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Abstract

The linear optimal �ltering problems in in�nite dimensional Hilbert spaces and
their extensions are investigated. The quality functional is allowed to be a general
quadratic functional de�ned by a possibly degenerate operator. We describe the
solution of the stable and the causal �ltering problems. In case of the causal �ltering
we establish the relation with a relaxed causal �ltering problem in the extended space.
We solve the last problem in continuous and discrete cases and give the necessary and
su�cient conditions for the solvability of the original causal problem and conditions
for the analogue of Bode{Shannon formula to de�ne an optimal �lter.

1 Introduction

We consider the linear optimal �ltering problems in in�nite dimensional Hilbert
spaces and their extensions. Brie
y, the problem is as follows. Let H 0; H 00 be Hilbert

spaces and z =

"
x
y

#
a random element in H = H 0 �H 00, where x and y are unob-

servable and observable components of z in H 0 and H 00 respectively. The correlation
operator of z is assumed to be bounded in H and we denote by H a subset of all
linear operators h : H 00 ! H 0. The H{optimal linear �ltering problem is a problem
of the estimations of the unobservable component x based on the realizations of the
observable component y in the form

x̂ = hy (1)

solving the minimization problem in H

J(h)! inf
h2H

; (2)

where the quality functional J is de�ned by

J(h) = EjjD(x� x̂)jj2 (3)
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with a suitable norm in (3) and a linear operator D : H 0 ! H 0. If H consists of all
continuous linear operators h, the problem (1), (2), (3) is called stable. If H 0 and H 00

are Hilbert resolution spaces, one has a time structure in H and in its terms de�nes
an "independent of the future" class of the causal continuous operators H. In this
case the problem is called causal.

If H 0 and H 00 are �nite dimensional and D is the identity matrix, the problem
(1), (2), (3) is equivalent to the problem �rst being solved in [6], [9]. The causal
operators become the upper triangular matrices and the solution is unique and can
be e�ciently represented in terms of the factorization of the correlation matrix Ry of
y by the so called Bode{Shannon formula ([1]). Spectral factorization coincides with
the well known Holetsky factorization of matrices in this case ([2]). The result was
immediately applied in various branches of the �ltering theory, for some applications
see [9], [7].

However, in many applications one estimates only the speci�c components of x
or their combination, which is represented by the degenerate matrix D in the quality
functional (3) and the solutions of the generalized �nite dimensional problems can
be found in [8]. In this case the solution need not be unique and there are conditions
on the degeneracy of D for which the Bode{Shannon formula still de�nes an optimal
�lter.

On the other hand the in�nite dimensional applications required the development
of the �ltering theory in Hilbert ([3]) and sometimes Banach spaces ([4], [5]). For the
applications of this theory to the problem of the linear estimation of the parameters
of a signal based on the observations of its realizations see for example [4].

In this paper the stable �ltering problem will be solved for the general quadratic
quality functional (3). The solution of the causal �ltering problem need not exist
in general. We will establish necessary and su�cient conditions of the solvability
by relaxing the problem allowing a slightly general class of the weight operators in
(2). The relaxed problem can be solved and the analysis of its solution can be used
for the construction of the minimizing sequences. The solutions will be given for
continuous and discrete resolutions. The conditions for the analogue of the Bode{
Shannon formula of [4] to de�ne an optimal �lter will be also given.

Some of the literature we are referring to is in Russian and for the sake of com-
pleteness the results of [4] needed in this paper will be brie
y reviewed. We will not
give the complete proves of them in order to avoid unimportant for the nature of the
results of this paper technicalities.

In Section 2 we �x the notation related to the concept of the extended Hilbert
space and random elements in it. In Section 3 we formulate and give the solution
of the general linear �ltering problem in extended Hilbert spaces in Theorem 3.1.
The stable linear �ltering problem is solved in Section 4 (Theorem 4.1). Section 5
is devoted to the causal �ltering problem. In Subsections 5.1, 5.2 we discuss Hilbert
resolution spaces, their extensions and linear operators in extended spaces. In Sub-
section 5.3 we formulate the problem. The corresponding relaxed problem is solved
in Subsection 5.4 (Theorem 5.1). In Subsection 5.5 we treat the case of the discrete
resolution of the identity (Theorem 5.2) and give necessary and su�cient conditions
of the solvability of the original problem (Theorem 5.3). In Section 6 the concept of
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the spectral factorization will be discussed and the conditions for the Bode{Shannon
formula to de�ne an optimal �lter will be given in Theorem 6.2.

2 Preliminaries

2.1 Extended Hilbert spaces and linear operators

Here we will review a concept of the extended Hilbert space. Let H be a complex
Hilbert space with an inner product h�; �i and F � H be a linear dense subset of H .
We introduce the notion of F -weak convergence in H :

De�nition 2.1 A sequence  l 2 H is called F{weakly Cauchy sequence if

lim
l;m!1

h l �  m; �i = 0; 8� 2 F:

Let 	 be a set of all F -weakly Cauchy sequences  = f lg;  l 2 H; l 2 N. Let
F
�= be an equivalence relation in 	:  

F
�= � if limm!1h m � �m; �i = 0 for all � 2 F .

Then it is not di�cult to check that the quotient space HF � 	=
F
�= of 	 with respect

to the equivalence relation
F
�= is a linear Hausdor� topological space.

