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Abstract

Let x 2 (0; 1] and pn=qn; n � 1 be its sequence of L�uroth Series convergents. De�ne the approx-
imation coe�cients �n = �n(x) by �n = qnx� pn; n � 1. In [BBDK] the limiting distribution of
the sequence (�n)n�1 was obtained for a.e. x using the natural extension of the ergodic system
underlying the L�uroth Series expansion. Here we show that this can be done without the natural
extension. We also will get a bound on the speed of convergence. Using the natural extension
we will study the distribution for a.e. x of the sequence (�n; �n+1)n�1 and related sequences like
(�n + �n+1)n�1. It turns out that for a.e. x the sequence (�n; �n+1)n�1 is distributed according
to a continuous singular distribution function G. Furthermore we will see that two consecutive
�'s are positively correlated.

AMS classi�cation : 11K55, 28D05

1 Introduction

Let x 2 (0; 1], then

x =
1

a1
+

1

a1(a1 � 1)a2
+ : : :+

1

a1(a1 � 1) � � �an�1(an�1 � 1)an
+ � � � ; (1)

where an � 2; n � 1: J. L�uroth, who introduced the series expansion (1) in 1883, showed (among
other things) that every irrational number x has a unique in�nite expansion (1) and that each
rational either has a �nite or an in�nite periodic expansion, see also [L] and [Pe]. The series
expansion (1) of x is called the L�uroth Series of x.

Dynamically the L�uroth series expansion (1) of x is generated by the operator T : [0; 1]! [0; 1];
de�ned by

Tx := b
1

x
c

�
b
1

x
c+ 1

�
x� b

1

x
c ; x 6= 0; T0 := 0; (2)

(see also �gure 1), where b�c denotes the greatest integer not exceeding �: For x 2 [0; 1] we de�ne
a(x) := b 1xc + 1; x 6= 0 ; a(0) := 1 and an(x) = a(Tn�1x) for n � 1: From (2) it follows that
Tx = a1(a1 � 1)x� (a1 � 1); and therefore

x =
1

a1
+

1

a1(a1 � 1)
Tx =

1

a1
+

1

a1(a1 � 1)a2
+ � � �+

Tnx

a1(a1 � 1) � � �an(an � 1)
:

Putting

pn
qn

=
1

a1
+

n�1X
k=1

1

a1(a1 � 1) � � �ak(ak � 1)ak+1
; n � 1; (3)
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where q1 := a1; qn = a1(a1 � 1) � � �an�1(an�1 � 1)an; n � 2; it follows from (3) that

x�
pn
qn

=
Tnx

qn(an � 1)
; n � 1: (4)

>From an � 2 and 0 � Tnx � 1 it follows that the series from (1) converges to x: We will write

x =< a1; a2; � � � ; an; � � � > and
pn
qn

=< a1; a2; � � � ; an > : (5)

In [JdV], H. Jager and C. de Vroedt showed that the stochastic variables a1(x); : : : ; an(x); : : :
are independent1 with �1(an = k) = 1

k(k�1) for k � 2; and that T is measure preserving and
ergodic with respect to Lebesgue measure. From the ergodicity of T and Birkho�'s Individual
Ergodic Theorem a number of results were obtained, analogous to classical results on continued
fractions, e.g.

lim
n!1

(a1a2 � � �an)
1=n = ec; a.e. where c � 1:25 ;

lim
n!1

log(x�
pn
qn
) = �d; a.e., where d � 2:03 :

Here and in the following a.e. will be with respect to Lebesgue measure.

Figure 1

In view of (4) it is natural to de�ne and study the so-called approximation coe�cients �n =
�n(x); n � 1; de�ned by

�n = �n(x) := qn

����x� pn
qn

���� ; n � 1:

As in the case of the regular continued fraction these �'s give an indication of "the quality of
approximation of x by its n-th convergent2 pn=qn", see also [JK]. Note that the absolute value
signs are in fact superuous here. In view of (4) one has

�n =
Tnx

an � 1
; n � 1: (6)

1Here and in the following �n will denote Lebesgue measure on Rn.
2In case of the regular continued fraction one de�nes �n := qnjqnx� pnj; n � 1; where pn=qn is the n-th regular

convergent of x.
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Putting Tn := Tnx it follows from (2) and (5) that

Tn =< an+1; an+2; � � � > :

We say that Tn is the future of x at time n. Similarly is

Vn =< an; an�1; � � � a1 >=
1

an
+

1

an(an � 1)an�1
+ � � �+

1

an(an � 1) � � �a2(a2 � 1)a1

the past of x at time n. Putting V0 := 0, from (6) one sees that �n is expressed in terms of both
the past (viz. an) and the future. Therefore, in order to obtain the distribution of the sequence
(�n)n�1 for a.e. x the natural extension of the ergodic system ((0,1], B1; �1; T ) (here B1 is the
collection of Borel sets of (0,1]) was constructed in [BBDK].

