the form SmTn, (m;n) 2 Z2. To do this succesfully,

we have to make a few de�nitions.

A path � is a �nite sequence of edges � = (e1; e2; : : : ; ek) in such a way

that the endpoint of ei is the starting point of ei+1 for all appropriate i,

where begin- and endpoint are de�ned in the obvious way. When � travels

through an edge e in the upwards or right direction, we say that e is a

positive edge for �; when � travels through e downwards or to the left, we

say that e is a negative edge for �. An edge may be traversed more than

once by � and in such a case it could be both positive and negative for �.

We de�ne �+ to be the set of positive edges for � and �� the set of negative

edges, noting that a given edge e can appear more than once in either �+,

�� or both.

The immediate analogue of the one-dimensional case would be to some-

how label each edge by either (1; 0); (�1; 0), (0; 1) or (0;�1) and think of

the labels as corresponding to S, S�1, T and T�1 respectively. It turns out

however, that a richer theory can be developed when we allow the labels
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to be any element of Z2, and think of the label (m;n) as corresponding to

SmTn. We denote the label of the edge e by `(e).

We shall not allow all possible con�gurations of labels. The restriction

we impose is that for any two vertices x and y and any path � from x to y,

the vector X
e2�+

`(e)�
X
e2��

`(e)

is independent of the choice of �, and only depends on x and y. The rea-

son for this restriction will become apparent soon. (Note that in the one-

dimensional case this would be no restriction at all.) At �rst sight, it is

not clear that many labellings are possible under this restriction. A little

thought however, reveals that it is su�cient (and necessary) to require the

following. Denote the unit vectors by e1 and e2. Take a vertex x and write

f1 for the edge between x and x + e1, f2 for the edge between x + e1 and

x+e1+e2, f3 for the edge between x and x+e2 and f4 for the edge between

x+ e2 and x+ e2+ e1. For a labelling to be allowed we now need to require

that

`(f1) + `(f2) = `(f3) + `(f4):

for all vertices x.

A closed subset of the full shift space fZ2gE2

(in the usual topology in

which two con�gurations are close whenever they agree on a large part of the

space) which is invariant under translations is in general called a subshift.

We shall denote the subshift de�ned above by 
, to indicate that this set

plays a similar role as 
 in the previous sections. For ! 2 
, the label of

the edge e in ! is sometimes denoted by !e. The subshift 
 will play an

important role in our formalism, so we shall �rst convince ourselves that 
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contains many elements, i.e. there are many allowed con�gurations of the

edge labels.

Proposition 3.1: The subshift 
 has uncountably many elements.

Proof: Consider a two by two square, the eight outer edges of which are

labelled as follows, starting in the lower left corner and going clockwise:

(1; 0); (0; 1); (1; 0); (0; 1); (0; 1); (1; 0); (0; 1); (1; 0). Now tile the plane with

these squares, noting that the labelling is such that this is possible. Now

for the four remaining edges in the interior of each square, there are two

possibilities, namely either (0; 1) for the left and lower, and (1; 0) for the right

and upper edges, or vice versa. This implies that 
 contains uncountably

many elements. 2

Remark: Using the same argument as in the proof of Proposition 3.1, one

actually shows that 
 has positive topological entropy.

We continue with the de�nition of the cocycle f : Z2 � 
! Z2 by

f((m;n); !) = (f1((m;n); !); f2((m;n); !)) =
X
e2�+

`(e)�
X
e2��

`(e);

where � is any path from (0; 0) to (m;n). We have seen that for any con-

�guration in 
, this is independent of the choice of �. Given !, the point

(m;n) should be thought of as associated with the map Sf1T f2 .

Next we introduce probability and random entropy. It turns out to be

convenient to rede�ne 
 as follows


 = f! = ((!1z ; !
2
z)z2Z2) : 8 i; z; !iz 2 Z2; and !1z + !2z+e1 = !2z + !1z+e2g;

where ei denote the unit vectors in Z2. In this way, labels are associated

to vertices rather than to edges. Let � : Z2 � 
 ! 
 be the group action
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given by the coordinate shift and let � be a �-invariant ergodic probability

measure on 
. Furthermore, we let  : Z2�X ! X be the coordinate shift

and � be a  -invariant ergodic probability measure on X . The cocycle f

induces a (�� �)-invariant Z2-action � : Z2 � 
�X ! 
�X as follows:

�z(!; x) = (�z(!);  f(z;!)(x)):