Every element � 2 HF de�nes a functional � � : F ! C by � �(�) = liml!1h l; �i,
where f lg is a sequence from � . This duality is an extension of the inner product in
H and we will denote this also by � �(�) = h � ; �i. The following relation is obvious:

Proposition 2.1 HF is complete in F -weak topology and F � H � HF .

The pair (F;HF ) is called an equipment of H and H with such an equipment an
equipped Hilbert space. We will also use a construction which gives a space equivalent
to HF .

De�nition 2.2 The space F � is a space of all the elements f for which there exists
a sequence fl 2 H

� such that f(�) = liml!1 fl(�) for all � 2 F .

Obviously, F � is complete with respect to the topology of componentwise convergence
on F . This implies the completeness of HF in view of the

Proposition 2.2 (i) F � is isomorphic to HF .

(ii) Let � 2 HF . De�ne for the corresponding � � 2 F � a "norm" j � �jF � =

sup�2F
jh � ;�ij
j�jH

. Then � 2 H if and only if j � �jF � < 1. In this case j � �jF � =

j � jH.

The proof easily follows from the de�nitions above. Let A : H ! H be a linear
operator de�ned in a dense subspace D(A) of H . Recall the following

De�nition 2.3 Let D� � H be a space of all elements � 2 H for which there exist
f(�) 2 H such that hA ; �i = h ; f(�)i for all  2 D(A). The operator adjoint to
A is de�ned as A� : D� ! H, such that A�� = f(�).
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One has then D� = D(A�). An operator A is called symmetric if D(A) � D(A�) and
for every �;  2 D(A) holds hA ; �i = h ;A�i. A symmetric operator A is called
self-adjoint if D(A) = D(A�).

Let �A : D( �A)! HF be an extension of A. Assume F \D( �A) to be dense in H .
Similar to the de�nition above de�ne D� as a space of all � 2 F for which there exist
f(�) 2 F such that h �A � ; �i = h � ; f(�)i for all � 2 D( �A). Let �A� : D� ! HF be
an operator de�ned by h �A � ; �i = h � ; �A��i for all � 2 D( �A); � 2 D�. The F{weak
closure of �A� is called the adjoint to �A in HF and will be also denoted by �A�. As
above, �A is called symmetric if D( �A) � D( �A�) and A is symmetric. A symmetric
operator �A is called self{adjoint if D( �A) = D( �A�).

Example 2.1 Let M be a smooth manifold and H = L2(M) with respect to some
positive smooth density onM . Let Fk be a space of k{times continuously di�erentiable
compactly supported functions in M . Then the Fk{weak completion of H is a space
of the distributions of order k in M .

Example 2.2 Let H = l2(N) with its standard inner product and let A : l2 ! l2 be
de�ned by (A�)n =

P1
k=1Ank�k with suitable conditions on Ank. Let F � H be a

set of all the sequences consisting of �nite number of nonzero elements. Then F is
dense in H and F � D(A) � H. For the extension of H with respect to F one has
HF = RN, the space of all the sequences with values in R. One readily checks that the
above extension of A yields a linear operator �A in �l2 = HF de�ned by a matrix Ank
with D( �A) = f� :

P1
k=1 jAnk�kj

2 <1; n 2 Ng.

2.2 Generalized random elements

Let F; H; HF be as above and let (
;A; P ) be a probability space, P a complete
measure.

De�nition 2.4 A mapping z : 
! HF is called a random HF {element if for every
� 2 F holds:

(i) z�� = hz; �i : 
! C is a random variable.

(ii) Ez�� = (Ez)�� for some Ez 2 HF .

(iii) there exists c such that Ej(z �Ez)��j2 � cj�j2H uniformly in � 2 F .

Without loss of generality we will consider the centralized elements: Ez�� = 0 for
all � 2 F . Then Ez��z�� = Ejz��j2 = h�;Rz�i is a quadratic form in F . A linear
operator Rz is called the correlation operator of z. Property (iii) of the de�nition
implies that Rz is a continuous operator on F and, therefore, it can be extended to
a continuous self-adjoint operator in H , Rz 2 L(H). Thus, we have proved

Proposition 2.3 Rz 2 L(H); R�
z = Rz and Rz � 0 in the sense of quadratic forms.
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In analogy to the classical case we will write Rz = Ezz�. Note, that De�nition 2.4
is equivalent to the condition that z : 
 ! HF is measurable, centralized and has
continuous correlation operator, where 
 and HF are equipped with �{algebras A
and one generated by the open sets of F{weak topology in HF respectively.

Example 2.3 The random processes can be interpreted as random generalized ele-
ments of a Hilbert space. Let T > 0 and H = L2(m;T ) be a Hilbert space of m{vector
functions on [0; T ] equipped with the standard inner product. Let w = fw(t); 0 � t �
Tg be a Gauss process, such that almost all realizations of w are elements of L2(m;T )
and E

R T
o jw(t)j2dt < 1. Then Rw is a nuclear operator. If T = +1, then almost

all realizations of w 62 L2(m;T ), but for F = Ccomp([0; T ]) the realizations of w are
elements of L2(m;T )F .