Theorem 1 ([BBDK]) Let 
 := [0; 1]� [0; 1] and B2 be the collection of Borel sets of 
. Let
T : 
! 
 be de�ned by

T (x; y) := (Tx ;
1

a(x)
+

y

a(x)(a(x)� 1)
) ; (x; y) 2 
;

then the system
([0; 1]� [0; 1]; B2; �2; T")

is the natural extension of ([0; 1]; B1; �1; T") : Moreover, ([0; 1]� [0; 1]; B2; �2; T") is Bernoulli.

>From this theorem we have the following lemma.

Lemma 1 ([BBDK]) For almost all x the two-dimensional sequence

T n(x; 0) = (Tn; Vn) ; n � 1;

is uniformly distributed over 
 = [0; 1]� [0; 1].

The distribution of the sequence (�n)n�1 now follows from lemma 1.

Theorem 2 ([BBDK]) For almost all x and for every z 2 (0; 1] the limit

lim
N!1

1

N
#f 1 � j � N : �j(x) < z g

exists and equals F (z); where

F (x) =

b 1
z
c+1X

k=2

z

k
+

1

b1z c+ 1
; 0 < z � 1 : (7)

Taking the �rst moment, theorem 2 yields that for a.e. x

lim
N!1

1

N

NX
n=1

�n =
�(2)� 1

2
= 0:322467 � � � ; (8)

where �(s) is the zeta-function.
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In fact one needs not use the natural extension to study the distribution of the sequence (�n)n�1.
Since

Tn =
1

an+1
+

Tn+1
an+1(an+1 � 1)

;

see also (2), it follows that

an+1Tn = 1 +
Tn+1

an+1 � 1

and therefore (6) yields that
�n+1 = an+1Tn � 1 ; n � 1; (9)

i.e. the distribution of the sequence (�n)n�1 can be obtained from ([0; 1]; B; �; T") :

In general the ergodic theorem does not yield any information on the speed of convergence, see
also [P], section 3.2, where examples are given to show that convergence can be arbitrarily slow.
Here we are however in the situation that we can apply theorem 5.8 from [JdV], which yields the
following much stronger result.

Theorem 3 For almost all x and for every z 2 (0; 1] one has for every " > 0

1

N
#f 1 � j � N : �j(x) < z g � F (z) = o(N� 1

2 log
3+"
2 N); n!1:

In this paper we will study the distribution for a.e. x of the sequence (�n; �n+1)n�1 and related
sequences like (�n + �n+1)n�1. We will show that two consecutive �'s are positively correlated.

2 On the relation between �n and �n+1

>From (7) and (9) it is natural to de�ne the map 	 : 
! 
, given by

	(x; y) :=

�
x

a(y)� 1
; a(x)x� 1

�
; (x; y) 2 
 :

Obviously one has
	(Tn; Vn) = (�n; �n+1) ; n � 1: (10)

Putting
VA;B := f(x; y) 2 
 : a(x) = A; a(y) = Bg ; A; B � 2;

one �nds

VA;B = (
1

A
;

1

A� 1
]� (

1

B
;

1

B � 1
] :

For (x; y) 2 VA;B one has 	(x; y) = ( x
B�1 ; Ax � 1) (where 1=A < x � 1=(A� 1)). Hence putting

(
� := x

B�1 , x = (B � 1)�

� := Ax� 1

yields

� = A(B � 1)�� 1 ; � 2

�
1

A(B � 1)
;

1

(A� 1)(B � 1)

�
: (11)

4



Thus we see that 	 maps the rectangle VA;B onto the line segment LA;B, which has endpoints
( 1
A(B�1) ; 0) and ( 1

(A�1)(B�1);
1

A�1). Notice that from (10) and (11) one has

�n+1 = an+1(an � 1)�n � 1; n � 1; (12)

and (�n; �n+1) 2 �, where
� :=

[
A;B�2

LA;B ;

see also �gure 2.