Using this set up, there are now several (equivalent) ways to de�ne random

entropy and we choose one of them:

De�nition 3.1: Let � be a stationary and ergodic probability measure on


 which satis�es Z


k!0k1d�(!) <1:

The random entropy E�(�) is de�ned by

E�(�) = h���(�)� h�(�):

This de�nition is of course inspired by the one-dimensional skew product

of Section 1. Here is a very intuitive interpretation. If H � Z2 is a �nite

subset, let PH be the partition on 
 specifying the coordinates of ! 2 


indexed by elements of H . Similarly, we let QH denote the partition on X

specifying the coordinates of x 2 X that are indexed by elements in H . We

also write Bn = f0; 1; : : : ; n� 1g2.
Let, for M � 0,

LM(n)(!) = fu 2 Z2 : u = u0 + u00; u0 2 f�M; : : : ;Mg2; u00 2 f(Bn; !)g;

and let SM(n) denote the cardinality of LM(n). We also de�ne the partitions

AM = (Pf0g �X)_ (
� Qf�M;:::;Mg2):
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With a slight abuse of notation we write PH instead of PH � X and QS

instead of 
�QS . It will be clear from the context which space is considered.

Then, using the entropy addition formula from Ward and Zhang (1992) in

the second equality below, we have

h���(�) = lim
M!1

lim
n!1

1

n2
H(_g2Bn��1g (AM ))

= lim
M!1

lim
n!1

�
1

n2
H(PBn) +

1

n2
H(QLM(n)jPBn)

�

= h�(�) + lim
M!1

lim
n!1

1

n2
H(QLM(n)jPBn):

It follows that the random entropy E�(�) satis�es

E�(�) = lim
M!1

lim
n!1

1

n2
H(QLM(n)jPBn):

In words, to compute the random entropy, one looks in the box Bn, moves

the square f�M; : : : ;Mg2 around according to the transformations in the

box, computes the entropy of the corresponding partition, and �nally divides

by n2 and takes the limit for n!1. The answer will be independent of !,

and the limit for M ! 1 then corresponds to taking the supremum over

all partitions in the classical de�nition of entropy. We shall see in the next

section that this leads to an immediate generalisation of Theorem 2.1

4 Identi�cation of the entropy

In this section we derive a formula for E�(�) which can be used to actually

compute E�(�) in certain cases. We work with the same setup as in Section

3, and assume in particular that � satis�es the integrability condition in

De�nition 3.1.
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Consider the subshift 
. In a given realisation, each point x = (k; l) 2 Z2

corresponds to a map Sf1T f2 . Consider a stationary and ergodic (under the

whole group action) measure � on 
. We de�ne horizontal and vertical

limits as follows (surpressing in the notation the fact that f = (f1; f2) also

depends on !):

hS(k) = lim
n!1

f1(n; k)� f1(0; k)

n
; hT (k) = lim

n!1

f2(n; k)� f2(0; k)

n
;

vS(k) = lim
n!1

f1(k; n)� f1(k; 0)

n
; vT (k) = lim

n!1

f2(k; n)� f2(k; 0)
n

:

All these limits exist � a.e. by stationarity. We �rst claim that hS(k) is

independent of k and similarly for the other quantities. To see this, we

write Xn for f1(n; k) � f1(0; k) and Yn for f1(n; k + 1) � f1(0; k + 1). We

have that EjXn� Ynj � K for some uniform K > 0. (This follows from the

integrability condition on �.) Hence,

E

�����Xn

n
� Yn

n

����
�
! 0

for n!1 and it follows from Markov's inequality that jXn
n
� Yn

n
j converges

to 0 in probability and hence the a.e. limit (which we know exists) has to

be 0 as well. This proves the claim. It follows that hS(k) is invariant under

both horizontal and vertical translations and hence it is � a.e. constant.

Similar statements are valid for the other quantities. Therefore it makes

sense to de�ne hS = hS(k), hT = hT (k), vS = vS(k) and vT = vT (k).

Consider the parallellogram P with vertices (0; 0), (hS ; hT ), (vS ; vT ) and

(hS + vS ; hT + vT ). Most of the work is contained in the following theorem.

Theorem 4.1: For any ergodic measure � on 
 which satis�esZ


k!0k1d�(!) <1;
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we have that almost surely,

lim
n!1

SM(n)

n2
= �(P)
= jdet((hS ; hT ); (vS; vT ))j:

where � denotes two-dimensional Lebesgue measure.