3 Linear �ltering

Let H = H 0 �H 00, where H 0 and H 00 are Hilbert spaces with inner products h�; �iH 0

and h�; �iH 00 respectively. Let F 0 � H 0 and F 00 � H 00 be linear dense subsets. The

elements � 2 H can be interpreted as � =

"
�0

�00

#
with �0 2 H 0; �00 2 H 00. Let

F = F 0 � F 00. We will consider random HF elements z =

"
x
y

#
, with x and y

random H 0
F 0{ and H 00

F 00{ elements respectively. The correlation operator Rz will be
assumed continuous on H , which is natural in view of Proposition 2.3 and have the
following block form:

Rz =

"
Rx Rxy
Ryx Ry

#
;

where we write Rx = Exx�; Ry = Eyy�; Rxy = R�
yx = Exy�.

Let h : H 00
F 00 ! H 0

F 0 be linear. We assume now that there exist an operator
h� : H 0

F 0 ! H 00
F 00 de�ned on the whole of H 0

F 0 , such that for every �0 2 F 0; �00 2 F 00

one has
(h�00)��0 = (�00)�(h��0): (4)

Relation (4) de�nes h� uniquely and h� is the adjoint to h operator.
Let x and y be the unobservable and observable components of z respectively.

We de�ne the random H 0
F 0{element x̂ by

x̂ = hy: (5)

One readily checks that x̂ is a random element in the sense of De�nition 2.4 in view
of our assumptions on h. Then Rx̂ = hRyh

� : H 0 ! H 0 is involutive in H 0 as the
correlation operator of a random element x̂. The element x̂ is interpreted as a linear
estimate of the nonobservable component x of a random HF element z, based on the
realizations of its observable component y. The relation (5) is called a linear �lter
with weight operator h.
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Let a linear operator D : H 0
F 0 ! H 0

F 0 have an adjoint D�. We de�ne the quality
functional as

J�0(h) = Ejh�0; D(x� x̂)ij2; �0 2 F 0: (6)

Let H be a given subset of linear operators h : H 00
F 00 ! H 0

F 0 . Then the H{optimal
�ltering problem is de�ned as a problem of the minimization of the functionals

J�0(h)! inf
h2H

; (7)

de�ned by (6), (5) for every �0 2 F 0.
We will need a notion of the pseudo inversion of an operator. Let A : H ! H be

a linear operator in a Hilbert space H . Let QA be an orthogonal projection on the
image of A, QA : H ! ImA. The space QAH is invariant for A and we write A�1QA
for the inverse of A in QAH . The operator

A+ = QA �A
�1QA �QA

is called the pseudo inverse of A. It follows that

A+A = AA+ = A: (8)

One readily checks that (8) determines A+ uniquely and

Proposition 3.1 If A is a Hermitian operator, then the solution of

hAg � f; Ag � fi ! inf
g2H

; f 2 H

with minimal norm de�nes a linear functional of f which is given by g = A+f .

We will not prove this fact here since we will not use it explicitly. Assume that H is
a space of all linear operators h : H 00

F 00 ! H 0
F 0 . Then the solution of the H{optimal

�ltering problem is given by

Theorem 3.1 Let the correlation operator Rz of a random H element z be continu-
ous in H and let R+

y denote the pseudo inverse operator for the correlation operator
Ry of y in H 00. Then the minimization problem (7) in the class H of all weight
operators h : H 00

F 00 ! H 0
F 0 is solvable and any solution is of the form

hopt = RxyR
+
y + Q; (9)

where Q : H 00
F 00 ! H 0

F 0 is any linear operator satisfying DQ = 0. Moreover, one
has

inf
h2H

J�0(h) = J�0(hopt) = h�0; D[Rx �RxyR
+
y R

�
xy]D

��0i:

The proof follows the lines of the proof of Theorem 4.1, which is given in the next sec-
tion. The existence of D� assures the decomposition (12), from which the statement
of Theorem 3.1 follows.
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4 Linear stable �ltering

If H is a space of all continuous linear operators from H 00 to H 0, then the linear �lters
of the form (5) with weight operator in H are called stable and H{optimal �ltering
problem is called the stable �ltering problem. In this case one allows �0 2 H 0 in (6)
and the minimization problem can be reformulated for scalar functionals

J(h) = sup
�02H 0

Ejh�0; D(x� x̂)ij2

j�0j2H 0

: (10)

Now we are ready to describe the solution of the linear stable �ltering problem. Let
us assume that Ry is continuously invertible in its image RyH 00, which means that
there exist a neighborhood U of zero such that �(Ry) \ U = f0g, �(Ry) being the
spectrum of Ry. We will also assume that the operator D in the quality functional
(6) is continuous in H 0 and has an adjoint D�.