Figure 2

Notice, that from (7) it follows that always

0 � �n < 1 ; n � 1:

Note that �gure 2 shows that a Vahlen-type theorem as one has for the continued fraction (see
[JK]) is not possible for L�uroth Series. That is, there does not exist a constant c < 1, such that for
every x one has

min(�n(x); �n+1(x)) < c

(recall that for continued fractions always 0 � �n(x) < 1 and min(�n(x); �n+1(x)) < 1=2).
However, it is also clear from �gure 2, that

(Tn; Vn) 62 V2;2 , �n <
1

2

and

(Tn; Vn) 2 (
1

2
;
3

4
)� (

1

2
; 1] ) �n+1 <

1

2
:

We have the following proposition, which follows directly from lemma 1 (see also theorem 2 with
z = 1=2).

Proposition 1 For almost all x one has with probability 3=4 that �n < 1
2 and with probability 7=8

that

min(�n(x); �n+1(x)) <
1

2
:

Furthermore, given that �n < 1=2 one has with probability 5=6 that �n+1 < 1=2. The same holds
when �n and �n+1 are interchanged.
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Remarks In view of (12) it is obvious that for a.e. x two consecutive �'s are not independent. In
fact proposition 1 suggests that two consecutive �'s are positively correlated. That this is the case
almost surely is shown in section 3.2. The situation here is similar to that for the regular continued
fraction; there Vahlen's theorem suggests that two consecutive �'s are negatively correlated. This
is indeed the case as was shown by Vincent Nolte in an unpublished document, see also [N].

3 On the distribution of (�n; �n+1)n�1

In this section we will show in 3.1 that for almost all x the sequence (�n; �n+1)n�1 is distributed
according to a continuous singular distribution function G. Before stating the result we �rst recall
the de�nition of a continuous distribution function, see also [T], p. 20. In 3.2 we will study for
a.e. x the distribution of the sequence (�n + �n+1)n�1, which will then be used to show that two
consecutive �'s are positively correlated.

3.1 A continuous singular distribution functon

De�nition 1 A distribution function G is said to be continuous singular if it is continuous and if
there exists a Borel set S with Lebesgue measure zero such that �G(S) = 1. Here �G denotes the
Lebesgue-Stieltjes measure determined by G.

We have the following theorem.

Theorem 4 For almost all x and for all (z1; z2) 2 [0; 1]� [0; 1] the limit

lim
N!1

1

N
#f 1 � j � N : �j(x) < z1 ; �j+1 < z2 g

exists and equals G(z1; z2); where G is given by

G(�; �) :=
X

A;B�2

�2(V
�
A;B(�; �)) ; (�; �) 2 
; (13)

where

V �A;B(�; �) := f(�; �) 2 VA;B : � < min((B � 1)�;
1 + �

A
)g : (14)

Finally, G is a continuous singular distribution function with support �.

Proof The �rst assertion follows from (7), (9) and lemma 1. In order to show that G is a continuous
distribution function we have to show, see also [T], section 2.2 :

(i) G(x1; x2)! 1 as min(x1; x2)!1.

(ii) For each i 2 f1; 2g, G(x1; x2)! 0 as xi ! �1.

(iii) G(x1; x2) is continuous.

(iv) Let a = (a1; a2); b = (b1; b2); where ai < bi; i 2 f1; 2g and put

(a; b] := fx = (x1; x2) 2 R2 : ai < xi � bi; i 2 f1; 2g g:

Then for each cel (a; b] � R2 we must have

�baG � 0 ;

where
�baG = G(b1; b2)� G(a1; b2)�G(b1; a2) +G(a1; a2) :
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Notice that (i) and (ii) follow from the de�nition of G; clearly G is monotone in each of its
coordinates, and in case xi < 0 (for i 2 f1; 2g) one has that G(x1; x2) = 0: In case min(x1; x2) � 1
it follows that G(x1; x2) = 1: That G is continuous clearly follows from (13). In order to prove (iv)
we introduce for A;B � 2 a function GA;B : 
! R, given by

GA;B(�; �) := �2(V
�
A;B(�; �)) ; (�; �) 2 
;

where V �
A;B(�; �) is as in (14). Notice that

G(�; �) :=
X

A;B�2

GA;B(�; �) ; (�; �) 2 
:

It is now su�cient to show that for all A;B � 2 and each cel (a; b] � 
 one has

�baGA;B � 0 :

Fix A;B � 2 and let

m(�; �) = mA;B(�; �) := min

�
(B � 1)�;

1 + �

A

�

and �1(�; �) = �(A;B);1 := (B � 1)� ; �2(�; �) = �(A;B);2 := 1+�
A , one has the following, possibly

overlapping, cases.