Proof: The fact that SM(n)=n2 converges a.e. is an immediate consequence

of the multiparameter subadditive ergodic theorem (Krengel (1985), Theo-

rem 6.2.9). Indeed, SM(n) represents a cardinality and is easily seen to be

subadditive. The fact that the limit is � a.e. constant follows from the fact

that the limit is obviously invariant under translations, together with the

ergodicity of �.

So what we have to do is identify, for allM , this limit limn!1 SM(n)=n2.

Interestingly, we shall identify the limit in probability of SM(n)=n2. This is

then of course also the a.e. limit.

We shall �rst deal with a special case; we take M = 0, and assume that

� concentrates on the set f(1; 0); (0; 1); (�1; 0); (0;�1)gE2

. At the end of the

proof we shall indicate which changes are necessary to deal with the general

case.

We start by �xing � > 0 and choosing N = N(�) so large that

�

�����f1(n; 0)n
� hS

���� < �; 8n > N

�
> 1� �;

and similarly for the other three quantities. This choice of course implies

that for all n > N we have

�

�����f1(n; 0)n
� hS

���� > �

�
< �; �

�����f2(n; 0)n
� hT

���� > �

�
< �;
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�

�����f1(0; n)n
� vS

���� > �

�
< �; �

�����f2(0; n)n
� vT

���� > �

�
< �:

We call a point (k; l) good if we have����f1(k; 0)k
� hS

���� < �;

����f2(k; 0)k
� hT

���� < �;

����f1(k; l)� f1(k; 0)

l
� vS

���� < �;

����f2(k; l)� f2(k; 0)l
� vT

���� < �:

By the choice of N , we see that each point in the region V := f(k; l) :

k � N; l � Ng has probability at least 1 � 4� to be good. Denote the set

V \ [0; n�1]2 by Vn. We claim that uniformly in n, with probability at least

1�p4�, at least a fraction 1�p4� of the points in Vn are good. To see this,
it is easiest to look at bad points (points which are not good). Given any

collection X1; : : : ; Xr of 0; 1-valued random variables, with P (Xi = 1) � 4�

for all i, we have

�

 
1

r

rX
i=1

Xi �
p
4�

!
� E(1

r

Pr
i=1Xi)p
4�

� 4�p
4�

=
p
4�;

proving the claim.

Now that we know that with high probability most points in V are good,

let us look at the image of good points under the power map f . For any

good point (k; l) 2 Vn we have

k(hS � �) � f1(k; 0) � k(hS + �);

l(vS � �) < f1(k; l)� f1(k; 0) � l(vS + �);

and similarly for the f2-images. Thus together this gives

f(k; l) 2 (khS + lvS ; khT + lvT ) + [�2(n� 1)�; 2(n� 1)�]2:
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Hence each good point in the region Vn is mapped under f into the perturbed

`parallellogram' (n� 1)P + [�2(n� 1)�; 2(n� 1)�], and we denote this last

set by Pn(�).
We shall now give upper and lower bounds for the limit in probability

of S0(n)=n2, using the notion of good and bad points. We start with the

upper bound. Let Zn denote the number of bad points in Vn, and denote

by jPn(�)j the cardinality of Pn(�). We then have for n large enough,

S0(n)

n2
� 2nN

n2
+
jPn(�)j
n2

+
Zn

(n�N)2
� (n�N)2

n2

� 2N

n
+ (1 + �(�;P))2�(P) + Zn

(n�N)2
� (n�N)2

n2
;

where �(�;P) ! 0 when � ! 0. Note that Zn
(n�N)2 is the fraction of bad

points in the region Vn, so that it follows by the claim above that �( Zn
(n�N)2 �p

4�) � 1� p
4�. Therefore, the constant to which S0(n)=n2 converges a.e.