Theorem 4.1 Let the correlation operator Rz of a random H element z be continu-
ous in H and assume that the correlation operator Ry of y has the continuous pseudo
inverse operator R+

y in H 00. Then the minimization problem (7) in the class H of all
continuous weight operators h : H 00 ! H 0 is solvable and any solution is of the form

hopt = RxyR
+
y + Q; (11)

where Q : H 00 ! H 0 is any linear continuous operator satisfying DQ = 0. Moreover,
one has

inf
h2H

J�0(h) = J�0(hopt) = h�0; D[Rx� RxyR
+
y R

�
xy]D

��0iH 0 :

The operators (11) are also optimal in the problem with quality functional (10) and

inf
h2H

J(h) = J(hopt) = jD[Rx� RxyR
+
y R

�
xy]D

�jH 0:

Proof First we rewrite the quality functionals (6) as

J�0(h) = h�0; RD(x�hy)�
0i;

where RD(x�hy) is the correlation operator of D(x � hy) and using the existence of
D� and h� we have

RD(x�hy) = E[D(x� hy)][D(x� hy)]� = DE(x� hy)(x� hy)D�

= D[Rx �Rxyh
� � hRyx + hRyh

�]D�:

This means

J�0(h) = h�0; D[Rx�Rxyh
� � hRyx + hRyh

�]D��0i
= h�0; D[Rx�RxyR

+
y R

�
xy]D

��0i +
h�0; D(h�RxyR

+
y )Ry(h�RxyR

+
y )

�D��0i:
(12)
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Here only the second term depends on h and it is a nonnegative quadratic form
attaining its minimum if and only if D(h� RxyR

+
y ) = 0 in view of Proposition 2.3.

The set of all continuous h satisfying this equation is precisely the set of hopt in
(11) for all linear continuous Q : H 00 ! H 0 satisfying DQ = 0. For such hopt the
second term in (12) is zero, implying the second statement of the theorem. It follows
from (12) that functionals (11) are also optimal for the problem (10) and one readily
veri�es the last statement of the theorem. The proof is complete.

Remark 4.1 If the kernel of Ry is nontrivial (QRy
6= IH 00), then one has h =

hopt + ~h(IH 00 � QRy), where QRy is the orthogonal projection on the image of Ry,

and J�0(h) = J�0(hopt) for every linear continuous operator ~h : H 00 ! H 0. If Ry is
bijective (QRy = IH 00), then R+

y = R�1
y and hopt = RxyR

�1
y + Q, DQ = 0. If D is

bijective, then the only solution of (7) is hopt = RxyR
+
y .

Remark 4.2 If Ry can be rewritten in the diagonal form by a suitable choice of a
basis in H 00, the problem of �nding a pseudo inverse operator of Ry simpli�es. In
stationary case the �ltering problem can be also reformulated in frequency terms.
These methods can be applied for the problems of linear estimation of the parameters
of a signal based on the observations of its realizations.

We will not discuss it here, but the reader can consult [4] for the detailed application.

5 Linear causal �ltering

In this section we will give the solution of the generalized linear causal �ltering
problem. However, we need some preliminary notions and results �rst.

5.1 Hilbert resolution spaces and causal operators

Let H be a Hilbert space, T = (ts; tf ), �1 � ts < tf � +1 and let PT = fPt; t 2 Tg
be a family of commutative projectors Pt : H ! H , P 2

t = Pt; PtPs = PsPt; t; s 2 T.
Let PT satisfy the following two properties

(i) monotonicity: PtPs = Ps for t � s; t; s 2 T.

(ii) completeness: limt!ts Pt = 0H ; limt!tf Pt = IH , where the limits are taken in
the strong operator topology.

Note, that condition (i) is equivalent to the fact that PsH � PtH , t � s. We
assume the family PT to be bounded uniformly in t: supt2T jPtj < 1 and strongly
continuous from the left: lim�!0+ Pt��� = Pt� for every � 2 H . Such family PT is
called a resolution of the identity of H and (H;PT) is called a Hilbert resolution space.
If PT consists of the orthogonal projectors: Pt = P �

t , then it is called a Hermitian
resolution of the identity. In this case the condition of the uniform boundedness in t
is automatically satis�ed since jPtj � 1.

8



Let H = H 0 �H 00, where (H 0;P0T); (H
00;P00T) are Hilbert resolution spaces. Then

H may be equipped with the canonical resolution of the identity

Pt =

"
P 0
t 012

021 P 00
t

#
; t 2 T; (13)

where 012 : H
00 ! H 0; 021 : H

0 ! H 00 are zero operators.

De�nition 5.1 Let A : D(A)! H be a linear densely de�ned operator. A is called
�nite from above if there exists a measurable, essentially bounded function � : T! T,
such that for almost all t 2 T the operator PtA is bounded in H and if t � �(t) 2 T,
then

PtA = PtAPt��(t) (14)

on D(A) \ Pt��(t)D(A). The function � = �+(�) is called the upper characteristic
of A. A �nite from above operator A with characteristic �+(�) is called �{causal or
�+{�nite.

The space of all �+{�nite operators will be denoted by A� and A0 = [�A
� . 0{causal

operators are called causal. For � 2 H one can consider a trajectory fPt�; t 2 Tg
connecting � and zero in H . Then (14) means that a �{causal operator A considered
as a shift operator along these trajectories does not depend on a future with respect
to the resolution, namely it follows from the completeness of PT that PtA� is inde-
pendent of Ps� for s > t� �(t). One has also a notion of �niteness from below, given
in the following

De�nition 5.2 Let A : D(A)! H be a linear densely de�ned operator. A is called
�nite from below if there exists a measurable, essentially bounded function � : T! T,
such that for almost all t 2 T the operator (IH � Pt)A is de�ned in D(A) and if
t� �(t) 2 T, then

(IH � Pt)A = (IH � Pt)A(IH � Pt��(t)) (15)

onD(A)\(IH�Pt��(t))D(A). The function � = ��(�) is called the lower characteristic
of A. A �nite from below operator A with characteristic ��(�) is called �{anticausal.