(I) m(a1; b2) < m(b1; b2) and

(Ia) m(a1; a2) < m(b1; a2).
Notice that the monotonicity of �2 as a function of its �rst coordinate yields that

�1(a1; a2) < �2(a1; a2)

and therefore m(a1; b2) = m(a1; a2), from which it follows, by de�nition of GA;B :

�baGA;B = GA;B(b1; b2)� GA;B(b1; a2) � 0 :

(Ib) m(a1; a2) = m(b1; a2).
In this case one has

�baGA;B = GA;B(b1; b2)� GA;B(a1; b2) > 0 :

(II) m(a1; b2) = m(b1; b2), which implies that �2(a1; b2) � �1(a1; b2), which in turn yields that

�2(a1; a2) � �1(a1; a2) :

But then we only can have that
m(a1; a2) = m(b1; a2) ;

from which it at once follows that
�baGA;B = 0 :

(III) m(b1; a2) < m(b1; b2) : see case (I).
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(IV) m(b1; a2) = m(b1; b2) : see case (II).

In order to show that �G(�) = 1, or equivalently that �G(�
c) = 0, it is su�cient to show that for

each cel (a; b] � 
, for which
card( (a; b] \ � ) � 2;

one has that �G((a; b]) = 0, which is equivalent with

�baG = 0 :

Notice that we may assume that (a; b] is contained in Sk for some k � 2, where

Sk := (
1

k
;

1

k � 1
]� [0; 1] ; for k � 2:

Obviously there are only �nitely many values of A and B such that LA;B \ Sk 6= ;. Let A and
B two such values, then (a; b] either "lies above" LA;B or "below" LA;B . Let U = U(a;b) be the
collection of all pairs (A;B) for which (a; b] "lies above" LA;B .

Clearly one has
�G((a; b]) = �G((a

�; b])� �G((a
�; b�]) ;

where a� := (a1; 0) and b� := (b1; a2). For (A;B) 2 U we now de�ne L�A;B by

L�A;B := f(x; y) 2 LA;B : a1 � x � b1g ;

then
�G((a

�; b]) = G(b1; b2)� G(a1; b2) = �2(
[

(A;B)2U

	�1L�A;B )

= G(b1; a2)� G(a1; a2) = �G((a
�; b�]) ;

from which the theorem follows.2

3.2 On the correlation between �n and �n+1

In section 2 we saw that it is likely that �n and �n+1 are positively correlated. In order to show
this, we �rst give some de�nitions.3

De�nition 2 The correlation-coe�cient �(�n; �n+1) of �n and �n+1 is de�ned by

�(�n; �n+1) :=
E(�n�n+1)� E(�n)E(�n+1)p

V(�n)
p
V(�n+1)

;

where E(�n) is the expectation of �n, as given in (8) and V(�n) is the variance of �n, de�ned by

V(�n) := E(�2n)� (E(�n))
2 :

The nominator of �(�n; �n+1) equals the covariance C(�n; �n+1) of �n and �n+1.

3In section 3.1 we assume that the stochastic variables �n for n � 1 are all identically distributed with distribution
function F as given in (7).
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De�nition 3 Let X and Y be two stochastic variables. Then the covariance C(X; Y ) of X and Y
is given by

C(X; Y ) := E( (X � E(X))(Y � E(Y )) ) :

Notice that C(X; Y ) > 0 indicates that whenever X (resp. Y ) is bigger/smaller than its mean E(X)
(resp. E(Y )), the same is likely to hold for Y (resp. X), i.e. X and Y are positively correlated.
Similarly C(X; Y ) < 0 tells us that X and Y are negatively correlated. In case C(X; Y ) = 0 we say
that X and Y are uncorrelated. One has that

X and Y are independent ) X and Y are uncorrolated,

but the converse does not hold in general.

Theorem 5 For almost all x one has that

�(�n; �n+1) =
(�(2)� 1)((1� 3�(2) + 4�(3))

4�(3)� (�(2)� 1)(1 + 3�(2))
= 0:5744202 : : :

and therefore �n and �n+1 are positively correlated a.s.