(and hence in probability) has to be at most (1+ �(�;P))2�(P). Since � > 0

was arbitrary, we conclude that limn!1 S0(n)=n2 � �(P).
The lower bound is a little more complicated. Note that the proof of the

upper bound shows that most points in Vn are mapped (under the power

map) into Pn(�). For the lower bound, we need to show that most points

inside (n � 1)P are actually image points. To do this, we shall again only

use the fact that S0(n)=n2 converges in probability to a constant. Fix again

� > 0 and N = N(�) as above. Consider the parallellogram obtained from

(n� 1)P by multiplying (n� 1)P with center ((n� 1)hS + (n� 1)vS ; (n�
1)hT + (n � 1)vT ) with a factor n�1�N

n�1 , and call this parallellogram ~Pn.
If all points on the boundary of Vn (all vertices in Vn which are adjacent

to at least one vertex outside Vn) are good, we have that the union of the

images of the points on this boundary contains a circuit in the set ~Pn(�) :=
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fx 2 R2 : d(x; @( ~Pn)) � 2(n � 1)�g, where @ denotes boundary and d the

L1 distance. We claim that, as a deterministic fact, if all points on the

boundary of Vn are good, then all vertices in the set ~Pnn ~Pn(�) are images
of points of Vn. Assume for a moment that this claim is correct. It follows

from the choice of N that the probability that all vertices on the boundary

of Vn are good is at least 1� 8�. So if the claim is correct we have that

�

 
S0(n)

n2
� j ~Pnn ~Pn(�)j

n2

!
� 1� 8�;

from which it follows that

�

 
S0(n)

n2
� n2(1� �0(�;P))

n2
�(P)

!
� 1� 8�;

where �0(�;P) ! 0 when � ! 0. Since � > 0 is arbitrary it follows that

limn!1 S0(n)=n2 � �(P).
Next we prove the claim, i.e. we show that if all points on the boundary

of Vn are good, then all vertices in the set Qn(�) := ~Pnn ~Pn(�) are image

points of Vn.

Consider the continuous curve which connects f(N;N); f(N;N+1); : : : ;

f(N; n�1) by straight line segments and call this curve 
N . Similarly, de�ne

N+1 as the curve connecting f(N+1; N); f(N+1;N+1); : : : ; f(N+1; n�1),
and continue to de�ne curves until 
n�1, which is the curve connecting

f(n� 1; N); f(n� 1; N+1); : : : ; f(n� 1; n� 1). All the curves 
N ; : : : ; 
n�1

have n � N vertices, where we do count multiplicities. These vertices are

denoted by 
i(1); : : : ; 
i(n�N), for all i = N; : : :; n�1. The assumption on

� implies that j
i(k)�
i(k+1)j = 1 for all relevant i and k. Each side of the

parallellogram Qn(�) can be extended to a doubly in�nite line which divides

the plane into two half planes, one of which does not contain Qn(�). The
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latter half planes are denoted H1; : : : ; H4, where the numbering is chosen

such that 
N � H1, 
n�1 � H3, 
i(1) 2 H2 for all i and 
i(n�N) 2 H4 for

all i. This can be done by the goodness of the points on the boundary of

Vn. Next we are going to describe a process evolving in time as follows: at

time t = 0, we place a particle at each of the vertices of 
N , and label the

particle at 
N(i) by the number i. Note that if a vertex appears more than

once in 
N , then there is more than one particle at this vertex. Between

t = 0 and t = 1, particle 1 moves with unit speed from 
N(1) to 
N+1(1),

therefore ending up at this last vertex at time 1. All other particles do not

move in this time interval. (In fact, there will always be exactly one particle

moving at any non-integer time.) Between time 1 and 2, particle 2 moves

with unit speed from 
N(2) to 
N+1(2). We continue this, so that �nally

between time n�N � 1 and n�N , particle n�N moves from 
N(n�N)

to 
N+1(n�N). Note that at this point, all particles have moved from 
N

to 
N+1. Next, between time n �N and n �N + 1, particle 1 moves from


N+1(1) to 
N+2(2). After that, particle 2 moves from 
N+1(2) to 
N+2(2)

and so on. So at time 2(n � N) particle i is at the vertex 
N+2(i). We

continue in the obvious way, until the �nal con�guration is reached at time

(n�N)2 when particle i is at 
n(i) for all i = 1; : : : ; n�N .

At all times t, the curve �t is de�ned by connecting particles 1; : : : ; n�N
(in that order) with straight line segments. In particular, we have that

�k(n�N) is just 
N+k. Consider horizontal lines lk := f(x; k) : x 2 Rg for

integers k, and let I(k) denote the intersection of lk and Qn(�). Assume for

the sake of concreteness that Qn(�) is oriented in such a way that H1\ lk is
at the left of H3 \ lk. If I(k) \ �t 6= ;, we denote the leftmost point of this
intersection by r(k; t). If the intersection is empty, r(k; t)) is de�ned to be
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the leftmost point of I(k).