Note, that for the Hermitian resolution of the identity A is �nite from below if and
only if A� is �nite from above and ��(A) = �+(A�). 0{anticausal operators are
called anticausal and one writes A� for all � = ��{anticausal operators, A0 = [�A� .
If A 2 A0 \ A0 and �+ = �� = � , then A is called �{local. 0{local operator is
called local. Every operator commuting with PT is local. We will need the following
property

Lemma 5.1 ([4]) Let A 2 A� (resp:A�); A0 2 A�
0

(resp:A� 0). Then B = AA0 (if
exists) is �nite from above (resp. below) with characteristic �(t) = �(t)+� 0(t��(t)).
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Example 5.1 Let H = L2(R) and (h�)(t) =
R+1
�1 h(t; s)�(s)ds. Hilbert space L2

becomes a resolution space when equipped with a family PT de�ned by

Pt�(s) =

�
�(s); if s � t
0; if s > t

. One readily sees that h is �{causal (anticausal) if and

only if h(t; s) = 0 for s > min(t; t � �(t)), (s < max(t; t� �(t))). In particular, h is
local if and only if h = 0.

5.2 Extended Hilbert resolution spaces

Assume now that H is in�nite dimensional and tf = +1. An element � 2 H is
called �nite if there exist t�(�) 2 T; t� <1, such that Pt� = � for all t � t�. Let F
be a space of all �nite elements of H . Then F is dense in H and �H = HF is called
the t{extension or t{completion of H . We write t� limn!1 �n = � if for every t 2 T
one has limn!1 Pt�n = Pt�; �n; � 2 H . This de�nes t{convergence in H and the
associated Hausdor� topology is weaker than the canonical inner product topology
of H . Note that H is not complete with respect to t{convergence. One readily checks
the following simple

Proposition 5.1 The completion of H with respect to t{topology is isomorphic to
HF , the F{weak completion of H.

A densely de�ned operator A in H is called t{continuous if for every sequence �n 2
D(A) with t � limn!1 �n = 0 one has t � limn!1 A�n = 0. Note that a general
continuous operators in H need not be t{continuous. Now we collect the further
properties following [4] (see also [3]).

Lemma 5.2 The following holds:

(i) Every �nite from above continuous operator in H is t{continuous.

(ii) If A is t{continuous, then by Proposition 5.1 it allows an extension to an op-
erator �A in �H: �AjH = A. In particular, every Pt 2 PT , being a local operator,
allows an extension to �Pt in �H. The family PT is a resolution of the identity
in �H. One can generalize the notions of causality for �H, in particular �Pt are
local in �H.

(iii) For every t 2 T and �� 2 �H holds �Pt �� 2 PtH.

(iv) A restriction of �{causal operator �A in �H to H de�nes a �{causal operator A
in H.

(v) If j��j �H = supt2T j �Pt ��jH, then j��j �H < 1 if and only if �� 2 H. In this case
j��j �H = j��jH.

(vi) Let �A : �H ! �H be linear �{causal. Then there exists an operator �A� : �H ! �H
uniquely de�ned by

( �Pt �A �Pt��(t) ��)
� = ( �Pt��(t) ��)

� �A� �Pt 

for every  2 F; �� 2 �H; t 2 T. The operator �A� is the adjoint to �A and is
(��){anticausal.

10



De�nition 5.3 An operator �A : �H ! �H is called �{bounded for a measurable
function � : T! T, if

sup
��2 �H

sup
t2T

j �Pt �A��jH
j �Pt��(t) ��jH

<1:

0{bounded operators are called stable ([3]).

We collect the properties of �{bounded operators in

Lemma 5.3 The following holds:

(i) Let �A : �H ! �H be �{bounded. Then H is invariant subspace for �A and the
restriction �AjH is continuous.

(ii) Let �A : �H ! �H be �{bounded for � � 0. Then �A is �{causal with respect to PT .

(iii) An operator �A : �H ! �H is stable if and only if

(a) �A is causal.

(b) H is an invariant subspace of �A.

(c) The restriction �AjH is continuous in H.

5.3 Linear causal �ltering problem

Let (H 0;P0T ), (H
00;P00T) be Hermitian resolution spaces. LetH = H 0�H 00 be equipped

with the resolution de�ned by (13). We denote by H� the space of all linear continuous
�{causal operators h : H 00 ! H 0. Let D : H 0 ! H 0 be continuous with the adjoint
D� : H 0 ! H 0. Then the optimal linear causal �ltering problem is the minimization
problem

J�0(h)! inf
h2H�

(16)

for every �0 2 H 0, where J�0(h) is de�ned by

J�0(h) = Ejh�0; D(x� hy)ij2; h 2 H� : (17)

It turns out that the condition of the continuity of weight operators is very restrictive
for the solution of the problem (16). We will apply the methods presented in [4],
namely �rst we relax the problem (16) allowing h to be unbounded. Analyzing the
solution of the relaxed problem we derive the conditions for the solvability of (16).