Since E(�n) = E(�n+1) and E(�2n) = E(�2n+1) one has

�(�n; �n+1) =
E(�n�n+1)� E(�n)

2

V(�n)
:

Notice, that from theorem 2 one has that F has density f , where

f(x) =
kX

`=2

1

`
; for x 2 (

1

k
;

1

k � 1
] ; k � 2:

Taking second moments thus yields

E(�2n) =
1X
k=2

Z 1
k�1

1
k

z2f(z)dz =
1X
k=2

1

3k

1

(k� 1)3
=

1� �(2) + �(3)

3
= 0:185708 : : : :

But then it follows from (8) that

V(�n) =
4�(3)� (�(2)� 1)(1 + 3�(2))

12
= 0:0817226 : : : :

In order to �nd E(�n�n+1) we will determine E((�n + �n+1)
2), since

E((�n + �n+1)
2) = 2E(�2n) + 2E(�n�n+1) :

Hence we �nd for L�uroth series that

E(�n�n+1) =
1

2
E((�n + �n+1)

2)� E(�2n) :

>From (7) and (9) one has

�n + �n+1 = (an+1 +
1

an � 1
)Tn � 1 ; n � 1; (15)

and from the de�nition of LA;B it follows that

1

an+1(an � 1)
< �n + �n+1 �

an
(an+1 � 1)(an � 1)

; n � 1: (16)

>From lemma 1, (16) and (17) we have the following theorem.
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Theorem 6 For almost all x and for every z 2 (0; 2] the limit

lim
N!1

1

N
#f 1 � j � N : �j(x) + �j+1 < z g

exists and equals S(z); where S is a continuous distribution function with density s, given by

s(z) =
X

A;B�2

B � 1

A(B � 1) + 1
1( 1

A(B�1) ;
B

(A�1)(B�1) ]
(z) :

Here 1(�;�](z) is the indicator fuction of the interval (�; �], i.e.

1(�;�](z) :=

(
1 ; z 2 (�; �];
0 ; z 62 (�; �]:

Theorem 6 now at once yields that

E((�n + �n+1)
2) =

1X
B=2

1X
A=2

1

B

Z B

(A�1)(B�1)

1
A(B�1)

1

A(B � 1) + 1
z2dz

=
X

A;B�2

A2B2 +AB(A � 1) + (A� 1)2

3BA3(A� 1)3(B � 1)3
=

3� 3�(2) + 2�(2)�(3)

3
= 0:6737 : : : :

But then

E(�n�n+1)� E(�n)E(�n+1) =
(�(2)� 1)((1� 3�(2) + 4�(3))

12
;

and therefore the �rst assertion of theorem 5 is immediate. It follows that �n and �n+1 are indeed
positively correlated.2

Notice that the proof of theorem 6 can easily be adapted to derive the distribution for a.e. x of
the sequence (�n� �n+1)n�1. We leave this to the reader, but mention one - surprising - case : one
has that the probability P(�n < �n+1) that �n is smaller than �n+1 is 0:391 � � �, i.e. �n+1 has the
tendency to be smaller than its predecessor. To be more precise, we have the following proposition.

Proposition 2 For almost all x one has that

lim
N!1

1

N
#f 1 � j � N : �j(x) < �j+1 g = 0:391 � � � :

Proof From (6) and (9) it follows that �n < �n+1 is equivalent with

Tn >
an � 1

an+1(an � 1)� 1
:

But then lemma 1 yields that limN!1
1
N#f 1 � j � N : �j(x) < �j+1 g exists for a.e. x, and

equals �(D), where D is given by

D =
[

A;B�2

�
B

AB � 1
;

B

A(B � 1)� 1

�
�

�
0;

1

B

�
;
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see also �gure 3. The proposition now follows from

�(D) =
1X
A=2

1X
B=2

1

(AB �A � 1)(AB � 1)B
= 0:391 � � � :2

Figure 3

Final remarks Recently Jose Barrionuevo, Bob Burton and the present authors generalized the
whole concept of L�uroth Series, see also [BBDK]. A new class of series expansions, the so-called
Generalized L�uroth Series (or GLS), was introduced and their ergodic properties were studied.
Examples of these GLS are the recent alternating L�uroth Series, as introduced by S. Kalpazidou
and A. and J. Knopfmacher, but also familiar expansions like r-adic expansions (for r 2 Z; r � 2).
Although �-expansions are not in this class, it turned out that many important ergodic properties
of these expansions can be obtained using the appropriate GLS-expansion, see also [DKS].
Here we only want to mention that the entire approach of this paper can be carried over to GLS-
expansions. In order to keep the exposition clear and easy we only dealt with the "classical" L�uroth
expansion. Details are left to the reader, see also section 3.1 of [BBDK].
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