The main observation is the following: as a function of t, r(k; t) can only

make `jumps' from one vertex to a neighbouring vertex. Apart from these

possible jumps, r(k; t) is a continuous function of t. This observation is

easy to verify by checking all possibilities. It follows from this observation,

together with the fact that r(k; 0) 2 H1 and r(k; (n� N)2) 2 H3, that all

vertices on the line segment I(k) must belong to some �t for integer t, which

means that all these vertices must belong to some 
i. This proves the claim.

It remains to indicate the changes needed to deal with the general case.

The assumption onM is easily dispensed with: it follows from the proof just

given that as long as � is concentrated on f(1; 0); (0; 1); (�1; 0); (0;�1)gE2

,

we have limn!1 SM(n)=n2 = �(P) for all M � 0, since an increase in M is

only a boundary e�ect which disappears when n gets large.

To treat the general case, note that the proof just given consists of two

parts. First we show that most points are mapped into Pn(�), and then we

show that most points in Pn(�) are actually image points. When there is

no restriction on � (apart from the usual integrability condition), the �rst

part of the proof goes through with only minor changes. The argument

in the second part breaks down though since the function r(k; t) can make

big jumps now (as a function of t) and it is not clear that all vertices are

image points. But we can save the proof by considering larger values of M :

For � > 0, we take M so large that
R
k!0k1�M

k!0k1d� < �. This choice

implies that during the `�lling up' of the parallellogram with translates of

f�M; : : : ;Mg2, the expected fraction of the parallellogram not covered goes

down to zero with �. Also, the region outside the parallellogram covered by

these translates is again a boundary e�ect which becomes negligible for large
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n. These observations conclude the proof. 2

Finally we state and prove the immediate generalisation of Theorem 2.1.

Theorem 4.2: Under the conditions of Theorem 4.1 we have

E�(�) = �(P)h�( )
= jdet((hS ; hT ); (vS; vT ))jh�( ):

Proof: According to the remarks following De�nition 3.1, we need to iden-

tify

lim
M!1

lim
n!1

1

n2
H(QLM(n)jPBn):

Let Rn be the set of integer vectors in the parallellogram nP . From the

proof of Theorem 4.1 we have that for all � > 0,

lim sup
n!1

jLM(n)(!)4Rnj
n2

< �

a.e. and since the sequence is uniformly bounded, convergence is also in L1.

Also notice that if C is an atom of PBn ; then L
M (n)(!) is the same for all

! 2 C and we denote this set by LM(n)(C). Now for M su�ciently large,

we write

1

n2

���H(QLM(n)jPBn)�H(QRn)
���

=
1

n2

������
X

C2PBn

H(QLM(n)jC)�(C)�H(QRn)

������
� 1

n2

X
C2PBn

���H(QLM(n)jC)�H(QRn)
����(C)

� log jAj
X

C2PBn

jLM(n)(C)4Rnj
n2

�(C)

= log jAj
Z



jLM(n)(!)4Rnj
n2

d� � � log jAj
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for n large enough. Finally we note that is is easy to see that

lim
n!1

H(QRn)

n2
= h�( )jdet((�1; �2); (�1; �2))j;

and this completes the proof. 2

Examples: All our three examples below are in two dimensions and have

jAj = 2. For �, we take product measure with equal marginals, so h�( ) =

log 2. The edges will only be labelled by (1; 0) or (0; 1). The �rst label is

identi�ed with the transformation S, the second label with the transforma-

tion T . We start with two extremal cases.

(A) The entropy of a deterministic group action is a special case of Theorem

4.2.; just take � the measure that concentrates on the realistion of labels in

which all horizontal edges are labelled S and all vertical edges are labelled

T . We then have hS = vT = 1 and hT = vS = 0. This means that

E�(�) = log 2.

(B) The example in the proof of Proposition 3.1 leads to the following

measure �. First place the `skeleton' of squares in a stationary way. (This

can be done by choosing the position of the origin uniformly over the square

and then tile the plane with adjacent squares.) Within each square, choose

one of the two possibilities with probabilities p and 1 � p respectively, say

independently of each other. It is easy to see that hS ; hT ; vS and vT are all

equal to 1
2 (independent of p). Hence E�(�) = 0 in this case.

(C) We construct a measure � on labels of edges in the �rst quadrant

only, but this is not important, since we can for instance use Kolomogorov's

consistency theorem to extend this to a measure on labels in the whole plane.