5.4 Generalized linear causal �ltering problem

Let �H 0; �H 00 be the t{completions of H 0 and H 00 respectively. Let �H� be the space of
all linear �{causal operators �h : �H 00 ! �H 0, such that for every t 2 T the operators
�P 0
t
�h�h� �P 0

t : P
0
tH

0 ! P 0
tH

0 are continuous. Assume z to be a random �H element, and,

therefore, Rz = Ezz�, z =

"
x
y

#
, is bounded on the space F of �nite elements in H

and can be then continuously extended to the whole of H . The problem is to �nd
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linear estimates of a random H 0 element x based on the realizations of a random H 00

element y of the form
x̂ = �hy; (18)

minimizing for every t 2 T the functional

J(t)(�h) = EjD �Pt(x� x̂)j2H 0: (19)

Note that J(t)(�h) is �nite for �h 2 �H� ; t 2 T, therefore the problem of the minimization

J(t)(�h)! inf
�h2�H�

(20)

for every t 2 T is correctly posed. Let us reformulate the problem (20) now. For
�0 2 H 0 we de�ne

J
(t)
�0 (

�h) = Ejh�0; DP 0
t(x� x̂)iH 0j2 = Ejh�0; DP 0

t(x�
�hx)iH 0j2

= h�0; DP 0
t [Rx �Rxy�h

� � �hRyx + �hRy�h
�]P 0

tD
��0iH 0 :

(21)

Now, the problem (20) is equivalent to the problem

J
(t)
�0 (

�h)! inf
�h2�H�

(22)

for every �0 2 H 0.

Theorem 5.1 Let Rz = Ezz� satisfy

(i) The operators R
(t;t)
z = �PtRz �Pt : PtH ! PtH are continuous for every t 2 T.

(ii) The operators P 00
t RyP

00
t : H 00 ! H 00 are positive in the invariant subspace P 00

t H
00

for every t 2 T.

Then for every t 2 T there exist x̂t 2 P 0
tH

0 such that for every � 2 H 0 one has

Ejh�0; D(x� x̂t)iH 0j2 = inf
h2�H�

Ejh�0; D(x� P 0
thy)iH 0j2:

The estimates x̂t are given by

x̂t = R(t;t��(t))
xy (R(t��(t);t��(t))

y )�1P 00
t��(t)y + QtP

00
t��(t)y; (23)

where R
(t;t��(t))
xy = P 0

tRxyP
00
t��(t), R

(t;t)
y = P 00

t RyP
00
t , (R

(t;t)
y )�1 means the inverse of

R
(t;t)
y in the invariant subspace P 00

t��(t)H
00 and any Qt : H

00 ! H 0 such that DQt = 0.
Moreover,

Ejh�0; D(x�x̂t)iH 0j2 = h�0; D[P 0
tRxP

0
t�R

(t;t��(t))
xy (R(t��(t);t��(t))

y )�1R(t��(t);t)
yx ]D��0iH 0 :

12



Proof In view of (23) we rewrite (21) as

J
(t)
�0 (

�h) = h�0; D[P 0
tRxP

0
t � R(t;t��(t))

xy
�h� � �hR(t��(t);t)

yx + �hR(t��(t);t��(t))
y

�h�]D��0iH 0 :

(24)
The minimization problem (22) is now the same as the minimization of the func-

tionals (24) in the invariant for R
(t��(t);t��(t))
y subspace H 00

t��(t) = P 00
t��(t)H

00. This

is the minimization problem (7) for H 0 = P 0
tH

0 and H 00 = H 00
t��(t). Theorem 4.1

together with the invertability of R
(t��(t);t��(t))
y by the assumption (ii) of Theorem

5.1 imply the solution of the problem in the form given by (23) and the last formula
of the theorem.

The detailed discussion and the solutions of these problems for D = IH 0 can be
found in [4], [5]. We will treat further the spaces with the discrete resolution of the
identity. In general, the problems described above can be reduced to the discrete
case by a suitable approximation of PT by discrete resolutions of the identity, see [4]
for the details.

5.5 Discrete resolutions of the identity

We assume now that PT is a piecewise constant operator valued functional on T with
at most countable number of discontinuity points without accumulations in T. Let
t = ftk ; k 2 Kg be a �nite or a countable ordered subset of T without accumulation
points, K = Z \ (0; K); t0 = ts; tK = tf , K �nite or K = +1. The discrete
resolution of the identity in H corresponding to t � T is the set Pt = fPt; t 2 tg.
The family of the orthogonal projectors Qk = Ptk � Ptk�1 ; k 2 K determines the
resolution Pt uniquely due to the relation Pt =

P
k:tk�t

Qk . These projectors are
mutually orthogonal: QkQl = QlQk = 0H for k 6= l.

De�nition 5.4 A family QK of the mutually orthogonal projectors Qk is called the
orthogonal resolution of the identity if QK is complete in a sense that Qk ! OH
for k ! ks and

P
l�k Ql ! IH for k ! kf . The pair (H;QK) is called the discrete

resolution space.

Every linear operator R : H ! H can be decomposed with respect to QK into
blocks Rkl = QkRQl and R =

P
k;l2KRkl. The de�nitions of �niteness, causality

and anticausality can be reformulated in terms of the discrete structure QK . The
function � in De�nitions 5.1, 5.2 is replaced by � : t ! t with a property that
�(tk) = tl; k; l 2 K and the latter corresponds to a function � : K ! K such that
�(tk) = t�(k). In analogy to the continuous case one has

De�nition 5.5 A linear operator R : H ! H is called �{causal (strictly �{causal,
�{anticausal) if Rkl = 0H for l > k� �(k), (l � k � �(k); l < k� �(k)) respectively.
It is called neutral if its causal and anticausal.

For a linear operator R : H ! H we denote its �{causal, anticausal and neutral
components by R[�] =

P
l�k��(k)Rkl; R[��] =

P
l�k��(k)Rkl; R[[�]] =

P
l=k��(k) Rkl

respectively.

13



Now we are ready to formulate the optimal causal �ltering problem for the discrete
resolution spaceH = H 0�H 00,H 0; H 00 equipped with the orthogonal resolutions of the
identity Q0K and Q00K respectively. Let H� denote the space of all �{causal continuous
operators h : H 00 ! H 0 and x̂k = Q0

k x̂; yk = Q00
ky; hkl = Q0

khQ
00
l . Then the problem

is the linear estimation
x̂k =

X
l�k��(k)

hklyl (25)

minimizing the functionals

J�0(h) = Ejh�0; D(x� hy)ij2 ! inf
h2H�

(26)

for every � 2 H 0. Note, that this is the same as the minimization of

Jk(h) = EjD(xk � x̂k)j
2 ! inf

h2H�
(27)

for every k 2 K, where xk = Q0
kx.

In analogy with the continuous case we will treat the relaxed problem �rst, replac-
ing the condition of the continuity of h by the continuity of hk = Q0

kh =
P
l2K hkl :

H 00 ! H 0 for every k 2 K. The space of all linear �{causal operators for which all the
correspondent operators hk are continuous will be denoted by �H�. Note that because
Jk are �nite when Rz is bounded, the problem

Jk(h) = EjD(xk � x̂k)j
2 ! inf

h2�H�
; k 2 K (28)

is correctly posed. Note that if �H 0; �H 00 are the completions of H 0; H 00 in t{topology,
then the space �H� is isomorphic to the space of all �{causal operators from �H 00 to
�H 0. The problem now becomes

Jk(h) = EjDQ0
k(x�

�hy)j2 ! inf
h2�H�

; k 2 K: (29)

In analogy to Theorem 5.1 and Theorem 2.3 in [4] we have

Theorem 5.2 Let Rz = Ezz� be continuous and Ry satisfy PtkRyPtk � �Ptk for
some � > 0 and for every k 2 K. Then all the solutions �hopt : �H 00 ! �H 0 of the
problem (29) are given by

�hopt =
X
k2K

Q0
kRxyP

00
tk��(k)

(P 00
tk��(k)

RyP
00
tk��(k)

)�1P 00
tk��(k)

+ QP 00
tk��(k)

; (30)

where Q 2 �H� satis�es DQ = 0. One has

inf
h2�H�

Jk(�h) = Jk(�hopt)

= jDP 0
tk
[Rx �RxyP

00
tk��(k)

(P 00
tk��(k)

RyP
00
tk��(k)

)�1P 00
tk��(k)

Ryx]P
0
tk
D�j:

14



The proof is similar to the proof of Theorem 5.1 and is based on the calculations of
x̂k as optimal estimate in the subspace of H 00 spanned by y0l = Q0

ky; l � k � �(k).
Similar to [4, Theorem 2.4] for the solution of the original problem (27) we have

Theorem 5.3 Let the assumptions of Theorem 5.2 be satis�ed. Then the problem
(27) is solvable if and only if the solution �h : �H 00 ! �H 0 of (29) is �{bounded. In
this case the image of H 00 under �h is contained in H 0 and the restriction �hjH 00 is the
solution of (27).

Proof Under the assumptions of Theorem 5.3 formula (30) de�nes the optimal linear
�lters for (29). If �hopt is �{�nite, the operator �hoptjH 00 is continuous and de�nes the
weight operators for the solutions of (27). If �hopt is not �{bounded, the converse is
also obvious from Lemma 5.3.

Note that taking �nite partial sums in (30) one obtains minimizing sequences
similar also in the case when �h is not �{bounded and the problem (27) is not solvable
in H�.

6 Bode{Shannon representation of the opti-

mal �lter

First we will brie
y review the results on the spectral factorization of the oper-
ators which we need in order to discuss the application of Bode{Shannon theory
(cf.[1],[4],[7],[8]) in our setting. The detailed discussion on various types of spectral
factorization and separation of the operators can be found in [4].

Let PT be a Hermitian resolution of the identity in H . As in the previous section
we denote by �H a t{completion of H and by t a discrete linearly ordered subset of
T. Let Gt be a space of all bijective operators �G : �H ! �H such that �Pt �G �Pt and
�Pt �G�1 �Pt are continuous as operators from PtH to PtH for every t 2 t. Note, that
Gt contains the space of all causal, causally invertible operators in H .

De�nition 6.1 An operator �G 2 Gt is called spectrally factorizable if there exist a
causal with respect to PT operator �U : �H ! �H, such that the inverse of �U exists and
is causal in �H and �G = �U �U�, where �U� is the adjoint of �U .