Choose 0 � p � 1 and let q = 1 � p. Label all edges of the x-axis S

with probability q and T with probability p, independently of each other.

24



For the y-axis we do the same with interchanged probabilities. Now denote

the square [n; n+ 1]� [0; 1] by Wn, and denote the lower and upper edge of

Wn by en and fn respectively. The labelling procedure is at follows: First

label the remaining edges of W1; if there are two possibilities for doing this

we choose one of them with equal probabilities. At this point, the lower

and left edge of W2 are labelled, and we next complete the labelling of W2,

noting again that if there are two ways to do this, we choose one of them

with equal probabilities. This procedure is continued and gives all labels in

the strip [0;1)� [0; 1]. Then we move one unit upwards, and complete in

a similar fashion the labels in the strip [0;1) � [1; 2]. (Of course, if you

want to carry out this labelling, you never actually �nish any strip. Instead,

you start at some moment with the second strip which can be labelled as

far as the current labelling of the �rst strip allows, etc.) We claim that

this procedure yields a stationary and ergodic labelling, and in the next

paragraph we indicate how to prove this. It is easy to see that hS = vT = q

and hT = vS = p in this case, giving E�(�) = jp� qj log 2.
We end this example by a sketch of the proof that the labelling is sta-

tionary and ergodic. If we can show that the labelling of the edges fn has

the same distribution as the labelling of the edges en, then we have shown

that the labelling in the quadrant [0;1)� [1;1) has the same distribution

as the labelling in [0;1) � [0;1) and we can use a similar argument for

vertical lines plus induction to �nish the argument. Therefore we only need

to show that the labelling of the edges fn is i.i.d. with the correct marginals.

To do this properly, consider the labels of the edges of Wn. There are six

possible labellings of the edges of Wn. Four of these are such that en and fn

have the same label. The exceptional labellings are (starting at the lower

25



left vertex and moving clockwise) STTS and TSST . Denote the labelling

of the edges of Wn by Ln. Then it is not hard to see that Ln is a Markov

chain on the state space fSTTS; TSST; TSTS; STST; TTTT; SSSSg.
Take the transition matrix P of Ln, interchange the rows and the columns

corresponding to STTS and TSST to obtain P 0, and consider the backward

Markov chain corresponding to P 0, denoted by Mn. An easy calculation

then shows that Ln and Mn have the same transition matrix and that they

are both in stationarity. But Mn is by construction just the labelling of the

strip [0;1)� [0; 1] rotated over 180 degrees. This implies that the labelling

of the edges fn has the same distribution as the labelling of the edges en,

which is what we wanted to prove. As for ergodicity of �: any invariant

event A can be approximated by an event A0 which depends only on the

edges in a �nite box. By moving this box to the right step by step we again

obtain a Markov chain, which is ergodic (in fact, even mixing). This then

implies that A0 is trivial, and hence so is A. 2

We end with a corollary. The statement of the corollary could give rise

to confusion: the entropy in the statement refers to the usual measure-

theoretical entropy of � and not to E�(�). A subset K of Z2 is called

symmetric if it is invariant under re
ection in the origin.

Corollary 4.1:

(i) Let K � Z2 be a symmetric �nite set and let 
K be the subset of 


of all con�gurations with labels in K. If 
K has a unique measure �K

of maximal entropy, then E�(�K) = 0.

(ii) If � is invariant under rotations, then E�(�) = 0.
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Proof: The introduction of 
K in (i) is needed to make the statement

not a priori empty, since 
 has no measure of maximal entropy. To prove

(i), suppose we 
ip all labels from SmTn to S�mT�n. We then obtain

another measure �0K , say, which is also concentrated on 
K . It is clear that

hS(�K) = �hS(�0K) and similarly for the other quantities. But clearly, �0K

has the same entropy as �K , whence it follows from the assumption that

hS(�K) = hS(�
0
K) and similarly for the other quantities. it follows that

hS(�K) = hT (�K) = vS(�K) = vT (�K) = 0, whence �(P) = 0.

For (ii), just observe that the assumption on � implies that hS = vS and

hT = vT . 2

Remark: The phenomenon in (i) is exactly what happens in the one-

dimensional case as well. The unique measure of maximal entropy on f0; 1gZ

is the product measure with marginals 1=2. In this case, we saw already in

Theorem 2.1 that the random entropy is equal to zero.
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