Let �G = �U �U� be a spectral factorization of �G. If �U; �U�1 are stable (De�nition 5.3),
the restrictions �U jH ; �U

�1jH are causal and continuous in H in view of Lemma 5.3.
This implies that the restriction G = �GjH is continuous in H and we can summarize
it in the following

De�nition 6.2 A continuous operator G : H ! H is called strongly spectrally
factorizable if there exist a continuous causal operator U : H ! H with continuous
and causal inverse, such that G = UU�, where U� is the adjoint of U .

We call operator �G 2 Gt positive if the operators �Pt �G �Pt, �Pt �G�1 �Pt : PtH ! PtH are
nonnegative for every t 2 t. The following is Theorems 2.5 and 2.6 in [4] (see also
[5],[3]).
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Theorem 6.1 (i) Every positive operator �G 2 Gt is spectrally factorizable. A
causal with respect to the discrete resolution �Pt operator �U factorizing �G is
unique up to the multiplication from the right by a neutral unitary in �H operator.

(ii) Let �G 2 Gt and assume that the restriction G = �GjH is positive and continuous
in H. Then G is strongly spectrally factorazible. A causal with respect to the
discrete resolution QK operator U factorizing G is unique up to the multiplica-
tion from the right by a neutral unitary in H operator.

It is convenient in the discrete case (H;QK) to denote by GK the space of all bijective
operators �G : �H ! �H such that for every k 2 K the operators

Pk
l=0

Pk
m=0

�Ql �G �Qm,Pk
l=0

Pk
m=0

�Ql �G�1 �Qm are continuous from Hk =
Lk

l=0
�QlH to Hk. �G 2 GK is called

positive if the operators in the de�nition of GK are nonnegative for every k 2 K.
Let H = H 0�H 00 be equipped with the orthogonal resolution of the identity given

by Qk =

"
Q0
k 0
0 Q00

k

#
, Q0

k 2 Q
0
K ; Q

00
k 2 Q

00
K . The �{causal �lters are given by

x̂k =

k��(k)X
l=0

hklyl;

where hkl : Q
00
lH

00 ! Q0
kH

0 are linear continuous. The corresponding �lter �h : �H 00 !
�H 0 is de�nd by having its blocks equal to hkl.

Theorem 6.2 Assume that Rz 2 GK , Ry : H
00 ! H 0 is positive and � � 0. Then all

optimal linear �lters for the discrete generalized linear causal �ltering problem (29)
are of the form

�hopt = [Rxy(U
�1)�][�]U

�1 + Q; (31)

where U is a causal operator strongly factorizing Ry, [Rxy(U
�1)�][�] is the �{causal

component of Rxy(U
�1)� : �H 00 ! �H 0 and any Q 2 �H� such that DQ = 0.

One has inf�h2�H� Jk(
�h) = Jk(�hopt) = jDQk[Rx � RxyR

�1
y Ryx + [Rxy(U

�1)�][ ��]
([Rxy(U�1)�][ ��])

�]QkD�j.

Proof Let L = Rxy(U�1)�� [Rxy(U�1)�][�] denote the strictly anticausal component
of Rxy(U

�1)�. Rewriting Jk(�h) in analogy to (12) we have

Ejh�0; DQ0
k(x�

�hy)ij2 = h�0; DQ0
k[Rx �Rxy�h

� � �hRyx + �hRy�h
�]Q0

kD
��0i

= h�0; DQ0
k[Rx �RxyR

�1
y Ryx]Q0

kD
��0i+

h�0; DQ0
k(
�hU �M � L)(�hU �M � L)�Q0

kD
��0i

= h�0; DQ0
k[Rx �RxyR

�1
y Ryx]Q

0
kD

��0i+
h�0; DQ0

k(
�hU �M)(�hU �M)�Q0

kD
��0i+

h�0; DQ0
k[(

�hU �M)L� � L(�hU �M)�]Q0
kD

��0i;
(32)

whereM denotes [Rxy(U�1)�][�], Rxy(U
�1)� = L+M . Note, that in the last equality

in (32) the �rst term is constant in h, the second one is quadratic in �hU �M and the
third is linear. Now, an application of Lemma 5.1 yields the �{causality of �hU �M
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and in view of strict causality of L� again by Lemma 5.1 the operator (�hU �M)L� is
strictly �{causal. It follows that Q0

k(
�hU�M)L�Q0

k = 0 if � � 0. This means that the
linear term in (32) vanishes and the minimum is attained if and only if the quadratic
term in (32) is zero. This is the case of �hU �M = S for any S 2 �H� such that
DS = 0. Multiplication by 0{causal operators U; U�1 does not change �{causability
in view of Lemma 5.1 and we obtain formula (31) with Q = SU�1. The last formula
of the theorem follows from the substitution of �hopt into the last expression of (32).

Corollary 6.1 For D = IH 0 the only operator in (31) is obtain by taking Q = 0.
This operator is called the Bode{Shannon weight operator and the �lter (25) is called
the Bode{Shannon �lter.

Corollary 6.2 If Rz is stable, R�1
y exists and is continuous in H and stable operator

Rxy(U
�1)� has the stable �{causal component, then the original linear optimal causal

�ltering problem (27) is solvable and all optimal weight operators are the restrictions
of �hopt in (31) to H 00.

The proof is similar to the proof of Theorem 5.3 and is left as an exercise. The reader
can consult [4] for the application to the �nite dimensional stationary processes, where
the conditions of the Corollary 6.2 are reduced to the conditions in terms of analytic
functions.
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